E ELY ClearCase and Rational ClearCase LT

Version 7.0.0
Windows, UNIX, and Linux

Guide to Managing Software Projects

GI11-6712-00

GELDNEN ClearCase and Rational ClearCase LT

Version 7.0.0
Windows, UNIX, and Linux

Guide to Managing Software Projects

GI11-6712-00

Before using this information, be sure to read the general information under [Appendix D, “Notices,” on page 295]

7th edition (May 2006)

This edition applies to version 7.0.0.0 of IBM Rational ClearCase (product number 5724G29) and IBM Rational
ClearCase LT (product number 5724G31) and to all subsequent releases and modifications until otherwise indicated
in new editions. This edition replaces G126-5330-00.

© Copyright International Business Machines Corporation 1992, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures. ix
Tables . Xi
About this book . . Xiii
Who should read this book . . Xiii
Typographical conventions . . xdii
Online documentation . xiv
Help system . . xiv
Reference pages. . xiv
Command syntax . . xiv
Tutorial . xiv
PDF manuals . Xiv
Product-specific features . . Xiv
Manual organization . . XV
Related information . . XV
Rational ClearCase documentatlon roadmap . XV
Rational ClearCase LT documentation roadmap xvi
Contacting IBM Customer Support for Rational
software products . . . Xvi
Downloading the IBM Support A551stant . . Xvii
Summary of changes . Xix
Part 1. Introduction. 1
Chapter 1. Choosing between UCM and
base ClearCase . 3
Differences between UCM and base ClearCase . .3
Branching and creating views. .3
Using components to organize files . .4
Creating and using baselines . .5
Managing activities . . .5
Enforcing development pohc1es . .5
Part 2. WorkinginUCM 7
Chapter 2. Understanding UCM. . 9
Overview of the UCM process .9
Creating the project. 11
Creating a PVOB b |
Organizing directories and files 1nto components 11
Shared and private work areas . 12
Starting from a baseline .13
Setting up the UCM integration w1th Ratlonal
ClearQuest . . 16
Setting policies . 16
Assigning work . .17
Creating a testing stream . .17
Building components . . . 18
Rational ClearCase MultlSlte cons1derat10n .18
Making a baseline . .19
After making a baseline .19

© Copyright IBM Corp. 1992, 2006

The rebase operation19
Recommending the baseline.24
Recommended baselines25
Monitoring project status. . . . 26
Overview of the UCM integration w1th Ratlonal
ClearQuest26
Associating UCM and Rat10nal ClearQuest
objects 26
Schema enabled for UCM R
State types. . . . 28
Queries in a Ratlonal ClearQuest schema enabled
foruCM28

Chapter 3. Planning the project 29

Using the system architecture as the starting point 29

Mapping system architecture to components . . 29
Deciding what to place under version control . . 30
Mapping components to projects30
Organizing components . . . T C 1 |
Deciding how many VOBs touse31
Identifying additional components.32
Defining the directory structure33
Identifying read-only components.33
Choosing a stream strategy34
The basic multiple-stream project34
Stream hierarchies35
Stream configurations and basehne contents . .35
Stream relationships36
Single-stream projects44
Read-only streams45
Specifying a baseline strategy45
Identifying a project baseline46
Pure composite baselines.47
When to create baselines51
Defining a baseline naming convention52
Identifying promotion levels to reflect state of
development B VA
Planning how to test basehnes B A
Planning PVOBs.53
Deciding how many PVOBs to use53
Understanding the role of the administrative
voB.54
Using multiple PVOBs.54
Identifying special element types56
Using mergetype to manage merge behav1or . .56
Defining the scope of element types . . V4
Planning how to use the UCM integration w1th
Rational ClearQuest57
Mapping PVOBs to Ratlonal ClearQuest user
databases . . . R V4
Deciding which scherna to use59

Chapter 4. Setting policies 63

Components and baselines policies63
Modifiable components63
iii

Default promotion level for recommending

baselines64
Default view types64
Permissions to modify pr0]ects and streams . . .65

Allow all users to modify the project.65

Allow all users to modify the stream and its

baselines . . . B)
Policies for all deliver operatlons o . 65

Do not allow deliver to proceed with checkouts

in the development stream65

Rebase before delivery. . . . 65

Policies for deliver operations to nondefault targets 66
Deliver changes from the foundation in addition

to changes from the stream67
Allow deliveries that contain changes to mlssmg
or non-modifiable components68
Allow interproject deliver to project or stream . 69
Require that all source components are visible in
the target stream 69
Policies for the UCM 1ntegrat1on w1th Rat10nal
ClearQuest 69
For submitting records from a Ratronal ClearCase
cient69
For WorkOn70
For delivery . . e . .0 T70
For changing act1v1t1es .o ... T2
Policies and interproject del1ver1es V)

Chapter 5. Setting up a Rational
ClearQuest user database for UCM . . 75

About setting up a Rational ClearQuest user

database75
Using the predef1ned UCM—enabled schemas .. .75
To set up a Rational ClearQuest user database to
work with UCM.75
Adding UCM support to an exrstmg schema . . .75
To enable a schema to work with UCM76
Assigning state types to the states of a record
type. . . .77
Requirements for enablmg custom record types 78
Setting state types78
State transition default act1on requ1rements for
record types . . . NV
To set default actions for states . . 80
Upgrading your schema to the latest UCM package 80
To upgrade the schema 80
Customizing Rational ClearQuest pro]ect polrc1es . 81
To modify the behavior of a policy81
Associating child activity records with a parent
activity record B 1
Using parent and child controls B 1
Creating users and adding credentials82
To create Rational ClearQuest user account
profiles. 82
Creating and mamtamlng credentrals for Ratronal
ClearQuest database sets 82
Setting the environment (Linux and the UNIX
system).83

Chapter 6. Setting up the project . . . 85

About setting up the project.85
Creating a project from scratch85
Creating the project VOB.86
Creating components for storing basehne
dependencies. 87
Creating components for stonng elements .. .88
Creating the project.91
Creating an integration view . . . 93
Creating and setting an activity in the 1ntegrat10n
stream (Linux and the UNIX system only) . . . 94
Creating the directory structure. . . .9
Importing directories and files from outs1de
Rational ClearCase version control.95
Making baselines of newly populated
components . . .)
Creating the dependency relat1onsh1ps for
composite baselines in the project 96

Recommending a baseline for new components 97
Creating a project based on an existing Rational

ClearCase configuration97
Creating the PVOB from an exrstmg Ratronal
ClearCase configuration97
Making components from existing VOBs 4
Making a baseline from a label98
Creating the project. . . . e .99
Finishing the project confrguratron o099

Creating a project based on an existing project. . . 99
Capturing final baselines in a composite baseline 99
Creating the project from another project . . . 99
Creating an integration view100

Enabling use of the UCM 1ntegrat1on w1th Rat1onal

ClearQuest 100
To enable a pro]ect to work w1th a Ratronal
ClearQuest user database 100
Changing the project to a different Ratlonal
ClearQuest user database 101
Migrating activities101
Setting project policies101
Assigning activities 102
Disabling the link between a pro]ect and a
Rational ClearQuest user database 102
Fixing projects that contain linked and unllnked
activities 103

How the UCM mtegratron w1th Ratronal
ClearQuest is affected by Rational ClearQuest

MultiSite 104
Working with IBM Rat1onal Surte (Wlndows) . . 105
Creating a development stream for testing
baselines . . . B (1)

To create a development stream . . . 106
Creating a feature-specific development stream .. 107

About creating feature-specific development

streams107

Chapter 7. Managing the UCM prolect 109

About managing a project 109
Adding components oo ..o 109
To add a component to a stream .o .. 110
To make a component modifiable within the
project. 110

To synchronize a view w1th a new confrguratron 110

iV IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To synchronize a child stream with project

modifiable components . . . 110
To synchronize a child stream view w1th new
parent stream configuration. 111
To edit the view load rules . 111
Element relocation . .11
Building components . . 112
About building components . 112
Locking the shared stream . . 112
Finding work that is ready to be dehvered . 113
Undoing a deliver operation . 113
Building and testing the components . 114
Creating a new baseline . . 114
About making a baseline . 114
To make a baseline . 115
To unlock the stream . . 116
Testing the baseline . . 116
To test in a separate development stream . . 116
Rebasing the test development stream . . 117
Fixing problems in baselines . 118
Recommending the baseline . . 118
To change a baseline promotion level . 119
To recommend a baseline or set of baselines . . 119
Resolving baseline conflicts. . 120
Contflicts between a composite baselme and an
ordinary baseline . . . 120
Contflicts between compos1te baselmes . . 120
Monitoring project status . 122
Viewing baseline histories . 122
Comparing baselines . .. 123
Querying Rational ClearQuest user databases 124
Using Rational ClearCase Reports (Windows
systems only) T . 125
Cleaning up the project . . 125
Removing unused objects .. 125
Locking and maklng obsolete the pro]ect and
streams o o127
Chapter 8. Using triggers to enforce
UCM development policies . 129
Overview of triggers . . 129
Supported triggers o . 129
Preoperation and postoperatlon triggers . 130
Scope of triggers . . . 130
Using attributes with tr1ggers . . 130
When to use Rational ClearQuest scr1pts 1nstead
of UCM triggers . 130
Sharing triggers among drfferent types of platform 131
Using different paths or different scripts . 132
Using the same script . 132
Tips for sharing scripts . . 132
Enforce serial deliver operations . . 133
Delivery setup script . .o . 133
Delivery preoperation trigger script . . 134
Delivery postoperation trigger script . 135
Send mail to developers on deliver operations . 136
E-mail notification setup script . . 136
E-mail notification postoperation trigger script 136
Do not allow activities to be created on the
integration stream . . . 137
Implementing a role-based access control system 138

Role-based preoperation trigger script 139
Additional uses for UCM triggers 140

Chapter 9. Managing muIt|pIe prolects 141

Project uses 141
Release-oriented pro]ects B 3
Component-oriented Projects 143
Bootstrap projects146
Mixing project organizations 146

About managing multiple projects 147
Managing a current project and a follow-on
project simultaneously 147
To rebase an integration stream to baselmes of
another project 148
Migrating unfinished work to a follow -on
project. . . . oo 149
Incorporating a patch release 1nto a new version
of the project 150
Delivering work from an 1ntegrat10n stream to
another project 151
Sharing baselines between srblmg streams in
different projects 151

Merging from a project to a non—UCM branch .. 152

Part 3. Working in base ClearCase 155

Chapter 10. Managing projects in base
ClearCase. 157

About base ClearCase project management . . . 157
Setting up the project. 0157
Creating and populating VOBs ... 157
Planning a branching strategy. 158
Creating shared views and standard conflg
specs . . . B £
Recommenclat1ons for view names 159
Implementing development policies. 160
Using labels. 160
Using attributes, hyperlmks tr1ggers, and locks 160
Global types.1lel
Generating reports16l
Integrating changes16l

Chapter 11. Defining project views 163

About defining project views 163
How config specswork163
Default config spec163
The standard confrguratron rules R (7}
Config spec include files. le4
To reconfigure your view with the mod1f1ed
config spec 165
Project environment for sample conflg specs .. . 165
Views for project development 166
View for new development on a branch .. . 166
View to modify an old configuration . . . 167
View to implement multiple-level branchmg . 168
View to restrict changes to a single d1rectory 169
Views to monitor project status 170
View that uses attributes to select versions . . 170
View that shows changes of one developer . . 172

Contents V

Historical view defined by a version label. . . 173

Historical view defined by a time rule 173
Views for project builds o174
View that uses results of a n1ghtly bu1ld .. 174

Variations that select versions of project libraries 174
View that selects versions of application

subsystems 175
View that selects versions that bu1lt a part1cular
program 175

Sharing config specs among Lmux the UNIX

system, and Windows system177
Path separators. . . N V4
Paths in config spec element rules N V44
Config spec compilation.178

Chapter 12. Implementing project
development policies. 179
About implementing project development policies 179

Good documentation of changes is required . . . 179
All source files require a progress indicator . . . 180
Label all versions used in key configurations. . . 181
Isolate work on release bugs to a branch 181
Avoid disrupting the work of other developers . . 182
Deny access to project data when necessary . . . 182
Notify team members of relevant changes. . . . 183
To attach triggers to existing elements 184
All source files must meet project standards . . . 184
Associate changes with change orders 184
Associate project requirements with source ﬁles 185
Prevent use of certain commands. 187
Certain branches are shared among Ratlonal
ClearCase MultiSite sites . . . 187
Sharing triggers among different types of platform 188
Using different paths or different scripts . . . 188
Using the same script189

Chapter 13. Setting up the base
ClearCase integration with Rational
ClearQuest 191

Overview of the base ClearCase integration with

Rational ClearQuest191
What the integration does 191
How the integration works.19
Policy regarding customization and support .. 194
Checklist of configuration steps 195

Planning for the base ClearCase 1ntegrat1on w1th

Rational ClearQuest 196

Setting up the Rational ClearQuest user database

for base ClearCase. 19
Adding Rational ClearCase def1n1t1ons to a
Rational ClearQuest schema 197

Setting policies and installing triggers in a

ClearCase VOB. 197

Using a shared conﬁgurahon f1le and tr1ggers 198
Installing triggers in a VOB on Linux and the

UNIX system 199
To start the Rational ClearQuest Integratmn

Configuration tool. . . A £V
To specify multiple record types e 0
To list triggers installed ina VOB 199

Quick start for evaluations . . 200
Editing the configuration file . . 200
Overview of the configuration file . 200
Locating the configuration file. . 201
Configuration file use and format . 201
Summary of configuration parameters . . 201
Connecting Rational ClearCase clients and a
Rational ClearQuest user database . . 203
Establishing the Rational ClearQuest Web
interface . . 203
Defining the Ratlonal ClearQuest user database
and database set . 204
Establishing the schemas . 205
Establishing Rational ClearCase MultrS1te
support . 207
About code page conversion . 207
Testing the configured connections . .. 208
Troubleshooting the configured connections . . 209
Making policy choices . . 209
Allowing multiple assoc1at10ns . 209
Controlling query usage. . 210
Allowing use of the graphic user 1nterface (GUI) 211
Forcing checkin success before committing
associations . . . 211
Enhancing performance . . . 211
Using the association batch feature . .. 211
Controlling and using automatic associations 214
Debugging and analyzing operations . 215
Generating operational information . . 215
Testing the integration . 216
Customizing the integration . 217
About the Integration Query w1zard . 217
To start the Integration Query wizard . 217
Chapter 14. Integrating changes . 219
About integrating changes . . 219
How merging works . . 219
Using the GUI to merge elements .. 221
Using the command line to merge elements . . 222
Common merge scenarios . . 222
Selective merge from a subbranch . 222
Removing the contributions of some versions 223
Merging all project work .o . 224
Merging a new release of an entire source tree 225
Merging directory versions . . 227
Using other merge tools . . 228
Chapter 15. Using element types to
customize file element processing . . 229
About element types and file processing . 229
File types in a typical project . . 229
How element types are assigned . . . 230
Sample magic file on the UNIX system . 230
Sample Magic File on the Windows system . 230
Element types and type managers . 230
Other applications of element types . . 231
Predefined and user-defined element types . 232
Predefined and user-defined type managers . . 232
Creating a new type manager (the UNIX
system) . . S . 232

Vi IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Writing a type manager program (the UNIX

system) 233
Type manager for manual page source f1les .. .233
Creating the type manager directory. 234
Inheriting methods from another type manager 234
Implementing a new compare method 236
Icon use by GUI browsers239

Chapter 16. Using Rational ClearCase
throughout the development cycle . . 241
About using Rational ClearCase throughout the

development cycle.241
Project overview241
Development strategy243
Project manager and Ratlonal ClearCase
administrator243
Use of branches243
Creating project views245
Creating branch types245
Creating standard config specs 245
Creating, configuring, and reglstermg views . . . 245
Development begins 246
Techniques for isolating your work 246
Creating baseline1247
Merging two branches 247
Integration and test247
Labeling sources248
Removing the integration view 248
Merging ongoing development work 248
Preparing to merge249
Mergingwork250
Creating Baseline 2 0251
Merging from the r1_fix branch o0 252
Preparing to merge from the major branch . . 252
Merging from the major branch 253
Decommissioning the major branch 254
Integration and test25
Final validation: creating Release 2 O25
Labeling sources255
Restricting use of the main branch25
Setting up the test view 255
Setting up the trigger to monitor bug f1x1ng .. 256
Fixing a finalbug256
Rebuilding from labels257
Wrappingup257

Part 4. Appendixes 259

Appendix A. Moving from view
profilestoUCM 261

View profilesand UCM26l
Feature comparison26l

Moving view profile information to UCM. . . . 262
Preparing your view profile project 262
Moving the view profile information 262

Appendix B. Rational ClearCase
integrations with Rational ClearQuest. 263
Understanding the Rational ClearCase integrations

with Rational ClearQuest263
Managing coexisting integrations. 263
Schema usage with both integrations 264
Presentation.264

Appendix C. Customizing Rational
ClearCase Reports 265

How Rational ClearCase Reports works 265

What you can customize in Rational ClearCase

Reports 265
Run-Time processmg sequence for Reports
programming interface 266
Configuring shared report d1rector1es 268
Default directory structure for Rational
ClearCase Reports. 268
Populating the Report Bullder tree pane ... 209

Report Procedure interface specifications 270
Interface specification for All_Views.prl. . . . 270
Description specification.270
Help files. . . . VA |
Parameters spec1f1cat10n o .. .27
Rightclick specification272
Fields specification273
Parameter choosers274
Viewing the report275
Saving report data.276

Report programming examples . . . 276

Example 1: Adding a column to report output 277
Example 2: changing directory organization,

description, and output279
Example 3: changing description, parameter
types, and output 283
Example 4: changing the pop- up menu for
right-click handling 286
Example 5: adding a new Cornmand to Report
Viewer pop-up menu.288
Troubleshooting customization292
Errors in the interface specification 292
Coding high-level languages other than ccperl .. 293
Obtaining the T0046 package293

Appendix D. Notices 295

Index.299

Contents Vil

viii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Figures

N

—_

—_
N

13.
14.
15.
16.
17.
18.

19.
20.
21.
22.
23.

24.
25.

26.
27.

28.
29.
30.
31.

32.

POV N W

Branching hierarchy in base ClearCase .

Project manager, developer, and integrator

work flows. .

VOB containing multrple components

Baselines of two components.

Composite baseline .

Baseline predecessors and descendants

Rebase operation. .

Advance rebase operation.

A test stream to stabilize a baselme

Promoting baselines.

Association of UCM and Ratlonal ClearQuest

objects in integration .

Components used by Transactron Burlder

project .

Storing multiple components ina VOB

Using a read-only component .

Using a feature-specific development stream

Stream relationships. .

Stream hierarchy with multiple levels

Direct stream relationships for alternate target

deliver operations .

Indirect stream relationships for alternate

target deliver operations . .

Alternate target intra-project dehver operatron

Sharing changes by a rebase operation

Sharing changes by an alternate target deliver

operation

Rebase operation and alternate target delrver

operation .

Using a system-level compos1te baselme

Loosely coupled relationship between

baselines

Tightly coupled relatlonshlp between baselrnes

Changing a regular composite to a pure
composite baseline .

Creation of a composite baselme descendant

Related projects sharing one PVOB. .

Using one PVOB as an administrative VOB for

multiple PVOBs . .

Multiple PVOBs linked to the same Ratronal

ClearQuest user database .

One schema repository for multrple Ratronal

ClearQuest user databases

© Copyright IBM Corp. 1992, 2006

. 10
.12
.13
.14

15

. 19
.21
.22
. 25

.27

. 31

32

. 34

35

. 37
. 38

. 39

. 40

41

.42

. 43

. 44

46
. 47
48

50
. 54

. 55

. 58

. 59

33.
34.

35.

36.

37.
38.

39.
40.

41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

51.
52.
53.
54.
55.
56.
57.

58.
59.

60.
61.
62.

63.
64.

65.
66.

Component modifiability and visibility
Default and nondefault deliver targets in a
stream hierarchy . .

Delivering changes made in a foundatlon
baseline .

State transitions of UCM enabled
BaseCMActivity record type .

A test stream to stabilize a baseline
Composite baselines with the same
component .
Composite baselmes wrth a confhct .
Composite baselines with an override
baseline

An organization for release orrented pro]ects
Structure for component-oriented projects
Composite baselines representing subsystems
Managing a follow-on release .

Alternate target inter-project deliver operatron
Incorporating a patch release

Baselines distributed to a different pro]ect
Making a change to an old version
Multiple-level auto-make-branch . .
Development config spec versus QA config
spec.

Checking out a branch of an element
Requirements tracing . . .
Versions involved in a typical merge
Rational ClearCase merge algorithm .
Selective merge from a subbranch.
Removing the contributions of some versions
Merging a new release of an entire source
tree .

Project plan for Release 2 0 development
Development milestones: evolution of a
typical element .

Creating baseline 1. .

Updating major enhancements development
Merging Baseline 1 changes into the major
branch .

Baseline 2. . .
Element structure after the pre Baselme—2
merge . .

Final test and release . .

Run-time processing sequence .

63

. 66
. 68

. .79
. 117

. 120
. 121

. 121

142
144
145
. 148
149

. 150

152

. 168
. 169

. 171

172

. 186

220

. 220
. 223

224

. 226

242

. 244
. 247

249

. 251
. 252

. 254
. 255
. 267

ix

X IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Tables

1. Recommended directory structure for

components33
2. State Types in UCM- Enabled Schema .. .78
3. Environment variables required for integration 83
4. Queries in a UCM-enabled schema 124
5. Configuration checklist19
6. Configuration parameters summary 202
7. Files used in a typical project229

© Copyright IBM Corp. 1992, 2006

10.
11.

View profile features and their UCM
counterparts . .

Parameters supplied w1th Rat1ona1 ClearCase
Reports

Fields modifiers.

Field type supphed with Ratlonal ClearCase
Reports

. 262

. 271
. 273

. 273

xi

Xii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

About this book

This manual shows project managers how to set up and manage a configuration
management environment for their development team. It describes how to use the
Unified Change Management (UCM) process and the customizable features of base
ClearCase.

IBM Rational ClearCase is a configuration management system designed to help
software development teams track the objects in software builds. You can adopt the
UCM process, or you can use base ClearCase to create a customized configuration
management environment.

Who should read this book

A reader needs to understand the base concepts of Rational ClearCase and be able
to use either the command line or graphic user interface of Rational ClearCase.

Typographical conventions

This manual uses the following typographical conventions:

ccase—home—dir represents the directory into which Rational ClearCase, Rational
ClearCase LT, or Rational ClearCase MultiSite has been installed. By default, this
directory is /opt/rational/clearcase on the UNIX system and C:\Program
Files\Rational\ClearCase on Windows.

cquest-home-dir represents the directory into which Rational ClearQuest has been
installed. By default, this directory is /opt/rational/clearquest on the UNIX
system and C:\Program Files\Rational\ClearQuest on Windows.

Bold is used for names the user can enter; for example, command names and
branch names.

A sans-serif font is used for file names, directory names, and file extensions.

A serif bold font is used for GUI elements; for example, menu names and
names of check boxes.

Italic is used for variables, document titles, glossary terms, and emphasis.

A monospaced font is used for examples. Where user input needs to be
distinguished from program output, bold is used for user input.

Nonprinting characters appear as follows: <EOF>, <NL>.

Key names and key combinations are capitalized and appear as follows: Shift,
Ctrl+G.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

... In a syntax description, an ellipsis indicates you can repeat the preceding item
or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard,
similar to “*” or . For more information, see the wildcards_ccase
reference page.

1

© Copyright IBM Corp. 1992, 2006 xiii

e If a command or option name has a short form, a “slash” (/) character
indicates the shortest legal abbreviation. For example:

1sc/heckout

Online documentation

This section describes how you can access the online documentation for Rational
ClearCase products.

Help system

To access the Help, use the Help menu, the Help button, or the F1 key. To display
the contents of the online documentation set, perform one of the following actions:

* On Linux or the UNIX system, type cleartool man contents .

* On Windows, click Start > Programs > IBM Rational > IBM Rational
ClearCase > Help.

* On Windows, Linux, or the UNIX system, to display contents for Rational
ClearCase MultiSite, type multitool man contents.

* Use the Help button in a window to display information about that window, or
press F1.

Reference pages

To access reference pages from the IBM Rational ClearCase Command Reference, use
the cleartool man and multitool man commands. For more information, see the
man reference page in the IBM Rational ClearCase Command Reference.

Command syntax

To access online documentation by using the command line, use the -help
command option or the cleartool help command.

Tutorial

The tutorial for a Rational ClearCase product provides a step-by-step tour of the
important features of the product. To start the tutorial, perform one of the
following actions:

* On Linux or the UNIX system, type cleartool man tutorial .

* On Windows, click Start > Programs > IBM Rational > IBM Rational
ClearCase > ClearCase Tutorial.

PDF manuals

To access PDF manuals for Rational ClearCase products, use the command line to
navigate to the following directories:

* On Linux or the UNIX system, ccase-home-dir/doc/books
e On Windows, ccase—home—dir\doc\books

Product-specific features

This manual describes Rational ClearCase and Rational ClearCase LT. Rational
ClearCase LT does not include all features available in Rational ClearCase. In
addition, some user interfaces differ in the two environments. This manual uses
the following label to call out differences: Product Note. When the term Rational
ClearCase is used outside of a Product Note section, it refers to both products.

Xiv IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Manual organization

The manual is divided into the following parts:

* [Part 1, “Introduction.”| An introductory part highlights the features of UCM and
base ClearCase.

» |Part 2, “Working in UCM.”| Read this part if you plan to use UCM to implement

your team’s development process.

Part 3, “Working in base ClearCase.”|Read this part if you plan to use the base

ClearCase features to implement a customized development process for your

team.

Several appendices carry information of special interest and legal notices.

Related information

Rational ClearCase documentation roadmap

Software
Development

Developing Software (online help)

Build
Management

Guide to Building Software

OMAKE Guide
(Windows platforms)

Orientation

Introduction
Release Notes
Online tutorials

Project
Management

Guide to Managing Software Projects

More Information
Command Reference
Online documentation

Help files

Administration

Installation and Upgrade Guide

Administrator's Guide
(Rational ClearCase/
Rational ClearCase LT)

Administrator's Guide
(Rational ClearCase MultiSite)

Platforms Guide
(Rational ClearCase)

Guide to Deployment Tracking
(Rational ClearCase/Rational ClearQuest)

About this book XV

Rational ClearCase LT documentation roadmap

Orientation

Online tutorials
Release Notes

Introduction
Software Project
Development Management
Developing Software (online documentation) Guide to Managing Software Projects

More Information
Command Reference
Online documentation

Help files

Administration

Installation and Upgrade Guide
Administrator's Guide

Contacting IBM Customer Support for Rational software products

If you have questions about installing, using, or maintaining this product, contact
IBM Customer Support as follows:

The IBM software support Internet site provides you with self-help resources and
electronic problem submission. The IBM Software Support Home page for Rational
products can be found at |ttp:/ /www.ibm.com /software /rational /support /|

Voice Support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone numbers, go
to |http: / /www.ibm.com/planetwide/ |

Note: When you contact IBM Customer Support, please be prepared to supply the
following information:

* Your name, company name, ICN number, telephone number, and e-mail
address

* Your operating system, version number, and any service packs or patches
you have applied

* Product name and release number

* Your PMR number (if you are following up on a previously reported
problem)

XVi IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

http://www.ibm.com/software/rational/support/
http://www.ibm.com/planetwide/

Downloading the IBM Support Assistant

The IBM Support Assistant (ISA) is a locally installed serviceability workbench that
makes it both easier and simpler to resolve software product problems. ISA is a
free, stand-alone application that you download from IBM and install on any
number of machines. It runs on AIX, (RedHat Enterprise Linux AS), HP-UX,
Solaris, and Windows platforms.

ISA includes these features:
* Federated search

* Data collection

* Problem submission

* Education roadmaps

For more information about ISA, including instructions for downloading and
installing ISA and product plug-ins, go to the ISA Software Support page.

IBM Support Assistant: [http: / / www.ibm.com/software /support/isa/|

About this book XVii

http://www.ibm.com/software/support/isa/

XViii IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Summary of changes

This edition adds material describing composite baselines, the usage of multiple
UCM projects, and the set up of the base ClearCase integration with Rational
ClearQuest.

* In Chapter 2, new sections under |“Starting from a baseline” on page 13|describe
composite baselines, baselines and their uses, and baselines and streams. Under
[“Making a baseline” on page 19 new sections describe the rebase operation,
directions of rebase operations (advance, revert, and lateral), and rules for rebase
operations.

* In Chapter 3, the following information is new:

— Under ['Identifying read-only components” on page 33| new text describes
modifiability of components without a VOB root directory.

— Under [‘Choosing a stream strategy” on page 34) new sections describe stream
configurations, baseline contents, and stream relationships.

— Under [“Pure composite baselines” on page 47| new sections describe
dependency relationships in composite baselines, pure composite baselines
and whether to use them, and creation of composite baseline descendants.

— Under [“Multiple PVOBs and feature levels” on page 56) a new section
describes feature levels in environments with multiple PVOBs.

— Under ["Using mergetype to manage merge behavior” on page 56)a new
mergetype, copy, is described.

— In[“Planning how to use the UCM integration with Rational ClearQuest” on|
|Eage 57,| under [“Use of multiple user databases” on page 59 |the need for
unique names is described.

« In Chapter 4, under [“Policies for the UCM integration with Rational ClearQuest”]
on page 69)two new policies are described:|“Disallow submitting records from|
ClearCase client” on page 69| and [‘Allowed record types” on page 70)

+ In Chapter 5, under [‘Creating users and adding credentials” on page 82]a new
section describes creating and maintaining credentials for Rational ClearQuest
database sets used in the UCM integration.

* In Chapter 7, the following information is new:

— Under ["Adding components” on page 109|a new section,
[relocation” on page 111} describes the use of the mkelem_cpver.pl script.

— Under ['Resolving baseline conflicts” on page 120,|new information is added
to the section [“Conflicts between composite baselines” on page 120/

* In Chapter 8, under [“Supported triggers” on page 129 [lock and unlock are
added. Also, under [“Using the same script” on page 132,|the invocation of

ratlperl is described.

» Chapter 9, in [“Project uses” on page 141 |has new information that describes
release-oriented and component-oriented projects and composite baselines in
each type, and describes bootstrap projects.

* In Chapter 12, under [“Using the same script” on page 189 the invocation of
ratlperl is described.

* Chapter 13 consolidates information from multiple sources to describe the base
ClearCase integration with Rational ClearQuest.

— [“Planning for the base ClearCase integration with Rational ClearQuest” on|

page 19§|

© Copyright IBM Corp. 1992, 2006 xix

— [“Setting up the Rational ClearQuest user database for base ClearCase” on|

[page 196|

— [“Editing the configuration file” on page 20(|

— [’Connecting Rational ClearCase clients and a Rational ClearQuest user]|
database” on page 203

— [“Making policy choices” on page 209

— [“Enhancing performance” on page 211|

[‘Debugging and analyzing operations” on page 215|

e In Chapter 14, under [“Common merge scenarios” on page 222 a new procedure
is described in ["Merging a new release of an entire source tree” on page 225 for
using clearfsimport to accomplish the merge.

XX IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 1. Introduction

© Copyright IBM Corp. 1992, 2006

2 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 1. Choosing between UCM and base ClearCase

Before you can start to use IBM® Rational® ClearCase® to manage the version
control and configuration needs of your development project, you need to decide
whether to use the out-of-the-box Unified Change Management (UCM) process or
base ClearCase. This chapter describes the main differences between the two
methods from the project management perspective.

The next two parts of this manual present conceptual and usage material for each
method from the perspective of the project manager and project integrator.
“Working in UCM”| describes how to manage a project using UCM.
“Working in base ClearCase,” on page 155|describes how to manage a project
using the various tools in base ClearCase.

Differences between UCM and base ClearCase

Base ClearCase consists of a set of powerful tools to establish an environment in
which developers can work in parallel on a shared set of files, and project
managers can define policies that govern how developers work together.

UCM is one recommended method of using Rational ClearCase for version control
and configuration management. UCM is layered on base ClearCase. Therefore, it is
possible to work efficiently in UCM without having to master the details of base
ClearCase.

UCM offers the convenience of an out-of-the-box solution; base ClearCase offers
the flexibility to implement virtually any configuration management solution that
you deem appropriate for your environment.

Branching and creating views

Branches are used in base ClearCase to enable parallel development. A branch is an
object that specifies a linear sequence of versions of an element. Every element has
one main branch, which represents the principal line of development, and may
have multiple subbranches, each of which represents a separate line of
development. For example, a project team may use the main branch for new
development work while using a subbranch simultaneously for fixing a bug.

Subbranches can have subbranches. For example, a project team may designate a
subbranch for porting a product to a different platform. The team may then decide
to create a bug-fixing subbranch off that porting subbranch. You can create
complex branch hierarchies. illustrates a multilevel branch hierarchy. As a
project manager in such an environment, you need to ensure that developers are
working on the correct branches. Developers work in views. A view is a work area
for developers to create versions of elements. Each view includes a config spec,
which is a set of rules that determines which versions of elements the view selects.

© Copyright IBM Corp. 1992, 2006 3

alpha_port

bug102

Figure 1. Branching hierarchy in base ClearCase

As project manager, you tell developers which rules to include in their config specs
so that their views access the appropriate set of versions.

UCM uses branches also, but you do not have to manipulate them directly because
it layers streams over the branches. A stream is a Rational ClearCase object that
maintains a list of activities and baselines and determines which versions of
elements appear in a developer’s view. In UCM, a multiple-stream project contains
one integration stream, which records the shared set of elements of the project, and
multiple development streams in which developers work on their parts of the project
in isolation from the team. The project integration stream uses one branch. Each
development stream uses its own branch. You can create a hierarchy of
development streams, and UCM creates the branching hierarchy to support those
streams.

Although most customers use Rational ClearCase to implement a parallel
development environment, UCM and base ClearCase also support serial
development. In base ClearCase, you implement a serial development environment
by having all developers work on the same branch. In UCM, you create a
single-stream project, which contains one stream, the integration stream. All
developers work on the integration stream rather than on development streams.
Serial development is intended only for very small project teams whose developers
work together closely.

As project manager of a UCM project, you need not write rules for config specs.
Streams configure developers’ views to access the appropriate versions on the
appropriate branches.

Using components to organize files

As the number of files and directories in your system grows, you need a way to
reduce the complexity of managing them. In UCM, you use components to
simplify the organization of your files and directories. The elements that you group
into a component typically implement a reusable piece of your system architecture.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

By organizing related files and directories into components, you can view your
system as a small number of identifiable components, rather than one large set of
directories and files.

Creating and using baselines

A baseline identifies one version of every element in one or more components. You
use baselines to identify the set of versions of files that represent a project at a
particular milestone. For example, you may create a baseline called betal to
identify an early snapshot of project source files.

Baselines provide two main benefits:
¢ The ability to reproduce an earlier release of a software project

* The ability to tie together the complete set of files related to a project, such as
source files, a product requirements document, a documentation plan, functional
and design specifications, and test plans

UCM automates the creation process and provides additional support for
performing operations on baselines. In base ClearCase, you can create the
equivalent of a baseline by creating a version label and applying that label to a set
of versions.

In UCM, baseline support appears throughout the user interface because UCM
requires that you use baselines. When developers join a project, they must first
populate their work areas with the contents of the recommended baseline of their
parent stream. This method ensures that all team members start with the same set
of shared files. In addition, UCM lets you set a property on the baseline to indicate
the quality level of the versions that the baseline represents. Examples of quality
levels include “project builds without errors,” “passes initial testing,” and “passes
regression testing.” By changing the quality-level property of a baseline to reflect a
higher degree of stability, you can, in effect, promote the baseline.

Managing activities
In base ClearCase, you work at the version and file level. UCM provides a higher
level of abstraction: activities. An activity is a Rational ClearCase object that you
use to record the work required to complete a development task. For example, an
activity may be to change a graphical user interface (GUI). You may need to edit
several files to make the changes. UCM records the set of versions that you create
to complete the activity in a change set. Because activities appear throughout the
UCM user interface, you can perform operations on sets of related versions by
identifying activities rather than having to identify numerous versions.

Because activities correspond to significant project tasks, you can track the progress
of a project more easily. For example, you can determine which activities were
completed in which baselines. If you use the UCM integration with IBM Rational
ClearQuest®, you gain additional project management control, such as the ability
to assign states and state transitions to activities. You can then generate reports by
issuing queries such as “show me all activities assigned to Pat that are in the
Ready state.”

Enforcing development policies

A key part of managing the configuration management aspect of a software project
is establishing and enforcing development policies. In a parallel development
environment, it is crucial to establish rules that govern how team members access
and update shared sets of files. Such policies are helpful in two ways:

Chapter 1. Choosing between UCM and base ClearCase 5

* They minimize project build problems by identifying conflicting changes made
by multiple developers as early as possible.

* They establish greater communication among team members.

These are examples of common development policies:

* Developers must synchronize their private work areas with the project
recommended baseline before delivering their work to the project shared work
area.

* Developers must notify other team members by e-mail when they deliver work
to the project shared work area.

In base ClearCase, you can use tools such as triggers and attributes to create
mechanisms to enforce development policies. UCM includes a set of common
development policies, which you can set through the graphic user interface (GUI)
or command-line interface (CLI). You can set these policies at the project and
stream levels. In addition, you can use triggers and attributes to create new UCM
policies.

6 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 2. Working in UCM

© Copyright IBM Corp. 1992, 2006

8 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 2. Understanding UCM

This chapter provides an overview of Unified Change Management (UCM), which
is available with Rational ClearCase. Specifically, it introduces the main UCM
objects and describes the tasks involved in managing a UCM project. Subsequent
chapters describe in detail the steps required to perform these tasks.

Overview of the UCM process

In UCM, your work follows a cycle that complements an iterative software
development process. Members of a project team work in a UCM project. A project
is the object that contains the configuration information needed to manage a
significant development effort, such as a product release. A project contains one
main shared work area and typically multiple private work areas. Private work
areas allow developers to work on activities in isolation. The project manager and
integrator are responsible for maintaining the project shared work area. Work
within a parallel development environment progresses as follows:

1. You create a project and identify an initial set of baselines of one or more
components. A component is a group of related directory and file elements,
which you develop, integrate, and release together. A baseline is a version of
one or more components.

2. Developers join the project by creating their private work areas and
populating them with the contents of baselines that are used by the team.

3. You or your developers create activities and the developers work on one
activity at a time. An activity records the set of files that a developer creates or
modifies to complete a development task, such as fixing a bug. This set of
files associated with an activity is known as a change set.

4. When developers complete activities, they build and test their work in their
private work areas.

5. They share their tested work with the project team by performing deliver
operations. A deliver operation merges work from the developer’s private
work area to the project shared work area.

6. Periodically, the integrator builds the project executable files in the shared
work area, using the delivered work.

7. 1If the project builds successfully, the integrator creates new baselines. In a
separate work area, a team of software quality engineers performs more
extensive testing of the new baselines.

8. Periodically, as the quality and stability of baselines improve, the integrator
adjusts the promotion level attribute of baselines to reflect appropriate
milestones, such as Built, Tested, or Released. When the new baselines pass a
sufficient level of testing, the integrator designates them as the recommended
set of baselines.

9. Developers perform rebase operations to update their private work areas to
include the set of versions represented by the new recommended baselines.

10. Developers continue the cycle of working on activities, delivering completed
activities, updating their private work areas with new baselines.

© Copyright IBM Corp. 1992, 2006 9

illustrates the connection between the project management, development,
and integration cycles. This manual describes the steps performed by project
managers and integrators. See Developing Software online help for information
about the steps performed by developers.

Project
Manager

Q
o0 — DD

Create Establish Assign and Monitor
project policies schedule work project status
Developer

Q
/—\

Join a Work on > Rebase
project activities work areas
Deliver
- A
activities
Integrator

o— o0

Create a Build Make Recommend
testing stream components baselines baselines

Figure 2. Project manager, developer, and integrator work flows

10 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Creating the project

Project
Manager

Q

Create
project

Create a
PVOB

Create
components

Lo o—
Establish Assign and Monitor
policies schedule work project status

Set up ClearQuest
integration

Create
baselines

To create and set up a project, you must perform the following tasks:
¢ Create a repository for storing project information
* Create components that contain the set of files that the developers work on

* Create baselines that identify the versions of files with which the developers
start their work

To use the UCM integration with Rational ClearQuest, you must perform
additional setup tasks.

Creating a PVOB

File elements, directory elements, derived objects, and metadata are stored in a
Rational ClearCase repository called a versioned object base (VOB). In UCM, each
project must have a project VOB (PVOB). A PVOB is a special kind of VOB that
stores UCM objects, such as projects, activities, and change sets. A PVOB must
exist before you can create a project. Check with your site Rational ClearCase
administrator to see whether a PVOB has already been created. For details on
creating a PVOB, see [“Creating the project VOB” on page 86,

Organizing directories and files into components

As the number of files and directories in your system grows, you need a way to
reduce the complexity of managing them. Components are the UCM mechanism
for simplifying the organization of your files and directories. The elements that
you group into a component typically implement a reusable piece of your system
architecture. By organizing related files and directories into components, you can
view your system as a small number of identifiable components, rather than as one
large set of directories and files.

Chapter 2. Understanding UCM 11

The directory and file elements of a component reside physically in a VOB. The

component object resides in a PVOB. Within a component, you organize directory
and file elements into a directory tree (see

PVOB VOB

/Dev

| |
\ GUI

Reports
GUI Reports .
Admin Admin

/\
_/u

Figure 3. VOB containing multiple components

The directory trees for the GUI, Admin, and Reports components appear directly
under the VOB root directory. You can convert existing VOBs or directory trees
within VOBs into components, or you can create a component from scratch. For
details on creating a component from scratch, see [“Creating components for storing]
elements” on page 88 For details on converting a VOB into a component, see m
make a VOB into a component” on page 97

Shared and private work areas

A work area consists of a view and a stream. A view is a directory tree that shows
a single version of each file in your project. A stream is a Rational ClearCase object
that maintains a list of activities and baselines and determines which versions of
elements appear in your view.

A project contains one integration stream, which records the project baselines and
enables access to shared versions of the project elements. The integration stream
and a corresponding integration view represent the project main shared work area.

In a typical project, each developer has a private work area, which consists of a
development stream and a corresponding development view. The development
stream maintains a list of the developer’s activities and determines which versions
of elements appear in the developer’s view.

When you create a project from the UCM graphic user interface (GUI), the
integration stream is created for you. If you create a project from the command-line
interface, you need to create the integration stream explicitly. Developers create
their development streams and development views when they join the project. See
Developing Software online help for information on joining a project.

Stream hierarchies

In the basic UCM process, the integration stream is the only shared work area for
the entire project. In a multiple-stream project, you may want to create additional
shared work areas for developers who are working together on specific parts of the
project. You can accomplish this by creating a hierarchy of development streams.
For example, you can create a development stream and designate it as the shared

12 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

work area for developers working on a particular feature. Developers then join the
project at the development stream level (rather than at the integration stream) and
create their own development streams and views under the development stream
for this feature. The developers deliver work to and rebase their streams to
recommended baselines in the development stream for the feature. See
|a stream strategy” on page 34] for details on development stream hierarchies.

Single-stream projects
Although UCM is typically used to implement a parallel development
environment, UCM also supports serial development by letting you create a
single-stream project. A single-stream project contains one stream, the integration
stream. All developers work on the integration stream rather than on development
streams. Developers have their own views that are attached to the integration
stream. Serial development should be used only for very small project teams
whose developers work together closely. See [“Choosing a stream strategy” on page|
for details on single-stream projects.

Starting from a baseline

After you create project components or select existing components, you must
identify and recommend the baseline or baselines that serve as the starting point
for the team of developers. Just as a component represents a collection of elements,
a baseline represents a collection of versions within a component. An ordinary
baseline identifies one version of every element visible in a single component (see

[Figure 4).

Element

Integration stream

Element

Version)
Version

Component B

Baseline BL2
Component A

Baseline BL1

Figure 4. Baselines of two components

Baselines named BL1 and BL2 in the integration stream identify the versions in
component A and component B, respectively.

When developers join the project, they populate their work areas with the versions
of directory and file elements represented by the recommended baselines of the
project. Alternatively, developers can join the project at a feature-specific

Chapter 2. Understanding UCM 13

development stream level, in which case they populate their work areas with the
development stream’s recommended baselines. This practice ensures that all
members of the project team start with the same set of files.

Composite baselines

If your project team works on multiple components, you may want to use a
composite baseline. A composite baseline selects baselines in other components (see
pigure .

Component A

Component Proj Baseline BL1

Baseline
Baseline BL2

Figure 5. Composite baseline

The PB1 composite baseline selects baselines BL1 and BL2 of components A and B,
respectively. The Proj component does not contain any elements of its own. It
contains only the composite baseline that selects the recommended baselines of the
project components. By using a composite baseline in this manner, you can identify
one baseline to represent multiple baselines, and, by extension, the entire project.

Baselines and their uses

A baseline is a snapshot of a component at a particular time. It comprises the set of
versions that are selected in the stream at the time the baseline was made. When a
new stream is configured, baselines are used to specify which versions are to be
selected in that stream. Baselines are immutable so that a particular configuration
can be reproduced as needed and streams that use the same set of baselines are
guaranteed to have the same configuration. Therefore, the set of versions included
in a baseline cannot be modified.

Baselines that are created in the context of a stream are ordered relative to each
other (see . Within a single stream, an old baseline is referred to as an
ancestor of a newer baseline. The newer baseline is called a descendant of the old
baseline. The closest ancestor of a baseline is its predecessor. The foundation baselines
(or the foundation set) of a stream, which are created in a different stream, are the
predecessors of the first baselines created in this stream.

14 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

util.h

O Checked-in version

~

/
\ ! Checked-out version
-

Figure 6. Baseline predecessors and descendants

In baseline BL1 is the predecessor of baseline BL2 and baseline BL2 is a
descendant of baseline BL1. When baseline BL2 was created, there were new
versions of prog.c, msg.h, and util.h, but for the files lib.c and num.h, baseline BL2
falls back to the baseline BL1 versions. Similarly, baseline BL3 is a descendant of
baseline BL2; and baselines BL1 and BL2 are predecessors of baseline BL3. Baseline
BL3 captures changes made after baseline BL2 was created, but it uses the baseline
BL1 version of num.h and the baseline BL2 version of msg.h. Because version 4 of
msg.h is checked out, it is not included in baseline BL3.

In the relationship among baselines, a descendant contains its predecessors so that,
for example, all changes captured in baseline BL2 are also in baseline BL3.

The relationship between a baseline and a component is very similar to the
relationship between a version and an element. For example, baselines exist in
streams, but versions exist on branches. Both baselines and versions have
predecessors.

Baselines have the following uses:

* Record work done and mark milestones.
* Define stream configurations.

* Provide access to delivered work.

Baselines and streams

Baselines and streams have a mutual relationship: baselines are produced by
streams, and streams use baselines for their configuration. A stream is configured
with a set of baselines, called its foundation, which defines which versions are
selected in that stream. Views that are attached to the stream see the versions of
elements that are selected by the foundation baselines and any new versions that
are created from changes that are made in the stream.

A stream includes a baseline from every component that it needs to access, both
for modifiable and non-modifiable components.

Chapter 2. Understanding UCM 15

Setting up the UCM integration with Rational ClearQuest

You can use UCM without Rational ClearQuest, the change request management
tool, but the UCM integration with RationalClearQuest adds significant project
management and activity management capabilities. When you enable a UCM
project to work with Rational ClearQuest, the integration links all UCM activities
to Rational ClearQuest records. You can then take advantage of the UCM and
Rational ClearQuest state transition model and the query features of Rational
ClearQuest. Reporting and charting features are available on the Windows®
system. These features allow you to do the following:

* Assign activities to developers

* Use states and state transition rules to manage activities
* Generate reports based on database queries

* Select additional development policies to be enforced

To set up the UCM integration with Rational ClearQuest, you enable a Rational
ClearQuest schema to work with UCM or use a predefined schema that is enabled
for UCM. Then, you either create a new Rational ClearQuest user database or
upgrade an existing Rational ClearQuest user database to use the UCM-enabled
schema. When the Rational ClearQuest environment is established, you enable
your UCM project to work with Rational ClearQuest. For additional information
about the integration, see [“Overview of the UCM integration with Rationall
[ClearQuest” on page 26|

Setting policies

Project

Manager
Create Establish Assign and Monitor
project policies schedule work project status

UCM includes a set of policies that you can set to enforce development practices
among members of the project team. By setting policies, you can improve
communication among project team members and minimize the problems you may
encounter when integrating their work. For example, you can set a policy that
requires developers to update their work areas with the latest recommended
baseline of the project before they deliver work. This practice reduces the
likelihood that developers will need to work through complex merges when they
deliver their work. For a description of all policies you can set in UCM, see
[Chapter 4, “Setting policies,” on page 63, You can set policies on projects and
streams.

In addition to the set of policies that UCM provides, you can create triggers on
UCM operations to enforce customized development policies. See |Chapter 8]
[“Using triggers to enforce UCM development policies,” on page 129|for details
about creating triggers.

16 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Assigning work

Project
Manager

e

Create
project

- - < -
> r Y >

Establish Assign and Monitor
policies schedule work project status

This task is optional and is possible only if you use the UCM integration with
Rational ClearQuest. As project manager, you are responsible for identifying and
scheduling the high-level tasks for your project team. In some organizations, the
project manager creates activities and assigns them to developers. In other
organizations, the developers create their own activities. See [“Assigning activities’|
for details on creating and assigning activities in a Rational

ClearQuest user database.

Creating a testing stream

Integrator

I

Create a
testing stream

S’ - > S

Build Make Recommend
components baselines baselines

In your role as project integrator, you are responsible for building the work
delivered by developers, creating baselines, and testing those baselines. When you
make baselines in the integration stream, you lock the stream to prevent
developers from delivering work. This practice ensures that you work with a static
set of files. It is acceptable to perform quick validation tests of the new baselines in
the integration stream. However, you should not lock the integration stream for a
long time because you will create a backlog of deliveries. To perform more

rigorous testing, such as regression testing, you should create a development
stream to be used solely for stabilizing and testing baselines. See

ldevelopment stream for testing baselines” on page 106| for details on creating a

testing stream.

Chapter 2. Understanding UCM 17

Building components

Integrator
Create a Build Make Recommend
testing stream components baselines baselines

Before you make new baselines, build the components in the integration stream by
using the current baselines plus any work that developers have delivered to the
stream since you created the current baselines. Lock the integration stream before
you build the components to ensure that you work with a static set of files. If the
build succeeds, you can make baselines that select the latest delivered work. If
your project uses feature-specific development streams, perform this task on those
streams and on the integration stream.

Rational ClearCase MultiSite consideration

Product Note: Rational ClearCase LT does not support Rational ClearCase
MultiSite®.

In most cases, developers complete the deliver operations that they start. If your
project uses Rational ClearCase MultiSite, you may need to complete some deliver
operations before you can build the components. Many customers use Rational
ClearCase MultiSite, a product layered on Rational ClearCase, to support parallel
software development across geographically distributed project teams. Rational
ClearCase MultiSite lets developers work on the same VOB concurrently at
different locations. Each location works on its own copy of the VOB, known as a
replica.

To avoid conflicts, Rational ClearCase MultiSite uses an exclusive-right-to-modify
scheme, called mastership. VOB objects, such as streams and branches, are assigned
a master replica. The master replica has the exclusive right to modify or delete these
objects.

In a Rational ClearCaseMultiSite configuration, a team of developers may work at
a remote site, and the integration stream of the project may be mastered at a
different replica than the developers’ development streams. In this situation, the
developers cannot complete deliver operations to the integration stream. As project
integrator, you must complete these deliver operations. UCM provides a variation
of the deliver operation called a remote delivery. When UCM determines that the
integration stream is mastered at a remote site, it makes the deliver operation a
remote delivery and posts the delivery, which starts the deliver operation but does
not merge any versions. You then find the posted delivery and complete the
deliver operation at the remote site.

For information on completing remote deliver operations, see [‘Finding work that|
fis ready to be delivered” on page 113}

18 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Making a baseline

Integrator

Q

- - -
> > Ll

Create a Build Make Recommend
testing stream components baselines baselines

To ensure that developers stay in sync with each other’s work, make new baselines
regularly. A new baseline includes the work developers have delivered to the
parent stream since the last baseline. If your project uses feature-specific
development streams, perform this task on those streams and on the integration
stream. In some environments, the lead developer working on a feature may
assume the role of integrator for a feature-specific development stream.

After making a baseline

After your team of software quality engineers tests the new baseline more
extensively and determines that it is stable, you make the baseline the
recommended baseline.

The rebase operation

To take advantage of a newly recommended baseline, developers update their
work areas with the new baseline by performing a rebase operation (see .

Integration
Pat's stream Pat's
development development
work area work area

after rebase

Rebasing

Figure 7. Rebase operation

A component in Pat’s development stream is configured with baseline BL1. A
rebase operation changes the configuration of the stream to baseline BL2 from the

Chapter 2. Understanding UCM 19

integration stream. The rebase operation merges files and directories from the
integration stream or feature-specific development stream to the development
stream.

A rebase operation reconfigures a stream by adding, dropping, or replacing one or
more of the stream foundation baselines. It is typically used to advance a stream’s
configuration, that is, to replace its current foundation baselines with descendant
ones. For more information about baselines, see [‘Baselines and their uses” on page|

Foundation baselines of the target stream are replaced with the set of
recommended baselines from the source stream.

If an element in the stream being rebased contains any changes, the rebase
operation merges the changes into the latest version of that element in the stream,
thereby creating a new version. All such new versions are captured in the change
set of the integration activity that the rebase operation creates.

The rebase operation changes the foundation baselines of a stream. Baselines
provide a configuration that includes delivered work. If a specific stream must use
work that has been included in a baseline in an appropriate stream, you rebase the
specific stream to the desired baseline.

In a rebase operation, a developer selects one or more baselines to add or drop
from the configuration of the stream. Just as a view can only select one version of
an element, a stream can only include one baseline for each component. If more
than one baseline were allowed in a stream foundation for a particular component,
the selection of versions in that component would be ambiguous.

During a rebase operation, the specified baselines replace the current baselines, if
any, for their components. Changes that have been made on the stream are merged
into new versions, if necessary. A deliver operation always involves merging
elements. A rebase operation only involves merging if elements that have been
modified in the stream also have new versions selected by the new baseline.

Directions of rebase operations

The relationship between the old baseline and the new baseline for a component
defines the direction of the rebase operation. If the new baseline is a descendant of
the old baseline, the rebase operation advances. That is, the stream is configured
with work done in other streams from the same starting point.

Conversely, if the new baseline is an ancestor of the old baseline, the rebase
operation is said to revert. That is, the stream moves back to an earlier baseline.
However, if two baselines share an ancestor, but both contain significant
development work or if the relationship between the baselines cannot be
established, the rebase operation is lateral. A lateral rebase operation is typically
used to configure a new version of a read-only component, for example, a
compiler.

A single rebase operation might involve many baselines; the rebase direction is
determined on each baseline in the rebase operation. Thus, in one rebase operation,
a stream might advance for one component, revert for another component, rebase
laterally for a third component, and leave a fourth component unchanged.

20 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Advance rebase operations

Most development streams over the life of a project advance from predecessor
baselines to descendant baselines that integrate work performed in the project.
Streams are usually allowed to advance (see .

Project A

Integration stream
PA.BL1

PA.BL1 PA.BL1

al, a2, a3 b1, b2, b3

JATTTIN) . >

~€——— Deliver operation

_____ »— Rebase operation

Figure 8. Advance rebase operation

Development streams D1 and D2 deliver work (activities al, a2, a3, b1, b2, and b3)
to the integration stream. In the integration stream, a descendant baseline PA.BL2
is made to capture the work. To include the new work in their configurations,
streams D1 and D2 rebase to descendant baseline PA.BL2.

Restrictions on advancing rebase operations occur when the descendant baseline is
not from the parent stream. In a rebase operation, you can select a baseline from
any stream. For example, you can select a baseline from a stream that is a
descendant of the stream foundation that is in a stream that is not its parent
stream. Thus, a development stream could rebase to a baseline created in a sibling
development stream. Therefore, the rebasing stream could acquire work that has
not been delivered to the parent stream. If several streams were allowed to deliver
the same work, there would be confusion during the merge operation. (Alternative
target delivery is a special case, and a project manager can set policies to allow a
stream to accept changes that did not originate in the delivering stream).

A common example of an advance rebase operation occurs when a project uses a
test stream (see . The project integrator creates the baseline PA.BL1 for a
milestone. The work to stabilize the code in the baseline is done on the test stream
DS that is dedicated to this task. Because the project A integration stream can have
more activities delivered as the baseline PA.BL1 is being tested, the integration
stream is not used. The test stream is isolated from deliver operations ongoing in
the parent stream, the project A integration stream.

Chapter 2. Understanding UCM 21

Project A

Integration stream

PA.BLO

DS D1
(test stream)

A

Lonsirs\\

_____________ >
—
Zoa\\

A

—~«——— Deliver operation

_____ » Rebase operation

Figure 9. A test stream to stabilize a baseline

Although the PA.BL1.S baseline is a descendant of their current foundation
baseline PA.BLO, development streams like D1 are not allowed to rebase to it. If
this rebase operation were allowed, the development streams could deliver the
build stabilization work before stream DS does. Therefore, the test stream DS must
first deliver its work in the baseline PA.BL1.S to the parent of the development
streams, the project A integration stream. When the work from test stream DS is
contained in the parent stream and the baseline that contains that work is ready to
be released, the project integrator can recommend the baseline. Then the
development streams can rebase to the baseline PA.BL1.S from the test stream.

Tip:: The deliver operation changes the relationship between baselines in a stream.
In when a new baseline PA.BL2 is created in the project A
integration stream, it becomes a descendant of PA.BL1 as with any baseline,
but it also becomes a descendant of PA.BL1.S from the test stream. Because
baseline PA.BL1.S was delivered to the integration stream, baseline PA.BL2
contains baseline PA.BL1.S, which is a requirement of the predecessor and
descendant relationship.

Revert rebase operations

A revert rebase operation is used when a stream needs to remove some unwanted
changes. If a baseline has some serious problems and there are no changes in the
component in the context of that stream, a stream can revert to an ancestor
baseline of that component involved in the unwanted baseline. The merge
algorithm cannot remove the unwanted changes.

If developers need to use a questionable baseline, have them use it in a read-only
stream. If a stream that has made changes needs to revert, the developer has to
explicitly remove the new versions before rebasing. A read-only stream is
guaranteed to have no changes. If developers encounter difficulty with the
questionable baseline, in read-only streams they can always revert to a stable
ancestor baseline.

22 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Lateral rebase operations

A lateral rebase operation occurs when the baseline to which the stream rebases
and the baseline in the stream being rebased have no relationship to each other or
if the relationship between the baselines is too distant for merging. For example,
rebasing to an imported baseline is usually a lateral rebase operation, except when
the imported baseline is the ancestor of the current baseline. (This condition makes
a revert rebase operation.) Imported baselines have no predecessors; therefore, they
are related only to their descendant baselines.

A lateral rebase operation is typically used in a project that has vendor software,
for example, a set of compilers or other tools. The project does no development on
these tools, but it frequently receives a new release of the tools. The new release is
added to source control in a VOB, certified, and, if it passes, labeled. The label is
then imported into a baseline; rebasing to this imported baseline is a lateral rebase
operation.

Summary of rules for rebasing a stream
This section summarizes the rules for rebase operations. You can rebase a stream to
a baseline that meets any of the following criteria:

* The baseline is not from the stream that is being rebased.

* The baseline is labeled. (Baselines created by deliver operations are not labeled
by default. You can change the labeling status of a baseline.)

Additional rules apply to integration streams and development streams in selecting
a baseline. The following are general rules that apply to all types of rebase
operations:

* An integration stream can be rebased only to a baseline that is created in
another project or to an imported or initial baseline of that project.

* A development stream can be rebased to a baseline that meets one of the
following criteria:

— The baseline was created in its parent stream.
— The baseline is in the foundation set of its parent stream.

— The baseline is an ancestor of the foundation baseline of the parent of the
development stream and was created on the same stream as the foundation
baseline of the parent stream.

— The baseline was created in a stream other than its parent stream and is
contained in its parent stream. (A baseline is contained in another baseline if
all changes in the first baseline are included in the second baseline.)

You need to satisfy only the general rules if you are adding a component to a
stream.

Note: Read-Only streams and nonmodifiable components in a development stream
are exempt from the general rules. However, if the modifiability of the
component changes in the future, the development stream might not be able
to modify the component at the baseline with which it is configured. The
development stream might be able to modify the component at the baseline
it is configured with if the baseline is contained in its parent stream for this
component. Otherwise, it may not until the baseline is rebased to a
compatible baseline for that component.

Rebase typically advances the configuration of a stream, that is, it replaces the
current foundation baselines of the stream with more recent ones (see
irebase operations” on page 21)). However, under certain conditions, rebase can be

Chapter 2. Understanding UCM 23

used to revert a baseline (see [‘Revert rebase operations” on page 22); to add or
drop a component in the configuration of a stream; and to switch to a baseline that
is neither an ancestor nor a descendant of the current foundation (see
frebase operations” on page 23). When you advance, revert, drop, or switch a
baseline, you need to satisfy the general rules and the following additional ones:

* To advance the configuration of a stream, the new baseline must contain the
current foundation baseline.

 To revert or drop a baseline for a component in a stream, one of the following
conditions must be met:

— The component is nonmodifiable.

— The component is modifiable but has not been modified in the stream, and
the component is not in the configuration of any child streams.
* To switch to a baseline that is neither an ancestor nor a descendant of the
current foundation, one of the following conditions must be met:
— The component is nonmodifiable.
— The component is modifiable but has not been modified in the stream, and
the component is not in the configuration of any child streams.

— The component has been modified, but the new baseline contains the current
foundation baseline; and the component is not in the configuration of any
child streams.

These rules ensure that any changes made in a stream are not lost when the
configuration changes.

Recommending the baseline

Integrator

Q

- - -
> > >

Create a Build Make Recommend
testing stream components baselines baselines

As work on your project progresses and the quality and stability of the

components improve, change the baseline promotion level attribute to reflect
important milestones (see [Figure 10)

24 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Production

Acceptance
tested
BL6

Integration
tested
BL1

Figure 10. Promoting baselines

The promotion level attribute typically indicates a level of testing. For example,

gure 10| shows the evolution of baselines through three levels of testing; the BL8
baseline is ready for production.

Recommended baselines

When baselines pass the level of testing required to be considered stable, make
them the recommended set of baselines. Developers then rebase their development
streams to the recommended baselines. You can set a policy that requires
developers to rebase their development streams to the set of recommended
baselines before they deliver work. This policy helps to ensure that developers
update their work areas whenever a baseline passes an acceptable level of testing.

Every stream has foundation baselines. The foundation baselines of an integration
stream are its default recommended baselines. A development stream has no
default recommended baselines.

A stream can recommend a baseline if certain rules are true. These rules establish
consistency in child streams. If a child stream rebases to the new recommended
baseline and subsequently delivers activities to its default target, only activities
created on the development stream need to be delivered. The rules also prevent a
stream from reverting to the configuration of a development stream that has
rebased to baselines that are ahead of the current recommended baselines.

Chapter 2. Understanding UCM 25

For more information about recommending baselines, see [‘Recommending the|
baseline” on page 118,

Monitoring project status

Project
Manager

Q

- - < -
> > Y Vgl

Create Establish Assign and Monitor
project policies schedule work project status

Several tools are provided to help you track the progress of your project:

* The UCM integration with Rational ClearQuest includes some Rational
ClearQuest queries, which you can use to retrieve information about activities in
your project. For example, you can see all activities that are in an active state or
all active activities assigned to a particular developer. In addition, you can create
customized Rational ClearQuest queries.

* The Compare Baselines GUI compares any two baselines of a component and
displays the differences in activities and versions associated with each baseline.
You can use this feature to determine when a particular feature was included in
a baseline.

¢ The Component Tree Browser (Windows only) displays the baseline history of a
component. The GUI includes a feature that lets you filter the display so that
you see only specified streams or baselines at or above a specified promotion
level.

* The Rational ClearCase Report Builder and Report Viewer (Windows only) let
you generate and view reports specific to your project environment. The Report
Builder provides a set of reports organized by Rational ClearCase object, such as
project, stream, element, and view. In addition, you can customize the
procedures used to generate and display reports.

For more information about using these tools, see [‘Monitoring project status” on|

Overview of the UCM integration with Rational ClearQuest
This section describes the following concepts related to the UCM integration with
Rational ClearQuest.

* [“Associating UCM and Rational ClearQuest objects’|

* |“Schema enabled for UCM” on page 28|

* |“State types” on page 28

* [“Queries in a Rational ClearQuest schema enabled for UCM” on page 2§

Associating UCM and Rational ClearQuest objects

Setting up the UCM integration with Rational ClearQuest links UCM and Rational
ClearQuest objects (see [Figure 11)

26 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

PVOB ClearQuest User Database 1

D

o

Activity 1 =7 >

—
\ / \ ' /

ClearQuest User Database 2

Iy

/\
\/

Figure 11. Association of UCM and Rational ClearQuest objects in integration

The links between the project and activity objects in the PVOB and the record
objects in the Rational ClearQuest user database show the bidirectional linking of
these objects. When you enable a project to link to a Rational ClearQuest user
database, the integration stores a reference to that database in the project’s PVOB.
Every project that is enabled for Rational ClearQuest is linked to a project record of
record type UCM_Project in the Rational ClearQuest user database.

Every activity in a project that is enabled for Rational ClearQuest is linked to a
record in the database. An activity’s headline is linked to the headline field in its
corresponding Rational ClearQuest record. If you change an activity’s headline in a
Rational ClearCase repository, the integration changes the headline in the Rational
ClearQuest user database to match the new headline, and the reverse is also true.
Similar to the linking of the activity headline, an activity’s ID is linked to the ID
field in its Rational ClearQuest record.

It is possible for a Rational ClearQuest user database to contain some records that
are linked to activities and some records that are not linked. In
ClearQuest User Database 1 contains a record that is not linked to an activity. You
may encounter this situation if you have a Rational ClearQuest user database in
place before you adopt UCM. As you create activities, the integration creates
corresponding Rational ClearQuest records. However, any records that existed in

Chapter 2. Understanding UCM 27

that user database before you enabled it to work with UCM remain unlinked. In
addition, UCM does not link a record to an activity until a developer sets work to
that record.

Schema enabled for UCM

In Rational ClearQuest, a schema is the definition of a database. To use the
integration, you must create a new Rational ClearQuest user database or upgrade a
current Rational ClearQuest user database that is based on a schema that is
enabled for UCM. Such a schema contains certain fields, scripts, actions, and state
types. You can use predefined schemas that are enabled for UCM. You can also
enable a custom schema or another predefined schema to work with UCM. For
information about schemas enabled for UCM, see [“Deciding which schema to use”|

State types

States are used to track the progress of change requests from submission to
completion. A state represents a particular stage in this progression. Each
movement from one state to another is a state transition. The UCM integration
with Rational ClearQuest uses a particular state transition model. To implement
this model, the integration uses state types. A state type is a category of states that
UCM uses to define state transition sequences. You can define as many states as
you want, but all states in a UCM-enabled record type must be based on one of
the following state types:

* Waiting
* Ready

e Active

* Complete

Multiple states can belong to the same state type. However, you must define at
least one path of transitions between states of state types as follows: Waiting to
Readi to Active to Complete. For details on state types, see|“Setting state types’]

Queries in a Rational ClearQuest schema enabled for UCM

A UCM-enabled schema includes some Rational ClearQuest queries. When you
create or upgrade a Rational ClearQuest user database to use a UCM-enabled
schema, the UCM integration with Rational ClearQuest installs these queries in
two subfolders of the Public Queries folder in the user database workspace. These
queries make it easy for developers to see which activities are assigned to them
and for project managers to see which activities are active in a particular project.
For details on these queries, see [“Querying Rational ClearQuest user databases” on|

28 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 3. Planning the project

This chapter describes the issues you need to consider in planning to use one or
more UCM projects as your configuration management environment in Rational
ClearCase. You should write a configuration management plan before you begin
creating projects and other UCM objects. After you create your plan, see
|”Setting up the project,” on page 85| for information on how to implement it.

Using the system architecture as the starting point

Essential to developing and maintaining high-quality software is the definition of
the system architecture. The IBM Rational Unified Process states that defining and
using a system architecture is one of the best practices to follow in developing
software. A system architecture is the highest level concept of a system in its
environment. The IBM Rational Unified Process states that a system architecture
encompasses the following:

* The significant decisions about the organization of a software system

* The selection of the structural elements and their interfaces of which the system
is composed, together with their behavior as specified in the collaboration
among those elements

* The composition of the structural and behavioral elements into progressively
larger subsystems

* The architectural style that guides this organization, these elements, and their
interfaces, their collaborations, and their composition

A well-documented system architecture improves the software development
process. It is also the ideal starting point for defining the structure of your
configuration management environment.

Mapping system architecture to components

Just as different types of blueprints represent different aspects of building
architecture (for example, floor plans, electrical wiring, and plumbing), a good
software system architecture contains different views to represent its different
aspects. The IBM Rational Unified Process defines an architectural view as a
simplified description (an abstraction) of a system from a particular perspective or
vantage point, covering particular concerns and omitting entities that are not
relevant to this perspective.

