
Platform MPI
Version 9 Release 1.2

Release Notes for Linux

GI13-1896-01

���

Platform MPI
Version 9 Release 1.2

Release Notes for Linux

GI13-1896-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 67.

First edition

This edition applies to version 9, release 1 of Platform MPI (product number 5725G83) and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Information about this release 1
Bug fixes in Platform MPI 9.1.2 4
New or changed features in Platform MPI 9.1.2. . . 6
Submitting WLM scheduler jobs 50
Listing environment variables 54
Installing Platform MPI 54

Known issues. 56
Additional product information 64

Notices 67
Trademarks 69

© Copyright IBM Corp. 1994, 2013 iii

iv Platform MPI: Release Notes for Linux

Information about this release

Announcement

IBM Platform MPI (Platform MPI) 9.1.2 is the fully functional IBM implementation
of the Message Passing Interface standard for Linux. Platform MPI 9.1.2 for Linux
is supported on Intel/AMD x86 32-bit, AMD Opteron and EM64T servers running
CentOS 5, Red Hat Enterprise Linux AS 4, 5, and 6, and SuSE Linux Enterprise
Server 9, 10, and 11 operating systems.

Platform MPI product information

Platform MPI is a high-performance and production-quality implementation of the
Message Passing Interface standard. Platform MPI fully complies with the MPI-2.2
standard. Platform MPI provides an application programming interface and
software libraries that support parallel, message-passing applications that are
efficient, portable, and flexible.

Platform MPI enhancements provide low latency and high bandwidth
point-to-point and collective communication routines. On clusters of
shared-memory servers, Platform MPI supports the use of shared memory for
intranode communication. Internode communication uses a high-speed
interconnect when available.

Platform MPI supports a variety of high-speed interconnects and enables you to
build a single executable that transparently uses the supported high-performance
interconnects. This greatly reduces efforts to make applications available on the
newest interconnect technologies.

Platform MPI is available as shared libraries. To use shared libraries, Platform MPI
must be installed on all machines in the same directory or accessible through the
same shared network path.

Platform MPI Community Edition

Platform MPI Community Edition is a no-charge edition of Platform MPI that
supports core MPI features.

Platform MPI Community Edition embodies all of the core features of Platform
MPI Standard Edition and is available for download and deployment at no charge.
IBM Business Partners and Independent Solution Vendors (ISVs) who want to
embed or include a free MPI as part of their solutions can distribute Platform MPI
Community Edition at no charge or royalty upon registering with IBM.

An optional yearly subscription (Entry Support, or Elite Support provided by ISVs)
is available for users who require technical support or additional functionality,
such as greater scalability. Upgrading from Platform MPI Community Edition to
either the yearly subscription or to the full Platform MPI Standard Edition only
requires you to add an entitlement file (pmpi.entitlement) in the $MPI_ROOT/etc
directory.

© Copyright IBM Corp. 1994, 2013 1

The following are the differences between Platform MPI Community Edition,
Platform MPI Community Edition with Entry Support or Elite Support, and
Platform MPI Standard Edition:
v Platform MPI Community Edition:

– Scalability is limited to 4096 ranks. Larger rank counts will fail.
– Cluster test tools work for up to four nodes in a single run. The

benchmarking (BM), hello world (HW), and ping pong ring (PPR) tools are
limited to 4096 ranks.

– Support for high availability (HA) applications is disabled.
v Platform MPI Community Edition with Entry Support or Elite Support:

– Scalability is limited to 8192 ranks. Larger rank counts will fail.
– Cluster test tools work for up to four nodes in a single run. The

benchmarking (BM), hello world (HW), and ping pong ring (PPR) tools are
limited to 8192 ranks.

– Support for high availability (HA) applications is disabled.
v Platform MPI Standard Edition:

– There are no rank restrictions.
– Cluster test tools work with no restrictions.
– Support for high availability (HA) applications is enabled.

Platforms supported

Table 1. Systems Supported

Platform Interconnects

Intel/AMD x86 32-bit v Myrinet

v InfiniBand

v Ethernet

Ethernet includes 10baseT, 100baseT, GigE, 10GbE, and
10GbE with RoCE.

AMD Opteron (32-bit and 64-bit) v Myrinet

v InfiniBand

v Quadrics

v Ethernet

EM64T (32-bit and 64-bit) v Myrinet

v InfiniBand

v Quadrics

v Ethernet

Platform MPI runs on the following Intel/AMD platforms: x86_64 (32- and 64-bit)
and i386, and supports the following interconnects:

Table 2. Interconnect Support for Platform MPI 9.1.2

Protocol Option
Supported
Architectures NIC Version Driver Version

Shared memory on
SMP

N/A i386, x86_64 N/A N/A

2 Platform MPI: Release Notes for Linux

Table 2. Interconnect Support for Platform MPI 9.1.2 (continued)

Protocol Option
Supported
Architectures NIC Version Driver Version

OpenFabrics -IBV i386, x86_64 Any IB card OFED 1.0, 1.1, 1.2,
1.3, 1.4, 1.5

uDAPL Standard -UDAPL i386, x86_64 v IB vendor specific

v 10GbE vendor
specific

uDAPL 1.1, 1.2, 2.0

QLogic PSM -PSM x86_64 QHT7140, QLE7140 PSM 1.0, 2.2.1, 2.2

Myrinet MX -MX i386, x86_64 Rev D, E, F, 10G v MX 2g, 10g

v V1.2.x

Myrinet GM -GM i386, x86_64 Rev D, E, F GM 2.0 and later

TCP/IP -TCP i386, x86_64 All cards that support
IP

Ethernet Driver, IP

Note:

Support for the Mellanox VAPI and Quadrics Elan protocols have been
discontinued in Platform MPI.

Compilers

Platform MPI strives to be compiler neutral. Platform MPI 9.1.2 for Linux is
supported with the following compilers:
v GNU 3.x, 4.x
v GNU glibc 2.x
v Intel 10.x, 11.x, 12.x
v PathScale 2.x, 3.x
v Portland Group 10.x, 11.x, 12.x

Directory structure

All Platform MPI (for Linux) files are stored under the /opt/ibm/platform_mpi
directory.

If you choose to move the Platform MPI installation directory from its default
location in /opt/ibm/platform_mpi, set the MPI_ROOT environment variable to point
to the new location.

Table 3. Directory Structure

Subdirectory Contents

bin Command files for the Platform MPI utilities, gather_info
script

help Source files for the example programs

include Header files

lib/linux_ia32 Platform MPI Linux 32-bit libraries

Information about this release 3

Table 3. Directory Structure (continued)

Subdirectory Contents

lib/linux_amd64 Platform MPI Linux 64-bit libraries for Opteron and
EM64T

newconfig Configuration files and Copyright text

share/man/man1 manpages for the Platform MPI utilities

share/man/man3 manpages for the Platform MPI library

doc Release Notes

EULA License files

Bug fixes in Platform MPI 9.1.2
Platform MPI 9.1.2 has the following bug fixes from Platform MPI 9.1:

Bug fixes:
v Fix a bug on PSM with -intra=mix (use Platform MPI shared memory for

on-host messages smaller than 2KB, and PSM off-host or >=2KB messages).
v Fixed a bug in -ha mode that might have resulted in an incorrect function name

in an error message if there was an error.
v Fixed a occasional segv when using instrumentation -i instrfile

v Fixed the MPI_TYPE_EXTENT signature in the Fortran module.F file.
v Fixed a possible hang condition in mpirun/mpid when a failure occurs early in

the application launching process.
v The mpirun options -intra=nic and -commd are mutually exclusive and mpirun

now checks if the user attempted to use both.
v The use of the XRC (mpirun option -xrc or MPI_IBV_XRC=1) and on-demand

connections (PCMP_ONDEMAND_CONN=1) are mutually exclusive and mpirun now
checks if the user attempted to use both.

v Fixed a possible hang when on-demand connections (-e PCMP_ONDEMAND_CONN=1)
are used with Infiniband VERBS. This issue could be seen when a rank rapidly
sends many messages to ranks with which it has previously communicated,
followed by a message to a rank with which it has not previously
communicated.

v Fixed the affinitiy (mpirun option -aff) tunables MPI_AFF_SKIP_GRANK and
MPI_AFF_SKIP_LRANK when multiple mpids within an application are located on
the same node.

v Made various improvements to the non-blocking collective API implementation
from the MPI-3 standard. Most notably, the messages used in the
implementation of non-blocking collectives can no longer incorrectly match with
users' point-to-point messages. A number of other quality improvements have
been made as well such as argument checking (MPI_FLAGS=Eon) and better
progression of non-blocking collectives.

v Fixed the case where multiple mpids running on a single node within an
application can cause the following messages during startup: "MPI_Init: ring
barrier byte_len error".

v Fixed the following runtime error that may occur with the on-demand
connection features on IBV (-e PCMP_ONDEMAND_CONN): "Could not pin pre-pinned
rdma region".

4 Platform MPI: Release Notes for Linux

v Fixed a rare wrong answer introduced in 9.1.0.0 in -1sided MPI_Accumulate.
v Fixed a rare wrong answer introduced in 9.1.0.0 in the 101 collective algorithms,

including MPI_Allgather, MPI_Allgatherv, MPI_Alltoall, MPI_Alltoallv,
MPI_Bcast, MPI_Reduce, and MPI_Scatter.

v Fixed a frequent 32-bit Windows crash when using collective algorithms.
v Fixed a potential hang caused by conflicting user and internal messages

introduced in 9.1.0.0.
v Fixed the following Windows error: "Error in cpu affinity, during shared

memory startup".
v Fixed a launching error when using LSF bsub -n min,max on Windows.
v Fixed MPI_Reduce when using MPI_IN_PLACE and Mellanox FCA Collective

Offloading.
v Fixed a potential hang when running a mix of ranks linked against the

multi-threaded library and ranks linked with the single-threaded library.
v Fixed GPU wrong answers when using -e PMPI_GPU_AWARE=1 -e

PMPI_CUDAIPC_ENABLE=1.
v Dynamically increased the number of SRQ buffers when getting close to RNR

timeouts.
v Removed extraneous internal deadlock detection on shared memory pouches.
v Enabled ondemand connections for windows.
v Changed to use two digit version number sub fields: 09.01.00.01.
v Changed mpirun -version to align output correctly.
v Fixed a minor warning when MPI_ ROOT != mpirun path.
v Improved error messages in some collective algorithms.

HA changes
v Fixed -ha to support MPIHA_Failure_ack()
v Fixed -ha to prevent MPI_ANY_SOURCE requests from checking broken TCP

links.
v Fixed an uninitialized value problem in MPI_COMM_SHRINK
v Fixed -ha so that multithreaded blocking recv will never return

MPI_ERR_PENDING.
v Fixed allocation during Communicator creation in -ha not allocating enough.
v Fixed MPI_Cancel to work properly with MPI_ANY_SOURCE requests in -ha.
v Fixed a possible hang during Finalize in presence of revoked ranks.
v Fixed benchmarking to not run unneeded warmup loops.

Platform MPI 9.1.2 has the following bug fixes from Platform MPI 8.3:
v Enabled the Allgather[v]_160 FCA algorithms by default.
v Fixed a ~1000 usec slowdown in FCA progression.
v Fixed a Windows issue in which ranks running on a local host will not use

SHMEM to communicate if they were launched by different mpids.
v Improved Alltoall flooding on TCP by adding Alltoall[v]_120 algorithms.
v Forced the Alltoall[v]_120 algorithms. This fix encodes the new selection logic

in this algorithm, rather than regenerating new data files.
v Improved error reporting for out of memory errors.
v Fixed the MPI-Log file in /var/log/messages during MPI_Finalize to report

"start" and "end" job messages correctly.

Information about this release 5

v Added parselog.pl to be packaged for Linux to help you determine your MPI
usage.

v Resolved an issue that occured during the initialization of InfiniBand with
MPMD (multi-program multi-data) jobs.

Bug fixes in Platform MPI 9.1

Platform MPI 9.1 has the following bug fixes and improvements from Platform
MPI 8.3:
v Stopped reading the hpmpi.conf file. Platform MPI now only reads pmpi.conf

files.
v Stopped displaying debug information when using wlm features.
v Fixed the lazy deregistration issue.
v Fixed mpif77/mpif90 wrappers to work with gfortran syntax for auto-double.
v Fixed MPI_Finalize to include a progression thread delay.
v Fixed RDMA progression bug when running with Coalescing.
v Fixed a typo when using the MPE and jumpshot binaries.
v Updated FCA headers to be able to use FCA 2.2 libraries.
v Added a dynamic growth of internal SRQ buffer pools to provide better

performance by reducing network flooding when using SRQ.
v Tuned some scheduled startup delays to improve startup times.
v Updated the hwloc module for CPU affinity features to hwloc 1.4.2.
v Improved the performance of the shared memory copy routines use for

intra-node messages.

New or changed features in Platform MPI 9.1.2
Platform MPI 9.1.2 for Linux includes the following new or changed features.

New installer and installation instructions
ThePlatform MPI installer is now packaged using InstallAnywhere to provide a
common installer for both Linux and Windows platforms. Therefore, the
installation process is now changed to the same process for Linux and Windows.
For more details, refer to “Installing Platform MPI” on page 54.

Event-based progression (Linux only)
Platform MPI for Linux includes a new execution mode designed to reduce CPU
utilization and perform well in oversubscribed situations. Running with mpirun
option -nospin will use the network to communicate between all process pairs
(-intra=nic) and will block within the operating system when waiting on
communication. This mode is particularly efficient for oversubscribed execution,
threaded applications, and for applications that require MPI_THREAD_MULTIPLE. With
the -nospin option, multiple threads will not compete for access to the MPI library,
rather, multiple threads can be functioning within the MPI library simultaneously.
Single-threaded applications can also run efficiently oversubscribed, and
single-threaded applications will use less CPU and therefore less power when
waiting on messages.

Note: When specifying -nospin, you must also specify -e MPI_TCP_POLL=1. This
requirement will be removed in a future version.

6 Platform MPI: Release Notes for Linux

Dynamic shared memory
The internal use of shared memory is now redesigned to allow Platform MPI to
extend the amount of shared memory it uses. Previously, the amount of shared
memory the Platform MPI could use during execution was fixed at MPI_Init time.
The amount of shared memory available is now dynamic and can change during
the application run. The direct benefit to users is that some collective algorithms
optimized to make use of shared memory can now be used more often than before.
This is particularly important for applications that create their own communicators
as these user-created communicators will be able to use the best performing
collective algorithms in the same way as the MPI_COMM_WORLD communicator. This
change only impacts shared-memory used internally by Platform MPI. The prior
tunables for controlling shared-memory visible to the user (for example, through
MPI_Alloc_mem) remain unchanged.

Scale launching with DNS
Platform MPI includes improved scale launching in the presence of DNS. When an
appfile or command line specifies the same host multiple times (or when cyclic
rank placement is used), the Platform MPI startup process interacts with DNS to
allow faster startup at scale. Setting the environment variable PCMPI_CACHE_DNS=0
will turn off DNS caching and require a separate request each time a rank is
launched on a host.

ISV licensing removed
ISV licensing is now removed from Platform MPI. Messages related to ISV
licensing are no longer displayed.

CPU affinity and srun
CPU affinity (mpirun option -aff) now works with srun launching (mpirun option
-srun)

File cache flushing integrated with CPU binding
Platform MPI has the capability to flush the file cache, and this is now integrated
into the CPU binding. Use the MPI_FLUSH_FCACHE environment variable to
modify the behavior of file cache flushing:

MPI_FLUSH_FCACHE = integer[,additional_options]

where the additional options are as follows:

full Clear the full calculated memory range. This overrides the default of
stopping early if the swap space is low (the equivalent of slimit:0)

loc:number
Specifies when the file cache is flushed:
v 1: In mpid before ranks are created
v 2: As ranks are created. In Linux, this is after forking and before

execution. In Windows, this is before CreateProcess.
v 3: During _init constructor invocation. In Windows, this option is

convered to 4 (in MPI_Init).
v 4: In MPI_Init.

Information about this release 7

slimit:size
The value, in MB, where it will stop early if the swap space drops below
this value. The default value is 1.25*chunk_size, and the chunk size is
usually 256MB.

split Each rank writes on a portion of memory. This overrides the default of
writing by the first rank per host.

to:size The value, in MB, where it will stop early if the file cache size reaches the
target. The default is 32.

v Enable verbose mode.

Alternate lazy deregistration
To improve performance of large messages over IBV, Platform MPI uses a feature
on Linux called lazy deregistration. This features defers the deregistering (also
known as unpinning or unlocking) of memory pages so that the pages do not need
to be registered during a subsequent communication call using those same pages.
However, if the pages of memory are released by the process, the lazy
deregistration software must be made aware of this so that new pages located at
the same virtual address are not incorrectly assumed to be pinned when they are
not. To accomplish this, Platform MPI intercepts calls to munmap and disables
negative sbrk() calls via mallopt(), which are the two primary methods that pages
of memory are released by a processes.

In cases where an application makes its own mallopt() calls that would interfere
with mallopt() settings for Platform MPI, or the application does not wish to
disable negative sbrk() calls in the malloc library, an alternative mechanism is
available. By using -e MPI_DEREG_FREE=1, Platform MPI will work with negative
sbrk() by making the lazy deregistration system less aggressive. Turning on this
setting automatically turns off sbrk() protection with Platform MPI that would
otherwise be on.

Applications that allocate and release memory using mechanisms other than
munmap or use of the malloc library must either turn off the lazy deregistration
features (using -ndd on the mpirun command line) or they must invoke the
following Platform MPI callback function whenever memory is released to the
system in a way that Platform MPI does not track:
int hpmp_dereg_freeunused_withregion(void* buf, size_t size, int flag);

The first argument is the start of the memory region being released and the size is
the number of bytes in the region being released. The value of flag should be 0.

The most common example of when this is needed is the use of shared memory.
When memory is released from a process using shmdt(), if any portion of this
memory has been passed to a communicating MPI call, either -ndd must be used
or the callback hpmp_dereg_freeunused_withregion must be called immediately
before shmdt() is called.

Support for Torus-configured Infiniband networks
Platform MPI has support for Torus-configured Infiniband networks.

To enable Torus code, edit the $MPI_ROOT/etc/pmpi.conf file and uncomment the
following line:

PCMPI_IB_DYNAMIC_SL = 1

8 Platform MPI: Release Notes for Linux

This enables proper connections in a Torus configuration.

To confirm that correct SL/QoS levels are being set, obtain additional debug
information by setting the following environment variable:

PCMPI_IB_SL_DUMP = 1

Intel MIC usage
Platform MPI supports either the MPI+offload or MPI+OpenMP+offload
programming models. Intel MIC is the Intel "Many Integrated Core" Architecture.
The Intel MIC offers an automatic offloading capability with source code pragma
statements and the Intel Compilers.

Platform MPI does not support running MPI code on Intel MIC processors.

The application source code must be modified to include the MIC programming
pragma statements. Without these pragma statements, the application will only be
executed on the Intel Xeon processors.
1. Set the environment using the Intel compiler and Intel Openmp library and

setting the MPI_ROOT environment variable.
$. /shared/intel/bin/compilervars.sh intel64
$ export MPI_ROOT=/opt/ibm/platform_mpi

2. Compile the application. Because the source includes the Intel MIC pragmas, an
a.outMIC executable will be automatically created by the compiler:
$ ls
hellomp.c
$ $MPI_ROOT/bin/mpicc -openmp -o hellomp hellomp.c
$ ls
hellomp hellomp.c hellompMIC
$ file hellomp hellompMIC
hellomp: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses
shared libs), for GNU/Linux 2.6.18, not stripped
hellompMIC: ELF 64-bit LSB shared object, version 1 (SYSV), dynamically linked, not stripped

The application will be run on the Intel MIC cores, one thread on each MIC
execution unit. Launching a single rank with Platform MPI, without setting
OMP_NUM_THREADS, the execution will include one thread per Intel MIC execution
unit. In this case, there are 52 MIC processors, with 4 execution units each, with
one MIC reserved for job management will produce 204 threads: (52-1)*4=204.
$ mpirun -np 1 ./hellomp
Hello from thread 192 out of 204 from rank 0 out of 1 on intel1.
Hello from thread 193 out of 204 from rank 0 out of 1 on intel1.
...
...
...
Hello from thread 106 out of 204 from rank 0 out of 1 on intel1.

Command line aliasing
Platform MPI allows aliases to be created for common mpirun command line
arguments, options, and environment variables. The aliases must be predefined in
a file, and can be used as a shorthand for complex command line options or for
application-specific tuning options.

The general format of an alias definition is as follows:
ALIAS alias_name {

-option1 -option2
Comments are permitted

Information about this release 9

-e MYVAR=val
-e MYPATH=${PATH}
Linux path
-e MYDIR="/tmp"
Windows path
-e MYWINDIR="C:\Application Data\Temp"

}

The ALIAS keyword must be all caps, and is followed by the alias name. The alias
definition is contained in matching curly braces { and }. Any valid mpirun
command line option can be included inside an alias definition. Quoted strings are
permitted, but must be contained on a single line. All tokens are
whitespace-delimited.

To use a pre-defined alias on the mpirun command line, the -cmd syntax is:
-cmd=alias1[,alias2,...]

More than one alias can be included in a comma-separated list. The -cmd option
may be included more the one time on the mpirun command line. The aliases are
expanded, in place, before any other command line parsing is done. An alias may
only be listed, or expanded, onto a command line one time. A second use of an
alias on a single command line will result in an error.

Environment variable values can be expanded from the shell environment where
the mpirun command is run. Note that the runtime environment may be the same
local node where the mpirun command is issued, or on a remote node if a job
scheduler is used.

Alias files are read from three locations, in the following order depending on the
operating system:
v Linux:

1. $MPI_ROOT/etc/pmpi.alias

2. /etc/pmpi.alias

3. $HOME/.pmpi.alias

v Windows:
1. "%MPI_ROOT%\etc\pmpi.alias"

2. "%ALLUSERSPROFILE%\Application Data\IBM\Platform Computing\Platform-
MPI\pmpi.alias"

3. "%USERPROFILE%\Application Data\IBM\Platform Computing\Platform-MPI\
pmpi.alias"

All three alias files are read, if they exist. The alias names are matched in reverse
order, from last to first. This allows alias names to be redefined in later files.

Setting PCMPI_ALIAS_VERBOSE=1 will print the fully-expanded command line as
tokens. This option must be set in the environment when mpirun is invoked to
work.
#---
Example pmpi.alias
#---
#
Set some common debugging options and environment variables
#
ALIAS debug {
-v -prot
-e MPI_AFF_VERBOSE=1

10 Platform MPI: Release Notes for Linux

-e PCMPI_CPU_DEBUG=1
-e MPI_NUMA_VERBOSE=1
-e MPI_COLL_FCA_VERBOSE=1
}

#
Setup some increasing levels of debugging output
#

Debug level 1
ALIAS debug1 {
-cmd=debug
}

Debug level 2
ALIAS debug2 {
-cmd=debug1
-e MPI_FLAGS=v,D,l,Eon
-e MPI_COLL_FORCE_ALL_FAILSAFE=1
}
#---

GPU message copy improvements
Platform MPI now supports using CUDA IPC to improve shared memory
communication performance. Enabling this feature improves MPI performance
when using GPU memory for MPI messages by enabling a DMA copy from GPU
memory to GPU memory when possible.

To enable, use both -e PMPI_CUDAIPC_ENABLE=1 and the old gpudirect option -e
PMPI_GPU_AWARE=1 to turn on the feature. The -e PMPI_GPU_AWARE=1 option will only
enable the GPU Direct support and not enable the CUDA IPC copy features.

TCP Alltoall flooding algorithm
When called using TCP networking protocol, Alltoall has the potential to flood the
TCP network, which can seriously degrade performance of all TCP traffic. To
alleviate TCP flooding, Platform MPI 9.1 introduced a new Alltoall algorithm that
is called specifically when TCP is used. This algorithm will help prevent flooding
but does have the effect of slightly degraded performance for Alltoall. This should
only occur when using TCP. If you wish to use the older algorithms to obtain
better performance and are sure your application will not flood the TCP network,
include the following environment variable for the MPI run: -e
MPI_COLL_IGNORE_ALLTOALL=120.

RDMA to TCP failover
This release allows support for network failover from the IBV protocol to TCP. This
option is intended to allow failover from IBV on an Infiniband network to TCP on
a separate Ethernet network. Failover from IBV to TCP-over-IB on the same
physical network is possible; however, a network failure will likely cause both
protocols to be unusable, making the failover feature to be of no benefit. To enable
this feature, run with -ha:detect and set the PCMPI_IBV2TCP_FAILOVER environment
variable. Using this feature will sometimes result in higher communication latency
as additional overhead is required to detect failures and record information
necessary to retransmit messages on the TCP network.

In this release, there is no ability to transition back to IBV if the Infiniband
network is restored. Once a connection has transitioned to TCP, it will continue to

Information about this release 11

use TCP for the remainder of the execution. A future release may allow an
administrator to signal to the application that the IBV network failures have been
addressed.

MPI 3.1 High Availability features
In an effort to support current practices and standardization efforts for high
availability support, the fault tolerance model for -ha:recover has changed in this
release. The previous functionality as described in the current User's Guide
Appendix B under the sections Failure recovery (-ha:recover) and Clarification of the
functionality of completion routines in high availability mode has changed. This release
fully implements the MPI Forum Process Fault Tolerance Proposal. This proposal is
not part of the MPI Standard at this time, but is being considered for inclusion in
the next version of the MPI Standard. Users of previous versions of Platform MPI
will find that migration to the new approach to HA is straightforward. The
previous approach to recovery redefined MPI_Comm_dup. The new approach
provides the same functionality using new routine names MPI_Comm_revoke and
MPI_Comm_shrink. There are also some differences in when errors are reported, how
MPI_ANY_SOURCE is handled, and the return code used to designate that a process
failure occurred. In addition, the proposal also adds a utility function for consensus
(MPI_Comm_agree).

The Process Fault Tolerance Proposal includes the following new routines:
v MPI_Comm_revoke

v MPI_Comm_shrink

v MPI_Comm_agree

v MPI_Comm_iagree

v MPI_Comm_failure_ack

v MPI_Comm_failure_get_acked

Because these are not officially part of the MPI Standard at this time, they are
named as follows in this release:
v MPIHA_Comm_revoke

v MPIHA_Comm_shrink

v MPIHA_Comm_agree

v MPIHA_Comm_iagree

v MPIHA_Comm_failure_ack

v MPIHA_Comm_failure_get_acked

Because recovery is now handled by new routine names rather than through the
pre-existing MPI_Comm_dup, -ha:detect and -ha:recover are now functionally
identical.

MPI 3.0 non-blocking collective support/preview
Platform MPI has preliminary support for non-blocking collectives on Linux.
Support is for the "c" interface, single-threaded, non-HA and contiguous data types
only. In order to use them, add the -DNON_BLOCKING_COLLECTIVES compiler option.

Prototypes are provided in mpi.h

12 Platform MPI: Release Notes for Linux

SR-IOV
Platform MPI includes the ability to support Single-Root I/O Virtualization
(SR-IOV) for IBV connection. Without any modification, users can run MPI
applications across SR-IOV supported virtual machines. The application
performance will depend on different hardware and virtual machine configuration.

When using SR-IOV on virtual machines as your IBV connection, performance will
degrade compared to using IBV directly on native hardware. PingPong latency
performance is 6-8x slower, while bandwidth is 2-3x slower for middle message
sizes. As messages increase in size, performance starts approaching actual
hardware performance. For collectives, performance difference range from a slight
difference to 2x slower. Each collective and message size has different
characteristics. To determine your deltas, perform comparisons for your specific
hardware and VMs.

Multi-threaded collective performance improvements
Platform MPI features enhancements to the performance of collective algorithms in
the multi-threaded library. Prior to this release, the multi-threaded library
supported multi-threaded application code which executed MPI collective calls
simultaneously by different threads on the same communicator. This is explicitly
not allowed by the MPI Standard, but is handled correctly by Platform MPI. If an
application relies on Platform MPI's ability to support simultaneous collective calls
on the same communicator, the application must now specifically request this
support by setting PMPI_STRICT_LOCKDOWN. The new default behavior allows for
faster and more scalable collective performance by allowing some collective calls to
avoid an expensive distributed lockdown protocol formally required by each
collective call.

It is important for users of the multi-threaded library to understand that the libcoll
infrastructure selection is based on the relative performance of algorithms in the
single-threaded library. Therefore, it is especially important that multi-threaded
library users create their own benchmarking tables which reflect the performance
of collectives called by the multi-threaded library. The libcoll library selection
process will demote some algorithms when running with the multi-threaded
library which are known to require a distributed lockdown step and therefore tend
to perform poorly when called from the multi-threaded library. However, best
results will be achieved when a full benchmark table is produced directly from the
multi-threaded library.

As part of this redesign to allow significantly better overall multi-threaded
collective performance, some collective operations, particularly communicator
creation routines, now perform multiple distributed lockdown operations. As a
result, the performance of some of these routines, which most users do not
consider performance sensitive, may be slightly poorer than in previous releases.
This known regression will be addressed in a future release.

On-demand connections for SRQ/TCP
Platform MPI includes the ability to enable on-demand connections for IBV,
IBV/SRQ and TCP. On-demand support for IBV was added in Platform MPI 8.1.
For Platform MPI 9.1, on-demand support for TCP and IBV/SRQ is included.

To enable on-demand connections, set the environment variable
PCMP_ONDEMAND_CONN=1. This will enable IBV, IBV/SRQ or TCP connections between
two ranks in an MPI run only if the ranks communicate with each other. If two

Information about this release 13

ranks do not send messages to each other, the connection is never established,
saving the resources necessary to connect these ranks. If an application does not
use collectives, and not all the ranks send messages to other ranks, this could
enable performance gains in startup, teardown and resource usage.

Scale improvements to 128K ranks support
Previous versions of Platform MPI had some possible barriers at 32K ranks that
have been eliminated over time. Platform MPI is now designed to fully support
128K rank runs.

Currently there are no known limits to scale Platform MPI beyond 128K ranks, but
some additional work may be needed to better use system resources process
management and network connections. If you want to scale beyond 128K and run
into issues, contact IBM for assistance on run-time tunables that can be used to
scale to larger rank counts.

PSM -intra=mix mode
The -intra=mix mode is only supported for some interconnects: Infiniband IBV
and PSM. In this mode, messages less than or equal to a certain threshold are sent
using MPI shared memory and messages above a certain size are sent using the
interconnect. The default threshold varies but is 2k for PSM, and can be controlled
using the MPI_RDMA_INTRALEN setting in bytes.

XRC multi-card
Support added to XRC protocol striping data over multiple cards. No new
command line options are added to support this feature. Existing multicard
options (such as the MPI_IB_STRINGS option) should be used to define multicard
options when using XRC. With the addition of this support XRC Multicard support
will be enabled by default if more than one card is detected on the system and
XRC protocol is used. Use existing multi-card options to restrict XRC traffic to one
card if necessary.

PE-POE startup support
Platform MPI now supports the IBM PE-POE launching utility. To launch Platform
MPI applications using the PE/POE launching utility, include the -poe option on
the mpirun command line:

mpirun mpirun-args -poe poe-args

For example,

mpirun -prot -poe program.x -hfile hosts -procs 16

Running under the pdb debugger is supported using -pdb on the command line.

For example,

mpirun mpirun-args -pdb poe-args

CPU affinity features for Platform MPI 9.1
CPU affinity involves setting what CPU or mask of CPUs each rank in which an
MPI job will run.

14 Platform MPI: Release Notes for Linux

To aid in explaining each affinity concept, the following two example machines
will be used for most of the examples: Both example machines have two sockets,
each containing two NUMA nodes, where each NUMA node contains four cores.
One machine (example-host-1) has hyperthreading turned off, so each core contains
one hyperthread, while the other (example-host-2) has hyperthreading turned on,
so each core contains two hyperthreads.

Table 4. Representation of machine with hyperthreading off

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

Table 5. Representation of machine with hyperthreading on

example-host-2

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h

Each hyperthread ("h") in these machines has an associated number assigned by
the operating system, and bitmasks are used to identify what set of hyperthreads a
process can run on. The pattern by which numbers are assigned to the
hyperthreads can vary greatly from one machine to another.

The MPI notation used in "verbose" mode will be described in more detail later,
but these example machines might be displayed as
[0 2 4 6,8 10 12 14],[1 3 5 7,9 11 13 15]

and
[0+16 2+18 4+20 6+22,8+24 10+26 12+28 14+30],[1+17 3+19 5+21 7+23,9+25 11+27 13+29 15+31]

which shows the hardware in logical order visually identifying the sockets, NUMA
nodes, cores, and hyperthreads and shows the number associated with each
hyperthread.

If an MPI rank were to be assigned to the first core of example-host-2 that would
correspond to hyperthreads 0 and 16, which, when expressed as a bitmask, would
be 1<<0 + 1<<16 or 0x10001. The MPI notation used in verbose mode to display
this bindings would be
[11 00 00 00,00 00 00 00],[00 00 00 00,00 00 00 00] : 0x10001

Alternatively, to assign a rank to the whole first NUMA of example-host-1 that
would correspond to hyperthreads 0, 2, 4, and 6, would be bitmask 0x55. The MPI
verbose display for this binding would be
[1 1 1 1,0 0 0 0],[0 0 0 0,0 0 0 0] : 0x55

The main binding options (that is, the categories of affinity selection) can be
organised into the following three groups:

Information about this release 15

automatic pattern-based
Automatic pattern-based bindings are based on the concept of placing
blocks of ranks and then cycling between topology elements for the next
block of rank assignments.

manual
Manual masks involve specifying hex masks for each rank. This offers
great flexibility if the hardware being run on is known.

the hwloc_distribute() function
The hwloc_distribute() function resembles the pattern-based options but
is less rigid. It divides the available processing units more or less evenly
among the ranks.

Main binding options for automatic pattern-based binding

The following pieces of information are used to define the pattern:
v What topology elements to cycle when cycling occurs (-affcycle)
v What size mask to assign for an individual rank (-affwidth)
v How many contiguous topology elements to assign in a block before explicitly

triggering cycling (-affblock)
v How many consecutive ranks to assign the exact same binding before stepping

to the next contiguous topology element (-affstep)

The following examples can clarify each individual concept:

Table 6. -affcycle examples (all with width=core, block=1, step=1)

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 4 1 5 2 6 3 7 -affcycle=numa -np 8

0 2 4 6 8 1 3 5 7 9 -affcycle=socket -np 10

0 8 1 9 2 3 4 5 6 7 -affcycle=2core -np 10

0 2 4 6 8 1 3 5 7 9 -affcycle=2numa -np 10

0 4 2 1 3 -affcycle=numa,socket -np 5

Table 7. -affwidth examples (all with cycle=numa, block=1, step=1)

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 4 1 5 2 6 3 7 -affwidth=core -np 8

0 0 4 4 1 1 5 5 2 2 6 6 3 3 7 7 -affwidth=2core -np 8

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 -affwidth=numa -np 4

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 -affcycle=socket -np 2

16 Platform MPI: Release Notes for Linux

For the above example, having cycle set to something smaller or equal to the width
effectively disables the explicit cyclng.

Table 8. -affblock examples (all with cycle=numa, width=core, step=1)

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 4 1 5 2 6 3 7 -affblock=1 -np 8

0 1 2 3 4 5 6 7 -affblock=2 -np 8

Table 9. -affstep examples (all with cycle=numa, width=core, block=1)

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 4 1 5 2 6 3 7 -affstep=1 -np 8

0 8 2 4 6 -affstep=2 -np 9

1 3 5 7 (this example spans two lines)

The command line options controlling the above patterns are shown below. In the
following descriptions, # is a positive non-zero integer, and unit can be socket,
numa, L2, core, or execunit:

-affcycle=#unit,#unit,...
What topology elements to use when cycling.