The IBM Rational Unified Process suggests using multiple architectural views. Of
these, the implementation view is most important for configuration management.
The implementation view identifies the physical files and directories that
implement the system’s logical packages, objects, or modules. For example, your
system architecture may include a licensing module. The implementation view
identifies the directories and files that make up the licensing module.

From the implementation view, you should be able to identify the set of UCM
components you need for your system. You typically develop, integrate, and
release components together. Large systems normally contain many components. A
small system may contain one component.

© Copyright IBM Corp. 1992, 2006 29

Deciding what to place under version control

In deciding what to place under version control, do not limit yourself to source
code files and directories. The power of configuration management is that you can
record a history of your project as it evolves so that you can re-create the project
quickly and easily at any point in time. These include, but are not limited to the
following:

* Source code files and directories

e Model files, such as Rational Rose files

 Libraries

* Executable files

* Interfaces

* Test scripts

* Project plans

* Compilers, other developer tools, and system header files
* System and user documentation

* Requirements documents

To record a full picture of the project, include all files and directories connected
with it.

Mapping components to projects

After mapping your system architecture to a set of components and identifying the
full set of files and directories to place under version control, you need to
determine whether to use one project or multiple projects. In general, think of a
project as the configuration management environment for a project team working
on a specific release. Team members work together to develop, integrate, test, and
release a set of related components. For many systems, all work can be done in
one project. For some systems, work must be separated into multiple projects. In
deciding how many projects to use, consider the following factors:

¢ Amount of integration required

* Whether you need to develop and release multiple versions of the product
concurrently

Amount of integration

Determine the relationships between the various components. Related components
that require a high degree of integration belong to the same project. By including
related components in the same project, you can build and test them together
frequently, thus avoiding the problems that can arise when you integrate
components late in the development cycle.

Need for parallel releases

If you need to develop multiple versions of your system in parallel, consider using
separate projects, one for each version. For example, your organization may need
to work on a patch release and a new release at the same time. In this situation,
both projects use mostly the same set of components. (Note that multiple projects
can modify the same set of components.) When work on the patch release project
is complete, you integrate it with the new release project.

If you anticipate that your team will develop and release numerous versions of
your system over time, you may want to create a mainline project. A mainline
project serves as a single point of integration for related projects over a period of
time.

30 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

shows the initial set of components planned for the Transaction Builder
system. A team of 30 developers work on the system. Because a high degree of
integration between components is required, and most developers work on several
components, the project manager included all components in one project. For
information about using multiple UCM projects for your development, see
|uses” on page 141| and |“Using a mainline project” on page 142].

Transaction Builder Project

3 @ €

Admin GUI

0 @ g

Modeler Security

Figure 12. Components used by Transaction Builder project

Organizing components

After you map your system architecture to an initial set of components and
determine which projects will access those components, refine your plan by
performing the following tasks:

* Decide how many VOBs to use

* Identify any additional components

* Define the component directory structures
* Identify read-only components

Deciding how many VOBs to use

You can store multiple components in a VOB. If your project uses a small number
of components, you may want to use one VOB per component. However, if your
project uses many components, you may want to store multiple components in
several VOBs. A VOB can store many versions of many elements. It is inefficient to
use a VOB to store one small component.

Keep in mind the following restrictions:

* A component root directory must be at the level of or one level beneath the VOB
root directory. A component includes all directory and file elements under its
root directory. For example, in Libs cannot be a component.

* You cannot nest components. For example, in GUI, Admin, and
Reports can be components only if Dev is not a component.

Chapter 3. Planning the project 31

 If you make a component at the VOB root directory, that VOB can never contain
more than that one component. For this reason, create components one level
beneath the VOB root directory. Doing so allows you to add components to the
VOB in the future.

* Whether you make a component at the level of or one level beneath the VOB
root directory, the component name must be unique within its PVOB.

/Dev

GUI Reports
Admin

/_\

\\ Libs //

Figure 13. Storing multiple components in a VOB

Identifying additional components

Although you should be able to identify nearly all necessary components by
examining your system architecture, you may overlook a few. For example:

System component
It is a good idea to designate one component for storing
system-level files. These items include project plans, requirements
documents, and system model files and other architecture
documents.

Project baseline component
If you plan to use a composite baseline that selects baselines from
all of the components of the project, store the composite baseline in
its own component. See [‘Identifying a project baseline” on page 46
for details.

Testing component
Consider using a separate component for storing files related to
testing the system. This component includes files such as test
scripts, test results and logs, and test documentation.

Deployment component
At the end of a development cycle, you need a separate component
to store the generated files that you plan to ship with the system or
deploy inhouse. These files include executable files, libraries,
interfaces, and user documentation.

Tools component
In addition to placing source files under version control, it is a
good idea to place your team’s developer tools, such as compilers,
and system header files under version control.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Defining the directory structure

After you complete your list of components, you need to define the directory
structures within those components. You can start with a directory structure similar

to the one shown in [Table 1

then modify the structure to suit your system needs.

In [Table 1} Component_1 through Component_n refers to the components that map
to the set of logical packages in your system architecture.

Table 1. Recommended directory structure for components

Component Directories Typical contents
System plans Project plans, mission statement,
and so on
requirements Requirements documents
models Rose files, other architecture
documents
documentation System documentation
Component_1 through requirements Component requirements
Component_n models Component model files
source Source files for this component
interfaces Component public interfaces
binaries Executable and other binary files
for this component
libraries Libraries used by this component
tests Test scripts and related
documents for this component
Test scripts Test scripts
results Test results and logs
documentation Test documentation
Deployment binaries Deployed executable files
libraries Deployed libraries
interfaces Deployed interfaces
documentation User documentation
Tools compilers Developer tools such as Rational
WorkBench, Visual .NET and IBM
Rose
headers System header files
Project baseline none Composite baseline that selects

baselines from all components in
the project

Identifying read-only components

When you create a project, you must indicate whether each component is
modifiable in the context of that project. In most cases, you make them modifiable.
However, in some cases you want to make a component read-only, which prevents
project team members from changing its elements. Components can be used in

multiple projects.

Chapter 3. Planning the project 33

One project team may be responsible for maintaining a component, and another
project team may use that component to build other components (see [Figure 14)).

Project A Project B

| R
modifiable <
e <

cm_libs
read-only

Figure 14. Using a read-only component

The Project A team members maintain a set of library files in the cm_libs
component. Project B team members refer to some of those libraries when they
build their components. In Project A, the cm_libs component is modifiable. In
Project B, the same component is read-only. With respect to the cm_libs
component, Project A and Project B have a producer-consumer relationship. For
more information, see[“Modifiable components” on page 63

Because making a baseline of a component to change its members modifies the
related component, the related component that is used for a composite baseline
should be modifiable. A component without a VOB root directory (that is, one
used to make a pure composite baseline) should be modifiable except in the
following circumstances:

* The component is to hold only read-only components as members.
* No baseline is ever to be made in the component.

You cannot make a baseline of a read-only component without a VOB root
directory.

Choosing a stream strategy

34

UCM provides many choices in using streams.

* A multiple-stream project with one shared work area and multiple private work
areas

* A multiple-stream project with hierarchies of streams (that is, multiple shared
work areas)

* A single-stream project
* A project with read-only streams

The basic multiple-stream project

The basic UCM process uses the multiple-stream project with the integration
stream as the sole shared work area. Developers join the project by using the
integration stream recommended baselines to populate their development streams;
deliver completed work to the integration stream where the integrator incorporates
the work into new baselines; and rebase their development streams to the new
recommended baselines. Depending on the size of your project and the number of
developers working on it, this process may be a good choice for your team.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Stream hierarchies

As an alternative to using the integration stream as the sole shared work area for
the project, you can use the UCM development stream hierarchy feature to create
multiple shared work areas. This approach supports a project organization that
consists of small teams of developers where each team develops a specific feature
in feature-specific development streams (see .

Integration

/R
AR\

Permissions__dev

AN
AN

>

Pat's_dev Pedro's_dev

Figure 15. Using a feature-specific development stream

The project manager created a development stream called Permissions_dev for two
developers who are working on a permissions feature. The developers, Pat and
Pedro, joined the project at the Permissions_dev level rather than at the integration
stream level. They deliver completed work to the Permissions_dev stream.
Periodically, the integrator or lead developer responsible for managing the
Permissions_dev stream incorporates the delivered work into new baselines, and
the developers rebase their development streams to those new baselines.

When the two developers finish working on the permissions feature, they deliver
their last work to the Permissions_dev stream. The integrator incorporates their
delivered work into a final set of baselines and delivers those baselines to the
integration stream.

Stream configurations and baseline contents

When project managers create projects, they add components to the project and
select baselines for those components which are referred to as the foundation
baselines. If you use a composite baseline for the project, the project has one
baseline as its foundation baseline.

Optionally, a project manager can assign to a development stream a set of
foundation baselines. Foundation baselines specify a stream’s configuration by

selecting the file and directory versions that are accessible in the stream.

Chapter 3. Planning the project 35

36

The integration stream configuration

The integration stream is created with either baselines from another project or
selected baselines from the PVOB. These foundation baselines are by default the
recommended baselines of the integration stream. The recommended baselines of
the project are the integration stream’s recommended baselines.

In the set of foundation baselines chosen as the initial configuration of
the integration stream are represented by baseline 0. For an integration stream, all
foundation baselines must be either baselines created in other projects” integration
streams, or be imported or initial baselines. For an integration stream, you cannot
use baselines created in development streams. This set of foundation baselines
provides a stable, well-known configuration in the project integration stream.

Development stream configurations

When a development stream is created, you can assign it a set of foundation
baselines. All foundation baselines for a development stream must be either
recommended baselines in the parent stream or baselines created in the integration
stream. If no baselines are recommended, baselines that were created in the
integration stream of the project must be used. In the set of foundation
baselines of the feature-specific development stream Permissions_dev is
represented by baseline 1, which were created in the parent integration stream.

When developers join a project, by default, their development streams are created
with the set of recommended baselines in the parent stream. The set of foundation
baselines of the development streams Pat’s_dev and Pedro’s_dev are represented
by baseline X, a baseline that was created in the parent stream Permissions_dev.

These configuration rules attempt to establish a common foundation whereby there
are no versions in child streams for which there is not an ancestor in the parent
stream. This establishes a consistent ancestry for change flow through deliver and
rebase operations.

A baseline does not have to be recommended for every component in the stream
configuration.

Stream relationships

The relationships among streams determines how changes can move in a project

(see [Figure 16).

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Integration stream

PA.BL1

Stream Stream

D1.BLO
D2b.BLO

D1.BL1
D2c.BLO

Stream Stream
D2b_1 D2c_1

D2b.BLO D2c.BLO

Figure 16. Stream relationships

An integration stream has foundation baselines represented by PA.BL1 which are
also its recommended baselines. Child stream D1 has foundation baselines
represented by PA.BL1 and has recommended baselines D1.b10 and D1.bl1. Family
terminology is used to describe where in the hierarchy a particular stream is
located.

* Streams with the same parent are called siblings. For example, in
streams D2a, D2b, and D2c are descendants from the same parent (stream D1).
Streams D2a and D2b use the baselines in D1.bl0 as their foundation baselines.
Stream D2c uses the baselines in D1.bl1 as its foundation baselines.

Tip: Although stream D2c uses different foundation baselines than its siblings,
all components in its siblings are also in its foundation baselines.

+ The parent of a parent stream is called a grandparent. For example, in
the integration stream is the grandparent of streams D2a, D2b, and D2c and the
development stream D1 is the grandparent of streams D2b_1 and D2c_1.

The foundation baselines in D2b.bl0 of stream D2b_1 are the recommended
baselines in the parent stream D2b.

The foundation baselines in D2¢.bl0 of stream D2c_1 are the recommended
baselines in the parent stream D2c.

* Streams whose parent streams are siblings are called cousins. For example, in
streams D2b_1 and D2c_1 are cousins because their parent streams
D2b and D2c are siblings.

Although the cousin streams have different foundation baselines, the baselines
are ancestors of the same foundation baselines in the grandparent stream D1.

Chapter 3. Planning the project 37

Stream hierarchy and default targets
A project can have a hierarchy of development streams that starts with the
integration stream (see [Figure 17).

Project A

Integration stream

al, a2, a3
D1.BLO b2
D1.BLO
b1, b2, b3
D2.BLO D3
D2.BLO
~ cl,c2,c3
——————————— >
D2.BL1 m
4
-
___________ >
—_
__________ >

~«——— Deliver operation
————— » Rebase operation

Figure 17. Stream hierarchy with multiple levels

A development stream is created as a child of either the integration stream or of
another development stream. For example, stream D1 is a child of the integration
stream, stream D2 is a child of stream D1, and D3 is a child of stream D2.

The parent-child relationship between streams defines the default target of deliver
operations and the default source of baselines for rebase operations. The default
relationships are the following;:

* A child stream delivers to its default target, the parent stream, any undelivered
activities that it holds. For example:

— Stream D3 delivers activities c1, ¢2, and ¢3 to its default target, stream D2.

— Stream D2 delivers to its default target, stream D1, activities b1, b2, and b3
and the activities that have been delivered to it from its child streams.

— Stream D1 delivers to the integration stream activities al, a2, and a3 plus the
activities that are delivered to it from its child streams.

38 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

A child stream rebases to baselines in the parent stream to receive activities that
were delivered by other development streams. Typically, these change sets are in
recommended baselines. For example:

— Stream D3 rebases to recommended baselines in stream D2.
— Stream D2 rebases to recommended baselines in stream D1.
— Stream D1 rebases to recommended baselines in the integration stream.

Although the integration stream is a child of the project, it does not have a default
relationship. If the project manager wants the integration stream to have a default
relationship, an integration stream in another project can be specified as the default
target of deliver operations and the source of recommended baselines to be used
for rebase operations.

Alternate targets

All streams in the same project can deliver activities to streams other than the
default target. Such alternate target streams are restricted by the foundation
baselines in the source stream and the target stream.

A policy in the project controls whether streams can control access (see
ffor deliver operations to nondefault targets” on page 66). Policies in the streams
control stream access. A stream cannot be the target of a deliver operation if the
project or stream policy prohibits access. One policy determines whether a stream
can accept activities in a deliver operation from a stream in a different project.

Alternate targets in the same project
Within the same project, streams that share foundation baselines can share changes

(see [Figure 18).

D1.BLO

D2b_1

D2b.BL1

Figure 18. Direct stream relationships for alternate target deliver operations

Streams that share the same foundation baselines have a direct relationship and
can share changes by using alternate target deliver operations. For example, child
streams D2b and D2c share as their foundation baselines the recommended
baselines in D1.bl0 from parent stream D1. All the elements that are in the
foundation baselines of streams D2b and D2c are in the foundation baselines of the
child stream D2a.

Chapter 3. Planning the project 39

Using an alternate target deliver operation, you can migrate activities to a sibling
stream or to a stream related to a sibling stream rather than to a parent stream.
Delivering activities to any stream other than the parent stream can also include
other activities from the foundation baselines of the source stream. What changes
are migrated depends on the relationship of the foundation baselines of the source
stream relative to the target stream. For example, in a deliver operation from
stream D2b to D2c¢, from stream D2c to D2b, or from stream D2b_1 to D2c,
because the foundation baselines are the same, only the changes in the source
stream are migrated.

Some alternate target deliver operations can be forward. This involves delivering
activities to a sibling stream that has an advanced baseline or has newer
foundation baselines. For example, in migrating changes from stream
D2b to D2a involves a forward deliver operation. Because all changes in
foundation baselines of stream D2b are in those of D2a, only the activities that are
in stream D2b are delivered.

However, alternate target deliver operations typically migrate more changes than
you at first might anticipate. The alternate target deliver operation can also be
backward. This involves delivering activities to a sibling stream that has not rebased
to the newer, recommended baselines. For example, in migrating
changes from stream D2a to D2b involves a backward deliver operation. Because
the target stream D2b does not have all the changes that the source stream D2a
has, the operation additionally migrates to stream D2b activities from baseline
D2a.bl1 in stream D2a.

Some alternate target deliver operations involve indirect baseline relationships (see

[Figure 19).

Figure 19. Indirect stream relationships for alternate target deliver operations

A stream can migrate its changes to a stream that has an indirect relationship. The
deliver operation often includes activities from the foundation baselines of the
source stream. The following are examples.

* From the child of one stream to the child of a sibling stream (cousin to cousin).

For example, a deliver operation from stream D2b_1 to D2a_1 includes activities
contained in baseline D2b.bl1.

40 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

e From a grandchild to a grandparent stream or to another direct ancestor.

For example, a deliver operation from stream D2a_1 to D1 includes activities
contained in baseline D2a.bl1.

A deliver operation from stream D2b_1 to stream D1 includes activities
contained in baseline D2b.bl1.

Coordinating development streams in the same project
The developers in a project can use an alternate-target deliver operation between

sibling streams in the same project to coordinate work between them (see
Figure 20).

Project A

Integration stream
PA.BL1

PA.BL1 PA.BL1

al,a2,a3 b1, b2, b3

D1.BLO

ATERANY

—~«——— Deliver operation

Figure 20. Alternate target intra-project deliver operation

Two developers in project A work on different portions of a feature in their own
streams D1 and D2, which are siblings. The two developers need to integrate their
work before it is delivered to the integration stream. No other interaction is
needed.

The developer using stream D2 uses an alternate target deliver operation to
migrate the changes in activities b1, b2, and b3 to the sibling stream D1. The
developer in stream D1 tests the work and delivers all the activities to the default
deliver target, the project A integration stream. This configuration works well
where a low level of isolation is necessary.

Sharing changes by a rebase operation
Sharing by a rebase operation allows a stream to configure work done in a sibling

stream (Figure 21J).

Chapter 3. Planning the project 41

Project A

Integration stream

PA.BLO
Stream D1
PA.BL1 Stream D2 PA.BLO
PA.BL1
al,a2,a3
b1, b2, b3
-l
-
D2.BL1
————————————— >
PA.BL2
s —
—a
D1.BL1

~«——— Deliver operation

_____ » Rebase operation

Figure 21. Sharing changes by a rebase operation

42

Typically, stream D1 cannot rebase to baselines from stream D2 because they do
not meet the requirement that the baselines must be contained in the parent
stream. If you deliver to the parent stream the activities in a baseline in one
stream, a sibling stream can be configured with those changes. In if the
baseline D2.BL1 is first delivered to the parent stream (the project integration
stream in this example), you can rebase stream D1 to the baselines in D2.BL1 in
the sibling stream D2. Delivering to the parent stream ensures that, in a default
target deliver operation, only activities that originated in stream D1 are delivered
in baselines D1.bl1 to the parent stream.

Sharing by a rebase operation in this manner requires integration one level higher
than the stream in which the changes originated.

Sharing changes by a deliver operation

Sharing can be done with deliver operations between siblings in the same project
(see [Figure 22).

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Project A

Integration stream
PA.BLO

Stream D1

PA.BLA Stream D2 PA.BLO
PA.BL1 4@
4@ al,a2, a3
b1, b2, b3

—

D1.BL1

<
-
PA.BL2 \

~«——— Deliver operation

:

Figure 22. Sharing changes by an alternate target deliver operation

If you integrate changes in a sibling stream (rather than in a parent stream; see
[“Sharing changes by a rebase operation” on page 41), you can use an alternate
target deliver operation to share changes between sibling streams. For example, if
you deliver activities b1, b2, and b3 in stream D2 to stream D1, you must also
deliver activities in baselines in PA.BL1 and merge the changes with the versions
in activities al, a2, and a3. This complex deliver operation can be simplified b
using a rebase operation before the alternate target deliver operation (see
la deliver operation with a rebase operation” on page 43).

All of the integrated changes are migrated to the parent stream (the project
integration stream) when you deliver your work from stream D1.

Simplify a deliver operation with a rebase operation
A rebase operation can simplify an alternate-target deliver operation when a
sibling stream needs to configure changes from a related stream (see .

Chapter 3. Planning the project 43

Project A

b1, b2, b3

al, a2, a3

~«——— Deliver operation

_____ » Rebase operation

Figure 23. Rebase operation and alternate target deliver operation

44

Because streams D1 and D2 are siblings, stream D2 can deliver its activities to
stream D1. However, stream D2 contains changes in it foundation baselines that
are not in stream D1. If stream D2 were to deliver activities al, a2, and a3 to
stream D1, all the additional activities in baselines in PA.BL2 would have to be
delivered also.

However, if you rebase stream D1 to the baselines in PA.BL2 in the common
parent stream before delivering the activities in stream D2, this complex alternate
target deliver operation can be simplified. During the rebase operation, the changes
in activities b1, b2, and b3 are preserved. After the rebase operation, no activities
other than al, a2, and a3 have to be delivered from stream D2 to D1.

Single-stream projects

For most customers, a parallel development environment consisting of private and
shared work areas makes sense. However, small teams of developers working
together closely may prefer a serial development environment. UCM supports this
by letting you create a single-stream project. A single-stream project contains one
stream, the integration stream, and does not allow users to create development
streams. When developers join a single-stream project, they create a view attached
to the integration stream.

You may want to use a single-stream project during the initial stage of
development when several developers want to share code quickly. When the
development effort expands and you need a parallel development environment,
you can create a multiple-stream project based on the final baselines in the
single-stream project.

The following are the main advantages of single-stream projects:

* Developers who work in dynamic views see each other’s work as soon as they
check in their files. Developers who work in snapshot views see each other’s
work as soon as they check in their files and update their views. In a
multiple-stream project, developers see each other’s changes only during deliver
and rebase operations.

* Developers have a simplified work environment. Because all work is done on
the integration stream, developers do not need to maintain a development

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

stream and two views, one attached to the development stream and one
attached to the integration stream. In addition, developers do not need to
perform deliver or rebase operations.

* Your role as integrator is simplified. Because developers work on the same
stream and see each other’s changes immediately, you do not need to create
baselines frequently. In contrast to a multiple-stream project, developers do not
depend on baselines to integrate their work. The primary purpose of baselines in
a single-stream project is to identify major milestones.

The following are the main disadvantages of single-stream projects:

* Developers have limited support for sharing files simultaneously. Although
multiple developers can check out an element in the same stream at the same
time, only one developer can reserve the checkout. A reserved checkout guarantees
the developer’s right to check in a new version of the element. All other
developers must check out the element as unreserved, which means that they
cannot check in their versions until after the reserved checkout has been checked
in or canceled. Developers with unreserved checkouts must merge their changes
with the changes made by the reserved checkout.

* Because changes are shared as soon as developers check in their files, developers
assume the full responsibility for testing their work and must be extremely
vigilant to ensure that they do not introduce bugs to the project. In contrast, a
multiple-stream project allows the integrator or a software quality engineering
team to perform extensive testing of new baselines on a dedicated testing stream
and to recommend baselines only after they pass those tests.

* Because changes are shared as soon as developers check in their files, developers
might keep files checked out longer than they would in a multiple-stream
project. If a view is lost, all changes made but not checked in that view are also
lost. Therefore, have your Rational ClearCase administrator frequently back up
views for single-stream projects.

Read-only streams

During the evolution of a project, you might need to provide some users with
access to baselines while ensuring that they do not make any changes to
components. You can address this requirement by creating a Read-Only
development stream for those users. You cannot make baselines in Read-Only
streams, nor can you create child streams beneath them. You can create view-private
files, such as derived objects in Read-Only streams.

Common use cases for Read-Only streams include the following:
* Your quality engineering team needs to build and test a particular configuration.

* Your customer support team needs access to a library that was built in a
previous release.

* Your release engineering team needs to create a release based on a combination
of old and new baselines.

Specifying a baseline strategy

After you organize the project’s components, determine your strategy for creating
baselines of those components. The baseline strategy must define the following
aspects of projects:

* A project baseline (see ["Identifying a project baseline” on page 46)

* The use of pure composite baselines (see [“Pure composite baselines” on page 47)

+ When to create baselines (see[“When to create baselines” on page 51)

Chapter 3. Planning the project 45

« How to name baselines (see|“Defining a baseline naming convention” on page|
52)

* The set of promotion levels (see|’Identifying promotion levels to reflect state of|
[development” on page 52)

+ How to test baselines (see [“Planning how to test baselines” on page 52)

Identifying a project baseline

In your role as project integrator, you are responsible for telling developers which
baselines to use when they join the project and when they rebase their
development streams. You could keep track of a list of baselines, one for each

component. However, a more efficient practice is to use a composite baseline to
represent the project baseline (see [Figure 24).
Project X

System component

/\ =

Project A Project B

ProjA_Comp ProjB_Comp

Figure 24. Using a system-level composite baseline

Project A uses a composite baseline, PA, to select baselines in the GUI and Admin
components. Project B also uses a composite baseline, PB. Baselines that are
selected by a composite baseline are referred to as members. A composite baseline is
said to depend on the member baseline.

After you create a composite baseline to represent the project baseline, the next
time you invoke the make baseline operation on the component that contains the
project baseline, UCM performs the operation recursively. If a component that
contributes to the composite baseline has changed since its latest baseline, UCM
creates a new baseline in that component. For example, assume that developers
made changes to files in the GUI component after the integrator created the 1
baseline. The next time you make a new project baseline, UCM creates a new

46 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

baseline in the GUI component that incorporates the changed files, and the new
project baseline selects the new GUI baseline.

A composite baseline can select other composite baselines. Thus, member baselines
may themselves be composite baselines. The chain of dependencies forms an
acyclic directed graph, with no limit on the depth of the membership. Composite
baselines do not necessarily have to model any source or build dependencies.

For example, if your system is so large that it consists of multiple projects, you
may want to use a composite baseline to represent the system baseline. In

SB is a composite baseline that selects the PA and PB baselines of
Project A and Project B, respectively.

In addition to using a composite baseline to represent the project, you can use
multiple composite baselines within the same project. When working with multiple
composite baselines, you can encounter situations where two composite baselines
select different baselines of the same component. When this happens, you need to
resolve the conflict by choosing one of the member baselines. To avoid these
conflicts, choose a simple baseline design, rather than one that uses a complex
hierarchy of composite baselines. For information about baseline conflicts, see
[“Resolving baseline conflicts” on page 120

Pure composite baselines
Like all baselines, a composite baseline must belong to a component. However,

that component does not need to contain any of its own elements. For example, in
the System component, ProjA_Comp, and ProjB_Comp components
consist only of their composite baselines. When you create a component to be used
solely for housing a composite baseline, you can specify an option that directs
UCM to make the component without creating a root directory in a VOB. Such a
component can never contain its own elements and its baseline is referred to as a
pure composite baseline.

Dependency relationships in pure composite baselines
A pure composite baseline shows a loosely coupled dependency relationship

between components (see [Figure 25).

/ X.BL1 :>
/ A.BL1 :> / C.BL3 :>

Figure 25. Loosely coupled relationship between baselines

The objects A.BL1 and C.BL1 are baselines on components A and C that are used
to group directory and file elements. Baselines A.BL1 and C.BL1 are members of
the composite baseline X.BL1 on the component X that was created without a root
directory in a VOB. Baseline X.BL1 directly depends on baselines A.BL1 and
C.BL1. However, the dependency between A.BL1 and C.BL1 is incompletely
expressed. The components have to be used together, but it is not clear whether
component A depends on C or component C depends on A.

Chapter 3. Planning the project 47

You cannot change the existing dependency relationships in a composite baseline.
To change dependency relationships, you must create a new baseline, a descendant
of the changing baseline. For the composite baseline, you can add dependency
references to new components (to create a new dependency relationship) or can
drop dependency references to existing components (to discontinue a dependency
relationship). For either operation, a new composite baseline is created.

At any time, a composite baseline can have member baselines added or dropped.
Although it appears that components are manipulated to create composite
baselines, the dependency relationship is made between baselines and not
components. One might say that some components are dependant on other
components, but the dependency relationships have a limited scope. The
dependency relationship may last for the life of a particular project, but it might be
different for other projects. The dependency relationships change over time as
components are added or dropped. So the relationship must be made between
versions of components, the baselines, rather than between the components
themselves.

Because a component without a VOB root directory has no elements (and,
therefore, no associated code), a new composite baseline created on such a
component can only indicate changes in the dependency relationship. A composite
baseline on a such a component is an aggregation of baselines.

When you use a pure composite baseline, a new baseline on component X only
means that there was some change in the membership of the baseline. Using a
pure composite baseline provides greater configuration flexibility than using a
composite baseline on a component that has a root directory in a VOB. Use pure
composite baselines whenever possible when you configure composite baselines.

Dependency relationships in composite baselines of ordinary
components
In a composite baseline of a component that has a root directory in a VOB (an

ordinary component), a tightly coupled relationship exists between components as
shown in

/ A.BL1 :>
/ C.BL3 :>

Figure 26. Tightly coupled relationship between baselines

A.BL1 is a baseline on component A that groups directory and file elements and is
also a composite baseline that selects baseline C.BL3 of component C. Baseline
C.BL3 is a member of composite baseline A.BL1. Composite baseline A.BL1
depends on the member baseline C.BL3.

A change to the baseline in component A could be caused by a change in the
configuration of component A (that is, a member being added or dropped) or by a
new baseline in component C. This type of component arrangement is tightly
coupled, for example, if code in component A depends on code in component C.

48 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In the tightly coupled relationship, the composite baseline A.BL1 fulfills two roles:
selecting baselines from other components and identifying a set of versions in its
component. Determining the reason for making a new descendant of this type of
composite baseline is expensive (in terms of performance). Using a composite
baseline that has tightly coupled relationships imposes configuration restrictions.
For example, you may only be able to do an advanced rebase operation.

Making a new descendant baseline

Making a new descendant for a pure composite baseline indicates that the
relationship between member baselines has changed. The loosely coupled
relationship in a pure composite baseline (see indicates that the project
integrator manages the dependency among the components outside of the Rational
ClearCase environment. This form of dependence provides more choices of
baselines to use in a project. Because the dependency relationship does not enforce
the changing of component A if component C changes, the project integrator must
be more careful in selecting baselines but has more flexibility in making changes.

Making a new descendant for a composite baseline of an ordinary component
when the predecessor baseline changes can indicate one or both of the following
meanings:

* Changes in the baseline dependency relationships
* Changes in the elements that make up the components

In a tightly coupled dependence (see [Figure 26), a change in component C enforces
changing component A.

Whether to use pure composite baselines
Many projects or project organizations need the flexibility provided by using pure
composite baselines. Pure composite baselines are better in the following situations:

e If baseline conflicts occur.

* The project needs a lateral rebase operation to configure baselines from outside
the project.

However, a project that does not include overlapping composite baselines will not
have conflicts. Also, in development teams where projects are release-oriented, a
project is likely to only need baselines from the previous project, and so the rebase
flexibility is not needed.

To avoid using pure composite baselines, a project integrator can ensure that the
subsystems stay synchronized with the shared components. When a new baseline
is created on a shared component, all consuming projects would release a new
baseline for their subsystem based on the new baseline. This frequent updating
and rebasing prevent baseline conflicts. Such overhead is likely to be feasible only
for projects with a small number of shared components.

Changing to a pure composite baseline

If a project has a composite baseline on an ordinary component, you can change
the project to use a pure composite baseline (see [Figure 27).

Chapter 3. Planning the project 49

——————
LIB.BL1 \ / LIB_NRO ; >
/ C.BL3 :) / A.BL1 :> / LIB.BL1 :> / C.BL3 :> / A.BL1 :>

Figure 27. Changing a regular composite to a pure composite baseline

The project manager can create a component without a VOB root directory for each
component that has a composite baseline and contains elements. For example,
composite baseline LIB.BL1 is for a component that has its own elements. The
project manager drops the dependency references to components C and A from
baseline LIB.BL1. The project manager creates a new component LIB_NR that does
not have a root directory. Then a new composite baseline LIB_NRO can be made
based on the rootless component. And you can add dependencies on the baseline
LIB.BL1 of the original component and on baselines C.BL3 and A.BL1 of the other
components.

Creation of composite baseline descendants
If you introduce changes in a member component in a composite baseline, related
baselines must be updated. The following are reasons to create a new baseline:

* Changes in the component since the last baseline was created
* Changes to the dependencies (a member is added or dropped)
* Replacement of member baselines by different baselines on the component

A change in one of the dependencies is propagated up to the root as new baselines
are created to include the new member baselines. For example, there are chanies

in component C, and a new baseline is created on component A (see [Figure 28).

/ A.BL1 ;> / A.BL2 ;>
/ B.BL1 ;> / B.BL2 ;>
/ C.BL3 :> / D.BL1 :> / C.BL4 :> / D.BL1 :>

=

ci,c2,c3

Figure 28. Creation of a composite baseline descendant

When you create a new baseline on component A, the work done on component C
causes a new baseline, C.BL4, to be created to capture the changes. Because
baseline C.BL3 was replaced by C.BL4, and baseline C.BL3 was a member of
composite baseline B.BL1, a new baseline, B.BL2, on component B is made to
record the relationship with baseline C.BL4. Because baseline B.BL1 was replaced
by baseline B.BL2, a new baseline A.BL2 on component A is needed.

50 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Unless you explicitly add dependencies to a composite baseline or drop
dependencies from a composite baseline, when a baseline is created following on a
composite baseline, the new baseline inherits the members of its predecessors.
When a new descendant baseline is created, all dependencies of the composite
baselines are checked and new baselines are created as needed.

A new baseline need only be created for the composite baseline, not for any
member baselines of unchanged components. Unless a new baseline is needed for
a project that is not using the composite baseline, you should not have to create a
new baseline for component D. Baseline B.BL2 inherits baseline D.BL1 unchanged.
A new baseline for component D would not be a member of the composite
baseline B.BL2.

When to create baselines

At the beginning of a project, you must identify the baseline or baselines that
represent the starting point for new development. As work on the project
progresses, you need to create new baselines periodically.

Identifying the initial baseline

If your project represents a new version of an existing project, you probably want
to start work from the latest recommended baselines of the existing components of
the project. For example, if you are starting work on version 3.2 of the Transaction
Builder project, identify the baselines that represent the released, or production,
versions of its version 3.1 components. A convenient way to start a project with
stable versions of components is to use a bootstrap project (see [“Bootstrap projects”]

on page 146).

If you use pure composite baselines, create a bootstrap project with the initial
baselines. Then, create your ongoing projects and configure them with the pure
composite baselines from that bootstrap project.

If you are converting a base ClearCase configuration to a project, you can make
baselines from existing labeled versions. Check whether the latest stable versions
are labeled. If they are not, you need to create and apply the label type to the
versions that you plan to include in your project. See|“Making a baseline from a
llabel” on page 98] for information about creating and applying a label type to
versions.

Ongoing baselines

After developers start working on their streams in the new project and make
changes, create baselines on the integration stream and on any feature-specific
development streams on a frequent (nightly or weekly) basis. This practice has
several benefits:

* Developers stay in sync with each other’s work.

It is critical to good configuration management that developers have private
work areas where they can work on a set of files in isolation. Yet extended
periods of isolation can cause problems. Developers are unaware of each other’s
work until you incorporate delivered changes into a new baseline, and they
rebase their development streams.

* The amount of time required to merge versions is minimized.

When developers rebase their development streams, they may need to resolve
merge conflicts between files that the new baseline selects and the work in their
private work areas. When you create baselines frequently, they contain fewer
changes, and developers spend less time merging versions.

Chapter 3. Planning the project 51

* Integration problems are identified early.

When you create a baseline, you first build and test the project by incorporating
the work delivered since the last baseline. By creating baselines frequently, you
have more opportunities to discover any serious problems that a developer may
introduce to the project inadvertently. By identifying a serious problem early,
you can localize it and minimize the amount of work required to fix the
problem.

If you are working in a single-stream project, you do not need to create baselines
frequently. Developers see each other’s changes as soon as they check in files; they
do not rebase to the latest recommended baselines. The primary purpose of
baselines in a single-stream project is to identify major project milestones, such as
the end of an iteration or a beta release.

Defining a baseline naming convention

Because baselines are an important tool for managing a project, define a
meaningful convention for naming them. You may want to include some or all of
the following information in a baseline name:

* Project name
* Milestone or phase of development schedule
* Date created

For example: VA.OTRANS_BL2_Junel2.
UCM includes a set of templates that you can use to implement a baseline naming

convention within a project. See [“Setting a baseline naming template” on page 92|
for details.

Identifying promotion levels to reflect state of development

A promotion level is an attribute of a baseline that you can use to indicate the
quality or stability of the baseline. The following default promotion levels are
provided:

* Rejected
* Initial

e Built

* Tested
* Released

You can use some or all of the default promotion levels, and you can define your
own. The levels are ordered to reflect a progression from lowest to highest quality.
You can use promotion levels to help you recommend baselines to developers. The
Recommended Baselines window displays baselines that have a promotion level
equal to or higher than the one you specify. You can use this feature to filter the
list of baselines displayed in the window. Determine the set of promotion levels for
your project and the criteria for setting each level.

Planning how to test baselines

Typically, software development teams perform several levels of testing. An initial
test, known as a validation test, checks to see that the software builds without
errors and appears to work as it should. A more comprehensive type of testing,
such as regression testing, takes much longer and is usually performed by a team
of software quality engineers.

52 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

When you make a new baseline, you need to lock the integration stream to prevent
developers from delivering additional changes. This allows you to build and test a
static set of files. Because validation tests are not exhaustive, you probably do not
need to lock the integration stream for a long time. However, more extensive
testing requires substantially more time.

Keeping the integration stream locked for a long time is not a good practice
because it prevents developers from delivering completed work. One solution to
this problem is to create a development stream to be used solely for extensive
testing. After you create a new baseline that passes a validation test, your testing
team can rebase the designated testing development stream to the new baseline.
When the baseline passes the next level of testing, promote it. When you are
confident that the baseline is stable, make it the recommended baseline so that
developers can rebase their development streams to it.

For information on creating a testing development stream, see
idevelopment stream for testing baselines” on page 106 For information on testing

baselines, see [“Testing the baseline” on page 116

Planning PVOBs

UCM objects such as projects, streams, activities, and change sets are stored in
project VOBs (PVOBs). PVOBs can also function as administrative VOBs. You need
to decide how many PVOBs to use for your system and whether to take advantage
of the administrative capabilities of the PVOB.

Deciding how many PVOBs to use

Product Note: This section does not apply to Rational ClearCase LT because that
product allows for only one PVOB per server.

Projects that use the same PVOB have access to the same set of components. If
developers on different projects need to work on some of the same components,
use one PVOB for those projects. For example, shows concurrent
development of two versions of the Webotrans product. While most members of
the team work on the 4.0 release in one project, a small group works on the 4.0.1
release in a separate project. Both projects use the same components, so they use
one PVOB.

Chapter 3. Planning the project 53

~ 7 <~ 7
REERS s

<01

AN

Webotrans
PVOB

Figure 29. Related projects sharing one PVOB

54

Consider using multiple PVOBs only if your projects are so large that PVOB
capacity becomes an issue. For more information, see ['Using multiple PVOBs."|

Understanding the role of the administrative VOB

An administrative VOB stores global type definitions. VOBs that are joined to the
administrative VOB with AdminVOB hyperlinks share the same type definitions
without having to define them in each VOB. For example, you can define element
types, attribute types, hyperlink types, and so on in an administrative VOB. Any
VOB linked to that administrative VOB can then use those type definitions to
make elements, attributes, and hyperlinks.

If you currently use an administrative VOB, you can associate it with your PVOB
by creating an AdminVOB hyperlink between the PVOB and the administrative
VOB. On Windows computers, the VOB Creation Wizard creates the AdminVOB
hyperlink for you. On UNIX® workstations, use the cleartool mkhlink command
to create the AdminVOB hyperlink. Thereafter, when you create components,
AdminVOB hyperlinks are created between the VOBs that store the components’
root directories and the administrative VOB. These hyperlinks enable the
components to use the administrative VOB'’s global type definitions.

If you do not currently use an administrative VOB, do not create one. When you
create components, AdminVOB hyperlinks are made between the VOBs that store
the component root directories and the PVOB, and the PVOB assumes the role of
administrative VOB.

For details on administrative VOBs and global types, see the IBM Rational ClearCase
Administrator’s Guide.

Using multiple PVOBs

Although you can use only one PVOB for all your projects, your organization
might have multiple PVOBs. In planning this configuration with multiple PVOBs,
consider the following factors:

+ |[“Multiple PVOBs and a common administrative VOB” on page 55|

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

« |"Multiple PVOBs and feature levels” on page 56|

Multiple PVOBs and a common administrative VOB

If projects in one PVOB need to modify components in other PVOBs, your Rational
ClearCase administrator needs to identify one PVOB to serve as a common
administrative VOB for the PVOBs and the component VOBs. In PVOB1
and PVOB2 use PVOB3 as their administrative VOB.

PVOB3
C Proj3)
C3 J

PVOBH1 /1/ A \f\ PVOB2
" \ c2)
\—/
VOB1 VOB3 VOB2

/\/= AdminVOB hyperlinks

Figure 30. Using one PVOB as an administrative VOB for multiple PVOBs

The arrows from the PVOBs and the component VOBs represent AdminVOB
hyperlinks to PVOB3. Because the component VOBs and the PVOBs share a
common administrative VOB, all three projects can modify all three components.

For PVOBs that do not share a common administrative VOB, a project may select a
component from another PVOB but the component will be Read-Only within that

project.

In a PVOB serves as an administrative VOB.

Chapter 3. Planning the project 55

As an alternative to using a PVOB as an administrative VOB, you can link PVOBs
and component VOBs to an administrative VOB. This approach might be
appropriate if your development team is moving from base ClearCase to UCM and
you currently use an administrative VOB.

If you plan to use multiple PVOBs, create the PVOB that will serve as the
administrative VOB first. When you create the other PVOBs, specify the first PVOB
as the administrative VOB.

Multiple PVOBs and feature levels

For environments that implement multiple PVOBs, the first PVOB must be at
feature level 3 or higher. Adhering to this rule avoids a situation that UCM
software cannot detect and that could cause unknown problems. For example, if
one of your PVOBs is at feature level 2 and you configure a new stream in a PVOB
that is at feature level 2, you might have unknown problems. If the new stream is
configured with a baseline from a PVOB that is at feature level 3 or later, the new
stream will have configuration rules that can cause errors.

For instructions about raising the feature level of a VOB that is not replicated, see
IBM Rational ClearCase Administrator’s Guide and the chflevel reference page. For
instructions about raising the feature level of replicated VOBs, see IBM Rational
ClearCase MultiSite Administrator’s Guide.

Identifying special element types

The use of element types lets each class of elements be handled differently. An
element type is a class of file elements. Predefined element types, such as file and
text_file, are included. You can define your own element types. When you create
an element type for use in UCM projects, you can specify a mergetype attribute,
which determines how deliver and rebase operations handle merging of files of
that element type.

When a merge situation occurs during a deliver or rebase operation, an attempt is
made to merge versions of the element. User interaction is required only if
differences between the versions cannot be reconciled. For certain types of files,
you may want to impose different merging behavior.

Using mergetype to manage merge behavior

You can use element types for some classes of files for which you want to define a
merge behavior that differs from the behavior for predefined element types. For
some types of files, you may want to merge versions manually rather than let them
be merged automatically. One example is a Visual Basic form file, which is a
generated text file. Visual Basic generates the form file based on the form that a
developer creates in the Visual Basic GUI Rather than let the form file be changed
during a merge operation, you want to regenerate the form file from the Visual
Basic GUI. For this type of file, the developer controls the contents of the file in the
target view. The developer might want to copy the version in the development
stream or generate a new version.

Some types of files never need to be merged. For these types of files, you may
want to ensure that no one attempts to merge them accidentally. For example, the
deployment, or staging, component contains the executable files that you ship to
customers or install in-house. These files are not under development; they are the
product of the development phase of the project cycle. During a deliver operation

56 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

(or a rebase operation), an attempt is made to merge these executable files to the
target versions unless the files are of an element type for which different merge
behavior is specified.

To define different merge behavior for special types of files in your environment,
you can create an element type and specify one of the following mergetypes:

* copy
During a merge or findmerge operation within a delivery or a rebase, a version
whose element type has the mergetype copy is not merged. The source version
is copied to the target version without user intervention.

®* never

A merge or findmerge operation ignores versions whose element type has never
as a mergetype.

¢ user

A merge or a findmerge operation performs trivial merges only. Nontrivial
merges must be made manually. The graphic user interface (GUI) tools provide
extra options for user mergetype to keep the target version, copy the source
version (from the source stream), or back out of the deliver operation.

Note: If you fail to specify a mergetype of copy, never, or user for these element
types, developers may encounter problems when they attempt to deliver
work or rebase their streams. For example, default merge managers cannot
handle data in these files. Developers create executable files when they build
and test their work prior to delivering it. If these files are under version
control as derived objects, they are included in the change set of the current
activity.

For information about creating element types, see [Chapter 15, “Using element
ftypes to customize file element processing,” on page 229)and the mkeltype
reference page in the IBM Rational ClearCase Command Reference.

Defining the scope of element types

When you define an element type, its scope can be ordinary or global. By default,
the element type is ordinary; it is available only to the VOB in which you create it.
If you create the element type in an administrative VOB and define its scope as
global, other VOBs that have AdminVOB hyperlinks to that administrative VOB
can use the element type. If you want to define an element type globally, and you
do not currently use a separate administrative VOB, define the element type in the
PVOB.

Planning how to use the UCM integration with Rational ClearQuest

Before you can set up the UCM integration with Rational ClearQuest, you need to
make some decisions, which fall into two general categories:
* How to map PVOBs to Rational ClearQuest user databases

* Which schema to use for the Rational ClearQuest user databases

Mapping PVOBs to Rational ClearQuest user databases

You need to consider how to use PVOBs for projects that link to Rational
ClearQuest user databases.

Chapter 3. Planning the project 57

Rational ClearCase MultiSite requirement

If you use Rational ClearCase MultiSite, all PVOB replicas must have access to the
Rational ClearQuest user database. If you have multiple PVOBs linked to either an
administrative VOB or a PVOB acting as an administrative VOB, all of the PVOBs
and administrative VOBs in the hierarchy must be replicated to all sites. For
information on the use of Rational ClearQuest MultiSite, see [“How the UCM|
integration with Rational ClearQuest is affected by Rational ClearQuest MultiSite”|

on page 104.|

Integration requirement for Rational ClearQuest MultiSite

If your organization uses Rational ClearQuest MultiSite, you can register multiple
replicas of the same database set (connection). Ensure that developers at their sites
us the replica that accesses the user database at their local site. For information on
the use of Rational ClearQuest MultiSite, see [“How the UCM integration withl|
[Rational ClearQuest is affected by Rational ClearQuest MultiSite” on page 104

Naming projects that are linked to same user database
Although UCM allows you to create projects with the same name in different
PVOBs, you cannot link those projects to the same Rational ClearQuest user

database (see [Figure 31)).

PVOB1

ClearQuest User
Database

Project 2 \
UCM_Projectt

UCM_Project2
PVOB2

K—_\ UCM_Project3

)

/\
\/

Figure 31. Multiple PVOBs linked to the same Rational ClearQuest user database

\

Give the projects unique names. For example, in if Project 3 were named
either Project 1 or Project 2 (which is valid in the UCM environment), the
generated name in the Rational ClearQuest user database would not be unique and
would cause the software to run erroneously. This naming requirement states that
the project names that appear in the Rational ClearQuest user database must be
unique.

58 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Use of multiple user databases

If some developers on your team work on multiple projects, you can store the
schemas for the Rational ClearQuest user databases that are linked to those
projects in one schema repository, as shown in .

ClearQuest User
PVOB1 Database 1

Schema
Repository

Project 1
ClearQuest User ™ =y

PVOB2 Database 2
B schema?2 l\
/

mmmmJy
Project 2

Figure 32. One schema repository for multiple Rational ClearQuest user databases

B schemat |
| egeege—— |

The databases that are named ClearQuest User Database 1 and ClearQuest User
Database 2™ are linked to the same schema repository.

If you use multiple user databases, give each one a unique name. If a developer
tries to access a user database whose name is not unique, the authentication can
fail. In using the command line interface to be authenticated, a developer can
specify only the name of the user database. (The graphic user interface requires
that the database set (connection) be supplied.) If multiple user databases share the
same name, the software cannot distinguish the difference in databases that have
the same name.

Using a single schema repository allows developers to switch between projects
easily. If you store the schemas in different schema repositories, developers must
connect to each schema repository once when they switch projects. The user name
and password are stored locally for each connection that they use. The project
manager or developer can provide or update the credentials by using the
cmregister command.

Deciding which schema to use

To use the UCM integration with Rational ClearQuest, you must create a new
Rational ClearQuest user database or upgrade an existing Rational ClearQuest user
database that is based on a UCM-enabled schema. A UCM-enabled schema meets
the following requirements:

* The UnifiedChangeManagement package has been applied to the schema. A
package contains metadata, such as records, fields, and states, that define

Chapter 3. Planning the project 59

60

specific functionality. Applying a package to a schema provides a way to add
functionality quickly so that you do not have to build the functionality from
scratch.

* The UnifiedChangeManagement package has been applied to at least one
record type. This package adds fields and scripts to the record type, and adds
the Unified Change Management tab to the record type’s forms.

* The UCMPolicyScripts package has been applied to the schema. This package
contains the scripts for three Rational ClearQuest development policies that you
can enforce.

Rational ClearQuest includes two predefined UCM-enabled schemas:
UnifiedChangeManagement and Enterprise. You can perform the following
actions with these schemas:

* Start using the integration readily by using one of the predefined schemas.

* Use the Rational ClearQuest Designer and the Rational ClearQuest Package
Wizard to enable a custom schema or another predefined schema to work with
UCM.

* Use one of the predefined UCM-enabled schemas as a starting point and modify
it to suit your needs.

Overview of the UnifiedChangeManagement schema
The UnifiedChangeManagement schema includes the following record types:

BaseCMActivity
This is a lightweight record type that you can use to store information
about activities that do not require additional fields. You may want to use
this record type as a starting point and then modify it to include additional
fields and states.

Defect This record type is identical to the record type of the same name that is
included in other predefined Rational ClearQuest schemas, with one
exception: it is enabled to work with UCM. The Defect record type
contains more fields and form tabs than the BaseCMActivity record type to
allow you to record detailed information.

UCMUtilityActivity
This record type is not intended for general use. The integration uses this
record type when it needs to create records for itself, such as when you
link a project that contains activities to a Rational ClearQuest user
database. You cannot modify this record type.

Enabling a schema for UCM

If you decide not to use one of the predefined UCM-enabled schemas, do some
additional work to enable your schema to work with UCM. Before you can do this,
you need to answer the following questions:

* Which record types are you enabling for UCM? You do not need to enable all
record types in your schema, but you can link only records of UCM-enabled
record types to activities.

* For each UCM-enabled record type:

— Which state type does each state map to? You must map each state to one of
the four UCM state types: Waiting, Ready, Active, Complete. See
[state types” on page 78|

— Which default actions are you using to transition records from one state to
another? See [“State transition default action requirements for record types” on|

|Eage 79|

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

— Which policies do you want to enforce? The integration includes policies that
you can set to enforce certain development practices. You can also edit the
policy scripts to change the policies. See [Chapter 4, “Setting policies,” on page|
for details.

Chapter 3. Planning the project 61

62 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 4. Setting policies

UCM includes policies that you can set to enforce certain development practices
within a project. The following types are described:

+ [“Components and baselines policies”|

¢ |“Default view types” on page 64

* [“Permissions to modify projects and streams” on page 65|

* [“Policies for all deliver operations” on page 65

» [“Policies for deliver operations to nondefault targets” on page 66|

Some policies are available only if you enable the project to work with Rational
ClearQuest. See [“Policies for the UCM integration with Rational ClearQuest” on|

In addition to the policies that UCM supplies, you can create your own policies by
using triggers on UCM operations. For information on using triggers, see
[Chapter 8, “Using triggers to enforce UCM development policies,” on page 129

Components and baselines policies

Some policies are related to components and baselines.

Modifiable components

In most cases, you want components to be modifiable. For information on when to
use read-only components, see [‘Identifying read-only components” on page 33|

Component modifiability and visibility
Component modifiability and visibility can affect the viability of alternate-target

deliver operations for migrating changes between two streams in the same project
or in different projects (see [Figure 33).

Figure 33. Component modifiability and visibility

From the source stream, an alternate target deliver operation can contain activities
with changes in components that (in the target stream) are read-only or are not
visible. This condition can occur for one of the following reasons:

© Copyright IBM Corp. 1992, 2006 63

* A limited set of components or different sets of components are configured in
streams from the same project.

 Streams from different projects can have different modifiability.
For example, in components B and C in project X can be modifiable
while the same components in project Y are read-only.

 Streams from different projects can be configured with different sets of
components.

In project X, components D and E are not configured and therefore are not
visible. Likewise in project Y, component A is not configured and is not visible.

By default, if one of these conditions occurs, the deliver operation is prohibited.
The project manager can allow such deliver operations to proceed by setting a
policy on the target project or stream (see [“Require that all source components are|
visible in the target stream” on page 69).

Default promotion level for recommending baselines

Recommended baselines are typically the set of baselines that project team
members use to rebase their development streams. In addition, when developers
join the project, their development work areas are initialized with the
recommended baselines. When you recommend baselines, the Recommend
Baselines window lists the latest baselines that have promotion levels equal to or
higher than the promotion level that you specify as the default promotion level for
recommending baselines.

Default view types

When developers join a multiple-stream project, they use the Join Project Wizard to
create their development views, integration views, and development streams. They
use a development view that is attached to a development stream to work in
isolation from the project team. They use an integration view that is attached to the
parent stream of their development stream to build and test their work against the
latest work delivered to the parent stream by other developers.

Two kinds of views are provided: dynamic and snapshot. Specify which type of
view to use as the default for development and integration views. When
developers join the project, they may choose to accept or reject the default view
types. The Join Project Wizard uses the default values the first time that a
developer creates views for a project. Thereafter, the wizard uses the developer’s
most recent selections as the default view types.

Product Note: Rational ClearCase LT supports only snapshot views.

Dynamic views use the Rational ClearCase multiversion file system (MVES) to
provide immediate, transparent access to files and directories stored in VOBs. On
Windows systems, a dynamic view is mapped to a drive letter in Windows
Explorer. Snapshot views copy files and directories from VOBs to a directory on
your computer.

Use dynamic views as the default view type for integration views. Dynamic views
ensure that when developers deliver work to the integration stream or
feature-specific development stream, they build and test their work against the
latest work that other developers have delivered since the last baseline was

64 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

created. Snapshot views require developers to copy the latest delivered files and
directories to their computer (a snapshot view update operation), which they may
forget to do.

Permissions to modify projects and streams

This section describes policies that control access to objects and determine who can
modify the project and stream objects.

Allow all users to modify the project

By default, this policy is disabled, meaning that only the project owner, PVOB
owner, or a privileged user can make changes to the project object. To allow all
users to modify the project object, enable this policy.

Allow all users to modify the stream and its baselines

By default, this policy is disabled, meaning that only the stream owner, PVOB
ownet, or a privileged user can make changes to the stream or any baselines
created in it. To allow all users to modify the stream and its baselines, enable this
policy. You can set this policy to apply to all streams within the project or you can
set it on a per-stream basis.

Policies for all

deliver operations

Some policies affect all deliver operations. You can set these policies to apply to all
streams within the project or you can set the policies on a per-stream basis. When
a developer starts a deliver operation, UCM checks the policy settings on the target
stream and the project. If the target stream policy setting is different than its
project policy setting, the project setting takes precedence. For information on

policies that apply only to deliver operations to nondefault targets, see
[deliver operations to nondefault targets” on page 66|

Do not allow deliver to proceed with checkouts in the
development stream

This policy prevents developers from delivering work to the target stream if some
files remain checked out in the source stream. The policy can be set per project or
per stream, for interproject and intraproject deliver operations.

If this policy is enabled, developers must check in all files in their source streams
before delivering work. You may want to require developers to check in files to
avoid the following situation:

1. A developer completes work on an activity, but forgets to check in all of the
files associated with that activity.

2. The developer works on other activities.

3. Having completed several activities, the developer delivers them to the target
stream. Because the files associated with the first activity are still checked out,
they are not included in the deliver operation. The developer delivers older
versions. Even though the developer may build and test the changes
successfully in the development work area, the changes delivered to the target
may fail because they do not include the checked-out files.

Rebase before delivery

This policy (Require development stream to be based on the project’s
recommended baseline(s) prior to delivery) requires developers to rebase their

Chapter 4. Setting policies 65

source streams to the target stream current recommended baselines before they
deliver work to the target stream. The policy can be set per project or per stream,
for interproject and intraproject deliver operations.

The goal of this policy is to have developers build and test their work in their
development work areas against the work included in the most recent stable
baselines before they deliver to the target stream. This practice minimizes the
amount of merging that developers must do when they perform deliver operations.

Policies for deliver operations to nondefault targets

Some policies apply only to deliver operations whose targets are not the default
target streams. You can set these policies to apply to all streams within the project
or you can set the policies on a per-stream basis. When a developer starts a deliver
operation, UCM checks the policy settings on the target stream and the project. If
the target stream’s policy setting is different than its project’s policy setting, the
project setting takes precedence. For information on policies that apply to all
deliver operations, see [“Policies for all deliver operations” on page 65

In a project, you can create a hierarchy of development streams. For details, see
[“Stream hierarchies” on page 35| Such a hierarchy as shown in allows
you to designate a development stream as a shared area for developers working on
a particular feature.

Integration

/R
AR\

Feature1

Developer1 Developer2

b

Default » Default B Nondefault

=t =

Nondefault

Figure 34. Default and nondefault deliver targets in a stream hierarchy

Developers who work on that feature deliver work to the feature-specific
development stream Featurel. In the integration stream and the Featurel
development stream are ancestors of the Developerl and Developer2 development

66 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

streams. The streams Featurel, Developerl, and Developer2 are descendants of the
integration stream. The default target for a deliver operation from a development
stream is the parent stream of that stream. Developers may also deliver to
nondefault target streams. The arrows in illustrate default and nondefault
deliver targets. The following policies apply only to such nondefault target
streams:

+ |[“Deliver changes from the foundation in addition to changes from the stream”]

» |“Allow deliveries that contain changes to missing or non-modifiable|
components” on page 68|

« |“Allow interproject deliver to project or stream” on page 69|

* [“Require that all source components are visible in the target stream” on page 69|

Deliver changes from the foundation in addition to changes
from the stream

Set this policy to control accepting changes that did not originate in the delivery
stream. There are two versions of this policy: one for intraproject deliveries and
one for interproject deliveries. The policy can be set per project or per stream.

UCM uses foundation baselines to configure a stream. A view attached to a stream
selects the versions of elements identified by the stream foundation baselines plus
the versions of elements associated with any activities created in the stream. For
example, in 1 is the foundation baseline for the Featurel development
stream. The X baseline is the foundation baseline for the Developerl development
stream.

If the developer working in the Developerl stream delivers work to the integration
stream, the deliver operation includes the activities created in the Developerl
stream plus the files represented by the X foundation baseline. The integrator
responsible for the integration stream may want to receive work that the developer
working in the Developerl stream has completed; however, the integrator may be
unaware that the deliver operation also contains changes made in the X baseline.
You may want to set this policy to Disabled so that target streams do not accept
deliver operations that contain changes in the source stream’s foundation baselines.

If you set this policy to Enabled, the target stream accepts changes in the source
stream that result from differences in the foundation baselines of the two streams
in addition to changes in the source stream that the developer makes while
working on assigned activities.

Chapter 4. Setting policies 67

Integration

Feature1

Foundation
baseline

A Developer1

Py

& Foundation
baseline

E—Activity
-

-

Figure 35. Delivering changes made in a foundation baseline

Allow deliveries that contain changes to missing or
non-modifiable components

Set this policy to control whether streams accept deliveries that contain changes to
components that are not modifiable in the project of the target stream. The policy

can be set per project or per stream. There are two versions of this policy:

* For interproject deliveries—Allow the deliver even though target stream is

missing components that are in the source stream

* For intraproject deliveries—Allow the deliver even though modifiable

components in the source stream are non-modifiable in the target stream

For information on modifiable components, see [“Modifiable components” on page|

If you set this policy to enabled, UCM allows the deliver operation, but the
changes to any missing components or to any non-modifiable components are not

included and no errors are generated for the presence of the changes.

68 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Allow interproject deliver to project or stream

Set this policy to control whether streams accept deliveries from streams in other

projects. The policy can be set per project or per stream for interproject deliveries.
See |Chapter 9, “Managing multiple projects,” on page 141 [for examples of when

you may want to deliver work from one project to another.

Require that all source components are visible in the target
stream

Set this policy to control whether streams accept deliveries that contain changes to
components that are not in the target stream configuration. The policy can be set
per project or per stream. For information about component visibility, see
[“Component modifiability and visibility” on page 63.

If you set this policy to disabled, UCM allows the deliver operation, but the
changes to any missing components are not included.

This policy is ignored if interproject delivery is disabled.

Policies for the UCM integration with Rational ClearQuest

Some policies are available only when you enable the project to work with
Rational ClearQuest. Some of the policies are customizable. In the Rational
ClearQuest environment, scripts are used to implement the customizable policies.
You can modify a policy behavior by editing its script. See [“Customizing Rational|
[ClearQuest project policies” on page 81|

These policies apply to the UCM package that is supported by the current version
of Rational ClearQuest. If the user database uses an earlier UCM package version,
some of the policies that are shown here may not be available.

The policies apply to the following usages:

* |“For submitting records from a Rational ClearCase client”]
* |"For WorkOn” on page 70|
* |“For delivery” on page 70|

* [“Por changing activities” on page 72

For submitting records from a Rational ClearCase client

These policies affect the configuration of the UCM project. They are not visible
from Rational ClearQuest forms because they do not have corresponding Rational
ClearQuest hooks.

Disallow submitting records from ClearCase client

Set this policy to prevent developers from creating new activity records in the
project while they are working under source control. This policy is invoked when a
developer attempts to create a new activity. If this policy is set, when developers
work in source control, they cannot create new activities in which their changes are
recorded. In the graphic user interface, the New button is disabled for checkout,
checkin, cancel checkout and add to source control. The purpose is to restrict
creation of activity records to users, for example, project managers, who have
specific permission within the Rational ClearQuest schema.

If you disable this policy, developers can create new activity records in the Rational
ClearQuest user database when they are working under source control. Also, you

Chapter 4. Setting policies 69

can determine which record types are used in the Rational ClearQuest user
database for new activity records that are created outside the Rational ClearQuest
client (see|”Allowed record types”).

This policy is not customizable.

Allowed record types

If you disable the Disallow submitting records from ClearCase client policy (see
[“Disallow submitting records from ClearCase client” on page 69), you can specify
the record types that are allowed for new activity records in the Rational
ClearQuest user database from a Rational ClearCase client. When developers need
to create an activity, they see only the record types that you specify in this policy.

By default, the record types that are enabled by the UCM package (except
UCMUtilityActivity) are allowed.

This policy is not customizable.

For WorkOn

The policy described in|[“Perform ClearQuest action before work on”| applies when
the developer clicks WorkOn in the Rational ClearQuest record form.

Perform ClearQuest action before work on

This policy is invoked when a developer attempts to set an activity. The default
policy script checks whether the developer’s user name matches the name in the
Rational ClearQuest record Owner field. If the names match, the developer can
work on the activity. If the names do not match, the WorkOn fails.

The intent of this policy is to ensure that all criteria are met before a developer can
start working on an activity. You may want to modify the policy to check for
additional criteria.

For delivery

The policies described in this section apply when developers deliver their work in
their project.

Perform ClearQuest action before delivery

This default policy script is a placeholder: it does nothing. This policy is invoked
when a developer attempts to deliver an activity in a UCM-enabled project. You
can edit the script to implement an approval process to control deliver operations.
For example, you may want to add an Approved field to the record type of the
activity and require that the project manager set it before allowing developers to
deliver activities.

See [“Policies and interproject deliveries” on page 73| for details about deliveries
between two projects that are enabled for Rational ClearQuest.

Perform ClearQuest action after delivery
This policy is invoked at the end of a deliver operation for each activity included
in the deliver operation. The default policy script is a placeholder: it does nothing.

You may want to edit this script to implement a post-delivery development

practice. For example, you might want the script to send an e-mail message to all
developers on the project telling them that a deliver operation has just finished.

70 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

See [“Policies and interproject deliveries” on page 73| for details about deliveries
between two projects that are enabled for Rational ClearQuest.

Transition to complete after delivery

This policy is invoked at the end of a deliver operation for each activity included
in the deliver operation. The policy uses the default action of the activity to
transition the activity to a Complete type state and unset the activity from its view.
These actions prevent the checkouts of versions in the change set from being
associated with the activity.

If the default action requires entries in certain fields of the activity record, and one
of those fields is empty, the policy returns an error and leaves the deliver operation
in an uncompleted state. This state prevents the developer from performing
another deliver operation, but it does not affect the current one. It does not roll
back changes made during the merging of versions.

To recover from an error, the developer needs to fill in the required fields in the
activity record and resume the deliver operation. If the developer invoked the
deliver operation from a graphic user interface (GUI), the integration displays the
Rational ClearQuest record form so that the developer can fill in the fields.

This policy is not customizable.

See [“Policies and interproject deliveries” on page 73| for details about deliveries
between two projects that are enabled for Rational ClearQuest.

Transfer ClearQuest mastership before delivery

The Transition to Complete After Delivery project policy transitions activities to a
Complete type state when a deliver operation completes successfully. For that
policy to work correctly in a Rational ClearCase MultiSite environment, the
activities being delivered must be mastered by the same replica that masters the
target stream. To ensure that this is the case, you can set the Transfer Mastership
Before Delivery policy.

The behavior of the Transfer Mastership Before Delivery policy depends on
whether the deliver operation is local or remote. If the deliver operation is local,
meaning that the target stream is mastered by the local PVOB replica, this policy
causes the deliver operation to fail unless all activities being delivered are
mastered locally.

A remote deliver operation is one for which the target stream is mastered by a
remote PVOB replica. The developer starts the deliver operation, but the operation
is left in a posted state. The integrator at the remote site completes the deliver
operation.

For a remote deliver operation, the Transfer Mastership Before Delivery policy
causes the following behavior:

* If all activities in the deliver operation are mastered by the remote replica, the
deliver operation is allowed to proceed.

* If the deliver operation contains activities that are mastered by the local replica,
Rational ClearCase MultiSite transfers mastership of those activities to the
remote replica. To have Rational ClearCase MultiSite transfer mastership of those
activities back to the local replica after the integrator at the remote site performs
any required merges and completes the deliver operation, set the Transfer
ClearCase Mastership After Delivery policy also.

Chapter 4. Setting policies 71

* If the deliver operation contains activities that are mastered by a third replica,
the deliver operation fails.

This policy is not customizable.

See [“Policies and interproject deliveries” on page 73| for details about deliveries
between two projects that are enabled for Rational ClearQuest.

Transfer ClearQuest mastership after delivery

Use this policy only in conjunction with the Transfer ClearQuest Mastership Before
Delivery policy. The Transfer ClearQuest Mastership Before Delivery policy
transfers mastership of activities involved in a remote deliver operation from the
local replica to a remote replica. Set this policy if you want to transfer mastership
of those activities back to the original (local) replica after the integrator at the
remote site completes the deliver operation.

This policy is not customizable.

See [“Policies and interproject deliveries” on page 73| for details about deliveries
between two projects that are enabled for Rational ClearQuest.

For changing activities

The policies described in this section apply when developers work on their
activities.

Perform ClearQuest action before changing activity

This default policy script is a placeholder: it does nothing. This policy is invoked
when a developer attempts to finish an activity. The finish activity operation
checks in all files that belong to the activity change set and performs Rational
ClearQuest actions, such as modifying the state of the activity to a Complete type
state, based on the policies that you set. When invoked in a single-stream project
or on the integration stream of a multiple-stream project, the finish activity
operation is similar to a deliver operation in a multiple-stream project. Both
operations share changes with the rest of the team.

You can edit the script to implement an approval process to control finish activity
operations. For example, you may want to add an Approved field to the record
type of the activity and require that the project manager set it before allowing
developers to finish activities.

Perform ClearQuest action after changing activity

This policy is invoked when a developer attempts to finish an activity. If the

Perform ClearQuest Action Before Changing Activity policy is set, this policy is

invoked first. The default policy script behaves as follows:

* For developers working in a single-stream project or on the integration stream of
a multiple-stream project, allow the finish activity operation.

* For developers working on a development stream, check in all files that belong
to the activity’s change set but do not perform any Rational ClearQuest actions.

You may want to edit this script to implement a post-finish activity development
practice. For example, you might want the script to send an e-mail message to all
developers on the project telling them that a developer has just checked in files
and finished an activity.

72 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Transition to complete after changing activity

This policy is invoked at the end of a finish activity operation. The policy uses the
activity’s default action to transition the activity to a Complete type state. If the
default action requires entries in certain fields of the activity record, and one of
those fields is empty, the policy returns an error. To recover from an error, the
developer needs to fill in the required fields in the activity record.

You may want to transition activities to a Complete type state depending on
whether the developer works in an integration stream.

* To transition activities only for developers who work in a single-stream project
or on the integration stream of a multiple-stream project, set this policy and the
Perform ClearQuest Action After Changing Activity policy.

* To transition activities regardless of which stream the developer works on, set
this policy and clear the Perform ClearQuest Action After Changing Activity

policy.

This policy is not customizable.

Policies and interproject deliveries

With one exception, the integration does not invoke the following policies when
you deliver from one project that is enabled for Rational ClearQuest to another
that is also enabled for Rational ClearQuest:

¢ Perform ClearQuest Action Before Delivery

* Perform ClearQuest Action After Delivery

¢ Transition to Complete After Delivery

* Transfer ClearQuest Mastership Before Delivery
* Transfer ClearQuest Mastership After Delivery

The integration invokes the policies that are set for the project of the source stream
only if the following conditions are true:

¢ The source and target streams are integration streams.

* The target stream is the default deliver target for the source stream.

Chapter 4. Setting policies 73

74 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 5. Setting up a Rational ClearQuest user database for
UCM

This chapter describes how to set up a Rational ClearQuest user database for use
with UCM. For information about the decisions that you need to make before you
set up the integration, see |”Planning how to use the UCM integration with|
[Rational ClearQuest” on page 57

About setting up a Rational ClearQuest user database

To use the UCM integration with Rational ClearQuest for your project, set up a
Rational ClearQuest user database.

The steps to do the setup are typically completed by the Rational ClearQuest user

database administrator or the schema designer. You have the following options.

* Take advantage of predefined schemas that Rational ClearQuest includes. These
are ready for use with UCM (see [“Using the predefined UCM-enabled schemas”]

n page 75).

* Enable a custom schema, or another predefined schema, to work with UCM.
This allows you to use UCM with a current Rational ClearQuest configuration
(see [”Adding UCM support to an existing schema” on page 75). Because this
integration is a dependent integration, you must add one or more packages in a
specific order and perform additional configurations to the Rational ClearQuest
user database.

Using the predefined UCM-enabled schemas

The easier way to set up a Rational ClearQuest user database for UCM is to use
either the UnifiedChangeManagement or the Enterprise predefined UCM schema.
Each schema already includes the record type, field, form, state, and other
definitions necessary to work with a UCM project. Follow the procedure described
in ["To set up a Rational ClearQuest user database to work with UCM.”|

To set up a Rational ClearQuest user database to work with
UCM

1. Create a user database that is associated with one of the predefined
UCM-enabled schemas. In the Rational ClearQuest Designer, click Database >
New Database to start the New Database Wizard.

2. Complete the steps in the wizard. Step 4 prompts you to select a schema to
associate with the new database. Scroll the list of schema names and select
either the UnifiedChangeManagement or the Enterprise schema.

3. Click Finish.

Adding UCM support to an existing schema

The predefined UCM schemas let yvou use the UCM integration with Rational
ClearQuest right away (see ['Using the predefined UCM-enabled schemas”).
However, you may prefer to design a custom schema to track your project
activities and change requests, or you may prefer to use a different predefined
schema. For your schema to work with UCM, you need to apply several packages

© Copyright IBM Corp. 1992, 2006 75

76

in a prescribed order. These packages must be added in the order described for
each step. Integrating your schema with UCM packages requires that the following
actions be done in the order described:

1. Adding the AMStateTypes Package.

Setting the Default Actions for UCM.

Adding the UCMPolicyScripts Package.

Adding the UnifiedChangeManagement Package.

Adding the UCMProject Package.

Adding the BaseCMActivity Package (optional).

Saving the Schema Changes.

Configuring Rational ClearCase UCM.

ONoORLOD

Note: To avoid errors, you must install packages in the order described.

The AMStateTypes Package provides additional support for UCM and its state
types. Installing this package requires that you map schema states to the following
state types: Waiting, Ready, Active, and Complete. The package adds the
am_statetype field to the enabled record type.

The UCMPolicyScripts Package adds three global scripts and does not add any
record types.

The UnifiedChangeManagement package does the following:

* Adds the UCMUtility Activity record type.

* Adds UCM_Project stateless record type.

* Adds UCM queries to the Rational ClearQuest client workspace under the
Public Queries folder.

* Adds the ucm_base_ synchronize action to the enabled record type.

Although the BaseCMActivity package is not necessary, you may want to apply it
to your schema. The BaseCMActivity package adds the BaseCMActivity record
type to your schema. The BaseCMActivity record type is a lightweight activity
record type. You may want to use the BaseCMActivity record type as a starting
point and then modify it, for example, to include additional fields and states. If
you want to rename the BaseCMActivity record type, be sure to do so before you
create any records of that type.

To enable a schema to work with UCM

1. In the Rational ClearQuest Designer, ensure that the schema does not contain
a record type named UCM_Project, which is a reserved name used by the
UCM integration with Rational ClearQuest.

2. Ensure that the schema to which you are adding packages is checked in. To
check in a schema, click File > Check In.

3. Click Package > Package Wizard to start the Package Wizard.

4. Add the latest AMStateTypes package to the schema. For information on
applying packages, see IBM Rational ClearQuest MultiSite Administrator’s Guide.

The AMStateType package requires you to map state types (see
frecord states to state types” on page 77) and set default actions, if they have

not already been defined.

5. Set the default actions for UCM (see [“To set default actions for states” on paged

6. Add the UCMPolicyScripts package to the schema. For information on
applying packages, see IBM Rational ClearQuest MultiSite Administrator’s Guide.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

7. Add the UnifiedChangeManagement package to the schema. For information
on applying packages, see IBM Rational ClearQuest MultiSite Administrator’s
Guide.

The AMStateTypes package is also applied.

8. In the second page of the wizard, select your schema. Click Next.

9. The third page of the wizard prompts you to specify the schema record types.
Set the check boxes of the record types that you want to enable. Click Finish.
All selected record types must meet the requirements listed in
[for enabling custom record types” on page 78|

10. In the Setup State Types page, assign state types to the states for each record
type. For information about assigning state types, see |”Assigning state types|
to the states of a record type.”| For information about performing the task, see
“To map record states to state types.”| Click Finish.

11. Set default actions for the states of each enabled record type (see
[default actions for states” on page 80). Default actions are state transition
actions that are taken when a developer begins to work on an activity or
delivers an activity (see [‘State transition default action requirements for record|
[types” on page 79).

12. In the Rational ClearQuest Designer workspace, navigate to the record type
Behaviors (click schema > Record Types > Record Type > States and
Actions > Behaviors). Double-click Behaviors to display the Behaviors grid.

a. Verify that the Headline field is set to Mandatory for all states.

b. Verify that the Owner field is set to Mandatory for all Active and Ready
state types.

13. Validate the schema changes by clicking File > Validate. Fix any errors that
are displayed, and then check in the schema by clicking File > Check In.

14. Do one of the following actions:

* Click Database > Upgrade Database to upgrade the user database so that it
is associated with the UCM-enabled version of the schema.

e Create a new user database that is based on the UCM-enabled version of
the schema.

Assigning state types to the states of a record type

For each record type that you choose to enable (see [‘To enable a schema to work|
with UCM” on page 76), you must map its states to state types that are defined in
the AMStateTypes package. For example, when you apply the
UnifiedChangeManagement package to the schema, the UCMUTtiltity Activity
record type is added. If you try to check in the schema with these changes, you see
messages that describe validation errors. You need to map the states of the
UCMUtiltityActivity record type to the states in the AMStatesTypes package.
Likewise, if you apply the BaseCMActivity package to the schema, map the states
of the BaseCMActivity record type to the state of the AMStatesTypes package.

You see these validation errors because the AMStatesTypes package is applied to
the schema when you apply the UnifiedChangeManagement package. To
eliminate the validation errors and be able to check in the schema, for each record
type that is added, map its states to the state types of the AMStatesTypes package.

To map record states to state types
1. Run the Rational ClearQuest Designer.
2. Do one of the following;:

Chapter 5. Setting up a Rational ClearQuest user database for UCM 77

* If you are running Package Wizard in the Rational ClearQuest Designer,
advance to the Setup State Types page.

¢ If the Setup State Types page of the wizard does not appear, click
Package > Setup State Types.

3. In the Setup State Types window, for each record type that is listed in Record
Type, do the following:

a. For each state in the States column, click in the adjacent cell under State
Type to display the list of available state types.

Select one of the entries.

To display the states of another record type, click the arrow in the Record
Type and select another of the available record types.

See [‘Setting state types” on page 78| for a description of the four state types,
and the rules for setting them.

Requirements for enabling custom record types

Before you can apply the UnifiedChangeManagement package to a custom record
type (see [“To enable a schema to work with UCM” on page 76), the record type
must meet the following requirements:

e It contains a field named Headline defined as a SHORT_STRING, and a field
named Owner defined as a REFERENCE to the users record type that is
supplied with Rational ClearQuest. The Headline field must be at least 120
characters long.

* It does not contain fields with these names:
— ucm_vob_object
— ucm_stream
— ucm_stream_object
— ucm_view
— ucm_project

* It contains an action named Modify of type Modify.
* It contains a state named Submitted.

Note: You can change the name of the state after you apply the
UnifiedChangeManagement package.

Setting state types

The UCM integration with Rational ClearQuest uses a state transition model to
help you monitor the progress of activities. To implement this model, the
integration adds state types to UCM-enabled schemas. [Table 2| lists and describes
the four state types. You must assign each state to a state type (see[“To map record|
states to state types” on page 77). You must have at least one state definition of
state type Waiting, one of state type Ready, one of state type Active, and one of
state type Complete.

Table 2. State Types in UCM-Enabled Schema

State type Description

Waiting The activity is not ready to be worked on, either because it has not been
assigned or it has not satisfied a dependency.

Ready The activity is ready to be worked on. It has been assigned, and all
dependencies have been satisfied.

Active The developer has started work on the activity but has not completed it.

78 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Table 2. State Types in UCM-Enabled Schema (continued)

State type Description

Complete The developer has either worked on and completed the activity, or not
worked on and abandoned the activity.

State transition default action requirements for record types

Record types can include numerous state definitions. However, UCM-enabled
record types must have at least one path of transitions among state types as
follows: Waiting to Ready to Active to Complete (see [’Setting state types” on page]
. The transition from one state to the next must be made by a default action.

For example, shows the actions and default actions between the states
defined in the UCM-enabled BaseCMActivity record type included in the
predefined UCM schema. The states are Submitted, Ready, Active, and Complete.
The corresponding state types appear to the right of the states.

Submitted
%
> Waiting
*Assign
Ready
>
Ready
Postpone
*Activate
Active
*Complete
Complete
Reopen

Figure 36. State transitions of UCM-enabled BaseCMActivity record type

In addition to this single path requirement, states must adhere to the following
rules:

* All Waiting type states must have a default action that transitions to another
Waiting type state or to either a Ready or Active type state.

Chapter 5. Setting up a Rational ClearQuest user database for UCM 79

* If a Ready type state has an action that transitions directly to a Waiting type
state, that Waiting type state must have a default action that transitions directly
to that Ready type state.

» All Ready type states must have a default action that transitions to another
Ready type state or to an Active type state.

* All Ready type states must have at least one action that transitions directly to a
Waiting type state.

* For the BaseCMActivity record type, its initial state must be a Waiting type.

To set default actions for states

1. In the Rational ClearQuest Designer workspace, click Record Types >
Activity > States and Actions to navigate to the record type state transition
matrix.

2. Double-click State Transition Matrix to display the matrix.
3. Right-click the state column heading, and click Properties.

4. Click the Default Action tab. Select the default action. See [“State transition|
[default action requirements for record types” on page 79| for default action
requirements.

Before you can set default actions, you may need to add some actions to the
record type. To do so, double-click Actions to display the Actions grid, and
then click Edit > Add Action.

5. Click File > Check In to check in the schema.

Upgrading your schema to the latest UCM package

80

If you have a UCM-enabled Rational ClearQuest schema from a previous release of
Rational ClearQuest, you may want to upgrade that schema with the latest
revision of the UnifiedChangeManagement package so that you can use new
functionality.

To upgrade the schema

1. In the Rational ClearQuest Designer, click Package > Upgrade Installed
Packages to start the Upgrade Installed Packages Wizard.

2. The first page of the wizard lists all schemas that have at least one package that
needs to be upgraded. Select the schema that you want to upgrade, and click
Next.

3. The second page of the wizard lists the packages that will be upgraded. Click
Upgrade to accept the changes.

4. If the UnifiedChangeManagement package from which you are upgrading is
earlier than revision 3.0, you need to assign states to state types for each
UCM-enabled record type. For information about performing this operation, see
[“To map record states to state types” on page 77,

5. Validate the schema changes by clicking File > Validate. Fix any errors that are
displayed, and then check in the schema by clicking File > Check In.

o

Upgrade the user database to associate it with the new version of the schema
by clicking Database > Upgrade Database.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Customizing Rational ClearQuest project policies

To implement the project policies, the integration adds the following pairs of
scripts to a UCM-enabled schema:

e UCM_ChkBeforeDeliver and UCM_ChkBeforeDeliver Def

* UCM_ChkBeforeWorkOn and UCM_ChkBeforeWorkOn_Def

* UCM_CQActAfterDeliver and UCM_CQActAfterDeliver_Def

* UCM_CQActBeforeChact and UCM_CQActBeforeChact_Def

* UCM_CQActAfterChact and UCM_CQActAfterChact_Def

Each policy has two scripts: a base script and a default script. The default scripts
have _Def appended to their names and are installed by the
UnifiedChangeManagement package. The integration invokes the base scripts,
which are installed by the UCMPolicyScripts package. The base scripts call the
corresponding default scripts. You can modify the behavior of a policy by editing
the base script (see [“To modify the behavior of a policy”).

Each script has a Visual Basic version and a Perl version. The Visual Basic scripts
have a UCM prefix. The Perl scripts have a UCU prefix. For Rational ClearQuest
clients on the Windows system, the integration uses the Visual Basic scripts. For
Rational ClearQuest clients on Linux® and the UNIX system, the integration uses
the Perl scripts. If you modify a policy behavior and your environment includes
Rational ClearQuest clients on different types of platforms, be sure to make the
same changes in both the Visual Basic and Perl versions of the policy script.
Otherwise, the policy will behave differently for Rational ClearQuest clients on
Linux and the UNIX system and the Windows system.

For descriptions of these policies, see [“Policies for the UCM integration with]|
[Rational ClearQuest” on page 69|

To modify the behavior of a policy
1. Remove the call to the default script from the base script.
2. Add logic for the new behavior to the base script.

Adbhere to the rules stated in the base script.

Associating child activity records with a parent activity record

As project manager, you may assign activities for large tasks to developers. When
the developers research their activities, they may determine that they need to
perform several separate activities to complete one large activity. For example, an
“Add customer verification functionality” activity may require significant work in
multiple product components, for example, the graphic user interface (GUI), the
command-line interface, and a library. To more accurately track the progress of the
activity, you can decompose it into three separate activities.

By using the parent and child controls in Rational ClearQuest, you can accomplish
this decomposition and tie the child activities back to the parent activity.

Using parent and child controls

In the Rational ClearQuest interface, you use controls to display fields in record
forms. A parent and child control, when used with a reference or reference list
field, lets you link related records. By adding a parent and child control to the

Chapter 5. Setting up a Rational ClearQuest user database for UCM 81

record form of a UCM-enabled record type, you can provide the developers on
your team with the ability to decompose a parent activity into several child
activities.

To have the state of the parent activity changed to Complete when all child
activities have been completed, you need to write a hook. See IBM Rational
ClearQuest MultiSite Administrator’s Guide for an example of such a hook.

Creating users and adding credentials

82

Before you can assign activities to the developers on your project team, you must
create in a Rational ClearQuest user database user account profiles for each
developer. See IBM Rational ClearQuest MultiSite Administrator’s Guide and the
Rational ClearQuest Designer Help for details on creating user profiles. You must
also add credentials that allow users to be logged in to the Rational ClearQuest
user databases that they need to access.

To create Rational ClearQuest user account profiles

1. In Rational ClearQuest Designer, click Tools > User Administration.
2. Click User Action > Add User.
3. Complete the Add User window.

Creating and maintaining credentials for Rational ClearQuest
database sets

The UCM integration with Rational ClearQuest supports multiple database sets
(connections). Each connection for each user database on a system requires
credentials: the user name and password for access to the Rational ClearQuest user
database. If a user of the integration performs an action that requires the login to a
different database, the integration accesses stored credentials and attempts to
perform the login. You or the developer can register the credentials.

The usage of credentials differs between the Rational ClearCase command line
interface (CLI) and the graphic user interface (GUI). For a CLI user, if the
credentials are not registered, the user sees a message requesting that the
credentials be created. For a GUI user, a login window is displayed for the
credentials to be supplied. The GUI stores the credentials for that user database
after a successful login. After credentials are registered, the user does not have to
enter credentials to subsequently use the integration on that system for that
database set.

In environments where multiple database sets are used with the integration, the
user may need to be logged in to a different user database. Credentials are
required for a change in login in the following usages:

* The project manager enables a UCM project to use the integration.
* A user displays or sets project policies related to the integration.
* A developer works on an activity in a project that is enabled for the integration.

* A user displays properties of a Rational ClearQuest activity record that has
contributions from a project that is connected to another Rational ClearQuest
user database.

* A developer who accesses multiple UCM projects that are connected to different
Rational ClearQuest database sets does one of the following operations:

— Starts a delivery in one project while working in another project.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

— Delivers changes in a stream in one project to a stream in another project.
* A developer transitions a Rational ClearQuest activity record.

Create and maintain the credentials on the user’s system for each database set. The
credential information is stored on the system so that the user can be logged in by
the integration server when a different user database is accessed. If no credentials
exist for a user when a connection to another user database is required, an error
message is generated.

Use the crmregister command for the following purposes:
* Create a new entry or overwrite an existing entry. For example:

crmregister add -database MY_DB -connection 07.00
-user jsmith -password mypassword

* Delete an entry or all entries. For example:

crmregister remove -database MY_DB
crmregister remove -all

* Modify the specified fields for a specified user database. For example:
crmregister replace -database MY_DB -password mynewpassword

Setting the environment (Linux and the UNIX system)

Before you can enable a UCM project to work with a Rational ClearQuest user
database, you must define the environment variables as shown in
Developers who want to use the integration must also define these variables on
their machines.

The Rational ClearQuest installation directory includes a C shell script,
cq_setup.csh, which you can run to set the environment variables for you. For
example:

[

% source cquest—home—dir/cq_setup.csh

Table 3. Environment variables required for integration

Variable Setting

$CQ_HOME cquest-home—dir
$LD_LIBRARY_PATH Must include:
$SHLIB_PATH (on HP-UX) cquest—home—-dir /shlib

cquest-home—dir / architecture/shlib

$SQUID_DBSET If you have multiple Rational ClearQuest
schema repositories, set the environment
variable to the name of the schema repository to
use.

Chapter 5. Setting up a Rational ClearQuest user database for UCM 83

84 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 6. Setting up the project

This chapter describes how to set up a UCM project.

About setting up the project

You set up a project so that a team of developers can work in the Unified Change
Management (UCM) environment. Before you set up a project, be sure to plan the
project. See [Chapter 3, “Planning the project,” on page 29| for information on what
to include in a configuration management plan.

In setting up a project, you may encounter the following scenarios:

Creating a project from scratch

Creating a project based on an existing base ClearCase configuration
Creating a project based on an existing project

Enabling a project to use the UCM integration with Rational ClearQuest
Working with Rational Suite

Creating a development stream reserved for testing new baselines
Creating a feature-specific development stream

If you work in a multiple project environment, see [Chapter 9, “Managing multiple]

[projects,” on page 141,

Creating a project from scratch

Project
Manager

Set up
project

Create a
PVOB

Create
components

Create
a project

Establish Assign and Monitor
policies schedule work project status

Create directory
structure

Create
integration view

Create project
baseline

© Copyright IBM Corp. 1992, 2006 85

You can create and set up a new project that is not based on an existing project or
on an existing set of VOBs.

Creating the project VOB

In setting up a project from scratch, create a project VOB (PVOB). Creating the
PVOB differs between the Windows system and Linux or the UNIX system. After
you create the PVOB, you can create components.

To create a PVOB (the Windows system)

Product Note: This task does not apply to Rational ClearCase LT users. The
Rational ClearCase administrator creates the PVOB during the
installation.

1. Start the VOB Creation Wizard (see|To start the VOB Creation Wizard (the
[Windows system)” on page 86).

2. In Step 1 of the VOB Creation Wizard, enter a name for the PVOB. Enter a
comment to describe the purpose of the PVOB. Leave the This VOB will
contain UCM components check box clear. Although you can use one VOB as
the PVOB and a component, do not do so unless your project is very small and
you anticipate that it will remain small. Set Create as a UCM project VOB.

3. In Step 2, specify the PVOB storage directory. A PVOB storage directory is a
directory tree that serves as the repository for the PVOB contents. A PVOB
storage directory contains the same subdirectories as a VOB storage directory.
(For details about VOB storage directory structure, see the IBM Rational
ClearCase Administrator’s Guide.) You can choose one of the recommended
locations or enter the universal naming convention (UNC) path of a different
location. Click Browse to search the network for shared resource locations.

4. Step 3 prompts you to choose an administrative VOB to be associated with the
PVOB. Because you are creating a project from scratch and do not currently use
an administrative VOB, scroll to the top of the list and select none. When you
create components, AdminVOB hyperlinks are made between the components
and the PVOB, and the PVOB assumes the role of administrative VOB.

If you are creating multiple PVOBs and anticipate that projects in those PVOBs
may need to modify some of the same components, choose one PVOB to act as
the administrative PVOB and create it first. When you create the other PVOBs,
use this step in the wizard to specify the PVOB that will serve as
administrative VOB. When you create components, AdminVOB hyperlinks are
made between the components and the PVOB that serves as the administrative
VOB. See ['Planning PVOBs” on page 53 for details about using multiple
PVOBs.

To start the VOB Creation Wizard (the Windows system)

On the Rational ClearCase server host, click Start > Programs > IBM Rational >
IBM Rational ClearCase > Administration > Create VOB. The VOB Creation
Wizard is displayed.

To create a PVOB (Linux and the UNIX system)

Product Note: This task does not apply to Rational ClearCase LT users. The
Rational ClearCase administrator creates the PVOB during the
installation.

1. Issue the cleartool mkvob command. For example:

cleartool mkvob —tag /vobs/myproj2_pvob —nc —ucmproject \
/usr/vobstore/myproj2_pvob.vbs

86 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The —ucmproject option indicates that you are creating a PVOB instead of a
VOB. The /usr/vobstore/myproj2_pvob.vbs path specifies the location of the
PVOB storage directory. A PVOB storage directory is a directory tree that serves
as the repository for the PVOB contents. A PVOB storage directory contains the
same subdirectories as a VOB storage directory. For details about VOB storage
directory structure, see the IBM Rational ClearCase Administrator’s Guide.

If you are in an MVFS environment and developers use dynamic views,
perform the following two steps.

2. Create the PVOB mount point to match the PVOB tag. For example:
mkdir /vobs/myproj2_pvob

3. Mount the PVOB. For example:
cleartool mount /vobs/myproj2_pvob

The PVOB assumes the role of administrative VOB. When you create components,
AdminVOB hyperlinks are automatically made between the components and the
PVOB.

If you are creating multiple PVOBs and anticipate that projects in those PVOBs
may need to modify some of the same components, choose one PVOB to act as the
administrative PVOB and create it first. When you create the other PVOBs, use the
cleartool mkhlink command to create an AdminVOB hyperlink between each
PVOB and the PVOB that acts as the administrative VOB. For more information
about using multiple PVOBs, see [“Planning PVOBs” on page 53|

When you create components, AdminVOB hyperlinks are made between the
components and the PVOB that serves as the administrative VOB.

Creating components for storing baseline dependencies

After you create the PVOB (see [“Creating the project VOB” on page 86), you can
create components whose sole function is to store baseline dependencies. If you
create components without a VOB root directory, nobody can create elements in
the components. A component that has no VOB root directory cannot store its own
elements. Although you can store baseline dependencies and elements in the same
component, it is cleaner to dedicate components for storing baseline dependencies.
For the most configuration flexibility, use pure composite baselines in the project.
To use pure composite baselines, create components without a VOB root directory.
For more information on pure composite baselines, see|“Pure composite baselines”|

You can also use a pure composite baseline to represent the project configuration.
Use one top-level pure composite baseline that selects the baselines of all
components in the project, either directly or indirectly through other composite
baselines. Using a pure composite baseline to represent the project is easier than
keeping track of a set of baselines, one for each component. For more information
on identifying a project baseline, see [‘Identifying a project baseline” on page 46,

After you create components without a VOB root directory, you can create

components for storing elements (see [“Creating components for storing elements”
ﬁ~

To create a component without a VOB root directory
1. Start the Project Explorer (see ["To start Project Explorer” on page 88).

Chapter 6. Setting up the project 87

2. The left pane of the Project Explorer lists folders for all PVOBs in the local
Rational ClearCase domain. Each PVOB has its own root folder. The root folder
is created using the name of the PVOB. Navigate to the PVOB that you created.

3. Locate a folder called Components, which contains entries for each component
in the PVOB. Right-click the Components folder and click New > Component
Without a VOB.

4. In the Create Component Without a VOB window, enter a name and
description for the component. Click OK.

To start Project Explorer
The Project Explorer is the graphical user interface (GUI) through which you
create, manage, and view information about projects.

On a Windows system, do one of the following:

* In the shortcut pane of Rational ClearCase Explorer, click UCM and then click
Project Explorer.

e Click Start > Programs > IBM Rational > IBM Rational ClearCase > Project
Explorer.

On Linux and the UNIX system, at a shell prompt, enter clearprojexp.

Creating components for storing elements

You create ordinary components for storing the files that your team develops and
the directories in which those files are cataloged.

Product Note: The process for creating components that store elements is slightly
different for Rational ClearCase and Rational ClearCase LT.

When you create an ordinary component, you must specify the VOB that stores the
component directory tree. You can store multiple components in a VOB, or you can
create a VOB that stores one component. See|“Deciding how many VOBs to use”)

for details about using one VOB to store multiple components.

When you create an ordinary component, it includes an initial baseline with a
name in the following format:

component-name_INITIAL

This baseline selects the /main/0 version of the root directory of the component. It
serves as the starting point for successive baselines of the component.

To create a multiple-component VOB (Windows)

1. Start the VOB Creation Wizard (see[“To start the VOB Creation Wizard (thel
[Windows system)” on page 86).

2. Enter a name for the VOB. Enter a comment to describe the purpose of the
VOB. Set This VOB will contain UCM components.

3. Set Allow this VOB to contain multiple components and Seed the VOB with
these components. Select a view from the View list, and click Add.
In the Add Component window, enter the component name and root directory,
and click OK. The component appears in the list in the wizard. Click Add to

create additional components. The component name must be unique within its
PVOB.

88 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

4. Specify where to store the VOB. You can choose one of the recommended
locations or enter the UNC path of a different location. Click Browse to search
the network for shared resource locations.

5. Identify the PVOB that will store the project information about the components.
Click the arrow to see the list of available PVOBs. Select the PVOB that you
previously created (see |‘Creating the project VOB” on page 86).

To create a multiple-component VOB in Rational ClearCase LT
(Windows)

On the Rational ClearCase LT server host, when the VOB Creation Wizard runs
(see ['To start the VOB Creation Wizard (the Windows system)” on page 86), follow
these steps:

1. Enter a name for the VOB. Enter a comment to describe the purpose of the
VOB.

2. Set Allow this VOB to contain multiple components and Seed the VOB with
these components. Select a view from the View list, and click Add.

Enter the component name and root directory in the Add Component window,
and click OK. The component appears in the list in the wizard. Click Add to
create additional components. The component name must be unique within its
PVOB.

3. Specify where to store the VOB. This page of the wizard lists the VOB storage
locations created by your Rational ClearCase administrator. If only one VOB
storage location exists, the VOB Creation Wizard skips this step and uses that
VOB storage location.

To create a multiple-component VOB (Linux and the UNIX
system)
1. Use the cleartool mkvob command. For example:

cleartool mkvob —nc —tag /vobs/testvobl3 /usr/vobstore/testvobl3.vbs

If you are in an MVFS environment and developers use dynamic views,
perform the following two steps.

2. Create the VOB mount point to match the VOB tag. For example:
mkdir /vobs/testvobl3

3. Mount the VOB. For example:
cleartool mount /vobs/testvob13

To create a multiple-component VOB in Rational ClearCase LT
(Linux and the UNIX system)

On the Rational ClearCase LT server host, use the cleartool mkvob command. For
example:

cleartool mkvob —nc -tag /testvobl3 -stgloc vobstore

To create a component and store it in the VOB

1. In Rational ClearCase Project Explorer, right-click the Components folder and
click New > Component in a VOB.

2. In the Create a Component in a VOB window, from the VOB list, select the
VOB that will contain the component.

3. Enter a name for the component and the component root directory. Click OK.

To create one component per VOB (Windows)

1. Start the VOB Creation Wizard (see|“To start the VOB Creation Wizard (the]
[Windows system)” on page 86).

Chapter 6. Setting up the project 89

90

Enter a name for the component. The component name must be unique within
its PVOB. Enter a comment to describe the purpose of the component. Set This
VOB will contain UCM components.

Set Create VOB as a single VOB-level component.

Specify where to store the component. You can choose one of the recommended
locations or enter the UNC path of a different location. Click Browse to search
the network for shared resource locations.

Identify the PVOB that will store the project information about the component.
Click the arrow to see the list of available PVOBs. Select the PVOB that you
previously created (see [“Creating the project VOB” on page 86).

The component is created with an initial baseline that points to the \main\0
version of the component root directory.

To create a VOB and one component in Rational ClearCase LT
(Windows)

1.

On the Rational ClearCase LT server host, click Start > Programs > IBM
Rational > IBM Rational ClearCase LT > ClearCase Create VOB. The VOB
Creation Wizard appears.

Enter a name for the component. The component name must be unique within
its PVOB. Enter a comment to describe the purpose of the component.

Set Create VOB as a single VOB-level component.

Select one of the available storage locations for the VOB storage directory. This
page of the wizard lists the VOB storage locations created by your Rational
ClearCase administrator. If only one VOB storage location exists, the VOB
Creation Wizard skips this step and uses that VOB storage location.

To create one component per VOB (Linux and the UNIX system)

1.

Make a view by using the cleartool mkview command. For a dynamic view,
also issue the cleartool setview command. For example:

cleartool mkview —tag myview /net/host2/view_store/myview.vws
cleartool setview myview

Use the cleartool mkvob command to create a VOB. For example:
cleartool mkvob —nc —tag /vobs/testvobl /usr/vobstore/testvobl.vbs

If you are in an MVFS environment and developers use dynamic views,
perform the following steps.

a. Create the VOB mount point to match the VOB tag. For example:
mkdir /vobs/testvobl

b. Mount the VOB. For example:
cleartool mount /vobs/testvobl

4. Do one of the following steps to create the component:

* Issue the cleartool mkcomp command. For example:
cleartool mkcomp —nc -root /vobs/testvobl testcompl@/vobs/myproj2_pvob

In this example, the mkcomp command creates a component named
testcomp1 based on the VOB named testvobl. Although this example uses
different names for the VOB and component, you can use the same name for
both. The component name must be unique within its PVOB. The VOB and
PVOB must be mounted before you issue the command. All projects that use
the myproj2_pvob PVOB can access the testcompl component.

* Convert an existing VOB into a component by using the Rational ClearCase
Project Explorer. See [‘To make a VOB into a component” on page 97] for
more information.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To create a component in Rational ClearCase LT (Linux and the
UNIX system)

1.

Make a view and change to the directory. For example:

cleartool mkview —stgloc dev_views ~/chris_snap_view
cd ~/chris_snap_view

Use the cleartool mkvob command to create a VOB. For example:
cleartool mkvob —nc —tag /testvobl —stgloc vobstore

Issue the cleartool mkcomp command. For example:

cleartool mkcomp —nc -root testvobl testcompl@/myproj2_pvob

Creating the project

You can create a project by using the Project Explorer and the New Project Wizard.
For information on creating a project from the command-line interface (CLI), see
the cleartool mkproject, mkstream, and mkfolder reference pages.

To create a project

1.
2.

Start Project Explorer (see [‘To start Project Explorer” on page 8§).

The left pane of the Project Explorer lists root folders for all PVOBs in the local
Rational ClearCase domain.

Product Note: On the Rational ClearCase LT server, there is only one PVOB.

Each PVOB has its own root folder. The root folder is created using the name of
the PVOB. The folder Components contains entries for each component in the
PVOB. Folders can contain projects and other folders. Select the root folder for
the PVOB that you want to use for storing project information.

Click File > New > Folder to create a project folder. You do not need to create
a project folder, but it is a good idea. As the number of projects grows, project
folders are helpful in organizing related projects.

In the left pane, select the project folder or root folder. Click File > New >
Project. The New Project Wizard appears.

In the New Project Wizard, enter a descriptive name for the project and provide
a comment to describe the purpose of this project.

* Enter a name for the project integration stream or accept the default name
(project-name_Integration).

* Select the type of project to create. A traditional parallel development project
lets users create multiple streams so that developers can have private and
shared work areas. A single-stream project contains only one stream, the
integration stream. Users cannot create development streams in a
single-stream project. See [‘Choosing a stream strategy” on page 34| for
information about single-stream and multiple-stream projects.

Indicate whether you want to create the project based on an existing project.
Because you are creating a project from scratch, click No.

Choose the baselines that the project will use. These baselines are either the
foundation baselines upon which all work within the project is built or the
baselines from which other projects start.

a. Click Add to open the Add Baseline window. In the Component list, select
one of the components that you previously created.

¢ On Windows systems, click Change > All Streams.

* On Linux and the UNIX system, click the arrow at the end of the From
Stream field and set All Streams.

The component initial baseline appears in the Baselines list.

Chapter 6. Setting up the project 91

b. Select the baseline.

c. Set Allow project to modify the component unless you want the
component to be read-only. (See|“Identifying read-only components” on|
for information on when you may want to use read-only
components.)

d. Click OK. The baseline now appears in the list. Continue to use the Add
Baseline window until the project contains its full set of foundation
baselines, including the baseline for the component that stores the project
composite baseline.

8. Specify the development policies to enforce for this project. Set the check boxes
for the policies that you want to enforce. See|Chapter 4, “Setting policies,” on|
Eaée 63| for information about each policy.

9. Indicate whether to configure the project to work with the UCM integration
with Rational ClearQuest. To enable the project to work with Rational
ClearQuest, click Yes, use the following ClearQuest connection and, in
ClearQuest Link, select the database set (connection) and Rational ClearQuest
user database that you have set up to use with this project. You are asked to
authenticate with your Rational ClearQuest user name and password. See
[“Enabling use of the UCM integration with Rational ClearQuest” on page 100
for details about the integration.

You can click Policies to set UCM policies related to the integration or access
the Policies page of the project to set them after the project is created.

Setting a baseline naming template

UCM lets you define a template for implementing a baseline naming convention
within a project. The template can include any of the following tokens:
* Project

* Component

* Stream

¢ Date

* Time

* User

* Host

* Basename

Basename refers to a name that you specify.

If you do not specify a baseline naming template, the basename is used to name
new baselines. When necessary, a numeric identifier is appended to the baseline
name to make it unique.

During deliver operations, a baseline is created in the source stream. When naming
this baseline, the following format is used in place of the basename token:

deliverbl.source-stream-name.date.unique-identifier

For information about using a baseline naming convention, see|“Defining a

bbaseline naming convention” on page 52|

To set a baseline naming template: Use the —blname_template option with the
cleartool mkproject or chproject command to set a template. For example:

cleartool chproject -blname_template project,component,date mck_projl

This example sets a template that uses the project name, component name, and
date in all baseline names created in the mck_projl project. Use commas to
separate the tokens in the command-line entry. When you create baselines, the

92 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

commas are replaced with underscores. See IBM Rational ClearCase Command
Reference for details about using chproject and mkproject.

Defining promotion levels

Five baseline promotion levels are provided. You can keep some or all of them,
and you can define your own promotion levels. Use the Project Explorer to define
the promotion levels. For information on promotion levels, see |”Identifyin5
[promotion levels to reflect state of development” on page 52}

To define the promotion levels that your project uses:

1. In the Project Explorer, select the PVOB root folder that contains your project,
and then click Tools > Define Promotion Level. All projects that use that
PVOB have access to the same set of promotion levels.

2. In the Define Promotion Levels window, to remove an existing promotion level,
select it and click Remove. To change the order of promotion levels, select a
promotion level and use the Move Up or Move Down buttons.

3. To add a new promotion level, click Add. The Add Promotion Level window is
displayed. Enter the name of the new promotion level and click OK. The new
promotion level appears in the list of promotion levels in the Define Promotion
Levels window. Move it to the desired place in the order.

4. When you finalize the set and order of promotion levels, select one to be the
initial promotion level for new baselines. The initial promotion level is the level
assigned by default when you create a baseline.

For information on defining promotion levels from the CLI, see the cleartool
setplevel reference page.

Creating an integration view

When you create a project, the project integration stream is created for you. To see
elements in the project and make changes to the project shared elements, you need
an integration view which is attached to the project integration stream. Use the
Project Explorer to create an integration view. The following kinds of views are
supported:

* Dynamic views, which use the multiversion file system (MVES) to provide
immediate, transparent access to files and directories stored in VOBs. On
Windows systems, a dynamic view is mapped to a drive letter in Windows
Explorer.

* Snapshot views, which copy files and directories from VOBs to a directory on
your computer.

Product Note: Rational ClearCase LT supports only snapshot views.

If the integration view is a dynamic view, you ensure that you always see the
correct version of files and directories that developers deliver to the integration
stream. With a snapshot view, you have to perform an update operation to copy the
latest delivered files and directories to your computer. For more information about
dynamic and snapshot views, see Developing Software online help.

To create an integration view
1. In the Project Explorer, navigate to the integration stream by moving down the
object hierarchy:
a. Root folder
b. Project folder
¢. Project

Chapter 6. Setting up the project 93

d. Stream
2. Select the integration stream and click File > New > View.

On the Windows system, the View Creation Wizard is displayed. On Linux and
the UNIX system, the Create View window is displayed.

3. Accept the default values to create an integration view attached to the
integration stream. By default, the View Creation Wizard and the Create View
window use this convention for the integration view name:

username_project-name_int

Creating and setting an activity in the integration stream
(Linux and the UNIX system only)

Before you can add elements to the integration stream, you need to create and set
an activity.

To create and set an activity (Linux and the UNIX system)
1. Set your integration view if it is a dynamic view. For example:
cleartool setview kmt_Integration
If your integration view is a snapshot view, change directory to it.
2. Issue the cleartool mkactivity command. For example:

cleartool mkactivity —headline "Create Directories"

create_directories

The Rational ClearCase GUI tools use the name specified with —headline to

identify the activity. The last argument, create_directories, is the

activity-selector. Use the activity-selector when you issue cleartool commands.
3. By default, when you make an activity with the cleartool mkactivity command,

your view is set to that activity. Your view is not set to an activity if you create

multiple activities in the same command line or if you specify a stream with

the —in option. If you need to set your integration view to the activity, use the

cleartool setactivity command. For example:

cleartool setactivity create_directories

Creating the directory structure

If you create the project from scratch, you need to create the directory elements
within the project components. This action implements the directory structure that

ou define during the planning phase. See ['Defining the directory structure” on|

To add a directory element to a component (the Windows

system)

1. In Windows Explorer, navigate to the integration view. Double-click the
component to display its contents. If the component is in a VOB that you

created to store multiple components, the component appears as a folder under
the VOB.

2. Create a folder.
3. Right-click the folder and click ClearCase > Add to Source Control.

4. When prompted, specify an activity to be associated with the addition of the
new directory element.

For more information about creating directory and file elements, see Developing
Software online help and the mkelem reference page.

94 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To add a directory element to a component (Linux and the UNIX
system)

1. With your integration view set to an activity (see [‘Creating and setting an|
activity in the integration stream (Linux and the UNIX system only)” on page|
94), navigate to the component. If the component is in a VOB that you created
to store multiple components, the component appears as a directory under the
VOB. For example:

cd /vobs/testvobl3/1ibs
2. Check out the component root directory. For example:

cleartool co -nc .
3. Issue the cleartool mkelem command. For example:
cleartool mkelem —nc —eltype directory design

This example creates a directory element called design. By default, the mkelem
command leaves the element checked out. To add elements, such as
subdirectories, to the directory element, you must leave the directory element
checked out.

4. When you finish adding elements to the new directory, check it in. For
example:
cleartool ci —nc design

5. When you finish creating directory elements, check in the component root
directory. For example:
cleartool ci -nc .

For more information about creating directory and file elements, see Developing
Software online help and the mkelem reference page.

Importing directories and files from outside Rational
ClearCase version control

If you have a large number of files and directories that you want to place under
Rational ClearCase version control, you can speed the process by using the
clearexport and clearimport command-line utilities. These utilities allow you to
migrate an existing set of directories and files to a Rational ClearCase repository
from another version control software system, such as SourceSafe, RCS, or PVCS.
You have the following options:

* Migrate source files directly into a component (see [‘To migrate source files into]
[a component” on page 95).

* Use clearexport and clearimport on VOBs, and then convert the VOBs to
components. For details on converting VOBs into components, see ['Creating 2]
[project based on an existing Rational ClearCase configuration” on page 97

* Migrate directories and flat files that are not currently under any version control.

Use the clearfsimport command-line utility. Run clearfsimport from within a
UCM view to import directories and files directly onto a stream. You can then
create a baseline in the stream without having to label the versions. See the
clearfsimport reference page for details.

* On Windows systems, use the Import Wizard, a graphic user interface (GUI) that
you can use as an alternative to the clearexport and clearimport commands.

For details on using clearexport and clearimport, see the IBM Rational ClearCase
Administrator’s Guide and the clearexport and clearimport reference pages.

To migrate source files into a component
1. Run clearexport to generate a data file from your source files.

Chapter 6. Setting up the project 95

2. Create and set a non-UCM view. On Windows systems, use the View Creation
Wizard. To start the View Creation Wizard, from Rational ClearCase Explorer
click Base ClearCase > Create View. On Linux and the UNIX system, use the
cleartool mkview and setview commands.

3. In the view context, run clearimport to populate the component with the files
and directories from the data file.

4. In the component, create a baseline from a labeled set of versions. If the
versions that you want to include in the baseline are not labeled, create a label
type and apply it to the versions.

Making baselines of newly populated components

After you create the directory structure and import files (see |”Creating tha
directory structure” on page 94 and [“Importing directories and files from outside|
Rational ClearCase version control” on page 95), create new baselines that select
those directory and file elements for each of the components to which you added
elements. For more information, see [‘Creating a new baseline” on page 114|

If you use pure composite baselines, use these new baselines to create the
dependency relationships for the composite baselines that you want to be
consumed in the project. For more information, see|“Creating the dependency]
irelationships for composite baselines in the project.”|

Creating the dependency relationships for composite
baselines in the project

In the components that you created without a VOB root directory (see
fcomponents for storing baseline dependencies” on page 87), add as member
baselines the newly created baselines for the components in your project that
group files and directories. This creates composite baselines for the project. When a
member baseline is added to a component, a dependency reference is added to
that component and a new composite baseline is made. If you are making pure
composite baselines that select other pure composite baselines, start making the
composite baselines at the lowest level in the hierarchy that you are defining.

A sound strategy is to maintain the pure composite baselines in a bootstrap project.

You can create a pure composite baseline that represents the project by selecting
the lower level pure composite baselines or the latest baseline from each
component that the project will use.

To create a composite baseline

1. In the Project Explorer, right-click the project integration stream or
feature-specific development stream and click Edit Baseline Dependencies.

2. The Edit Baseline Dependencies window displays a list of all components that
the project uses. Identify the component that you created without a VOB root
directory and to which you will add the member baselines (see
[component without a VOB root directory” on page 87). Drag the other
components onto the component that will contain the baseline dependencies.

3. Click OK. The Create Baseline Dependencies window is displayed.

4. Enter the name in the Base Name (Windows) or Baseline Title (Linux and the
UNIX system) field that you want to use for the baselines that UCM creates for
these components. If you have a baseline naming template set for the project,
the Template Name field shows the name that will be used. If the template

96 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

does not include the Basename token, or if no template is set, the Base Name
or Baseline Title field does not appear in the Create Baseline Dependencies
window.

5. Click OK.

Recommending a baseline for new components

Recommend a new baseline that selects those directory and file elements to be
used in the project. If you use pure composite baselines, this can be one baseline
that you want all developers to use. Developers who join the project at the project
level or at the feature-specific development stream populate their development
streams with the versions that are identified by the recommended baseline. For
more information, see [“Recommending the baseline” on page 118

Creating a project based on an existing Rational ClearCase
configuration

If you have existing VOBs, you can convert them or their directories into
components so that you can include them in projects. You can set up a project
based on existing VOBs.

Creating the PVOB from an existing Rational ClearCase
configuration

On the Windows system, use the VOB Creation Wizard to create the PVOB (see
[“To create a PVOB (the Windows system)” on page 86). In Step 3, if you currently
use an administrative VOB, select it in the list. An AdminVOB hyperlink is made
between the PVOB and the administrative VOB. When you create components,
they use the existing administrative VOB. If you do not currently use an
administrative VOB, select none.

On Linux and the UNIX system, use the cleartool mkvob command (see
lp PVOB (Linux and the UNIX system)” on page 86)). If you currently use an
administrative VOB, use the cleartool mkhlink command to create an AdminVOB
hyperlink between the PVOB and the administrative VOB. When you create
components, they then use the existing administrative VOB.

If the project uses pure composite baselines, create components without a VOB root
directory. For more information, see [“Creating components for storing baseline|
[dependencies” on page 87|

Making components from existing VOBs
You can do any of the following:
* Make a VOB into a component
* Make a directory in a VOB into a component

You may want to organize the contents of a VOB into multiple components.

To make a VOB into a component

1. In the Project Explorer, select the PVOB. Do one of the following:
* On the Windows system, click Tools > Import > VOB as Component.
* On Linux and the UNIX system, click Tools > Import > Import VOB.
The Import VOB window is displayed.

Chapter 6. Setting up the project 97

2. In the Available VOBs list, select the VOB that you want to make into a
component. Click Add to move the VOB to the VOBs to Import list. You can
add more VOBs to the VOBs to Import list. If you change your mind, you can
select a VOB in the VOBs to Import list and click Remove to move it back to
the Available VOBs list.

3. When you are finished, click Import.

To make a directory tree within a VOB into a component

1. In the Project Explorer, right-click the PVOB folder and click Import > VOB
Directory as Component.

2. In the Import VOB Directory as Component window, select a view from the
View list; select the VOB that contains the directory from the VOB list; select
the directory from the Root Directory list; and specify a name for the
component.

The new component contains the directory and all its subdirectories and files.
The component root directory must be at or directly below the VOB root
directory. If the component root directory is at the VOB root directory, that VOB
cannot store multiple components.

Making a baseline from a label

After you convert an existing VOB or one of its directory trees into a component,
to access the directories and files in that component, you must create a baseline
from the set of versions identified by a label type.

To create a baseline by label type
1. Create and apply a label type.

On the Windows system, if the set of versions that you want to use are not
already labeled, use the Apply Label Wizard to make and apply a label type. To
start the Apply Label Wizard, do one of the following steps:

* Click Start > Programs > IBM Rational > IBM Rational ClearCase >
Apply Label Wizard

* Enter clearapplywizard at the command prompt

On Linux and the UNIX system, if the set of versions that you want to use are
not already labeled, use the cleartool mklbtype and mklabel commands to
create and apply a label type. For example:

% cleartool mklbtype —c "label for release 2" REL2
Created label type "REL2".

[

% cleartool mklabel -recurse REL2 .

Created label "REL2" on "." version "/main/5".

Created label "REL2" on "./src" version "/main/6".

Created lable "REL2" on "./src/Makefile" version "/main/2".

The -recurse option causes the label to be applied to all versions at or below
the current working directory.

2. In the Project Explorer, select the PVOB. Do one of the following;:

On Linux and the UNIX system, click Tools > Import > Import Label. Step 1
of the Import Label Wizard appears.

On the Windows system, click Tools > Import > Label as Baseline.

3. In the Available Components list, select the component that contains the label
from which you want to create a baseline. Click Add to move that component
to the Selected Components list. If you change your mind, select a component
in the Selected Components list and click Remove to move the component
back to the Available Components list.

98 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

4. In Step select the label type that you want to import, and enter
the name of the baseline that you want to create for the versions identified by
that label type. Then select the baseline promotion level.

Note: You cannot import a label type from a global label type definition.

Creating the project

Use the New Project Wizard to create the project. For more information, see
[“Creating the project” on page 91}

Finishing the project configuration

To finish configuring the project that is based on an existing Rational ClearCase
configuration, perform the following operations:

» Create an integration view. For more information, see [‘Creating an integration|
[view” on page 93|

e If the project is using pure composite baselines, create the dependency

relationships for those baselines. For more information, see|“Creating the
[dependency relationships for composite baselines in the project” on page 96)

* Recommend a baseline that developers use in the project. For more information,
see ['/Recommending a baseline for new components” on page 97

Creating a project based on an existing project

As you create new projects, you may need to create new instances of existing
projects. For example, suppose you have released version 3.0 of the Webotrans
project and are planning for version 3.1. You anticipate that version 3.1 will use the
same components as version 3.0. Therefore, you want to use the latest baselines in
the version 3.0 components as the foundation baselines for version 3.1

development. A good strategy is to use a bootstrap project. See
[projects” on page 146.]

Capturing final baselines in a composite baseline

If the existing project contains numerous components, you may want to create a
pure composite baseline that selects the final baselines of those components before
you create the new project. This composite baseline serves as a single starting point
for teams that want to start their work from the final approved baselines of the
existing project.

To create a pure composite baseline from existing approved

baselines

1. Create a component that does not have a root directory in a VOB. See
[“Creating components for storing baseline dependencies” on page 87}

2. Add the initial baseline of the component to the integration stream.

3. In the component, create a composite baseline that selects baselines of all other
components in the project. See [“Creating the dependency relationships for]
[composite baselines in the project” on page 96

4. Recommend the composite baseline. See ['Recommending the baseline” on pagel
-118

Creating the project from another project

If your project is a new instance of an existing project and uses the same
components as the existing project, do not create a new PVOB for this project.

Chapter 6. Setting up the project 99

Continue to use the existing PVOB. You can create the project based on the existing
PVOB (see ["To create a project based on an existing project” on page 100).

To create a project based on an existing project

1.

4.

[page 91).

Start the New Project Wizard to create the project (see[“Creating the project” on|

In Step 2 of the wizard, set Yes to indicate that the project begins from the
baselines in an existing project. Then navigate to the project that contains those
baselines. For example, the new project is based on the baselines in the
OM_projl1.0_Integration stream.

Step 3 lists the latest baselines in the project that you select in Step 2. If you
created a pure composite baseline to capture the final approved baselines in the
existing project, select it. You can add baselines from components that are not
part of the existing project by clicking Add to open the Add Baseline window.
Similarly, you can remove a baseline by selecting it and clicking Remove.

Finish the remaining steps in the wizard (see [“Creating the project” on pagé¢

91).

Creating an integration view

When you create a new project, a new integration stream is created for you.
Therefore, you need to create a new integration view to access elements in the

integration stream. Create an integration view as described in [“Creating a

lintegration view” on page 93|

Enabling use of the UCM integration with Rational ClearQuest

100

Before you can connect a project to a Rational ClearQuest user database, you must
set up the database to use a UCM-enabled schema and have the required
credentials to access the user database. See [Chapter 5, “Setting up a Rational|

[ClearQuest user database for UCM,” on page 75] After you set up the Rational

ClearQuest user database, you can enable the project for use with a Rational
ClearQuest user database.

To enable a project to work with a Rational ClearQuest user
database

For a current project:

1.

In the left pane of the Project Explorer, right-click the project and click
Properties to display its property sheet.

Click the ClearQuest tab and then set Project is ClearQuest-enabled.

On Windows systems, Link to the ClearQuest User Database is seeded with a
name. The Rational ClearQuest Schema Repository window appears with the
connection corresponding to that user database selected.

Select the user database that you want to link to the project. The first time that
you enable a project, the Rational ClearQuest Login window is displayed.

Enter your credentials (user name, password, and the name of the Rational
ClearQuest user database to which you are linking the project). For information
on credentials, see [“Creating users and adding credentials” on page 82| Click
Next. And click OK.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

5. To set the Rational ClearQuest development policies that you want to enforce,
click Policies and ClearQuest. See|“Policies for the UCM integration with|
[Rational ClearQuest” on page 69| for a description of these policies. Click OK
when you are finished.

For a new project:

If you are creating a new project, you can enable the project to work with Rational
ClearQuest by setting Yes, use the following ClearQuest connections and

selecting the connection and user database in Step 5 of the New Project Wizard.
For information about the procedure to create a new project, see [‘Creating the

[project” on page 91

Changing the project to a different Rational ClearQuest user
database

After you enable a UCM project to work with a Rational ClearQuest user database,
you may decide to link the project to a different user database. If no activities have
been created, you can switch databases by selecting a different one on the
ClearQuest tab of the project property sheet.

Migrating activities
If your project contains activities when you enable it to work with a Rational
ClearQuest user database, the UCM integration with Rational ClearQuest creates
records for each of those activities by using the UCMUtilityActivity record type.
To store all of your project activities in records of some other record type, enable
the project when you create it, before team members create any activities. After the

migration is complete, any new activities that you create can link to records of any
UCM-enabled record type.

Setting project policies
A UCM-enabled schema includes policies that you can enable from either Rational
ClearCase or Rational ClearQuest control.

To set policies in Rational ClearCase control
On the ClearQuest page of the project Policies window, set the check boxes next to
the policies to enable them. Clear the check box to disable the related policy.

To start a Rational ClearQuest client
1. Do one of the following:
* To start the Rational ClearQuest Web client, from your internet browser, use

the URL that your project manager supplies. The Rational ClearQuest Web
server displays a Login window.

* To start the Rational ClearQuest for Windows client, on the Windows system,
click Start > Programs > IBM Rational > IBM Rational ClearQuest >
Rational ClearQuest. The client displays a Login window.

2. Enter the credentials that are registered on your system. For more information
about credentials, see [“Creating users and adding credentials” on page 82|

To set policies from the Rational ClearQuest client
1. Run the Rational ClearQuest client (see ["To start a Rational ClearQuest client’|

on page 101).

2. In the Rational ClearQuest client workspace, navigate to and double-click the
UCMProjects query.

Chapter 6. Setting up the project 101

The query displays all UCM-enabled projects that are associated with the
current Rational ClearQuest user database.

3. Select a project from the Results set. The project form appears.

4. On the form, click Actions and select Modify. Set the check boxes for the
policies to be enabled.

Because not all policies are stored in the Rational ClearQuest user database for a
project, you may have to set some policies from Rational ClearCase control. For
descriptions of the policies, see [“Policies for the UCM integration with Rationall
(ClearQuest” on page 69}

Assigning activities

Project
Manager

Q

(o

Create
project

Establish Assign and Monitor

policies schedule work project status

After you establish policies, you create activities so that work can be assigned and
scheduled.

To create and assign activities in a Rational ClearQuest user
database

1. Start the Rational ClearQuest client (see [‘To start a Rational ClearQuest client”]

on page 101).

2. Log on to the user database connected to the project.

3. Click Actions > New. The Choose a record type window is displayed. Select a
UCM-enabled record type, and click OK.

4. The Submit form appears. Fill in the boxes on each tab. When you finish filling

in the boxes, click OK. The record is created and placed in a Submitted type
state.

5. Run a query and select the record. For example, if the record type is Defect,
you can run the All Defects query.

6. Click Actions > Assign, and select the owner from the Owner list. Click
Apply.

User account profiles must exist in a Rational ClearQuest user database for the
developers to whom you assign activities. See [“Creating users and adding|
kcredentials” on page 82| for information about creating user account profiles.

Disabling the link between a project and a Rational
ClearQuest user database

There may be times when you want to disable the link between a project and a
Rational ClearQuest user database.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To disable the project and user database link

1. On the ClearQuest tab of the project property sheet, clear Project is
ClearQuest-enabled.

2. Click OK on the ClearQuest tab. The integration disables the link between the
project and the Rational ClearQuest user database. The integration also removes
any existing links between activities and their corresponding Rational
ClearQuest records.

3. Display the project property sheet again, set Project is ClearQuest-enabled,
and select another user database if you want to link the project to a different
user database.

Tip: If you select the same user database that you just unlinked, the integration
creates new Rational ClearQuest records for the project activities; it does
not link the activities to the Rational ClearQuest records with which they
were previously linked.

Fixing projects that contain linked and unlinked activities

After you enable a project to work with Rational ClearQuest, some of the project
activities can remain unlinked to Rational ClearQuest records. Similarly, when you
disable the link between a project and a Rational ClearQuest user database, some
activities may remain linked. The following scenarios can cause your project to be
in this inconsistent state:

* A network failure or a general system crash occurs during the enabling or
disabling operation and interrupts the activity migration.

¢ The Rational ClearQuest user database can become corrupted, forcing you to
restore a backed-up version of the user database. That version of the user
database is out of sync with the PVOB that contains the project that is linked to
the user database.

* You use the cleartool command-line interface to rename an activity or a project.
When you rename an activity or project from the command-line interface, the
UCM integration with Rational ClearQuest does not update the corresponding
user database record with the name change. As a result, the Rational ClearCase
and Rational ClearQuest objects are not synchronized.

* The project PVOB is in a Rational ClearCase MultiSite configuration, and
unlinked activities were added by a Rational ClearCase MultiSite
synchronization operation to the local PVOB project, which is enabled to work
with Rational ClearQuest.

Detecting unlinked activities
If a developer attempts to take an action, such as modifying an unlinked activity in
an enabled project, the integration displays an error and disallows the action.

Correcting unlinked activities
If the problem is the result of one of the most likely scenarios (see |”Fixing projectsl
that contain linked and unlinked activities” on page 103), use the cleartool
checkvob command with the —ucm option to restore the project to a consistent
state. See IBM Rational ClearCase Administrator’s Guide and IBM Rational ClearCase
Command Reference for details about using this command.

If the problem is caused by Rational ClearCase MultiSite, at the remote site, link
the unlinked activities (see [“To link unlinked activities at a remote site” on page|

)

To link unlinked activities at a remote site:

Chapter 6. Setting up the project 103

1. In the Project Explorer, display the project property sheet, and click the
ClearQuest tab.

2. Click Link all unlinked activities mastered at this replica. The integration
checks all of the project activities and links any that are unlinked. The
integration then displays the following summary information:

* Number of activities that had to be linked.
* Number of activities that were previously linked.

* Number of activities that could not be linked because they are not mastered
in the current PVOB replica. In this case, the integration also displays a list
of replicas on which you must run the Link all unlinked activities mastered
at this replica operation again to correct the problem.

3. At each replica on the list described in Step @ repeat Step El and Step El

How the UCM integration with Rational ClearQuest is affected
by Rational ClearQuest MultiSite

If you use Rational ClearCase MultiSite to replicate the PVOB and ClearQuest
MultiSite to replicate the Rational ClearQuest user database and schema repository
involved in the UCM integration with Rational ClearQuest, you need to be aware
of several requirements.

+ |“Replica and naming requirements”]

+ |“Transferring mastership of the project”|

+ |“Linking activities to Rational ClearQuest records” on page 105

+ [“Changing project policy settings” on page 105]

* [“Changing the project name” on page 105

Replica and naming requirements

When you set up the UCM integration with Rational ClearQuest, you establish a
link between a project and a Rational ClearQuest user database. If you use Rational
ClearCase MultiSite, the following requirements apply:

* Each site that has a PVOB replica that contains a linked project must have a
replica of the Rational ClearQuest user database to which the project is linked
and the user database schema repository.

* Similarly, each site that contains a linked Rational ClearQuest user database
replica must contain a replica of the PVOB that contains the project to which the
user database is linked.

* The name of the Rational ClearQuest replica must match the name of the PVOB
replica at the same site.

Transferring mastership of the project

Before you enable a project to work with Rational ClearQuest, your current PVOB
replica must master the project. If your replica does not master the project, transfer
mastership of the project by using the multitool chmaster command at the replica
that masters the project.

When you enable the project to work with Rational ClearQuest, the UCM
integration with Rational ClearQuest creates a corresponding project record in the
Rational ClearQuest user database (see [“Mapping PVOBs to Rational ClearQuest|
luser databases” on page 57). The integration assigns mastership of that record to
the current replica of the Rational ClearQuest user database. If a project record
with the same name as the project exists in the Rational ClearQuest user database
when you enable the project, and that project record is not mastered by your
current replica, you must transfer mastership of the project record to your current
replica.

104 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Linking activities to Rational ClearQuest records

If a project contains activities, when you enable that project to work with Rational
ClearQuest, the UCM integration with Rational ClearQuest creates corresponding
Rational ClearQuest records for the activities and links the records to the activities.
The integration cannot link activities that are mastered by remote replicas. See
[“Correcting unlinked activities” on page 103|for information about linking
activities that are mastered by a remote replica.

Changing project policy settings

Before you can change a project policy setting from within Rational ClearQuest
control, the Rational ClearQuest project record must be mastered. Similarly, before
you can change a project policy settings from within Rational ClearCase control,
the project object must be mastered. After you change a project policy setting in
the current replica, the new settings do not take effect in streams in sibling replicas
until you synchronize the current replica with those replicas. See the IBM Rational
ClearCase MultiSite Administrator’s Guide for information about synchronizing
replicas.

Changing the project name

The integration links a project name to the name field in the corresponding
Rational ClearQuest project record (see[“Naming projects that are linked to same]
juser database” on page 58). If you change the project name in the Rational
ClearCase graphic user interface (GUI), the integration makes the same change to
the name field in the corresponding Rational ClearQuest project record. Similarly, if
you change the name in the Rational ClearQuest user database, the integration
makes the same change to the project name in the Rational ClearCase repository.
Before you can change the project name in a Rational ClearCase MultiSite
environment, the project record and the project object must both be mastered.

Restriction: Change the project name only by using a GUI, such as Project
Explorer. If you change the project name by using the command-line
interface, the integration does not make the same change to the
corresponding project record.

Note also that the project name cannot be the same as a folder name
or a stream name.

Working with IBM Rational Suite (Windows)

If you are using UCM with IBM Rational Suite, you can store Rational RequisitePro
projects, Rational Rose and XDE™ models, and Rational Test datastores in UCM
components and include them in baselines. To enable this integration, use the
Rational Administrator GUI to create and configure a Rational project. A Rational
project associates your UCM project with a RequisitePro® project, Rose models,
and Rational Test datastores.

Chapter 6. Setting up the project 105

Creating a development stream for testing baselines

106

(>

testing stream

- > S S

Build Make Recommend
components baselines baselines

When you make a new baseline, lock the integration stream so that you can build
and test a static set of files. Otherwise, developers can inadvertently cause
confusion by delivering changes while you are building and testing. Locking the
integration stream for a short period of time is acceptable; locking the integration
stream for several days can result in a backlog of completed but undelivered
activities.

To avoid locking out developers for a long period of time, you may want to create
a development stream and use it for extensive testing of baselines (see
idevelopment stream” on page 106). If your project uses feature-specific
development streams, you may want to create a testing stream for each
feature-specific development stream so that you can test the baselines created in
those streams.

If the development stream is configured to be read-only, you can build and test the
new baselines, and developers can deliver changes to the integration stream
without being concerned about interfering with the building and testing process.
For information on testing baselines, see [“Testing the baseline” on page 116}

To create a development stream

1. In Project Explorer, right-click the integration stream, and click Create Child
Stream from the pop-up menu. The Create a Development Stream window
appears.

2. If you want to disallow changes to be made in the testing stream, set Make
Stream read only. If you set this option, you cannot fix defects discovered in
the baseline in this stream. Instead, the developers responsible for the defects
would need to make the fixes in their development streams and deliver them
to the feature-specific development stream.

3. By default, the set of recommended baselines is used when creating a
development stream. Because the new baseline has not been tested extensively,
you probably have not yet promoted it to the level associated with
recommended baselines. To create the development stream with baselines other
than the recommended baselines, click Advanced Options. The Change
Baseline window appears.

4. Select the component that contains the baseline that you want to test. Click
Change. A second Change Baseline window appears, listing all baselines for
the component.

5. Select the baseline that you want to test, and click OK. If you need to test the
baseline of another component, select it in the first Change Baseline window
and repeat the process. When you are finished, click OK in the first Change
Baseline window.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

6.

In the Create a Development Stream window, set Prompt me to create a View
for this stream. Click OK.

The View Creation Wizard (the Windows system) or Create View window
(Linux and the UNIX system) appears.

Complete the steps of the View Creation Wizard or the fields of the Create
View window to create a view for the development stream.

Creating a feature-specific development stream

Feature-specific development streams allow you to isolate work.

About creating feature-specific development streams

The basic UCM process uses the integration stream as the project sole shared work
area. You may choose to organize your project into small teams of developers
where each team develops a specific feature. This type of organization is supported
by feature-specific development streams.

Create a development stream to serve as the shared work area for each team of
developers. The developers who work on that feature create their own
development streams based on the recommended baselines in the feature-specific
development stream. See [“Choosing a stream strategy” on page 34| for additional
information about feature-specific development streams.

To create a feature-specific development stream

1.

In Project Explorer, right-click the parent stream, and select Create Child
Stream from the pop-up menu. The Create a Development Stream window
appears.

By default, the set of recommended baselines is used when creating a
development stream. To create the development stream with baselines other
than the recommended baselines, click Advanced Options and select the
baselines from the Change Baseline window.

In the Create a Development Stream window enter a name and description for
the new stream. Set Prompt me to create a View for this stream. Click OK.

On the Windows system, the View Creation Wizard is displayed.
On Linux and the UNIX system, the Create View window is displayed.

Complete the steps of the View Creation Wizard or the Create View window to
create a view for the development stream.

In Project Explorer, right-click the feature-specific development stream, and
select Recommend Baselines.

In the Recommended Baselines window, click Add to display the Add Baseline
window. Select the baselines that you want to recommend to developers who
will work on this feature. When developers create their own development
streams, those streams will be based on the recommended baselines. When you
finish selecting the baselines, click OK in the Recommended Baselines window.

Chapter 6. Setting up the project 107

108 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 7. Managing the UCM project

This chapter describes tasks involved in maintaining a UCM project.

About managing a project

After you create and set up a project, developers join the project, work on
activities, and deliver completed activities to the integration stream or
feature-specific development stream. In your role as integrator, you need to
maintain the project so that developers do not get out of sync with each other’s
work. The following sections describe project maintenance tasks:

“Adding components”|

[“Building components” on page 112

+ |“Creating a new baseline” on page 114|

« |“Testing the baseline” on page 116

+ [“Recommending the baseline” on page 118

+ [“Resolving baseline conflicts” on page 120|

[“Monitoring project status” on page 122|

+ |“Cleaning up the project” on page 125

Adding components

Over time, the scope of your project typically broadens, and you may need to add
components to a stream and to projects (see [“To add a component to a stream” on|
. Adding a component to a stream requires that you rebase to the baseline
of the new component after the component is added.

By default, a component is added to the project as read-only. To allow developers
to deliver changes for that component, make the component modifiable (see
fmake a component modifiable within the project” on page 110).

Before you can access the component that you added to a stream from a view that
is attached to the stream, you must synchronize the view with the new
configuration (see|“To synchronize a view with a new configuration” on page 110).

To enable a child stream to access a modifiable component that you added to a
parent stream, you must do the following tasks:

* Synchronize the child stream with the new set of modifiable components in the
project (see |”To synchronize a child stream with project modifiable components”|
|on page 110|D.

* Synchronize the child stream view with the new configuration of the parent
stream (see |”To synchronize a child stream view with new parent streaml
[configuration” on page 111).

If snapshot views are attached to a stream to which you added a component, you
need to edit the view load rules to include the components that you add to the
stream (see|“To edit the view load rules” on page 111). The load rules of a
snapshot view specify which components are loaded into the view. In addition,
you need to know whether any developers working on the project use snapshot
views for their development views. When a developer who uses a snapshot view

© Copyright IBM Corp. 1992, 2006 109

rebases to a baseline that contains a new component, the snapshot view config
spec is updated, but the view load rules are not updated. When you add a
component, take the following actions for developers who use snapshot views:

* Notify the developers that they need to rebase their development streams to the
baseline of the newly added component.

* Instruct the developers to update the load rules for their development views to
load the newly added component.

To add a component to a stream

1.
2.

9.
10.

Start Project Explorer (see [“To start Project Explorer” on page 88).

In the right pane of the Project Explorer, right-click the stream and click
Properties to open the stream Properties window.

Click the Configuration tab, and then click Add. The Add Baseline window
opens.

Do one of the following steps:

* On Linux and the UNIX system, click the arrow at the end of the From
Stream box and either select a stream from the tree hierarchy or click All
Streams.

* On the Windows system, click Change > All Streams or Change > Browse
to select the stream that contains the component baseline you want to add.

In the Component list, select the component that you want to add. The
component baselines appear in the Baselines list.

In the Baselines list, select the baseline that you want to add to the project.

Click OK. The Add Baseline window closes, and the baseline that you chose
appears on the Configuration page.

Click OK to close the stream Properties window.

The Rebase Stream Preview window opens. To modify the stream
configuration to include the new foundation baseline, UCM needs to rebase
the stream.

Click OK in the Rebase Stream Preview window.
Click Complete to finish the rebase operation.

To make a component modifiable within the project

1.
2.
3.

In the Project Explorer, select the project, and click File > Policies.
In the Components tab, click the check box next to the component.
Click OK.

To synchronize a view with a new configuration

1.

2.
3.

In the Project Explorer, select the stream that contains the component that you
added, and click File > Properties.

Click the Views tab. Select the view and click Properties.
On the General tab, click Synchronize with stream.

To synchronize a child stream with project modifiable
components

1.
2.

In the Project Explorer, select the child stream and click File > Properties.
On the General tab, click Synchronize with project.

110 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To synchronize a child stream view with new parent stream
configuration
1. In the Project Explorer, select the child stream and click File > Properties.
2. Click the Views tab. Select the view and click Properties.
3. On the General tab, click Synchronize with stream.