-affcycle=all
all is a keyword to cycle through all topology elements.

-affcycle=none
none is a keyword that results in packed contiguous bindings. This is the
default for -affcycle.

-affwidth=#unit
Size of mask for an individual rank. The default value is -affwidth=core.

-affblock=#
Contiguous assignments before cycling. The default value is -affblock=1

-affstep=#
Consecutive ranks to receive the same binding. The default value is
-affstep=1.

Main binding options for manual masks

The following are main binding options for manual masks:

-affmanual=0xhex:0xhex:0xhex
The ranks for each host are assigned masks from the list. By default, the
index of the mask is the host-local rank ID (cyclically if the number of
host-local ranks is larger than the number of masks specified in the list).

Information about this release 17

-affmanual=seq
seq is a keyword that expands into all the bits on the machine in sequence.
For example, 0x1:0x2:0x4:0x8:0x10:...

-affopt=global
This option changes the decision of which mask in the list goes to which
rank. With this option, the list is indexed by global rank ID (cyclically).

The following section on Printing CPU masks or interpreting manual masks shows
options for varying the interpretation of the hexadecimal masks. The default is that
the bits represent hyperthreads using the operating system ordering.

Main binding options for hwloc_distribute()

The following are main binding options for the hwloc_distribute() function:

-affdistrib=socket, numa, core, L2, execunit, or explicit depth #

Uses the built-in hwloc_distribute() function from the HWLOC project to
place the ranks. Generally speaking this function spreads the ranks out
over the whole machine so things like cache and memory bandwidth will
be fully used while putting consecutive ranks on nearby resources.

The input argument specifies the smallest size unit an individual rank is to
be given.

-affopt=single
The masks returned from hwloc_distribute() are often large, allowing ranks
to drift more than might be ideal. With this option each rank's mask is
shrunk to a single core.

Reordering automatically-generated masks

For getting the best overall bandwidth it is often good to span all the resources in
the hardware tree, which can be done using the -affcycle=all option, but the result
does not put consecutive ranks near each other in the topology.

For example,

Table 10. -affblock examples (all with cycle=numa, width=core, step=1)

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 4 2 1 5 3 -affcycle=numa,socket -np 6

0 1 2 3 4 5 -affopt=reorder -np 6

The reorder option takes the existing set of bindings and sorts them logically so
consecutive rank IDs are as near each other as possible:

-affopt=reorder

18 Platform MPI: Release Notes for Linux

What to do when the produced pattern results in
oversubscription

Sometimes when a binding cycles through the whole machine, it can result in
oversubscription.

For example, when using -affwidth=2core -np 5:
- R0: [11 11 00 00],[00 00 00 00] : 0x00000505
- R1: [00 00 11 11],[00 00 00 00] : 0x00005050
- R2: [00 00 00 00],[11 11 00 00] : 0x00000a0a
- R3: [00 00 00 00],[00 00 11 11] : 0x0000a0a0
- R4: [11 11 00 00],[00 00 00 00] : 0x00000505

Oversubscription has a substantial enough penalty that the default in this case is to
partially unbind every rank onto the whole of any NUMA node it occupies:

- R0: [11 11 11 11],[00 00 00 00] : 0x00005555
- R1: [11 11 11 11],[00 00 00 00] : 0x00005555
- R2: [00 00 00 00],[11 11 11 11] : 0x0000aaaa
- R3: [00 00 00 00],[11 11 11 11] : 0x0000aaaa
- R4: [11 11 11 11],[00 00 00 00] : 0x00005555

The options for the behavior in the presence of such oversubscription are as
follows:

-affoversub=ok
Accept the binding as-is.

-affoversub=unbind
Fully unbind, expanding mask to whole machine.

-affoversub=partial
Partial unbind, expanding mask to NUMA node.

Printing CPU masks or interpreting manual masks

-affopt=osindex
The bits in the mask represent PUs (hyperthreads) using the operating
system ordering. This is the default value.

-affopt=logicalindex
The bits in the mask still represent PUs but are ordered by logical_index,
which is the intuitive order if the topology were drawn in a tree so
neighbors in the tree have consecutive bits.

-affopt=coreindex
This is similar to logicalindex but each bit represents a core instead of a
PU. This option can be better than logicalindex if working with machines
where some have hyperthreading on and some off.

For these options, a smaller example machine will be used, with two sockets, four
cores per socket, and two hyperthreads per core.

Using the operating system index (default) to label each PU (hyperthread):

socket socket socket socket

core core core core core core core core

0 8 2 10 4 12 6 14 1 9 3 11 5 13 7 15

Information about this release 19

Under this labeling system, a mask containing the second core on the first socket
would have bits 2 and 10 set giving binary 0100,0000,0100 or hexadecimal 0x404.

If the affinity option -affopt=logicalindex were used with this same machine, the
numbering of the hyperthreads would instead be the following:

socket socket socket socket

core core core core core core core core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

This would make the hexadecimal labeling for the second core on the first socket
contain bit 2 and bit 3, giving binary 1100 or hexadecimal 0xc.

When using -affopt=coreindex, the indexes represent the cores and the
hyperthreads under them are ignored, so this machine would then be labeled as
follows:

socket socket

core core core core core core core core

0 1 2 3 4 5 6 7

Inheriting existing binding or attempting to break out

-affopt=inherit
Bind within the inherited mask. This is the default value.

-affopt=inherit:full
Special mode, run in inherited mask unmodified.

-affopt=inherit:seq
Special mode, portion out the bits in the inherited mask consecutively to
the ranks.

-affopt=noinherit
Attempt breaking out of the inherited binding to use the whole machine

Skipping affinity for select ranks

For the pattern-based bindings it may be convenient to have some ranks not
included in the binding. The options for this are as follows:

MPI_AFF_SKIP_GRANK
Accepts a comma-separated list of global ranks.

MPI_AFF_SKIP_LRANK
Accepts a comma-separated list of host-local ranks.

For example, if you want to use regular bandwidth-binding on example-host-1, but
you are creating an extra rank on each host which you wish to be unbound. To
keep that rank from messing up the binding for the other ranks, run a command
such as the following:

mpirun -affcycle=all -e MPI_AFF_SKIP_LRANK=0 ...

This would result in binding the host:

20 Platform MPI: Release Notes for Linux

example-host-1

socket socket

numa numa numa numa

c c c c c c c c c c c c c c c c

h h h h h h h h h h h h h h h h

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 5 9 13 3 7 11 15 2 6 10 14 4 8 12 16

The ranks 1-16 were bound without being disrupted by rank 0, which is unbound.

Verbose options

-affopt=v | vv

If the verbose option "vv" is specified, information about the host is displayed in a
visual format, where
v Brackets [] surround each socket
v A comma , separates NUMA nodes
v Hyperthreads on a core are adjacent

For example, a host with two sockets, each of which is a NUMA node and four
cores per socket, with hyperthreading enabled might look like the following:
> Host 0 -- ip 127.0.0.1 -- [0+8 2+10 4+12 6+14],[1+9 3+11 5+13 7+15]
> - R0: [11 00 00 00],[00 00 00 00] : 0x00000101
> - R1: [00 11 00 00],[00 00 00 00] : 0x00000404
> - R2: [00 00 11 00],[00 00 00 00] : 0x00001010
> - R3: [00 00 00 00],[11 00 00 00] : 0x00000202
> - R4: [00 00 00 00],[00 11 00 00] : 0x00000808
> - R5: [00 00 00 00],[00 00 11 00] : 0x00002020

In this example, six ranks have been bound with -affcycle=all -affopt=reorder
to get the best overall bandwidth.

If the verbose option "v" is specified, the display is abbreviated as follows:
v An empty socket becomes [--] or [----] if it contains multiple NUMA nodes.
v An empty NUMA node becomes -- or ---- if it contains multiple sockets
v Full sockets/NUMAs become the corresponding elements [##]

Under this scheme, the previous example would become the following:
> Host 0 -- ip 127.0.0.1 -- [0+8 2+10 4+12 6+14],[1+9 3+11 5+13 7+15]
> - R0: [11 00 00 00],-- : 0x00000101
> - R1: [00 11 00 00],-- : 0x00000404
> - R2: [00 00 11 00],-- : 0x00001010
> - R3: --,[11 00 00 00] : 0x00000202
> - R4: --,[00 11 00 00] : 0x00000808
> - R5: --,[00 00 11 00] : 0x00002020

Other examples of abbreviated displays are as follows:
[11 11 11,00 00 00],[00 00 00,00 00 00],[00 00 00,00 00 00]

is abbreviated to
[##,--],[----],[----]

Information about this release 21

[00 11 11][00 00 00],[00 00 00][00 00 00],[11 11 11][11 11 11]

is abbreviated to
[00 11 11][--],----,####

Abbreviations

The -aff option is unnecessary in the new model, but it can still be used for
backward compatibility and to supply convenient abbreviations:

-aff is short for -affcycle=all -affopt=reorder

-aff=bandwidth
is short for -affcycle=all -affopt=reorder

-aff=latency
is short for -affcycle=none

-aff=manual:...
is the same as -affmanual=...

The abbreviations are overridden if more specific options are used instead. Other
options such as -aff=automatic:bandwidth or -aff=automatic:latency also still
work and are equivalent to the previous options.

Cluster test tools
Platform MPI provides a pre-built program mpitool which runs as part of the
system check feature and includes a variety of programs it can run based on
command line arguments.

For example,

$MPI_ROOT/bin/mpirun -np 4 $MPI_ROOT/bin/mpitool -hw

This runs four ranks of the hello-world program

$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -ppr 1024

This runs the ping-pong-ring program with message size 1024 over the hosts in
the hosts file.

Options

The full list of options provided in the mpitool utility is as follows:
v Basic:

-hw hello world

-ppr ping-pong ring

-alltoallseq
slow sequential alltoall test

v Tuning:

-bm collective benchmarking
v Utilities:

-replicate
copies files and directories with MPI

22 Platform MPI: Release Notes for Linux

-run runs a command on every host
v Cluster testing:

-pphr host-level ping-pong ring (produces a two-dimensional graph)

-flood host-level flooding test (produces a two-dimensional graph)

-allpairs
ping-pong on all host pairs (produces a three-dimensional graph)

-ringstress
network stress test

Examples

Examples to use these options are as follows:
v hello world (-hw)

Runs the hello-world program at each rank.
For example,

$MPI_ROOT/bin/mpirun -hostlist hostA:2,hostB:2 $MPI_ROOT/bin/mpitool -hw

> Hello world! I’m 1 of 4 on hostA
> Hello world! I’m 3 of 4 on hostB
> Hello world! I’m 0 of 4 on hostA
> Hello world! I’m 2 of 4 on hostB

v ping-pong ring (-ppr)
Runs the ping-pong ring program over all ranks, which involves a ping-pong
between each pair of adjacent ranks using the natural ring ordering, one pair at
a time. The program accepts one argument which specifies the number of bytes
to use in each ping-pong.
For example,

$MPI_ROOT/bin/mpirun -hostlist hostA:2,hostB:2 $MPI_ROOT/bin/mpitool -ppr 10000

> [0:hostA] ping-pong 10000 bytes ...
> 10000 bytes: 2.45 usec/msg
> 10000 bytes: 4089.35 MB/sec
> [1:hostA] ping-pong 10000 bytes ...
> 10000 bytes: 10.42 usec/msg
> 10000 bytes: 960.06 MB/sec
> [2:hostB] ping-pong 10000 bytes ...
> 10000 bytes: 2.66 usec/msg
> 10000 bytes: 3759.05 MB/sec
> [3:hostB] ping-pong 10000 bytes ...
> 10000 bytes: 10.31 usec/msg
> 10000 bytes: 969.72 MB/sec

v sequential alltoall (-alltoallseq)
This test provides two very slow alltoall routines where a single message
traverses all rank pairs one by one. The selection of which of the two all-to-all
tests to run and what message size to use are controlled by the command line:
– -nbytes #

– -sequential: each rank in turn does ping-pong with all
– -bounce: a single message bounces until complete
In the -sequential mode each rank acts as leader for one iteration during which
time it sends and recvs a message with every other rank, ending with its
right-neighbor who becomes the next leader. An example of the message order is
as follows:

Information about this release 23

(0 is initially the leader)
0 sends to 2, and 2 sends back to 0
0 sends to 3, and 3 sends back to 0
0 sends to 1, and 1 sends back to 0
(1 is now the leader)
1 sends to 3, and 3 sends back to 1
1 sends to 0, and 0 sends back to 1
1 sends to 2, and 2 sends back to 1
(2 is now the leader)
2 sends to 0, and 0 sends back to 2
2 sends to 1, and 1 sends back to 2
2 sends to 3, and 3 sends back to 2
(3 is now the leader)
3 sends to 1, and 1 sends back to 3
3 sends to 2, and 2 sends back to 3
3 sends to 0, and 0 sends back to 3

The -sequential version actually sends twice the messages of a plain alltoall
because each leader does ping-pong with all peers. The -sequential version also
prints progress reports after each leader finishes its batch of messages.
In the -bounce mode rank 0 sends a single message to its right neighbor and
then each rank sends to whichever peer it has not yet sent to (starting with its
right neighbor and iterating). The one message bounces around the system until
all pairs have been traversed.
For example, 0 -> 1 -> 2 -> 3 -> 0 -> 2 -> 0 -> 3 -> 1 -> 3 -> 2 -> 1 -> 0

This can be shown to always complete at all ranks by induction, noting that if
some rank has completed then due to the order the messages are sent in at each
rank its right neighbor has also just completed.
The -bounce version only prints a single time at the end since it is harder to
have meaningful progress reports in the middle.
For example (using -sequential, which is the default):

$MPI_ROOT/bin/mpirun -hostlist hostA:2,hostB:2 $MPI_ROOT/bin/mpitool -alltoallseq -nbytes 4000

> Rank 0 completed iteration as leader: 0.10 ms
> Rank 1 completed iteration as leader: 0.12 ms
> Rank 2 completed iteration as leader: 0.08 ms
> Rank 3 completed iteration as leader: 0.04 ms
> total time 0.00 sec

v collective benchmarking (-bm)
This test is largely orthogonal to the other tests in mpitool and is described in
more detail in the section on collective benchmarking. System Check can run an
optional benchmark of selected internal collective algorithms. This benchmarking
allows the selection of internal collective algorithms during the actual
application runtime to be tailored to the specific runtime cluster environment.

v copy files with (-replicate)
This is a utility that allows Platform MPI to be used to copy files across a
cluster. It is most useful on systems lacking a cluster file system. This utility
allows much faster copying than scp for example because it can use whatever
high speed networks and protocols Platform MPI has, and it uses MPI_Bcast to
send the data to the whole cluster at once.
This program uses rank-0 as the source and copies to every other host that ranks
are launched onto.
For example, if there is a file called hosts with the following contents:
hostA
hostB
hostC
hostD

24 Platform MPI: Release Notes for Linux

hostE
hostF
hostG
hostH

Run the following command:
$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -replicate /tmp/some_application

> - so far: 540.00 Mb at 170.23 Mb/sec
> - so far: 1071.00 Mb at 173.50 Mb/sec
> Total transfer: 1206.07 Mb at 179.36 Mb/sec (to each destination)
> (time 6.72 sec)

The main argument is the directory to be copied. The other available arguments
are as follows:

-rmfirst
Erase /path/to/directory_or_file on each remote host before copying.
By default the untar command on the remote hosts won't erase anything
that's already there so this is needed if the remote directories need to be
cleaned up.

-show Display the exact command that would be executed on each host but do
not run anything.

-z Use the z option (compression) to tar. This is generally not
recommended since it tends to be much slower, but the option is
provided since results might vary from cluster to cluster.

v run a command on every host (-run)
This is a utility that allows Platform MPI to be used to launch arbitrary
commands across a cluster. The output is either collected to files or printed to
stdout.
Use -run in the following ways:
-run [-name name] command and args

-run -cmd name "command and args" [-cmd name2 ...]