To edit the view load rules

1. In the Project Explorer, select the stream to which you added a component, and
click File > Properties to display the stream property sheet.

2. In the property sheet, click the Load Rules tab.
3. Select the component or components that you added to the stream.
4. Click Add. Click OK to close the property sheet.

Element relocation

After you create components and add them to a UCM configuration, you should
not change the configuration. Change flow and integration in UCM depend on
stable components. If you absolutely must relocate directory and file elements, you
can run a UCM-supplied script mkelem_cpver.pl. The script must be run in a
strictly-controlled situation to prevent undesired configuration changes. You must
use ratlperl to run the script. The script does the following operations:

* Copies directory and file elements (one source version to one target version)
within a VOB or between VOBs. New elements are created in the target
directory with the view’s version of the original element from the source
directory.

* Uncatalogs the elements in the source directory.

* Preserves the history of the source elements to allow work to continue in other
streams.

The script does not do the following operations:

* Retain source history in the target version. (A comment attached to the target
version records the path of the source version for historical purposes.)

* Roll back when errors are encountered. (No support is provided for undoing the
operation. The project manager must fix any errors.)

* Integrate changed content in other streams. If you deliver or rebase content
between streams, be careful to distinguish between the previous and current
names of the relocated elements.

To relocate elements

1. In a shell or command prompt window, change directory to a view that is
attached to a stream that contains the components whose elements you want to
relocate.

2. If the view is a snapshot view, update it.
3. Set the view to an activity that you reserve for this operation.
4. Run the script and specify the source path and target path for the relocation.

For example:
cleartool mkact -head "Move XML utility code to 1ibks" my-app-xml-move

On the UNIX system:

Chapter 7. Managing the UCM project 111

rational-home-dir/common/bin/ratlperl ccase—home—dir/etc/utils/mkelem cpver.pl \
/vobs/app/xml /vobs/1ib/ks

On Linux and the Windows system:

rational-home-dir/common/ratiperl.exe ccase—home-dir/etc/utils/mkelem_cpver.pl
/vobs/app/xml /vobs/1ib/ks

The xml directory and all its contents are copied to the new location under the ks
directory. If the script encounters a hard link, it creates a separate element.

After the relocation, if developers try to deliver or rebase operations that involve a
relocated element, they see warning messages that the element is not visible. Any
changes that are made to the source elements must be manually merged from the
source location to the target elements in the new location.

Building components

Integrator

Q

- - -
> > >

Create a Build Make Recommend
testing stream components baselines baselines

A responsibility of the project integrator is to build and test components to ensure
that the changes to the software are stable and meet the goals of the project before
the changes are made available in new baselines.

About building components

Before you make new baselines in a stream, build the components by using the
current baselines and any work that developers have delivered to the stream since
you created the current baselines. If the build succeeds, you can make baselines
that select the latest delivered work. Building components involves the following
tasks:

* Locking the stream

* Finding remote deliver operations

* Completing remote deliver operations
¢ Undoing bad deliver operations

* Building and testing the components

Locking the shared stream

Before you build components in the integration stream or feature-specific
development stream, lock the stream to prevent developers from delivering work.
This ensures that you are dealing with a static set of files.

Note: It is possible that a developer could be in the process of completing a

deliver operation when you lock the stream. This scenario could result in
some files associated with an activity not being checked in, which, in turn,

112 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

could break your build operations and produce bad baselines. You may
want to create a script that checks for deliveries in progress, and run the
script before you lock the stream.

To lock a stream

1. In the Project Explorer, select the stream.

2. Click File > Properties to display the stream property window.
3. Click the Lock tab.

4. Click Locked and then click OK.

Finding work that is ready to be delivered

Before you build components, you may need to complete some deliver operations.
In most cases, developers complete their deliver operations. However, in a Rational
ClearCase MultiSite configuration in which the target stream is mastered at a
different replica than the developer’s source stream, the developer cannot complete
deliver operations. When such a stream mastership situation is detected, the
deliver operation is made a remote deliver operation.

In a remote deliver operation, the deliver operation starts but is left in the posted
state. It is up to you, as integrator, to find and complete deliver operations in the
posted state (see [“To find all deliver operations that are in the posted state”)).
Developers who have deliver operations in the posted state cannot deliver from or
rebase their source development streams until you complete their deliver
operations (see [“To complete remote deliver operations for a development stream”)
or cancel them (see|“Undoing a deliver operation”)).

Product Note: Rational ClearCase LT does not support Rational ClearCase
MultiSite.

To find all deliver operations that are in the posted state
1. In the Project Explorer, select the project.

2. Click Tools > Find Posted Deliveries. If the project contains posted deliveries,
the Find Posted Deliveries window appears and lists all streams within the
project that contain deliver operations in the posted state. For each posted
deliver operation, the window shows the source stream and the target stream.

3. To find posted deliver operations for a specific target stream, select the stream
and click Tools > Find Posted Deliveries. The Find Posted Deliveries window
lists the source streams that have posted deliver operations for the target
stream. The Find Posted Deliveries window lists posted deliver operations only
for source streams that are direct children of the target stream.

To complete remote deliver operations for a development stream

1. Find the list of streams that contain deliver operations in the posted state (see
[“To find all deliver operations that are in the posted state” on page 113).

2. In the Find Posted Deliveries window, select the development stream from the
list.

3. Click Deliver. The Deliver window opens. Click Resume to resume the deliver
operation. Click Cancel to cancel the deliver operation. See Developing Software
online help for details on completing the deliver operation.

Undoing a deliver operation

At any time before developers complete the deliver operation, they can back out of
it and undo any changes made; but if they check in their versions to the

Chapter 7. Managing the UCM project 113

integration view, they cannot undo the changes easily. When this happens, you
may need to remove the checked-in versions by using the cleartool rmver —xhlink
command.

Warning: The rmver command erases part of your organizational development
history, and it may have unintended consequences. Therefore, be very
conservative in using this command, especially with the —xhlink option.
See the rmver reference page in the IBM Rational ClearCase Command
Reference for details.

Removing a version does not guarantee that the change is really gone. If a
successor version was created or if the version was merged before you removed
the version, the change still exists. You may need to check out the file, edit it to
remove the change, and check the file back in.

Building and testing the components

After you lock the stream and complete any outstanding deliver operations, you
are ready to build and test the project executable files to make sure that the
changes delivered by developers since the last baseline do not contain any bugs.
For information on performing builds, see IBM Rational ClearCase Guide to Building
Software. Because you lock the stream when you build and test in it, it is better to
use a separate development stream for extensive testing of new baselines. For
information about using a development stream for testing new baselines, see
[“Testing the baseline” on page 116 Perform only quick validation tests in the
current stream so that it is not locked for an extended period of time.

Creating a new baseline

Integrator

e

Create a
testing stream

About

- - -
Ll > el

Build Make Recommend
components baselines baselines

Project integrators are responsible for making baselines before they recommend
them.

making a baseline

As developers deliver work to the integration stream or feature-specific
development stream, it is important that you make new baselines frequently to
record the changes. Developers can then rebase to the new baselines and stay
current with each other’s changes. Before you make the baseline, make sure that
the stream is still locked so that developers cannot deliver work to the stream.

By default, all activities modified since the last baseline was made are included in
the new baseline. There might be times when you want to create a baseline that
includes only certain activities. You can also make a baseline for one specific
component rather than all components in the stream.

You need to choose the type of baseline to create.

114 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

An incremental baseline is a baseline that is created by recording the last full
baseline and those versions that have changed since the last full baseline was
created.

A full baseline is a baseline that is created by recording all versions below the
component root directory.

Generally, incremental baselines are faster to create than full baselines; however,
the contents of a full baseline can be searched faster than the contents of an
incremental baseline can.

While you are making the baseline, you should lock the stream (see

shared stream” on page 112). After you create a baseline, unlock the integration or

feature-specific development stream so that developers can resume delivering work
to the stream.

To make a baseline

1.

Lock the stream to prevent developers from delivering work while you create
the baseline (see[“To lock a stream” on page 113). Developers can continue to
work on activities in their development streams.

Verify the stability of the project by testing its components.
Make the baseline. Do one of the following:

+ Make baselines for all components in the stream (see [“To make new baselines|
[for all components in the stream” on page 115).

+ Make a baseline for certain activities (see [“To make a baseline for a set of|
[activities” on page 116).

* Make a baseline for one specific component (see [“To make a baseline of onel
[component” on page 116).

Unlock the stream so that developers can deliver work (see|“To unlock the|

[stream” on page 116).

For information on baselines, see |[“Specifying a baseline strategy” on page 45|

To make new baselines for all components in the stream

1.
2.

Ensure that the stream is locked (see [‘To lock a stream” on page 113).

In the Project Explorer, select the integration stream or feature-specific
development stream in which you want to make the baseline.

Click Tools > Make Baseline. The Make Baseline window opens. The
Project/Stream field shows the object selector of the stream that you selected.

The Template Name field shows the name that will be used for the new
baseline if a baseline naming template is set for the project. For information
about baseline naming templates, see |“Setting a baseline naming template” on|

[page 92).

Enter a name in the Base Name (Windows systems) or Baseline Title (Linux
and the UNIX system) field only if the project does not have a baseline naming
template set or the template includes the basename token. Otherwise, the Base
Name or Baseline Title field does not appear in the Make Baseline window.

Choose the type of baseline to create (see [’About making a baseline” on page|

ir)

In View Context, specify a view in which to perform the operation. Choose a
view that is attached to the stream in which you want to make the baseline.

Chapter 7. Managing the UCM project 115

To make a baseline for a set of activities

1.
2.

Ensure that the stream is locked (see [‘To lock a stream” on page 113).

In the Project Explorer, select the integration stream or feature-specific
development stream in which you want to make the baseline.

Click Tools > Make Baseline. The Make Baseline window opens.

If you have a baseline naming template set for the project, the Template Name
field shows the name that will be used for the new baseline. Enter a name in
the Base Name (Windows systems) or Baseline Title (the UNIX system) field
only if the project does not have a baseline naming template set or the template
includes the basename token. Otherwise, the Base Name or Baseline Title field
does not appear in the Make Baseline window. For information about baseline
naming templates, see [‘Setting a baseline naming template” on page 92).

Click Activities in the Make Baseline window, and select the activities that you
want to go into the baseline.

Click General and select the type of baseline to create.

Specify a view in which to perform the operation. Choose a view that is
attached to the stream where you want to make the baseline.

To make a baseline of one component

1.
2.

3.
4.

Ensure that the stream is locked (see [“To lock a stream” on page 113).

In the Project Explorer, select the stream in which you want to create a new
baseline. Click File > Properties to display the stream property window.

Click the Baselines tab. Select a component, and click Make Baseline.
Fill in the fields of the Make Baseline window, then click OK.

To unlock the stream

1.
2.
3.
4.

In the Project Explorer, select the stream.

Click File > Properties to display the property sheet of the stream.
Click the Lock tab.

Click Unlocked and then click OK.

Testing the baseline

To avoid locking the integration stream or feature-specific development stream for
an extended period of time, use a separate development stream for performing
extensive testing, such as system, regression, and acceptance tests, on new
baselines. See [‘Creating a development stream for testing baselines” on page 106|
for information about creating a development stream.

To test in a separate development stream
To use a test stream to stabilize code, perform the steps shown in

116 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Project A

Integration stream
PA.BLO

DS D1
(test stream)

-
<
PA.BL1.S
_____________ >
- —
~<
D1.BL1

—~«——— Deliver operation

_____ » Rebase operation

Figure 37. A test stream to stabilize a baseline

The steps are:

1. Make a baseline that contains the changes to be tested (see PA.BL1 in
[Figure 37).

2. Do one of the following:

* Create a development stream dedicated to stabilization (see stream DS in
Figure 35]). For information about creating a development stream, see
create a development stream” on page 106|

* Rebase a dedicated development stream to the baseline that you made (see
[“Rebasing the test development stream” on page 117).

3. Use as the foundation baseline of the test stream the baseline that you created
(see PA.BL1 in [Figure 37).

4. Control the changes that are being made in the stabilization stream DS. Other
work from development streams in the project can be delivered to the
integration stream without affecting the stabilization stream. Fixes implemented
in the stabilization stream are isolated from activities delivered to the
integration stream.

5. When the code in the test stream is stable, make a baseline in the test stream
(see PA.BL1.S in [Figure 37).

6. Deliver the baseline PA.BL1.S to the integration stream.

7. In the integration stream, recommend the baseline from the stabilization stream
so that development streams can rebase to it. (This is an example of an advance
rebase operation; see|’Advance rebase operations” on page 21})

Rebasing the test development stream

After you create a new baseline and verify that it builds and passes an initial
validation test, rebase the development stream to the new baseline. For information
about the rules for rebasing a stream, see [“Summary of rules for rebasing a|
stream” on page 23] When you finish rebasing the development stream, you are
ready to begin testing the new baselines.

Chapter 7. Managing the UCM project 117

To rebase the development stream

1.

In the Project Explorer, select the development stream and click Tools > Rebase
Stream. The Rebase Stream Preview window opens.

By default, your development stream rebases to the recommended baselines.
Because the new baseline has not been tested extensively, you probably have
not yet promoted it to the level associated with recommended baselines. To
rebase to the baseline, or baselines, you want to test, click Advanced. The
Change Rebase Configuration window opens.

Select a component that contains a baseline you want to test. Click Change.
The Change Baseline window opens, listing all baselines for the component.
Select the baseline that you want to test, and click OK.

Select another component in the Change Rebase Configuration window and

repeat the process. When you finish selecting baselines, click OK to close the
Change Rebase Configuration window.

Click OK in the Rebase Stream Preview window to continue the rebase
operation. See the Help or Developing Software online help for details on
rebasing a development stream.

Fixing problems in baselines

If you discover a problem with a baseline while testing it, fix the affected files and
deliver the changes to the integration stream.

To fix a problem in a new baseline

1.

w

From the development view attached to the development stream, specify an
activity and check out the files that you need to fix.

Make the necessary changes to the files and check them in.
Build and test the changes in the development view.

When you are confident that the changes work, make a new baseline that
incorporates the changes in the development stream.

Deliver the new baseline to the integration or feature-specific development
stream. When you deliver the new baseline to the integration or feature-specific
development stream, you merge changes with work that developers have
delivered since the last baseline was created. For information about delivering
baselines, see [‘Delivering work from an integration stream to another project’|

|on page 151|

Change the set of recommended baselines for the integration stream or
feature-specific development stream to include the new baseline that you made
in the testing stream. For details about recommending a baseline in another
stream, see [“Recommending the baseline” on page 118

Recommending the baseline

Integrator

Y

Create a
testing stream

Y

__) -

Build Make Recommend
components baselines baselines

118 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

As work on your project progresses and the quality and stability of the
components improve, you make new baselines and want to make the work
available to the team. Do the following:

Change the baseline promotion level attribute to reflect a level of testing that the
baseline has passed.

Recommend baselines that have passed extensive testing.

To change a baseline promotion level

1.

Access the stream that contains the baseline.

On the Windows system, in the Project Explorer, right-click the stream and click
Properties.

On Linux and the UNIX system, in the Project Explorer, select the stream. Click
File > Properties.

The stream Properties window opens.

Click the Baselines tab.

In the Components list, select the component that contains the baseline that
you want to promote. In the Baselines list, select the baseline. Click Properties.
The baseline Properties window opens.

Click the arrow in the Promotion Level list to display all available promotion
levels. Select the new promotion level.

To recommend a baseline or set of baselines

1.

In the Project Explorer, select the stream. Click Tools > Recommend Baselines.

2. In the Recommended Baselines window, you can filter the list of baselines

displayed by selecting a promotion level and clicking Seed List. The window
then displays only baselines at or above the selected promotion level.

To remove a baseline from the list, select it and click Remove. To add a
baseline, click Add and select the baseline in the Add Baseline window.

To recommend a different baseline of a component, select the baseline and click
Change. In the Change Baseline window, select the baseline that you want to
recommend. To select a baseline in another stream, such as a testing stream,
click Change and navigate to the stream in the Change Baseline window.

You can recommend a baseline for a stream if the baseline is from the stream or
the stream’s foundation.

For a baseline that is not from the stream or from the foundation set of the

stream, the following rules apply:

* The baseline must be an ancestor of the foundation baseline of the stream
and must have been created on the same stream as the foundation baseline.

e The baseline must be contained in the stream, which means the baseline has
been delivered to the stream, or the stream has rebased to the baseline or to
one of its descendants.

e The baseline must contain the current recommended baseline, which means
it must be a descendant of the current recommended baseline.

You are not required to recommend a baseline for every component in the
configuration of the stream.

When you finalize your list of recommended baselines, click OK in the
Recommended Baselines window.

Chapter 7. Managing the UCM project 119

Resolving baseline conflicts

If your project uses composite baselines, you may encounter a situation where you
must resolve a conflict in a stream configuration between two different baselines of
the same component. The following conflicts can occur during operations that
involve baselines:

* Making a baseline

* Adding a baseline to a stream configuration
* Recommending a baseline

* Rebasing a stream

For information on composite baselines, see [“Identifying a project baseline” on|

Conflicts between a composite baseline and an ordinary
baseline

A composite baseline can conflict with an ordinary baseline. For example, assume
that a stream configuration includes a composite baseline that selects baseline BL4
of component A, and that the composite baseline is the recommended baseline.
After testing a new baseline, BL5, of component A, you decide to recommend it.
By doing so, you override the member baseline, BL4, selected by the composite
baseline. The Recommended Baselines window identifies BL5 as an override and
BL4 as overridden. UCM uses the same override and overridden identifiers in
other GUIs.

Conflicts between composite baselines

A conflict can occur when a stream configuration includes multiple composite
baselines where each composite baseline selects a baseline of the same component.
A stream cannot select two different baselines of the same component. If you
attempt to perform an operation that would cause this situation, UCM recognizes
the conflict and forces you to resolve it before completing the operation.

Composite baselines promote component reuse by making it easier to include large
components and subsystems into a project. As the number of shared components
rises, a higher probability exists that different subsystems will have a baseline
conflict. Higher-level projects that use lower-level subsystems are increasingly
likely to include in their foundation sets composite baselines that have members in
the same component. Conflicts arise when the members are not the same baseline
for a particular component. For example, suppose AC.BL1 and BCD.BL1 are
composite baselines that each select baselines of component C (see .

Figure 38. Composite baselines with the same component

Baseline C.BL3 a member of composite baseline AC.BL1 and baseline C.BL1 a
member of composite baseline BCD.BL1.

120 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

If baselines AC.BL1 and BCD.BL1 are configured in project Y, it is unclear to
Rational ClearCase which baseline on component C to use, baseline C.BL1 or

C.BL3 (see .

ProjectY

——

/emi \\

BCD_BL1 E_BLO

/ _B.BL1 :> / C.BL1 : > / D.BL1 :)

In the Rational ClearCase environment, a view must have an unambiguous rule for
selecting versions of an element. In UCM, a stream can only use one baseline to
select the versions in a component. Rebase operations and baseline
recommendations that would result in conflicts are blocked.

Figure 39. Composite baselines with a conflict

To resolve the conflict, you are forced to explicitly specify a baseline for the
component in question. This chosen baseline is said to override the members of the
composite baselines in conflict. A baseline that you explicitly specify as an override
baseline in the foundation set of a stream, regardless of whether it resolves a
conflict, overrides any baseline of that component that is implied by a composite
baseline.

To resolve the conflict on comi onent C shown in the project integrator

chooses baseline Cx.BL3 (see [Figure 40).

ProjectY
S —
— [oxms\
m\ Override

A\ \ VATV TR\ VATTA

Figure 40. Composite baselines with an override baseline

Because an override was selected, the baseline C.BL3 in composite baseline
AC.BL1 and the baseline C.BL1 in composite baseline BCD.BL1 are ignored.
Baseline Cx.BL3 is used to select versions in component C.

Tip: The override applies only for the baseline for component C in the foundation
baselines of the stream, but the composite baseline itself remains the same.

You can choose as the override any baseline of the component involved in the
conflict. The overriding baseline does not have to be one of the conflicting

baselines. The project integrator can select a baseline that is compatible with the

Chapter 7. Managing the UCM project 121

other baselines in the baseline set of the project. In the project integrator
could have chosen baseline C.BL1 as the override, instead of baseline Cx.BL3.
However, the integrator must ensure that the versions selected by composite
baseline AC.BL1 are compatible with the versions selected by baseline C.BL1. With
the selection of the override Cx.BL3, the AC and BCD subsystems need to be
checked to ensure that they are compatible with baseline Cx.BL3.

Baseline overrides stay in effect until you do one of the following:

* Explicitly remove the overriding baseline from the foundation set (for example,
with cleartool rebase —dbaseline).

* Replace completely the foundation set. This happens when you rebase to the
recommended baselines of the parent stream (cleartool rebase —-recommended).

The decision to select a baseline override is solely for the project integrator. It is
not a decision that can be automated. Each project team has to determine the
correct override in each instance of a conflict.

Monitoring project status

Project
Manager

Q

- - > -
> > «K gl

Create Establish Assign and Monitor
project policies schedule work project status

Several tools are provided to help you track the progress of your project. You can
do the following operations:

* View baseline histories

* Compare baselines

* Query a Rational ClearQuest user database
* Generate reports (Windows only)

Viewing baseline histories

On the Windows system, the Component Tree Browser displays the baseline
history of a component. On the UNIX system, the cleartool lscomp command lists
information about a component, including its baselines.

To view baseline history (the Windows system)
1. In the Project Explorer, navigate to the component whose baseline history you
want to see.

2. Right-click the component and click Browse Baselines.

The Component Tree Browser opens and shows the lines of development for the
component and each stream that uses the component. You can see the initial
baseline that was created when the project manager created the component and the
first baseline that the integrator created after creating the component. Also shown
are baselines that are created in the development stream during deliver operations

122 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

and integration arrows that represent deliver operations, for example, from the
development stream to the integration stream .

To view baseline history (Linux and the UNIX system)
From a shell prompt, use the cleartool Iscomp -tree command and specify the
component. For example:

cleartool 1scomp -tree guivob@/vobs_guipvob

Baselines and streams in the specified component are listed. The format is similar
to that of the Isvtree command. For more information, see the Iscomp reference

page.

Comparing baselines

You can display the differences between two baselines graphically or from a
command shell.

To compare baselines in Component Tree Browser (Windows
only)

1. View the baseline history (see [“To view baseline history (the Windows system)”]

on page 122).

2. In the Component Tree Browser, select a baseline by clicking its icon. Do one of
the following:

* To compare two baselines, click Tools > Compare > with Another Baseline.
Click the second baseline icon.

* To compare a baseline with its immediate predecessor, click Tools >
Compare > with Previous Baseline.

The Compare Baselines window opens. For more information, see |“About the|
Compare Baselines window.”]

To compare two baselines
Do one of the following:

* Use the cleardiffbl command and specify two baselines. For example:
cleardiffbl OM_proj2.0_Integration_08 12 01 OM_proj2.0_09_06_01
The Compare Baselines window opens.

* Open the Compare Baselines window from within the baseline Property
window.

1. In Project Explorer, select the integration stream, and click File > Properties
to display the integration stream Property window.

2. Click the Baselines tab and then select the component that contains the
baseline you want to compare.

3. Select the baseline; then right-click it and click Compare with Previous
Baseline or Compare with Another Baseline.

The Compare Baselines window opens.

For more information, see [‘About the Compare Baselines window.”|

About the Compare Baselines window
The Compare Baselines window shows the results of a comparison of two
baselines in the following pages:

Chapter 7. Managing the UCM project 123

Members
Shows the baselines that contribute to each baseline of a composite
baseline

Activities
Lists the activities (if any) that contribute to the baseline. A baseline could
contain no activities if it or its member baselines are the initial baselines of
the component.

Versions
Lists the change sets associated with the activities in the baseline.

Querying Rational ClearQuest user databases

If you use the UCM integration with Rational ClearQuest, you can use Rational
ClearQuest queries to retrieve information about the state of your project. When
you create a new Rational ClearQuest user database or upgrade an existing
Rational ClearQuest user database to use a UCM-enabled schema, the integration
installs some queries in subfolders of the Public Queries folder in the user database
workspace. These queries make it easy for developers to see which activities are
assigned to them and for project managers to see which activities are active in a
particular project. lists and describes the queries.

Table 4. Queries in a UCM-enabled schema

Query Description

ActiveForProject For one or more specified projects, selects
all activities in an active state type.

ActiveForStream For one or more specified streams, selects all
activities in an active state type.

ActiveForUser For one or more specified developers,
selects all assigned activities in an active
state type.

AllActivitiesInStream For one or more specified streams, selects all
activities.

MyCompletedWork Selects all activities in a completed type
state for the developer running the query.

MyToDoList Selects all activities in an active or ready
state type assigned to the developer running
the query.

UCMProjects Selects all projects linked to the Rational

ClearQuest user database.

UCMCustomQuery1 This query is not intended to be used
directly by users; the integration uses it.
When a developer checks out or checks in a
file, or adds a file to source control and is
prompted to select an activity, the
integration calls this query to display the
list of activities available in the stream
associated with the developer’s view.

You can customize this query on a
per-developer basis by copying the query
from the Public Queries folder to the
developer’s Personal Queries folder and
using the Query editor.

124 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

You can also create your own queries by clicking Query > New Query within the
Rational ClearQuest client. In the Choose a record type window that opens, select
All_UCM_Activities if you want the query to search all UCM-enabled record

types.

Using Rational ClearCase Reports (Windows systems only)

The Rational ClearCase Reports applications (Report Builder and Report Viewer)
allow you to generate and view reports specific to your project environment. Use
the Report Builder to select and define report parameters. Use the Report Viewer
to see the report output.

Product Note: To start the Rational ClearCase Report Builder:

* On a system that runs Rational ClearCase, click Start >
Programs > IBM Rational > IBM Rational ClearCase >
Administration > Report Builder.

* On a system that runs the ClearCase LT server, click Start >
Programs > IBM Rational > IBM Rational ClearCase LT >
Administration > Report Builder.

The Report Builder categorizes its reports based on object types, such as UCM
projects and streams. When you select a category in the left pane, the Report
Builder lists the reports available for that category in the upper right pane. When
you select a report, the Report Builder prompts you for parameters in the lower
right pane.

For details on using the Report Builder and the Report Viewer, see Help.

Rational ClearCase Reports includes a set of hooks into the Report Builder and
Report Viewer applications. These hooks, known as report procedures, implement
all the operations necessary to generate and view a specific report. The Rational
ClearCase Reports Programming Interface allows you to customize report
procedures. For details on doing so, see[Appendix C, “Customizing Rationall
[ClearCase Reports,” on page 265)

Cleaning up the project

When your team finishes work on a project and releases or deploys the new
software, you should clean up the project environment before creating the next
version of the project. Cleaning up involves removing any unused objects, and
locking and hiding the project and its streams. This process reduces clutter and
makes it easier to navigate in the Project Explorer.

Removing unused objects

During the life of the project, you or a developer might create an object and then
decide not to use it. Perhaps you decide to use a different naming convention, and
you create a new object instead of renaming the existing one. To avoid confusion
and reduce clutter, remove these unused objects.

About deleting projects

Note: By design, you cannot delete a project in which a delivery or a rebase
operation has been performed or from which a delivery to another project
has been performed.

Chapter 7. Managing the UCM project 125

You can delete a project only if it does not contain any streams. When you create a
project with the Project Creation Wizard, the wizard also creates an integration
stream. Therefore, you can delete a project only if you created it with the cleartool
mkproject command, or if you first delete the integration stream. For more
information on removing projects, see the rmproject reference page in the IBM
Rational ClearCase Command Reference. To remove an unused project, see
lan unused object.”]

About deleting streams
You can delete a development stream or an integration stream only if all of the
following conditions are true:

e The stream contains no activities.
¢ No baselines have been created in the stream.
* No views are attached to the stream.

In addition, you cannot delete an integration stream if the project contains any
development streams. For more information on removing streams, see the
rmstream reference page in the IBM Rational ClearCase Command Reference. To
remove an unused stream, see [“To delete an unused object.”]

About deleting components
You can delete a component only if all of the following conditions are true:

* No baselines of the component other than its initial baseline exist.

* The initial baseline of the component does not serve as a foundation baseline for
another stream.

For more information about removing components, see the rmcomp reference page
in the IBM Rational ClearCase Command Reference. To remove an unused component,
see [“To delete an unused object.”|

About deleting baselines
You can delete a baseline only if all of the following conditions are true:

* The baseline does not serve as a foundation baseline.

¢ The baseline is not a component initial baseline.

* A stream has not made changes to the baseline.

* The baseline is not used as the basis for an incremental baseline.

For more information about removing baselines, see the rmbl reference page in the
IBM Rational ClearCase Command Reference. To remove an unused baseline, see
[delete an unused object.”|

About deleting activities
You can delete an activity only if both of the following conditions are true:

* The activity has no versions in its change set.
* No view is currently set to the activity.

For more information about removing activities, see the rmactivity reference page
in the IBM Rational ClearCase Command Reference. To remove an unused activity, see
[“To delete an unused object.”|

To delete an unused object
To delete an unused object, perform the following steps:

1. Ensure that the requirements for the type of object are satisfied.

126 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Por a project, see [“About deleting projects” on page 125

* For a stream, see ["About deleting streams” on page 126

+ For a component, see|“About deleting components” on page 126/

+ For a baseline, see [“About deleting baselines” on page 126

 For an activity, see [“About deleting activities” on page 126

2. Select the object in the Project Explorer, and click File > Delete.

To delete a baseline (see [“About deleting baselines” on page 126), use the
cleartool rmbl command.

Locking and making obsolete the project and streams

To prevent a project or a stream from appearing in the Project Explorer, lock the
object and use the obsolete option. The obsolete option hides the object.

To lock and hide an object

1. In the Project Explorer, select the stream or project that you want to hide, and
click File > Properties to display its property sheet.

2. Click the Lock tab, and select Obsolete. Click OK.

To see objects that are obsolete
In the Project Explorer, click View > Show Obsolete Items.

Chapter 7. Managing the UCM project 127

128 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 8. Using triggers to enforce UCM development

policies

UCM provides a group of development policies that you can easily set in a project
by using the graphic user interface (GUI) or command line interface (CLI) and
additionally supports triggers to enforce policies. For information about UCM
policies, see [Chapter 4, “Setting policies,” on page 63]

Overview of triggers

Supported triggers

You can use triggers with the following UCM operations:

A trigger is a monitor that causes one or more procedures or actions to be run
whenever a certain Rational ClearCase operation is performed. Typically, the
trigger runs a Perl, batch, or shell script. You can use triggers to restrict operations
to specific users and to specify the conditions under which they can perform those
operations.

chbl
chfolder
chproject
chstream
deliver
mkactivity
mkbl
mkcomp
mkfolder
mkproject
mkstream
rebase
rmbl
rmcomp
rmfolder
rmproject
rmstream
setactivity
setplevel

You can also use triggers with the following Rational ClearCase operations on
UCM objects:

* lock
e unlock

© Copyright IBM Corp. 1992, 2006

In addition, you can use triggers on certain UCM operations to enforce customized
development policies for your project team. You can create triggers and use them
to implement various development policies in UCM projects. For additional
information about trigger usage, see the cleartool mktrigger and mktrtype
reference pages.

129

You can define trigger types that can be set on lock and unlock operations and can
restrict them to some individually named UCM objects or all UCM objects
(activities, baselines, components, folders, projects, and streams).

Preoperation and postoperation triggers

Triggers fall into one of two categories. Preoperation triggers fire, or run their
corresponding procedures, before an operation takes place. Postoperation triggers
fire after an operation occurs. When a user enters a Rational ClearCase command,
the presence of preoperation triggers on that command are checked. If a trigger is
associated with the command, the trigger procedure is fired. If the trigger
procedure finishes with a failure status, the operation requested by the user is
disallowed. If the trigger procedure finishes with a success status, the operation is
performed.

Use preoperation triggers to prevent users from performing operations unless
certain conditions apply. Use postoperation triggers to perform actions after an
operation completes. For example, you may want to place a postoperation trigger
on the deliver operation to notify team members whenever a developer delivers
work to the project’s integration stream.

Scope of triggers

A trigger type defines a trigger for use within a VOB or PVOB. When you create a
trigger type, with the cleartool mktrtype command, you specify the scope to be
one of the following:

* An element trigger type applies to one or more elements. You attach an instance of
the trigger type to one or more elements by using the cleartool mktrigger
command.

e An all-element trigger type applies to all elements in a VOB.
A type trigger type applies to type objects, such as attributes types, in a VOB.

* A UCM trigger type applies to a UCM object, such as a stream or a project, in a
PVOB.

* An all-UCM-object trigger type applies to all UCM objects in a PVOB.

Using attributes with triggers

As you design triggers to enforce development policies, you may find it useful to
use attributes. An attribute is a name/value pair. An attribute type defines an
attribute. You can apply an attribute to an object, such as a stream or an activity, or
to a version of an element. In your trigger scripts, you can test the value of an
attribute to determine whether to fire the trigger. For example, you could define an
attribute type called TESTED and attach a TESTED attribute to elements to
indicate whether they had been tested. Acceptable values would be Yes and No.

When to use Rational ClearQuest scripts instead of UCM
triggers

There are several use cases for UCM triggers. If your UCM project is enabled to
work with Rational ClearQuest, you can set the following policies, which are
described in [“Policies for the UCM integration with Rational ClearQuest” on page

* For submitting records from the Rational ClearCase client
— Disallow Submitting Records from the ClearCase Client
— Allowed Record Types

e For WorkOn

130 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

— Perform ClearQuest Action Before Work On

* For delivery
- Perform ClearQuest Action Before Delivery
— Transfer ClearQuest Mastership Before Delivery
— Perform ClearQuest Action After Delivery
— Transition to Complete After Delivery
— Transfer ClearQuest Mastership After Delivery

 For changing an activity
— Perform ClearQuest Action Before Changing Activity
— Perform ClearQuest Action After Changing Activity
— Transition to Complete After Changing Activity

Some of these policies have Rational ClearQuest global hook scripts associated
with them, which you can edit or replace in Rational ClearQuest Designer to
customize the policy for your environment. You can also write your own Rational
ClearQuest hooks to enforce development policies. In general, if the policy you
want to enforce involves a Rational ClearQuest action, use one of the Rational
ClearQuest policies previously mentioned or use Rational ClearQuest hooks. If the
policy you want to enforce involves a Rational ClearCase action, use UCM triggers.

Some operations might have Rational ClearCase triggers and Rational ClearQuest
hooks associated with them. For example, you might define a trigger that sends
e-mail to team members when a developer completes a deliver operation, and you
might have the Perform ClearQuest Activity After Delivery policy enabled. Under
Rational ClearCase and Rational ClearQuest control, triggers, hooks, and UCM
operations are run in the following order:

 Rational ClearCase preoperation trigger

* Rational ClearQuest preoperation hook

¢ UCM action

* Rational ClearQuest postoperation hook

* Rational ClearQuest transition activity hook

* Rational ClearCase postoperation trigger

You can use the Rational ClearQuest API to write code that runs in the Rational
ClearQuest environment. For example, you can modify records that users submit
or validate the records before they are committed to the user database. For code
examples that work with cqperl on Linux and the UNIX system or that use CAL
methods in Rational ClearQuest hook scripts on the Windows system, see IBM
Rational ClearQuest API Reference.

Sharing triggers among different types of platform

You can define a trigger that fires correctly depending on the type of platform on
which it runs (Linux, the UNIX system, and Windows computers). The following
techniques are available:

» |“Using different paths or different scripts” on page 132|

+ [“Using the same script” on page 132

With one technique, you use different paths or different scripts; with the other
technique, you use the same script for all platforms. For more information about
sharing triggers, see [“Tips for sharing scripts” on page 132.|

Chapter 8. Using triggers to enforce UCM development policies 131

Using different paths or different scripts

To define a trigger that fires on Linux and the UNIX system; the Windows system;
or both types of platform, and that uses different paths to point to the trigger
scripts, use the mktrtype command with the —execunix and —execwin options.
These options behave the same as —exec when the trigger fires on the appropriate
platform (Linux and the UNIX system for —execunix or the Windows system for
—execwin). On the inappropriate type of platform, the related script does not run.

This technique allows a single trigger type to use different paths for the scripts or
to use completely different scripts on Linux or the UNIX system and the Windows
computer. For example:

cleartool mktrtype —element —all —nc —preop checkin

—execunix /public/scripts/precheckin.sh

—execwin \\neon\scripts\precheckin.bat

pre_ci_trig

Tip: The command line example is broken across lines to make the example easier
to read. You must enter the command on one line.

On Linux or the UNIX system, only the script precheckin.sh runs. On the Windows
system, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers
that specify only —execunix always fail on the Windows system. Likewise, triggers
that specify only —execwin fail on Linux and the UNIX system.

Using the same script

To use the same trigger script on Linux, the UNIX system, and the Windows
system, use a batch command interpreter that runs on all operating systems. For
this purpose, the ratlperl program is included in the Rational ClearCase
configuration. You can use this version of Perl on the Windows system, Linux, and
the UNIX system. The commands Perl on Linux and the UNIX system and ccperl
on the Windows system are wrapper programs that run ratlperl.

The following mktrtype command creates sample trigger type pre_ci_trig and
names precheckin.pl as the executable trigger script.

cleartool mktrtype —element —all —-nc —preop checkin \
—execunix 'Perl /public/scripts/precheckin.pl' \
—execwin 'ccperl \\neon\scripts\precheckin.pl' \
pre_ci_trig

Note: In your scripts, you can run ratlperl directly. Ensure that you include the
following default paths to execute the scripts successfully:

* On Linux and the UNIX system: /opt/rational/common/
* On the Windows system: <install_location>\Rational \Common\

The value install_location is the root folder in which you installed Rational
ClearCase.

Tips for sharing scripts

* To tailor script execution for each operating system, use environment variables
in Perl scripts.

* To collect or display information interactively, use the clearprompt command.

132 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* For more information on using the —execunix and —execwin options, see the
mktrtype reference page.

Enforce serial deliver operations

Because UCM allows multiple developers to concurrently deliver work to the same
integration stream, conflicts can occur if two or more developers attempt to deliver
changes to the same element. If one developer’s deliver operation has an element
checked out, the second developer cannot deliver changes to that element until the
first deliver operation is completed or canceled. The second deliver operation
attempts to check out all elements other than the checked-out one, but it does not
proceed to the merge phase of the operation. The second developer must either
wait for the first deliver operation to finish or undo the second deliver operation.

You may want to implement a development policy that eliminates the confusion
that concurrent deliveries can cause developers. The following sections show Perl
scripts that prevent multiple developers from delivering work to the same
integration stream concurrently:

 Script 1 creates the trigger types and an attribute type.

* Script 2 is the preoperation trigger action that fires at the start of a deliver
operation.

* Script 3 is the postoperation trigger action that fires at the end of a deliver
operation.

For information about sharing scripts, see [“Sharing triggers among different types|
fof platform” on page 131

Delivery setup script

This setup script creates a preoperation trigger type, a postoperation trigger type,
and an attribute type. The preoperation trigger action fires when a deliver
operation starts, as represented by the deliver_start operation kind (opkind). The
postoperation trigger action fires when a deliver operation is canceled or
completed, as represented by the deliver_cancel and deliver_complete opkinds,
respectively.

The script runs on both Linux or the UNIX system and the Windows system.
Because the command-line syntax to run the preoperation and postoperation
scripts on Windows differs slightly depending on whether the PVOB resides on
Windows, Linux, or the UNIX system, the setup script uses an IF ELSE Boolean
expression to set the appropriate PVOB tag.

The mktrtype command uses the —ucmobject and —all options to specify that the
trigger type applies to all UCM objects in the PVOB, but the —stream option
restricts the scope to one integration stream.

The mkattype command creates an attribute type called deliver_in_progress,
which the preoperation and postoperation scripts use to indicate whether a
developer is delivering work to the integration stream.

use Config;

my $PVOBTAG;
my $PREOPCMDW;
my $POSTOPCMDW;

$PREOPCMDW = '-execwin "ccperl
\\\\pluto\\c$\\ucmscripts\\exl preop.pl"';

Chapter 8. Using triggers to enforce UCM development policies 133

$POSTOPCMDW = '-execwin "ccperl

\\\\pluto\\c$\\ucmscripts\\exl_postop.p1"';

if ($Config{'osname'} eq 'MSWin32') {
$PVOBTAG = '\cyclone-pvob';

}

else {
$PVOBTAG = '/pvobs/cyclone-pvob';
}

my $PREOPCMDU = '';

my $POSTOPCMDU = '';

my $STREAM = "cc5testproj_Integration\@$PVOBTAG";
my $PREOPTRTYPE = "trtype:exl preop\@$PVOBTAG";
my $POSTOPTRTYPE = "trtype:exl postop\@$PVOBTAG";
my $CANXTRTYPE = "trtype:exl cancel\@$PVOBTAG";
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";
print $PVOBTAG . "\n";

print $STREAM . "\n";

print $PREOPTRTYPE . "\n";

print $POSTOPTRTYPE . "\n";

print $CANXTRTYPE . "\n";

print $ATTYPE . "\n";

print “cleartool mktrtype -ucmobject -all -preop deliver_start
$PREOPCMDU $PREOPCMDW -stream $STREAM -nc $PREOPTRTYPE;

print “cleartool mktrtype -ucmobject -all -postop deliver_complete
$POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $POSTOPTRTYPE™;

print “cleartool mktrtype -ucmobject -all -postop deliver_cancel
$POSTOPCMDU $POSTOPCMDW -stream $STREAM -nc $CANXTRTYPE™;

print “cleartool mkattype -vtype integer -default 1 -nc $ATTYPE™;

Delivery preoperation trigger script

This preoperation trigger action fires when a developer begins to deliver work to
the specified integration stream. The script attempts to attach an attribute of type
deliver_in_progress to the integration stream. If another developer is in the
process of delivering work to the same stream, the mkattr command fails and the
script displays a message suggesting that the developer try again later. Otherwise,
the mkattr command succeeds and prevents other developers from delivering to
the integration stream until the current deliver operation finishes.

use Config;

my $PVOBTAG;
my $tempfile;
my $exit_value;

if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone-pvob';

$tempfile = $ENV{TMP}."\\expreop.".$ENV{"CLEARCASE PPID"}.".txt";
1

else {
$PVOBTAG = '';
}
my $STREAM = "Stream:".$ENV{"CLEARCASE_STREAM"};
my $ATTYPE = "attype:deliver_in_progress\@$PVOBTAG";

print $STREAM."\n";
print $ATTYPE."\n";

my $cmdline;
my $cmdoutput;

Test to see if the deliver in progress attribute is
applied to the target stream.

134 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

$msg = 'cleartool describe -fmt "%a" $STREAM';
print $msg."\n";

if ($ENV{"CLEARCASE_CMDLINE"} eq "") {

open(TEMPFH, "> $tempfile");

print TEMPFH $msg."\n";

close(TEMPFH) ;

$cmdline = "clearprompt text -outfile $tempfile -multi_Tline -dfile
\"$tempfile\" -prompt \"Describe Results\"";

$cmdoutput = '$cmdline’;
}

if (index($msg, "deliver_in_progress") >=0) {
print "sxx\n";
print "%+ A deliver operation is already in progress. Please
try again later.\n";
print "sxx\n";
exit 1;
1
$cmdline = "cleartool mkattr -default $ATTYPE $STREAM";

print $cmdline."\n";
$msg = '$cmdline’;

$exit_value = §? >> 8;

if (1($exit_value eq 0)) {
print "sxx\n";
print "xxx A deliver operation was started just before yours.\n";
print "#x* That deliver operation is already in progress. Please
try again later.\n";
print "sxx\n";
exit 1;
}

exit 0;

Delivery postoperation trigger script

This postoperation trigger action fires when a developer cancels or completes a

deliver operation to the specified integration stream. This script removes the
deliver_in_progress attribute that the preoperation script attaches to the
integration stream at the start of the deliver operation. After the attribute is
removed, another developer can deliver work to the integration stream.

perl script that fires on deliver_complete or deliver_cancel postop

trigger.
use Config;

define platform-dependent arguments.

my $PVOBTAG;

if ($Config{'osname'} eq 'MSWin32') {
$PVOBTAG = '\cyclone-pvob';

1

else{
$PVOBTAG = '';

1
my $STREAM
my $ATTYPE

"stream:".$ENV{"CLEARCASE_STREAM"};
"attype:deliver_in_progress\@$PVOBTAG";

remove the attribute to allow deliveries.
print “cleartool rmattr -nc $ATTYPE $STREAM™;

Chapter 8. Using triggers to enforce UCM development policies

135

Send mail to developers on deliver operations

To improve communication among developers on your project team, you may
want to create a trigger type that sends an e-mail message to team members
whenever a developer completes a deliver operation. The following sections
include scripts for detecting deliveries and notifying developers:

* Script 1 creates a trigger type that fires at the end of a successful deliver
operation.

* Script 2 is the postoperation trigger action that sends e-mail messages to
developers.

For information about sharing scripts, see [“Sharing triggers among different types|
of platform” on page 131)

E-mail notification setup script

This script creates a postoperation trigger type that fires when a developer finishes
a deliver operation, as represented by the deliver_complete opkind. The mktrtype
command uses the —stream option to indicate that the trigger type applies only to

deliver operations that target the specified integration stream.

This is a Perl script to set up the triggertype
for e-mail notification on deliver.
use Config;

define platform-dependent arguments.
my $PVOBTAG;
if ($Config{'osname'} eq 'MSWin32') {

$PVOBTAG = '\cyclone_pvob';

$WCMD = '-execwin "ccper]l
\\\\pluto\diskl\ucmtrig_examples\ex2\ex2_postop.p1"';
}
else {

$PVOBTAG '/pvobs/cyclone_pvob';

$WCMD = '-execwin "ccperl
\\\\\\pluto\diskl\ucmtrig_examples\ex2\ex2_postop.p1"';
}

my $STREAM = "stream:P1_int\@$PVOBTAG";
my $TRTYPE = "trtype:ex2_postop\@$PVOBTAG";
my $UCMD = '-execunix "Per]

/net/pluto/diskl/ucmtrig_examples/ex2/ex2_postop.p1"';

print 'cleartool mktrtype -ucmobject -all -postop deliver_complete
$WCMD $UCMD -stream $STREAM -nc $TRTYPE™;

E-mail notification postoperation trigger script

This postoperation trigger action fires when a developer finishes delivering work
to the integration stream. The script composes and sends an e-mail message to
other developers on the project team telling them that a deliver operation has just
finished. The script uses Rational ClearCase environment variables to provide the
following details about the deliver operation in the body of the message:

* Project name

* Development stream that delivered work

* Integration stream that received delivered work

* Integration activity created by the deliver operation
* Activities delivered

* Integration view used by deliver operation

136 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Perl script to send mail on deliver complete.

idgdddsdddssdddssdddssddssdddsaddssdddaaddsdddadddadddaddaadddd
Simple package to override the "open" method of Mail::Send so we
can control the mailing mechanism.

package SendMail;

use Config;
use Mail::Send;

@ISA = gw(Mail::Send);

sub open {
my $me = shift;
my $how; # How to send mail
my $notused;
my $mailhost;

On Windows use SMTP

if ($Config{'osname'} eq 'MSWin32') {
$how = 'smtp';
$mailhost = "lTocalmail@.company.com";

}
else use defaults supplied by Mail::Mailer

Mail::Mailer->new($how, $notused, $mailhost)->open($me);

}

#

ifgdddsaddsdddgsdddadidsdataddszaddssdssddiaadadaadigsdddadidii
Main program

my @to = "developers\@company.com";
my $subject = "Delivery complete";

my $body = join '', ("\n",
"UCM Project: ", $ENV{CLEARCASE_PROJECT}, "\n",
"UCM source stream: ", $ENV{CLEARCASE_SRC_STREAM}, "\n",
"UCM destination stream: ", $ENV{CLEARCASE_STREAM}, "\n",
"UCM integration activity: ", $ENV{CLEARCASE_ACTIVITY}, "\n",
"UCM activities delivered: ", $ENV{CLEARCASE DLVR _ACTS}, "\n",
"UCM view: ", $ENV{CLEARCASE_VIEW_TAG}, "\n"

)s

my $msg = new SendMail(Subject=>$subject);

$msg->to(Gto);

my $fh = $msg->open($me);

$th->print ($body);

$fh->close();

1; # return success
#
fiddddddddddddddsddasdddsdddsddddadddaddsaddssddddaddsddasaddsaddad

Do not allow activities to be created on the integration stream

Anyone who has an integration view attached to the integration stream can create
activities on that stream, but the UCM process calls for developers to create
activities in their development streams. You may want to implement a policy that
prevents developers from creating activities on the integration stream
inadvertently. This section shows a Perl script that enforces that policy.

Chapter 8. Using triggers to enforce UCM development policies 137

For information about sharing scripts, see [‘Sharing triggers among different types|
fof platform” on page 131

The following mktrtype command creates a preoperation trigger type called
block_integration_mkact.

cleartool mktrtype -ucmobject -all -preop mkactivity -execwin "ccperl ~
\\pluto\diskl\triggers\block_integ mkact.pl" -execunix "Perl ~
/net/jupiter/triggers/block_integ mkact.pl"
block_integration_mkact@\my_pvob

The trigger type fires when a developer attempts to make an activity.

The following preoperation trigger script runs when the block_integration_mkact
trigger fires.

Get the integration stream name for this project
my $istream = 'cleartool lsproject -fmt "%[istream]p"
$ENV{ "CLEARCASE_PROJECT"}';

Get the current stream and strip off VOB tag
$ = SENV{"CLEARCASE_STREAM"};
s/\@.*//;
my $curstream = §_;
If it's the same as our stream, then it is the integration stream
if (§istream eq $curstream) {
Only allow this mkact if it is a result of a deliver
Determine this by checking the parent op kind
if ($ENV{"CLEARCASE_POP_KIND"} ne "deliver_ start") {
print "Activity creation is only permitted in integration
streams for
delivery.\n";
exit 1
}
}

exit 0

The script uses the cleartool lsproject command and the CLEARCASE_PROJECT
environment variable to determine the name of the project’s integration stream. An
integration activity is created to keep track of changes that occur during a deliver
operation. The script uses the CLEARCASE_POP_KIND environment variable to
determine whether the activity being created is an integration activity. If the
mkactivity operation is the result of a deliver operation, the value of
CLEARCASE_POP_KIND, which identifies the parent operation, is deliver_start.

If the value of CLEARCASE_POP_KIND is not deliver_start, the activity is not an
integration activity, and the script disallows the mkactivity operation.

Implementing a role-based access control system

In a Rational ClearCase environment, where users perform different roles, you may
want to restrict access to certain Rational ClearCase operations based on role. You
can use a trigger definition and script that implement a role-based access control
system.

For information about sharing scripts, see [“Sharing triggers among different types|
of platform” on page 131]

The following mktrtype command creates a preoperation trigger type called
role_restrictions.

138 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

cleartool mktrtype -nc -ucmobject -all -preop mkstream,mkbl,mkactivity \
-execunix "perl /net/jupiter/triggers/role_restrictions.pl" \

-execwin "ccperl \\pluto\diskl\triggers\role restrictions.pl" \
role_restrictions@\my_pvob

The trigger type fires when a user attempts to make a baseline, stream, or activity.

Role-based preoperation trigger script

The following preoperation trigger script maps users to the following roles:
* Project manager

* Integrator

* Developer

use strict;

sub has_permission

{
my ($user,$op,$pop,$proj) = @_;

#When performing a composite operation like 'deliver' or 'rebase',
#we don't need to check permissions on the individual sub-operations
#that make up the composite.

return 1 if($pop eq 'deliver start' || $pop eq 'rebase start' ||
($pop eq 'deliver_complete' || $pop eq 'rebase complete' ||
($pop eq 'deliver cancel' || $pop eq 'rebase cancel');

Which roles can perform what operations?

Note that these maps can be stored in a Rational ClearCase attribute
on each project instead of hard-coded here in the trigger script

to give true per-project control.

my %map_op_to_roles = (
mkactivity => ["projectmgr", "integrator", "developer"],
mkb1 => ["projectmgr", "integrator"],
mkstream => ["projectmgr", "integrator", "developer"],

)s
Which users belong to what roles?

my %map_role to_users = (
projectmgr => ["kate"],
integrator => ["kate", "mike"],
developer => ["kate", "mike", "jones"],

)s

Does user belong to any of the roles that can perform this
operation?

my ($role,$tmp_user);

for $role (@{ $map_op_to roles{$op} }) {
for $tmp_user (@{ $map_role_to _users{$role} }) {
if ($tmp_user eq $user) {
return 1;
}
}
}

return 0;

}

sub Main

{

my $user
my $proj
my $op

$ENV{CLEARCASE_USER};
$ENV{CLEARCASE_PROJECT};
$ENV{CLEARCASE_OP_KIND};

Chapter 8. Using triggers to enforce UCM development policies 139

my $pop $ENV{CLEARCASE_POP_KIND};

my $perm = has_permission($user, $op, $proj);

printf("$user %s permission to perform '$op' in project $proj\n",
$perm ? "has" : "does NOT have");

exit($perm 2 0 : 1);
}

Main();

The script maps the mkactivity, mkbl, and mkstream operations to the roles that
are permitted to perform them. For example, only users designated as project
managers or integrators can make a baseline.

The script uses the CLEARCASE_USER environment variable to retrieve the user’s
name, the CLEARCASE_OP_KIND environment variable to identify the operation
the user attempts to perform, and the CLEARCASE_POP_KIND environment
variable to identify the parent operation. If the parent operation is deliver or
rebase, the script does not check permissions.

Additional uses for UCM triggers

The examples shown in sections [“Enforce serial deliver operations” on page 133
through [‘Implementing a role-based access control system” on page 138 represent
just a few ways that you may use UCM triggers to enforce development policies.
Other uses for UCM triggers include the following:

* Create an integration between UCM and a change request management (CRM)
system. Although most customers can use the UCM integration with Rational
ClearQuest, you may want to integrate with another CRM system. To
accomplish this, you could perform the following steps:

— Create a trigger type on mkactivity that creates a corresponding record in the
CRM database when a developer makes a new activity.

— Create a trigger type on setactivity that transitions the record in the CRM
database to a scheduled state when a developer starts working on an activity.

— Create a trigger type on deliver that transitions the record in the CRM
database to a completed state when a developer finishes delivering the
activity to the integration stream.

* Create a trigger type on rebase that prevents developers from rebasing certain
development streams. You may want to enforce this policy on a development
stream that is being used to fix one particular bug.

* Create a trigger type on setactivity that allows specific developers to work on
specific activities.

140 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 9. Managing multiple projects
Chapters through discuss the management of a single UCM

project. This chapter discusses the uses and management of multiple UCM
projects.

Project uses

Generally, multiple-project organization falls into one of two categorizations:
release-oriented and component-oriented.

Release-oriented projects

A project team can organize its work for product releases. First, the team might
work on Release 1 of the product. To work on Release 2, the team branches off
Release 1 and begins new development work in the Release 2 stream, and, when
Release 3 work begins, it might branch off the Release 2 stream.

After Release 1 ships to end users, patches for the release might be developed in
its own project, which branches off Release 1. The patch project delivers its work to
Release 2, so that the bug fixes can be incorporated into the new release.

This type of project organization results in a cascade of branches that can cause

some difficulty. To avoid the difficulty, a slightly different project organization is
generally recommended for release-oriented projects (see Figure 41).

In the release-oriented organization shown in all projects start from a
foundation baseline in the Mainline project. The Webotrans_1.0 project delivers its
release to the Mainline project. A patch release project Rel_1_Patch can be started
from a stable baseline in the project Webotrans_1.0 and can deliver its work to the
Mainline project integration stream. Instead of cascading from the previous
release, a follow-on project Webotrans_2.0 is then started from the baseline in the
integration stream of the Mainline project.

A release-oriented project must have modifiable access to all of the components
that are contained in the final product. Developers working on one component of
the project need to consistently and frequently coordinate their work with
developers working on other components. This type of project organization in
UCM works well when there is tight coupling between components.

© Copyright IBM Corp. 1992, 2006 141

Rel_1_Patch

@ A\

A

A

R1_Patch

Webotrans_2.0

R1.0 A
/o \\
TN

—_—

Lrarina\\

~«——— Deliver operation

Figure 41. An organization for release-oriented projects

Using a mainline project

If you anticipate that your team will develop and release numerous versions of
your system, create a mainline project (see . A mainline project serves as
a single point of integration for related projects over a period of time. It is not
specific to any single release.

For example, assume the Webotrans team plans to develop and release new
versions of their product every six months. For each new version, the project
manager could create a project whose foundation baselines are the final
recommended baselines in the prior project’s integration stream. For example, the
foundation baselines of Webotrans 2.0 are the final recommended baselines in the
Webotrans 1.0 integration stream; the foundation baselines for Webotrans 3.0 are
the final recommended baselines in the Webotrans 2.0 integration stream, and so
on. This approach is referred to as a cascading projects design. The disadvantage to
this approach is that you must look at all integration streams to see the entire
history of the Webotrans projects.

In the mainline project approach, the Webotrans project manager creates a mainline
project with an initial set of baselines, and then creates Webotrans 1.0 based on
those initial baselines. When developers finish working on Webotrans 1.0, the

142 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

project manager delivers the final recommended baselines to the mainline project’s
integration stream. These baselines in the mainline project’s integration stream
serve as the foundation baselines for the Webotrans 2.0 project. When the
Webotrans 2.0 team finishes its work, the project manager delivers the final
recommended baselines to the mainline project integration stream, and so on. The
advantage to this approach is that each project final recommended baselines are
available in the mainline project integration stream.

Composite baselines in release-oriented projects

In release-oriented projects, use composite baselines to shorten recommended
baseline lists. Using composite baselines makes it easier to tell which baselines
were recommended at different times. The composite baselines can be used to
represent major subsystems in the product. Or, in the simplest case, a project can
consolidate all of its baselines into a single component, which it recommends and
delivers to follow-on projects.

Additionally, using a single composite baseline to represent the final product (that
is, collecting baselines from all of the components) reduces the occurrence of
baseline conflicts. If a project uses a single composite baseline for the final product,
the project integrator can implement a process rule that forces all builds to occur
from the top-level component. This process rule reduces the probability of a
developer inadvertently introducing conflicts.

Developers can still choose to use baseline overrides when they need to access
materials that are not included in the recommended baseline set. For example, if a
developer needs a bug fix that has not yet been included in a recommended
baseline, the developer can rebase to the appropriate baseline for the specific
component containing the bug fix, even if there is no baseline conflict.

Take care when you use baseline overrides to share code in this way, because you
can introduce a conflict into a stream. Baseline conflicts can occur when more than
one composite baseline is overridden — but only when the overridden baselines
are composite baselines. Baseline conflicts cannot be created if a single composite
baseline is overridden or if baselines of components that are not members of other
components are overridden.

Component-oriented Projects

Development teams can organize their work in terms of reusable assets. These
teams use projects to create individual components and composite baselines that
select baselines of several components. Low-level or core components can be used
to construct mid-level components or subsystems, until the highest level
components are integrated into a product.

The goal of a component-oriented project is to produce a composite baseline or a

set of baselines that reiresents the integration of the shared components into a

subsystem (see [Figure 42).

Chapter 9. Managing multiple projects 143

Project X ProjectY Project Z

AC.BLO E.BLO

Figure 42. Structure for component-oriented projects

In project X uses components A and C to produce a set of baselines that
define the X subsystem, and project Z uses components B, C, and D to implement
the Z subsystem. Project Y uses the subsystems created by the X and Z projects,
represented by the baselines that these projects produce. Additionally, project Y
does custom work in component E.

The key attribute of managing the configuration is that all the code of a subsystem
is released together. To the development team, the important factor is that the
subsystem represents assets that can be easily reused. Designing a product, or a
family of products based on subsystems allows the development effort to be
divided into logical units. This organization simplifies the development efforts,
allows better management for risk, and provides opportunities for code reuse.

The key aspect of this organization is that each project has access to two classes of
components: modifiable components and read-only components. Each project does
its development work on modifiable components, and only one project can modify
these components. The read-only components are shared, but projects do not plan
to modify the read-only components, because that violates the sharing model.
Accordingly, these shared components are specified to be read-only in the project.

The teams in a development group with this type of project organization are
restricted to a limited number of components that they can modify. Because the
lower level components can be shared, the changes must be made in a central,
compatible manner, in the project dedicated to that component. For example, if
project Y needs changes in the A and C components, that work must be done in
project X.

In a component-oriented organization, each project has more freedom in selecting
baselines of shared components. Because these shared components are not
modified by the project, theoretically the project should be able to change from one
version of a shared component to any other version of that component. The
component-oriented project organization works well when components are loosely
coupled with well-defined interfaces. This type of project organization tends to
promote component reuse more effectively than the release-oriented project
organization does.

144 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Composite baselines in component-oriented projects

In component-oriented projects, significant savings can be realized by modeling
subsystems with composite baselines. For example, projects that integrate the
subsystems can rebase to a single baseline to configure a subsystem.

When composite baselines are used to model subsystems, they are logical
components built of smaller components. The components used in constructing a
subsystem are either shared (read-only) or modifiable (they contain the work
particular to that subsystem). The important property of the shared components is
that they are non-modifiable. If a subsystem requires changes to a shared
component, that requirement can interfere with the ability to share that component.
The modifiable, custom components store the code that is needed to integrate the
shared components and to provide the unique functions of the subsystem (see

Figure 13,

ProjectY
/o \
m‘ Override

Figure 43. Composite baselines representing subsystems

Project Y is composed of the custom component E and the components AC and
BCD, which both share component C. It does not matter whether baseline E.BL1 is
a product, a .DLL, a lower-level library, or another component.

In the composite baseline E.BL1, a component-oriented approach to development
can be more prone to baseline conflicts than a release-oriented approach. The
frequency of baseline conflicts depends on the following factors.

e The number of shared components
* The processes in the development organization

* The coordination among the different teams developing subsystems

The more closely the teams that produce each component coordinate their work,
the less likely conflicts will occur.

If development teams need complete freedom in selecting baselines of the
components that they use, conflicts are more likely. Conflicts occur because of the
difficulty in ensuring that a random baseline of one component, for example, AC,
will work with a random baseline of another component.

Baseline E.BL1 can be considered as consuming baselines AC.BL1 and BCD.BL1.
However, it is not a true producer and consumer relationship. Composite baseline
E.BL1 is not using the AC.BL1 baseline; it is using AC.BL1 plus the override,
baseline Cx.BL3 (see . Therefore, baseline E.BL1 is not actually using the
product of project X. The X project does produce AC baselines, but, in a situation
with conflicts, the baseline is a guideline rather than a rule for projects that need
the AC component.

Chapter 9. Managing multiple projects 145

If these subsystems were in a release-oriented organization, composite baselines
would represent a tight coupling of baselines, for example, baselines A.BL1 and
C.BL3 shall be used to make baseline AC.BL1. But in a component-oriented
organization, composite baselines represent a looser coupling, that is, baselines
A.BL1 and C.BL3 should be used to make baseline AC.BL1. But the project
integrator can chose to override the coupling between baselines. Therefore, in a
component-oriented organization of projects, a composite baseline is more of an
indication of the components that should be used to create a subsystem rather than
a requirement to use them.

Therefore, selecting a baseline override in a component-oriented organization
needs to be careful and deliberate. Project integrators need to be aware that, in
selecting a baseline override, they are changing the decisions made by the project
that produced the component. There might be specific reasons why the BCD
component is compatible with the C.BL1 baseline, for example, a different baseline
could cause the component to fail. Often, using a descendant of baseline C.BL1 is
successful, but the selection of override baselines is not restricted in the ClearCase
environment. There is no guarantee of the relationship between baseline C.BL1 and
the override baseline Cx.BL3.

As the time approaches for a component to be completed, the use of baseline
overrides can be destabilizing to a product, because they can represent significant
code differences. These differences can be managed by coordinating the work of
the projects that produce each subsystem. As the time for completing a component
approaches, the teams can agree on the lower-level components so that conflicts
are reduced.

Bootstrap projects

If baseline relationships are known at the start of development and they do not
change much after that, you can use a bootstrap project to configure other projects
with a single composite baseline as the foundation baseline.

When you create a composite baseline for a project, the foundation baselines of the
integration stream are not affected. After the creation of the composite baseline, the
foundation of the stream still contains the baselines of the individual member
components. For development streams in the project to appropriately use the
composite baseline, you simply recommend just the composite baseline in the
integration stream. If all the member baselines remain listed in the foundation of
the integration stream, individual developers who have to rebase to the
recommended baseline can be confused by multiple baselines being listed.

To reduce the confusion, set up a special project to “bootstrap” the composite

baseline for other projects. The bootstrap project includes all of the components in
its foundation. You create the composite baseline in the bootstrap project and then
create a development project with this initial composite baseline as its foundation.

As a result, in the development project, the integration stream and the
development streams have similar foundation sets. The project integrators do not
have to keep track of the individual baselines, since the project can start with a
single, all-inclusive composite baseline. Developers in the projects that follow are
less likely to be confused when they select a baseline during a rebase operation.

Mixing project organizations

The strategy for project organizations is usually dictated by the size, structure, and
philosophy of the development team. UCM supports both release-oriented and

146 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

component-oriented projects. You can mix the two strategies, so that some projects
produce certain components, and other projects integrate components into a
release.

About managing multiple projects

Most project managers and project integrators manage a single project. However,
you may need to manage multiple releases of a project simultaneously. To do so,
you need to merge changes from one project to another. You can accomplish that
merging in the following common scenarios:

* Managing a current project and a follow-on project simultaneously
¢ Migrating unfinished work to a follow-on project

¢ Incorporating a patch release into a new release of the project

* Delivering work to another project

 Sharing baselines between sibling streams

You can also use base ClearCase tools to merge work from a UCM project to a base
ClearCase project (see[“Merging from a project to a non-UCM branch” on page]

[52).

Managing a current project and a follow-on project
simultaneously

Given the tight software development schedules that most organizations operate
within, it is common practice to begin development of the next release of a project
before work on the current release is completed. The next release may add new
features, or it may involve porting the current release to a different platform.

illustrates the flow of a current project, Webotrans 4.0, and a follow-on
project, Webotrans 4.1.

In this example in note the following points:

* The project manager for the follow-on project created the Webotrans 4.1 project
based on the Beta baselines of the components used in the Webotrans 4.0 project.
Developers on both project teams then continued to make changes, and the 4.0
and 4.1 integrators continued to create new baselines that incorporate those
changes.

* When the 4.0 team completed its work, the integrator created the final baselines,
named FCS. The 4.1 project manager then rebased the 4.1 integration stream to
the FCS baselines.

Chapter 9. Managing multiple projects 147

Project Webotrans 4.0

Integration
stream
Activity

Project Webotrans 4.1

Create project

Rebase
integration stream

Figure 44. Managing a follow-on release

To rebase an integration stream to baselines of another
project

In Project Explorer, select the integration stream that you want to rebase.
Click Tools > Rebase Stream.

In the Rebase Stream Preview window, click Advanced.

PO Dd -~

In the Change Rebase Configuration window, select a component that contains
the baseline you want to use to rebase your stream. Click Change.

5. In the Change Baseline window:
On the Windows system, click Change.

On Linux and the UNIX system, click the arrow at the end of the From
Stream field.

6. On the Windows system, in the Choose Stream window, navigate to the
integration stream of the other project. Select the integration stream and click
OK.

On Linux and the UNIX system, select the integration stream of the other
project.

148 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

This updates the Change Baseline window with the set of baselines available
in the other project integration stream.

7. In the Change Baseline window, select the component. The Baselines list
displays all baselines available for the selected component in the other
project’s integration stream. Select the baseline to which you want to rebase
your integration stream. Click OK. The baseline that you selected now
appears in the Change Rebase Configuration window.

8. Repeat Step |4 on page 148| through Step until you finish
selecting the set of baselines to which you want to rebase your integration
stream.

9. Click OK to close the Change Rebase Configuration window. Click OK in the
Rebase Stream Preview window.

10. All nonconflicting changes are merged automatically. If there are conflicting
changes, a prompt asks you whether to start Diff Merge, a tool with which
you resolve conflicting changes. For details on using Diff Merge, see the Diff
Merge Help and Developing Software online help.

Tip: You can rebase your project’s integration stream only if the baseline to which
you are rebasing is a successor of the current foundation baseline of your
integration stream. In the previous example, the FCS baseline is a successor to
the Beta baseline, which is the current foundation baseline for the Webotrans
4.1 integration stream.

Migrating unfinished work to a follow-on project

A development stream in one project can deliver its activities to a cousin stream in
another project (see .

Project PA

Stream DA

DA.BL2 \ Project PB

~«——— Deliver operation

Figure 45. Alternate target inter-project deliver operation

Work is in progress in project PA, but must be delivered before work in stream DA
can be completed. Follow-on work continues in project PB which starts from

Chapter 9. Managing multiple projects 149

recommended baselines PA.BL2 in the integration stream of project PA. (The
integration streams in projects PA and PB are siblings because they share a parent,
project PA.)

You can migrate the changes in activity al to a cousin stream DB in project PB by
using an alternate target deliver operation. Only the changes in activity al are
delivered because the remaining contents of stream DA are in stream DB. Work on
the feature that started in stream DA can be continued in stream DB.

Incorporating a patch release into a new version of the project

A common development scenario with multiple projects involves working on a
patch release and a new release of a project at the same time. illustrates
the flow of a patch release and a new release.

Project Webotrans 3.0 Project Webotrans 4.0

Y

Create projects

'

Project Webotrans 3.0
Patch

Figure 46. Incorporating a patch release

In this example shown in :

¢ Both the Webotrans 3.0 Patch and Webotrans 4.0 projects use the FCS baselines
of the components in the Webotrans 3.0 project as their foundation baselines.