In the first syntax if "-" is provided as the name, stdout is used instead of
sending to a file. If any other string is provided as the name, the output goes to
files out.<name>.d.<hostname>written by rank 0.
For example, if there is a file called hosts with the following contents:
hostA
hostB
hostC
hostD
hostE
hostF
hostG
hostH

Run the following command:
$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -run -name - uptime

> -------- [0] hostA --------------------------------
> 18:38:02 up 29 days, 2:27, 0 users, load average: 0.01, 0.03, 0.13
> -------- [1] hostB --------------------------------
> 18:38:02 up 42 days, 14:51, 0 users, load average: 0.00, 0.03, 0.10
> -------- [2] hostC --------------------------------
> 18:38:02 up 42 days, 14:53, 0 users, load average: 0.00, 0.03, 0.11
> -------- [3] hostD --------------------------------
> 18:38:02 up 42 days, 14:52, 2 users, load average: 0.08, 0.03, 0.07
> -------- [4] hostE --------------------------------
> 18:38:02 up 27 days, 2:56, 0 users, load average: 0.01, 0.02, 0.07
> -------- [5] hostF --------------------------------

Information about this release 25

> 18:38:02 up 27 days, 2:55, 0 users, load average: 0.00, 0.02, 0.07
> -------- [6] hostG --------------------------------
> 18:38:02 up 42 days, 14:58, 0 users, load average: 0.00, 0.05, 0.12
> -------- [7] hostH --------------------------------
> 18:38:02 up 42 days, 14:15, 0 users, load average: 0.08, 0.04, 0.08

$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -run -name misc cat /proc/cpuinfo \| grep \’’cpu MHz’\’

this produces output that resembles the following
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830
> cpu MHz : 2266.830

in each of several files similar to out.misc.00000003.hostD.
In the above example,
1. The mpirun line has as part of its command line arguments: cat

/proc/cpuinfo \| grep \’’cpu MHz’\’

2. The local shell parses some of this leaving mpirun and the subsequent
mpitool with argv[] entries as
argv[i+0] = cat
argv[i+1] = /proc/cpuinfo
argv[i+2] = |
argv[i+3] = grep
argv[i+4] = ’cpu MHz’

3. From this, it constructs the following string:
cat /proc/cpuinfo | grep ’cpu MHz’

which is given (via system()) to the shell on the remote host.
In general simpler commands are better, but knowing the levels of parsing
allows more complex commands to be used.
In addition, only one command is run per host. If more than one rank had been
run on the same host that would have been detected and only one of the ranks
would have run a command while the others would have been idle.

v host-level ping-pong ring (-pphr)
This test is conceptually similar to the simpler ping-pong-ring, but is performed
on a per-host basis and involves ping-pong between multiple ranks on one host
with multiple peer ranks on the neighbor host. The hosts are ordered in a
natural ring and the results are shown in a two-dimensional graph where host
indexes are on the x-axis and bandwidths are on the y-axis. When multiple
ranks are present on each host, multiple lines are graphed for tests with varying
numbers of ranks participating per host. The program takes three optional
integers on the command line to specify:
1. The number of bytes to use in the ping-pong messages
2. How many iterations per timed inner loop (default 1000)
3. How many times to collect in the outer loop (default 5)
The only reason for the inner or outer loop as opposed to just timing 5000
iterations is to get some feel for how volatile the data is. On each line of stdout,
the minimum and maximum of the five datapoints is reported and the relative
standard error (expected relative standard deviation of the average).
Besides the stdout, the test produces a .datinfo and corresponding .dat file that
can be given to the mkreport.pl command to produce a graph of the data.
For example, if there is a file called hosts with the following contents:

26 Platform MPI: Release Notes for Linux

hostA:8
hostB:8
hostC:8
hostD:8
hostE:8
hostF:8
hostG:8
hostH:8

$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -pphr 100000

> - ping-pong 100000 bytes, using 1 ranks per host
> - [0] (hostA): avg 2537.52 (2515-2549) Mb/sec (rse 0.21%)
> - [1] (hostB): avg 2537.88 (2536-2540) Mb/sec (rse 0.02%)
> - [2] (hostC): avg 2531.42 (2529-2533) Mb/sec (rse 0.03%)
> - [3] (hostD): avg 2527.44 (2527-2529) Mb/sec (rse 0.01%)
> - [4] (hostE): avg 426.77 (425-429) Mb/sec (rse 0.16%)
> - [5] (hostF): avg 430.26 (423-437) Mb/sec (rse 0.59%)
> - [6] (hostG): avg 2530.84 (2529-2533) Mb/sec (rse 0.02%)
> - [7] (hostH): avg 2537.35 (2535-2539) Mb/sec (rse 0.02%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 2 ranks per host
> - [0] (hostA): avg 3280.02 (3274-3287) Mb/sec (rse 0.07%)
> - [1] (hostB): avg 3603.41 (3553-3633) Mb/sec (rse 0.36%)
> - [2] (hostC): avg 3232.06 (3230-3234) Mb/sec (rse 0.02%)
> - [3] (hostD): avg 3183.20 (3180-3188) Mb/sec (rse 0.04%)
> - [4] (hostE): avg 329.86 (281-421) Mb/sec (rse 6.73%)
> - [5] (hostF): avg 310.24 (298-342) Mb/sec (rse 2.15%)
> - [6] (hostG): avg 3576.20 (3569-3583) Mb/sec (rse 0.07%)
> - [7] (hostH): avg 3564.91 (3558-3581) Mb/sec (rse 0.11%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 3 ranks per host
> - [0] (hostA): avg 4092.09 (4061-4138) Mb/sec (rse 0.29%)
> - [1] (hostB): avg 4018.45 (3965-4084) Mb/sec (rse 0.50%)
> - [2] (hostC): avg 4030.09 (4010-4053) Mb/sec (rse 0.17%)
> - [3] (hostD): avg 4022.87 (4000-4040) Mb/sec (rse 0.17%)
> - [4] (hostE): avg 312.27 (311-314) Mb/sec (rse 0.17%)
> - [5] (hostF): avg 308.84 (303-314) Mb/sec (rse 0.57%)
> - [6] (hostG): avg 4082.11 (4032-4165) Mb/sec (rse 0.52%)
> - [7] (hostH): avg 4112.89 (4077-4162) Mb/sec (rse 0.33%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 4 ranks per host
> - [0] (hostA): avg 4750.42 (4725-4780) Mb/sec (rse 0.19%)
> - [1] (hostB): avg 4691.40 (4626-4734) Mb/sec (rse 0.39%)
> - [2] (hostC): avg 4643.43 (4613-4673) Mb/sec (rse 0.19%)
> - [3] (hostD): avg 4668.42 (4654-4684) Mb/sec (rse 0.11%)
> - [4] (hostE): avg 295.31 (294-297) Mb/sec (rse 0.16%)
> - [5] (hostF): avg 293.90 (292-295) Mb/sec (rse 0.19%)
> - [6] (hostG): avg 4675.50 (4634-4704) Mb/sec (rse 0.25%)
> - [7] (hostH): avg 4666.32 (4634-4692) Mb/sec (rse 0.19%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 5 ranks per host
> - [0] (hostA): avg 5722.31 (5688-5752) Mb/sec (rse 0.21%)
> - [1] (hostB): avg 5476.99 (5455-5502) Mb/sec (rse 0.14%)
> - [2] (hostC): avg 5492.86 (5473-5516) Mb/sec (rse 0.13%)
> - [3] (hostD): avg 5618.14 (5575-5665) Mb/sec (rse 0.25%)
> - [4] (hostE): avg 275.74 (274-277) Mb/sec (rse 0.14%)
> - [5] (hostF): avg 277.35 (276-278) Mb/sec (rse 0.14%)
> - [6] (hostG): avg 5725.02 (5693-5754) Mb/sec (rse 0.19%)
> - [7] (hostH): avg 5705.59 (5655-5771) Mb/sec (rse 0.33%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 6 ranks per host
> - [0] (hostA): avg 5621.85 (5600-5648) Mb/sec (rse 0.15%)
> - [1] (hostB): avg 5558.90 (5545-5568) Mb/sec (rse 0.07%)
> - [2] (hostC): avg 5561.29 (5542-5600) Mb/sec (rse 0.17%)
> - [3] (hostD): avg 5578.57 (5520-5610) Mb/sec (rse 0.25%)
> - [4] (hostE): avg 279.22 (277-282) Mb/sec (rse 0.30%)
> - [5] (hostF): avg 279.26 (278-281) Mb/sec (rse 0.15%)

Information about this release 27

> - [6] (hostG): avg 5587.60 (5565-5612) Mb/sec (rse 0.13%)
> - [7] (hostH): avg 5612.19 (5598-5630) Mb/sec (rse 0.08%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 7 ranks per host
> - [0] (hostA): avg 5765.28 (5714-5797) Mb/sec (rse 0.22%)
> - [1] (hostB): avg 5718.80 (5690-5736) Mb/sec (rse 0.13%)
> - [2] (hostC): avg 5719.09 (5707-5728) Mb/sec (rse 0.06%)
> - [3] (hostD): avg 5698.18 (5667-5715) Mb/sec (rse 0.14%)
> - [4] (hostE): avg 275.50 (274-277) Mb/sec (rse 0.16%)
> - [5] (hostF): avg 276.61 (275-278) Mb/sec (rse 0.13%)
> - [6] (hostG): avg 5714.00 (5684-5735) Mb/sec (rse 0.13%)
> - [7] (hostH): avg 5765.01 (5742-5778) Mb/sec (rse 0.12%)
> *** most suspicious host indices: 4 5
> - ping-pong 100000 bytes, using 8 ranks per host
> - [0] (hostA): avg 5869.22 (5843-5883) Mb/sec (rse 0.10%)
> - [1] (hostB): avg 5817.97 (5805-5826) Mb/sec (rse 0.06%)
> - [2] (hostC): avg 5816.97 (5797-5827) Mb/sec (rse 0.09%)
> - [3] (hostD): avg 5808.06 (5742-5838) Mb/sec (rse 0.26%)
> - [4] (hostE): avg 274.06 (273-276) Mb/sec (rse 0.15%)
> - [5] (hostF): avg 275.07 (274-276) Mb/sec (rse 0.12%)
> - [6] (hostG): avg 5796.26 (5760-5814) Mb/sec (rse 0.15%)
> - [7] (hostH): avg 5850.21 (5839-5867) Mb/sec (rse 0.08%)
> *** most suspicious host indices: 4 5
> Data written to out.pingpong_hosts.100000.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.pingpong_hosts.100000.datinfo

In the output, the host name listed in parenthesis is the left-neighbor of the
ping-pong. So, for example, in the above data when the lines for (hostE) and
(hostF) both look bad, that means the ping-pongs between hostE-hostF and
between hostF-hostG were bad, suggesting host-F has a problem. The automated
statistics that identify suspicious host indices doesn't consider that aspect though
and just reports hostE and hostF as being suspicious.
The data can also be viewed graphically which is helpful on larger clusters. This
is accomplished with the $MPI_ROOT/bin/mkreport.pl command which can be
run on the out.pingpong_hosts.100000.datinfo output file:

$MPI_ROOT/bin/mkreport.pl out.pingpong_hosts.100000.datinfo

> Parsing data from out.pingpong_hosts.100000.datinfo
> - output is at
> 1. graph.pingpong_hosts.100000.png (all in 1 graph)
> 2. table.pingpong_hosts.100000.html (see the numbers if you want)
> - Suspicious hosts from dataset pingpong_hosts.100000:
> hostE
> hostF

It also produces an html report of the same data at Report/report.html
v host-level flooding (-flood)

In this test each host receives a flood of messages from a gradually increasing
sequence of its neighbors and the two data points of interest for each host are
what total bandwidth was achieved while flooding, and how many neighbors
were able to flood before bandwidth became low. It is a synchronized flood,
meaning that rather than having each peer sending to the root as fast as it
individually can, the root sends one ping message and all the peers send one
message back at roughly the same time so the messages end up throttled by the
slowest peer. A two dimensional graph is made for each set of data points. The
flooding is performed both with 1 rank per host being active, and with n ranks
per host.
The program takes two optional integers on the command line to specify.
1. The number of bytes to use in the message traffic
2. How much time (in ms) to spend on each flooding step, this is the amount of

time to spend at each peer count (default 10 ms).

28 Platform MPI: Release Notes for Linux

3. Percent below best bandwidth to stop flooding (default 75%)
Besides the stdout, the test produces a .datinfo and corresponding .dat file that
can be given to the mkreport.pl command to produce a graph of the data.
For example, if there is a file called hosts with the following contents:
hostA:8
hostB:8
hostC:8
hostD:8
hostE:8
hostF:8
hostG:8
hostH:8

When using a 32000 byte messages:
$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -flood 32000

(abbreviating the output somewhat)

> Running with root-host 0 (hostA) (1/host)
> at k=1 got 1465.5558 Mb/sec (best so far 1465.5558, this is 100.00%)
> at k=2 got 2024.7761 Mb/sec (best so far 2024.7761, this is 100.00%)
> at k=3 got 2332.7060 Mb/sec (best so far 2332.7060, this is 100.00%)
> at k=4 got 2519.0502 Mb/sec (best so far 2519.0502, this is 100.00%)
> at k=5 got 2636.3160 Mb/sec (best so far 2636.3160, this is 100.00%)
> at k=6 got 2754.1264 Mb/sec (best so far 2754.1264, this is 100.00%)
> at k=7 got 2821.1453 Mb/sec (best so far 2821.1453, this is 100.00%)
> Running with root-host 1 (hostB) (1/host)
> at k=1 got 1496.9156 Mb/sec (best so far 1496.9156, this is 100.00%)
> at k=2 got 2051.7504 Mb/sec (best so far 2051.7504, this is 100.00%)
> at k=3 got 2350.0500 Mb/sec (best so far 2350.0500, this is 100.00%)
> at k=4 got 2543.1471 Mb/sec (best so far 2543.1471, this is 100.00%)
> at k=5 got 2693.2953 Mb/sec (best so far 2693.2953, this is 100.00%)
> at k=6 got 2779.0316 Mb/sec (best so far 2779.0316, this is 100.00%)
> at k=7 got 2815.8659 Mb/sec (best so far 2815.8659, this is 100.00%)
> ...
> Running with root-host 0 (hostA) (8/host)
> at k=1 got 3090.4636 Mb/sec (best so far 3090.4636, this is 100.00%)
> at k=2 got 3315.8279 Mb/sec (best so far 3315.8279, this is 100.00%)
> at k=3 got 3316.0933 Mb/sec (best so far 3316.0933, this is 100.00%)
> at k=4 got 3335.5825 Mb/sec (best so far 3335.5825, this is 100.00%)
> at k=5 got 3333.6434 Mb/sec (best so far 3335.5825, this is 99.94%)
> at k=6 got 3337.5867 Mb/sec (best so far 3337.5867, this is 100.00%)
> at k=7 got 3335.9388 Mb/sec (best so far 3337.5867, this is 99.95%)
> Running with root-host 1 (hostB) (8/host)
> at k=1 got 3079.9224 Mb/sec (best so far 3079.9224, this is 100.00%)
> at k=2 got 3323.9715 Mb/sec (best so far 3323.9715, this is 100.00%)
> at k=3 got 3332.9590 Mb/sec (best so far 3332.9590, this is 100.00%)
> at k=4 got 3334.5739 Mb/sec (best so far 3334.5739, this is 100.00%)
> at k=5 got 3334.5684 Mb/sec (best so far 3334.5739, this is 100.00%)
> at k=6 got 3334.9656 Mb/sec (best so far 3334.9656, this is 100.00%)
> at k=7 got 3333.7031 Mb/sec (best so far 3334.9656, this is 99.96%)
> ...
> Data written to out.oneall_saturate_count.32000.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.oneall_saturate_count.32000.datinfo
> Data written to out.oneall_saturate_bw.32000.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.oneall_saturate_bw.32000.datinfo

The data can also be viewed graphically which is helpful on larger clusters. This
is accomplished with the $MPI_ROOT/bin/mkreport.pl command which can be
run on the out.oneall_saturate_bw.32000.datinfo output file (and also on
out.oneall_saturate_count.32000.datinfo). The first graph shows bandwidth
numbers for each host, the second shows how many peers were able to flood the
host.

Information about this release 29

% $MPI_ROOT/bin/mkreport.pl out.oneall_saturate_bw.32000.datinfo

> Parsing data from out.oneall_saturate_bw.32000.datinfo
> - output is at
> 1. graph.oneall_saturate_bw.32000.png (all in 1 graph)
> 2. table.oneall_saturate_bw.32000.html (see the numbers if you want)
> - No suspicious hosts from dataset oneall_saturate_bw.32000.

It also produces an html report of the same data at Report/report.html
v ping-pong on all host pairs (-allpairs)

This test runs ping-pong between all host pairs, with several ping-pongs run
simultaneously to make it faster. Between each host pair, multiple ranks try their
pairings and the slowest is reported in the three-dimensional output graph.
stdout also includes notes when one rank-pair was a lot slower than other
rank-pairs within the same host-pair. Each host is paired with self+1, then self+2,
then self+3, and so on.
The program takes the following optional command options:
– -nbytes #: for each ping pong
– -blocksize #: distance between hosts initiating ping pongs
– -usec #: target usec per ping pong, default 100000
– -nperhost #: ranks active per host
– -factor <float>: number greater than 1.0, default 1,5,
On large clusters the option -nperhost 1 might be necessary for the test to finish
in a reasonable time. That option effectively disables the notion of testing
multiple paths between host-pairs since there is then only a single path between
any two hosts. On each line of stdout the minimum or maximum value of the 5
data points is reported and the relative standard error (expected relative
standard deviation of the average).
Besides the stdout, the test produces a .datinfo and corresponding .dat file that
can be given to the mkreport.pl command to produce a three-dimensional graph
of the data.
For example, using 1000000 byte ping-pongs between each host:
For example, if there is a file called hosts with the following contents:
hostA
hostB
hostC
hostD

$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -allpairs -nbytes 1000000

> - notes on expected runtime (ping-pong nbytes 1000000):
> - 2 offsets
> - 2 stages per offset
> - 1 ping-pong paths tested per stage
> - 100000 target usec per pingpong
> - very rough estimate 0 seconds total
> If the above projection is super-long, consider reducing
> the time per ping-pong with -usec # or reducing the number
> of ping-pong paths tested per stage with -nperhost #
> --
> running ping pongs with offset 1
> running ping pongs with offset 2
> Data written to out.allpairs.1000000.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.allpairs.1000000.datinfo

The following example uses an artificially small value for -factor so lines will
be displayed reporting differences between best and worst paths for each host
pair even though.
For example, if there is a file called hosts with the following contents:

30 Platform MPI: Release Notes for Linux

hostA:8
hostB:8
hostC:8
hostD:8

$MPI_ROOT/bin/mpirun -hostfile hosts $MPI_ROOT/bin/mpitool -allpairs -nbytes 1000000 -factor 1.001

> - notes on expected runtime (ping-pong nbytes 1000000):
> - 2 offsets
> - 2 stages per offset
> - 16 ping-pong paths tested per stage
> - 100000 target usec per pingpong
> - very rough estimate 6 seconds total
> If the above projection is super-long, consider reducing
> the time per ping-pong with -usec # or reducing the number
> of ping-pong paths tested per stage with -nperhost #
> --
> running ping pongs with offset 1
> - host 0:1 hostA:hostB pair 5:1 - min 3154.29 avg 3156.92 max 3158.93 MB/sec
> - host 1:2 hostB:hostC pair 7:7 - min 3154.02 avg 3157.02 max 3158.96 MB/sec
> - host 2:3 hostC:hostD pair 3:3 - min 3154.02 avg 3157.50 max 3158.96 MB/sec
> - host 3:0 hostD:hostA pair 6:6 - min 3153.52 avg 3156.90 max 3158.89 MB/sec
> running ping pongs with offset 2
> - host 0:2 hostA:hostC pair 6:2 - min 3148.03 avg 3155.95 max 3158.24 MB/sec
> - host 1:3 hostB:hostD pair 2:6 - min 3148.03 avg 3156.90 max 3158.56 MB/sec
> - host 2:0 hostC:hostA pair 4:0 - min 3154.98 avg 3157.66 max 3159.71 MB/sec
> - host 3:1 hostD:hostB pair 4:4 - min 3154.42 avg 3156.96 max 3159.71 MB/sec
> Data written to out.allpairs.1000000.g1_worst.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.allpairs.1000000.g1_worst.datinfo
> Data written to out.allpairs.1000000.g2_best.dat and .datinfo.
> Viewable graphically via: mkreport.pl out.allpairs.1000000.g2_best.datinfo

Changed default installation path
The default installation path is changed to /opt/ibm/platform_mpi. You may
change this installation directory by using the -installdir=<dir> option when
running the installer.