150 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The purpose of the patch release is to fix a problem detected after Webotrans 3.0
was released. Webotrans 4.0 represents the next major release of the Webotrans
product.

* Development continues in both the 3.0 Patch and 4.0 projects, with the
integrators creating baselines periodically.

* The developers working on the 3.0 Patch project finish their work, and the
integrator incorporates the final changes in the BL2 baseline. The integrator then
needs to deliver those changes from the 3.0 Patch integration stream to the 4.0
integration stream so that the 4.0 project contains the fix.

Delivering work from an integration stream to another project

You can deliver work from an integration stream in one project to an integration
stream in another project. When you deliver work from an integration stream, you
must deliver baselines.

To deliver work between integration streams

1. In the source stream, make one or more baselines that incorporate the changes
you want to deliver.

2. Check the deliver policy settings for the target integration stream to confirm
that it allows deliveries from other projects. In the Project Explorer, select the
target integration stream, and click File > Policies. If the Allow interproject
deliver to project or stream policy is not enabled, ask the project manager to
change the setting to enabled.

3. In the Project Explorer, select the source integration stream, and click Tools >
Deliver Baselines To Default or Deliver To Alternate Target. To determine the
default deliver target for the integration stream, select the stream and click
File > Properties. The Deliver to box on the General tab identifies the default
deliver target. You can change the default deliver target by clicking Change.
The Deliver To Alternate Target option opens the Deliver from Stream
(alternate target) window, which lets you select the target stream.

4. In the Deliver from Stream Preview window, use Add, Change, and Remove to
select the baselines that you want to deliver. Make sure that the View box
identifies a view that is attached to the target integration stream. If necessary,
click Change to select a different view. Click OK to start the merge part of the
deliver operation.

5. All nonconflicting changes are merged automatically. If there are conflicting
changes, a prompt asks you whether to start Diff Merge, a tool with which you
resolve conflicting changes. For details on using Diff Merge, see the Diff Merge
Help and Developing Software online help.

6. When you finish merging files, test the result. When the testing is complete,
click Complete to check in the changes.

Sharing baselines between sibling streams in different
projects

Baselines can be used with rebase and deliver operations to configure streams with
changes from related streams in different projects (Figure 47).

Chapter 9. Managing multiple projects 151

Project Webotrans 4.0

Project Webotrans 3.0 Patch

~«——— Deliver operation

————— » Rebase operation

Figure 47. Baselines distributed to a different project

The integrators rebase the integration stream in the Webotrans 3.0 Patch project to
baselines BL1 and BL2 from the Webotrans 4.0 project. Rebasing in this situation
allows the integrators to test and validate the patch with ongoing development in
the follow-on project. When the integrators deliver the patch changes in the FINAL
baseline, the process of testing and validating the patch in Webotrans 4.0
integration stream is made much easier.

Note: From an integration stream, you can deliver only baselines and not
individual activities.

Merging from a project to a non-UCM branch

You may be in a situation in which part of the development team works in a UCM
project, and the rest of the team works in base ClearCase. If you are a longtime
Rational ClearCase user, you may decide to use UCM initially on a small part of
your system. This approach would allow you to migrate from base ClearCase to
UCM gradually, rather than all at once.

In this case, you need to merge work periodically from the integration stream of
the project to the branch that serves as the integration branch for the system. To do
s0, use a script similar to the one shown here, which uses base ClearCase
functionality to merge changes.

Sample Perl script for delivering contents of one UCM project to

a nonUCM project. Run this script while set to a view that sees the

destination branch.

#
Usage: Perl <this-script> <project-name> <project-vob>

use strict;

my $mergeopts = '—print';
my $project = shift GARGV;
my $pvob = shift @ARGV;
my $b1;

152 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

chdir ($pvob) or die("can't cd to project VOB '$pvob'");

print ("######## Getting recommended baselines for project
'$project'\n");

my @recbls = split(' ', 'cleartool lsproject —fmt "%[rec_bls]p"
$project');

foreach $b1 (@recbls) {

my $comp = 'cleartool 1sbl —fmt "%[component]p" $b1';
my $vob = 'cleartool 1scomp —fmt "%[root_dir]p" $comp';

print ("######## Merging changes from baseline '$b1' of $vob\n");

my $st = system("cleartool findmerge $vob —fver $b1 $mergeopts");
$st == 0 or die("findmerge error");

}

exit 0;

The script finds the recommended baselines for the integration stream from which
you are merging. It then uses the cleartool findmerge command to find differences
between the versions represented by those recommended baselines and the latest
versions in the target branch. For details, see the findmerge reference page.

You can add error handling and other logic appropriate for your site to this script
before using it.

Chapter 9. Managing multiple projects 153

154 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 3. Working in base ClearCase

© Copyright IBM Corp. 1992, 2006 155

156 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 10. Managing projects in base ClearCase

This chapter describes base ClearCase project management.

About base ClearCase project management

A project manager is responsible for planning, staffing, and managing the technical
aspects of a software development project. You decide what will be worked on,
assign work to team members of the project, establish the work schedule, and
perhaps the policies and procedures for doing the work.

When development is underway, you monitor progress and generate project status
reports. You may also approve the specific work items included in a build and
subsequently a baseline.

You may also be the project integrator, responsible for incorporating work that
each developer completes into a deliverable and buildable system. You create the
project’s baselines and establish the quality level of those baselines.

In the base ClearCase configuration, many features are offered to make this work
easier. Before development begins, you need to complete several planning and
setup tasks:

¢ Setting up the project environment

* Implementing development policies

* Defining and implementing an integration policy

This chapter introduces these topics. The remaining chapters cover the
implementation details. [Chapter 16, “Using Rational ClearCase throughout the|
[development cycle,” on page 241 |follows a project throughout the development
cycle to show how you can use Rational ClearCase features.

Before reading project management, read Developing Software online help to become
familiar with the concepts of VOBs, views, and config specs.

Setting up the project

You need to do planning and setup work before development begins.

* |“Creating and populating VOBs” on page 157

+ |“Planning a branching strategy” on page 158|

» |“Creating shared views and standard config specs” on page 159

* |“Recommendations for view names” on page 159

Creating and populating VOBs

If your project is migrating to Rational ClearCase version control from another
version control product or is adopting a configuration and change management
plan for the first time, you must populate the VOBs for your project with an initial
collection of data (file and directory elements). If your site has a dedicated Rational
ClearCase administrator, he or she may be responsible for creating and maintaining
VOBs, but not for importing data into them.

© Copyright IBM Corp. 1992, 2006 157

The IBM Rational ClearCase Administrator’s Guide includes detailed information on
these topics.

Planning a branching strategy

Branches are used to enable parallel development. A branch is an object that
specifies a linear sequence of versions of an element. Every element has one main
branch, which represents the principal line of development, and may have multiple
subbranches, each of which represents a separate line of development. For
example, a project team can use two branches concurrently: the main branch for
new development work and a subbranch to fix a bug. The aggregated main
branches of all elements constitutes the main branch of a code base.

Subbranches can have subbranches. For example, a project team designates a
subbranch for porting a product to a different platform; the team then decides to
create a bug-fixing subbranch off that porting subbranch. In a Rational ClearCase
configuration, you can create complex branch hierarchies, for example, a multilevel
branching hierarchy like that shown in on page EI As a project manager in
such an environment, you need to ensure that developers are working on the
correct branches. To do that, you must tell them which rules to include in their
config specs so that their views access the appropriate set of versions.

[Chapter 11, “Defining project views,” on page 163 | describes config specs and
branches in detail. Before you read it, a little background on branching strategies
may be helpful.

Branching policy is influenced by the development objectives of the project and
provides a mechanism to control the evolution of the code base. There are as many
variations of branching policy as organizations that use Rational ClearCase version
control. But there are also similarities that reflect common adherence to best
practices.

Some of the more common branching types and uses are:
* Task branches

Are short-lived, typically involve a small percentage of files, and are merged
into their parent branch after the task is completed. Task branches promote
accountability by leaving a permanent audit trail that associates a set of changes
with a particular task; they also make it easy to identify the task artifacts, such
as views and derived objects, that can be removed when they are no longer
needed. If individual tasks do not require changes to the same files, it is easy to
merge a task branch to its parent.

* Private development branches

Are useful when a group of developers need to make a more comprehensive set
of changes on a common code base. By branching as much of the main branch
as needed, developers can work in isolation as long as necessary. Merging back
to the main branch can be simplified if, before merging, each developer merges
the main branch to the private branch to resolve any differences there before
checking in the changed files.

* Integration branches

Provide a buffer between private development branches and the main branch
and can be useful if you delegate the integration task to one person, rather than
making developers responsible for integrating their own work.

158 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Branch names

It is a good idea to establish naming conventions that indicate the work the branch
contains. For example, rel2.1_main is the branch on which all code for Release 2.1
ultimately resides, rel2.1_feature_abc contains changes specific to the ABC feature,
and rel2.1_bl2 is the second stable baseline of Release 2.1 code. (If necessary,
branch names can be much longer and more descriptive, but long branch names
can crowd a version tree display.)

Note: Make sure that you do not create a branch type with the same name as a
label type. This can cause problems when config specs use labels in version
selectors. For example, make all branch names lowercase, and make all label
names uppercase.

Branches and Rational ClearCase MultiSite

Product Note: Rational ClearCase LT does not support Rational ClearCase
MultiSite.

Branches are particularly important when your team works in VOBs that have
been replicated to other sites with the Rational ClearCase MultiSite product.
Developers at different sites work on different branches of an element. This scheme
prevents collisions, for example, developers at two sites creating version /main/17
of the same element. In some cases, versions of files cannot or should not be
merged, and developers at different sites must share branches. For more
information, see|“Certain branches are shared among Rational ClearCase MultiSite|
lsites” on page 187

Creating shared views and standard config specs

As a project manager, you want to control the config specs that determine how
branches are created when developers check out files. There are several ways to
handle this task:

* Create a config spec template that each developer must use. Developers can
either paste the template into their individual config specs or use the Rational
ClearCase include file facility to get the config spec from a common source.

* Create a view that developers will share. This is usually a good way to provide
an integration view for developers to use when they check in work that has
evolved in isolation on a private branch.

Note: Working in a single shared view can degrade system performance.

* To ensure that all team members configure their views the same way, you can
create files that contain standard config specs. For example:
— /public/config_specs/ABC contains the ABC team config spec
— /public/config_specs/XYZ contains the XYZ team config spec

Store these config spec files in a standard directory outside a VOB, to ensure that
all developers get the same version.

Recommendations for view names

You may want to establish naming conventions for views for the same reason that
you do for branches: it is easier to associate a view with the task it is used for. The
Rational ClearCase view-creation tools suggest appropriate view names, but you
may want to use something different. For example, you can require all view names
(called view tags) to include the owner’s name and the task (bill_V4.0_bugfix) or
the name of the computer hosting the view (platinum_V4.0_int).

Chapter 10. Managing projects in base ClearCase 159

Implementing development policies

To enforce development policies, you can create Rational ClearCase metadata to
preserve information about the status of versions. To monitor the progress of the
project, you can generate a variety of reports from this data and from the
information captured in event records.

Using labels

A label is a user-defined name that can be attached to a version. Labels are a
powerful tool for project managers and system integrators. By applying labels to
groups of elements, you can define and preserve the relationship of a set of file
and directory versions to each other at a given point in the development life cycle.
For example, you can apply labels to these versions:

» All versions considered stable after integration and testing. Use this baseline
label as the foundation for new work.

* All versions that are partially stable or contain some usable subset of
functionality. Use this checkpoint label for intermediate testing or as a point to
which development can be rolled back in the event that subsequent changes
result in regressions or instability.

* All versions that contain changes to implement a particular feature or that are
part of a patch release.

Using attributes, hyperlinks, triggers, and locks

Attributes are name/value pairs that allow you to capture information about the
state of a version from various perspectives. For example, you can attach an
attribute named CommentDensity to each version of a source file, to indicate how
well the code is commented. Each such attribute can have the value unacceptable,
low, medium, or high.

Hyperlinks allow you identify and preserve relationships between elements in one
or more VOBs. This capability can be used to address process-control needs, such
as requirements tracing, by allowing you to link a source file to a requirements
document.

Triggers allow you to control the behavior of cleartool commands and Rational
ClearCase operations by arranging for a specific program or executable script to
run before or after the command executes. Virtually any operation that modifies an
element can fire a trigger. Special environment variables make the relevant
information available to the script or program that implements the procedure.

Preoperation triggers fire before the designated Rational ClearCase command is
executed. A preoperation trigger on checkin can prompt the developer to add an
appropriate comment. Postoperation triggers fire after a command has exited and
can take advantage of the command’s exit status. For example, a postoperation
trigger on the checkin command can send an e-mail message to the QA
department, indicating that a particular developer modified a particular element.

Triggers can also automate a variety of process management functions. For
example:

* Applying attributes or attaching labels to objects when they are modified
* Logging information that is not included in the Rational ClearCase event records

¢ Initiating a build and/or source code analysis whenever particular objects are
modified

160 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

For more information on these mechanisms, see [Chapter 12, “Implementing project|
[development policies,” on page 179

A lock on an element or directory prevents all developers (except those included
on an exception list) from modifying it. Locks are useful for implementing
temporary restrictions. For example, during an integration period, a lock on a
single object—the main branch type—prevents all users who are not on the
integration team from making any changes.

The effect of a lock can be small or large. A lock can prevent any new development
on a particular branch of a particular element; another lock can apply to the entire
VOB, preventing developers from creating any new element of type
compressed_file or using the version label RLS_1.3.

Locks can also be used to retire names, views, and VOBs that are no longer used.
For this purpose, the locked objects can be tagged as obsolete, effectively making
them invisible to most commands.

Global types

The Rational ClearCase global type facility makes it easy for you to ensure that the
branch, label, attribute, hyperlink, and element types they need are present in all
VOBs your project uses. The IBM Rational ClearCase Administrator’s Guide has more
information about creating and using global types.

Generating reports

An event record is created and stored each time an element is modified or merged.
Many Rational ClearCase commands include selection and filtering options that
you can use to create reports based on these records. The scope of such reports can
cover a single element for a set of objects or for entire VOBs.

You can use event records and metadata to implement project policies. (For more
detail, see|Chapter 12, “Implementing project development policies,” on page 179.)
Event records and other metadata can also be useful if you need to generate
reports on activities managed by Rational ClearCase operations (for example, the
complete history of changes to an element). a variety of report-generation tools are
provided. For more information on this topic, see the fmt_ccase reference page in
the IBM Rational ClearCase Command Reference.

Integrating changes

During the lifetime of a project, the contents of individual elements diverge as they
are branched and usually converge in a merge operation. Typically, the project
manager periodically merges most branches back to the main branch to ensure that
the code base maintains a high degree of integrity and to have a single latest
version of each element from which new versions can safely branch. Without
regular merges, the code base quickly develops a number of dangling branches,
each with slightly different contents. In such situations, a change made to one
version must be propagated by hand to other versions, a tedious process that is
prone to error.

As a project manager, you must establish merge policies for your project. Typical

policies include the following;:

* Developers merge their changes to the main branch. This can work well when
the number of developers or the number of changed files is small and the
developers are familiar with the mechanics of merging. Developers must also

Chapter 10. Managing projects in base ClearCase 161

162

understand the nature of other changes they may encounter when the merge
target is not the immediate predecessor of the version being merged, which
happens when several developers are working on the same file in parallel.

Developers merge their changes to an integration branch. This provides a buffer
between individual developers’ merges and the main branch. The project
manager or system integrator then merges the integration branch to the main
branch.

Developers must merge from the main branch to their development branch
before merging to the main branch or integration branch. This type of merge
promotes greater stability by forcing merge-related instability to the developers’
private branches, where problems can be resolved before they affect the rest of
the team.

The project manager designates slots for developer merges to the main branch.
This is a variation on several of the mechanisms already described. It provides
an additional level of control in situations where parallel development is going
on.

For more information about merging, see [Chapter 14, “Integrating changes,” on|

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 11. Defining project views

This chapter explains project views in a base ClearCase environment.

About defining project views

You need to know how config specs work and understand how config specs are
useful for project development work, for nondevelopment tasks such as monitoring
progress and doing research, and for running project builds. It also may be
necessary to know how to share config specs among the Windows system, Linux,
and the UNIX system.

How config specs work

When you create views for your project, you must prepare one or more config specs
(configuration specifications). Config specs allow you to achieve the degree of
control that you need to have over project work by controlling which versions
developers see and what operations they can perform in specific views. You can
narrow a view to a specific branch or open it to an entire VOB. You can also
disallow checkouts of all selected versions or restrict checkouts to specific
branches.

A config spec contains a series of rules that are used to select the versions that
appear in the view. When team members use a view, they see the versions that
match at least one of the rules in the config spec. The version tree of each element
is searched for the first version that matches the first rule in the config spec. If no
versions match the first rule, a version that matches the second rule is sought. If no
versions of an element match any rule in the config spec, no versions of the
element appear in the view.

The order in which rules appear in the config spec determine which version of a
given element is selected. The various examples in this chapter examine this
behavior in different contexts. For details about preparing config specs, see the
config_spec reference page.

Default config spec

The following config spec defines a dynamic configuration:
1) element * CHECKEDOUT
) element * /main/LATEST

The config spec selects changes made on the main branch of every element
throughout the entire source tree, by any developer. This is the default config spec,
to which each newly created view is initialized.

When you create a view with the mkview command or the View Creation Wizard
(the Windows system only), the contents of file default_config spec (located in
ccase—home—dir) become the config spec of the new view. A view with this config
spec provides a private work area that selects your checked-out versions (Rule 1).
By default, when you check out a file, you check out from the latest version on the
main branch (Rule 2). While an element is checked out to you, you can change it
without affecting anyone else’s work. When you check in the new version, the
changes are available to developers whose views select /main/LATEST versions.

© Copyright IBM Corp. 1992, 2006 163

The view also selects all other elements (that is, all elements that you have not
checked out) on a read-only basis. If another user checks in a new version on the
main branch of such an element, the new LATEST version appears in this dynamic
view immediately.

By default, snapshot views also include the two version selection rules shown above.
In addition, snapshot view config specs include load rules, which specify which
elements or subtrees to load into the snapshot view. For details on creating
snapshot views, see Developing Software online help.

Product Note: Rational ClearCase LT supports only snapshot views.

The standard configuration rules

The two configuration rules in the default config spec appear in many of this
chapter examples. The CHECKEDOUT rule allows you to modify existing
elements. If you try to check out elements in a view that omits this rule, you can
do so, but cleartool generates the following warning:

% cleartool checkout -nc cmd.c

cleartool: Warning: Unable to rename "cmd.c" to "cmd.c.keep":

Read-only filesystem.

cleartool: Error: Checked out version, but could not copy to "cmd.c":

File exists.

Correct the condition, then uncheckout and re-checkout the element.

cleartool: Warning: Copied checked out version to "cmd.c.checkedout".
cleartool: Warning: Checked-out version is not selected by view.

Checked out "cmd.c" from version "/main/7".

In this example, the config spec continues to select version 7 of element cmd.c,
which is read-only. A read-write copy of this version, ecmd.c.checkedout, is created
in view-private storage. (This is not a recommended way of working.)

The /main/LATEST rule selects the most recent version on the main branch to
appear in the view.

In addition, a /main/LATEST rule is required to create new elements in a view. If
you create a new element when this rule is omitted, your view does not select that
element. (Creating an element involves creating a main branch and an empty
version, /main/0.)

Omitting the standard configuration rules

It makes sense to omit one or both of the standard configuration rules only if a
view is not going to be used to modify data. For example, you can configure a
historical view, to be used only for browsing old data. Similarly, you can configure
a view in which to compile and test only or to verify that sources have been
labeled properly.

Config spec include files

164

An include file facility makes it easy to ensure that all team members are using the
same config spec. For example, the configuration rules in this config spec can be
placed in file /public/c_specs/major.csp. Each developer then needs the following
one-line config spec:

(§)) include /public/c_specs/major.csp

Note: If you are sharing config specs among Linux, the UNIX system, and
Windows computers where the VOB tags are different, you must have two

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

sources, or you must store the config spec in a directory on Linux and the
UNIX system that is also accessible from the Windows platform.

If you want to modify this config spec (for example, to adopt the
no-directory-branching policy), only the contents of major.csp need to change.

To reconfigure your view with the modified config spec
Use this command:
cleartool setcs —current

This command causes the view server to flush its caches and reevaluate the current
config spec.

Project environment for sample config specs

You can use different config specs for different kinds of development and
management tasks. The three sections that follow present sample config specs
useful for various aspects of project development, project management and
research, and project builds. This section presents the development environment
that these config specs are based on.

Developers use a VOB whose VOB tag is /vobs_monet, which has this structure:

/vobs/monet (VOB tag, VOB mount point)
src/ (C language source files)
include/ (C language header files)

Tib/ (project libraries)

For the purposes of this chapter, suppose that the 1ib directory has this

substructure:
Tib/

Tibcalc.a (checked-in staged version of
library)

Tibcmd.a (checked-in staged version of
library)

Tibparse.a (checked-in staged version of
library)

Tibpub.a (checked-in staged version of
library)

Tibauxl.a (checked-in staged version of
library)

Tibaux2.a (checked-in staged version of
library)

Tibcalc/ (sources for calc library)

Tibcmd/ (sources for cmd library)

Tibparse/ (sources for parse library)

Tibpub/ (sources for pub library)

Tibaux1/ (sources for aux1 library)

Tibaux2/ (sources for aux2 library)

Sources for libraries are located in subdirectories of lib. After a library is built in
its source directory, it can be staged to /vobs_monet/1ib.

Chapter 11. Defining project views 165

On Linux and the UNIX system, the build scripts for the project executable
programs can instruct the link editor, 1d(1), to use the libraries in this directory (the
library staging area) instead of a more standard location (for example,
/usr/Tocal/1ib).

On the Windows system, you can use the libraries in this directory (the library
staging area) instead of a more standard location by setting the LIB environment

variable or by changing the makefile.

The following labels are assigned to versions of vobs_monet elements.

Version Labels Description

R1.0 First customer release

R2_BL1 Baseline 1 prior to second customer release
R2_BL2 Baseline 2 prior to second customer release
R2.0 Second customer release

These version labels have been assigned to versions on the main branch of each
element. Most project development work takes place on the main branch. For some
special tasks, development takes places on a subbranch.

Subbranches Description

major Used for work on the application’s graphical user
interface, certain computational algorithms, and
other major enhancements

rl_fix Used for fixing bugs in Release 1.0

Windows Note: Config specs allow absolute VOB paths—absolute paths that begin
with a VOB tag but do not include a drive or view tag prefix.
This form of path is required to specify VOB elements without
regard for current drive assignments or active views. For example:

\vob_gopher\lib*
(absolute VOB path, where \vob_gopher is the VOB tag)

\monet\src*
(absolute VOB path, where \monet is the VOB tag)

Z:\monet\src*
(drive-specific path; not recommended)

M:\myview\vob_gopher\lib*
(view-extended path; not recommended)

Views for project development

The config specs in this section are useful for project development because they
enforce various branching policies.

View for new development on a branch

You can use this config spec for work to be isolated on branches named major:
1) element * CHECKEDOUT

2) element * .../major/LATEST

3) element * BASELINE_X —mkbranch major

) element * /main/LATEST —mkbranch major

In this scheme, all checkouts occur on branches named major (Rule 2).

166 I1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The major branches are created at versions that constitute a consistent baseline: a
major release, a minor release, or a set of versions that produces a working version
of the application. In this config spec, the baseline is defined by the version label
BASELINE_X.

Variation that uses a time rule

Other developers can check in versions that become visible in your view, but are
incompatible with your own work. In such cases, you can continue to work on
sources as they existed before those changes were made. For example, Rule 2 in
this config spec selects the latest version on the main branch as of 4:00 PM. on
November 12:
o)) element
2 element
(3) element
4 element

CHECKEDOUT

/major/LATEST —time 12-Nov.16:00
BASELINE_X —mkbranch major
/main/LATEST —mkbranch major

* X X *

Note that this rule has no effect on your own checkouts.

View to modify an old configuration

This config spec allows developers to modify a configuration defined with version
labels:

) element * CHECKEDOUT

2) element * .../rl fix/LATEST

3) element * R1.0 -mkbranch rl1_fix

Note the following points about the configuration:
* Elements can be checked out (Rule 1).

* The checkout command creates a branch named r1_fix at the initially selected
version (the auto-make-branch clause in Rule 3).

A key aspect of this scheme is that the same branch name, r1_fix, is used in every
modified element. The only administrative overhead is the creation of a single
branch type, r1_fix, with the mkbrtype command.

This config spec is efficient. Two rules (Rules 2 and 3) configure the appropriate
versions of all elements:

* For elements that have been modified, this version is the most recent on the
rl_fix subbranch (Rule 2).

e For elements that have not been modified, this version is the one labeled R1.0
(Rule 3).

illustrates these elements. The r1_fix branch is a subbranch of the main
branch. But Rule 2 handles the more general case, too. The ... wildcard allows the
rl_fix branch to occur anywhere in the version tree of any element, and at
different locations in the version trees of different elements.

Chapter 11. Defining project views 167

Modified Not Modified

main

Selected by
Rule 3

OHHH e
Y

Created by °
Rule 2

Figure 48. Making a change to an old version

Omitting the /main/LATEST rule

The config spec in [“View to modify an old configuration” on page 167| omits the
standard /main/LATEST rule. This rule is not useful for work with VOBs in which
the version label R1.0 does not exist. In addition, it is not useful in situations
where new elements are created. If your development policy is to not create new
elements during maintenance of an old configuration, the absence of a
/main/LATEST rule is appropriate.

To allow creation of new elements during the modification process, add a fourth
configuration rule:

@ element * CHECKEDOUT

(2) element * /main/rl_fix/LATEST

3) element * R1.0 —mkbranch rl_fix

@) element * /main/LATEST —mkbranch rl_fix

When a new element is created with mkelem, the -mkbranch clause in Rule 4
causes the new element to be checked out on the r1_fix branch (which is created
automatically). This rule conforms to the scheme of localizing all changes to r1_fix
branches.

Variation that uses a time rule

This baseline configuration is defined with a time rule.

) element * CHECKEDOUT

2) element * /main/rl fix/LATEST

3) element * /main/LATEST —time 4-Sep:02:00 —mkbranch rl_fix

View to implement multiple-level branching

This config spec implements and enforces consistent multiple-level branching.
1) element * CHECKEDOUT

2) element * .../major/autumn/LATEST

3) element * .../major/LATEST —mkbranch autumn

4) element * BASELINE X -mkbranch major

5) element * /main/LATEST —mkbranch major

A view configured with this config spec is appropriate in the following situation:

* All changes from the baseline designated by the BASELINE_X version label
must be made on a branch named major.

168 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Moreover, you are working on a special project, whose changes are to be made
on a subbranch of major, named autumn.

shows what happens in such a view when you check out an element that
has not been modified since the baseline.

Rule 4 Rule 3 Rule 2
main main main
? major ; major ; major
° autumn E autumn

(D

Figure 49. Multiple-level auto-make-branch

1. After an element is checked out, the mkbranch clause in Rule 4 creates the
major branch at the BASELINE_X version.
2. The mkbranch clause in Rule 3 creates the autumn branch at \main\major\0.

3. When the checkout operation finishes, Rule 2 applies; the most recent version,
\main\major\autumn\0, is checked out.

For more information about multiple-level branching, see the config spec and
checkout reference pages.

View to restrict changes to a single directory

This config spec is appropriate for a developer who can make changes in one
directory only, /vobs/monet/src:

1) element * CHECKEDOUT

(2) element src/* /main/LATEST

3 element * /main/LATEST —nocheckout

The most recent version of each element is selected (Rules 2 and 3), but Rule 3
prevents checkouts to all elements except those in the directory specified.

Note that Rule 2 matches elements in any directory named src, in any VOB. The
pattern /vobs/monet/src/* restricts matching to only one VOB.

You can easily extend this config spec with additional rules that allow additional
areas of the source tree to be modified.

Chapter 11. Defining project views 169

Views to monitor project status

The config specs presented in[“View that uses attributes to select versions”|through
[‘Historical view defined by a version label” on page 173|are useful for views used
for research and monitoring project status.

View that uses attributes to select versions

Suppose that the QA team also works on the major branch. Individual developers
are responsible for making sure that their modules pass a QA check. The QA team

builds and tests the application, using the most recent versions that have passed
the check.

The QA team can work in a view that uses this config spec:
1) element —file src/* /main/major/{QAOK=="Yes"}
) element * /main/LATEST

To make this scheme work, you must create an attribute type, QAOK. Whenever a
new version that passes the QA check is checked in on the major branch, an
instance of QAOK with the value Yes is attached to that version. (This can be done
manually or with a Rational ClearCase trigger.)

If an element in the /src directory has been edited on the major branch, this view
selects the branch’s most recent version that has been marked as passing the QA
check (Rule 1). If no version has been so marked or if no major branch has been
created, the most recent version on the main branch is used (Rule 2).

Tip: Rule 1 on this config spec does not provide a match if an element has a major
branch, but no version on the branch has a QAOK attribute. This command

can locate the branches that do not have this attribute:

On Linux and the UNIX system:
cleartool find . —branch '{brtype(major) & \! attype_sub(QAOK)}' —print

The backslash (\) is required in the C shell only, to keep the exclamation
point (!) from indicating a history substitution.

On the Windows system:
cleartool find . —branch "{brtype(major) && ! attype_sub(QAOK)}" —print

The attype_sub primitive searches for attributes on versions and branches of
an element and on the element itself.

This scheme allows the QA team to monitor the progress of the rest of the group

(see [Figure 50)

170 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Version that the QA
config spec selects

Version that the
development config
spec selects

Figure 50. Development config spec versus QA config spec

The development config spec always selects the most recent version on the major
branch, but the QA config spec may select an intermediate version.

Pitfalls for development of using attributes to select versions
You may be tempted to add a CHECKEDOUT rule to the config spec described in
[‘View that uses attributes to select versions” on page 170 This addition turns the
QA configuration into the following development configuration:

0) element * CHECKEDOUT

1) element —file src/* /main/major/{QAOK=="Yes"}

(2) element * /main/LATEST

It may seem desirable to use attributes, or other kinds of metadata, in addition to
(or instead of) branches to control version selection in a development view. But

such schemes introduce complications. Suppose that the conﬁi spec above selects

version /main/major/2 of element .../src/cmd.c (see [Figure 51).

Chapter 11. Defining project views 171

major

Version that is selected
by config spec

Version that is
checked out

(120:20:0:0

Figure 51. Checking out a branch of an element

Performing a checkout in this view checks out version /main/major/3, not version
/main/major/2, and generates the following message:
cleartool: Warning: Version checked out is different from version

previously selected by view.
Checked out "cmd.c" from version "/main/major/3".

This behavior reflects the Rational ClearCase restriction that new versions can be
created only at the end of a branch. Although such operations are possible, they
are potentially confusing to other team members. And, in this situation, it is almost
certainly not what the developer who checks out the element wants to happen.

You can avoid the problem by making the following indicated changes in the
config spec:

0) element * CHECKEDOUT

(0a) element * /main/major/temp/LATEST

1) element —file src/* /main/major/{QAOK=="Yes"} —mkbranch temp
) element * /main/LATEST

The modified config spec creates another branching level at the version that the
attribute selects.

View that shows changes of one developer

The following config spec makes it easy to examine all changes that a developer
has made since a certain milestone:

1) element * '/main/{created by(jackson) && created since(25-Apr)}"'
) element * /main/LATEST —time 25-Apr

Tip: Rule 1 must be contained on a single physical text line.
A particular date, April 25, is used as the milestone. The configuration is a

snapshot of the main line of development at that date (Rule 2), overlaid with all
changes that user jackson has made on the main branch since then (Rule 1).

172 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The output of the cleartool Is command distinguishes jackson’s files from the
others: each entry includes an annotation as to which configuration rule applies to
the selected version.

This is a research view, not a development view. The selected set of files may not
be consistent: some of jackson’s changes may rely on changes made by others, and
those other changes are excluded from this view. Thus, this config spec omits the
standard CHECKEDOUT and /main/LATEST rules.

Historical view defined by a version label

The following config spec defines a historical configuration:
(1) element * R1.0 —nocheckout

This view always selects the set of versions labeled R1.0. In this scenario, all these
versions are on the main branch of their elements. If the R1.0 label type is
one-per-element, not one-per-branch, this config spec selects the R1.0 version on a
subbranch. (For more information, see the mklbtype reference page.)

The -nocheckout qualifier prevents any element from being checked out in this
view. (It also prevents creation of new elements, because the parent directory
element must be checked out.) Thus, there is no need for the CHECKEDOUT
configuration rule.

Tip: The set of versions selected by this view can change, because version labels
can be moved and deleted. For example, using the command mklabel
-replace to move R1.0 from version 5 of an element to version 7 changes
which version appears in the view. Similarly, using rmlabel suppresses the
specified elements from the view. (The cleartool 1s command lists them with a
[no version selected] annotation.) If the label type is locked with the lock
command, the configuration cannot change.

You can use this configuration to rebuild Release 1.0, verifying that all source
elements have been labeled properly. You can also use it to browse the old release.

Historical view defined by a time rule

The following config spec defines a frozen configuration in a slightly different way
than the config spec that is described in ["Historical view defined by a version|

1) element * /main/LATEST —time 4-Sep.02:00 —nocheckout

This configuration selects the version that was the most recent on the main branch
on September 4 at 2 A.M. Subsequent checkouts and checkins cannot change which
versions satisfy this criterion; only deletion commands such as rmver or rmelem
can change the configuration. The -nocheckout qualifier prevents anyone from
checking out or creating elements.

This configuration can be used to view a set of versions that existed at a particular

point in time. If modifications must be made to this source base, you must modify
the config spec to “unfreeze” the configuration.

Chapter 11. Defining project views 173

Views for project builds

Certain config specs (described in [“View that uses results of a nightly build”|
through [“View that selects versions that built a particular program” on page 175)
are useful for running the various types of builds that are required for a project.

View that uses results of a nightly build

Many projects use scripts to run unattended software builds every night. The
success or failure of these builds determine the impact of any checked-in changes
on the application. In layered build environments, the builds can also provide
up-to-date versions of lower-level software (for example, libraries and utility
programs).

Suppose that every night, a script does the following operations:

* Builds libraries in various subdirectories of /vobs/monet/lib

* Checks them in as DO versions in the library staging area, /vobs/monet/lib
* Labels the versions LAST_NIGHT

You can use the following config spec if you want to use the libraries produced by
the nightly builds:

@ element *~ CHECKEDOUT

2) element 1ib/*.a LAST_NIGHT

3) element 1ib/*.a R2_BL2

@ element * /main/LATEST

The LAST_NIGHT version of a library is selected whenever such a version exists
(Rule 2). If a nightly build fails, the previous build still has the LAST_NIGHT
label and is selected. If no LAST_NIGHT version exists (the library is not
currently under development), the stable version labeled R2_BL2 is used instead
(Rule 3).

For each library, selecting versions with the LAST_NIGHT label rather than the
most recent version in the staging area allows developers to stage new versions the
next day, without affecting developers who use this config spec.

Variations that select versions of project libraries

The scheme that is described in [“View that uses results of a nightly build”|uses
version labels to select particular versions of libraries. For more flexibility, other
versions can be selected as shown by the following added rules:

(W) element » CHECKEDOUT

(2a) element 1ib/1ibcmd.a LAST_NIGHT

(2b) element 1ib/Tibparse.a LAST NIGHT

(3a) element 1ib/1ibcalc.a R2_BL2

(3b) element 1ib/*.a /main/LATEST

@ element * /main/LATEST

The LAST_NIGHT version of some libraries can be selected, the R2_BL2 version
of others, and the most recent version of still others. (Rule 3b is not required here,
because Rule 4 handles all other libraries. It is included for clarity only.)

Other kinds of metadata can also be used to select library versions. A config spec

can mix and match library versions as the following added rules indicate:
(1) element * CHECKEDOUT

174 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

2) element 1ib/Tibcmd.a {1ib_selector=="experimental"}

3) element 1ib/libcalc.a {1ib_selector=="experimental"}
4) element 1ib/libparse.a {1ib_selector=="stable"}
(5) element 1ib/*.a {1ib_selector=="released"}

(6) element * /main/LATEST

For example, lib_selector attributes can take values such as experimental, stable,
and released.

View that selects versions of application subsystems

The following config spec selects specific versions of the application subsystems:
1) element * CHECKEDOUT

(2 element /vobs/monet/1ib/... R2_BL1

3) element /vobs/monet/include/... R2_BL2

@) element /vobs/monet/src/... /main/LATEST

(5) element * /main/LATEST

In this situation, a developer is making changes to the application source files on
the main branch (Rule 4). Builds of the application use the libraries in directory
/lib that were used to build Baseline 1, and the header files in directory /include
that were used to build Baseline 2.

View that selects versions that built a particular program

The following config spec defines a view that selects only enough files that are
required to rebuild a particular program or examine its sources:
(§))] element * —config /vobs/monet/src/monet

All elements that were not involved in the build of monet appear in the output of
Rational ClearCase 1s with a [no version selected] annotation.

This config spec selects the versions listed in the config record (CR) of a particular
derived object (and in the config records of all its build dependencies). It can be a
derived object that was built in the current view, or another view, or it can be a
DO wversion.

In this config spec, monet is a derived object in the current view. You can reference
a derived object in another view with an extended path that includes a DO-ID in
the following format:

1) element * —config /vobs/monet/src/monet@@0O9-Feb.13:56.812

But typically, this kind of config spec is used to configure a view from a derived
object that has been checked in as a DO version.

Configuring the makefile

By default, a derived object config record does not list the version of the makefile
that was used to build it. Instead, the config record includes a copy of the build
script itself. (Why? When a new version of the makefile is created with a revision
to one target build script, the configuration records of all other derived objects
built with that makefile are not rendered out of date.)

But if the monet program is to be rebuilt in this view using clearmake (or

standard make on Linux and the UNIX system or omake on the Windows system),
a version of the makefile must be selected somehow. You can have clearmake

Chapter 11. Defining project views 175

record the makefile version in the config record by including the special clearmake
macro invocation $(MAKEFILE) in the target dependency list in the following
formats:

On the Windows system:

monet.exe: $(MAKEFILE) monet.obj ...
link —out:monet.exe monet.obj ...

On Linux and the UNIX system:

monet: $(MAKEFILE) monet.o ...
cc —o monet ...

The clearmake command always records the versions of explicit dependencies in
the config record.

Alternatively, you can configure the makefile at the source level: attach a version
label to the makefile at build time, and then use a config spec like the one in
Historical view defined by a version label| on page or [View to modify an old|
configuration| on page to configure a view for building. You can also use the
special target DEPENDENCY_IGNORED_FOR_REUSE. For more information,
see IBM Rational ClearCase Guide to Building Software.

Fixing bugs in the program

If a bug is discovered in the monet program, as rebuilt in a view that selects only
enough files required to rebuild a particular program, it is easy to convert the view
from a build configuration to a development configuration. As usual, when making
changes in old sources, follow this strategy:

¢ Create a branch at each version to be modified

* Use the same branch name (that is, create an instance of the same branch type)
in every element

If the fix branch type is r1_fix, this modified config spec reconfigures the view for
performing the fix in the following rules:

(W) element * CHECKEDOUT

) element * .../rl_fix/LATEST

3) element * —config /vobs/monet/src/monet —mkbranch rl_fix

@ element * /main/LATEST -mkbranch r1_fix

Selecting versions that built a set of programs

You can expand the config spec that selects only enough files required to rebuild a
particular program (see [“View that selects versions that built a particular program’|
. You can configure a view with the sources used to build a set of
programs, rather than to build a single program. Use a config spec similar to the
following one:

1) element * —config /proj/monet/src/monet
2) element * —config /proj/monet/src/xmonet
3) element * —config /proj/monet/src/monet_conf

However, there can be version conflicts in such configurations. For example,
different versions of file params.h may have been used in the builds of monet and
xmonet. In this situation, the version used in monet is configured, because its
configuration rule came first. Similarly, there can be conflicts when using a single
—config rule. If the specified derived object was created by actually building some
targets and using DO versions of other targets, multiple versions of some source
files may be involved.

176 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

As described in |[“Fixing bugs in the program” on page 176 you can modify this
config spec to change the build configuration to a development configuration.

Sharing config specs among Linux, the UNIX system, and Windows

system

In principle, you can share config specs among Linux, the UNIX system, and the
Windows system. That is, users on all types of systems, using views whose storage
directories reside on another type of platform, can set and edit the same set of
config specs.

You should avoid sharing config specs across platforms. If possible, maintain
separate config specs for each platform. However, if you must share config specs,
adhere to the following requirements:

» Use slashes (/) in paths instead of backslashes (\).

* Use relative paths instead of full paths, whenever possible. And do not use VOB
tags in paths. You can ignore this requirement if your VOB tags on Linux, the
UNIX system, and Windows systems all use single, identical path components
that differ only in their leading slash characters, for example \src and /src.

* Always edit and set config specs on Linux or the UNIX system.

For more information, see [‘Path separators” on page 177 [“Paths in config sped
felement rules” on page 177, and |“Config spec compilation” on page 178|

Path separators

When writing config specs to be shared by the Windows, Linux, and the UNIX
system, you must use slash (/) as the path separator instead of backslash (\). In
Rational ClearCase configurations on Linux or the UNIX system, only slashes are
recognized.

Tip: The cleartool command recognizes both slashes and backslashes in paths;
clearmake is less flexible. See IBM Rational ClearCase Guide to Building Software
for more information.)

Paths in config spec element rules

Network regions on the Windows system, Linux, and the UNIX system often use
different VOB tags to register the same VOBs. Only single-component VOB tags,
such as \projl, are permitted on the Windows computer; multiple-component VOB
tags, such as /vobs/src, are common on Linux and the UNIX system.

When VOB tags differ between regions, any config spec element rules that use full
paths (which include VOB tags) can be resolved when the config spec is compiled
(cleartool edcs and setcs commands) but only by computers in the applicable
network region. This implies a general restriction regarding shared config specs: a
given config spec must be compiled only on the operating system for which full
paths in element rules make sense. That is, a config spec with full paths is
shareable across network regions, even when VOB tags disagree, but it must be
compiled in the right place.

The restrictions do not apply if either of the following is true (see

lcompilation” on page 178):

* The config spec element rules use only relative paths, which do not include VOB
tags.

Chapter 11. Defining project views 177

178

* Shared VOBs are registered with identical, single-component VOB tags in the
network regions of the Windows system and Linux and the UNIX system. (The
VOB tags \r3vob and /r3vob are treated as if they were identical because they
differ only in the leading slashes.)

Config spec compilation

A config spec that is in use exists in both text file and compiled formats. A config
spec compiled form is portable. The restriction is that full VOB paths in element
rules must be resolvable at compile time. A config spec is compiled when you edit
or set it (with the cleartool edcs or cleartool setcs command or a Rational
ClearCase graphic user interface (GUI)). If a user on the other operating system
recompiles a config spec (by issuing the edcs or setcs command or causing the
GUI to execute one of these commands), the config spec becomes unusable by any
computer using that view. If this happens, recompile the config spec on the
original operating system.

The following config spec element rule may cause problems:
element \vob_p2\abc_proj_src\= \main\rel2\LATEST

If the VOB is registered with VOB tag \vob_p2 on a Windows network region, but
with VOB tag /vobs/vob_p2 in the network region on Linux and the UNIX system,
only Windows computers can compile the config spec.

To address the problem, do one of the following:
* Use relative paths that do not include VOB tags, for example:
element ...\abc_proj_src* \main\rel2\LATEST

* On Linux and the UNIX system, change the VOB tag so that it has a single
component, for example, /vob_p2.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 12. Implementing project development policies

This chapter presents scenarios that implement policies in a base ClearCase project.

About implementing project development policies

You need to know how to implement and enforce common development policies
with Rational ClearCase configurations. You can use various combinations of these
functions and metadata:

* Attributes

* Labels

* Branches

* Triggers

* Config specs

* Locks

* Hyperlinks

For information about the way to define triggers for use on Linux, the UNIX
system, and the Windows computer, see [“Sharing triggers among different types of]
iplatform” on page 188}

Good documentation of changes is required

Each Rational ClearCase command that modifies a VOB creates one or more event
records. Many such commands (for example, checkin) prompt for a comment. The
event record includes the user name, date, comment, host, and description of what
was changed.

To prevent developers from subverting the system by providing empty comments,
you can create a preoperation trigger to monitor the checkin command.

Product Note: When a trigger is fired on a Windows system, a Rational ClearCase
function proceeds based on the success or failure of the trigger
operation, as determined by the trigger script exit code. A .bat file
returns the exit code of its last command. Preoperation triggers are
the only kind of trigger that causes the Rational ClearCase
operation to fail.

Trigger definition on Linux and the UNIX system:

cleartool mktrtype —element —all —preop checkin \
—c "must enter descriptive comment" \
—exec /public/scripts/comment_policy.sh CommentPolicy

Trigger definition on the Windows system:

cleartool mktrtype —element —all —preop checkin »
—c "must enter descriptive comment" ~
—exec \\neon\scripts\comm pol.bat CommentPolicy

Trigger action script on Linux and the UNIX system:

#1/bin/sh

#

comment_policy
#

© Copyright IBM Corp. 1992, 2006 179

ACCEPT=0
REJECT=1
WORDCOUNT="echo $CLEARCASE_COMMENT | wc -w'

if [$WORDCOUNT -ge 10] ; then
exit $ACCEPT

else
exit $REJECT

fi

Trigger action script on the Windows system:

@echo off

rem comm_pol.bat

rem

rem Check for null comment

rem

if "%CLEARCASE_COMMENT%"=="" copy > NUL:

The trigger action script analyzes the user’s comment (passed in an environment
variable), and disallows unacceptable ones.

All source files require a progress indicator

You can monitor the progress of individual files or determine which or how many
files are in a particular state. You can use attributes to preserve this information
and triggers to collect it.

In this case, you can create a string-valued attribute type, Status, which accepts a
specified set of values.

Attribute definition on Linux and the UNIX system:

cleartool mkattype —c "standard file levels" \

—enum ' "inactive","under_devt","QA_approved" ' Status

Created attribute type "Status".

Attribute Definition on the Windows system:

cleartool mkattype —c "standard file levels" *
—enum "\"inactive\",\"under_devt\",\"QA_approved\"" Status
Created attribute type "Status".

Developers apply the Status attribute to many different versions of an element. Its
value in early versions on a branch is likely to be inactive and under_devt; on
later versions, its value is QA_approved. The same value can be used for several
versions, or moved from an earlier version to a later version.

To enforce consistent application of this attribute to versions of all source files, you
can create a CheckStatus trigger whose action script prevents developers from
checking in versions that do not have a Status attribute.

Trigger definition on Linux and the UNIX system:

cleartool mktrtype —element —all —preop checkin \
—c "all versions must have Status attribute" \
—exec 'Perl /public/scripts/check_status.pl' CheckStatus

Trigger definition on the Windows system:

cleartool mktrtype —element —-all —preop checkin *
—c "all versions must have Status attribute" *
—exec "ccperl \\neon\scripts\check_status.pl" CheckStatus

180 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Trigger action script:

$pname = $ENV{'CLEARCASE PN'};
$Va.| nn,

$val 'cleartool describe -short -aattr Status $pname’;

if ($val eq "") {
exit (1);
} else {
exit (0);
1

Label all versions used in key configurations

To identify which versions of which elements contributed to a particular baseline
or release, you can attach labels to these versions. For example, after Release 2 is
built and tested, you can create label type REL2, using the mklbtype command.
You can then attach REL2 as a version label to the appropriate source versions,
using the mklabel command.

Which are the appropriate versions? If Release 2 was built from the bottom up in a
particular view, you can use the following commands to label the versions selected
by that view:

cleartool mklbtype —c "Release 2.0 sources" REL2

cleartool mklabel —recurse REL2 top-level-directory

Alternatively, you can use the configuration records of the release derived objects
to control the labeling process:

clearmake vega
. sometime later, after QA approves the build:

cleartool mklabel —config vega@@l7-Jun.18:05 REL2

Using configuration records to attach version labels ensures accurate and complete
labeling, even if developers have created new versions since the release build.
Development work can continue while quality assurance and release procedures
are performed.

To prevent version label REL2 from being used again, you must lock the label
type:

cleartool Tock —nusers vobadm Tbtype:REL2

The object is locked to all users except those specified with the —nusers option, in
this case, vobadm.

Isolate work on release bugs to a branch

You can fix bugs found in the released system on a named bug-fix branch, and
begin this work with the exact configuration of versions from that release.

This policy reflects the Rational ClearCase baseline-plus-changes model. First, a
label (for example, REL2) must be attached to the release configuration. Then, you
or any team member can create a view with the following config spec to
implement the policy:

element * CHECKEDOUT

element * .../rel2 bugfix/LATEST
element * REL2 -mbranch rel2_bugfix

Chapter 12. Implementing project development policies 181

If all fixes are made in one or more views with this configuration, the changes are
isolated on branches of type rel2_bugfix. The -mkbranch option causes such
branches to be created, as needed, when elements are checked out.

This config spec selects versions from rel2_bugfix branches, where branches of this
type exist; it creates such a branch whenever a REL2 version is checked out.

Avoid disrupting the work of other developers

To work productively, developers need to control when they see changes and
which changes they see. The appropriate mechanism for this purpose is a view.
Developers can modify an existing config spec or create a new one to specify
exactly which changes to see and which to exclude.

To implement this policy, you can also require developers to write and distribute
the config spec rule that filters out their checked-in changes. The following are
sample config specs:

* To select your own work, plus all the versions that went into the building of
Release 2:

element * CHECKEDOUT
element * REL2

* To select your own work, plus the latest versions as of Sunday evening:

element * CHECKEDOUT
element * /main/LATEST -time Sunday.18:00

* To select your own work, new versions created in the graphics directory, and the
versions that went into a previous build:
element * CHECKEDOUT
element graphics/* /main/LATEST
element * -config myprog@@12-Jul.00:30
* To select your own work, the versions either you (jones) or Mary has checked in
today, and the most recent quality-assurance versions:
element * CHECKEDOUT
element * '/main/{ created since(06:00) && (created by(jones) ||
created_by(mary)) }'
element * /main/{QAed=="TRUE"}
* To use the config spec include facility to set up standard sets of configuration
rules for developers to add to their own config specs:
element * CHECKEDOUT

element msg.c /main/18
include /usr/cspecs/rules_for_rel2 maintenance

Deny access to project data when necessary

Occasionally, you may need to deny access to all or most project team members.
For example, you may want to prevent changes to public header files until further
notice. The lock command is designed to enforce such temporary policies:

* Lock all header files in a certain directory:
cleartool lock src/pub/*.h
* Lock the header files for all users except Mary and Fred:
cleartool Tock —nusers mary,fred src/pub/*.h
* Lock all header files in the VOB:
cleartool lock eltype:c_header
* Lock an entire VOB:
cleartool lock vob:/vobs/myproj

182 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Notify team members of relevant changes

To help team members keep track of changes that affect their own work, you can

use postoperation triggers to send notifications of various events. For example,

when developers change the graphic user interface (GUI), an e-mail message to the

documentation group ensures that these changes are documented.

To enforce this policy, create a trigger type that sends mail, and then attach the

trigger to the relevant elements (see |”To attach triggers to existing elements” on|
page 184).

Trigger definition on Linux and the UNIX system:

cleartool mktrtype —nc -element —postop checkin \
—exec /public/scripts/informwriters.sh InformWriters
Created trigger type "InformWriters".

Trigger action script on Linux and the UNIX system:

#1/bin/sh

#

#Init
tmp=/tmp/checkin_mail

construct mail message describing checkin

cat > $tmp <<EOF

Subject: Checkin $CLEARCASE_PNAME by $CLEARCASE_USER
$CLEARCASE_XPNAME

Checked in by $CLEARCASE_USER.

Comments:
$CLEARCASE_COMMENT
EOF

send the message
mail docgrp <$tmp
clean up

#rm -f $tmp

Trigger definition on the Windows system:

cleartool mktrtype —nc -element —postop checkin *
—exec "ccperl \\neon\scripts\informwriters.pl" InformWriters
Created trigger type "InformWriters".

Trigger action script on the Windows system:
use Net::SMTP;

my $smtp = new Net::SMTP 'neon.purpledoc.com';

$smtp->mail('Rational ClearCase Admin');
$smtp->to('Rational ClearCase Admin');
$smtp->to('docgrp');

$smtp->data();

$smtp->datasend("From: Rational ClearCase Admin\n");
$smtp->datasend("To: docgrp\n");
$smtp->datasend("Subject: checkin\n");
$smtp->datasend("\n");

create variables for path/user/comment

Chapter 12. Implementing project development policies

183

$ver = SENV{'CLEARCASE_XPN'};
$user = $ENV{'CLEARCASE USER'};
$comment = $ENV{'CLEARCASE_COMMENT'};

$var = "Version: $ver\nUser: $user\nComment: $comment\n";
$smtp->datasend($var);

$smtp->dataend();
$smtp->quit;

To attach triggers to existing elements

1. Place the trigger on the inheritance list of all existing directory elements within
the GUI source tree:

cleartool find /vobs/gui_src —type d \
—exec 'cleartool mktrigger —nattach InformWriters $CLEARCASE_PN'

2. Place the trigger on the attached list of all existing file elements within the GUI
source tree:

cleartool find /vobs/gui_src —type f \
—exec 'cleartool mktrigger InformWriters $CLEARCASE_PN'

All source files must meet project standards

To ensure that developers are following coding guidelines or other standards, you
can evaluate their source files. You can create preoperation triggers to run
user-defined programs, and cancel the commands that trigger them. For example,
you can disallow checkin of C-language files that do not satisfy quality metrics.
Suppose that you have defined an element type, c_source, for C language files

(*.0).

Trigger definition on Linux and the UNIX system:

cleartool mktrtype —element —all —eltype c_source \
—preop checkin —exec '/public/scripts/apply_metrics.sh $CLEARCASE_PN'
ApplyMetrics

Trigger definition on the Windows system:

cleartool mktrtype —element —all —eltype c_source "
—preop checkin —exec "\\neon\scripts\appl_met.bat %CLEARCASE_PN%"
ApplyMetrics

This trigger type ApplyMetrics applies to all elements; it fires when any element
of type c_source is checked in. (When a new c_source element is created, the
element is monitored.) If a developer attempts to check in a c_source file that fails
the apply_metrics.sh or appl_met.bat test, the checkin fails.

Tip: The apply_metrics.sh script and the appl_met.bat file can read the value of
CLEARCASE_PN from its environment. Having it accept a file name
argument provides flexibility because the script or batch file can be invoked
as a trigger action, and developers can also use it manually.

Associate changes with change orders

184

To keep track of work done in response to an engineering change order (ECO), you
can use attributes and triggers. For example, to associate a version with an ECO,
define ECO as an integer-valued attribute type:

cleartool mkattype —c "bug number associated with change" —vtype integer ECO
Created attribute type "ECO".

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Then, define an all-element trigger type, EcoTrigger, which fires whenever a new
version is created and runs a script to attach the ECO attribute.

Trigger definition:

cleartool mktrtype —element —all —postop checkin \
—c "associate change with bug number" \

—execunix 'Perl /public/scripts/eco.pl' \
—execwin 'ccperl \\neon\scripts\eco.pl' EcoTrigger
Created trigger type "EcoTrigger".

Trigger action script:
$pname = $ENV{'CLEARCASE XPN'};

print "Enter the bug number associated with this checkin: ";
$bugnum = <STDIN>;

chomp ($bugnum) ;

$command = "cleartool mkattr ECO $bugnum $pname";

@returnvalue = '$command’;
$rval = join "",@returnvalue;
print "$rval";

exit(0);

When a new version is created, the attribute is attached to the version. For
example:

cleartool checkin —c "fixes for 4.0" src.c

Enter the bug number associated with this checkin: 2347

Created attribute "ECO" on "/vobs/dev/src.c@@/main/2".
Checked in "src.c" version "/main/2".

cleartool describe src.c@@/main/2
version "src.c@@/main/2"

Attributes:
ECO = 2347

Associate project requirements with source files

You can implement requirements tracing with hyperlinks, which associate pairs of
VOB objects. The association should be at the version level rather than at the
branch or element level. Each version of a source code module must be associated
with a particular version of a related design document. For example, the project
manager creates a hyperlink type named DesignDoc, which is used to associate
source code with design documents.

cleartool mkhltype —c "associate code with design docs" \

DesignDoc@/vobs/dev DesignDoc@/vobs/design

Created hyperlink type "DesignDoc".
Created hyperlink type "DesignDoc".

The hyperlink inheritance feature enables the implementation of requirements
tracing:
* When the source module, hello.c, and the design document, hello_dsn.doc, are
updated, you create a new hyperlink connecting the two updated versions:
cleartool mkhlink -c "source doc" DesignDoc hello.c /vobs/design/hello_dsn.doc
Created hyperlink "DesignDoc@90@/vobs/dev".
* When either the source module or the design document incorporates a minor
update, no hyperlink-level change is required. The new version inherits the
hyperlink connection of its predecessor.

Chapter 12. Implementing project development policies 185

cleartool checkin -c "fix bug" hello.c
Checked in "hello.c" version "/main/2".

To list the inherited hyperlink, use the —ihlink option to the describe command.
On Linux and the UNIX system:

version that cleartool describe —ihlink DesignDoc hello.c@@/main/2

inherits hello.c@@/main/2

hyperlink-> Inherited hyperlinks: DesignDoc@90@/vobs/dev
version to /vobs/dev/hello.c@@/main/1 ->

which -> /vobs/doc/hel1o_dsn.doc@@/main/1

hyperlink is

explicitly

attached

On the Windows system:

version that cleartool describe —ihlink DesignDoc hello.c@@\main\2

inherits hello.c@@\main\2

hyperlink-> Inherited hyperlinks: DesignDoc@90@\dev
version to \dev\hello.c@@\main\1 ->

which -> \doc\hello_dsn.doc@@\main\1

hyperlink is

explicitly

attached

* When either the source module or the design document incorporates a
significant update, which renders the connection invalid, you create a null-ended
hyperlink to sever the connection.

cleartool mkhlink -c "sever connection to design doc" DesignDoc hello.c
Created hyperlink "DesignDoc@94@/vobs/dev".

illustrates the hyperlinks that connect the source file to the design

document.
source module design document
hello.c hello_dsn.c

DesignDoc

DesignDoc

DesignDoc

Figure 52. Requirements tracing

186 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Prevent use of certain commands

To control which users can execute certain commands on Rational ClearCase
objects, you can create a pair of trigger types.

* One type controls the use of the command on element-related objects
* Another type controls the use of the command on type objects

Both trigger types use the —nuser flag to specify the users who are allowed to use
the command.

Tip: You cannot use triggers to prevent a command from being used on an object
that is not element related or a type object. For example, you cannot create a
trigger type to prevent operations on VOB objects or replica objects.

For a list of commands that can be triggered, see the events_ccase and mkirtype
reference pages.

For example, the following commands create two trigger types that prevent all
users except stephen, hugh, and emma from running the chmaster command on
element-related objects and type objects in the current VOB:

cleartool mktrtype —element —all —preop chmaster —nusers stephen,hugh,emma \
—execunix 'Perl —e "exit -1;"' —execwin 'ccperl —e "exit (-1);"' \
—c "ACL for chmaster" elem_chmaster_ACL

cleartool mktrtype —type —preop chmaster —nusers stephen,hugh,emma \
—execunix 'Perl —e "exit -1;"' —execwin 'ccperl —e "exit (-1);"' \
—-attype —all -brtype —all —-eltype —all -1btype —-all -hltype —-all \
—c "ACL for chmaster" type_chmaster_ACL

When user tony tries to run the chmaster command on a restricted object, the
command fails. For example:

cleartool chmaster —c "give mastership to london" london@/vobs/dev \
/vobs/dev/acc.c@@/main/lex_dev

cleartool: Warning: Trigger "elem_chmaster ACL" has refused to Tet
chmaster proceed.

cleartool: Error: Unable to perform operation "change master" in
replica "lex" of VOB "/vobs/dev".

Certain branches are shared among Rational ClearCase MultiSite sites

Product Note: Rational ClearCase LT does not support Rational ClearCase
MultiSite.

If your organization uses Rational ClearCase MultiSite to support development at
different sites, you must tailor your branching strategy to the needs of these sites.
The standard MultiSite development model is to have a replica of the VOB at each
site. Each replica controls (masters) a site-specific branch type, and developers at
one site cannot work on branches mastered at another site. (For more information
on Rational ClearCase MultiSite mastership, see the IBM Rational ClearCase
Administrator’s Guide.)

However, sometimes you cannot, or may not want to, branch and merge an

element. For example, some file types cannot be merged, so development must
occur on a single branch. In this scenario, all developers must work on a single
branch (usually, the main branch). Rational ClearCase MultiSite allows only one

Chapter 12. Implementing project development policies 187

replica to master a branch at any given time. Therefore, if a developer at another
site needs to work on the element, mastership of the branch must be transferred to
that site.

Rational ClearCase MultiSite provides the following models for transferring
mastership of a branch:

* The push model, in which the administrator at the replica that masters the
branch uses the chmaster command to give mastership to another replica.

This model is not efficient in a branch-sharing situation, because it requires
communication with an administrator at a remote site. For more information
about this model, see the IBM Rational ClearCase Administrator’s Guide.

* The pull model, in which the developer who needs to work on the branch uses
the reqmaster command to request mastership of it.

Tip: The developer can also request mastership of branch types. For more
information, see the IBM Rational ClearCase Administrator’s Guide.

The pull model requires the Rational ClearCase MultiSite administrators to
enable requests for mastership in each replica and to authorize individual
developers to request mastership. If you decide to implement this model, you
must provide the following information to your Rational ClearCase MultiSite
administrator:

— Replicated VOBs that should be enabled to handle mastership requests

— Identities (domain names and user names) of developers who should be
authorized to request mastership

— Branch types and branches for which mastership requests should be denied
(for example, branch types that are site specific, or branches that must remain
under the control of a single site)

The IBM Rational ClearCase MultiSite Administrator’s Guide describes the process

of enabling the pull model and a scenario in which developers use the pull

model. The Developing Software online help describes the procedure developers
use to request mastership.

Sharing triggers among different types of platform

You can define a trigger that fires correctly depending on the type of platform on
which it runs (Linux, the UNIX system, and Windows computers). The following
techniques are available:

* [“Using different paths or different scripts”|

¢ [“Using the same script” on page 189

With one technique, you use different paths or different scripts; with the other
technique, you use the same script for all platforms. For more information about
sharing triggers, see [“Tips for sharing scripts” on page 132

Using different paths or different scripts

To define a trigger that fires on Linux and the UNIX system; the Windows system;
or both types of platform, and that uses different paths to point to the trigger
scripts, use the mktrtype command with the —execunix and —execwin options.
These options behave the same as —exec when the trigger fires on the appropriate
platform (Linux and the UNIX system for —execunix or the Windows system for
—execwin). On the inappropriate type of platform, the related script does not run.

188 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

This technique allows a single trigger type to use different paths for the scripts or
to use completely different scripts on Linux or the UNIX system and the Windows
computer. For example:

cleartool mktrtype —element —all —nc —preop checkin

—execunix /public/scripts/precheckin.sh

—execwin \\neon\scripts\precheckin.bat
pre_ci_trig

Tip: The command line example is broken across lines to make the example easier
to read. You must enter the command on one line.

On Linux or the UNIX system, only the script precheckin.sh runs. On the Windows
system, only precheckin.bat runs.

To prevent users on a new platform from bypassing the trigger process, triggers
that specify only —execunix always fail on the Windows system. Likewise, triggers
that specify only —execwin fail on Linux and the UNIX system.

Using the same script

To use the same trigger script on Linux, the UNIX system, and the Windows
system, use a batch command interpreter that runs on all operating systems. For
this purpose, the ratlperl program is included in the Rational ClearCase
configuration. You can use this version of Perl on the Windows system, Linux, and
the UNIX system. The commands Perl on Linux and the UNIX system and ccperl
on the Windows system are wrapper programs that run ratlperl.

The following mktrtype command creates sample trigger type pre_ci_trig and
names precheckin.pl as the executable trigger script.

cleartool mktrtype —element —all —-nc —preop checkin \
—execunix 'Perl /public/scripts/precheckin.pl' \
—execwin 'ccperl \\neon\scripts\precheckin.pl' \
pre_ci_trig

Note: In your scripts, you can run ratlperl directly. Ensure that you include the
following default paths to execute the scripts successfully:

¢ On Linux and the UNIX system: /opt/rational/common/
* On the Windows system: <install_location>\Rational \Common\

The value install_location is the root folder in which you installed Rational
ClearCase.

Chapter 12. Implementing project development policies 189

190 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 13. Setting up the base ClearCase integration with
Rational ClearQuest

This chapter provides an overview of the base ClearCase integration with Rational
ClearQuest and describes how to set up the integration. For information about
working in the integration, see Developing Software online help.

Overview of the base ClearCase integration with Rational ClearQuest

Rational ClearQuest is used to manage change requests, which report defects or
request modifications for a project or product. Each change request is stored as a
record in a Rational ClearQuest user database. Rational ClearCase is used to
manage versions of the elements that represent a project or product. Each version
embodies one or more changes to an element.

What the integration does

The base ClearCase integration with Rational ClearQuest associates one or more
Rational ClearQuest change requests with one or more Rational ClearCase
versions.

A single change request may be associated with multiple versions. The set of
versions that implement the requested change is called the change set for that
request.A single version may be associated with multiple change requests. These
change requests are called the request set for that version.

The base ClearCase integration with Rational ClearQuest has the following roles:

* As a Rational ClearCase project manager, you specify the conditions under which
developers are prompted to associate Rational ClearCase versions with Rational
ClearQuest change requests. You can specify VOBs, branches, and element types
for which developers can or must associate change requests.

* As a Rational ClearQuest administrator, you add Rational ClearCase definitions
to a Rational ClearQuest schema. These definitions enable change requests in
databases that use the schema to contain and display associated change sets.

* As a Rational ClearCase developer, you can:

— Associate a version with one or more change requests at the time you check
in or check out the version.

— View the change set for a request.

— Submit queries to identify the change requests that are associated with a
project over a period of time.

You can use the Rational ClearQuest Integration Query interface on a Windows

system to search for associations (see [“About the Integration Query wizard” on|
page 217)

How the integration works

To work successfully, the base ClearCase integration with Rational ClearQuest
must have:

* A VOB enabled for the integration

* A Rational ClearQuest schema upgraded with an integration package

© Copyright IBM Corp. 1992, 2006 191

* A configuration file with proper settings

About enabling a VOB and installing triggers

Using the Rational ClearQuest Integration Configuration tool that is supplied with
Rational ClearCase integrations, a project manager enables a VOB for the base
ClearCase integration. With the tool, you can do the following tasks:

* Select a VOB.

* Specify a policy for checkouts, checkins, and branch types.

* Select the version of triggers to use (either V2-Perl or V1-Visual Basic) and, for
V2-Perl triggers, select whether to use a central server configuration and trigger
files.

* Specify element type restrictions, branch type restrictions, or both.

* Specify the default Rational ClearQuest record type to be used in associations.

This enabling operation installs into the VOB triggers that fire before or after a
Rational ClearCase operation. An integration trigger calls the cqcc_launch script
which does the following tasks:

* Examines the environment to decide where the source for the trigger is stored.
* Decides the best version of Perl to use.
* Runs the config.pl file which loads the main trigger source code.

On certain Rational ClearCase operations (checkout, checkin, or cancel checkout),
the triggers fire and do the following tasks:

e Connect to the Rational ClearQuest user database

* Run a query for specific change requests in the Rational ClearQuest user
database

 Display the change request listing and prompt the developers for information

The developer associates change requests with the elements that are being accessed
by a Rational ClearCase client. When the Rational ClearCase operation completes,
the trigger stores associations (change set) in the Rational ClearQuest user database
and uses hyperlinks to store matching information (request set) in Rational
ClearCase storage. Thereafter, the result set of the Rational ClearQuest record that
has associations displays in the ClearCase tab of the client window the names of
the elements (the change set) that are associated with the defect (a change request).
For more information, see [’Setting policies and installing triggers in a ClearCase]
[VOB” on page 197

Query support

Queries in a Rational ClearQuest user database are run by the integration either
from a trigger firing or from an explicit developer selection in one of the
integration interfaces (either Browse in the GUI or Queryname in the command
line interface). You can make these queries available in the following ways:

* Provide queries in either the Personal Queries or Public Queries folder in a
Rational ClearQuest user database (Rational ClearQuest queries).

* Define queries in the integration configuration file (local queries).
By default, only local queries are available to developers. The Web interface

supports only local queries. For more information, see [’Controlling query usage”|

In making queries available to developers, keep in mind the following limitations:

192 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

¢ Currently there is no support for queries that prompt the developer for runtime
parameters. That is, Rational ClearQuest queries that contain dynamic filters are
not supported, and, if dynamic filters are used in queries in the integration, they
act as if default values were selected without user interaction.

* Only single-line text fields in query results are supported in both Rational

ClearQuest and local queries. The integration provides no special handling for
multiple-line output within text fields.

¢ The first field in the query result set must be the Rational ClearQuest record ID.
For more information, see [“SetResultSet” on page 206.|

About locally stored information

Between invocations, the integration stores information in local files on the end
user host. The locally stored information is used to track operations that span
multiple trigger calls. This information is kept in files with names in the format
.cqcc_text. On Linux and the UNIX system, the files are stored in the user home
directory. On the Windows system, the files are stored in the user profile folder
under \Application Data\Rational\CQCC\.

Tip: The Rational ClearQuest login information is encrypted in a locally stored file
(.cqcc_params). To change to an alternate Rational ClearQuest login account,
remove this file. If the file is not found, a new login is forced when the trigger
is next called and the new information is stored in the file.

Product note: Because the integration stores information in one central location
dependent on the identification of the user, it cannot be safely run in
multiple shells or windows on the same machine at the same time
under the same user identification. And, on Linux and the UNIX
system, the integration cannot be run under the same user
identification on different machines because the information is
stored in the user home directory.

About trigger versions

In the Rational ClearQuest Integration Configuration tool, you specify the version
of the trigger that the integration should use on checkin and checkout operations.
You can select V2-Perl for use on Linux and the UNIX system and either V2-Perl
or V1-Visual Basic for use on the Windows system. Prior to Rational ClearCase
version 2002.05.00, the integration used a Visual Basic trigger (V1-Visual Basic)
through the CQIntSvr interface on the Windows system and a Perl trigger (V1-Perl)
through the Rational ClearQuest Web server interface on Linux and the UNIX
system. In Rational ClearCase version 2002.05.00, a Perl trigger (V2-Perl) was
added that runs on the Windows system and on Linux and the UNIX system. (This
trigger is also available in a patch to Rational ClearCase Release 4.2).

You can choose the following triggers:

¢ V2-Perl refers to the cross-platform Perl trigger. The same trigger code works on
Linux, the UNIX system, and the Windows system.

* V1-Visual Basic refers to the separate Visual Basic implementation on the
Windows system.

* V1-Perl refers to the earlier Perl trigger on Linux and the UNIX system that is
superseded by the V2-Perl trigger. The V1-Perl trigger is no longer supported.

The V2-Perl trigger provides both a text-based user interface for developers who
use the cleartool command-line interface and a graphic user interface (GUI) for
developers who use one of the Rational ClearCase GUIs, for example, ClearCase
Explorer (on the Windows system) or xclearcase (on Linux and the UNIX system).

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 193

If you are configuring the integration for the first time, use the V2-Perl trigger. If
you currently use the V1-Visual Basic trigger, evaluate the V2-Perl trigger and
consider migrating to it.

The V2-Perl trigger uses a configuration file called config.pl, which specifies your
local configuration parameters or centrally-defined configuration parameters.

About the integration package

To install the base ClearCase integration with Rational ClearQuest requires that the
Rational ClearQuest schema designer add the ClearCase 1.0 package to an existing
schema. The package accompanies the Rational ClearQuest product and supplies
new stateless records to target record types. The Rational ClearQuest administrator
then upgrades the Rational ClearQuest user database with the revised schema.
Because you cannot remove a package after you add a package to a schema, the
Rational ClearQuest documentation suggests that you use a test environment
before you modify your production environment. For more information about
installation, see [“Setting up the Rational ClearQuest user database for basel
[ClearCase” on page 196)

About the configuration file
In the integration configuration file config.pl, the project manager sets the options
and policies that determine the operational details. The config.pl file provides the
following information and control:

Rational ClearQuest connection information
Determines whether you connect to the user database with the Rational
ClearQuest client or the Rational ClearQuest Web interface, specifies to
what targets you connect (database set, user database, or record types), and
controls what query information is presented to the developer (see
‘Connecting Rational ClearCase clients and a Rational ClearQuest user|
database” on page 203)

Rational ClearCase policies
Determines whether single or multiple associations are allowed, which
queries are allowed, and what restrictions are placed on queries (see
[‘Making policy choices” on page 209)

Performance
Controls use of options to improve processing efficiency, including
auto-batch, auto-association, and batch-series; obtaining associations from
Rational ClearCase comments; and commit after the checkin (see
[‘Enhancing performance” on page 211))

Debugging
Provides logging and timing information (see ['Debugging and analyzing|
loperations” on page 215)

Policy regarding customization and support

Project managers can make changes in the integration by editing the config.pl file.
Integration source code changes that are made outside the config.pl file are
possible, but are not supported.

The following is supported: the integration as provided and local configuration
changes that you make by using the configuration parameters in the configuration
file (config.pl).

Source code changes to the integration are not supported although source code is
provided as Perl scripts. If you request additional information from IBM Customer

194 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Support, you can receive internal documentation that describes making changes
through creating and using subclasses in the Perl trigger. To enable local sites to
make judicious changes, the requested internal documentation describes the use of

subclasses to separate cha

nges that you make and the main body of code that is

supplied with the product. For information on using the subclasses, see

[“Customizing the integration” on page 217.|But local source code changes cannot

be and are not supported

by IBM Customer Support.

Checklist of configuration steps
Refer to for a checklist of steps to configure the base ClearCase integration

with Rational ClearQuest.

Table 5. Configuration checklist

Location

Step

On the ClearCase system

Create a ClearCase VOB and mount it.

Create views.

On the ClearQuest system

Set up your schema repository, user database, and the
ClearQuest client.

In the user database, open Designer, open the Package Wizard,
select ClearCase 1.0 package, and apply it to the schema.

Enable the ClearCase 1.0 package for record types in the
schema.

Check in the schema and upgrade the user database.

On the ClearCase system

Start configuring the integration (see|“To start the Rationall
[ClearQuest Integration Configuration tool” on page 199).

Select the appropriate ClearCase VOB. (If the VOB is on Linux
or the UNIX system, set up the environment for
inter-operation.)

Select desired policy settings (Checkin, checkout, branch-type
restrictions, and appropriate element-type restrictions).

Enter record type. (This allows for only a single default

reference, but multiple types are supported. See |“Defining thel
Rational ClearQuest user database and database set” on page|
D04,

Select trigger type (V2-Perl in this case) for Windows and
Linux and the UNIX system.

Specify the config.pl path and set trigger scripts option to use
a shared location (see ["Using a shared configuration file and)|
[triggers” on page 198).

Modify config.pl with the appropriate configuration
parameters (see [“Summary of configuration parameters” on|

lpage 201).

Use cqce_launch -test to see whether the basic
communications is working (see|[“Testing the integration” on|

page 219

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 195

Planning for the base ClearCase integration with Rational ClearQuest

After you successfully install both Rational ClearCase and Rational ClearQuest
products, you should establish a test environment in which to evaluate what works
well in your organization. Establishing a test environment requires someone who
has Rational ClearCase administrator rights (for example, to create and own a
VOB) and someone who has Rational ClearQuest administrator rights (for
example, to create a user database and install packages and upgrade schemas). The
evaluation can involve the following activities:

* Establish in a test environment a VOB that is like your production VOB and
install the triggers to become familiar with the way the integration works.
Ensure that the VOB is not UCM (that is, it will not contain UCM components).

* Create a production user database for testing purposes.

* Use the procedures defined in this chapter and the tasks defined in the online
help to set up the Rational ClearQuest user database that you created for testing
purposes, to configure the base ClearCase integration with Rational ClearQuest,
and to connect the environments.

 Try different policies, performance options, and configuration options to see
what works best.

* Use the test VOB to confirm that the configuration and options work.

An important deployment decision is whether to use a local or a central
configuration. By default, the configuration file and trigger source files reside on
each client machine. Because this arrangement is difficult to maintain, it is better to
define a central location on which you maintain one copy of the configuration file
and trigger source files. In the central arrangement, any changes are made in only
one location and the one location is more easily made secure.

When you settle on an environment that works, communicate to developers how
to work with the integration and publicize the policies that are to be in effect in
the production VOBs. Then, install the triggers in a production VOB, apply the
same configuration information that you established in the tested configuration,
and perform the same basic tests again.

Setting up the Rational ClearQuest user database for base ClearCase

Before developers can associate Rational ClearCase versions with Rational
ClearQuest change requests, the Rational ClearQuest administrator needs to
configure Rational ClearQuest in the following manner:

* Add Rational ClearCase definitions to a Rational ClearQuest schema.

Use the Rational ClearQuest Designer’s Package Wizard to add the definitions
(see [“Adding Rational ClearCase definitions to a Rational ClearQuest schema’]
|on page 197). You associate the Rational ClearCase definitions with one or more
record types and their related forms. Each form then contains a ClearCase tab
that displays the change set for a change request.

* Use the Rational ClearQuest Designer to upgrade the database with the new
version of the schema. See the Upgrading an existing database topic in the Rational
ClearQuest Designer Help. If you move the integration to a different database,
repeat this step for that database.

196 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Adding Rational ClearCase definitions to a Rational
ClearQuest schema

A Rational ClearQuest schema contains the attributes associated with a set of
Rational ClearQuest user databases, including definitions of record types, fields,
and forms. The Rational ClearQuest administrator must add some Rational
ClearCase definitions to the schema that the database uses. To do so, the Package
Wizard within Rational ClearQuest Designer is used.

Note: If you are using a version of Rational ClearQuest earlier than version 2.0,

use the Rational ClearQuest Integration Configuration tool to add Rational
ClearCase definitions to a Rational ClearQuest schema.

To add Rational ClearCase definitions to and upgrade a Rational
ClearQuest schema

1.

Click Start > Programs > IBM Rational > IBM Rational ClearQuest >
ClearQuest Designer.

In Rational ClearQuest Designer, click Package > Package Wizard.

In the Package Wizard, look for the Rational ClearCase 1.0 package. If this
package is not listed, click More Packages, and add it to the list from the
Install Packages window.

Select ClearCase 1.0, and click Next.

Select the schema for the Rational ClearQuest user database that you want to
use in the integration. Click Next.

Do one of the following actions:

* If you use the V2-Perl trigger, you can specify multiple record types. Click
Finish.

 If you use the V1-Visual Basic trigger, select the record type of Rational
ClearQuest records to be associated with Rational ClearCase versions. Use
this record type when you specify the ClearQuest Record Type field in the
Rational ClearQuest Integration Configuration tool (see [‘To start the Rationall
[ClearQuest Integration Configuration tool” on page 199).

Click File > Check In to save the new version of the schema.

Click Database > Upgrade Database to upgrade the Rational ClearQuest user
database with the new version of the schema.

Setting policies and installing triggers in a ClearCase VOB

Before developers can associate Rational ClearCase versions with Rational
ClearQuest change requests, you need to configure Rational ClearCase as follows:

Using the Rational ClearQuest Integration Configuration tool, for each VOB, set
policies that determine the conditions under which developers are prompted to
associate versions with change requests. You can specify that developers are
prompted on checking out a version, checking in a version, or both. You can also
specify that prompting occurs only for some branch types or element types.
Associations of checked-in versions with change requests can be either optional
or required.

Using the Rational ClearQuest Integration Configuration tool, select the trigger
type that is to be used. If you use the V2-Perl trigger, you need to modify a
configuration file to set database connectivity information and additional policy
parameters (see [“Editing the configuration file” on page 200).

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 197

The base ClearCase integration with Rational ClearQuest uses Rational ClearCase
element triggers on cleartool checkin (preoperation and postoperation), checkout
(postoperation), and uncheckout (preoperation) commands to allow developers to
associate versions with Rational ClearQuest change requests.

To start the Rational ClearQuest Integration Configuration tool, seel”To start th;l
[Rational ClearQuest Integration Configuration tool” on page 199

Using a shared configuration file and triggers

In the Rational ClearQuest Integration Configuration tool, if you set V2-Perl, you
have the following options:

¢ Use a local configuration file and local trigger scripts (default).

* Use a shared, centrally located configuration file and local copies of trigger
scripts.

* Use a shared, centrally located configuration file and shared trigger scripts.

By default, the Path field is filled in with CQCC/config.pl, the path to the
configuration file. In this path, the value CQCC resolves to the following value on
each local client:

ccase—home—dir/1ib/CQCC

By default, the cqcc_launch script is installed in the following location on each
local client:

ccase—home—dir/bin

On the Linux and UNIX system, the script is cqcc_launch; on the Windows system,
the script is cqcc_launch.bat.

In this configuration, each time the integration starts or a trigger fires on a client
machine, the local instances of the configuration file, the cqcc_launch script, and
trigger scripts are run. This is the default configuration.

To define a central location for accessing a shared, centrally located configuration
file, in the Rational ClearQuest Integration Configuration tool, provide a sitewide
path to the configuration file. To provide the path, change the Path field to a UNC
path to a Windows system or to a full path to the Linux or the UNIX system that
contains the configuration file and the cqcc_launch script. The integration uses that
one central configuration file and the cqcc_launch script for all users of VOBs that
are enabled for Rational ClearQuest. All users will run the shared, centrally located
copy of the config.pl file. This configuration uses local copies of trigger scripts.

If you set Use trigger scripts in Path directory, you can use shared, centrally
located trigger scripts with the centrally located configuration file. This setting
allows you to centralize the trigger source code in one location. Triggers installed
with this option look for the configuration file, cqcc_launch script, and trigger
source code in the same directory in which the configuration file is located. This is
the best configuration because it is easiest to secure and maintain.

If you use a centrally located configuration file or trigger scripts, perform some
housekeeping procedures to set up the central location. This set-up involves
copying the requisite files from the installed location on a Rational ClearCase
system to the central location. For more information, see the online Help in the
Rational ClearQuest Integration Configuration tool.

198 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

In support of the configuration, the cqcc_launch script provides as a convenience
the following command-line option:

cqcc_launch -vob

This command searches the current VOB for its checkout trigger to determine the
correct paths and configuration file to use in launching the script.

Installing triggers in a VOB on Linux and the UNIX system

If the VOB resides on Linux or the UNIX system, install the triggers from a
Windows system that uses the same registry server as the system on which the
VOB resides. The VOB tag must be imported from the region in which the Linux
and the UNIX systems run to the region in which the Windows system runs. Then,
you can use the Rational ClearQuest Integration Configuration tool.

To start the Rational ClearQuest Integration Configuration tool

1. Log into the system as the VOB owner.
2. Use one of the following methods:

* On a system that runs Rational ClearCase, click Start > Programs > IBM
Rational > IBM Rational ClearCase > Administration > Integrations >
ClearQuest Integration Configuration.

* On a system that runs Rational ClearCase LT server, click Start >
Programs > IBM Rational > IBM Rational ClearCase LT > ClearQuest
Integration Configuration.

 Enter cqconfig at the command prompt.

3. In Select a VOB, select a VOB tag in the list.

4. In the Windows Trigger Selection or UNIX Trigger Selection fields of the
Rational ClearQuest Integration Configuration window, specify which trigger
you want to use by clicking one of the following options:

* V2-Perl which refers to the cross-platform Perl trigger.

* V1-Visual Basic which refers to the Visual Basic triggers (the Windows
system only).

For more information about triggers, see|”About trigger versions” on page 193

For information about completing the other fields in the tool, click Help within the
tool.

To specify multiple record types

1. In the Rational ClearQuest Integration Configuration tool, specify the DEFAULT
record type. See [“To start the Rational ClearQuest Integration Configuration|

2. When you edit the config.pl file, specify multiple record types that the user can
select when the integration runs. See [“Defining the Rational ClearQuest user]
[database and database set” on page 204]

To list triggers installed in a VOB

Enter the Istype command to see the types of triggers in a specific VOB. For
example:

On Linux and the UNIX system:
cleartool 1stype -kind trtype -invob /vobs/my_vob

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 199

On the Windows system:
cleartool 1stype -kind trtype -invob \my_vob

Information about the triggers defined in the specified VOB are displayed. For

example:

cleartool 1stype -kind trtype -invob \my_vob

08-Jun.08:07 username trigger type "cq_ci_trigger"
"ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_co_trigger"
"ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_postci_trigger"
"ClearQuest Integration"

08-Jun.08:07 username trigger type "cq_unco_trigger"
"ClearQuest Integration"

Use the describe command to see information about a specific base ClearCase
integration with Rational ClearQuest trigger. For example:

On Linux and the UNIX system:
cleartool describe trtype:cq_co_trigger@vob:/vobs/my_vob

On the Windows system:
cleartool describe trtype:cq_co_trigger@vob:\my_vob

Information about the postoperation checkout trigger is displayed.

Quick start for evaluations

The default configuration file is set to use the SAMPL user database that is
provided for evaluations in the Rational ClearQuest configuration. You can test the
integration with the SAMPL Rational ClearQuest user database. If Rational
ClearQuest is installed on the client machine, the base ClearCase integration with
Rational ClearQuest uses the Rational ClearQuest Perl API to communicate with
the Rational ClearQuest user database.

If Rational ClearQuest is not installed on the client machine, the integration uses
the Rational ClearQuest Web Interface to communicate with the Rational
ClearQuest user database. To use the Web interface, set server name in the
configuration file or use the optional environment variable (see [“Establishing the]
[Rational ClearQuest Web interface” on page 203).

Editing the configuration file

The configuration file contains parameters that define local policy choices and how
to access Rational ClearQuest user databases. Before you can edit the configuration
file, change its permissions to make it modifiable.

Overview of the configuration file

The configuration file is set to access the Rational ClearQuest SAMPL user
database and use the defect record type. To use the integration with a different
Rational ClearQuest user database or record type, you need to change
configuration parameters (see [“Summary of configuration parameters” on page
. The configuration file contains comments that describes the values that are
allowed of configuration parameters. Information about the integration and
configuration parameters that could not be put in the product documentation is
made available in the README file in the same folder as the configuration file.

200 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Locating the configuration file
When Rational ClearCase is installed, the following file is placed on the system:
ccase—home—dir\1ib\CQCC\configTemplate.p]l

If there is no existing file with the same name, the following file is also placed on
the system:

ccase-home—dir\1ib\CQCC\config.p]

If the local configuration file config.pl exists, the installation tries to avoid
replacing that file because it contains your changes. The installation action depends
on the platform type.

* On Linux and the UNIX system, no new version of the config.pl file is installed.
The current version is preserved.

To take advantage of the latest changes, copy the new information from the
configTemplate.pl file to the config.pl file.

* On the Windows system, if the installed version is not modified (based on
comparing the date stamp on the file and the original installation date), the
latest version of the config.pl file is installed.

If the installed version is modified, no new version of the file is installed. The
current version is preserved.

To see the latest changes in configuration information, compare the config.pl and
the configTemplate.pl files. If you make changes to your configuration, edit the
configTemplate.pl file and save the changes to both configTemplate.pl and
config.pl. By locating the configuration file in a central place, you simplify the task
of implementing the latest changes. For more information, see [‘Using a shared|
fconfiguration file and triggers” on page 198)

If you uninstall Rational ClearCase, both configlemplate.pl and config.pl are
removed from the system. However, on Linux and the UNIX system, the config.pl
file is first copied to the standard file preservation area and then removed from its
original location.

Configuration file use and format

The config.pl file is a Perl script that contains comments and commands for local
site configuration information. You change one or more configuration parameters
in one Perl function called ConfigureTrigger. Remaining functions in the script call
that function to implement the change. The script runs to establish the
configuration and to call the main trigger routine. Each configuration parameter
has the following general format:

Name: [ENV] (Default: value)

values
Sample to enable

The [ENV] notation indicates whether the related configuration parameter can be
set as an environment variable in the developer’s context. In the Default: entry,
value indicates what the integration uses if you do not edit the sample line. The
line with values shows all possible selections that you can use in the Sample to
enable line. Edit the sample line with your change and remove the pound (#)
character from the beginning of the line to enable your change.

Summary of configuration parameters
Configuration parameters provide the following functional capabilities:

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 201

* |"Connecting Rational ClearCase clients and a Rational ClearQuest user]
database” on page 203|

* [“Making policy choices” on page 209

* [“Enhancing performance” on page 211|

+ |“Debugging and analyzing operations” on page 215

summarizes the configuration parameters that you can set in the config.pl
file. Some of the configuration parameters have related environment variables of
the same name that you or your developers can set in their local context. These
parameters are noted by Yes in the Locally settable column of All
parameters are described more fully in the subsequent sections about functional
capabilities.

Table 6. Configuration parameters summary

Locally
Configuration parameter Description settable

CQCC_ASSOC_BATCH_CONFIRM Displays a window that confirms that Yes
the batch completed successfully.

CQCC_ASSOC_BATCH_ENABLE Allows delay in processing multiple Yes
Rational ClearQuest association
transactions until end of single Rational

ClearCase operation or user-defined
batch

CQCC_ASSOC_BATCH_SERIES Specifies that a user-defined series is Yes
active and normal Rational ClearCase
series-end processing should be
suppressed

CQCC_AUTO_ASSOCIATE Sets one or more change requests for Yes
automatic association on checkout and
checkin without user interaction

CQCC_AUTO_ASSOCIATE_ENABLE Specifies whether developers can use No
CQCC_AUTO_ASSOCIATE

CQCC_COMMENT_PATTERN Sets pattern by which developers can No
make associations in a checkout or
checkin comment

CQCC_CQWEB_ONLY Forces use of Rational ClearQuest Web No
interface
CQCC_CQWEB_VERSION Specify either 2.0 (Java'") or "1.0" (ASP Yes

with IIS) as Rational ClearQuest Web
server protocol

CQCC_DATABASE_ENTITY_LIST Defines logical name of database and No
related record types (entities) that
support associations.

CQCC_DATABASE_SET Database set name (connection) for one Yes
of multiple schema repositories; used
with CQCC_DATABASE_ENTITY_LIST

CQCC_DEBUG Controls level of output generated for Yes
problem diagnosis; 0 (none), 1 (basic), 2
(verbose)

CQCC_GUI_ENABLE Allows use of Perl/TK graphic user Yes
interface

CQCC_LOG_OUTPUT Records to a log file messages for Yes

problem diagnosis

202 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Table 6. Configuration parameters summary (continued)

Locally
Configuration parameter Description settable
CQCC_MULTIPLE_ASSOCS Allows or prevents multiple defects to ~ No
be associated with change
CQCC_MULTISITE Enables Rational ClearCase MultiSite No
support
CQCC_POSTCHECKIN_COMMIT Allows commitment of associations in No
Rational ClearQuest user database to be
delayed until checkin completes in
Rational ClearCase VOB
CQCC_QUERY_ENABLE Allows developer-selected queries for No
making associations
CQCC_QUERY_FILTER Controls which queries are presented to No
developers for associations
CQCC_REPLICA_NAME For Rational ClearQuest Web client to Yes
specify user database replica name
CQCC_RESTRICTIONS_TIMEOUT Specifies number of seconds that a Yes
restrictions check can be reused during
batch processing
CQCC_SERVER Name of Rational ClearQuest Web Yes
server
CQCC_SERVERROOT Name of folder in which Rational Yes
ClearQuest Web server is located
CQCC_SERVER_SSL Enables secure communications for the Yes

Rational ClearQuest Web connection.

CQCC_TIMER

Allows recording of internal timing data Yes

CQCC_WEB_DATABASE_SET

CQCC_DATABASE_SET for Web server

Yes

Connecting Rational ClearCase clients and a Rational ClearQuest user

database

You have multiple options for connectivity.

Establishing the Rational ClearQuest Web interface

If the Rational ClearQuest client is installed on a developer system, it is used by
default. If the Rational ClearQuest client is not installed on a developer system, the
Rational ClearQuest Web Interface is the default interface. To enable a client to use
the Rational ClearQuest Web Interface, set the following configuration parameters
in the configuration file or the environment variables from the command-line

prompt:

Configuration parameter or environment variable

CQCC_CQWEB_VERSION

Because two versions are supported, configure the correct protocol. 2.0
(Rational ClearQuest Web Java protocol) is the default. 1.0 (Rational
ClearQuest Web ASP) is for earlier Rational ClearQuest Web servers.

CQCC_SERVER

Specifies the name of the host at which the Rational ClearQuest Web server
resides and uses port 80. To specify a different port, add to the host name

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 203

a colon (:) and the number of the port; for example, myhost:81 specifies
that port number 81 be used instead of port 80.

CQCC_SERVERROOT
Specifies the root directory in which the Rational ClearQuest Web Interface
files are installed; usually cqweb.

CQCC_SERVER_SSL
Specify TRUE to enable secure communications for the Rational ClearQuest
Web connection. The URL is set to use https:. Specify FALSE (the default)
to use http: as the protocol.

If you enable secure communications, more time is used to establish a new
connection when a trigger fires and a connection to a Rational ClearQuest
user database is required relative to establishing an ordinary connection.

Configuration parameter only

CQCC_CQWEB_ONLY
Set this to force use of the Rational ClearQuest Web Interface even if the
Rational ClearQuest client is installed.

Defining the Rational ClearQuest user database and database
set

By default, the base ClearCase integration with Rational ClearQuest uses the
SAMPL user database with a defect record type. Use the configuration parameter
CQCC_DATABASE_ENTITY_LIST in the configuration file to specify the logical
name of the Rational ClearQuest user database and record types in your
production environment that support associations. You can specify multiple record
types per database. For each Rational ClearQuest user database, you must provide,
in a list format, record types (entities) that accept Rational ClearCase associations.
This list is used to provide choices to the developers when they make associations.

Use the following format:
dbnamel: entityl,entity2; dbnamel: entity3,entity4

For an entity, specify the record type. For example:
&SetConfigParm("CQCC_DATABASE ENTITY LIST","SAMPL: defect");

The database name is case sensitive. For each record type that you specify, describe
the field names in the schema definition (see [“Establishing the schemas” on page|

)

Database sets (connections) allow developers to select from multiple schema
repositories when they start a ClearQuest client or the base ClearCase integration
with Rational ClearQuest. Only one database set is supported. In the integration, if
your site uses multiple database sets, define CQCC_DATABASE_SET to specify the
database set that is used for the integration and for the Rational ClearQuest native
client interface. In CQCC_DATABASE_SET, supply the database connection name
that you created in the Rational ClearQuest Maintenance tool. For example:

&SetConfigParm("CQCC_DATABASE_SET", "cqcc_db");

If you also use the Rational ClearQuest Web interface, supply this name in
CQCC_WEB_DATABASE_SET. For example:

&SetConfigParm("CQCC_WEB_DATABASE_SET", "cqcc_db");
If you set both configuration parameters, the names can differ.

204 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Establishing the schemas

Schemas provide more information about Rational ClearQuest record types
(entities) to identify field names and query definitions. If the schemas share basic
information in common, the schemas can describe one or more record types but do
not distinguish between different user databases.

Overview of DefineCQSchema

In the configuration file, edit the DefineCQSchema() definition to provide the
required and optional field names. Map your database field names to conventions
that are used in SAMPL database. This mapping allows query definitions to be
more generic, but also tells the integration what field names to use for its own
operations, for example, internal queries that it has to do. Certain field names are
required, for example, ID, OWNER, STATE, and HEADLINE.

Tip: The ID field must be first in the results set. The field is used to select records
for later operations.

Add other field names for your convenience, but these other mappable names are
not required by the integration. Field names can be used directly in queries that
you define if at least the required fields are made known to the integration.

The integration uses a CQSchema object to relate the field names that are defined
to the field names that you use in your local record types. A CQSchema is loosely
related to a Rational ClearQuest schema, but it really just describes record type
fields and queries that are needed by the integration. It accomplishes the following
tasks:

* Defines a new CQSchema and provides a set of similar record types (entities)
and properties (DefineCQSchema)

* Relates the field names of the defect record type to those used by the record
types that you specify (ChangeFieldMap)

* Defines one or more queries (SetQuery) that are used by the trigger to provide

the QUERY option that the developers see and specifies the final
RESTRICTIONS check that is made before associations are made

* Defines the query output format (SetResultSet)

DefineCQSchema
$s = DefineCQSchema (NAME=>name, ENTITY_ LIST=>entitylList,
RESTRICTIONS=>queryName) ;
NAME
Used only to provide a unique reference. Change the NAME for the new
schema.

ENTITY_LIST
Provides one or more record types. For example, "defect,feature,patch”.

RESTRICTIONS
Optional; refers to a query within the schema that defines conditions that
new associations must meet. For example, the change request must be in a
specific state. If you do not provide any restrictions, any existing change
requests can be used.

For example:

$s = &DefineCQSchema (NAME=>"MainSchema",
ENTITY_LIST => "defect",
RESTRICTIONS => "STANDARD");

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 205

ChangeFieldMap

$s->ChangeFieldMap(name=>value, ...)

ChangeFieldMap() is a hash list that maps standard field names (for example,
Owner) to a local name that you specify in value. The name is usually the name of
a field in the SAMPL defect record type, but you can use any name that needs
mapping in a query. The field map names are used in query or result set lists as
variables. For example:

$s->ChangeFieldMap (OWNER => "Owner",
STATE => "State",
ID => "id", #Note: ID shouldn't need to change
HEADLINE => "Headline",
PRIORITY => "Priority",
SEVERITY => "Severity",
RATL_MASTERSHIP => "ratl_mastership",

Other mappable names

QUERY_STATES => "Submitted,Assigned,Opened",
MODIFY => "modify"

)s

The value for <OWNER> is translated to the local value that you provide in the
OWNER=>"Qwner" pair.

Tip: If you use multiple record types, the field names in the mapping must be
present in all record types.

SetQuery

$s->SetQuery (queryName, clausel, clause?, ...);

SetQuery() provides a named set of filter clauses for the query. It can directly use
your local field names or rely on the field map to translate them when left angle
brackets (<) and right angle brackets (>) are used. The value queryName is local to
the current schema. STANDARD is used for the QUERY option, but you can define
a second query to present an alternate restrictions query. The value clauseN is a
string defining a condition in the format field operator value. For example:
$s->SetQuery ("STANDARD",

"<OWNER> eq <*USER*>",

"<STATE> in <QUERY_STATES>");

Use only commas to separate multiple values.

Tip: SetQuery() is effectively an AND group of clauses. OR or NOT connectives
are not supported.

SetResultSet
$s->SetResultSet (queryName,1D,fieldList,formatString);

SetResultSet() identifies the fields that the query should return.

The value fieldList is a comma-separated list of field names. The first field must be
ID (generated by Rational ClearQuest) because the integration must be able to
identify and work with the selected records. A customer-generated ID field does

not meet this requirement.

The value formatString is a standard printf format string. For example:

206 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

§s->SetResultSet ("STANDARD",
"<ID>,<STATE>,<PRIORITY>,<SEVERITY>,<HEADLINE>",
"%s %-9.9s %1.1s %1.1s %-45.45s");

Tip: If you use both local and Rational ClearQuest queries (see [“Controlling query|
jusage” on page 210), the SetResultSet definitions must contain the exact fields
in the exact order as your queries.

Sharing a CQSchema

A CQSchema can be shared by different record types if the record types share the
small subset of field names that the integration uses. If you have record types that
are too different to share one schema, you can define additional CQSchema objects.
To define an additional CQSchema, copy the following commands:
DefineCQSchema, ChangeFieldMap, SetQuery, and SetResultSet and modify them
for additional definitions. Supply the mapping for each schema.

Establishing Rational ClearCase MultiSite support

To use Rational ClearCase MultiSite support, set the CQCC_MULTISITE
configuration parameter in the configuration file to "TRUE". To use the Rational
ClearQuest Web client with Rational ClearCase MultiSite support, set
CQCC_REPLICA_NAME to the name of the VOB replica. This setting is needed
because the Rational ClearQuest Web client cannot determine the replica name.

About code page conversion

To communicate with Rational ClearCase, Rational ClearQuest, and the user
interface, the integration uses character strings to represent query results and
association information. When clients and servers use only ASCII data, the
communication is simple. But if characters require more than single-byte ASCII
representations (for example, to provide accented or multiple-byte characters for
other languages), the integration must process strings that are encoded in different
code pages. For example, strings that are sent between the client and the server
must be converted from the "local” code page used on the client to a more
universal multiple-byte representation (for example, UTF-8 encoding form) on the
Rational ClearQuest Web server.

The integration code page conversion process
The integration uses the following conversion process:

* Characters are converted between local code page and UTF-8 encoding form,
where appropriate. Because performance overhead is negligible, disabling
conversion for performance reasons is not encouraged. Code page conversion is
only supported in Rational ClearCase 7.0 and later releases. Thus, conversion is
ignored by clients running earlier versions of Rational ClearCase. If code page
conversion errors occur, they are reported to the user as type error or type fatal,
depending on the context as shown in the following example:

Conversion error for CQWebJava field 'Resultset.Rows'
Codepage conversion error: No valid character in output character set.
The string is 'French: Les na?fs ?githales h?tifs pondant ? No?1 o? il
g?le sont
s?rs d'?tre d??us et de voir leurs dr?les d'?ufs ab?m?s'
The following characters are invalid:
U+c3af at 14
U+c3a6 at 18
U+c3a2 at 29
U+c3a0 at 43
U+c3ab at 47
U+c3b9 at 51
U+c3a8 at 57

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 207

U+c3bb at 67

... (error message truncated)

Caller: \\serverA\central\CQCC\../CQCC/CQWebJava.pm Line: 896

The error message indicates the context in which the string is being used and
the string or strings involved; and uses question mark (?) characters to indicate
inconvertible characters. Additional information is provided on each individual
character that can not be converted.

* If code page conversion is not enabled or is not yet supported on the client, the
integration performs ASCII checking to filter non-ASCII data in strings. Strings
that contain non-ASCII data are treated as code page conversion errors. Similar
information is reported to identify the context and string contents. Performance
overhead for ASCII checking is negligible. With ASCII checking enabled, the
integration prevents transmission of incorrectly encoded data between client and
server and minimizes potential data corruption and misrepresentation.

* The integration can produce large error messages if there are either code page
conversion or ASCII check errors. There is a maximum number of lines that are
displayed in a conversion error message, after which additional data is
truncated. The number of lines is set to 50 by default, but, if your environment
requires, the limit can be adjusted to provide less or more information.

The contents of the configuration file

The config.pl file can contain non-ASCII values (for example, non-ASCII database
names) either as local code page when all client machines are using the same code
page or UTF-8 values when more than one local code page is in use. If you use
UTF-8 values in the config.pl file, perform the following actions:

1. Use a UTF-8 capable editor (for example, Windows Notepad) to open the
config.pl file.

2. Include the following line at the top of the config.pl file, before the use
CQCC::TriggerCQCC; statement:
use utfs;
This line tells Perl that the file contains UTF-8 strings.

3. Use the Save As command and, in Encoding, select UTF-8 to save the config.pl
file in UTF-8 format.

This preserves the strings that you entered in the config.pl file as UTF-8 data.

Configuration parameters for code page conversion

The integration code page conversion can be disabled or modified through
configuration parameters. Because most sites should not need to modify the
parameters, they are not documented. For more detailed information, contact your
customer support representative.

Testing the configured connections

If you have the connectivity information set up in the configuration file, you can
test the connectivity. From a command line in a view context, change directory to a
folder in your VOB and type a test command. For example:

cqcc_launch -vob -test

This command connects to your Rational ClearQuest user database, makes some
test associations from Rational ClearCase elements to a Rational ClearQuest record,
and then removes the test associations. For information about errors, see
[“Troubleshooting the configured connections” on page 209 |

208 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Troubleshooting the configured connections
If you have trouble connecting to a Rational ClearQuest user database through the

integration in the connectivity test (see [‘Testing the configured connections” on|
, the debug output produced in the connectivity test provides some help.

The following are common reasons for connection problems:

* Wrong Rational ClearQuest database set

The database set is not required in the CQCC_DATABASE_SET configuration
parameter if only one database set is being used or if the database set that you
want is the first one (with the version number). Otherwise, a database set must
be provided (see|”Defining the Rational ClearQuest user database and databasel
[set” on page 204).

e Cannot find the Rational ClearQuest user database name

Check the CQCC_DATABASE_ENTITY_LIST configuration parameter (see
[“Defining the Rational ClearQuest user database and database set” on page 204).

* Record types do not have the Rational ClearCase package installed in the
Rational ClearQuest schema

An error message typically reports that there is no cc_change_set object, a
stateless record type that is defined by the ClearCase 1.0 package. Consult your
Rational ClearQuest administrator (see [“Setting up the Rational ClearQuest user]
[database for base ClearCase” on page 196).

 Rational ClearQuest Web client problems

Try to replace the ASP interface with Rational ClearQuest Web and vice versa
(see |“Establishing the Rational ClearQuest Web interface” on page 203)).

e Rational ClearQuest Web client cannot connect

First, see whether you can use a browser to connect to the Rational ClearQuest
Web interface. The Rational ClearQuest Web client uses a separate connection
mechanism, so there can be separate security issues (see[“Establishing the]
[Rational ClearQuest Web interface” on page 203).

Making policy choices

Examine the following policy choices that control how the developers work in the
Rational ClearCase environment:

* [“Allowing multiple associations”]

+ |“Controlling query usage” on page 210)

* [“Allowing use of the graphic user interface (GUI)” on page 211

« |"Forcing checkin success before committing associations” on page 211

Allowing multiple associations

In some environments, you want to capture the fact that one fix in the software
resolved multiple problems that are recorded against the component. In the
configuration file, set the CQCC_MULTIPLE_ASSOCS configuration parameter to
TRUE to allow more than one change request record to be associated with an
element that is being changed. For example:

&SetConfigParm("CQCC_MULTIPLE_ASSOCS", "TRUE");

If CQCC_MULTIPLE_ASSOCS is FALSE, then only one association is allowed for
each version.

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 209

Controlling query usage

Set the CQCC_QUERY_ENABLE and CQCC_QUERY_FILTER configuration
parameters to control query usage. For more information about queries in the
integration, see|’Query support” on page 192}

CQCC_QUERY_ENABLE

If developers use the Rational ClearQuest client, use the CQCC_QUERY_ENABLE
configuration parameter to determine which Rational ClearQuest queries are
available to developers to search for associations. The following values control
query usage:

BOTH Both CQ and LOCAL. Queries defined both in the Rational ClearQuest
user database and locally in the configuration file are available.

CQ Only named queries defined in the Rational ClearQuest user database
schema and visible in Personal Queries and Public Queries folders in the
workspace are available.

Restriction: To be used with the integration, a query must have the first
column defined as the ID field that is generated by Rational
ClearQuest. If the ID field is not first, the integration cannot
identify and work with the user’s selections that are returned
from the query. See|“SetResultSet” on page 206.|

LOCAL
Only queries defined locally in the configuration file are available. By
default, only local queries are shown.

OFF The Browse buttons and Queryname menu option are not displayed in the
user interface.

For example:
&SetConfigParm("CQCC_QUERY_ENABLE", "BOTH");

Product tip: The full range of query capabilities is available only with the Rational
ClearQuest Client through the Rational ClearQuest Perl API. The
Rational ClearQuest Web interface displays only local queries due to
limitations in the Rational ClearQuest Web API.

To open up query capabilities for users of the Rational ClearQuest Client, modify
the CQCC_QUERY_ENABLE configuration parameter setting.

CQCC_QUERY_FILTER

The CQCC_QUERY_FILTER configuration parameter refines availability of Rational
ClearQuest queries. With the CQCC_QUERY_FILTER setting, you can control
which queries from the Rational ClearQuest user database workspace are
permissible. Provide a Perl regular expression that the query names must match.
For example:

&SetConfigParm("CQCC_QUERY_FILTER", "Public Queries");

If the filter is set to "Public Queries,” only queries with that string in their path are
shown in the list from which the developer selects.

210 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Allowing use of the graphic user interface (GUI)

With the CQCC_GUI_ENABLE configuration parameter, the project manager or
developers can choose to use the integration with a Perl/TK GUI.
CQCC_GUI_ENABLE is used to enable or disable the Perl/TK GUL The following
values are used:

"ALWAYS’
The GUI is presented for command-line access as well, when possible.

"OFF’ The GUI is never presented and Perl/TK is not loaded.

'ON’ If Perl/TK support is available and ClearCase Explorer or the File Browser
is in use, then the GUI is presented.

For example:
&SetConfigParm("CQCC_GUI_ENABLE", "ON");

Forcing checkin success before committing associations

The CQCC_POSTCHECKIN_COMMIT configuration parameter enables the
integration on checkin to delay committing associations in the Rational ClearQuest
user database until after the Rational ClearCase checkin operation completes. This
delay avoids problems caused if the checkin fails. Because the integration relies on
a preoperation checkin trigger, it makes database changes to both the Rational
ClearCase VOB and Rational ClearQuest user database before the checkin
succeeds. If the checkin fails and the developer cancels the checkout, the Rational
ClearQuest user database retains references to the checkin that never completed.
Also, checking in identical files without the -identical option does not succeed. If
the failed files are later checked out, the associations committed with the previous
unsuccessful operation are incorrect. Using this configuration parameter avoids this
problem. For example:

&SetConfigParm("CQCC_POSTCHECKIN_ COMMIT", "TRUE");

By default, only the preoperation trigger fires on checkin. With this option enabled
(set to TRUE), the preoperation trigger is used to decide associations and a second
postoperation trigger fires to make the actual database changes. Using this option
can also require an extra Rational ClearQuest login on the postoperation trigger.
The extra operations take more time because of the additional Rational ClearQuest
login but keeps a more accurate database.

Important: You can use the CQCC_ASSOC_BATCH_ENABLE environment
variable to help minimize the cost of the extra operations. However,
batch operations can be delayed under certain conditions. For
information about those conditions, see [“Using the association batch|

Enhancing performance

The performance of the integration triggers can vary depending on how they
access Rational ClearCase and Rational ClearQuest configurations. The
CQCC_TIMER configuration parameter can record diagnostic timing information
about the trigger session (see [“Producing timing information” on page 216).

Using the association batch feature

The configuration parameter CQCC_ASSOC_BATCH_ENABLE in the configuration
file reduces the number of Rational ClearQuest logins and queries performed for
batches of files. The following values control the batch feature:

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 211

AUTOFLUSH
Causes batches to be processed for each file in a defined series instead of
waiting for the end of the series.

FALSE
Disables the association batch feature. Performs each transaction by
establishing a new connection to the Rational ClearQuest user database,
completing processing the single transaction, and closing the connection.

TRUE Enables the association batch feature and reduces the amount of overhead
processing. Performs one Rational ClearQuest login, establishes a new
connection to the Rational ClearQuest user database, processes multiple
transactions in a series, and closes the connection at the end of the series.

Use the value TRUE to enable the reduction. For example:
&SetConfigParm("CQCC_ASSOC_BATCH_ENABLE", "TRUE");

This reduction is done by writing Rational ClearQuest transactions to a log file
(.cqcc_assoc_batch) that is stored in the developer home directory (on Linux and
the UNIX system) or in the application data directory (on the Windows system).
When the batch completes, the transaction log file is read back and all the
necessary Rational ClearQuest changes are made at the same time. The association
batch feature improves performance in many cases.

The log is automatically processed at the end of each single operation or at the end
of a batch operation. A batch is defined either as a set of files used in one Rational

ClearCase operation, for example, a multiple-checkout, or as defined by the user
using the CQCC_ASSOC_BATCH_SERIES environment variable (see
batch” on page 213).

If posting the log file fails, resolve the problem (for example, a login failure) and
try again by either doing another Rational ClearCase operation or forcing the log
to be processed (see ['Handling an incomplete posting”). The log file can be rerun
without causing duplications and is automatically renamed and moved aside when
the posting process succeeds.

If you use the CQCC_POSTCHECKIN_COMMIT configuration parameter (see
[“Forcing checkin success before committing associations” on page 211), then any
failed checkins are not written to the log for processing.

If you currently have the association batch feature enabled, you can gradually stop
using batch processing by specifying AUTOFLUSH. For example:

&SetConfigParm("CQCC_ASSOC_BATCH_ENABLE", "AUTOFLUSH");

Batches are processed for each file in a defined series instead of waiting for the
end of the series. Although each file is processed individually to completion, the
pending transaction is saved locally to a log file until the transaction successfully
completes. If the transaction fails, it is retried with the next Rational ClearQuest
operation based on the locally stored information. The performance benefit of
batch processing is lost, but reliability is maintained. If you instead disable batch
processing suddenly (specify FALSE for CQCC_ASSOC_BATCH_ENABLE) after
using it as a standard practice, you could leave unposted transactions in a locally
stored batch log.

Handling an incomplete posting
The association batch feature depends on the integration being called at the end of
a batch to process the log, usually after the last checkout or checkin completes. If

212 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

this last event is missed, for example, the last checkin failed because the file was
identical, the log is not processed and the Rational ClearQuest operations are not
posted. The data is not lost and is posted on the next successful Rational ClearCase
operation that can begin processing the log. But the log may stay in the stored
location for some time before the processing starts. You or the developer can force
the log to be processed by using the following command from a command shell in
the original VOB context:

cqcc_launch -vob -op batch

The batch operation processes any transactions that are in the log.

Defining a batch

If you use the CQCC_ASSOC_BATCH_ENABLE configuration parameter in the
configuration file (see|“Using the association batch feature” on page 211)), the
developer can also use the environment variable CQCC_ASSOC_BATCH_SERIES
to define a batch. A batch is ordinarily the set of files to which a single Rational
ClearCase operation is applied. The CQCC_ASSOC_BATCH_SERIES environment
variable provides a way for a developer to broaden the meaning of a batch to be a
series of Rational ClearCase operations. This is useful for checking in multiple files
more efficiently than checking them in one at a time.

If the CQCC_ASSOC_BATCH_SERIES environment variable is set to TRUE, the
integration assumes that a batch is in effect and operations are logged. When the
environment variable is set to FALSE, the next Rational ClearCase operation
automatically causes the logged operations to be run. Use this option carefully
because Rational ClearQuest changes are deferred if a series is in process. The
developer can force the batch log to be flushed. For example, a script that checks
in a series of files might look like this example (in the Windows system).

set CQCC_ASSOC_BATCH_SERIES=TRUE

cleartool ci -nc filel

cleartool ci -nc file2

set CQCC_ASSOC_BATCH_SERIES=FALSE
cqcc_launch -vob -op batch

The last command forces the batch log to be flushed.

Requesting confirmation of batch completion

You can provide a visual cue that the batch operation has completed successfully
by setting the CQCC_ASSOC_BATCH_CONFIRM configuration parameter. The
following values are supported:

ALWAYS
Displays an information window when the batch processing succeeds for a
single file or multiple files in a batch.

MULTIPLE
Displays an information window when the batch processing succeeds if
more than a single file is being processed in a batch.

OFF Nothing is reported.

Set the value to MULTIPLE to avoid seeing the window for every operation. For
example:

&SetConfigParm("CQCC_ASSOC_BATCH_CONFIRM", "MULTIPLE");

Tuning automatic association features
If you use CQCC_AUTO_ASSOCIATE or CQCC_ASSOC_BATCH_SERIES to
automatically determine associations (see [“Controlling and using automatic|

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 213

, use the CQCC_RESTRICTIONS_TIMEOUT configuration parameter
to limit extra processing during the batch. The timeout value controls the number
of seconds that a restrictions check can be reused during
CQCC_ASSOC_BATCH_SERIES log processing.

The integration normally rechecks the new associations each time interval by
logging into the Rational ClearQuest user database and performing a restrictions
query. The integration caches the most recent restrictions query results and reuses
them for a maximum time before it rechecks them again. After the time is
exceeded, a new Rational ClearQuest login and restrictions query are performed to
ensure that the selected associations are still valid. To delay this login operation
and query during batch processing, set the CQCC_RESTRICTIONS_TIMEOUT
configuration parameter in the configuration file or the environment variable to an
increased number of seconds. To use a timeout of 10 minutes, set the value to 600.
For example:

&SetConfigParm("CQCC_RESTRICTIONS_TIMEOUT, 600);

CQCC_RESTRICTIONS_TIMEOUT is set to 300 seconds (5 minutes) by default.
The minimum value is 0 (disabled) and the maximum is 1200 (20 minutes).

Controlling and using automatic associations

Use the CQCC_AUTO_ASSOCIATE_ENABLE configuration parameter to control
whether developers can use the CQCC_AUTO_ASSOCIATE and
CQCC_ASSOC_BATCH_SERIES environment variables.

Enabling and disabling automatic associations

In the configuration file, use the CQCC_AUTO_ASSOCIATE_ENABLE
configuration parameter to specify whether developers can use the
CQCC_AUTO_ASSOCIATE environment variable (see [“Using automatid
associations’l) or CQCC_ASSOC_BATCH_SERIES environment variable (see
“Defining a batch” on page 213).

* To prohibit use of CQCC_AUTO_ASSOCIATE or
CQCC_ASSOC_BATCH_SERIES, set CQCC_AUTO_ASSOCIATE_ENABLE to
"FALSE".

e To allow use of CQCC_AUTO_ASSOCIATE or CQCC_ASSOC_BATCH_SERIES,
set CQCC_AUTO_ASSOCIATE_ENABLE to "TRUE". For example:

&SetConfigParm("CQCC_AUTO_ASSOCIATE_ENABLE", "TRUE");

Using automatic associations

If the CQCC_AUTO_ASSOCIATE_ENABLE configuration parameter is enabled in
the configuration file (see [“Enabling and disabling automatic associations”)), the
developers can specify one or more change requests to associate with a batch of
files on checkout and checkin operations without the user interface being
displayed. The integration uses the change requests that the developers specify
rather than prompting them through the user interface. (The ApplyToAll
mechanism in the integration user interface works only for files being versioned in
a single checkin or checkout command.) With this option, the developers can
handle large batches of files in multiple checkin and checkout commands.

The developers can set the CQCC_AUTO_ASSOCIATE environment variable to the
associations that they want to make and then start either cleartool, File Browser, or
ClearCase Explorer. The following values are recognized:

* To specify change requests, the developer uses the same conventions that are
used in the Type In option in the user interface. For example:

214 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

setenv CQCC_AUTO_ASSOCIATE "SAMPL1,2,3"

The value "SAMPL1,2,3" identifies change request IDs 1, 2, and 3 in the SAMPL
user database.

nn

* To disable the option, the developer uses

non

 To select no change requests, the developer specifies

The values that they specify remain in effect until they disable the option. For
example:

setenv CQCC_AUTO_ASSOCIATE ""

On checkin operations, the integration uses the values that they specify with this
option to override associations that they made on checkouts. If an error occurs, the
integration displays the related messages and starts the user interface for
associating change requests.

Specifying associations in comment patterns

If the CQCC_COMMENT_PATTERN configuration parameter is enabled in the
configuration file, the developers can provide that pattern to look for in checkout
or checkin comments. The pattern provides a list of associations to use and
replaces the prompting for associations by the integration interface. The pattern is
disabled by default and enabled by setting a nonempty pattern.

To enable this option, in the CQCC_COMMENT_PATTERN configuration
parameter, specify a pattern in the form of a Perl expression. For example:

&SetConfigParm("CQCC_COMMENT_PATTERN", "BUGS:\\[(\\S+)\\1");
This example uses double backslash characters to escape each backslash character.

The developers make associations by entering a checkin or checkout comment that
matches the pattern, as in the following example of a checkout comment:

"This fixes BUGS:[SAMPL1,2,3]"

The pattern that is supplied in the checkout comment matches the pattern that is
defined in the CQCC_COMMENT_PATTERN configuration parameter. This
method avoids starting the integration user interface for associating files with
change requests.

The change requests that developers enter on checkin commands override the
change requests that they specify on checkout commands.

If the CQCC_AUTO_ASSOCIATE configuration parameter and the
CQCC_COMMENT_PATTERN configuration parameter are enabled at the same
time, the integration uses CQCC_AUTO_ASSOCIATE when it makes associations.

Debugging and analyzing operations

Environment variables are useful in troubleshooting and working with IBM
Customer Support.

Generating operational information

To produce debugging information, set the CQCC_DEBUG environment variable
with one of the following formats:

On Linux and the UNIX system: setenv CQCC_DEBUG value

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 215

On the Windows system: set CQCC_DEBUG=value

For value, use one of the following numbers:

0 No debugging information

1 Basic debugging information

2 Verbose debugging information that includes Rational ClearQuest traffic
tracing

Producing timing information
To produce timing information, define the CQCC_TIMER configuration parameter
or environment variable. For example:

&SetConfigParm("CQCC_TIMER", "1");

This provides large-grain timing information for basic internal operations such as
Rational ClearQuest login, queries, and associations; and Rational ClearCase
information gathering and hyperlink maintenance. Set the value to zero (0) to
disable timing information.

The integration writes the information to standard output and can store it in a file
(see [“Controlling logged output”).

Controlling logged output

Set the CQCC_LOG_OUTPUT configuration parameter to control the recording of
all warning, error, and fatal messages that are written to a log file for convenience
during problem diagnosis. Use the following values:

APPEND
Adds to the log file (use only during debugging).

OFF Disables log file output.

OVERWRITE
Overwrites the log file for each trigger session.

For example:
&SetConfigParm("CQCC_LOG_OUTPUT", "OVERWRITE");

The log file name is cqcc_output.log. On Linux and the UNIX system, the file is
written to the user’s home directory. On the Windows system, the file is written to
the profile directory.

Testing the integration

After you install the triggers on one or more VOBs and edit the configuration file,
you can test the connection between Rational ClearCase and Rational ClearQuest
configurations by entering the following command:

On Linux and the UNIX system:
cqcc_launch CQCC/config.pl -test

On the Windows system:
cqcc_launch CQCC\config.pl -test

Tip: The preceding commands use the default path for the configuration file. If
you specified a path to a central location when you configured the

216 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

integration, use that path when invoking the cqcc_launch command (see
[‘Using a shared configuration file and triggers” on page 198).

The command displays output indicating whether it is able to connect to the target
Rational ClearQuest user database. For more detailed output messages, set the
CQCC_DEBUG environment variable to 2 (see [‘Generating operationall
linformation” on page 215).

Customizing the integration

To understand how the overall trigger works or how to customize its behavior,
review the TriggerCQCC.pm class and its methods. Most changes in the visible
behavior of the trigger require changes in this class.

Tip: For internal documentation, contact IBM Customer Support.

If you make local changes, use the following procedure:
1. Make a copy of the MyTrigger.pm template class.
2. Rename the copy.

3. Make your changes in the renamed file by overriding or extending the
TriggerCQCC methods (see MyTrigger.pm for more details).

Tip: Do not make changes directly to the TriggerCQCC source code.

Following this procedure facilitates upgrading to later releases of TriggerCQCC.pm
from Rational ClearCase and provides a fallback to the released trigger for
working with IBM Customer Support. For information about support, see
fregarding customization and support” on page 194

About the Integration Query wizard

After developers establish associations between Rational ClearCase versions and
Rational ClearQuest change requests, you can use the Rational ClearQuest
Integration Query wizard on Windows systems to identify the change requests that
are associated with a project over a period of time. For example, you might use the
wizard to answer the question, “Which change requests were associated with
Release 3.1 of Project X?”

To start the Integration Query wizard
Do one of the following:

* Click Start > Programs > IBM Rational > IBM Rational ClearCase >
Administration > ClearQuest Integration Query.

* Enter cqquery at the command prompt.

Click Help for instructions on completing each page of the wizard.

Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest 217

218 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 14. Integrating changes

This chapter describes merging versions of text-file elements or directories. A
merge calls an element-type-specific program (the merge method) to merge the
contents of two or more files, or two or more directories.

About integrating changes

In a parallel development environment, the opposite of branching is merging. In
the simplest scenario, merging incorporates changes on a subbranch into the main
branch. However, you can merge work from any branch to any other branch. You
need to be familiar with techniques and scenarios for merging versions of elements
and branches. Automated merge facilities are included in Rational ClearCase to
handle almost any scenario.

How merging works

A merge combines the contents of two or more files or directories into a single new

file or directory. The Rational ClearCase merge algorithm uses the following files

during a merge (see :

* Contributors, which are typically one version from each branch you are merging.
(You can merge up to 15 contributors.) You specify which versions are
contributors.

* The base contributor, which is typically the closest common ancestor of the
contributors. (For selective merges, subtractive merges, and merges in an
environment with complex branch structures, the base contributor may not be
the closest common ancestor.) The Rational ClearCase merge algorithm
determines which contributor is the base contributor.

 The target contributor, which is typically the latest version on the branch that
will contain the results of the merge. You determine which contributor is the
target contributor.

¢ The merge output file, which contains the results of the merge and is usually
checked in as a successor to the target contributor. By default, the merge output
file is the checked-out version of the target contributor, but you can choose a
different file to contain the merge output.

© Copyright IBM Corp. 1992, 2006 219

Target contributor.

Base contributor: 4

element: opt.c

main

Merge
output file

Contributor

Figure 53. Versions involved in a typical merge

Merging files and directories involves the following actions:

1.
2.
3.

The base contributor is identified.
Each contributor is compared against the base contributor. (See)

Any line that is unchanged between the base contributor and any other
contributor is copied to the merge output file.

Any line that has changed between the base contributor and one other
contributor is accepted in the contributor.

Depending on how you started the merge operation, the change may be copied
to the merge output file. However, you can disable the automated merge
capability for any given merge operation. If you disable this capability, you
must approve each change to the merge output file.

For any line that has changed between the base contributor and more than one
other contributor, you are required to resolve the conflicting difference.

e Base
Contributor

A(b, 1) A(b, c2)

Source
Contributors

Destination version = B +A\ (b, ¢1) +A (b, c2)

Figure 54. Rational ClearCase merge algorithm

220 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To merge versions, you can use the graphic user interface (GUI) tools (see
the GUI to merge elements” on page 221) or the command-line interface (see
“Using the command line to merge elements” on page 222).

Using the GUI to merge elements
Three graphical tools are provided to help you merge elements:
* Merge Manager
 Diff Merge
* Version Tree Browser

About the Merge Manager

The Merge Manager manages the process of merging one or more Rational
ClearCase elements. It automates the processes of gathering information for a
merge, starting a merge, and tracking a merge. It can also save and retrieve the
state of a merge for a set of elements.

You can use the Merge Manager to merge from many directions:
* From a branch to the main branch

* From the main branch to another branch

* From one branch to another branch

To start the Merge Manager
On the UNIX system, type clearmrgman at a command prompt.

On the Windows system, do one of the following;:

* Click Start > Programs > IBM Rational > IBM Rational ClearCase > Merge
Manager.

* In ClearCase Explorer, click Base ClearCase, and then click Merge Manager.

About Diff Merge

The Diff Merge utility shows the differences between two or more versions of file
or directory elements. Use this tool to compare up to 16 versions at a time,
navigate through versions, merge versions, and resolve differences between
versions.

To start Diff Merge
On the UNIX system, do one of the following at a command prompt:

* Type xcleardiff path_1 path_2.
¢ Use the cleartool merge —graphical command.

On the Windows system, do one of the following:

* In Rational ClearCase Explorer, right-click an element and click Compare with
Previous Version.

* In Windows Explorer, right-click an element and click ClearCase > Compare
with Previous Version.

* In the Merge Manager, click Compare.

About the Version Tree Browser
The Version Tree Browser displays the version tree for an element. The version tree
is useful when merging to do the following tasks:

* Locate versions or branches that have contributed to or resulted from a merge
* Start a merge by clicking on the appropriate symbol

Chapter 14. Integrating changes 221

The merge can be recorded with a merge arrow, which is implemented as a
hyperlink of type Merge.

To start the Version Tree Browser
On the UNIX system, do one of the following:

e At a command prompt, use the cleartool Isvtree —graphical command.
e In File Browser, click an element and click Versions > Show version tree

On the Windows system, do one of the following:
* In Rational ClearCase Explorer, click Tools > Version Tree.

* Click Start > Programs > IBM Rational > IBM Rational ClearCase > Version
Tree Browser

* In Windows Explorer, right-click a versioned element and click ClearCase >
Version Tree.

Using the command line to merge elements
Use the following commands to perform merges from the command line:
* cleartool merge

* cleartool findmerge
* cleardiff

For more information on these commands, see the IBM Rational ClearCase Command
Reference.

Common merge scenarios

The following sections present a series of merge scenarios that require work on one
branch of an element to be incorporated into another branch.

+ |“Selective merge from a subbranch” on page 222|

* [“Removing the contributions of some versions” on page 223|

* ["Merging all project work” on page 224|

erging a new release of an entire source tree” on page
* "M 1 f t tree” 22

+ |"Merging directory versions” on page 227

Each scenario shows the version tree of an element that requires a merge and
indicates the appropriate command to perform the merge.

Selective merge from a subbranch

In a selective merge from a subbranch, you want to incorporate the changes in
version /main/rl_fix/4 into new development. To perform the merge, you specify
which versions on the r1_fix branch to include. See

222 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

elema te O Versions excluded
main
‘ Versions included
4

QA_APPROVED

Figure 55. Selective merge from a subbranch

In a view configured with the default config spec, enter the following commands
to perform the selective merge:

cleartool checkout opt.c
cleartool merge —to opt.c —insert —version /main/rl_fix/4

You can also specify a range of consecutive versions to be merged. For example,
this command merges only the changes in versions /main/rl_fix/2 through
/main/rl_fix/4:

cleartool merge —to opt.c —insert —version /main/rl fix/2 /main/rl _fix/4

No merge arrow is created for a selective merge.

Removing the contributions of some versions

In a subtractive merge, you remove contributions of some versions in the merge.
For example, a new feature, implemented in versions 14 through 16 on the main

branch, are not be included in the product. You must remove the changes made in
those versions. See .

Chapter 14. Integrating changes 223

element: opt.c O Versions removed
main

Figure 56. Removing the contributions of some versions

Enter the following commands to perform this subtractive merge:

cleartool checkout opt.c
cleartool merge —to opt.c —delete —version /main/14 /main/16

No merge arrow is created for a subtractive merge.

Merging all project work

Your team has been working on a branch. Now, your job is to merge all the
changes into the main branch.

The findmerge command can handle most common cases easily. For isolating the
project work, the command can accommodate the schemes described in [“All
project work isolated on a branch”|and [“All project work isolated in a view” on|

page 225.|

All project work isolated on a branch

The standard approach to parallel development isolates all project work on the
same branch. More precisely, all new versions of source files are created on
like-named branches of their respective elements (that is, on branches that are
instances of the same branch type). This makes it possible for a single findmerge
command to locate and incorporate all the changes. Suppose the common branch
is named gopher. You can enter these commands in a view configured with the
default config spec:

cd root-of-source-tree
cleartool findmerge . —fversion .../gopher/LATEST —merge —graphical

The -merge —graphical syntax causes the merge to take place automatically
whenever possible, and to start the graphical merge utility if an element merge

224 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

requires user interaction. If the project has made changes in several VOBs, you can
perform all the merges at once by specifying several paths, or by using the —avobs
option to findmerge.

All project work isolated in a view

Some projects are organized so that all changes are made in a single view
(typically, a shared view). For such projects, use the —ftag option to findmerge.
Suppose the project work has been done in a view whose view tag is goph_vu.
These commands perform the merge:

cd root-of-source-tree
cleartool findmerge . —ftag goph_vu —merge —graphical

Tip: Working in a single shared view is not recommended because doing so can
degrade system performance.

Merging a new release of an entire source tree

Your team has been using an externally supplied source-code product, maintaining
the sources in a VOB. The successive versions supplied by the vendor are checked
in to the main branch and labeled VEND_R1, VEND_R2, and VEND_R3. Your
team’s fixes and enhancements are created on subbranch enhance. The views in
which your team works have the following configuration to branch from the
VEND_R3 baseline:

element = CHECKEDOUT

element * .../enhance/LATEST

*

*
element * VEND_R3 -mkbranch enhance
element * /main/LATEST -mkbranch enhance

The version trees in show the following various likely cases:

* An element that your team started changing at Release 1 (enhance branch
created at the version labeled VEND_R1)

e An element that your team started changing at Release 3
* An element that your team has never changed

Chapter 14. Integrating changes 225

main main

VEND_R1

enhance

VEND_R2

VEND_R3 e n VEND_R3
’ enhance

&
previous ‘s,
merges Se
g >

Figure 57. Merging a new release of an entire source tree

When Release 4 arrives, and you need to integrate this release with your team’s
changes.

To prepare for the merge, add the new release to the main branch and label the
versions VEND_R4. Merging the source trees involves merging from the version
labeled VEND_R4 to the most recent version on the enhance branch; if an element
has no enhance branch, nothing is merged.

This procedure accomplishes the following integration:
1. Load the vendor’s Release 4 media into a standard directory tree:

cd /usr/tmp
tar —xv

The directory tree created is mathlib_4.0.

2. As the VOB owner, run clearfsimport in a view configured with the default
config spec to create Release 4 versions on the main branches of elements (and
create new elements as needed).

clearfsimport —recurse /usr/tmp/mathlib_4.0 /vobs/proj/mathlib
3. Label the new versions:

% cleartool mklbtype —c "Release 4 of MathLib sources" VEND_R4
Created label type "VEND_R4".
% cleartool mklabel -recurse VEND_R4 /vobs/proj/mathlib

. (lots of output)

4. Set to a view that is configured with your team’s config spec and selects the
versions on the enhance branch:

cleartool setview enh_vu

5. Merge from the VEND_R4 configuration to your view:

226 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

cleartool findmerge -nback /vobs/proj/mathlib —fver VEND R4 —merge \
—graphical

The -merge —graphical syntax instructs findmerge to merge automatically if
possible, but if not, start the graphical merge tool.

6. Verify the merges, and check in the modified elements.

You have now established Release 4 as the new baseline. Developers on your team
can update their view configurations.

element » CHECKEDOUT

element * .../enhance/LATEST
element * VEND_R4 —-mkbranch enhance (change from VEND_R3 to VEND_R4)

element * /main/LATEST —mkbranch enhance

Elements that have been active continue to evolve on their enhance branches.
When elements are revised for the first time, their enhance branches are created at
the VEND_R4 version.

Merging directory versions

A feature of Rational ClearCase is versioning of directories. Each version of a
directory element catalogs a set of file elements and directory elements (and VOB
symbolic links on the UNIX system). In a development project, directories change
as often as files do. Merging the changes to another branch is as easy merging files.

Take a closer look at the source tree scenario that is described in[“Merging a new|
frelease of an entire source tree” on page 225] Suppose you find that the vendor has
made the following changes in directory /vobs/proj/mathlib/src:

* File elements Makefile, getcwd.c, and fork3.c are revised.
* File elements readln.c and get.c are deleted.

* A new file element, newpaths.c, is created.

When you use findmerge to merge the changes made in the VEND_R4 sources to
the enhance branch, the changes to both the files and the directory are handled
automatically. The following findmerge excerpt shows the directory merge activity:

kkhkkkkhkkkhkkhkhkkkhhkkhkkhhkkhkkhkkhkhkkhkkkhkkkkkx

<<< directory 1: /vobs/proj/mathlib/src@@/main/3

>>> directory 2: .@@/main/enhance/1

>>> directory 3: .

khkkkkhkhkhkkkhhkkhhkhdhhkdhhkhrhhhhrhhxkx

------- [removed directory 1 J------- ----------[directory 2]------------

get.c 19-Dec-1991 drp

**% Automatic: Applying REMOVE from d1rectory 2

----------- [directory 1 J----==-=--=|-=------[added directory 2]---------
-| newpaths.c 08-Mar.21:49 drp

**%% Automatic: Applying ADDITION from directory 2

——————— [removed directory 1]———————|———————————[directory 2]-------=----

readln.c 19-Dec-1991 drp

*%% Automatic: Applying REMOVE from d1rectory 2

Recorded merge of ".".

If you have changes to merge from both files and directories, it may be a good
idea to run findmerge twice: first to merge directories, and again to merge files.
Using the —print option to a findmerge command does not report everything that
is merged, because findmerge does not see new files or subdirectories in the
merge-from version of a directory until after the directories are merged. To report

Chapter 14. Integrating changes 227

every merge that takes place, use findmerge to merge the directories only, and
then use findmerge —print to get information about the file merges that are
needed. Afterward, you can cancel the directory merges by using the uncheckout
command on the directories.

Using other merge tools

228

You can create a merged version of an element manually or with any available
analysis and editing tools. Check out the target version, revise it, and check it in.
Immediately before (or after) the checkin, record your activity by using the merge
command with the -ndata (no data) option:

% cleartool checkout nextwhat.c

Checkout comments for "nextwhat.c":
merge enhance branch

Checked out "nextwhat.c" from version "/main/1".

9

% <invoke your own tools to merge data into checked-out version>

0

% cleartool merge —to nextwhat.c -ndata —version .../enhance/LATEST
Recorded merge of "nextwhat.c".

This form of the merge command does not change any file system data; it merely
attaches a merge arrow (a hyperlink of type Merge) to the specified versions. After
you make this annotation, your merge is indistinguishable from one performed
with Rational ClearCase tools.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 15. Using element types to customize file element
processing

This chapter describes element types, their creation, and their usage.

About element types and file processing

Most projects involve many different file types. For example, in a typical software
release, developers may work on language-specific source files, language-specific
header files, document files (in text and binary format), and library files.

Every file that is stored in a VOB is associated with an element type. Predefined
element types for various kinds of file types are provided, and every element type
has an associated type manager, which handles the operations performed on
versions of the element.

For some file types in your project, you may want to create your own element
types so that you can customize the handling of the files. You can also create your
own type managers.

You need to understand how element types are used, how type managers classify
and manage files, and how you can customize file classification and management.

File types in a typical project
lists the file types used in a typical development project.
Table 7. Files used in a typical project

Type of file Identifying characteristic

Source files

C-language source file . file name extension

C-language header file .h file name extension

FrameMaker binary file .doc or .mif file name extension, first line of

file begins with <Maker

The UNIX system: manual page source file .1 to .9 file name extension

Derived files

The UNIX system: ar(1) archive (library) .a file name extension

The Windows system: library, shared lib, .dll file name extension

library

Compiled executable The UNIX system: <varies with system
architecture>

The Windows system: .exe file name
extension

© Copyright IBM Corp. 1992, 2006 229

How element types are assigned

In various contexts, one or more file types may be determined for an existing file
system object, or for a name to be used for a new object. When you create a new
element and do not specify an element type, the file type for the element is
determined by default.

The file-typing routines use predefined and user-defined magic files, as described in
the cc.magic reference page. A magic file can use many different techniques to
determine a file type, including file name pattern-matching, stat(2) data, and
standard magic numbers on the UNIX system.