MPI 3.0 non-blocking collective support/preview
Platform MPI has preliminary support for non-blocking collectives on Linux.
Support is for the c interface, single threaded, non-HA and contiguous data types
only. In order to use them, add the -DNON_BLOCKING_COLLECTIVES compiler option.

Protototypes are provided in mpi.h.

Removed FLEXlm license file requirement
There is no longer a requirement to have a FLEXlm license file in the
$MPI_ROOT/licenses directory.

Setting memory policies with libnuma for internal buffers
There is a soft requirement on any version of libnuma installed on the system. To
allow Platform MPI to set memory policies for various internal buffers, ensure that
the user’s LD_LIBRARY_PATH includes any version of libnuma.so.

The job will run without memory policies if there is no libnuma available.

Performance enhancements to collectives
The following general performance enhancements have been made to the
collectives:

Information about this release 31

v Performance enhancements to MPI_Gatherv, MPI_Allgatherv, and MPI_Scatterv
for zero-byte message sizes.

v Performance enhancements and optimized algorithms for MPI_Scatter and
MPI_Gather for messages smaller than 1KB.

Enhanced error messaging for FCA failures
Currently, when FCA errors occur from the lower level FCA/IB hardware, Platform
MPI issues a generic error message. To help better debug lower level FCA errors,
users can now enable the error message to be more verbose by setting the
environment variable MPI_COLL_FCA_VERBOSE=number where number is a numeric
value between 1-9. The higher the number, the more verbose the message. The
verbosity level is defined by the Mellanox FCA functionality. For more verbosity in
FCA errors, it is recommended that users use between 1 and 3, and only use
higher verbosity if requested by Mellanox or Platform when debugging the issue.

GPU-Direct 2.0 enhancements
Platform MPI supports Nvidia GPU-Direct and Unified Virtual Addressing (UVA),
which enables the MPI library to differentiate between device memory and host
memory without any hints from the user and transfer primitives copy data directly
to and from GPU memory. This brings less application code changes for data
transfers between the GPU and CPU.

To enable GPU-Direct functionality, set the environment variable PMPI_GPU_AWARE=1.

For example, assuming that libcuda.so is in the LD_LIBRARY_PATH environment
variable on each node,
mpirun -hostlist "hpgpu[01-04]":12 -e PMPI_GPU_AWARE=1 -IBV ./testgather

Infiniband QoS service level
Platform MPI now features the ability to define the IB QoS Service level. These
service levels are set up or defined by the system administrator in the subnet
manager (refer to your subnet manager documentation for information on how to
set up additional service levels). If additional service levels have been set up, users
may specify the MPI job's IB connection to use one of these non-default service
levels. To define the service level for the IB connections, set the PCMPI_IB_SL
environment variable to the desired service level, which is between 1 and 14. The
default service level is 0.

-env_inherit flag
The -env_inherit environment variable is an option for mpirun. With this option,
the mpirun current environment is propagated into each rank’s environment.

There is a set of fixed environment variables that will not automatically propagate
from the mpirun environment to the ranks. This list is different for Windows and
Linux. The exclusion lists are intended to prevent conflicts between the runtime
environment of the mpirun process and the ranks. For example, on Linux the
HOSTNAME environment variable is not propagated.

Users can also include environment variables they would like to prevent from
propagating to the rank environments by using MPI_ENV_FILTER. This environment
variable is a comma-separated list of environment variables to prevent from being
propagated from the current environment. Filtered environment variables can
include a wild card "*" but only as a post-fix to the environment variable.

32 Platform MPI: Release Notes for Linux

For example,

setenv MPI_ENV_FILTER "HOSTNAME,MYID,MYCODE_*"

Note:

In some shells, the wild card character may need to be escaped even when
embedded in a quoted string.

In this example, the environment variables HOSTNAME, MYID, and any environment
variable that starts with MYCODE_ will not be propagated to the ranks’
environments. In addition, the MPI_ENV_FILTER environment variable is also never
propagated to the ranks.

The MPI_ENV_CASESENSITIVE environment variable can change the behavior of case
sensitivity when matching the filtered references. By default, case sensitivity is the
same as the OS environment (that is, case sensitive for Linux and case insensitive
for Windows). To change the default behavior, set MPI_ENV_CASESENSITIVE to yes or
no (1, y, or yes to set; 0, n, or no to unset).

Platform MPI also offers the mpirun command line option -e var_name=var_value
that will explicitly set that environment variable in the process prior to exec’ing the
rank. The -envlist var_name[,var_name,...] option can also be used to explicitly
propagate variables from the mpirun environment to the ranks’ environments.

System Check benchmarking improvements
System Check benchmarking has been improved to write out the binary data file
after each step in the benchmarking process. If the benchmarking run completes
normally, all the intermediate files are removed, and only the final binary data file
will remain.

If the benchmarking run terminates before completing, the last complete binary
data file, and sometimes an incomplete binary data file will be in MPI_WORKDIR on
the node with rank 0. The incremental binary datafiles are named filename.number.

The lowest numbered file that is on the system will be the last complete binary
data file.

This enhancement allows the benchmarking run to be run in a job scheduler for a
fixed amount of time, and the "best effort" made to benchmark the cluster during
that time.

Single mpid per host
Platform MPI now consolidates its internal mpid process so that in normal runs,
only one mpid will be created per host. This can help to conserve system
resources. Previously, when ranks were launched cyclically across a set of hosts
(for example, $MPI_ROOT/bin/mpirun -hostlist hostA,hostB,hostC,hostD -np 16
...), Platform MPI would create a separate mpid process for each contiguous
block of ranks on a host, resulting, in this example, in four mpids on each of the
four hosts. With this feature, Platform MPI creates only one mpid per host in this
example.

Note that there are two expected exceptions to the mpid consolidation. In the
following cases, it is expected that Platform MPI launches multiple mpids:

Information about this release 33

1. When two IP addresses in the host list or appfile resolve to the same host (for
example, a multi-homed host).

2. When using an appfile and providing different environment variables to
different ranks.

Progression thread
Platform MPI contains a progression thread that can be enabled with the
-progtd[=options] argument, which accepts a comma-separated list of the following
options:

unbind

Unbind progression thread. By default, the progression thread inherits the
same binding as the rank that it is running under.

u<number>

Specific amount of time to usleep per advance. The default is 500.

ym0 | ym1 | ym2

Levels of sched_yield to occur inside the loop:
v ym0: Busy spin, no sched_yield in the loop.
v ym1: Medium spin, sched_yield each loop where no active requests are

seen.
v ym2: Lazy spin, sched_yield each loop

adv<number>

Only allow <number> advances per iteration. The default is unlimited.

If -progtd is used without options, the default is equivalent to -progtd=u500,ym1.

This default option will use a small amount of extra CPU cycles, but in some
applications, the guaranteed progression of messages is worth that cost.

New Infiniband/RoCE card selection
When a machine has multiple Infiniband cards or ports, Platform MPI can stripe
messages across the multiple connections. To allow easier selection of which cards
or ports to use, the MPI_IB_STRINGS environment variable can be set to a
comma-separated list of

string[:port]

where the string is the card name as identified by ibv_devinfo.

For example, string can be a card name such as mthca0 or mlx4_0, and the port is
a 1-based number such as 1 or 2.

The MPI_IB_STRINGS environment variable can also be set to one of several
keywords:

nonroce

Only use regular non-RoCE IB ports.

default

Use non-RoCE if available, but switch to roce if no regular IB ports exist.

34 Platform MPI: Release Notes for Linux

all

Use all available IB ports, both RoCE and non-RoCE.

roce

Only use RoCE ports.

v

Verbose, shows what cards or ports each rank decided to use.

Using the KNEM module
If the knem kernel module is installed on a machine, the -e MPI_1BCOPY=number-of-
bytes option can be used to specify a threshold above which knem is to be used to
transfer messages within a host. The lowest meaningful threshold is 1024. Below
that amount, shared memory is always used. The MPI_1BCOPY=1 value is a special
case meaning "2048", which is a suggested starting default.

By default, knem is not used to transfer any messages within a host.

Topology querying with -cpu_bind

Note:

-cpu_bind is not the preferred affinity solution for use with Platform MPI and is
provided for compatibility. Consider using the -aff and -affopt command line
options instead.

The PCMPI_TOPOLOGY_METHOD environment variable was introduced in
HP-MPI 2.2.5.1. This option was originally intended for large SMP machines (such
as HP Superdome). With new higher core count processors, you may need to be
aware of this environment variable again.

When the core count of a system is larger than 32, direct inspection of the
/sys/devices/system/node directory is used to gather topology information. Newer
versions of libnuma and numactl should make this unnecessary. However, for users
with an older or unknown version of libnuma, direct inspection of the system may
yield better results.

On jobs that run on heterogeneous clusters that include nodes with 32 cores or less
and nodes with more than 32 nodes, the PCMPI_TOPOLOGY_METHOD environment
variable should be set. This will force all nodes to use the same topology discovery
method, and will likely lead to more predictable CPU Affinity results for jobs
across nodes with differing core counts.

In general, the best advice is to force both the "new" and "old" method, and
determine which set of results is preferable for the specific application being used.
If that experiment cannot be done, the next best guidance is that the "old" method
with a new version of libnuma is more likely to be correct.

PCMPI_TOPOLOGY_METHOD=old | new

The cpu_bind option uses a number of different methods to determine the topology
layout and relative placement of the cores on a machine. The specific topology
discovery method can be selected using the PCMPI_TOPOLOGY_METHOD environment
variable.

Information about this release 35

The "old" method is used by default when the number of cores on the machine is
32 or fewer. The "new" method is used by default when the number of cores on
the machine is greater than 32.

Note:

The test for "old" versus "new" is based on the total number of cores on the
machine, and NOT the number of ranks on the machine or the number of cores
that are in use by the job.

The "old" method relies on the numa_node_to_cpus call found in the libnuma library.
If the libnuma library is not up to date on the hardware, it is possible that incorrect
information will be returned by that call.

The "new" method walks the /sys/devices/system/node directory and examines
the entries to determine the CPU to numa node topology of the machine. In general,
this method is slower and less portable than the "old" method, but seems to
produce more consistent results on newer hardware architectures. The "new"
method has been tested using RHEL 5.x and 6.x, on both AMD and Intel based
systems containing up to 64 cores.

-machinefile flag
This flag launches the same executable across multiple machines. This flag is
synonymous with -hostfile, and has the following usage:

mpirun ... -machinefile file_name ...

where file_name is a text file with machine names and optional rank counts
separated by spaces or new lines with the following format: host_name:number.

For example:
hostA:8
hostB:8
hostC:12
hostD:12

Shared memory usage optimization
Platform MPI features management of the shared memory that is used for both the
collectives and the communicator locks. This reduces the communicator memory
footprint.

RDMA buffer message alignment for better performance
Some newer types of servers are sensitive to memory alignment for RDMA
transfers. Platform MPI features memory optimization that aligns the RDMA
buffers for better performance.

RDMA buffer alignment
The alignment of the data being transferred can affect RDMA performance.
Platform MPI uses protocols that realign the data when possible for the best
performance.

36 Platform MPI: Release Notes for Linux

General memory alignment
To improve performance in general and to decrease the odds of user buffers being
unaligned, Platform MPI causes memory allocations to be aligned on 64-byte
boundaries by default.

Control the memory alignment by using the following option to define the
MPI_ALIGN_MEM environment variable:

-e MPI_ALIGN_MEM=n_bytes | 0

Aligns memory on the n_bytes boundaries. The nbytes value is always rounded
up to a power of two.

To disable memory alignment, specify MPI_ALIGN_MEM=0. This was the previous
behavior.

The default value is 64 bytes (the cache line size).

When using this option (which is on by default) to align general memory, the
realloc() call functions more slowly. If an application is negatively impacted by
this feature, disable this option for realloc() calls by using the following option to
define the MPI_REALLOC_MODE environment variable:

-e MPI_REALLOC_MODE=1 | 0

Mode 1 (MPI_REALLOC=1) makes realloc() calls aligned but a bit slower than they
would be otherwise. This is the default mode.

Mode 2 (MPI_REALLOC=0) makes the realloc() calls fast but potentially unaligned.

GPU-enabled systems and applications
Platform MPI features support and optimizations for GPU-enabled applications
and systems by using the following environment variables:
v MPI_1SIDED_MODE=2

If set, uses the slower TCP/commd path for one-sided calls while still using
InfiniBand for point-to-point messaging.
This is required for GPU-enabled systems and applications.

v MPI_RDMA_REPIN=1

Controls the MPI buffer optimization for RDMA messaging. If set, Platform MPI
checks if the buffer can be pinned for RDMA messaging. If the buffer cannot be
pinned (for example, for GPU usage), PMPI will use an RDMA protocol that will
not attempt to "repin" the MPI buffer.

GPU-Direct 1.0
For systems that have GPU-Direct installed, Platform MPI supports use of GPU
and RDMA pinned memory regions to share the same memory region. This has a
significant memory improvement for GPU applications.

Platform MPI only supports virtual addresses referring to memory allocations on
the host. It is up to the application to DMA messages from the GPU to the host
memory before passing to the MPI and after receiving from the MPI. This
limitation is resolved with the GPU-Direct 2.0 enhancements.

Information about this release 37

RDMA transfers that do not guarantee bit order
A large number of InfiniBand hardware guarantees bit order when using RDMA
message transfers. As newer hardware comes on the market using the same IBV
RDMA protocols, not all the new hardware guarantees bit order. This will cause
MPI messaging errors if the order is not guaranteed. The following environment
variable controls support for RDMA transfers that do not guarantee bit order:

MPI_RDMA_ORDERMODE=1 | 2

Specify MPI_RDMA_ORDERMODE=2 so MPI messages do not depend on guaranteed bit
order. This causes a 2-3% performance loss for message transfers.

Specify MPI_RDMA_ORDERMODE=1 to assume guaranteed bit order.

The default value is 1 (assumes guaranteed bit order).

KNEM kernel-memcopy modules
Platform MPI now supports KNEM kernel-memcopy modules for DMA memory
copies of shard memory messages. This can increase performance for some
applications for shared memory messages (ranks on the same node), but can
decrease performance for most other cases.

To enable support for KNEM, download and install the open source kernel from
http://runtime.bordeaux.inria.fr/knem, then use the following option to specify
the MPI_1BCOPY environment variable:

-e MPI_1BCOPY=1.

FCA 2.0 features
Platform MPI adds the following FCA 2.0 features to existing FCA 1.x
infrastructure:
v Ability for the FCA layer to handle up to MAX_INT-sized messages.
v Platform MPI supports the following FCA collectives on clusters greater than 16

nodes: Barrier, Bcast, Reduce, and Allreduce. Allgather and Allgatherv can be
enabled if desired (see the Known issues section for more details). For running on
clusters smaller than 16 nodes, force the FCA collectives by using the
-noa=fca:force option.

v New progression improvements added in FCA 2.0 to allow non-FCA messages
to progress, which may eliminate some deadlock cases in older FCA-enabled
jobs.

For more information on the existing FCA 1.x infrastructure, refer to the FCA
integration into libcoll and collective libraries section in these release notes.

uDAPL protocol selection
Platform MPI supports uDAPL protocol selection by using the following
environment variable:

MPI_HASIC_UDAPL=string

where string must match the name at the beginning of a line in the /etc/dat.conf
file. If the string matches a name in the dat-conf file, that protocol is used for

38 Platform MPI: Release Notes for Linux

http://runtime.bordeaux.inria.fr/knem

uDAPL communication. This option will override default selections, and and the
MPI_UDAPL_IFACE_INDEX and MPI_UDAPL_VERSION environment variables.

-cpu_bind and the NUMA library
-cpu_bind will use the NUMA library specified by the MPI_LIBNUMA environment
variable to determine the appropriate CPU affinity settings to use. In addition, if
libnuma.so is not found in LD_LIBRARY_PATH, libnuma.so.1 will also be checked.
This change is recommended for AMD Magna Cours processors.

Use single quotes for submissions to HPC scheduler
In previous versions, it was necessary to "double-quote" strings with spaces
because the HPC command line parser strips the first set of quotes. The latest
version of HPC no longer does this, which causes the double-quoted strings to
parse incorrectly. To correct this, Platform MPI now allows the use of single quotes
for strings with spaces.

To enable the automatic parser to use single quotes for strings with spaces, enable
the PCMPI_HPC_SINGLEQUOTE_ENV environment variable.

RDMA options for NUMA control
Added the rdma option for NUMA control.

This option controls where pre-pinned regions for RDMA protocol and small
messages is allocated. For more details, see the following section.

NUMA control
Platform MPI includes NUMA options using libnuma to control memory placement
policies for the ranks' main memory and the shared memory used in
communication. This feature requires the libnuma library to be installed on the
system. Any libnuma library already installed on the system can be used by
explicitly setting the MPI_LIBNUMA environment variable to the desired library.

The most detailed control of the NUMA options is available using the -numa option
on mpirun:

-numa=[shmem:setting[:parameters]][,mainmem:setting[:parameters]][,rdma:setting[:parameters]][,v]

or use the following to disable all libnuma usage:

-numa=none

The settings can also be controlled by setting MPI_NUMA_OPTIONS to any string that
-numa would accept.

Platform MPI supports specifying the NUMA policy indepedently for the
following:

Shared memory

The MPI shared memory use for communication between the ranks.

Main memory

The coarse granularity policy applied to the entire process.

RDMA messaging buffer

Information about this release 39

The pre-pinned regions for RDMA protocol and small messages.
v Use the shmem: option to specify the libnuma policy for the shared memory

communication buffers.
v Use mainmem: to specify the policy for the ranks' main memory.
v Use rdma: to control where pre-pinned regions for RDMA protocol and small

messages is allocated.

The -numa option is turned on by default (if libnuma version 2 is available) with
the default policy set to interleaved allocation for the shared memory, and local
allocation for the ranks’ RDMA memory and main memory. The default setting is
equivalent to -numa=shmem:interleaved,rdma:local,mainmem:local.

On some machines such as the SL390 with GPU, it is possible that the
-numa=rdma:nodes:0x1 option or possibly the more aggressive
-numa=rdma:nodes:0x1,mainmem:nodes:0x1 option will improve performance. The
mroe aggressive latter option also puts the entire main program on node 0, which
would only be advisable if the application is small enough to fit.

For each of the shmem:, mainmem:, and rdma: options, setting can be any of the
following:

local

Sets the memory to the libnuma local policy.

interleaved

Sets the memory to the libnuma interleaved policy, where the node mask
defaults to the whole machine, but can be controlled further with
additional options (as indicated by parameters).

nodes

Sets the memory to the libnuma node subset policy, where the node mask
representing the subset of nodes defaults to the whole machine, but can be
controlled further with additional options (as indicated by parameters).

For each of the shmem: and mainmem: options using the interleaved or nodes
settings, parameters represents the additional options that are used to specify the
node masks for these settings, and can be set to any of the following:

all

This represents all the nodes on the host.

job

Platform MPI queries the CPU affinity of all the ranks and determines the
associated nodes, and the resulting node mask represents the union of all
those nodes.

rank

Each rank is given a different node mask representing the nodes associated
with its CPU affinity.

hex_number (for example, 0x3)

Specify an explicit node mask.

hex_number1:hex_number2: ... (for example 0x1:0x2:0x1:0x2)

40 Platform MPI: Release Notes for Linux

Specify a list of node masks. The ranks each use a different mask from the
list, cycling through the masks in the list based on the relative order of the
ranks on the host.

Restriction:

NUMA control is not available on Windows and is only available on Linux if
libnuma version 2 is available.

The general purpose environment variable MPI_PRELAUNCH can also be used to
insert any utility in front of the rank at runtime.

For example,

$MPI_ROOT/bin/mpirun -e MPI_PRELAUNCH="numactl -i all" -np 2 ./pp.x

would be the equilavent to the following:

$MPI_ROOT/bin/mpirun -np 2 numactl -i all ./pp.x

However, the -numa option should cover most settings that numactl could provide.

Note:

Installing the Platform_MPI_Extras package is required to enable NUMA control
features. This installs the open source libnuma205.so library into the Platform MPI
$MPI_ROOT directory.

Collective algorithms
Platform MPI 9.1.2 includes additional collective algorithms added to the collective
library. The additional collective algorithms include the new binomial tree Scatter
and Gather algorithms.

TCP performance improvements
Platform MPI 9.1.2 has various performance improvements for point-to-point TCP
interconnects.

Tunable TCP large message protocols
Platform MPI 9.1.2 has a new environment variable (MPI_TCP_LSIZE) that allows
the alteration of long-message protocols for TCP messages:

The TCP protocol in Platform MPIsends short messages without waiting for the
receiver to arrive while longer messages involve more coordination between the
sender and receiver to transfer a message. By default, the transition from short- to
long-message protocol occurs at 16384 bytes, but this is configurable using the
MPI_TCP_LSIZE setting:

MPI_TCP_LSIZE=bytes

The default value is 16384. Many applications will see a higher performance with
larger values such as 262144 because of the lower overhead that comes from not
requiring the sender and receiver to coordinate with each other. This can involve
slightly more buffering overhead when an application receives messages in a

Information about this release 41

different order than they were sent but this overhead is usually negligible
compared to the extra header/acknowledgement synchronization overhead
involved in the long message protocol.

The main disadvantage to larger settings it the increased potential for TCP
flooding if many ranks send to the same rank at about the same time. The larger
the quantity of data sent in this manner the worse it is for the network. The
long-message protocol usually reduces the problem by only sending headers and
staggering the message bodies. However, there are cases where the opposite is
true: if a rank sends to all its peers using a long-message protocol it can be flooded
with acknowledgements where the same sequence of messages using
short-message protocol would have caused no flooding.

In general, applications whose message patterns are not prone to TCP flooding will
be faster with larger MPI_TCP_LSIZE settings, while applications that are prone to
flooding may need to be examined and experimented with to determine the best
overall setting.

Support for the LSF_BIND_JOB environment variable in
Platform LSF

Platform MPI 9.1.2 has increased support for Platform LSF jobs with integrating
support for the LSF_BIND_JOB environment variable.

Since Platform LSF and Platform MPI both use CPU affinity, these features are
integrated. Platform MPI 9.1.2 reads the LSF_BIND_JOB environment variable and
translates it to the equivalent -aff=protocol flag.

LSF_BIND_JOB is translated as follows:
v BALANCE = -aff=automatic:bandwidth

v PACK = -aff=automatic:latency

v ANY = -aff=manual:0x1:0x2:0x4:0x8:... with MPI_AFF_PERHOST=1, which makes
it cycle through that manual list on a per-host basis (host local rank_ID) rather
than by global rank ID.

v USER uses LSB_USER_BIND_JOB settings, which can be Y, N, NONE, BALANCE, PACK, or
ANY. Note that Y is mapped to NONE and N is mapped to ANY.

v USER_CPU_LIST binds all ranks to the mask represented by
LSB_USER_BIND_CPU_LIST formatted as #,#,#-#,..., that is, a comma-separated list
of numbers and number-ranges, each of which represents a core ID.

Support for the bkill command in Platform LSF
Platform MPI 9.1.2 has increased support for Platform LSF jobs with the use of
bkill for signal propagation when using blaunch to start ranks in a Platform LSF
job.

Platform MPI automatically enables bkill usage if LSF_JOBID exists and any of the
following conditions are true:
v The WLM selection is WLM_LSF (that is, the same circumstance where

MPI_REMSH is currently set to blaunch).
v MPI_REMSH is set to either of the following:

– blaunch

– blaunch arg arg arg

– /path/to/blaunch

42 Platform MPI: Release Notes for Linux

– /path/to/blaunch arg arg arg

v MPI_USE_BKILL is set to 1.

Platform MPI will force the bkill mode to not be used if either of the following
conditions are true:
v LSF_JOBID is not set.
v MPI_USE_BKILL is set to 1.

FCA integration into libcoll and collective libraries
Fabric Collective Accelerator (FCA) algorithms for Platform MPI collectives are
integrated into the Platform MPI Collective library for 9.1.2.

The FCA collectives supported in Platform MPI 9.1.2 are MPI_Bcast, MPI_Barrier,
MPI_Reduce, and MPI_Allreduce.

When the FCA algorithms are enabled, Platform MPI uses the Mellanox FCA
algorithm accelerators provided by Mellanox InfiniBand switches. Contact
Mellanox for information on required software and hardware to support FCA.By
default, Platform MPI will try to detect FCA hardware and use FCA algorithms if
available, when profitable. No additional flags are required at runtime to enable
FCA; however, given the variety of clusters and environments, additional tuning
may be required to optimize FCA performance.

Platform MPI provides the following environment variables and mpirun flags to
alter FCA at runtime.

mpirun flags for Network Optimzied Algorithms (-noa):

-noa=[none | fca | FCA][:force][:verbose[=x]]

By default, FCA is used if available and profitable.

The -noa options are as follows:

none

Disables any noa optimizations available and does not use them if they
exist.

fca

Enables the FCA-specific collective algorithms. These algorithms are used if
profitiable. An error will occur if FCA is not available on a node in the
MPI run.

FCA

Enables the FCA-specific collective algorithms, and forces the use of FCA
for every use of a collective algorithm if a FCA options are available. An
error will occur if FCA is not available on a node in the MPI run. This run
will not use the most profitable collective algorithm, but does guarentee
that FCA algorithms are used in all cases. This is the same as
-noa=fca:force.

:force

Forces the use of the noa algorithms even if not profitable.

:verbose

Information about this release 43

Enables verbose output levels. Verbose level 1 is the least verbose while
level 9 is the most verbose. Any level above 1 will enable Mellanox FCA
logging at the given level.

Environment variables:

PCMPI_FCA_THRESHOLD

Indicates the minimum number of nodes required in the communicator to
enable FCA algorithm to run. To enable FCA algorithms sooner, use a
lower PCMPI_FCA_THRESHOLD.

-noa=FCA is equivalent to -noa=fca and setting PCMPI_FCA_THRESHOLD=2.

PCMPI_FCA_LEN_MAX_TIMES

allows chunking of messages by 132 bytes to enable larger messages to use
FCA algorithms. The default value is 1.

To allow chunking messages up to 264, set PCMPI_FCA_LEN_MAX_TIMES=2.

-rank0 flag
This flag will take the first host of a job allocation and will schedule the first rank
(rank 0) on this host. No other ranks will be allocated to that host. Job allocation
can come from a scheduler allocation, -hostlist or -hostfile. The syntax for this
flag is as follows:

mpirun ... -lsf -np 16 -rank0 app.exe

The actual number of ranks for the job may not match the -np # indicated in the
mpirun command. The first host may allocate additional cores/slots on the first
host, but because this feature will only start one rank per core/solt on the first
host, the total ranks for the job will be short the "unallocated first host cores/slot"
ranks.

For example, on a cluster with eight cores per host and assuming hosts are fully
allocated, the following run will have 57 ranks. The first host will count eight
towards the allocated 64 cores, but only one rank will be started for that "group of
eight" ranks:

mpirun -lsf -np 64 -rank0 app.exe

The following example will start a job with 25 ranks, one rank on node1 and eight
ranks on node2, node3, and node4:

mpirun -hostlist node1:8,node2:8,node3:8,node4:8 -rank0 app.exe

This flag is ignored if used with an appfile (-f appfile).

RDMA Coalescing improvements
Platform MPI 9.1.2 includes improvements to the RDMA coalescing feature. When
using the MPI_RDMA_COALESCING=0 flag, the MPI library would wait for the lower
level Infiniband to send an IB message before returning. For applications that
perform a large amount of computations before making any MPI calls,
performance can be affected as some ranks may be waiting on a coalesced
message. This will guarentee messages are sent before returning to the application.

44 Platform MPI: Release Notes for Linux

Platform MPI 9.1.2 also added a progression thread option. Set MPI_USE_PROGTD=1
to enable a progression thread, which will also allow coalesced messages to be sent
without delay if the application has large computation sections before calling MPI
code.

Both these environment variables will allow lower level IB messages to progress if
the application has a large computation section. Enabling these by default will
affect performance, so enabling by default is not recommended if your
appplication does not have long spans where MPI calls are not made.

On-demand connections
Platform MPI 9.1.2 includes the ability to enable on-demand connections for IBV.
To do this, set the environment variable PCMP_ONDEMAND_CONN=1. This will enable
IBV connections between two ranks in an MPI run only if the ranks communicate
with each other. If two ranks do not send messages to each other, the IBV
connection is never established, saving the resources necessary to connect these
ranks.

If an application does not use collectives, and not all the ranks send messages to
other ranks, this could enable performance gains in startup, teardown and resource
usage.

On-demand connections are supported for -rdma and -srq modes.

WLM scheduler functionality
Platform MPI 9.1.2 supports automatic scheduler submission for LSF and
Windows HPCS. Current -hpcoptionname options (such as -hpcout) are deprecated
and will be removed in future releases. These options are now supported as
-wlmoptionname options and can be used for any supported schedulers. For
example, -hpcout is now -wlmout. Currently, Platform MPI supports two
schedulers in this fashion: LSF and Windows HPC.

Platform MPI continues to support legacy methods of scheduling such as LSF,
srun, or PAM.

For LSF, support is included on both Windows and Linux platforms, and options
should be consistent between the two.

To schedule and execute a job on a scheduler, include one of the scheduler options:
v -hpc: Include the -hpc option to use the Windows HPC Job Scheduler.

This is used to automatically submit the job to HPCS scheduler and for HPCS
Platform MPI jobs on the mpirun command line. This imples the use of reading
the available hosts in the HPC job, and indicates how to start remote tasks using
the scheduler.
This is only supported on Windows HPC Server 2008.

v -lsf: Include the -lsf option to use the LSF scheduler.
This is used to automatically submit the job to LSF, and on the LSF job mpirun
commmand line. This flag implies the use of the -lsb_mcpu_hosts option and the
use of blaunch to start remote processes.

These scheduler options are used for the MPI job command to set
scheduler-specific functionality and for automatic job submission.

Information about this release 45

By including the scheduler options on the mpirun command line, this will enable
certain scheduler functionality within mpirun to help construct the correct MPI job,
and to help launch remote processes.

When using the -lsf option, this implies the use of the -lsb_mcpi_hosts option
and also implies the use of -e MPI_REMSH=blaunch.

When using -hpc, this implies the use of reading the available hosts in the HPC
job, and indicates how to start remote tasks via the scheduler.

By using the scheduler options, Platform MPI allows the use of the same mpirun
command for all launch methods, with the only difference being the scheduler
option used to indicate how to launch and create the MPI job. For more
information on submitting WLM scheduler jobs, refer to “Submitting WLM
scheduler jobs” on page 50.

System Check
The Platform MPI 9.1.2 library includes a lightweight System Check API that does
not require a separate license to use. This feature was previously available only on
Linux, and has been added to Windows for the Platform MPI 9.1.2 release. The
System Check functionality allows you to test the basic installation and setup of
Platform MPI without the prerequisite of a license. An example of how this API
can be used can be found at $MPI_ROOT/help/system_check.c.

With System Check, you can list any valid option on the mpirun command line.
The PCMPI_SYSTEM_CHECK API cannot be used if MPI_Init has already been called,
and the API will call MPI_Finalize before returning. During the system check, the
following tests are run:
1. hello_world

2. ping_pong_ring

These tests are similar to the code found in $MPI_ROOT/help/hello_world.c and
$MPI_ROOT/help/ping_pong_ring.c. The ping_pong_ring test in system_check.c
defaults to a message size of 4096 bytes. To specify an alternate message size, use
an optional argument to the system check application. The PCMPI_SYSTEM_CHECK
environment variable can be set to run a single test. Valid values of
PCMPI_SYSTEM_CHECK are as follows:
v all: Runs both tests. This is the default value.
v hw: Runs the hello_world test.
v ppr: Runs the ping_pong_ring test.

As an alternate invocation mechanism, when the $PCMPI_SYSTEM_CHECK variable is
set during an application run, that application runs normally until MPI_Init is
called. Before returning from MPI_Init, the application runs the system check tests.
When the System Check tests are complete, the application exits. This allows the
normal application launch procedure to be used during the test, including any job
schedulers, wrapper scripts, and local environment settings.

System Check benchmarking option
System Check can now run an optional benchmark of selected internal collective
algorithms. This benchmarking allows the selection of internal collective algorithms
during the actual application runtime to be tailored to the specific runtime cluster
environment.

46 Platform MPI: Release Notes for Linux

The benchmarking environment should be as close as practical to the application
runtime environment, including the total number of ranks, rank-to-node mapping,
CPU binding, RDMA memory and buffer options, interconnect, and other mpirun
options. If two applications use different runtime environments, you need to run
separate benchmarking tests for each application.

The time required to complete a benchmark varies significantly with the runtime
options, total number of ranks, and interconnect. By default, the benchmark runs
over 20 tests, and each test prints a progress message to stdout when it is
complete. The benchmarking test should be run in a way that mimics the typical
Platform MPI job, including rank count, mpirun options, and environment
variables.

For clusters that include FCA hardware, it is recommended that the benchmarking
run be done with up to 32 nodes. Beyond 32 nodes, there is limited benefit to
additional testing. For jobs with larger rank counts, it is recommended that the
rank count during benchmarking be limited to 512 with IBV/IBAL, 256 with TCP
over IPoIB or 10G, and 128 with TCP over GigE. Above those rank counts, there is
no benefit for better algorithm selection and the time for the benchmarking tests is
significantly increased. The benchmarking tests can be run at larger rank counts;
however, the benchmarking tests will automatically stop at 4092 ranks.