For example, the magic files in [“Sample magic file on the UNIX system”| and
[“Sample Magic File on the Windows system”|specify several file types for each
kind of file listed in [Table 7}

Sample magic file on the UNIX system

D c_src src_file text _file file: -name "x.c" ;

2 hdr_file text file file: -name "x.h" ;

3) frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;
4) manpage src_file text file file: -name "x.[1-9]" ;

5) archive derived file file: -magic 32, "archive" ;
6) sunexec derived file file: -magic 40, "SunBin" ;

Sample Magic File on the Windows system

(U)) c_src src_file text _file file: -name "x.c";

) hdr_file text_file file: -name "x.h" ;

3) frm_doc binary_delta_file doc file: -magic 0, "<MakerFile" ;
4) Tibrary derived file file: -name "*.1ib";

(5) program compressed_file: -name "*x.exe" ;

Element types and type managers

Different classes of files are handled differently because element types are used to
categorize elements. Each file element in a VOB must have an element type. An
element gets its type when it is created; you can change the type of an element
subsequently, with the chtype command. (An element is an instance of its element
type, in the same way that an attribute is an instance of an attribute type and a
version label is an instance of a label type.)

Each element type has an associated type manager, a suite of programs that handle
the storage and retrieval of versions from storage pools. (See the type_manager
reference page for information on how type managers work.) Thus, the way in
which the data of a file element is handled depends on its element type.

Tip: Each directory element also has an element type. But directory elements do
not use type managers; the contents of a directory version are stored in the
VOB database itself, not in storage pools.

When you create an element without specifying the element type, an element type
is assigned as follows:

* One or more magic files are read to find the file types for the name of the
element.

* The list of file types associated with the first rule in the magic file that matches
the name is retrieved.

230 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* This list is compared with the set of element types defined for the VOB that
stores the element. The element is created by using the first element type in the
list that matches an element type in the VOB.

For example, a new element named monet_adm.1 is assigned an element type as
follows:

1. A developer creates an element:
cleartool mkelem monet_adm.1

2. Because the developer did not specify an element type (-eltype option),
mkelem uses one or more magic files to determine the file types of the
specified name.

Tip: A search path facility uses the environment variable MAGIC_PATH. See
the cc.magic reference page for details.

If the magic file shown in [‘Sample magic file on the UNIX system” on page]
is the first (or only) one to be used, rule|”(4)” on page 230|is the first to
match the name monet_adm.1, yielding this list of file types:

manpage src_file text_file file

3. This list is compared with the set of element types defined in the VOB for the
new element. If text_file is the first file type that names an existing element
type, monet_adm.1 is created as an element of type text_file.

4. Data storage and retrieval for versions of element monet_adm.1 are handled by
the type manager associated with the text_file element type; its name is
text_file_delta:

[

% cleartool describe eltype:text_file
element type "text_file"

type manager: text_file_delta
supertype: file
meta-type of element: file element

File-typing mechanisms are defined on a per-user or per-site basis; element types
are defined on a per-VOB basis. (To ensure that element types are consistent across
VOBs, the Rational ClearCase administrator can use global types.) In this case, a
new element, monet_adm.]1, is created as a text_file element; in a VOB with a
different set of element types, the same magic file may have created it as a src_file
element.

Other applications of element types

Element types allow differential and customized handling of files beyond the
selection of type managers. Some examples are presented in [‘Using element typesq
lto configure a view”|and [“Processing files by element type” on page 232.|

Using element types to configure a view

Creating all C-language header files as elements of type hdr_file allows flexibility
in configuring views. Suppose that one developer reorganizes the project header
files, working on a branch named header_reorg to avoid disrupting the team’s
work. To compile with the new header files, another developer can use a view
re-configured with one additional rule:

element * CHECKEDOUT

element -eltype hdr_file * /main/header_reorg/LATEST
element * /main/LATEST

Chapter 15. Using element types to customize file element processing 231

Processing files by element type

Suppose that a coding-standards program named check_var_names executes on
each C-language source file. If all such files have element type c_src, a single
cleartool command runs the program:

On the UNIX system:

cleartool find —avobs —visible —element 'eltype(c_src)' \
—exec 'check_var_names $CLEARCASE PN'

On the Windows system:

cleartool find —avobs —visible —element 'eltype(c_src)'
—exec 'check var names %CLEARCASE_PN%'

Predefined and user-defined element types

Some of the element types described in this chapter (for example, text_file) are
predefined. Others (for example, c_src and hdr_file) are not predefined; the
previous examples work only if user-defined element types with these names are
created with the mkeltype command.

When a new VOB is created, it contains a full set of the predefined element types.
Each element type is associated with one of the type managers provided with
Rational ClearCase. The mkeltype reference page describes the predefined element
types and their type managers.

When you create a new element type with mkeltype, you must specify an existing
element type as its supertype. By default, the new element type uses the same type
manager as its supertype; in this case, the only distinction between the new and
old types is for the purposes described in [“Other applications of element types” on|
For differential data handling, use the -manager option to create an
element type that uses a different type manager from its supertype.

Predefined and user-defined type managers

232

Predefined type managers are provided in Rational ClearCase. The type managers
are described in the type_manager reference page. Each type manager is
implemented as a suite of programs in a subdirectory of ccase-home—dir/lib/mgrs;
the name of the subdirectory is the name of the type manager.

The mkeltype -manager command creates an element type that uses an existing
type manager. You can further customize Rational ClearCase by creating new type
managers and creating new element types that use them. Architecturally, type
managers are mutually independent, but new type managers can use symbolic
links to inherit some of the functions of existing ones.

Creating a new type manager (the UNIX system)

On the UNIX system, you can create any number of new type managers for use
throughout the local network. Use these guidelines:

¢ Choose a name for the new type manager. Ideally the name shows its
relationship to the data format (for example, bitmap_mgr). Create a subdirectory
of ccase-home—dir/lib/mgrs with this name.

Tip: Names of user-defined type managers must not begin with underscore.

* Create symbolic links to make the new type manager inherit some of its
methods (file-manipulation operations) from an existing type manager.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Create your own program for the methods that you want to customize. See
[“Writing a type manager program (the UNIX system).”]

* On each Rational ClearCase or Rational ClearCase LT client host in the network,
either make a copy of the new type manager directory or create symbolic link to
it. The standard storage, performance, and reliability trade-offs apply.

* If your organization uses Rational ClearCase MultiSite, at every site, either make
a copy of the new type manager directory, or create a symbolic link to it.

Tip: An element type belongs to a VOB, and thus is available on every host that
mounts its VOB. But a type manager is host-specific; it is the
ccase—home—dir/lib /mgrs /manager-name directory on some host.

See the type_manager reference page and the file
ccase—home—dir /lib/mgrs/mgr_info.h for additional information on type managers.

Writing a type manager program (the UNIX system)

When cleartool invokes a type manager method, it passes to the manager, in ASCII
format, all the arguments needed to perform the operation. For example, many
methods accept a new_container_name argument, specifying the path of a data
container to which data is to be written.

One or more of the parameters can be ignored. For example, the create_version
method is passed pred_container_name, the path of the predecessor version data
container. If the type manager implements incremental differences, this is required
information. Otherwise, the predecessor data container is of no interest.

Arguments are often object identifiers (OIDs). You need not know anything about
how OIDs are generated; consider each OID to be a unique name for an element,
branch, or version. In general, only type managers that store multiple versions in
the same data container need be concerned with OIDs.

For more information on argument processing, see files
ccase~home—dir /1ib/mgrs/mgr_info.h (for C-language programs) and
ccase—home—dir /lib/mgrs/mgr_info.sh (for Bourne shell scripts).

Exit status of a method

A user-defined type manager method must return to cleartool an exit status that
indicates how the command is to be completed. The symbolic constants in
ccase—home—dir /lib/mgrs/mgr_info.sh specify all valid exit statuses. For example,
an invocation of create_version may create a new data container, and return the
exit status MGR_STORE_KEEP_JUST_NEW. If creation of the new data container
fails, create_version returns the exit status MGR_STORE_KEEP_JUST_OLD.

Type manager for manual page source files

One kind of file supported is a manual page source file, which is coded in nroff(1)
format (seeTable 7). A type manager for this kind of file may have these
characteristics:

* It stores all versions in compressed form in separate data containers, like the
z_whole_copy type manager.

* It implements version-comparison (compare method) by running diff on
formatted manual pages instead of the source versions.

Chapter 15. Using element types to customize file element processing 233

The basic strategy is to use most of the z_whole_copy type manager methods. The
compare method uses nroff(1) to format the versions before displaying their
differences.

Creating the type manager directory

The name mp_mgr (manual page manager) is appropriate for this type manager.
The first step is to create a subdirectory with this name in the
ccase-home—dir /lib/mgrs directory. For example:

mkdir /usr/rational/lib/mgrs/mp_mgr

Inheriting methods from another type manager

Most of the mp_mgr methods are inherited through symbolic links from the
z_whole_copy type manager. You can enter the following commands as the root
user in a Bourne shell:

MP=$CLEARCASEHOME/1ib/mgrs/mp_mgr
for FILE in create_element create_version construct_version \
create_branch delete_branches_versions \
merge xmerge xcompare get_cont_info
do
In -s ../z_whole_copy/$FILE $MP/$FILE
done

#*#= V V V

Any methods that the new type manager does not support can be omitted from
this list. The lack of a symbolic link causes an Unknown Manager Request error.

The sections [“The create_version method”| and [“The construct_version method” on|
|Eage 23§| describe two of these inherited methods, which can serve as models for
user-defined methods. Both methods are implemented as scripts in the same file,
ccase-home—dir /lib/mgrs/z_whole_copy/Zmgr.

The create_version method

The create_version method is invoked when a checkin command is entered. The
create_version method of the z_whole_copy type manager does the following
operations:

1. Compresses the data in the checked-out version
2. Stores the compressed data in a data container located in a source storage pool

3. Returns to the calling process an exit status that indicates what to do with the
new data container

The file ccase—home—dir /1lib/mgrs/mgr_info.h lists the arguments passed to the
method from the calling program (usually cleartool or File Browser):

/**
kkkkk*k

* create_version

Store the data for a new version.

Store the version's data in the supplied new container, combining it
with the predecessor's data if desired (e.g for incremental deltas).

Command line:

create_version create_time new_branch_oid new_ver_oid new_ver_num
new_container_pname pred_branch_oid pred_ver_oid
pred_ver num pred container_pname data_pname

L T

The only arguments that require special attention are new_container_pname (fifth
argument), which specifies the path of the new data container, and data_pname
(tenth argument), which specifies the path of the checked-out file.

234 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The file ccase—home—dir /1lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the create_version method:

Any unexpected value is treated as failure
MGR_FAILED=1

Return Values for store operations
MGR_STORE_KEEP_NEITHER=101
MGR_STORE_KEEP_JUST_0LD=102
MGR_STORE_KEEP_JUST_NEW=103
MGR_STORE_KEEP_BOTH=104

MGR_OP_CREATE_VERSION="create_version"

The following example is the code that implements the create_version method:
(40 shift 1
2 if [-s $4 1 ; then

3) echo '$0: error: new file is not of length 0!'
4) exit $MGR_FAILED
(5) fi

(6) if $gzip < $9 > $4 ; ret=$? ; then : ; fi
?) if ["$ret" = "2" -0 "$ret" = "0"] ; then

(€)) exit $MGR_STORE_KEEP_BOTH
9) else

(10) exit $MGR_FAILED

(11) fi

The Bourne shell allows only nine command-line arguments. The shift 1 in Line 1
discards the first argument (create_time), which is unneeded. Thus, the path of the
checked-out version (data_pname), originally the tenth argument, becomes $9.

In Line 6, the contents of data_pname are compressed, then appended to the new,
empty data container: new_container_pname, originally the fifth argument, but
shifted to become $4. (Lines 2 through 5 verify that the new data container is,
indeed, empty.)

Finally, the exit status of the gzip command is checked, and the appropriate value
is returned (Lines 7 through 11). The exit status of the create_version method
indicates that both the old data container (which contains the predecessor version)
and the new data container (which contains the new version) are to be kept.

The construct_version method

An element construct_version method is invoked when standard software on the
UNIX system reads a particular version of the element (unless the contents are
already cached in a cleartext storage pool). For example, the construct_version
method of element monet_admin.1 is invoked by the view_server when a user
enters these commands:

% cp monet_admin.1 /usr/tmp
(read version selected by view)

% cat monet_admin.1@@/main/4
(read a specified version)

The construct_version method is also invoked during a checkout command, which
makes a view-private copy of the most recent version on a branch.

The construct_version method of the z_whole_copy type manager does the
following operations:

Chapter 15. Using element types to customize file element processing 235

1. Uncompresses the contents of the data container

2. Returns to the calling process an exit status that indicates what to do with the
new data container

The file ccase—home—dir /1lib/mgrs/mgr_info.h lists the arguments passed to the
method.

/**
kkkkk*k

* construct_version

Fetch the data for a version.

Extract the data for the requested version into the supplied path, or
return a value indicating that the source container can be used as the
cleartext data for the version.

Command line:
construct_version source_container_pname data_pname version_oid

L R

The file ccase—home—dir /1lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the construct_version method:

Any unexpected value is treated as failure

MGR_FATLED=1

Return Values for construct operations
MGR_CONSTRUCT_USE_SRC_CONTAINER=101
MGR_CONSTRUCT_USE_NEW_FILE=102

MGR_OP_CONSTRUCT_VERSION="construct_version"

This example code in [“The construct_version method source code”|implements the
construct_version method.

The construct_version method source code:
1) if $gzip -d < §1 > §2 ; then

) exit $MGR_CONSTRUCT USE_NEW_FILE
3) else

4) exit $MGR_FAILED

(5) fi

In Line 1, the contents of source_container_pname are uncompressed and stored in
the cleartext container, data_pname. The remaining lines return the appropriate
value to the calling process, depending on the success or failure of the gzip
command.

Implementing a new compare method

The compare method is invoked by a cleartool diff command. This method does
the following operations:
1. Formats each version using nroff(1), producing an ASCII text file

2. Compares the formatted versions, using cleardiff or xcleardiff

The file ccase—home—dir /1lib/mgrs/mgr_info.h lists the arguments passed to the
method from cleartool or File Browser.
/**

* compare

* Compare the data for two or more versions.

* For more information, see man page for cleartool diff.
*

236 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Command Tine:

* compare [-tiny | -window] [-serial | -diff | -parallel] [-columns n]
* [pass-through-options] pname pname ...
*kkkkk [

This listing shows that a user-supplied implementation of the compare method
must accept all the command-line options that the Rational ClearCase diff
command supports. The strategy here is to pass the options to cleardiff and not
attempt to interpret them. After all options are processed, the remaining arguments
specify the files to be compared.

The file ccase-home—dir /lib/mgrs/mgr_info.sh lists the appropriate exit statuses and
provides a symbolic name for the compare method.
Return Values for COMPARE/MERGE Operations

MGR_COMPARE_NODIFFS=0
MGR_COMPARE_DIFF_OR_ERROR=1

MGR_OP_COMPARE="compare"

The Bourne shell script listed in [‘Script for compare method”] implements the
compare method. (You can modify this script to implement the xcompare method
as a slight variant of compare.)

Script for compare method

#1/bin/sh -e
MGRDIR=${CLEARCASEHOME:-/usr/rational}/1ib/mgrs

read file that defines methods and exit statuses
. $MGR_DIR/mgr_info.sh

process all options: pass them through to cleardiff
0PTS=II n
while (expr $1 : '\-' > /dev/null) ; do
OPTS="$0OPTS $1"
if ["$1" = "$MGR_FLAG_COLUMNS"] ; then
shift 1
OPTS="$0OPTS $1"
fi
shift 1
done

all remaining arguments ($*) are files to be compared

first, format each file with NROFF

COUNT=1

TMP=/usr/tmp/compare.$$

for X in $* ; do
nroff -man $X | col | ul -Tcrt > $TMP.$COUNT
COUNT="expr $COUNT + 1'

done

then, compare the files with cleardiff
cleardiff -quiet $OPTS $TMP.*

cleanup and return appropriate exit status
if [$? -eq MGR_COMPARE_NODIFFS] ; then
rm -f $TMP.x*
exit MGR_COMPARE_NODIFFS
else
rm -f $TMP.*
exit MGR_COMPARE_DIFF_OR_ERROR
fi

Chapter 15. Using element types to customize file element processing 237

238

Testing the type manager

Test a new type manager by using it on some Rational ClearCase host. This testing
procedure need not be obtrusive. Because the type manager has a new name, no
existing element type and, therefore, no existing element, uses it automatically. To
place the type manager in service, create a new element type, create some test
elements of that type, and run some tests.

The testing sequences that are described in [“Creating a Test Element Type”| and
[“Creating and Using a Test Element”| continue the mp_mgr example.

Creating a Test Element Type: To make sure that an untested type manager is not
used accidentally, associate it with a new element type, manpage_test, of which
you are the only user.

9

% cleartool mkeltype —nc —supertype compressed file \
—manager mp_mgr manpage_test
% cleartool lock —nusers $USER eltype:manpage_test

Creating and Using a Test Element: These commands create a test element that
uses the new type manager, and tests the various data-manipulation methods:

cd directory-in-test-VOB

cleartool checkout -nc .
(tests create_element method)

cleartool mkelem —eltype manpage_test —-nc —nco test.1
(tests construct_version method)

cleartool checkout —nc test.1

vi test.1
(edit checked-out version)

cleartool checkin —c "first” test.1
(tests create_ version method)

cleartool checkout —nc test.1
(tests construct_ version method)

vi test.1
(edit checked-out version)

cleartool checkin —c "second” test.1
(tests create_ version method)

cleartool diff test.1@@/main/1 test.1@@/main/2
(tests compare method)

Installing and using the type manager
After a type manager is fully tested, make it available to all users with the
following procedure.

1. Install the type manager.

A VOB is a networkwide resource; it can be mounted on any Rational
ClearCase host. But a type manager is a host resource: a separate copy must be
installed on each host where Rational ClearCase client programs run. If the
copy is not installed, elements of the new type cannot be used. (It need not be
installed on hosts that serve only as repositories for VOBs, views, or VOBs and
views.)

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

If the VOB is replicated, you must install the type manager at all sites. Custom
type managers are not replicated.

To install the type manager on a particular host, create a subdirectory in
ccase—home—dir /lib/mgrs, and populate it with the programs that implement the
methods. You can create symbolic links across the network to a master copy on
a server host.

Create element types.

Create one or more element types that use the type manager, just as you did in
[“Testing the type manager” on page 238| (do not include “test” in the name of
the element type). For example, you can name the element type manpage or
nroff_src.

Convert existing elements.

Have at least a few existing elements use the new type manager. The chtype
command changes an element type:

% cleartool chtype —force manpage path ...

Permission to change an element type is restricted to the element owner, the
VOB owner, and the root user.

Revise magic files.

If you want the new element types to be used automatically for certain newly
created elements, create (or update) a local.magic file in each host
ccase—home—dir /config/magic directory:

manpage src_file text file file: -name ".[1-9]" ;

Inform the project team (and other teams, if appropriate).

Advertise the new element types to all team members, describing the features
and benefits of the new type manager. Be sure to provide directions on how to
gain access to the new functionality automatically (through file names that
match magic-file rules) and explicitly (with mkelem —eltype).

Icon use by GUI browsers

The File Browser can display file system objects either by list or graphically. In the
latter case, the File Browser selects an icon for each file system object as follows:

1.

2.

The object name or its contents determines a list of file types, as described in
[“How element types are assigned” on page 230}

One by one, the file types are compared to the rules in predefined and
user-defined icon files, as described in the cc.icon reference page. For example,
the file type c_source matches this icon file rule:

c_source : -icon C ;

When a match is found, the search ends. The token that follows —icon names
the file that contains the icon to be displayed.

The File Browser searches for the file, which must be in bitmap(1) format, in
directory $SHOME/ .bitmaps, or ccase—home—dir/config/ui/bitmaps, or the
directories specified by the environment variable BITMAP_PATH.

If a valid bitmap file is found, the File Browser displays it; otherwise, the
search for an icon continues with the next file type.

The name of an icon file must include a numeric extension, which need not be
specified in the icon file rule. The extension specifies how much screen space the
File Browser must allocate for the icon. Each bitmap supplied with Rational
ClearCase version control is stored in a file with a .40 suffix (for example, lib.40),
which indicates a 40x40 icon.

Chapter 15. Using element types to customize file element processing 239

240

This procedure causes the File Browser to display manual page source files with a
customized icon. All manual pages have file type manpage.

1.

Add a rule to your personal magic file (in directory $HOME/.magic) that
includes manpage among the file types assigned to all manual page source
files:

manpage src_file text file file: -name "*.[1-9]" ;

Add a rule to your personal icon file (in directory $HOME/ .icon) that maps
manpage to a user-defined bitmap file:

manpage : -icon manual_page_icon ;

Create a manpage icon in your personal bitmaps directory (fHOME/ .bitmaps)
by revising one of the standard icon bitmaps with the standard X bitmap
utility:

mkdir $HOME/.bitmaps

cd $HOME/.bitmaps

cp $RATIONALHOME/config/ui/bitmaps/c.40 manual_page_icon.40
bitmap manual_page_icon.40

A O oF P

Test your work by having the File Browser display a manual page source file.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Chapter 16. Using Rational ClearCase throughout the
development cycle

The previous chapters (Chapter 11, “Defining project views,” on page 163|through
Chapter 15, “Using element types to customize file element processing,” on page]

229) describe various aspects of managing a project with Rational ClearCase. This
chapter describes typical usage by a developer.

About using Rational ClearCase throughout the development cycle

It is helpful to understand one way in which you can use Rational ClearCase to
organize the work throughout a development cycle for a project. During a
development cycle, developers create a new release and maintain the previous
release.

You should understand concepts and methods to address typical organizational
needs. There are many other approaches that are supported. For example, instead
of using command-line tools that are described here, consider using graphic user
interface (GUI) tools such as the Merge Manager to accomplish similar goals.

Project overview

Release 2.0 development of the monet project includes the following kinds of
work:

* Patches. Several high-priority bug fixes to Release 1.0 are needed.

* Minor enhancements. Some commands need new options; some option names
need to be shortened (for example, —recursive becomes —r); some algorithms
need performance work.

* Major new features. A graphic user interface is required, as are many new
commands and internationalization support.

These three development efforts can proceed largely in parallel (see|Figure 58), but
critical dependencies and milestones must be considered:

* Several Release 1.0 patch releases will ship before Release 2.0 is complete.
* New features take longer to complete than minor enhancements.
¢ Some new features depend on the minor enhancements.

© Copyright IBM Corp. 1992, 2006 241

MAJ Team

FIX Team “

Figure 58. Project plan for Release 2.0 development

The plan uses a baseline-plus-changes approach. Periodically, developers stop
writing new code, and spend some time integrating their work, building, and
testing. The result is a baseline: a stable, working version of the application. You can
integrate product enhancements incrementally and frequently. The more frequent
the baselines, the easier the tasks of merging work and testing the results.

After a baseline is produced, active development resumes; any new efforts begin
with the set of source versions that went into the baseline build.

You define a baseline by assigning the same version label (for example, R2_BL1 for
Release 2.0, Baseline 1) to all the versions that go into, or are produced by, the
baseline build.

The project team is divided into three smaller teams, each working on a different
development effort: the MAJ team (new features), the MIN team (minor
enhancements), and the FIX team (Release 1.0 bug fixes and patches). Some
developers may belong to multiple teams. These developers work in multiple
views, each configured for the respective team tasks.

Product Note: In the examples that follow, arguments that show multicomponent
VOB tags, such as /vobs/monet, do not apply to Rational
ClearCase LT on the UNIX system, which recognizes only
single-component VOB tags, such as /vobs_monet.

The development area for the monet project is shown here.

/vobs/monet (project top-level directory)
src/ (sources)
include/ (include files)
lib/ (shared libraries)

At the beginning of Release 2.0 development, the most recent versions on the main
branch are labeled R1.0.

242 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Development strategy

This section describes the Rational ClearCase issues to be resolved before
development begins.

Project manager and Rational ClearCase administrator

In most development efforts, the project manager and the system administrator are
different people. The user name of the project manager is meister. The
administrator is the vobadm user, who creates and owns the monet and libpub
VOBs.

Use of branches

In general, different kinds of work are done on different branches. The Release 1.0
bug fixes, for example, are made on a separate branch to isolate this work from
new development. The FIX team can then create patch releases that do not include
any of the Release 2.0 enhancements or incompatibilities.

Because the MIN team will produce the first baseline release on its own, the
project manager gives the main branch to this team. The MA]J team will develop
new features on a subbranch, and will not be ready to integrate for a while; the
FIX team will fix Release 1.0 bugs on another subbranch and can integrate its
changes at any time.

Each new feature can be developed on its own subbranch, to better manage
integration and testing work. For simplicity, this chapter assumes that work for
new features is done on a single branch.

The project manager has created the first baseline from versions on the main
branches of their elements. But this is not a requirement; you can create a release

that uses versions on any branch, or combination of branches.

The evolution of a typical element during Release 2.0 development is shown in
- igure 59

Chapter 16. Using Rational ClearCase throughout the development cycle 243

(R1.0.2)(4

merge

Figure 59. Development milestones: evolution of a typical element

The evolution of the element proceeds in the following steps:

1.

© N oA OD

9.
10.
11.
12.

Start minor and major enhancements, along with R1.0 bug fixing (all
branches).

Freeze minor enhancements work (main branch).

Merge bug fixes from Release 1.0.1 into minor enhancements (main).
Create Baseline 1 release (main).

Freeze major enhancements work (major).

Merge Baseline 1 changes into major enhancements (major).

Freeze minor enhancements work (main).

Merge additional bugfixes into minor enhancements (main).

Freeze major enhancements work (major).

Merge major enhancements work with minor enhancements work (main).
Create Baseline 2 release (main).

Begin Final testing (main).

244 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

13. Release 2.0 is done (main).

Creating project views

The MAJ team works on a branch named major and uses this config spec:
1) element * CHECKEDOUT

2) element * .../major/LATEST

3) element * R1.0 —mkbranch major

@) element * /main/LATEST —mkbranch major

The MIN team works on the main branch and uses the default config spec:
1) element * CHECKEDOUT
() element * .../main/LATEST

The FIX team works on a branch named r1_fix and uses this config spec:
1 element * CHECKEDOUT

2 element * .../rl fix/LATEST

3) element * R1.0 —mkbranch rl_fix

@) element * /main/LATEST -mkbranch rl_fix

For the MAJ and FIX teams, use of the auto-make-branch facility in Rule
and Rule [“4” on page 245| enforces consistent use of subbranches. It also
relieves developers of the task of creating branches explicitly and ensures that all
branches are created at the version labeled R1.0.

Creating branch types

The project manager creates the major and r1_fix branch types that are required
for the config specs in [‘Creating project views” on page 245}

cleartool mkbrtype —c "monet R2 major enhancements" \
major@/vobs/1ibpub major@/vobs/monet

Created branch type "major".

Created branch type "major".

cleartool mkbrtype —c "monet R1 bugfixes" rl_fix@/vobs/1ibpub
rl_fix@/vobs/monet

Created branch type "rl_fix".

Created branch type "rl1 fix".

Tip: Because each VOB has its own set of branch types, the branch types must be
created separately in the monet VOB and the libpub VOB.

Creating standard config specs

To ensure that all developers in a team configure their views the same way, the
project manager creates files containing standard config specs:

* /public/config_specs/MA] contains the MA] team’s config spec.
* /public/config_specs/FIX contains the FIX team’s config spec.

These config spec files are stored in a VOB but made available in a standard
directory outside a VOB to ensure that all developers get the same version.

Creating, configuring, and registering views

Each developer creates a view under his or her home directory. For example,
developer arb enters these commands:

Chapter 16. Using Rational ClearCase throughout the development cycle 245

% mkdir $HOME/view_store

% cleartool mkview —tag arb_major $HOME/view_store/arb_major.vws
Created view.

Host-local path: phobos:export/home/arb/view_store/arb_major.vws

Global path: /net/phobos/export/home/arb/view_store/arb_major.vws
It has the following rights:

User : arb Dorwx

Group: user I orwx

Other: Dor-x

A new view has the default config spec. Thus, developers on the MA]J and FIX
teams must reconfigure their views, using the standard file for their team.
Developer arb edits her config spec with the cleartool edcs command, deletes the
existing lines, and adds the following line:

/public/config_specs/MAJ

If the project manager changes the standard file, arb must enter the command
cleartool setcs —current to pick up the changes.

Development begins

To begin the project, a developer sets a properly configured view, checks out one
or more elements, and starts work. For example, developer david on the MA]J team
enters these commands:

% cleartool setview david_major

% cd /vobs/monet/src

% cleartool checkout —nc opt.c prs.c

Created branch "major" from "opt.c" version "/main/6".

Checked out "opt.c" from version "/main/major/0".

Created branch "major" from "prs.c" version "/main/7".

Checked out "prs.c" from version "/main/major/0".

The auto-make-branch facility causes each element to be checked out on the major
branch (see Rule ['4” on page 245|in the MAJ team’s config spec in[“Creating]
foroject views” on page 245). If a developer on the MIN team enters this command,
the elements are checked out on the main branch, with no conflict.

Rational ClearCase is fully compatible with standard development tools and
practices. Thus, developers use the editing, compilation, and debugging tools that
they prefer (including personal scripts and aliases) while working in their views.

Developers check in work periodically to make their work available to other team
members (that is, those whose views select the most recent version on the team’s

branch). This allows intra-team integration and testing to proceed throughout the

development period.

Techniques for isolating your work

Individual developers may need or prefer to isolate their work from the changes
made by other team members. To do so, they can use these techniques to configure
their views:

* Time rules. When someone checks in an incompatible change, a developer can
re-configure the view to select the versions at a point before those changes were
made.

* Private subbranches. A developer can create a private subbranch in one or more
elements (for example, /main/major/anne_wk). The config spec must be changed
to select versions on the /main/major/anne_wk branch instead of versions on the
/main/major branch.

246 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Viewing only their own revisions. Developers can use a Rational ClearCase
query to configure a view that selects only their own revisions to the source tree.

Creating baseline 1

Release MIN Team

The MIN team has implemented and tested the first group of minor enhancements,
and the FIX team has produced a patch release, whose versions are labeled R1.0.1.
It is time to combine these efforts, to produce Baseline 1 of Release 2.0 1!

Baseline -
1

Freeze

FIX Team Release
1.0.1

Figure 60. Creating baseline 1

Merging two branches

The project manager asks the MIN developers to merge the R1.0.1 changes from
the r1_fix branch to their own branch (main). All the changes can be merged by
using the findmerge command once. For example:

9

% cleartool findmerge /vobs/1ibpub /vobs/monet/src \
—fversion .../rl_fix/LATEST —merge —graphical

The output from the findmerge command describes the versions that are merged.

Integration and test

After the merges are complete, the /main/LATEST versions of certain elements
represent the efforts of the MIN and FIX teams. Members of the MIN team now
compile and test the monet application to find and fix incompatibilities in the
work of both teams.

The developers on the MIN team integrate their changes in a single, shared view.
The project manager creates the view storage area in a location that is accessible
from all developer hosts:

% umask 2

% mkdir /netwide/public

% cleartool mkview —tag basel_vu /netwide/public/basel_vu.vws
Created view.

Host-local path: infinity:/netwide/public/basel vu.vws

Global path: /net/infinity/netwide/public/basel vu.vws.
It has the following rights:

User : meister : rwx

Group: mon 'Y

Other: :or-x

Because all integration work takes place on the main branch, there is no need to

change the configuration of the new view from the Rational ClearCase default.
MIN developers set this view (cleartool setview basel_vu) and coordinate builds

Chapter 16. Using Rational ClearCase throughout the development cycle 247

and tests of the monet application. Because they are sharing a single view, the
developers are careful not to overwrite each other’s view-private files. Any new
versions that are created to fix inconsistencies (and other bugs) go onto the main
branch.

Labeling sources

The monet application minor enhancements and bug fixes are now integrated, and
a clean build has been performed in view basel_vu. To create the baseline, the
project manager assigns the same version label, R2_BL1, to the /main/LATEST
versions of all source elements. He begins by creating an appropriate label type:

[

% cleartool mklbtype —c "Release, Baseline 1" R2_BL1@/vobs/monet
R2_BL1@/vobs/Tibpub

Created label type "R2_BL1".

Created label type "R2_BL1".

He then locks the label type, preventing all developers (except himself) from using
it:

[

% cleartool Tock —nusers meister 1btype:R2_BL1@/vobs/monet
1btype:R2_BL1@/vobs/1ibpub
Locked label type "R2_BL1".
Locked Tabel type "RZ_BL1".

Before applying labels, he verifies that all elements are checked in on the main
branch (checkouts on other branches are still allowed):

% cleartool Tscheckout —all /vobs/monet /vobs/1ibpub

No output from this command indicates that all elements for the monet project are
checked in. Now, the project manager attaches the R2_BL1 label to the currently
selected version (/main/LATEST) of every element in the two VOBs:

[

% cleartool mklabel —recurse R2_BL1 /vobs/monet /vobs/1ibpub
Created label "R2_BL1" on "/vobs/monet" version "/main/1".
Created label "R2_BL1" on "/vobs/monet/src" version "/main/3".
<many more label messages>

Removing the integration view

The view registered as basel_vu is no longer needed, so the project manager
removes it:

% cleartool rmview —force —tag basel_vu

Merging ongoing development work

After Baseline 1 is created, the MA] team merges the Baseline 1 changes into its
work . The team now has access to the minor enhancements it needs for
further development. Team members also have an early opportunity to determine
whether any of their changes are incompatible.

248 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

MAJ Team

Freeze
A
Release MIN Team Freeze Baseline
1.0 1

Figure 61. Updating major enhancements development

Accordingly, the project manager declares a freeze of major enhancements
development. MA] team members check in all elements and verify that the monet
application builds and runs, making small source changes as necessary. When all
such changes have been checked in, the team has a consistent set of
/main/major/LATEST versions.

Tip: Developers working on other major enhancements branches can merge at
other times, using the same merge procedures described here.

Preparing to merge
1. The project manager makes sure that no element is checked out on the major
branch:
% cleartool 1scheckout —all /vobs/monet /vobs/1ibpub

Tip: Any MA] team members who want to continue with nonmerge work can
create a subbranch at the “frozen” version (or work with a version that is
checked out as unreserved).

2. The project manager performs any required directory merges:
% cleartool setview major_vu
Any MA] team view can be used.

% cleartool findmerge /vobs/monet /vobs/1ibpub —type d \
—fversion /main/LATEST —merge

Needs merge /vobs/monet/src [automatic to /main/major/3 from
/main/LATEST]

Log has been written to "findmerge.log.04-Feb-04.09:58:25".
The output log describes the findmerge actions.

3. After checking in the files, the project manager determines which elements
need to be merged:

% cleartool findmerge /vobs/monet /vobs/1ibpub —fversion /main/LATEST —print

A 'findmerge' Tog has been written to
"findmerge.log.04-Feb-04.10:01:23"

Chapter 16. Using Rational ClearCase throughout the development cycle 249

The output log describes the findmerge actions. This last findmerge log file is
in the form of a shell script: it contains a series of cleartool findmerge
commands, each of which performs the required merge for one element:

% cat findmerge.log.04-Feb-04.10:01:23
cleartool findmerge /vobs/monet/src/opt.c@@/main/major/1 -fver /main/LATEST —merge
cleartool findmerge /vobs/monet/src/prs.c@@/main/major/3 -fver /main/LATEST —merge

cleartool findmerge /vobs/libpub/src/dcanon.c@@/main/major/3 -fver /main/LATEST -merge
cleartool findmerge /vobs/1ibpub/src/getcwd.c@@/main/major/2 -fver /main/LATEST -merge
cleartool findmerge /vobs/libpub/src/lineseq.c@@/main/major/10 -fver /main/LATEST -merge

250

4. The project manager locks the major branch, allowing it to be used only by the
developers who are performing the merges:

cleartool Tock —nusers meister,arb,david,sakai brtype:major@/vobs/monet \
brtype:major@/vobs/1ibpub

Locked branch type "major".

Locked branch type "major".

Merging work

Because the MAJ team is not contributing to a baseline soon, it is not necessary to
merge work (and test the results) in a shared view. MA] developers can continue
working in their own views.

Periodically, the project manager sends an excerpt from the findmerge log to an
individual developer, who executes the commands and monitors the results. (The
developer can send the resulting log files back to the project manager, as
confirmation of the merge activity.)

A merged version of an element includes changes from three development efforts:
Release 1.0 bug fixing, minor enhancements, and new features (see|Figure 62)

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Development
when BL1
is complete

Development
freeze

3
2,

o

=

merge

Figure 62. Merging Baseline 1 changes into the major branch

The project manager verifies that no more merges are needed, by entering a
findmerge command with the —-whynot option:

9

% cleartool findmerge /vobs/monet /vobs/1ibpub —fversion /main/LATEST —whynot —print

No merge "/vobs/monet/src" [/main/major/4 already merged from /main/3]
No merge "/vobs/monet/src/opt.c" [/main/major/2 already merged from
/main/12]

The merge period ends when the project manager removes the lock on the major
branch:

[

% cleartool unlock brtype:major@/vobs/monet brtype:major@/vobs/1ibpub
Unlocked branch type "major".
Unlocked branch type "major".

Creating Baseline 2

The MIN team is ready to freeze for Baseline 2, and the MA] team will be soon

(see [Figure 63).

Chapter 16. Using Rational ClearCase throughout the development cycle 251

Baseline |
2

Release
1.0.2

Figure 63. Baseline 2

Baseline 2 integrates all three development efforts, and thus requires two sets of

merges:

* Bug fix changes from the most recent patch release (versions labeled R1.0.2)
must be merged to the main branch.

* New features must be merged from the major branch to the main branch. (This
is the opposite direction from the merges described in[“Merging ongoing]|
[development work” on page 248|)

Merges can be done from more than two directions, so both the bug fixes and the
new features can be merged to the main branch at the same time. In general,
though, it is easier to verify the results of two-way merges.

Merging from the r1_fix branch
The first set of merges is almost identical to those described in

ranches” on page 247
pag

Preparing to merge from the major branch

After the integration of the rl1_fix branch is completed, the project manager
prepares to manage the merges from the major branch. These merges are
performed in a tightly controlled environment, because the Baseline 2 milestone is
approaching and the major branch is to be abandoned.

Tip: It is probably more realistic to build and verify the application, and then
apply version labels before proceeding to the next merge.

252 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The project manager verifies that everything is checked in on both the main branch
and major branches:

% cleartool 1scheckout —brtype main —recurse /vobs/monet /vobs/1ibpub
cleartool Tscheckout -brtype major —recurse /vobs/monet /vobs/1ibpub

N o°

No output from these commands indicates that no element is checked out on either
its main branch or its major branch.

Next, the project manager determines which elements require merges:

0

% cleartool setview minor_vu

Any MIN team view can be used.
% cleartool findmerge /vobs/monet /vobs/1ibpub —fversion .../major/LATEST —print

A 'findmerge' log has been written to
"findmerge.log.26-Feb-99.19:18:14"

All development on the major branch will stop after this baseline. Thus, the project
manager locks the major branch to all users, except those who are performing the
merges. Locking allows the merges to be recorded with a hyperlink of type Merge:

9

% cleartool lock —nusers arb,david brtype:major@/vobs/monet
brtype:major@/vobs/1ibpub

Locked branch type "major".

Locked branch type "major".

Because the main branch will be used for Baseline 2 integration by a small group
of developers, the project manager asked vobadm to lock the main branch to
everyone else:

0

% cleartool lock —nusers meister,arb,david,sakai \
brtype:main@/vobs/monet brtype:main@/vobs/1ibpub
Locked branch type "main".

Locked branch type "main".

To lock the branch, you must be the branch creator, element owner, VOB owner, or
root user (on the UNIX system) or a member of the ClearCase administrators group
(on the Windows system). See the lock reference page.

Merging from the major branch

Because the main branch is the destination of the merges, developers work in a
view with the default config spec. The situation is similar to the one described in
[“Preparing to merge” on page 249| This time, the merges take place in the opposite
direction, from the major branch to the main branch. Accordingly, the findmerge
command is very similar:

% cleartool findmerge /vobs/monet /vobs/1ibpub —fversion /main/major/LATEST \
—-merge —graphical

A 'findmerge' Tog has been written to
"findmerge.log.23-Mar-99.14:11:53"

After checkin, the version tree of a typical merged element appears as in

Chapter 16. Using Rational ClearCase throughout the development cycle 253

merge

Figure 64. Element structure after the pre-Baseline-2 merge

Decommissioning the major branch

After all data has been merged to the main branch, development on the major

branch will stop. The project manager enforces this policy by making the major
branch obsolete:

9

% cleartool lock -replace —obsolete brtype:major@/vobs/monet
brtype:major@/vobs/1ibpub

Locked branch type "major".

Locked branch type "major".

Integration and test

Structurally, the Baseline 2 integration-and-test phase is identical to the one for
Baseline 1 (see [“Integration and test” on page 247). At the end of the integration
period, the project manager attaches version label R2_BL2 to the /main/LATEST

version of each element in the monet and libpub VOBs. (The Baseline 1 version
label was R2_BL1.)

Final validation: creating Release 2.0

254

Baseline 2 has been released internally, and further testing has found only minor
bugs. These bugs have been fixed by creating new versions on the main branch

(see [Figure 65).

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Baseline Minor bugfixes Release
2 2.0

Figure 65. Final test and release

Before the monet application is shipped to customers, it goes through a validation
phase:

* All editing, building, and testing is restricted to a single, shared view.
* All builds are performed from sources with a particular version label (R2.0).
* Only the project manager has permission to make changes involving that label.
* All labels must be moved by hand.
* Only high-priority bugs are fixed, using this procedure:
— The project manager authorizes a particular developer to fix the bug, by
granting her permission to create new versions (on the main branch).
— The developer’s checkin activity is tracked by a Rational ClearCase trigger.

— After the bug is fixed, the project manager moves the R2.0 version label to the
fixed version and revokes the developer’s permission to create new versions.

Labeling sources

In a view with the default config spec, the project manager creates the R2.0 label
type and locks it:

cleartool mklbtype —c "Release 2.0" R2.0@/vobs/monet R2.0@/vobs/1ibpub

Created label type "R2.0".

Created label type "R2.0".

cleartool lock —nusers meister 1btype:R2.0@/vobs/monet 1btype:R2.0@/vobs/1ibpub
Locked Tabel type "R2.0".

Locked Tabel type "R2.0".

The project manager labels the /main/LATEST versions throughout the entire monet
and libpub development trees:

cleartool mklabel -recurse R2.0 /vobs/monet /vobs/1ibpub

Many label messages are displayed. During the final test phase, the project
manager moves the label forward, using mklabel —replace, if any new versions are
created.

Restricting use of the main branch
At this point, use of the main branch is restricted to a few users: those who

performed the merges and integration leading up to Baseline 2 (see

fthe major branch” on page 253). Now, the project manager asks vobadm to close
down the main branch to everyone except himself, meister:

9

% cleartool lock -replace —nusers meister brtype:main
Locked branch type "main".

The main branch is opened only for last-minute bug fixes (see [“Fixing a final bug”|

b page 25d)

Setting up the test view

The project manager creates a new shared view, r2_vu, that is configured with a
one-rule config spec:

Chapter 16. Using Rational ClearCase throughout the development cycle 255

% umask 2
% cleartool mkview —tag r2_vu /public/integrate_r2.vws
% cleartool edcs —tag r2_vu

This is the config spec:
element * R2.0

This config spec guarantees that only properly labeled versions are included in
final validation builds.

Setting up the trigger to monitor bug-fixing

The project manager places a trigger on all elements in the monet and libpub
VOBs; the trigger fires whenever a new version of any element is checked in. First,
he creates a script that sends mail (for an example script, see
imembers of relevant changes” on page 183).

Then, he asks vobadm to create an all-element trigger type in the monet and
libpub VOBs, specifying the script as the trigger action:

0

% cleartool mktrtype —nc -element —all —postop checkin -brtype main \
—exec /public/scripts/notify_manager.sh \

r2_checkin@/vobs/monet r2_checkin@/vobs/1ibpub

Created trigger type "r2_checkin".

Created trigger type "r2 checkin".

Only the VOB owner or root user (on the UNIX system) or a member of the
Rational ClearCase administrators group (on the Windows system) can create

trigger types.

Fixing a final bug
This section demonstrates the final validation environment in action. Developer arb
discovers a serious bug and requests permission to fix it. The project manager
grants her permission to create new versions on the main branch, by having
vobadm enter this command.

% cleartool lock —-replace —nusers arb,meister brtype:main
Locked branch type "main".

Developer arb fixes the bug in a view with the default config spec and tests the fix
there. This involves creating two new versions of element prs.c and one new
version of element opt.c. Each time arb uses the checkin command, the r2_checkin
trigger sends mail to the project manager. For example:

Subject: Checkin /vobs/monet/src/opt.c by arb

/vobs/monet/src/opt.c@@/main/9
Checked in by arb.

Comments:
fixed bug #459: made buffer Targer

When regression tests verify that the bug has been fixed, the project manager
revokes arb’s permission to create new versions. Once again, the command is
executed by vobadm:

% cleartool lock -replace —nusers meister brtype:main
Locked branch type "main".

The project manager then moves the version labels to the new versions of prs.c
and opt.c, as indicated in the mail messages. For example:

9

% cleartool mklabel —-replace R2.0 /vobs/monet/src/opt.c@@/main/9
Moved Tabel "R2.0" on "prs.c" from version "/main/8" to "/main/9".

256 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Rebuilding from labels

After the labels have been moved, developers rebuild the monet application again,
to verify that a good build can be performed using only those versions labeled
R2.0.

Wrapping up
When the final build in the r2_vu view passes the final test, Release 2.0 of monet is
ready to ship. After the distribution medium has been created from derived objects

in the r2_vu view, the project manager asks the Rational ClearCase administrator
to clean up and prepare for the next release:

* The Rational ClearCase administrator deletes the all-element trigger type to
remove the checkin triggers from all elements:

cleartool rmtype trtype:r2_checkin@/vobs/monet
trtype:r2_checkin@/vobs/1ibpub

Removed trigger type "r2_checkin".

Removed trigger type "r2 checkin".

* The Rational ClearCase administrator reopens the main branch:

cleartool unlock brtype:main
Unlocked branch type "main".

Chapter 16. Using Rational ClearCase throughout the development cycle 257

258 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Part 4. Appendixes

© Copyright IBM Corp. 1992, 2006 259

260 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix A. Moving from view profiles to UCM

This appendix compares view profile features with UCM features and describes
how to move a project from view profiles to UCM.

View profiles and UCM

Product Note: View profiles are available only with Rational ClearCase on the
Windows system. Rational ClearCase LT does not support view
profiles.

A set of features called view profiles were included to automate much of the work
required to set up and maintain your team’s shared Rational ClearCase
configuration. The Unified Change Management (UCM) process provides a more
complete solution for organizing software development teams. If you currently use
view profiles, you may want to move to UCM.

Feature comparison

The features of view profiles and UCM are similar in a few ways and different in
many other ways.

Branches and streams

In UCM, the project and its integration stream take the place of the view profile.
Views attached to the integration stream are configured to select the project shared
integration branch, just as a view profile config spec selects a shared common
branch.

In view profiles, developers can work independently by setting up private
branches for development work. In UCM, team members join a project at which
time they create their own development work areas. A development work area
consists of a development stream and a development view.

Moving work among branches or streams

When working on a private branch in view profiles, there is no automated way to
incorporate changes from other developers onto the private branch. In UCM,
developers use the rebase operation to update their development work areas with
the latest work delivered by other developers to the integration stream and
incorporated into a baseline.

In view profiles, developers finish a private branch when they complete a task.
Finishing a private branch closes that branch and merges work to the integration
branch, where it is merged with other sources. In UCM, activities record the
versions that you create to complete a development task as change sets. The deliver
operation moves activities from the development stream to the integration stream
or a feature-specific development stream. Your development stream remains in
place after a deliver operation, and you can continue to work in it.

VOBs and components

View profiles contain a list of VOBs that hold project data. UCM projects organize
directory and file elements into components, and each stream keeps a list of
components.

© Copyright IBM Corp. 1992, 2006 261

Checkpoints and baselines

View profiles capture stable configurations of a project with checkpoints, a set of
labeled versions. UCM uses baselines, which capture a set of versions per
component.

summarizes the key differences between view profiles and UCM features.

Table 8. View profile features and their UCM counterparts

View profile construct UCM counterpart

View profile Project and integration stream
Integration branch Integration stream

Private branch Development stream

Set up private branch Create a development stream/join project
Finish private branch Deliver work to integration stream
Branch is closed when work is completed Development stream is not closed after a
and merged to integration branch. deliver operation.

No automated support for updating private |Rebase operation adds changes from the
branch with work from other developers. integration stream to private work area.
Views are configured with information from | Views are configured with information from
profiles. streams.

Moving view profile information to UCM

You may have to know how to move projects from view profiles to UCM.

Preparing your view profile project

Before moving work to UCM, finish all private branches. Work on private branches
cannot be moved directly to a UCM project. After work has been merged into the
integration branch, create a checkpoint that labels all versions to be migrated to the
UCM project.

Moving the view profile information
1. Convert each VOB of the view profile project into a component.

2. For each component, import the label used for the checkpoint created in Step
By importing a label, you are creating a new baseline for each

component.

3. Create a UCM project, adding each baseline created in Step [2 on page 262

Members of the project team can now join the project, creating their own
development streams and views.

For more information about creating a UCM project, see [Chapter 6, “Setting up the]
fproject,” on page 85

262 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix B. Rational ClearCase integrations with Rational
ClearQuest

In Rational ClearCase, two integrations with Rational ClearQuest are supported.
This appendix provides information that you need to manage both integrations in
the same development environment.

Understanding the Rational ClearCase integrations with Rational
ClearQuest

There are two separate integrations with Rational ClearQuest:
¢ The base ClearCase integration with Rational ClearQuest
¢ The UCM integration with Rational ClearQuest

The integrations associate one or more Rational ClearQuest user database records
with one or more Rational ClearCase versions, allowing you to use features of both
Rational ClearCase and Rational ClearQuest. For information on setting up the
base ClearCase integration with Rational ClearQuest, see [“Setting up the Rationall
[ClearQuest user database for base ClearCase” on page 196.|Note that this
integration cannot be used with UCM projects.

For more information on the UCM integration with Rational ClearQuest, see
(Chapter 5, “Setting up a Rational ClearQuest user database for UCM,” on page 75

In general, you should use the base ClearCase integration with Rational
ClearQuest and the UCM integration with Rational ClearQuest separately, and
avoid using a common Rational ClearQuest user database. However, it is possible
for both integrations to use the same Rational ClearQuest user database. This can
be useful if you are moving a project to UCM and have a substantial amount of
information in a Rational ClearQuest user database that was created with the base
ClearCase integration with Rational ClearQuest. You may want the new work in
UCM to be reflected in new Rational ClearQuest records in the same Rational
ClearQuest user database.

You should be aware of the considerations in managing the coexistence of the base
ClearCase integration with Rational ClearQuest and the UCM integration with
Rational ClearQuest.

Managing coexisting integrations
When a Rational ClearQuest user database that had been integrated with Rational
ClearCase previously is configured for integration with UCM, the existing change
sets are preserved intact in the Rational ClearQuest user database, but cannot be
migrated to the UCM integration with Rational ClearQuest.

Change sets of existing records in the Rational ClearQuest user database are
preserved, and you can access them from a Rational ClearQuest client. To continue
work on a task in a project that has been migrated to UCM, create a new,
corresponding, UCM activity and continue work there.

See [“Planning how to use the UCM integration with Rational ClearQuest” on pagel
for related information.

© Copyright IBM Corp. 1992, 2006 263

Schema usage with both integrations

A Rational ClearQuest schema can contain modifications from both the base
ClearCase integration with Rational ClearQuest and the UCM integration with
Rational ClearQuest. A record type in such a schema would include both the
Rational ClearCase package and the Unified Change Management package.

An individual record of that record type can store either Rational ClearCase or
UCM change set information, but not both.

Presentation

The form for a record type that uses both integrations includes two tabs to show
the change set information associated with each integration. The Unified Change
Management tab lists the change set for a UCM activity. The ClearCase tab shows
the change set associated with a Rational ClearQuest record.

264 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix C. Customizing Rational ClearCase Reports

This appendix explains how to customize Rational ClearCase Reports. Specifically,
it introduces the Rational ClearCase Reports Programming Interface and gives
examples of how you can customize the report procedures and the user interface.

Product Note: Rational ClearCase Reports is available only with the Windows
versions of Rational ClearCase and Rational ClearCase LT.

How Rational ClearCase Reports works

Rational ClearCase Reports consists of two parts:
* The report procedures, which you can modify

* The Rational ClearCase Reports applications (Report Builder and Report
Viewer), which you cannot modify

The report procedures are hooks into the applications; they implement all the
operations necessary to generate and view a specific report. The applications
collect user input, interpret it, and run the appropriate report procedure. At run
time, Rational ClearCase Reports executes as two applications: Report Builder and
Report Viewer. The Report Builder is used to select and define report parameters;
the Report Viewer is used to view the report output.

All report procedures require an interface specification. This specification
determines the user interface information presented to users in the Report Builder
and Report Viewer. When users select a folder, the Report Builder scans the
interface specification of each report in the associated subdirectory and places the
contents in a temporary buffer. When users select a specific report, Report Builder
extracts from this buffer the interface information associated with the report that is
displayed in the Report Builder and Report Viewer. After users provide the
required report parameters, the Report Builder generates the report and passes the
data to the Report Viewer.

The commands that the Report Builder uses include an -i option, which extracts
the interface specification from the report procedure. If the report procedure does
not include an interface specification or if the structure and contents of that
specification are not what the Report Builder expects, report processing stops.

For more information on the processing sequence between the Rational ClearCase
Reports applications and the report procedures, see|“Run-Time processing|
lsequence for Reports programming interface” on page 266|

What you can customize in Rational ClearCase Reports

The Rational ClearCase programming interface enables you to customize four parts
of the Report Builder user interface and two parts of the Report Viewer. You can
customize by adding, changing, or removing information for the changeable areas
of the Report Builder:

* The name of the folders in the tree pane.
* The directory organization displayed in the tree pane.

* The report description.

© Copyright IBM Corp. 1992, 2006 265

¢ The report parameters

As with the Report Builder, you can customize the Report Viewer. Add, change, or

remove information for the changeable areas as follows:

* The position of a column heading can be moved, a column heading name can be
added, modified, or deleted and a default sort order can be added or removed
from any column heading.

* The commands on the pop-up menu.

For programming examples that demonstrate how you can make these
customizations, see [“Report programming examples” on page 276

Run-Time processing sequence for Reports programming
interface

Before you begin to customize report procedures, it is important to understand the
run-time processing flow for Report Builder and Report Viewer. The processing
sequence occurs in the following phases.

* In phase 1, the user opens one of the subfolders in the Reports folder.

The Report Builder processes the interface specification of all report procedures
associated with the reports in that subfolder and presents the description of each
report in the reports pane of the Report Builder. The parameters associated with
the first report listed appear in the parameters pane. This processing is done
with the command that uses the -i option.

* In phase 2, the user selects a report in the reports pane.

The Report Builder populates the parameters pane with the parameters required
for that report. When the user clicks a parameter, the associated parameter
chooser prompts the user to provide a value. When all parameters have values,
the user can run the report. (The Run Report button is not available until all
parameters have values.)

* In phase 3, the report is generated.

A command line, whose parameters are defined in the interface specification, is
passed to the Report Viewer, with the parameter values. The Report Viewer runs
the report procedure and uses either cleartool or the Rational ClearCase
Automation Library (CAL) interface to retrieve information from the VOB. The
report procedure returns the information to the Report Viewer, which sorts,
formats, and displays it. The right-click behavior for all rows in the report (as
defined in the interface specification) is now enabled, and the user can also
manipulate the report data.

illustrates this processing sequence.

266 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

USER ACTIONS RUN-TIME PROCESSING

Phase 1
Report Builder Report —» Report
Reports Description 1 —»- Builder, ~— ERiCCllISS
Folder 1 Description 2 application in Folder 2

Parameter 1
Parameter 2

Phase 2

Report Builder

Reports Report 1

Folder 1 Report 2 —Z
Folder 2

Parameter 1
Parameter 2

* Report
Report Builder Builder
Reports Report 1 —» application
Folder 1 Report 2
Folder 2
Parameter 1
Phase 3
Report Viewer
Column 1 Column 2
Row 1 Report —» Procedure
Viewer -~ for Report 1
m Command 1 application
Command 2 <
Command 3

Figure 66. Run-time processing sequence

To execute these processing phases correctly, a report procedure must meet the
following requirements:

* The directory that contains the report procedure must be found at known
location. The Report Builder reads the \reports\scripts directory to determine
the report procedure file names. When a user clicks the associated directory
folder, Report Builder calls the associated report procedure.

* The report procedure must have a valid interface specification. If the expected
format is not present, the report does not run.

* The interface specification in the report procedure must use parameters and
choosers supplied by Rational ClearCase Reports. See[Table 9 on page 271}

* The report procedure must support a command line interface that the Report
Viewer can use to pass user-defined parameter values to the report procedure.

Appendix C. Customizing Rational ClearCase Reports 267

Configuring shared report directories

When Rational ClearCase is installed on the client, the files for Rational ClearCase
Reports are stored in ccase—home—dir\reports. Before you modify the contents of this
directory, create a copy of it in a shared location. You can then delete or rename
folders and add or modify report procedures.

To create the copy, do one of the following:
* Copy the files to a new directory.

* Place a copy of the files under source control and create a Rational ClearCase
view to serve as the shared location.

You must remove the .dll and .exe files from the customization directory. The
subdirectories for \scripts,\script_tools, and \scripts_rightclick must be present.
The \scripts directory becomes the root node Reports in the Report Builder tree
pane; you can modify this directory tree. Do not delete any files that are in
\script_tools and \scripts_rightclick. You may add your own folders, of course.

The help files that are used by the reports cannot be modified and are not included
in the \reports directory. The help file for Rational ClearCase Reports is located in
ccase—home-dir\bin\cc_reports.hlp.

Adding report procedures to source control
To place a copy of ccase-home—dir\reports under source control:

1. Copy all files to a temporary directory.
2. In the temporary directory, enter a command of this form:
clearfsimport -recurse source-name target-VOB-directory

3. Create a dynamic or snapshot view for the reports data that is now under
source control.

Setting the Report Builder to the customized directory

After you copy the installed files for Rational ClearCase Reports
fromccase—home—dir\reports to a shared directory location, you can set Report
Builder to use this location:

1. In the Report Builder window, click Report > Set Scripts Location to open the
Configure Reports Directory window.

2. In the window, do one of the following:
* Type the directory path for the customized directory in the field.
* Click ... and, in the Browse for scripts location window, navigate to and
select a directory location.

Tip: After changing the Rational ClearCase Reports user interface, you must
restart Report Builder to activate the changes.

Default directory structure for Rational ClearCase Reports

All files for Rational ClearCase Reports are stored in ccase-home—dir\reports. This is
the directory structure:

reports\
ccreportbuilder.exe
ccreportviewer.exe
cctypechooser.dll
ccpathchooser.dll
scripts\
ClearCase_Tools\
Elements\

268 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Attributes\
Branches\
Labels\
Triggers\
UCM_Projects\
UCM_Streams\
Views\
VOBs\
scripts_rightclick\
script_tools\

Populating the Report Builder tree pane
The Report Builder window contains the following panes:
¢ The tree pane (left).
* The reports pane (top-right).
¢ The parameter pane (bottom-right).

When the user clicks any folder in the tree pane, the Report Builder runs the
associated report procedures from the command line. The -i option in the
command line enables the Report Builder to use a discovery algorithm to collect
the user interface information for Report Builder.

The Report Builder accesses the \scripts subdirectory. Directories in the tree appear
as folders in the tree pane. Any files whose extensions match those listed below are
listed in the reports pane.

.exe Typically a Visual C++ application that uses Rational ClearCase
Automation Library (CAL) to extract data

js JavaScript ", run under Windows Scripting Host (cscript.exe)

.pl Perl, executed under perl.exe from user’s PATH environment
variable, for example, ActiveState Perl

.p1l ccperl

.vbs VBScript, run under Windows Scripting Host (cscript.exe)

All other files are ignored. The file name extension of report procedures supplied
with Rational ClearCase Reports is .prl, which the Report Builder associates with
ccperl.exe.

At run time, the Report Builder displays all folder names, substituting a space for
the underscore and dropping the file name extension. There is one exception: the
root directory is always named Reports. This convention cannot be changed.

For example, you have the following on-disk directory tree:

scripts\

Admin_Reports
view_aging.prl
all_views.prl

UCM_Reports\
lagging_streams.prl
completed_acts.prl

The Report Builder displays text in the tree pane as the following folders:

\Reports
Admin Reports\
UCM Reports\

Appendix C. Customizing Rational ClearCase Reports 269

Report Procedure interface specifications

As the Report Builder finds report procedures in the customized directory, it
queries each report procedure for its interface specification. Report Builder starts a
separate process with CreateProcess(). A valid report procedure must implement
an interface specification and return formatted text to STDOUT that conforms to
this specification:

description : ["<text to display in description pane for this report>"]

id : <numeric help id>

helpfile : ["<full path to user-written help file for what's this
report help>"]

parameters : [<parameter_spec_1>] [<parameter_spec_2>] ...
[<parameter_spec_N>]

rightclick : [<rightclick_spec_1>] [<rightclick_spec_2>] ...
[<rightclick_spec_N>]

fields : [<field_spec_1>] [<field_spec_2> ... [<field_spec_N>]

If a serious parsing error occurs in processing the interface specification, the report
does not appear in the reports pane. The helpfile specification is reserved for
future use and is not supported in this release. For information on troubleshooting
parsing errors, see [“Troubleshooting customization” on page 292|

The examples in [“Interface specification for All_Views.prl”| through
ichoosers” on page 274 show how the interface specification is defined in specific
report procedures.

Interface specification for All_Views.prl

The Report Builder uses this command to run All_Views.prl:

ccperl "D:\Program Files\Rational\Clearcase\Reports\scripts\Views\A11 Views.prl" -i

This is the interface specification:

description : "A11l Views"

id : 2001

helpfile :

parameters :

rightclick : Properties_of View(single)

fields : "View Tag"(view_tag, rightclick, initial_width 30, sort 1)
"View Owner" (user_dq)

The report interface attaches the Report Viewer to the View Tag and View Owner
fields; the right-click event in the Report Viewer window calls Properties
_of_View.prl, which is based on a data stream from the View Tag field.

Description specification

The description is the only required part of an interface specification. When only
description is defined, a report procedure can run other graphical user interfaces
(for example, clearprompt) or otherwise interact with the user. The reports in the
\ClearCase_Tools folder define description only.

Descriptions can contain anything other than the delimiter, a double quote (").

There is no maximum length for this definition, but long strings do not wrap in
the reports pane.

270 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Help files

Help files are supplied for the Report Builder user interface. The help files for
Rational ClearCase Reports are in ccase—home—dir\bin\cc_reports.hlp. You cannot
add an ID for your own report.

Parameters specification

When specifying parameters, you can use only those supplied with Rational
ClearCase Reports. Each parameter has an associated chooser control, parameter
text, and a help ID (see [Table 9).

Table 9. Parameters supplied with Rational ClearCase Reports

Default text displayed in the

Parameter parameter pane Help ID | Chooser Selection

PROJECTS Select projects in UCM Process 1 Path (UCM) Multiple
VOB

STREAMS Select streams in UCM Process 2 Path (UCM) Multiple
VOB

ACTIVITIES Select activities in UCM Process 3 Path (UCM) Multiple
VOB

PROJECT Select project in UCM Process 4 Path (UCM) Single
VOB

STREAM Select stream in UCM Process 5 Path (UCM) Single
VOB

ACTIVITY Select activity in UCM Process 6 Path (UCM) Single
VOB

ISTREAM Select Integration Stream in UCM |7 Path (UCM) Single
Process VOB

PVOB Select one Process VOB Tag 8 Path (file selection) Single

COMPONENT Type a single UCM component 9 Text Single
object selector (no verification
performed)

BASELEVEL Type a single UCM baseline object |10 Text Single
selector (no verification
performed)

ISTREAMS Select Integration Streams in UCM |11 Path (UCM) Multiple
Process VOB

PVOBS Select Process VOBs Tags 12 Path (file selection) Multiple

COMPONENTS Type a list of UCM components 13 Text Multiple
object selectors (no verification
performed)

BASELEVELS Type a list of UCM baselines 14 Text Multiple
object selectors (no verification
performed)

LOOKIN Select paths in view to report on |15 Path (file selection) Multiple

USER Associated with user (values are |17 Text Single
non-domain-qualified)

GROUP Associated with group (values are |18 Text Single
non-domain-qualified)

LABEL With label 19 Type Single

ATTRIBUTE With attribute 20 Type Single

Appendix C. Customizing Rational ClearCase Reports

271

Table 9. Parameters supplied with Rational ClearCase Reports (continued)

Default text displayed in the
Parameter parameter pane Help ID | Chooser Selection
ATTRIBUTE_VALUE With value for attribute 21 Text Single
TRIGGER With trigger 22 Type Single
BRANCH With branch 23 Type Single
ELTYPE With element type 24 Text Single
HLTYPE With hyperlink type 25 Type Single
CCTIME Since date/time 26 Date/time Single
BRANCHLEVELS With integer levels of branching |27 Text Single
FILE_NAME With filename 28 Text Single
PATH Enter path 29 Text Single
STRING With string 30 Text Single
INTEGER Enter integer 31 Text Single
REGULAR_ EXPRESSION Enter regular expression 32 Text Single

When you use one of the parameters that is listed in|Table 9| naming it is all that is
required. For example, this is the parameters specification for the Elements
Changed Between Two Labels report:

parameters : LOOKIN LABEL LABEL

The order of parameters is important. They are displayed in the parameter pane in
the order of the specification. (Each parameter appears as a link. When users click
the link, they are prompted to enter a parameter value.) At run time, the Report
Viewer calls the report procedure, which must handle the parameter values in the
same order as defined in the specification.

The parameters in that are associated with the Type Chooser must also
include the LOOKIN parameter in the interface specification. The LOOKIN
parameter must have a value before any values for other parameters that use the
Type Chooser can be specified. The paths that are the values for the LOOKIN
parameter are used to build the set of VOBs that types can be read from. At run
time, if a user attempts to set a type parameter in reverse order, the Report Builder
displays this error message:

Before this parameter can be set, you must first set a value for the
"Select pathnames in view to report on" parameter.

Rightclick specification

The rightclick specification is a list of commands available on the pop-up menu in
the Report Viewer. All right-click events are supported by a list of scripts in the
\scripts_rightclick directory. This specification allows you to control the text on the
pop-up menu. At run time, underscores in these text strings are replaced by
spaces.

rightclick : properties_of_view delete_view

By default, the commands are valid for both single and multiple selections of result
records in the Report Viewer. This behavior can be controlled by using the single
modifier:

rightclick : properties of view(single) delete view(single)

272 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

A special string, sep, allows visual separators to group commands. At run time,
these commands appear on the pop-up menu in the order specified.

Fields specification

The fields specification defines the names of the field headings and a number of
modifiers to describe the results a report procedure returns to the Report Viewer.

describes

the supported modifiers.

Table 10. Fields modifiers

Modifier

Description

sort N

Optional. Specifies the sort order for returned records. If specified, this
modifier must be a sequence of integers that begin with 1. If no sort
specification is made, the records remain in the same order as returned
from the report procedure.

Inital_width N

Optional. Overrides the default width for the field.

<field_type>

Required.

hidden Optional. Prevents display of values for this field in the Report Viewer.
If this modifier is used, there is usually an associated sort N modifier
for the field.

rightclick Optional. The field value stream that is sent where any right-click

action occurs in the Report Viewer. Only one field can be designated as
the rightclick field.

For example, the following fields specification describes a single field with the
minimum specification allowed. The field_type modifier is required.

fields: "view tag"(view_tag)

In this example, the fields specification defines two fields, view tag and last mod
time, with all the allowable modifiers:

fields: "view tag"

(view_tag, rightclick, initial_width 10) "last mod

time" (time_t, hidden, sort 1)

field_type conventions
able 11 lists the names for field_types and the kind of data represented. Use these
definitions in your own report procedures wherever possible; but you can use your

own definitions.

Table 11. Field type supplied with Rational ClearCase Reports

Field name Data description Example

project UCM Project headline V4.1
name

project_objsel UCM project object Project:v4.1@\projects
selector

stream UCM Stream headline George_v4.1

name

stream_objsel

UCM Stream object
selector

George_v4.1@\projects

activity

UCM Activity headline
name

My activity

activity_objsel

UCM Activity object
selector

Activity:my_act@\ projects

Appendix C. Customizing Rational ClearCase Reports 273

Table 11. Field type supplied with Rational ClearCase Reports (continued)

Field name Data description Example

view_tag View-tag such as returned | main_latest_view
by Isview

time_t Integer ticks since 946934277
1/1/1970

cctime Readable time, format is | 20-Dec-99.16:01:12
%dfmt_ccase

User User name georgem

User_dq Domain-qualified user rational\georgem
name

string Random text hello world

Host Host name georgemnt

Hpath Local machine path to D:\ClearCase_Storage\views\jet
view/VOB directory

View_sttrs View attributes snapshot, ucmview

Element_xpn

Full path to element
ending in @@

S:\frontpage\accts\web\photo.htm@@

Element_pn Full path to element S:\frontpage\accts\web\photo.htm
without @@
Version_pn Version specifier, after @@ | \main\v4.0.bl5_main\2
label Label instance name V4.0
Integer Integer number 5
Yes_no yes or no enumerated Yes
string
Branch_xpn Full path to branch S:\frontpage\accts\web\photo.htm@@\main

version_xpn

Full path to version

S:\frontpage\accts\web\photo.htm@@\main\3

branch Branch name main

Attribute Attribute name normalize_html
Objsel Object selector VOB:\my_vob
Trigger Trigger name post_ci

Eltype Element type text_file
Vob_tag VOB Tag \projects

Depending on the column width that is required to display for a user-defined
field_type, the fields specification in a report procedure may need to adjust the
display column size with the Inital_width N modifier.