To run the System Check benchmark, compile the System Check example:

$MPI_ROOT/bin/mpicc -o syscheck.x $MPI_ROOT/help/system_check.c

To create a benchmarking data file, set the $PCMPI_SYSTEM_CHECK environment
variable to "BM" (benchmark). The default output file name is
pmpi820_coll_selection.dat, and will be written into the $MPI_WORKDIR directory.
The default output file name can be specified with the $MPI_COLL_OUTPUT_FILE
environment variable by setting it to the desired output file name (relative or
absolute path). Alternatively, the output file name can be specified as an argument
to the system_check.c program:
$MPI_ROOT/bin/mpirun -e PCMPI_SYSTEM_CHECK=BM \
[other_options] ./syscheck.x [-o output_file]

To use a benchmarking file in an application run, set the $PCMPI_COLL_BIN_FILE
environment variable to the filename (relative or absolute path) of the
benchmarking file. The file will need to be accessible to all the ranks in the job,
and can be on a shared file system or local to each node. The file must be the same
for all ranks.
$MPI_ROOT/bin/mpirun -e PCMPI_COLL_BIN_FILE=file_path \
[other_options] ./a.out

Tuning the message checking on MPI_ANY_SOURCE
If an application spends a significant amount of time in MPI_Test or MPI_Iprobe
checking for messages from MPI_ANY_SOURCE, the performance can be affected by
how aggressively MPI looks for messages at each call. If the number of calls is
much larger than the number of messages being received, less aggressive checking
will often improve performance. This can be tuned using the following runtime
option:

-e MPI_TEST_COUNT=integer

Information about this release 47

The value is the number of possible sources that will be checked for a waiting
message on each call to MPI_Test or MPI_Iprobe. This option can have a value from
1 up to the number of ranks (larger values are truncated). The default value is 1
for Infiniband and 8 for TCP.

Dynamic library interface
Platform MPI 9.1.2 allows runtime selection of which MPI library interface to use
(regular, multi-threaded, or diagnostic) as well as runtime access to multiple layers
of PMPI interface wrapper libraries as long as they are shared libraries.

The main MPI libraries for Linux are as follows:
v regular: libmpi.so.1
v multi-threaded: libmtmpi.so.1
v diagnostic: libdmpi.so.1

In previous versions of Platform MPI, an application had to link against the
desired library and any debugging or diagnostic work involving switching libraries
would require re-linking. A new option (-entry) allows dynamic selection between
the above libraries and also includes a copy of the open source MPE logging
library from Argonne National Labs, version mpe2-1.1.1, which uses the PMPI
interface to provide graphical profiles of MPI traffic for performance analysis.

The syntax for the new mpirun option is as follows:

-entry=[manual:][verbose:] list

where list is a comma-separated list of the following items:
v reg (refers to libmpi.so.1)
v mtlib (refers to libmtmpi.so.1)
v dlib (refers to libdmpi.so.1)
v mtdlib (refers to dlib:mtlib)
v mpio (refers to libmpio.so.1)
v mpe (means libmpe.so)

If you precede the list with the verbose: mode, a few informational messages are
printed so you can see what libraries are being dlopened.

If you precede the list with the manual: mode, the given library list is used exactly
as specified.

This option is best explained by first discussing the traditional non-dynamic
interface. An MPI application contains calls to functions like MPI_Send and
MPI_File_open, and is linked against the MPI libraries which define these symbols,
in this case, libmpio.so.1 and libmpi.so.1. These libraries define both the MPI
entrypoints (like MPI_Send) and a PMPI interface (like PMPI_Send) which is a
secondary interface into the same function. In this model a user can write a set of
MPI function wrappers where a new library libmpiwrappers.so defines MPI_Send
and calls PMPI_Send, and if the application is relinked against libmpiwrappers.so
along with libmpio.so.1 and libmpi.so.1, the application's calls into MPI_Send will
go into libmpiwrappers.so and then into libmpi.so.1 for the underlying
PMPI_Send.

48 Platform MPI: Release Notes for Linux

The traditional model requires the application to be relinked to access the
wrappers, and also does not allow layering of multiple interface wrappers
intercepting the same calls. The new -entry option allows both runtime control
over the MPI/PMPI call sequence without relinking and the ability to layer
numerous wrapper libraries if desired.

The -entry option specifies a list of shared libraries, always ending with
libmpio.so.1 and libmpi.so.1. A call from the application into a function like
MPI_Send will be directed into the first library in the list which defines that
function. When a library in the list makes a call into another MPI_* function that
call is searched for in that library and down, and when a library in the list makes a
call into PMPI_* that call is searched for strictly below the current library in the list.
That way the libraries can be layered, each defining a set of MPI_* entrypoints and
calling into a combination of MPI_* and PMPI_* routines.

When using -entry without the manual: mode, libmpio.so.1 and libmpi.so.1 will
be added to the library list automatically. In manual mode, the complete library list
must be provided. It is recommended that any higher level libraries like MPE or
wrappers written by users occur at the start of the list, and the lower-level
Platform-MPI libraries occur at the end of the list (libdmpi, then libmpio, then
libmpi).

Example 1:

The traditional method to use the Platform-MPI diagnostic library is to relink the
application against libdmpi.so.1 so that a call into MPI_Send would resolve to
MPI_Send library libdmpi.so.1 which would call PMPI_Send which would resolve to
PMPI_Send in libmpi.so.1. The new method requires no relink, simply the runtime
option -entry=dlib (which is equivalent to -entry=dlib,mpio,reg because those
base libraries are added automatically when manual mode is not used). The
resulting call sequence when the app calls MPI_Send is the same: the app calls
MPI_Send which goes into MPI_Send in libdmpi.so.1 first then when that library
calls PMPI_Send, that call is directed into the MPI_Send call in libmpi.so.1
(libmpio.so.1 was skipped over because that library doesn't define an MPI_Send).

Example 2:

The traditional method to use the MPE logging wrappers from Argonne National
Labs is to relink against liblmpe.so and a few other MPE components. With the
new method the runtime option -entry=mpe has the same effect (our build actually
combined those MPE components into a single libmpe.so but functionally the
behavior is the same).

For example,

-entry=verbose:mpe

-entry=manual:mpe,mpio,reg

-entry=dlib

Performance notes: If the -entry option is used, some overhead is involved in
providing the above flexibility. Although the extra function call overhead involved
is modest it could be visible in applications which call tight loops of MPI_Test or
MPI_Iprobe for example. If -entry is not specified on the mpirun command line the
dynamic interface described above is not active and has no effect on performance.

Information about this release 49

Limitations: This option is currently only available on Linux. It is also not
compatible with the mpich compatibility modes.

Aggressive RDMA progression
Platform MPI on Infiniband has a feature called "message coalescing" which
improves the message rate of streaming applications (applications which send
many small messages quickly from rank-A to rank-B with little, if any traffic in the
opposite direction). This feature is turned on by default (MPI_RDMA_COALESCING=1).

A side-effect of message coalescing is that sometimes in applications like the
following, the message from rank-A to rank-B might not be available until rank-A
re-enters MPI after the computation:

rank-A: MPI_Send to rank-B ; long computation; more MPI calls

rank-B: MPI_Recv from rank-A

This is generally undesirable especially since at the higher level, rank-A believes it
has finished its message. So the following option is available to disable message
coalescing and turn on more aggressive message progression:

-e MPI_RDMA_COALESCING=0

Submitting WLM scheduler jobs
To schedule and execute a job on a WLM scheduler, include one of the following
scheduler options:
v -hpc: Include the -hpc option to use the Windows HPC Job Scheduler.

This is used to automatically submit the job to HPCS scheduler and for HPCS
Platform MPI jobs on the mpirun command line. This imples the use of reading
the available hosts in the HPC job, and indicates how to start remote tasks using
the scheduler.
This is only supported on Windows HPC Server 2008.

v -lsf: Include the -lsf option to use the LSF scheduler.
This is used to automatically submit the job to LSF, and on the LSF job mpirun
commmand line. This flag implies the use of the -lsb_mcpu_hosts option and the
use of blaunch to start remote processes.

These scheduler options are used for the MPI job command to set
scheduler-specific functionality and for automatic job submission. By including
these options on the mpirun command line, this will enable certain scheduler
functionality within mpirun to help construct the correct MPI job, and to help
launch remote processes. The scheduler options also allow you to use the same
mpirun command for all launch methods, with the scheduler option being the only
differentiator to indicate how to launch and create the MPI job.

To allow you to use a single mpirun command for different schedulers, Platform
MPI supports automatic job submission. For LSF and HPC, mpirun can create and
submit the scheduler job for you. You can include additional scheduler parameters
by using the -wlm parameters.

To submit the job to the scheduler, include the scheduler flag, and if the mpirun
command is not running in a scheduled job, it will create the proper scheduler
command and submit itself as a scheduled job.

50 Platform MPI: Release Notes for Linux

For example, "mpirun -prot -np 16 -lsf rank" will submit a job requesting 16
slots to the LSF scheduler. No additional work is necessary.

To change this command to a different scheduler (such as HPC), all you need to do
is change the scheduler option.

For example, change -lsf to -hpc as follows: "mpirun -prot -np 16 -hpc rank"

To include additional scheduler options, use the appropriate -wlm option. Note that
there are more WLM options than each scheduler supports. If you specify a WLM
option that the scheduler does not support, the command silently ignores the
option and will still create the job. This allows you to include a wide variety of
options for all WLM-supported schedulers and not have to alter your command
line command except for the scheduler option.

WLM support includes the following options:
v -np number_of_ranks

Specifies the number of ranks to execute and the number of "units" to request
for the job from the scheduler. The specific "units" will vary depending on the
scheduler (such as slots for LSF or nodes/cores/sockets for HPC).

v -wlmblock

Automatically schedules block ranks for HPC job size.
v -wlmcyclic

Automatically schedules cyclic ranks for HPC job size.
v -wlmwait

Waits until the job is finished before returning to the command prompt. For LSF,
this implies the bsub -I command.

v -wlmcluster cluster_name

Schedules jobs on the specified HPC cluster.
v -wlmout file_name

Uses the specified file for the job stdout file location.
v -wlmerr file_name

Uses the specified file for the job stderr file location.
v -wlmin file_name

Uses the specified file for the job stdin file location.
v -wlmproject project_name

Assigns the specified project name to the scheduled job.
v -wlmname job_name

Uses the specified job name to the scheduled job.
v -wlmsave

Configures the scheduled job to the scheduler without submitting the job.
v -wlmjobtemplate job_template

Assigns the specified job template to the scheduled job.
v -wlmnodegroups node_group [,nodegroup2 ...]

Assigns one or more specified node groups to the scheduled job.
v -wlmpriority lowest | belowNormal | normal | aboveNormal | Highest

Assigns one or more specified node groups to the scheduled job.
v -wlmunit core | socket | node

Information about this release 51

Schedules ranks to the specified job resource unit type.
v -wlmmaxcores units

Sets the maximum number of units that can be scheduled for the scheduled job.
v -wlmmincores units

Sets the minimum number of units that can be scheduled for the scheduled job.
v -wlmmaxmemory memsize

Sets the maximum memory size for the compute nodes for the job. The specific
memory unit is defined by each scheduler. For example, HPC defines the
memory size in MB.

v -wlmminmemory memsize

Sets the minimum memory size for the compute nodes for the job. The specific
memory unit is defined by each scheduler. For example, HPC defines the
memory size in MB.

v -wlmtimelimit time

Sets a time limit for the scheduled job. The specific unit of time is defined by
each scheduler. For example, if the normal time limit for the specified scheduler
is minutes, this specified time limit will also be in minutes.

WLM parameters are used for automatic job submission only. If used on an mpirun
command within a job, the WLM parameters are ignored.

For example,
v To start an MPI job using 16 cores on an HPC sheduler:

mpirun -hpc -prot -np 16 rank

Use the same command to start an MPI job using 16 slots on an LSF scheduler,
but using the -lsf option:
mpirun -lsf -prot -np 16 rank

v To include an output file path and have the ranks cyclicly scheduled on HPC or
LSF:
mpirun -hpc -prot -np 16 -wlmout out.txt -wlmcyclic rank

mpirun -lsf -prot -np 16 -wlmout out.txt -wlmcyclic rank

Platform MPI will construct the proper scheduler commands and submit the job to
the scheduler. This also extends to other forms of creating node lists. Automatic
submission to schedules supports the use of -hostlist, -hostfile, and -f appfile.

For example, if you have the following command without using a scheduler:

mpirun -hostlist node1:2,node2:2,node3:3 -prot rank

Platform MPI will launch ranks 0/1 on node1, ranks 2/3 on node2, and ranks
3/4/5 on node3. The command starts remote processes using ssh for Linux and
the Platform MPI Remote Launch Service for Windows.

If you wish to use the same command with a scheduler, all you need to do is add
a scheduler option to the command and you can expect the same results:

mpirun -lsf -hostlist node1:2,node2:2,node3:3 -prot rank

This command will schedule an LSF job and request nodes node1, node2, and
node3. When the job executes, it will launch ranks 0/1 on node1, ranks 2/3 on

52 Platform MPI: Release Notes for Linux

node2, and ranks 3/4/5 on node3. If the scheduler does not have access to
compute nodes node1, node2, or node3, the submission will fail.

The same is done for -hostlist and -f appfile. For -hostlist, Platform MPI reads
the hosts from a file and Platform MPI will request the specific resources from the
host file. For -f appfile, Platform MPI reads the app file, builds a host list from the
app file, and requests these resources for the job.

Although you cannot use the -np number option with the -f appfile option, you
can use the -np number option with -hostlist and -hostfile. When used in
combination, the resources are defined by -hostlist and -hostfile. However, the
ranks started are defined by -np number. If there are more hosts than number, the
job will be undersubscribed.

For example,

mpirun -lsf -hostlist node1:4,node2:4 rank

Without -np number, six ranks are started: ranks 0 to 3 on node1, and ranks 4 to 7
on node2.

mpirun -lsf -hostlist node1:4,node2:4 -np 5 rank

With -np 5 present, five ranks are started in a block fashion: ranks 0 to 3 on node1,
and rank 4 on node2.

If the ranks are started by -np number and there are fewer hosts than number, the
job will be oversubscribed.

For example,

mpirun -lsf -hostlist node1:4,node2:4 -np 12 rank

With -np 12 present, 12 ranks are started: ranks 0 to 3 on node1, and ranks 4 to 7
on node2. After this, it will wrap around and start from the beginning again,
therefore, it will start ranks 8 to 11 on node1. This wraparound functionality is
similar to how -hostlist currently operates.

If you want to run the ranks cyclicly, you can accomplish this in the following two
ways:
v # mpirun -lsf -hostlist node1:4,node2:4 -wlmcyclic rank

This command will schedule ranks 0, 2, 4, and 6 on node1 and ranks 2, 3, 5, and
7 on node2.

v # mpirun -lsf -hostlist node1,node2 -np 8 rank

This command will accomplish the same goal, but by wrapping around the
resource list when block allocating.

There are many options when scheduling jobs; however, automatic job submission
should schedule jobs in the same fashion as non-scheduler jobs when using
-hostlist, -hostfile, and -f appfile. This method of scheduling may not be the
best way to utilize scheduler resources, but it is an efficient way to schedule
specific resources when needed.

The recommended method is still to let the scheduler select resources and to keep
it simple by using a scheduler option and -np number, for example:

Information about this release 53

mpirun -np 48 -lsf rank

Output files

When submitting jobs using automatic submission, if you do not specify an output
file using -wlmout, the command assigns one using the rank base file name with the
job ID appended and an .out extension. The command uses the same file name
convention for error files, but with an .err extension. For example, if you use
"mpirun -np 48 -lsf rank" , the results are sent to rank-jobid.out and stderr
output is sent to rank-jobid.err

Listing environment variables
Use the -envlist option to list environment variables that are propagated to all
MPI ranks from the existing environment.

-envlist env1[,env2,...]

For example,
export EXAMPLE_ENV1=value1
export EXAMPLE_ENV2=value2
mpirun ... -envlist EXAMPLE_ENV1,EXAMPLE_ENV2 ... rank

The three previous commands are equivalent to the following command:
mpirun ... -e EXAMPLE_ENV1=value1 -e EXAMPLE_ENV2=value2 ... rank

This allows the use of "short hand" to propagate existing variables in the current
shell environment to the ranks.

Installing Platform MPI
Platform MPI is packaged using InstallAnywhere to provide a common installer
for both Linux and Windows platforms. The installers are 32-bit executables
bundled with IBM's 32-bit JRE, and are run as follows:
v Linux: ./platform_mpi-09.1.2.0r.x64.bin (run as root)
v Windows: platform_mpi-09.1.2.0-rc8.x64.exe (run as a user with

Administrator privileges)

For more information on the command line options supported by the installer, run
the installer with the single argument --help.

Installer modes

The installer provides the following installation modes to suit different
requirements:

Graphical user interface (GUI)
The GUI-based installation is used by default (or by explicitly specifying
the -i swing option) when running the installer.

Before running the installer in Linux, you must ensure that your DISPLAY
environment is set up correctly.

Console
The console or text-based installation behaves the same as the GUI-based
installer, but is run in text-only mode. Use the console installer by
specifying the -i console option when running the installer.

54 Platform MPI: Release Notes for Linux

Silent Install in silent mode if you wish to use all of the defaults and to accept
the license agreement ahead of time at command invoation time. Use the
installer in silent mode by specifying the -i silent option when running
the installer.

Installation sets

The Linux installer uses a single installation set and installs all of the files at every
installation.

The Windows installer has different installation sets based on how the Platform
MPI service is run:

Service mode (default)
In service mode, Platform MPI installs its service to run at boot time. This
service is used at launch time to launch MPI ranks. Selecting this mode
will also prompt for port information.

Service only
Use this installation set if you already installed Platform MPI onto a shared
location but need to install the service on each node of a cluster to launch
MPI ranks.

HPC This installs Platform MPI without installing the service. This is useful for
Windows HPC, which uses Windows HPC to launch MPI ranks.

Using a response file for unattended installations with
non-default options

If you would like to install Platform MPI with non-default options (such as a
non-default location) on many nodes, run the installer on one node and gather the
responses of the installer to use as input to the installer for all of the other nodes.
To do this, the installer supports generating a response file.

To generate a response file on the first node, specify -r response_file with either
-i "console" or -i "swing" options as arguments to the installer. The installer
recognizes that there are no response files in the specified location and will create a
new file.

After completing the installation and generating a response file, use the same -r
response_file option with -i "silent" as arguments to the installer. The installer
recognizes that a response file already exists and will use that as input for the
installation. This provides a mechanism for you to specify non-default arguments
to the installer across many installations.