Parameter choosers

When a user opens a folder in the Report Builder tree pane, the reports pane is
populated with the list of descriptions that the Report Builder discovered in the
interface specification. When the user selects a report, the associated parameters
are loaded in the Report Builder. Each parameter in the interface specification has
associated parameter text, a help ID, and a chooser. All parameters have an

associated chooser (Table 9).

These choosers are supplied with Rational ClearCase Reports:

274 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

* Path Chooser

* UCM Targets Chooser
* Types Chooser

¢ Date/Time Chooser

* Text Chooser

For user information, click Help in any chooser window.

Path chooser

The Path Chooser is associated with the LOOKIN parameter. It presents a list of
view paths for users to select, and then sends the selected paths to the report
procedure. It is also used for the PVOB and PVOBS parameters to choose the
VOB tag of a UCM project VOB.

UCM targets chooser

The UCM Targets Chooser is associated with the PROJECT, PROJECTS,
STREAM, STREAMS, ACTIVITY, ACTIVITIES, ISTREAM, and ISTREAMS
parameters and allows you to select UCM objects.

Type chooser

The Type Chooser presents values for the BRANCH, ATTRIBUTE, LABEL,
HYPERLINK, and TRIGGER parameters. All parameters that the Type Chooser
supports require an initial value LOOKIN parameter.

Date/time chooser
The Date/Time Chooser is used to select date/time values for the CCTIME
parameter.

Text chooser

The Text Chooser presents values for these parameters: COMPONENT,
COMPONENTS, BASELINE, BASELINES, USER, GROUP,
ATTRIBUTE_VALUE, ELTYPE, BRANCHLEVELS, FILE_ NAME, PATH, STRING,
INTEGER, and REGULAR_EXPRESSION.

Data typed into the Text Chooser is not validated or parsed in any way by the
Report Builder or Report Viewer. The report procedure that accepts the parameter
value must perform any validation required.

For most parameters, the text above the field is Enter value for user. For
parameters that require the name of a baseline, a component, or an element type,
the text changes to reflect the parameter. For example: Enter value for baseline.

BASELINE baseline:<bl>@ \<pvob>

COMPONENT
component:<comp>@\<pvob>

ELTYPE <text_file>

Viewing the report

When all required parameters have values, clicking Run Report opens the Report
Viewer window. The Report Builder creates a command line to pass the
user-defined parameters, in the order defined by interface specification. For
example, if a report procedure asks for parameters LOOKIN LABEL, the Report
Viewer passes these values as follows:

ccperl elements_with_label.prl %LOOKIN='s:\frontpage\acctst';%LABEL=V4.0;

Appendix C. Customizing Rational ClearCase Reports 275

The Report Viewer creates a process to run the report procedure using ccperl.exe
for .prl, perl for .pl, cscript.exe for .js and .vbs, and default activation for .exe. The
report procedure returns results to STDOUT. The results are separated by
semicolons, in the same order, number, and type specified in the fields definition
in the interface specification.

When the report procedure has collected all its data, it exits. The report procedure
must return records to STDOUT in the most efficient manner possible; the Report
Viewer sorts the results and formats them for display. At run time, users can
change the default sorting order by clicking the column headings in the Report
Viewer. Simple text sorting is used for all fields except those whose field_type is
time_t, integer, or cctime. For these three fields only, Report Viewer uses numeric
sorting.

Saving report data

Clicking Save As in the Report Viewer window opens a standard file selection
window to prompt the user to save the results in one of the following output
formats:

.CSV Comma-separated, for import into Access or Excel
HTML For viewing in a Web browser
XML For viewing in Internet Explorer 5 using XSL style sheets

Saving the file is performed by the save_results.prl script in \script_tools. This
script supports two switches, -html and -csv, and the header, followed by
semicolon-separated data rows. This script also needs a path value for the -out
option, where path is the value that the Report Viewer passes from the Path
Chooser.

XML output is supported directly by the Report Viewer. You can re-implement the
.CSV and .HTML output by modifying save_result.prl. You can also define
additional XSL style sheets that can be referred to in XML output. Start with the
style sheet supplied with Rational ClearCase Reports (\script_tools\table.xsl) to
create customized XSL files.

Report programming examples

276

All report procedures supplied with Rational ClearCase Reports are written in
ccperl. The programming examples presented in this section are modifications of
these report procedures. Report procedures can be written in many other scripts
and programming languages; report procedures that use other programming
languages are available in the T0046 package that you can obtain from the Rational
ClearCase Customer Web site at{IBM Rational Support| (see|[“Obtaining the T0046|
|package” on page 293[). The following programming examples are presented in this
section:

* Example 1: Adding a new column to the report for Versions_byDate.prl.

* Example 2: Changing the directory organization and report description,
modifying the version path to a use different field name, and adding an element
type column to report output for Elements_with_New_Versions_Since_Date.prl.

* Example 3: Changing the report description, parameter types, and report output
for Elements_Created_by_User.prl.

* Example 4: Changing the order of commands and adding a command to the
pop-up menu for Element_with_Labels.prl.

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i

¢ Example 5: Adding a user-defined command to the pop-up menu for
Element_with_Branches.prl.

In the source code listings that accompany each example, the string ###
customization change marks the changes to the original report that accomplish the
task.

Example 1: Adding a column to report output

The Versions by Date report lists all versions that exist for the path that the user
specified. This report includes the following columns:

¢ Version Path
¢ Version Creation Time

The change to this report adds a column that lists the user name associated with
each version. The report procedure is located in
ccase—home—dir\Reports\Scripts \Elements\ Versions_by_Date.prl.

Processing logic
The processing logic of Versions_by_Date.prl is as follows:

1. The LOOKIN parameter, which is the sole parameter for this function, is
received in a string of this form:

LOOKIN = "<pathl> [<path2> ...]"

This parameter specifies the list of paths with which the cleartool find
command is to be invoked.

2. When the routine is invoked, it extracts the paths from the LOOKIN string and
passes them to the check_lookin() routine (located in common_script.prl).

3. The routine check_lookin() then puts the paths into the global variable
$ctfind_paths and encloses each path in double quotes; it also performs simple
validations on the paths received.

4. The report procedure calls cleartool Ishistory, passing $ctfind_paths as the
paths parameter, and with a -fmt parameter to return the necessary
information.

5. The report procedure executes a print statement with parameters (that is, the
items to print) of the same number and order as the list passed during interface
specification processing. The Report Builder has the information required to set
up the column headings; the report procedure must conform to this
specification to print its output.

Interface specification
This is the existing interface specification for Versions_by_Date.prl:
if (/~-1/) |

print "description : 'Versions by Date'\n";

print "id : 2018\n";

print "helpfile :\n";

print "parameters : ";
print "LOOKIN ";
print "\n";

print_version_rightclick();

print "fields : ";

print "\"Version Path\"(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";

print "\"Version Creation Time\"(time_t, sort 1, hidden) ";
print "\n";

exit(0);

Appendix C. Customizing Rational ClearCase Reports 277

Changes required

To add an additional column of report output:

1. Add a properly coded print statement to the interface specification that the
Report Builder can pass to the Report Viewer.

2. Add a %Fu; to the -fmt parameter in the cleartool Ishist call to get this
information from the Rational ClearCase configuration.

3. Properly extract the user information into some variable after the cleartool
Ishist call returns its output, so that it can be printed.

4. Print the user variable in the same order as it appeared in the interface
specification so that it appears under the correct column heading.

Modified report procedure

Here is the modified version of Versions_by_Date.prl. This report procedure is
examplel.prl in theT0046 package, which is available at[[BM Rational Support (see
[“Obtaining the T0046 package” on page 293).
$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = "5 if (Scc) {3}

$ct = ""; if ($ct) {5};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
SCLEARCASE_XN_SFX = ""; if (SCLEARCASE_XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @);
1f (u$erru != uu) {
print STDERR "$err\n";
1

sleep(2);
1f (u$erru != uu) {
exit(1);
} else {
exit(0);
}
1

open (INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error
opening include file '$common_dir\\common.prl'");
$buf = uu;
while(<INCLUDE>) {
$buf = $buf . $;
1

close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[O];
$args =~ s/%/ /g;

@args = split(";", $args);
$required_args = 0;
foreach(@args) {

s/l 1+

s/[1+8//;

validate _arg length($_);

if (/~-i/) |
print "description : 'Versions by Date'\n";
print "id : 2018\n";

278 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i

print "helpfile :\n";

print "parameters : ";
print "LOOKIN ";
print "\n";

print_version_rightclick();
print "fields : ";
print "\"Version Path\"(version_xpn, rightclick, sort 2) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, sort 1, hidden) ";
customization change *** added following line
print "\"User' (user) ";
print "\n";
exit(0);

1

if (/ALOOKINL Ix=[1*('.x")/) {
check_Tookin($1);
$required args++;
next;

print STDERR "unrecognized argument: $ \n";
print STDERR " ccperl $0 -i\n";

print STDERR " for script's interface.\n";
do_exit("\n");

if ($required_args != 1) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");
1
$ENV{IId;II} = Ilad;all;
open(CTHIST, "cleartool Tshist -fmt '%d;%e;%n\\n' -recurse -nco
$ctfind_paths |");
while(<CTHIST>) {
chomp;
if (/create directory version/ || /create version/) {
($date, $event, $xpn) = split /;/, $_, 3;
if ($date) {;}
if ($event) {;}
if ($xpn) {3}
$timet = time_to_ticks($date);
customization change *** added following line
$user = 'cleartool desc -fmt '%Fu' '$xpn'';
customization change *** added ";$user" to following line
print "$xpn;$date;$timet;$user\n”;
1

1
do_exit();

Example 2: changing directory organization, description, and

output

The Elements with New Versions Since Date report lists all new versions for the

path and since the date and time specified by the user. This report includes the

following columns:

* Element Path

* Version Path

e Version Creation Time

The changes to the report procedure do the following:
* Display in the Report Builder tree pane a new directory named

ccase—home—dir\Reports\Scripts \Elements\New_Versions directory.

Appendix C. Customizing Rational ClearCase Reports

279

* Display a new report description: Types of Elements with New Versions Since
Date.

* Display the version path information in the version_xpn field in a different
format.

* Add a column in the report output to display a new column for Element Type.

The report procedure is located in:
ccase—home—dir\Reports\Scripts\Elements\Elements_with_New_Versions_Since_Date.pr

Processing logic
The processing logic of Elements_with_New_Versions_Since_Date.prl is as follows:

1. When the Report Builder processes the interface specification, the report
procedure yields two parameters:

LOOKIN
CCTIME

The mechanics of the LOOKIN parameter are described in [“Example 1: Adding]
[a column to report output” on page 277.| When the report procedure receives
CCTIME, it is a string of this form:

CCTIME = "time"
This parameter specifies the times that the cleartool find command uses.

2. When the report procedure is invoked by the Report Viewer using a fully
qualified command line, it extracts the values from the CCTIME string and
passes them to the chooser_time_to_cctime() subroutine (located in
common.prl). This routine converts the string to the correct format (for passing
to cleartool) and returns it.

3. The report procedure opens a pipe from a cleartool find -print command, with
the converted cctime value passed in as a created_since(<cctime>) string. The
value created_since is a query_language(1) predicate, which is frequently used
in conjunction with the find command.

4. As the values from the cleartool find command are returned, the report
procedure calls cleartool describe on the output to get the version-creation
time. The routine calls the time_to_ticks() routine (in common.prl) to get the
time equivalent in ticks.

5. The report procedure gets the path and version ID from the cleartool find
output, splitting it on the value of the SCLEARCASE_XN_SFX extended
naming symbol for the host. Finally, the report procedure prints the information
in the same order as defined in the interface specification.

Interface specification
This is the existing interface specification for
Elements_with_New_Versions_Since_Date.prl:
if (/~-i7) |
print "description : 'Elements with New Versions Since Date'\n";
print "id : 2017\n";
print "helpfile :\n";

print "parameters : ";
print "LOOKIN CCTIME";
print "\n";

print_element_rightclick();

print "fields : ";

print "\"Element Path\"(element_pn, sort 2, rightclick) ";
print "\"Version Path\"(version pn) ";

print "\"Version Creation Time\"(cctime) ";

280 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

print "\"Version Creation Time\"(time_t, hidden, sort 1) ";
print "\n";
exit(0);

1

Changes required

To change the directory organization and report description, to modify the version
path to use a different field name, and to add an element type column to the
report output:

1. Create a new folder, New_Versions, and move the report procedure there.

2. Add a properly coded print statement to the interface specification that does
the following:
* Specifies how to display the report description information in the Report
Builder
* Specifies how to display the report in the Report Viewer

3. Add additional processing to the cleartool find output as required to get the
desired information for element type.

4. Properly extract the new information for element type into a variable.

5. Print the new information in the proper position so that it appears under the
correct column heading.

Modified report procedure

Here is the modified version of Elements_with_New_Versions_Since_Date.prl. This
report procedure is example2.prl in theT0046 package, which is available at
[Rational Support] (see [“Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {s5};

$ct = "5 if ($ct) {s};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE XN SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @);
if (u$err|| 1= ||||) {
print STDERR "$err\n";
}
sleep(2);
'If (||$err|| != ||||) {
exit(1);
} else {
exit(0);
}
}
open(INCLUDE, "<$common_dir\\common script.pr1") or do_exit("error
opening include file '$common_dir\\common.prl'");
$buf = IIII;
while(<INCLUDE>) {
$buf = $buf . § ;
}

close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.pri'");

my $args = $ARGV[O];

Appendix C. Customizing Rational ClearCase Reports 281

https://www6.software.ibm.com/reg/rational/rational-i
https://www6.software.ibm.com/reg/rational/rational-i

$args =~ s/%/ /g;
@args = split(";", $args);
my $cctime = "";
$required_args =
foreach(@args) {

s/InL 1+

s/l 148775

validate_arg_length($_);

i (/7i7)

customization change *** changed following Tine

print "description : 'Types of Elements with New Versions Since
Date'\n";
print "id : 2017\n";
print "helpfile :\n";

03

print "parameters : ";
print "LOOKIN CCTIME";
print "\n";

print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, sort 2, rightclick) ";
customization change *** changed following Tine
print "\"Version Path\"(version_xpn) ";
print "\"Version Creation Time\"(cctime) ";
print "\"Version Creation Time\"(time_t, hidden, sort 1) ";
customization change *** added following line
print "\"Element Type\"(eltype) ";
print "\n";
exit(0);

if (/7LOOKINL Ix=[I=('.x')/) {
check_Tookin($1);
$required_args++;
next;

}

if (/ACCTIME[T1x=[Ix'=([*'1x)'+/) {
$cctime = chooser time_to cctime($1);
$required_args++;

next;

1

print STDERR "unrecognized argument: § \n";
print STDERR " ccperl $0 -i\n";

print STDERR " for script's interface.\n";
do_exit("\n");

if ($required_args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");

1

open(CTFIND, "cleartool find $ctfind_paths -version

"created_since($cctime)' -print |");

while(<CTFIND>) {
chomp;
if (/CHECKEDOUT/) {next;}
$vertime = 'cleartool desc -fmt '%d' '$ '';

customization change *** added following line
$eltype = 'cleartool desc -fmt '%[typelp' '$_'';
$vertime_t = time_to_ticks($vertime);

($path, $verid) = split $CLEARCASE_XN_SFX, $_, 2;

customization change *** changed following Tine
print "$;$verid;$vertime;$vertime_t;$eltype\n";
#print "$path;$verid;$vertime;$vertime_t\n";

1

do_exit();

282 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Example 3: changing description, parameter types, and output

The Elements Created by User report lists all elements created by the user-defined
user name. This report includes the following columns:

Element Path
Creating User

The changes to this report do the following:

Display a new report description: Elements with Group.
Remove the existing user parameter and add a new parameters for group.

Compare the group associated with an element and the group specified in a
user-defined group parameter.

Add a column in the report output for Group and Yes/No. The Yes/No column
will reflect the result of the comparing whether the group associated with each
element is the same as the value of the user-defined group parameter.

The script is located in
ccase—home—dir\Reports\Scripts\Elements\ Elements_Created_by_User.prl.

Processing logic
The processing logic of Elements_Created_by_User.prl is as follows:

1.

When the Report Builder processes the interface specification, the report
procedure yields two parameters:

LOOKIN

USER

The mechanics of the LOOKIN parameter are described in |“Example 1: Adding d
[colummn_to report output” on page 277} The report procedure receives USER as a
string of this form:

USER= "user-name"
This parameter specifies the user name that the cleartool subcommand uses.

The USER string is extracted and stored as $ccuser. It is then passed to the
created_by($ccuser).

The created_by ($ccuser) query language primitive filters the paths specified to
cleartool find and returns only those that match the predicate, in this case,
those created by the user by setting a parameter value for USER.

The user variable is printed in the same order specified in the interface
specification so that it appears under the correct column heading.

Interface specification
This is the existing interface specification for Elements_Created_by_User.prl:

i (/-1/)

print "description : 'Elements Created by User'\n";
print "id : 2016\n";
print "helpfile :\n";

print "parameters : ";
print "LOOKIN USER";
print "\n";

print_element_rightclick();

print "fields : ";

print "\"Element Path\"(element xpn, sort 2, rightclick) ";
print "\"Creating User\"(user, sort 1) ";

print "\n";

exit(0);

Appendix C. Customizing Rational ClearCase Reports 283

Changes required
To remove the user parameter, to add parameters for group and date/time, and to
adjust the report output for group and date/time information:

1. Change the interface specification of the report procedure to correspond to
required interface changes.

2. Change the logic in the report procedure to handle data requests for group
information; add a %Gu; to the -fmt parameter in thecleartool describe call to
get group information from the Rational ClearCase configuration.

3. Properly extract the group information into a variable after the cleartool
describe call returns its output, so that it can be printed.

4. Determine whether the element group is the same group parameter value
entered by the user and print the result of this comparison as a column
heading.

5. Print the group variables in the order specified in the interface specification so
that they appear under the correct column heading.

Modified report procedure

Here is the modified version of Elements_Created_by_User.prl. This report
procedure is example3.prl in theT0046 package, which is available at
Support| (see [“Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;
$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""5 if ($cc) {s};

$ct = "5 if ($ct) {;};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARCASE_XN_SFX = ""; if ($CLEARCASE XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @);
1f (u$erru 1= uu) {
print STDERR "$err\n";

1

sleep(2);

1f (u$erru != uu) {
exit(1l);

} else {

exit(0);

}

open(INCLUDE, "<$common dir\\common script.prl") or do_exit("error
opening include file '$common_dir\\common.prl'");
$buf = IIII;
while(<INCLUDE>) {
$buf = $buf . § ;
}

close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.prl'");

my $args = $ARGV[O];

$args =~ s/%/ /g;

@args = split(";", $args);
my $ccuser = "";
$required args

= 0;
foreach(@args) {

284 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

https://www6.software.ibm.com/reg/rational/rational-i
https://www6.software.ibm.com/reg/rational/rational-i

s/ 1+

s/l 1+8//5
validate_arg_length($_);
if (/~-i7) |
customization change *** changed following Tine
print "description : 'Elements With Group'\n";

print "id : 2016\n";
print "helpfile :\n";
print "parameters : ";
customization change *** changed following Tine
print "LOOKIN GROUP";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element xpn, sort 2, rightclick) ";
customization change *** added following 2 lines
print "\"Element's Group\"(group, sort 1) ";
print "\"Same\"(yes_no) ";
customization change *** deleted following line
#print "\"Creating User\"(user, sort 1) ";
print "\n";
exit(0);

}

if (/~LOOKIN[1*=[1=(t.x")/) |
check_Tookin($1);
$required_args++;
next;

}

customization change *** deleted following 2 lines
#if (USERD Je=D\t Ts\"<([\"]%)\"+/) {

#$ccuser = $1;

customization change *** added following 2 lines

if (/7GROUPL T#=[\t Is\"=(["\"]%)\"x/) |
$ccgroup = $1;
$required args++;

customization change *** deleted following Tine
#validate_user($ccuser);
next;

print STDERR "unrecognized argument: § \n";
print STDERR " ccperl $0 -i\n";

print STDERR " for script's interface.\n";
do_exit("\n");

if ($required_args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");
}
customization change *** deleted following 3 Tines
#if ($ccuser =~ /[1+/) {

do_clearprompt("cleartool find does not allow spaces in user names;
cannot proceed.");
#}

customization change *** changed following Tine
open(CTFIND, "cleartool find $ctfind paths -nxname -print |");
while(<CTFIND>) {
chomp;
customization change *** added following 6 lines
$grp = 'cleartool desc -fmt '%Gu' '$_'';
if ($grp eq $ccgroup) {
$same = "yes";
} else {
$same = "no";

Appendix C. Customizing Rational ClearCase Reports

285

}

customization change *** changed following line
print "$;$grp;$same\n";
#print "$_;$ccuser;\n";

}
do_exit();

Example 4: changing the pop-up menu for right-click handling

The Elements with Labels report lists all elements with labels for a user-defined
path. This report includes one column:

¢ Element Path

The change to this report adds the Compare with Previous Version command to
the pop-up menu. Currently, these commands appear on the pop-up menu:

* Properties of Element
¢ Version Tree
* History

The report procedure is located in
ccase-home-dir\Reports\Scripts\ Elements\ Labels\Elements_with_Labels.prl.

Interface specification
This is the existing interface specification for Elements_with_Labels.prl:

if (/~-1/) |
print "description : ";
print "'Elements with Labels'";
print "\n";

print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "LABEL ";
print "\n";
print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element_pn, rightclick, sort 1)";
print "\n";
exit(0);

}

Note the call to print_element_rightclick() in the middle of the interface
specification. The code for this routine is located in \script_tools\common.prl:
sub print_element_rightclick {

print "rightclick : ";

print "Properties_of Element(single) ";

print "sep ";

print "Version_Tree(single) ";

print "History(single) ";

print "\n";

}

Changes required

A convention used in the report procedures is to put the same commands on
pop-up menus for all reports that use the same primary sort field. For example, all
the reports whose primary sort key is element or element_xpn display the same
set of commands.

286 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

To make an additional command available for all reports whose primary sort key
is element or element_xpn, modify the routines stored in \script_rightclick and

then edit the associated routine in \script_tools\common.prl.

To change the report procedure, copy the contents of sub print_element_rightclick
(located in \script_tools\common.prl) and paste it into the appropriate part of the

interface specification. Then, add a declaration to display the new command.

Modified report procedure

Here is the modified version of Elements_with_Labels.prl. This report procedure is

example4.prl in theT0046 package, which is available at{[BM Rational Suppor{ (see

[“Obtaining the T0046 package” on page 293).
$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;
$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = "5 if (Scc) {5}

$ct = ""; if ($ct) {5};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
SCLEARCASE_XN_SFX = ""; if ($CLEARCASE XN_SFX) {;};
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path_checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @);

1f (u$erru != uu) {
print STDERR "$err\n";
}
sleep(2);
1f (u$erru != uu) {
exit(1);
} else {
exit(0);
}

}
open (INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error
opening include file '$common_dir\\common.prl'");
$buf = uu;
while(<INCLUDE>) {
$buf = $buf . § ;
}

close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.pri'");

my $args = $ARGV[O];
$args =~ s/%/ /9;
@args = split(";", $args);
my $cclabel = "";
$required_args = 0;
foreach(@args) {
s/fL 1+
s/l 1+8//;
validate_arg_length($_);
if (/~-i/) |
print "description : ";
print "'Elements with Labels'";
print "\n";
print "id : 2003\n";
print "helpfile :\n";
print "parameters : ";
print "LOOKIN ";
print "LABEL ";

Appendix C. Customizing Rational ClearCase Reports

287

https://www6.software.ibm.com/reg/rational/rational-i

print "\n";
customization change *** deleted following line
#print_element rightclick();
customization change *** added following 7 lines
print "rightclick : ";
print "Properties_of Element(single) ";
print "sep ";
print "Compare with _Previous Version(single) ";
print "Version_Tree(single) ";
print "History(single) ";
print "\n";
print "fields : ";
print "\"Element Path\"(element pn, rightclick, sort 1)";
print "\n";
exit(0);
1
if (/7LOOKINL Jx=[T=('.x')/) {
#print "paths are $1\n";
check_Tookin($1);
$required_args++;
next;
1
if (/ALABELL J#=[I='=(["']*)'%/) {
$cclabel = $1;
#print "label is $cclabel\n";
$required_args++;
next;
1
print STDERR "unrecognized argument: $ \n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");
1
if ($required_args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");

1
open(CTFIND, "cleartool find $ctfind_paths -element
"Ibtype_sub($cclabel)' -print |");
while(<CTFIND>) {
chomp;
($path, $rest) = split $CLEARCASE_XN_SFX, $_, 2;
if ($rest) {;}
print "$path;\n";
}
do_exit();

Example 5: adding a new command to Report Viewer pop-up

menu

The Elements with Branches report lists all elements associated with a branch and
path that the user provides. This report includes the following columns:

¢ Element Path
e Branch

The report procedure is located in
ccase-home-dir\Reports\Scripts\ Elements\ Branches\ Elements_with_Branches.prl.

The change to this report adds the Merge Manager command to the pop-up menu.
This command is not supplied with Rational ClearCase Reports, so the work

288 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

required to included it is different from that described in[“Example 4: changing the]
fpop-up menu for right-click handling” on page 286.|

These commands currently appear on the pop-up menu:
* Properties of Element

¢ Version Tree

* History

Interface specification
This is the existing interface specification for Elements_with_Branches.prl:
if (/~-17) |

print "description : 'Elements with Branches'\n";

print "id : 2013\n";

print "helpfile :\n";

print "parameters : ";
print "LOOKIN BRANCH";
print "\n";

print_element_rightclick();
print "fields : ";
print "\"Element Path\"(element xpn, sort 1, rightclick) ";
print "\"Branch\"(branch) ";
print "\n";
exit(0);
1

Changes required
Making this modification requires a new script for the new command functions.

You must place this script in the \scripts_rightclick directory. (The script can be
written in any of the supported programming languages.) The script must be
coded to receive a stream on input from STDIN from a field that is designated by a
rightclick modifier in the interface specification of the report procedure. For
example, to create my_rc.prl, which starts clearmrgman.exe (Merge Manager), you
must place my_rc.prl in \scripts_rightclick.

Modified report procedure

Here is the modified version of Elements_with_Branches.prl. This report procedure
is example5.prl in theT0046 package, which is available at [BM Rational Support|
(see [’Obtaining the T0046 package” on page 293).

$start_dir = $0; $start_dir =~ s/\\scripts\\.*/\\scripts/;

$common_dir = $start_dir;

$common_dir =~ s/(.*)\\scripts/$1\\script_tools/;

$cc = ""; if ($cc) {s5};

$ct = ""5 if ($ct) {5};

$debug = ""; if ($debug) {;};

$skip_path_checks = ""; if ($skip_path_checks) {;};
$CLEARC/-\SE_XN_SFX = " qf ($CLEARCASE_XN_SFX) {1
$ctfind_paths = ""; if ($ctfind_paths) {;};
$skip_path _checks = "yes"; if ($skip_path_checks) {;};
$debug = "no"; if ($debug) {;};

sub do_exit {
$err = join(" ", @);
.if (Il$err‘|l != IIII) {
print STDERR "$err\n";

sleep(2);

.if (Il$errll !: IIII) {
exit(1);
} else {

Appendix C. Customizing Rational ClearCase Reports 289

https://www6.software.ibm.com/reg/rational/rational-i

exit(0);

}
}
open (INCLUDE, "<$common_dir\\common_script.prl") or do_exit("error
opening include file '$common_dir\\common.prl'");
$buf - n ||;
while(<INCLUDE>) {

$buf = $buf . § ;
}
close(INCLUDE);
eval $buf || do_exit("error on eval of include file
'$common_dir\\common.pri'");

my $args = $ARGV[O];
$args =~ s/%/ /g;
@args = split(";", $args);
my $ccbranch = "";
$required_args = 0;
foreach(@args) {
s/l 1411/
s/l 148775
validate arg length($);
if (/~-1/) |
print "description : 'Elements with Branches'\n";
print "id : 2013\n";
print "helpfile :\n";

print "parameters : ";
print "LOOKIN BRANCH";
print "\n";

customization change *** deleted following Tine
#print_element rightclick();
customization change *** added following 8 Tines
print "rightclick : ";
print "my_rc(single) ";
print "Properties_of Element(single) ";
print "sep ";
print "Compare_with_Previous_Version(single) ";
print "Version Tree(single) ";
print "History(single) ";
print "\n";
print "fields : ";
print "\"Element Path\"(element xpn, sort 1, rightclick) ";
print "\"Branch\" (branch) ";
print "\n";
exit(0);
1

if (/ALOOKIN[I*=[Ix('.%")/) {
#print "paths are $1\n";
check_Tookin($1);
$required_args++;
next;

}
if (/7BRANCH[Ix=[I*'=([*']x)'%/) |
$cchranch = $1;
$required_args++;
next;
}
print STDERR "unrecognized argument: § \n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";
do_exit("\n");
}
if ($required args != 2) {
print STDERR "usage: not all required arguments specified.\n";
print STDERR " ccperl $0 -i\n";
print STDERR " for script's interface.\n";

290 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

do_exit("\n");
1
open(CTFIND, "cleartool find $ctfind _paths -nxname -branch
'brtype($ccbranch)' -print |");
while(<CTFIND>) {
chomp;
print "$;$ccbranch;\n";

do_exit();

Here is the new command of my_rc.prl that has been created to support a new

pop-up menu command for starting Merge Manager. This report procedure is

available in the T0046 package, which is available at|[BM Rational Support|(see

[“Obtaining the T0046 package” on page 293).

these are all set by set record vars in common rightclick.prl

#

$CLEARCASE_PN = "", $CLEARCASE_XN_SFX = "", $CLEARCASE_ID STR = "",
$CLEARCASE_XPN = "";

$CLEARCASE_BRANCH_PATH = "", $CLEARCASE_VERSION_NUMBER = "";
$ELEMENT _RESULTS = "", $BRANCH_RESULTS = "", $VERSION_RESULTS = "";
$results = "";

$debug = "no";

$start_dir = $0; $start_dir =~
s/\\scripts_rightclick\\.*/\\scripts_rightclick/;
$common_dir = $start dir;

$common_dir =~ s/(.*)\\scripts_rightclick/$1\\script_tools/;

open (INCLUDE, "<$common_dir\\common rightclick.prl") or do_exit("error
opening include file '$common_dir\\common_rightclick.pri'");
$buf - n ||;
while(<INCLUDE>) {
$buf = $buf . § ;

1

close(INCLUDE);

eval $buf || do_exit("error on eval of include file
"$common_dir\\common_rightclick.prl'");

if ($CLEARCASE_PN) {3}

if ($CLEARCASE_XN_SFX) {3}

if ($CLEARCASE_ID STR) {;}

if ($CLEARCASE XPN) {;}

if ($CLEARCASE_BRANCH_PATH) {3}

if ($CLEARCASE_VERSION NUMBER) {3}
if ($ELEMENT_RESULTS) {;}

if ($BRANCH_RESULTS) {;}

if ($VERSION_RESULTS) {3}
if ($debug) {;}

$first = "yes";

while(<STDIN>) {
chomp;
set_record vars($_);
[iggddssdddsdddsaddssadsadddsdddsadddsaddaaddasdddssdddsaddsasdssaddaadi
things to be done a record at a time are done here
if ($first eq "yes") {
$first = "no";
open (COMMAND, "clearmrgman |");
while(<COMMAND>) {;}
close(COMMAND) ;

}
#H###### A A AR A A AR A AR A A AR A A A A AR A A A A A A A A A A
}

things to be done with the result set as a whole go here

Appendix C. Customizing Rational ClearCase Reports

291

https://www6.software.ibm.com/reg/rational/rational-i

$results =~ s/ $//;

#print "results are $results\n";

Troubleshooting customization

292

There are two primary areas that you may need to troubleshoot:
* Errors in the interface specification
* Coding high-level languages other than ccperl

Errors in the interface specification

These are the common errors you may make when coding the interface

specification for your report procedure:

* The interface syntax used in your program does not conform to the interface
specification.

* Invalid parameter names are used for the parameter specification.

* The rightclick specification calls a routine that does not exist in the \right_click
folder.

* The print statements to STDOUT are in a different order from that defined by
the fields specification.

You can identify errors in the interface specification easily by using the testing
script, ifaces.prl. This script checks customized report procedures that have been
written in ccperl. It is available with the T0046 package (see [‘Coding high-levell
languages other than ccperl” on page 293).

To start the testing script, use a command of this form:

ccperl ifaces.prl <path-to-script-or-directory-tree>

Test your report procedures before you check them in to the shared directory tree
that you have configured.

If you do not run the testing script before using your report in Report Builder and
a parsing error occurs in processing the interface specification, the new report is
not displayed in the list of reports in the reports pane. There is no feedback; you
see the report description in the reports pane or you see nothing. If you do not see
a description, the parsing error is serious. If you do see a description, the interface
specification is somewhat correct, but you may still be using an invalid parameter,
referring to a nonexistent right-click routine, or sending output in the wrong order
to STDOUT.

The Report Builder does not check for valid parameters. For example, consider the
interface specification for a new report procedure, my_custom_report.prl, with the
following interface specification:

description : "This test report asks for a three known parameters and
two unknown parameters"

id : 2500
parameters : LOOKIN UNKNOWN_1 STREAMS FOO PROJECT
rightclick :

fields : "field 1"(string)

IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

The second and fourth parameters of this interface specification are invalid. At run
time, the description for this report appears in the Report Builder reports pane, but
the second and fourth parameters are displayed as blank lines in the parameter
pane.

However, the testing script detects these errors because these parameter names are
not supplied with ClearCase Reports (see|Table 9):

my_custom_report.prl:

desc: this test report asks for a three known parameter and two unknown
parameters

id: 2500
parm: LOOKIN

kkhkhkhkhkhkhkhkhkkkhkkhkrkkkikkkxx

ERROR: illegal parameter: UNKNOWN_1
Kk ko ok ok koo ko ko

continue? (y/n) >y

UNKNOWN_1 STREAMS

kkhkhkhkhkhkhkhkhhhkhhhhhhkhhkkx

ERROR: iT1legal parameter: FOOBAR

kkhkhkhkhkkhkhkkhkhkkhkkhkhkkhkikkkkx

continue? (y/n) >y

Coding high-level languages other than ccperl

When coding report procedures in languages other than ccperl, for example, Visual
C++, Java, Javascript or Visual Basic, refer to the programming examples available
in the T0046 package.

Obtaining the T0046 package
Obtain the T0046 package at the following URL:

https:/ /wwwé.software.ibm.com /reg /rational / rational-il

The site explains which browser types and versions are supported. At the Rational
Download and Licensing Center page, in Search, enter T0046 and click Search. At
the Rational ClearCase Add-ins page, find the T0046 entry.

Appendix C. Customizing Rational ClearCase Reports 293

https://www6.software.ibm.com/reg/rational/rational-i

294 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation North Castle Drive
Armonk, NY 10504-1785

USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1992, 2006 295

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department BCFB
20 Maguire Road
Lexington, MA 02421
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Trademarks

296 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

AIX, ClearCase, ClearQuest, DB2, IBM, Rational, RequisitePro, and XDE are
trademarks of International Business Machines Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks of
others.

Appendix D. Notices 297

298 IBM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Index
A

about 12

activities
about 9
assign 102

create and assign in Rational ClearQuest (procedure) 102
creating and setting in new project (procedure) 94
decomposing in Rational ClearQuest 81
fixing Rational ClearQuest links 103
linked to Rational ClearQuest records 105
migrating to integration with Rational ClearQuest
(UCM) 101
state transition after delivery 70
verifying owner of 70
when to delete unused 126
administrative VOBs and PVOBs 54
assignments
verifying 28
attributes
about 160
change request policy 184
use in config specs 170
use in monitoring project status 180

base ClearCase and UCM, compared 3
baseline-plus-changes model 181
baselines in base ClearCase 242
creating, extended example 247, 251
labeling policy 181
baselines in UCM 5
about 13
benefits of frequent 51
comparing (procedure) 123
composite 14
conflicts in composite 120
creating 19
creating composite 96
creating for imported files (procedure) 98
creating new (procedure) 114
creating streams for testing (procedure) 106
dependency relationships in composite of ordinary
component 48
dependency relationships in pure composite 47
descendant 14
fixing problems (procedure) 118
foundation 14, 91
making descendant 49
making descendant of composite 50
naming convention 52
naming template, setting 92
overrides 121
promoting and demoting (procedure) 119
promotion levels 24
pure composite 47
recommend 119
recommended 25
recommended promotion policy 64
sharing between projects 151

© Copyright IBM Corp. 1992, 2006

baselines in UCM (continued)
strategy for 45
test planning 52
when to create 51
when to delete unused 126
bootstrap projects 146
branch types
example 245
branches
about 158
bug-fix policy 181
config spec rules for 166, 167, 168
controlling creation of 159
example of project strategy 243
in Rational ClearCase MultiSite 159
mastership transfer models 187
merge policies 161
merging elements from UCM projects 152
merging to main 224
multiple levels, config specs for 168
naming conventions 159
sharing for merges 224
stopping development on 254
building software, view configurations 174

C

ccase-home-dir directory xiii
change requests
tracking in base ClearCase 184
tracking states 28
change set 9, 191
cmregister command 59
code page conversion 207
Component Tree Browser 122
components
about 11
adding to integration stream (procedure) 110
ancillary 32
candidates for read-only 33
conversion of VOBs (procedure) 97
crating for element storage 88
crating multiple-component VOB 88, 89
creating one in VOB 91
creating one per VOB 89, 90
creating without a VOB root directory 87
design considerations 29
importing files for (procedure) 95
mapping to projects 30
modifiability 63
organizing for project 31
recommended directory structure 33
visibility 63
when to delete unused 126
without a VOB root directory 50
composite baselines (UCM) 14
create (procedure) 96
pure 47
config specs
about 159, 163
default, standard rules in 163

299

config specs (continued)
examples for builds 174
examples for development tasks 166
examples for one project 245
examples of time rules 167, 168, 172, 173
examples to monitor project 170
include file facility 164
project environment for samples 165
restricting changes to one directory 169
selecting library versions 174
sharing across platforms 177
use of element types in 231
config.pl file 194, 201
configTemplate.pl file 201
conventions, typographical xiii
cquest-home-dir directory xiii
credentials
Rational ClearQuest user database 82
customer support xvi

D

deliver operations
backward 40
checkouts policy 65
element types and merging 56
finding posted work (procedure) 113
forward 40
from integration stream 151
MultiSite 113
Rational ClearCsse MultiSite and 18
rebase before policy 65
remote 113
remote, completing (procedure) 113
state transition policy 70
undoing 113
development streams 12
configuration 36
creating feature-specific (procedure) 107
creating for testing (procedure) 106
feature-specific 35, 107
making read-only 106
read-only 45
rebase (procedure) 118
when to delete unused 126
directories, merging 227
directory structure
creating new (procedure) 94
recommended, for UCM components 33
documentation
Help description xiv

E

element relocation in UCM 111
element types
how assigned 230
predefined and user-defined 232
element types in UCM 56
define scope 57
manage merge behavior 56
environment variables for Rational ClearQuest
event records 161

F

feature levels 56
feature-specific streams 107
foundation baselines
choosing 91
definition 14

G

global types 54, 161

H

Help, accessing xiv
hyperlinks
about 160
requirements tracking mechanism 185

IBM Rational Unified Process 29
importing files and directories 95
include file facility 164
integration streams
about 12
adding components (procedure) 110
configuration 36
delivery from 151
locking considerations 52
merging to base ClearCase branch 152

updating development view load rules 111

when to delete unused 126

integration views
creating for UCM project (procedure) 93
recommended view type 64

integration with Rational ClearQuest (base ClearCase) 191

association batch feature 211
associations 209

automatic associations 214
automatic associations tuning 213
batch confirmation 213
batch definition 213
change set 191

checklist 195

comment patterns 215
configuration file 194
configuration file editing 200
configuration parameter summary 201
configuration test 208
connectivity 203
CQSchema 205
customization policy 194
customizing 217
debugging 215

enabling VOBs 192

forcing checkin success 211
GUIuse 211

installing triggers 197
logging output 216
overview 191

package 194

performance 211

planning 196

policy choices 197, 209
query filter 210

300 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

integration with Rational ClearQuest (base ClearCase)
(continued)

query support 192
query usage 210
Query Wizard 217
Rational ClearCase MultiSite support 207
Rational ClearQuest user database definition 204
Rational ClearQuest user database setup 196
request set 191
SAMPL user database 200
sharing configuration file 198
start configuration tool 199
testing 216
timing information 216
trigger installation 199
trigger versions 193
troubleshooting connections 209
use with UCM integration 263
Web interface 203

integration with Rational ClearQuest (UCM)
about 16, 26
credentials 82
customizing policies 81
database, setting up 75
decomposing activities 81
disabling links to project 102
enabling custom schema (procedure) 76
enabling projects to use (procedure) 100
environment variables 83
mastership when enabling 104
planning issues 57
policies for 69
Rational ClearQuest MultiSite requirements 104
replica and naming requirements 104
setting up 16
setting up UCM schemas (procedure) 75
use with base ClearCase 263

L

labels

about 160

baselines in base ClearCase 181

use in config specs 173, 174
load rules 164

updating for new component in parent stream 111
locks

about 161

examples 182

M

magic files 230
main branch 158
makefiles and config specs 175
mastership
about 18
models of transfer 187
mergetypes 56
merging in base ClearCase
about 161
commands for 222
directory versions 227
entire source tree 225
extended example 248, 252
GUI tools for 221

merging in base ClearCase (continued)

how it works 219

other tools 228

removing merged changes 223

selective merge 222

to main branch 224
mkelem_cpver.pl script 111
MultiSite

remote deliver operations 113

N

naming conventions
branches 159
Rational ClearQuest schema 58
UCM baselines 52
views in base ClearCase 159
naming template, baselines in UCM 92
setting 92

O

obsolete objects 161
overrides 121

P

package
obtaining T0046 293
parallel development
base ClearCase mechanisms 158
extended example in base ClearCase 241
UCM scenarios 147
parent/child controls in Rational ClearQuest 81
patch release in UCM project 150
Perl
usage 132
planning
projects in UCM 29
policies in base ClearCase
access to project files 182
bug-fixing on branches 181
change requests 184
coding standards 184
documenting changes 179
enforcement mechanisms 160, 179
integration with Rational ClearQuest choices 197
labeling baselines 181
monitoring state of sources 180
notification of new work 183
on merging 161
requirements tracking 185
restricting changes visible 182
restricting use of commands 187
transfer of branch mastership 187
policies in UCM
about 16
action after activity change 72
activity change transition 73
allowed record types for activities 70
approval before activity change 72
approval before delivery 70
baseline modification 65
changing with integration and MultiSite 105
customizing Rational ClearQuest 81
default view types 64

Index

301

policies in UCM (continued) projects in UCM (continued)

delivery between projects 73 release-oriented 141
delivery from other projects 69 set up new 85
delivery transfer of mastership (after) 72 setting baseline naming template 92
delivery transfer of mastership (before) 71 single-stream 44
delivery transition 71 tools to monitor progress 122
delivery transition state 70 promotion levels
delivery with changes of non-visible components 69 about 24
delivery with checkouts 65 changing (procedure) 119
delivery with foundation baseline changes 67 default 52
delivery with missing component changes 68 defining in new project (procedure) 93
delivery with non-modifiable component changes 68 policy for recommended baselines 64
disallow record submission from Rational ClearCase pure composite baselines (UCM) 47
client 69 PVOBs

modifiable components 63 about 11
modifiable components and visibility 63 administrative VOB and multiple 55
project modification 65 as administrative VOBs 54
promotion levels 24 creating from existing configuration 97
rebase before deliver 65 creating new (procedure) 86
recommended baselines 64 feature levels and multiple 56
setting Rational ClearQuest (procedure) 101 links and Rational ClearQuest MultiSite 103
stream modification 65 mapping to Rational ClearQuest user database 57
verify activity owner before checkout 70 multiple 54

policy choices planning 53

integration with Rational ClearQuest (base ClearCase) 209
Project Explorer

start 88 Q

projects in base ClearCase Query Wizard

branching strategy 158 integration with Rational ClearQuest (base ClearCase) 217

(Ci?:,f;i ;ﬂf (Srit plc?lgicies 160 querying Rational ClearQuest user database 28, 124

extended example of lifecycle 241

generating reports 161 R
merging policies 161
planning and setup 157 Rational ClearCase MultiSite
views to monitor progress 170 branches and 159
projects in UCM establish for integration with Rational ClearQuest (base
about 9 ClearCase) 207
bootstrap 146 mastership transfer models 187
changing name of 105 use in UCM 18
cleanup tasks 125 Rational ClearCase Reports
component-oriented 143 customizable features 265
composite baselines in component-oriented 145 customization examples 276
composite baselines in release-oriented 143 how it works 265
concurrent, managing 147 interface specification in report procedures 270
create from existing projects 99 parameter choosers 274
creating 11 run-time processing 266
creating from existing configuration 97 setting up shared directories 268
creating new (procedure) 91 Rational ClearQuest
delete unused 125 querying user database 124
deliver from integration stream 151 recommended use of Rational ClearCase integrations 263
disabling links to Rational ClearQuest database 102 scripts instead of triggers (UCM) 130
factors in gauging scope 30 start client 101
fixing Rational ClearQuest activity links 103 Rational ClearQuest MultiSite
importing components 95 links in PVOBs 103
incorporating patch release 150 UCM integration affect 104
lock and hide 127 Rational ClearQuest user database
mainline 142 setup for integration with Rational ClearQuest (base
maintenance tasks 109 ClearCase) 196
managing multiple 147 ratlperl 132, 189
mapping components to 30 read-only streams 45
merging to base ClearCase branches 152 rebase operations
migrating unfinished work 149 advance 21
multiple-stream 34 between projects (procedure) 148
parallel 30 directions 20
planning issues 29 element types and merging 56
policies 63 lateral 23

302 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

rebase operations (continued)

policy for deliver operations 65

revert 22

rules summary 23
recommended baselines

policy for promotion level 64
record types for schemas, custom 78
remote deliver operations 113
reports

for base ClearCase projects 161

Rational ClearQuest queries 124
request set 191

S

schemas (Rational ClearQuest)
about UCM-enabled 28
adding Rational ClearCase definitions to 197
adding Rational ClearCase definitions to (procedure) 197
enabling custom for UCM 60
enabling custom for UCM (procedure) 76
predefined, using 75
queries 28
requirements for UCM 59
storage issues 59
selective merge 222
serial development environment 44
smoke tests 52
state types
about 28
default transition requirements 79
setting for custom schemas 78
streams 4, 12
alternate targets 39
alternate targets in same project 39
coordinating in same project 41
creating feature-specific 107
default targets 38
development configuration 36
hierarchies 35
integration configuration 36
lock and hide 127
locking (procedure) 113
projects with single 44
read-only 45
relationships 36
sharing by delivery 42
sharing by rebase 41
strategy 34
unlocking (procedure) 116
subtractive merge 223
Suite 105
supertypes 232
system architecture 29

T

T0046 package 293
time rules in config specs 167, 168, 172, 173

triggers
about 160
attach 184

checkin command example 179

installing for integration with Rational ClearQuest (base
ClearCase) 192

list installed in VOBs 199

triggers (continued)
policy scripts instead of 130
preoperation and postoperation 130
sharing in interop environments (base ClearCase) 188
sharing in interop environments (UCM) 131
to disallow checkins 184
to notify team of new work 183
to restrict use of commands 187
UCM use 129
type managers
about 230
creating directory for 234
how they work 233
implementing compare method 236
inheriting methods 234
predefined 232
testing 238
user defined 232
typographical conventions xiii

U

UCM and base ClearCase, compared 3
UCMPolicyScripts package 59
UnifiedChangeManagement package 59, 60
user accounts

creating Rational ClearQuest profiles (procedure) 82

\'}

version control, candidates for 30
view profiles
moving to UCM 261
views
config specs 163
configuring for builds 174
configuring for development tasks 166
configuring historical 173
configuring to monitor project 170
naming conventions in base ClearCase 159
policy for default types in UCM 64
restricting changes visible in 182
sharing for merges 225
VOB Creation Wizard 86
VOBs
converting to UCM components (procedure) 97
creating and populating in base ClearCase 157
enabling for integration with Rational ClearQuest (base
ClearCase) 192
how many in project (UCM) 31
list triggers installed in 199

w

Web interface
integration with Rational ClearQuest (base ClearCase) 203
work areas 12

Index 303

304 1BM Rational ClearCase and Rational ClearCase LT: Guide to Managing Software Projects

Readers’ Comments — We’d Like to Hear from You

ClearCase and Rational ClearCase LT
Guide to Managing Software Projects
Version 7.0.0

Publication No. GI11-6712-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O 0 U u
Well organized O O O] U U
Applicable to your tasks O] | O]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

GI11-6712-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

Gl11-6712-00

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Atin: Dept CZLA
20 Maguire Road
Lexington, MA 02421-3112

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in USA

GI11-6712-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Typographical conventions
	Online documentation
	Help system
	Reference pages
	Command syntax
	Tutorial
	PDF manuals

	Product-specific features
	Manual organization
	Related information
	Rational ClearCase documentation roadmap
	Rational ClearCase LT documentation roadmap

	Contacting IBM Customer Support for Rational software products
	Downloading the IBM Support Assistant

	Summary of changes
	Part 1. Introduction
	Chapter 1. Choosing between UCM and base ClearCase
	Differences between UCM and base ClearCase
	Branching and creating views
	Using components to organize files
	Creating and using baselines
	Managing activities
	Enforcing development policies

	Part 2. Working in UCM
	Chapter 2. Understanding UCM
	Overview of the UCM process
	Creating the project
	Creating a PVOB
	Organizing directories and files into components
	Shared and private work areas
	Stream hierarchies
	Single-stream projects

	Starting from a baseline
	Composite baselines
	Baselines and their uses
	Baselines and streams

	Setting up the UCM integration with Rational ClearQuest

	Setting policies
	Assigning work
	Creating a testing stream
	Building components
	Rational ClearCase MultiSite consideration

	Making a baseline
	After making a baseline
	The rebase operation
	Directions of rebase operations
	Advance rebase operations
	Revert rebase operations
	Lateral rebase operations
	Summary of rules for rebasing a stream

	Recommending the baseline
	Recommended baselines

	Monitoring project status
	Overview of the UCM integration with Rational ClearQuest
	Associating UCM and Rational ClearQuest objects
	Schema enabled for UCM
	State types
	Queries in a Rational ClearQuest schema enabled for UCM

	Chapter 3. Planning the project
	Using the system architecture as the starting point
	Mapping system architecture to components
	Deciding what to place under version control
	Mapping components to projects
	Amount of integration
	Need for parallel releases

	Organizing components
	Deciding how many VOBs to use
	Identifying additional components
	Defining the directory structure
	Identifying read-only components

	Choosing a stream strategy
	The basic multiple-stream project
	Stream hierarchies
	Stream configurations and baseline contents
	The integration stream configuration
	Development stream configurations

	Stream relationships
	Stream hierarchy and default targets
	Alternate targets
	Alternate targets in the same project
	Coordinating development streams in the same project
	Sharing changes by a rebase operation
	Sharing changes by a deliver operation
	Simplify a deliver operation with a rebase operation

	Single-stream projects
	Read-only streams

	Specifying a baseline strategy
	Identifying a project baseline
	Pure composite baselines
	Dependency relationships in pure composite baselines
	Dependency relationships in composite baselines of ordinary components
	Making a new descendant baseline
	Whether to use pure composite baselines
	Changing to a pure composite baseline
	Creation of composite baseline descendants

	When to create baselines
	Identifying the initial baseline
	Ongoing baselines

	Defining a baseline naming convention
	Identifying promotion levels to reflect state of development
	Planning how to test baselines

	Planning PVOBs
	Deciding how many PVOBs to use
	Understanding the role of the administrative VOB
	Using multiple PVOBs
	Multiple PVOBs and a common administrative VOB
	Multiple PVOBs and feature levels

	Identifying special element types
	Using mergetype to manage merge behavior
	Defining the scope of element types

	Planning how to use the UCM integration with Rational ClearQuest
	Mapping PVOBs to Rational ClearQuest user databases
	Rational ClearCase MultiSite requirement
	Integration requirement for Rational ClearQuest MultiSite
	Naming projects that are linked to same user database
	Use of multiple user databases

	Deciding which schema to use
	Overview of the UnifiedChangeManagement schema
	Enabling a schema for UCM

	Chapter 4. Setting policies
	Components and baselines policies
	Modifiable components
	Component modifiability and visibility

	Default promotion level for recommending baselines

	Default view types
	Permissions to modify projects and streams
	Allow all users to modify the project
	Allow all users to modify the stream and its baselines

	Policies for all deliver operations
	Do not allow deliver to proceed with checkouts in the development stream
	Rebase before delivery

	Policies for deliver operations to nondefault targets
	Deliver changes from the foundation in addition to changes from the stream
	Allow deliveries that contain changes to missing or non-modifiable components
	Allow interproject deliver to project or stream
	Require that all source components are visible in the target stream

	Policies for the UCM integration with Rational ClearQuest
	For submitting records from a Rational ClearCase client
	Disallow submitting records from ClearCase client
	Allowed record types

	For WorkOn
	Perform ClearQuest action before work on

	For delivery
	Perform ClearQuest action before delivery
	Perform ClearQuest action after delivery
	Transition to complete after delivery
	Transfer ClearQuest mastership before delivery
	Transfer ClearQuest mastership after delivery

	For changing activities
	Perform ClearQuest action before changing activity
	Perform ClearQuest action after changing activity
	Transition to complete after changing activity

	Policies and interproject deliveries

	Chapter 5. Setting up a Rational ClearQuest user database for UCM
	About setting up a Rational ClearQuest user database
	Using the predefined UCM-enabled schemas
	To set up a Rational ClearQuest user database to work with UCM

	Adding UCM support to an existing schema
	To enable a schema to work with UCM
	Assigning state types to the states of a record type
	To map record states to state types

	Requirements for enabling custom record types
	Setting state types
	State transition default action requirements for record types
	To set default actions for states

	Upgrading your schema to the latest UCM package
	To upgrade the schema

	Customizing Rational ClearQuest project policies
	To modify the behavior of a policy

	Associating child activity records with a parent activity record
	Using parent and child controls

	Creating users and adding credentials
	To create Rational ClearQuest user account profiles
	Creating and maintaining credentials for Rational ClearQuest database sets

	Setting the environment (Linux and the UNIX system)

	Chapter 6. Setting up the project
	About setting up the project
	Creating a project from scratch
	Creating the project VOB
	To create a PVOB (the Windows system)
	To start the VOB Creation Wizard (the Windows system)
	To create a PVOB (Linux and the UNIX system)

	Creating components for storing baseline dependencies
	To create a component without a VOB root directory
	To start Project Explorer

	Creating components for storing elements
	To create a multiple-component VOB (Windows)
	To create a multiple-component VOB in Rational ClearCase LT (Windows)
	To create a multiple-component VOB (Linux and the UNIX system)
	To create a multiple-component VOB in Rational ClearCase LT (Linux and the UNIX system)
	To create a component and store it in the VOB
	To create one component per VOB (Windows)
	To create a VOB and one component in Rational ClearCase LT (Windows)
	To create one component per VOB (Linux and the UNIX system)
	To create a component in Rational ClearCase LT (Linux and the UNIX system)

	Creating the project
	To create a project
	Setting a baseline naming template
	Defining promotion levels

	Creating an integration view
	To create an integration view

	Creating and setting an activity in the integration stream (Linux and the UNIX system only)
	To create and set an activity (Linux and the UNIX system)

	Creating the directory structure
	To add a directory element to a component (the Windows system)
	To add a directory element to a component (Linux and the UNIX system)

	Importing directories and files from outside Rational ClearCase version control
	To migrate source files into a component

	Making baselines of newly populated components
	Creating the dependency relationships for composite baselines in the project
	To create a composite baseline

	Recommending a baseline for new components

	Creating a project based on an existing Rational ClearCase configuration
	Creating the PVOB from an existing Rational ClearCase configuration
	Making components from existing VOBs
	To make a VOB into a component
	To make a directory tree within a VOB into a component

	Making a baseline from a label
	To create a baseline by label type

	Creating the project
	Finishing the project configuration

	Creating a project based on an existing project
	Capturing final baselines in a composite baseline
	To create a pure composite baseline from existing approved baselines

	Creating the project from another project
	To create a project based on an existing project

	Creating an integration view

	Enabling use of the UCM integration with Rational ClearQuest
	To enable a project to work with a Rational ClearQuest user database
	Changing the project to a different Rational ClearQuest user database
	Migrating activities
	Setting project policies
	To set policies in Rational ClearCase control
	To start a Rational ClearQuest client
	To set policies from the Rational ClearQuest client

	Assigning activities
	To create and assign activities in a Rational ClearQuest user database

	Disabling the link between a project and a Rational ClearQuest user database
	To disable the project and user database link

	Fixing projects that contain linked and unlinked activities
	Detecting unlinked activities
	Correcting unlinked activities

	How the UCM integration with Rational ClearQuest is affected by Rational ClearQuest MultiSite
	Replica and naming requirements
	Transferring mastership of the project
	Linking activities to Rational ClearQuest records
	Changing project policy settings
	Changing the project name

	Working with IBM Rational Suite (Windows)
	Creating a development stream for testing baselines
	To create a development stream

	Creating a feature-specific development stream
	About creating feature-specific development streams
	To create a feature-specific development stream

	Chapter 7. Managing the UCM project
	About managing a project
	Adding components
	To add a component to a stream
	To make a component modifiable within the project
	To synchronize a view with a new configuration
	To synchronize a child stream with project modifiable components
	To synchronize a child stream view with new parent stream configuration
	To edit the view load rules
	Element relocation
	To relocate elements

	Building components
	About building components
	Locking the shared stream
	To lock a stream

	Finding work that is ready to be delivered
	To find all deliver operations that are in the posted state
	To complete remote deliver operations for a development stream

	Undoing a deliver operation
	Building and testing the components

	Creating a new baseline
	About making a baseline
	To make a baseline
	To make new baselines for all components in the stream
	To make a baseline for a set of activities
	To make a baseline of one component

	To unlock the stream

	Testing the baseline
	To test in a separate development stream
	Rebasing the test development stream
	To rebase the development stream

	Fixing problems in baselines
	To fix a problem in a new baseline

	Recommending the baseline
	To change a baseline promotion level
	To recommend a baseline or set of baselines

	Resolving baseline conflicts
	Conflicts between a composite baseline and an ordinary baseline
	Conflicts between composite baselines

	Monitoring project status
	Viewing baseline histories
	To view baseline history (the Windows system)
	To view baseline history (Linux and the UNIX system)

	Comparing baselines
	To compare baselines in Component Tree Browser (Windows only)
	To compare two baselines
	About the Compare Baselines window

	Querying Rational ClearQuest user databases
	Using Rational ClearCase Reports (Windows systems only)

	Cleaning up the project
	Removing unused objects
	About deleting projects
	About deleting streams
	About deleting components
	About deleting baselines
	About deleting activities
	To delete an unused object

	Locking and making obsolete the project and streams
	To lock and hide an object
	To see objects that are obsolete

	Chapter 8. Using triggers to enforce UCM development policies
	Overview of triggers
	Supported triggers
	Preoperation and postoperation triggers
	Scope of triggers
	Using attributes with triggers
	When to use Rational ClearQuest scripts instead of UCM triggers

	Sharing triggers among different types of platform
	Using different paths or different scripts
	Using the same script
	Tips for sharing scripts

	Enforce serial deliver operations
	Delivery setup script
	Delivery preoperation trigger script
	Delivery postoperation trigger script

	Send mail to developers on deliver operations
	E-mail notification setup script
	E-mail notification postoperation trigger script

	Do not allow activities to be created on the integration stream
	Implementing a role-based access control system
	Role-based preoperation trigger script

	Additional uses for UCM triggers

	Chapter 9. Managing multiple projects
	Project uses
	Release-oriented projects
	Using a mainline project
	Composite baselines in release-oriented projects

	Component-oriented Projects
	Composite baselines in component-oriented projects

	Bootstrap projects
	Mixing project organizations

	About managing multiple projects
	Managing a current project and a follow-on project simultaneously
	To rebase an integration stream to baselines of another project
	Migrating unfinished work to a follow-on project
	Incorporating a patch release into a new version of the project
	Delivering work from an integration stream to another project
	To deliver work between integration streams

	Sharing baselines between sibling streams in different projects

	Merging from a project to a non-UCM branch

	Part 3. Working in base ClearCase
	Chapter 10. Managing projects in base ClearCase
	About base ClearCase project management
	Setting up the project
	Creating and populating VOBs
	Planning a branching strategy
	Branch names
	Branches and Rational ClearCase MultiSite

	Creating shared views and standard config specs
	Recommendations for view names

	Implementing development policies
	Using labels
	Using attributes, hyperlinks, triggers, and locks
	Global types
	Generating reports

	Integrating changes

	Chapter 11. Defining project views
	About defining project views
	How config specs work
	Default config spec
	The standard configuration rules
	Omitting the standard configuration rules

	Config spec include files
	To reconfigure your view with the modified config spec

	Project environment for sample config specs
	Views for project development
	View for new development on a branch
	Variation that uses a time rule

	View to modify an old configuration
	Omitting the /main/LATEST rule
	Variation that uses a time rule

	View to implement multiple-level branching
	View to restrict changes to a single directory

	Views to monitor project status
	View that uses attributes to select versions
	Pitfalls for development of using attributes to select versions

	View that shows changes of one developer
	Historical view defined by a version label
	Historical view defined by a time rule

	Views for project builds
	View that uses results of a nightly build
	Variations that select versions of project libraries
	View that selects versions of application subsystems
	View that selects versions that built a particular program
	Configuring the makefile
	Fixing bugs in the program
	Selecting versions that built a set of programs

	Sharing config specs among Linux, the UNIX system, and Windows system
	Path separators
	Paths in config spec element rules
	Config spec compilation

	Chapter 12. Implementing project development policies
	About implementing project development policies
	Good documentation of changes is required
	All source files require a progress indicator
	Label all versions used in key configurations
	Isolate work on release bugs to a branch
	Avoid disrupting the work of other developers
	Deny access to project data when necessary
	Notify team members of relevant changes
	To attach triggers to existing elements

	All source files must meet project standards
	Associate changes with change orders
	Associate project requirements with source files
	Prevent use of certain commands
	Certain branches are shared among Rational ClearCase MultiSite sites
	Sharing triggers among different types of platform
	Using different paths or different scripts
	Using the same script

	Chapter 13. Setting up the base ClearCase integration with Rational ClearQuest
	Overview of the base ClearCase integration with Rational ClearQuest
	What the integration does
	How the integration works
	About enabling a VOB and installing triggers
	Query support
	About locally stored information
	About trigger versions
	About the integration package
	About the configuration file

	Policy regarding customization and support
	Checklist of configuration steps

	Planning for the base ClearCase integration with Rational ClearQuest
	Setting up the Rational ClearQuest user database for base ClearCase
	Adding Rational ClearCase definitions to a Rational ClearQuest schema
	To add Rational ClearCase definitions to and upgrade a Rational ClearQuest schema

	Setting policies and installing triggers in a ClearCase VOB
	Using a shared configuration file and triggers
	Installing triggers in a VOB on Linux and the UNIX system
	To start the Rational ClearQuest Integration Configuration tool
	To specify multiple record types
	To list triggers installed in a VOB
	Quick start for evaluations

	Editing the configuration file
	Overview of the configuration file
	Locating the configuration file
	Configuration file use and format
	Summary of configuration parameters

	Connecting Rational ClearCase clients and a Rational ClearQuest user database
	Establishing the Rational ClearQuest Web interface
	Defining the Rational ClearQuest user database and database set
	Establishing the schemas
	Overview of DefineCQSchema
	DefineCQSchema
	ChangeFieldMap
	SetQuery
	SetResultSet
	Sharing a CQSchema

	Establishing Rational ClearCase MultiSite support
	About code page conversion
	The integration code page conversion process
	The contents of the configuration file
	Configuration parameters for code page conversion

	Testing the configured connections
	Troubleshooting the configured connections

	Making policy choices
	Allowing multiple associations
	Controlling query usage
	CQCC_QUERY_ENABLE
	CQCC_QUERY_FILTER

	Allowing use of the graphic user interface (GUI)
	Forcing checkin success before committing associations

	Enhancing performance
	Using the association batch feature
	Handling an incomplete posting
	Defining a batch
	Requesting confirmation of batch completion
	Tuning automatic association features

	Controlling and using automatic associations
	Enabling and disabling automatic associations
	Using automatic associations
	Specifying associations in comment patterns

	Debugging and analyzing operations
	Generating operational information
	Producing timing information
	Controlling logged output

	Testing the integration

	Customizing the integration
	About the Integration Query wizard
	To start the Integration Query wizard

	Chapter 14. Integrating changes
	About integrating changes
	How merging works
	Using the GUI to merge elements
	About the Merge Manager
	To start the Merge Manager
	About Diff Merge
	To start Diff Merge
	About the Version Tree Browser
	To start the Version Tree Browser

	Using the command line to merge elements

	Common merge scenarios
	Selective merge from a subbranch
	Removing the contributions of some versions
	Merging all project work
	All project work isolated on a branch
	All project work isolated in a view

	Merging a new release of an entire source tree
	Merging directory versions

	Using other merge tools

	Chapter 15. Using element types to customize file element processing
	About element types and file processing
	File types in a typical project
	How element types are assigned
	Sample magic file on the UNIX system
	Sample Magic File on the Windows system

	Element types and type managers
	Other applications of element types
	Using element types to configure a view
	Processing files by element type

	Predefined and user-defined element types
	Predefined and user-defined type managers
	Creating a new type manager (the UNIX system)
	Writing a type manager program (the UNIX system)
	Exit status of a method

	Type manager for manual page source files
	Creating the type manager directory
	Inheriting methods from another type manager
	The create_version method
	The construct_version method

	Implementing a new compare method
	Script for compare method
	Testing the type manager
	Installing and using the type manager

	Icon use by GUI browsers

	Chapter 16. Using Rational ClearCase throughout the development cycle
	About using Rational ClearCase throughout the development cycle
	Project overview
	Development strategy
	Project manager and Rational ClearCase administrator
	Use of branches
	Creating project views

	Creating branch types
	Creating standard config specs
	Creating, configuring, and registering views
	Development begins
	Techniques for isolating your work

	Creating baseline 1
	Merging two branches
	Integration and test
	Labeling sources
	Removing the integration view

	Merging ongoing development work
	Preparing to merge
	Merging work

	Creating Baseline 2
	Merging from the r1_fix branch
	Preparing to merge from the major branch
	Merging from the major branch
	Decommissioning the major branch
	Integration and test

	Final validation: creating Release 2.0
	Labeling sources
	Restricting use of the main branch
	Setting up the test view
	Setting up the trigger to monitor bug-fixing
	Fixing a final bug
	Rebuilding from labels
	Wrapping up

	Part 4. Appendixes
	Appendix A. Moving from view profiles to UCM
	View profiles and UCM
	Feature comparison
	Branches and streams
	Moving work among branches or streams
	VOBs and components
	Checkpoints and baselines

	Moving view profile information to UCM
	Preparing your view profile project
	Moving the view profile information

	Appendix B. Rational ClearCase integrations with Rational ClearQuest
	Understanding the Rational ClearCase integrations with Rational ClearQuest
	Managing coexisting integrations
	Schema usage with both integrations
	Presentation

	Appendix C. Customizing Rational ClearCase Reports
	How Rational ClearCase Reports works
	What you can customize in Rational ClearCase Reports
	Run-Time processing sequence for Reports programming interface
	Configuring shared report directories
	Adding report procedures to source control
	Setting the Report Builder to the customized directory

	Default directory structure for Rational ClearCase Reports
	Populating the Report Builder tree pane

	Report Procedure interface specifications
	Interface specification for All_Views.prl
	Description specification
	Help files
	Parameters specification
	Rightclick specification
	Fields specification
	field_type conventions

	Parameter choosers
	Path chooser
	UCM targets chooser
	Type chooser
	Date/time chooser
	Text chooser

	Viewing the report
	Saving report data

	Report programming examples
	Example 1: Adding a column to report output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 2: changing directory organization, description, and output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 3: changing description, parameter types, and output
	Processing logic
	Interface specification
	Changes required
	Modified report procedure

	Example 4: changing the pop-up menu for right-click handling
	Interface specification
	Changes required
	Modified report procedure

	Example 5: adding a new command to Report Viewer pop-up menu
	Interface specification
	Changes required
	Modified report procedure

	Troubleshooting customization
	Errors in the interface specification

	Coding high-level languages other than ccperl
	Obtaining the T0046 package

	Appendix D. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