Uninstalling Platform MPI

To uninstall Platform MPI, run the installer in the following location:
v Linux: $MPI_ROOT/_IBM_PlatformMPI_installation/Change\ IBM_PlatformMPI\

Installation

where $MPI_ROOT is the top-level installation directory (/opt/ibm/platform_mpi/
by default).

v Windows: "%MPI_ROOT%_IBM_PlatformMPI_installation\Change
IBM_PlatformMPI Installation"

where %MPI_ROOT% is the top-level installation directory (C:\Program
Files(x86)\IBM\Platform-MPI\ by default).

Information about this release 55

The installer remembers which installation mode was used (GUI, Console, or
Silent) and uses the same mode to uninstall Platform MPI. To explicitly specify a
mode, use the -i option (-i "swing" | "console" | "silent").

Known issues

For more details on known issues with the installer, refer to “Installer GUI mode
on Redhat 6.x or Suse 11.x” and “Installer might not detect previous versions when
installing to the same location.”

Known issues
Event-based progression (-nospin) requires -e MPI_TCP_POLL=1
to be set

When specifying -nospin to use event-based progression, you must also specify -e
MPI_TCP_POLL=1. This requirement will be removed in a future version.

Installer GUI mode on Redhat 6.x or Suse 11.x

The GUI mode may not work on Redhat 6.x or Suse 11.x. These distributions are
missing the following required 32-bit compatibility packages:
v xulrunner.i686

v libXp*.i686

v libXt*.i686

The installer will detect the missing packages and fall back to the console installer.

If you prefer to use the GUI installer, install the above packages using the package
manager for your distribution. For example:
sudo yum install xulrunner.i686
sudo yum install libXp*.i686
sudo yum install libXt*.i686

Installer might not detect previous versions when installing to
the same location

When upgrading from a previous version of Platform MPI in the same location,
the installer may not detect the old version. When installing Platform MPI to the
same location as the old version, you must first uninstall the old version before
installing the new version.

Pinning shared memory and lazy deregistration

Applications that allocate and release memory using mechanisms other than
munmap or use of the malloc library must either turn off the lazy deregistration
features (using -ndd on the mpirun command line) or invoke a Platform MPI
callback function whenever memory is released. For more details, refer to
“Alternate lazy deregistration” on page 8.

MPI_Status field shows 0 bytes received when using IBV-to-TCP
failover

When using the IBV-to-TCP failover feature (-e PCMPI_IBV2TCP_FAILOVER=1), there
is a known issue in which the MPI_Status field for message length of a restarted

56 Platform MPI: Release Notes for Linux

MPI_Recv call may show 0 bytes received instead of the actual amount of data
received.. If an application does not use the MPI_Status field on MPI_Recv calls, or
does not use long messages (as defined by MPI_RDMA_MSGSIZE), this will not impact
the application.

IBV-to-TCP failover is not supported with -1sided. IBV-to-TCP failover only
supports the default setting of MPI_RDMA_MSGSIZE, therefore, do not modify
MPI_RDMA_MSGSIZE when using PCMPI_IBV2TCP_FAILOVER.

High availability mode does not support certain collective
operations

The use of the high availability mode (-ha[:options]) forces the use of particular
collective operations that are adapted to comply with the requirements of running
in high availability mode. Therefore, selecting specific collective operations has no
affect when running in this mode. For example, selecting a reduce operation that
ensures a repeatable order of operations (-e MPI_COLL_FORCE_ALLREDUCE=10) has no
affect and will be silently ignored.

System benchmarking tools require the single-threaded library

The System Check example application ($MPI_ROOT/help/system_check.c) can only
be compiled and used with the single-threaded Platform MPI library. Using the
System Check application with the multi-threaded library will produce the
following error message and the job will exit early:

syschk/tools requested but not available in this mode.

This restriction applies to any use of the multi-threaded library. That is, both the
compile time option -lmtmpi and the run time option -entry=mtlib will trigger the
error message.

Similarly, the mpitool utility ($MPI_ROOT/bin/mpitool) can only be used with the
single-threaded Platform MPI library.

To work around this restriction, use the single-threaded library with the System
Check example application or mpitool utility.

New MPI 3.0 non-blocking collectives no longer supported

New MPI 3.0 non-blocking collectives are no longer supported due to a hang or
mismatched traffic. Support for these collectives will be restored in a future release.

MPI_ANY_SOURCE requests using -ha

Using -ha, MPI_ANY_SOURCE requests that return MPI_ERR_PENDING will not
match messages until the user acknowledges the failure with an
MPIHA_Comm_failure_ack ().

Connect/accept using multi-threaded library

If two multi-threaded MPI processes simultaneously attempt to call MPI_Connect to
each other at the same time, this can potentially cause a hang. This is a known
issue and will be fixed in a future release.

Information about this release 57

Applications cannot create more than 3200 COMMS

Platform MPI 8.3 applications are able to create more than 12000 COMMs before
running out of special memory used for COMM creation. For Platform MPI 9.1
applications, this is temporarily reduced to approximately 3200 COMMs. This
should not affect any users. The ability to create a larger number of COMMs will
be restored in a future release or Fix Pack.

On-demand connections cannot be used with one-sided
communication

On-demand connections (PCMP_ONDEMAND_CONN=1) cannot be used with one-sided
communication (-1sided). If this combination is used, on-demand connections will
be turned off and a warning is issued.

wlm-lsf.so open error or liblsf.so not found

When using Platform LSF with mpirun, the MPI job fails to start and outputs one
of the following errors:
v wlm-lsf.so open error

v liblsf.so not found

When using Platform LSF, Platform MPI uses liblsf.so in its environment. Most
installations of LSF include the LSF_LIBDIR path in the user’s LD_LIBRARY_PATH.
However, some legacy LSF environments (such as LSF Uniform-Path) do not
include LSF_LIBDIR in LD_LIBRARY_PATH, nor is the LSF_LIBDIR environment
variable defined outside an LSF job. Because Platform MPI depends on liblsf.so
when using Platform MPI LSF options (for example, -lsf, -lsb_mcpu_hosts),
having LSF_LIBDIR in the LD_LIBRARY_PATH is necessary.

If users are having problems with Platform MPI and errors loading wlm-lsf.so or
liblsf.so, check that LSF_LIBDIR is defined their environment and included in
LD_LIBRARY_PATH. Because each LSF installation varies, users need to contact their
system administrators to determine the correct LSF_LIBDIR path if this is not
defined in their environment. Refer to the Platform LSF Configuration Reference
guide, and the sections regarding cshrc.lsf and profile.lsf for more information
on the LSF environment setup and LSF_LIBDIR.

As an alternative, users can issue a bsub command with the appropriate mpirun
commands as part of the bsub command. Users may need to construct their
hostlist/appfile without referencing Platform MPI LSF flags on the mpirun
command (such as -lsf).

RDMA memory pin or registration error with OFED 1.5.3

OFED 1.5.3 changed the default number of memory regions that can be registered
with the driver at any given time. On large clusters, this can lead to two different
error messages from Platform MPI:
v MPI_Init: hpmp_rdmaregion_alloc() failed

v ibv_reg_mr() failed

To resolve this issue, it may be necessary to increase the amount of allowable
registered memory in the driver parameters. To do this, add the following line to
/etc/modprobe.conf:

58 Platform MPI: Release Notes for Linux

options mlx4_core log_num_mtt=24

Allgather/Allgatherv

Because of some issues with Allgather/Allgatherv that could not be resolved at
this time, FCA 2.0 Allgather/Allgatherv support for FCA has been disabled by
default. The problem occurs when using Allgather with MPI_IN_PLACE and
non-contigious data. This issue is rare, but the error results in wrong answers.

If you wish to use FCA Allgather/Allgatherv, set the following environment
variable: PCMPI_FCA_ENABLE_ALLGATHER=1. This will allow the FCA
Allgather/Algatherv algorithms to be selected and run under the same conditions
as other FCA algorithms (always if forced, only if profitable for "normal" enabled
FCA).

Diagnostic library

The diagnostic library does not call all the optimized collective algorithms
available, but instead uses the "failsafe" algorithms.

Running on iWarp hardware
v When running on iWARP hardware, you might see messages similar the

following when applications exit:
disconnect: ID 0x2b65962b2b10 ret 22

This is a debugging message that prints erroneously from the uDAPL library
and can be ignored. The message can be completely suppressed by passing the
-e DAPL_DBG_TYPE=0option to mpirun. Alternatively, you can set DAPL_DBG_TYPE=0
in the $MPI_ROOT/etc/hpmmpi.conf file to avoid having to pass the option on the
mpirun command line.

v Users might see the following error during launches of Platform MPI
applications on Chelsio iWARP hardware:
Rank 0:0: MPI_Init: dat_evd_wait()1 unexpected event number 16392

Rank 0:0: MPI_Init: MPI BUG: Processes cannot connect to rdma device

MPI Application rank 0 exited before MPI_Finalize() with status 1

To prevent these errors, Chelsio recommends passing the peer2peer=1 parameter
to the iw_cxgb3 kernel module. This is accomplished by running the following
commands as root on all nodes:
echo "1" > /sys/module/iw_cxgb3/parameters/peer2peer

echo "options iw_cxgb3 peer2peer=1" >> /etc/modprobe.conf

The second command is optional and makes the setting persist across a system
reboot.

v Users of iWARP hardware might see errors similar to the following:
dapl async_event QP (0x2b27fdc10d30) ERR 1
dapl_evd_qp_async_error_callback() IB async QP err - ctx=0x2b27fdc10d30

Previous versions of HP-MPI required passing-e MPI_UDAPL_MSG1=1 on some
iWARP hardware. As of Platform MPI 9.1.2, no iWARP implementations are
known to require this setting, and you must remove it from all scripts unless
otherwise instructed.

Information about this release 59

OFED firmware

The OpenFabrics Alliance (OFA) documents minimum supported firmware
revisions for a variety of InfiniBand adapters. If unsupported firmware is used,
Platform MPI might experience issues with abnormal application teardown or
other problems.

Spawn on remote nodes

Codes which call either MPI_Comm_spawn() or MPI_Comm_spawn_multiple() might not
be able to locate the commands to spawn on remote nodes. To work around this
issue, you can either specify an absolute path to the commands to spawn, or users
can set the MPI_WORKDIR environment variable to the path of the command to
spawn.

Default interconnect for -ha option

The–ha option in previous HP-MPI releases forced the use of TCP for
communication. Both IBV and TCP are possible network selections when using–ha.
If no forced selection criteria (for example,–TCP,–IBV, or equivalent MPI_IC_ORDER
setting) is specified by the user, then IBV is selected where it is available.
Otherwise, TCP is used.

Linking without compiler wrappers

To support the-dd (deferred deregistration) option, Platform MPI must intercept
calls to glibc routines that allocate and free memory. The compiler wrapper scripts
included with Platform MPI attempt to link MPI applications to make this possible.
If you choose not to link your application with the provided compiler wrappers,
you must either ensure that libmpi.so precedes libc.so on the linker command
line or specify "-e LD_PRELOAD=%LD_PRELOAD:libmpi.so" on the mpirun command
line.

Locating the instrumentation output file

Whether mpirun is invoked on a host where at least one MPI process is running or
on a host remote from all MPI processes, Platform MPI writes the instrumentation
output file prefix.instr to the working directory on the host that is running rank
0 (when instrumentation for multihost runs is enabled). When using-ha, the output
file is located on the host that is running the lowest existing rank number at the
time the instrumentation data is gathered during MPI_Finalize().

Using the ScaLAPACK library

Prebuilt applications that are linked against ScaLAPACK must use the Platform
MPI MPICH compatibility mode. When the application is built, mpicc.mpich or
mpif77.mpich or mpif90.mpich must be used. At runtime, mpirun.mpich must be
used to launch the application. Mpich compatibility mode is not a requirement for
users compiling ScaLAPACK and applications that use ScaLAPACK.

Increasing shared memory segment size

Platform MPI uses shared memory for communications between processes on the
same node and might attempt to allocate a shared-memory segment that is larger
than the operating system allows. The most common issue you might experience is
an error message like:

60 Platform MPI: Release Notes for Linux

Cannot create shared memory segment of <size> bytes.

To increase the maximum allowed shared memory segment size, enter the
following command as root:

/sbin/sysctl -w kernel.shmmax=<size in bytes>

To make changes to the kernel.shmmax setting persist across a reboot, add the
following line to the /etc/sysctl.conf file:

kernel.shmmax=<size in bytes>

Using MPI_FLUSH_FCACHE

The MPI_FLUSH_FCACHE environment variable is silently ignored if the -cpu_bind
option is not specified. This limitation will be removed in a future release. See the
mpienv(1) manpage for more information.

Using MPI_REMSH

Platform MPI uses the $MPI_REMSH command to launch on remote machines. The
commands constructed are of the general form "$MPI_REMSH <host> -n <command>".
If a remote shell command is desired for which the-n in the above syntax is not
appropriate, you can use a shell script such as the following for the MPI_REMSH
command:

#!/bin/sh
host="$1"
shift
shift
ssh $host "$@"

Increasing pinned memory

InfiniBand requires pages to be pinned (locked in memory) for message passing.
This can become a problem when a child process is forked and a pinned page
exists in both the parent's and child's address spaces. Normally a copy-on-write
would occur when one of the processes touches memory on a shared page, and the
virtual to physical mapping would change for that process. In the context of
InfiniBand, such a change in the mapping results in data corruption when an
RDMA sends data to the original physical address.

OFED 1.2 and later (with a fork safety mode enabled) avoids this problem by not
using copy-on-write behavior during a fork for pinned pages. Instead, any access
to these pages by the child process results in a segmentation violation of the child,
and the parent's mapping remains unchanged so that the parent can continue
running normally with no data corruption.

Platform MPI turns on this option by default when the IBV or uDAPL protocols
are being used. If the fork safety mode is not desired, you can turn it off with the
MPI environment variable MPI_IBV_NO_FORK_SAFE=1.

By setting the environment variable MPI_PAGE_ALIGN_MEM=1, Platform MPI
page-aligns and page-pads libc memory allocation requests that are large enough
to be pinned during MPI message transfer. This results in slightly more memory
being allocated, but reduces the likelihood that a forked process writes to a page of
memory that was also being used for message transfer when a fork call occurred.

Information about this release 61

Disabling fork safety

Applications running on Linux systems with kernels earlier than 2.6.12 might
display the following warning message:

libibverbs: Warning: fork()-safety requested but init failed

This warning message appears because the Platform MPI library enabling the
OFED 1.2 fork safety feature is not supported by Linux kernels earlier than 2.6.12.
It does not affect the application run. To disable Platform MPI fork safety, set the
environment variable MPI_IBV_NO_FORK_SAFE, as in the following example:

opt/platform_mpi/bin/mpirun -np 4 -prot -e MPI_IBV_NO_FORK_SAFE=1 \
-hostlist nodea,nodeb,nodec,noded /my/dir/hello_world

Using fork with OFED

Applications using fork() might crash on configurations with InfiniBand using
OFED on kernels earlier than v2.6.18. You can avoid known problems with fork()
and OFED in any of the following ways:
v Run on a system with kernel 2.6.18 or later.
v Run InfiniBand with non-OFED drivers. (This option is not available on

configurations with ConnectX InfiniBand Host Channel Adapters where OFED is
required.)

Memory pinning with OFED 1.2

The initial release of OFED 1.2 contains a bug that causes the memory pinning
function to fail after certain patterns of malloc and free. The symptom, which is
visible from Platform MPI, might be any of several error messages such as:

> prog.x: Rank 0:1: MPI_Get: Unable to pin memory for put/get

This bug has already been fixed in OFED 1.3, but if you are running with the
initial release of OFED 1.2, the only workaround is to set MPI_IBV_NO_FORK_SAFE=1.

Upgrading to OFED 1.2

When upgrading to OFED 1.2 from earlier versions, the installation script might
not stop the previous OFED version before uninstalling it. Therefore, stop the old
OFED stack before upgrading to OFED 1.2. For example:

/etc/init.d/openibd stop

Increasing the nofile limit

The nofile limit on large Linux clusters needs to be increased in
/etc/security/limits.conf

* soft nofile 1024

For larger clusters, Platform recommends a setting of at least:
v 2048 for clusters of 1900 cores or fewer
v 4096 for clusters of 3800 cores or fewer
v 8192 for clusters of 7600 cores or fewer

62 Platform MPI: Release Notes for Linux

MPI_Issend call limitation on Myrinet MX

Some earlier versions of Myrinet MX have a known resource limitation involving
outstanding MPI_Issend() calls. If more than 128 MPI_Issend() calls are issued and
not yet matched, further MX communication can hang. The only known
workaround is to have your application issue less than 128 unmatched
MPI_Issend() calls at a time. This limitation is fixed in versions 1.1.8 and later.

Terminating shells

When a foreground Platform MPI job is run from a shell window, if the shell is
terminated, the shell sends signal SIGHUP to the mpirun process and its underlying
ssh processes, thus killing the entire job.

When a background Platform MPI job is run and the shell is terminated, the job
might continue depending on the actual shell used. For /bin/bash, the job is killed.
For /bin/sh and /bin/ksh, the job continues. If nohup is used when launching the
job, only background ksh jobs can continue. This behavior might vary depending
on your system.

libpthread dependency

The Platform MPI 9.1.2 library for Linux contains a dependency which requires
libpthread. The mpicc, mpif90, etc. compiler wrapper scripts automatically add the
necessary-lpthread, but manually linked applications must explicitly add
-lpthread.

Fortran calls wrappers

Profiling routines built for C calls do not cause the corresponding Fortran calls to
be wrapped automatically. To profile Fortran routines, you must write separate
wrappers for the Fortran calls.

Bindings for C++ and Fortran 90

Platform MPI complies with the MPI-1.2 standard, which defines bindings for
Fortran 77 and C, but not Fortran 90 or C++. Platform MPI also complies with the
C++ binding definitions detailed in the MPI-2 standard. The MPI-2.2 standard has
deprecated the C++ bindings and they will be removed in a future release. The
C++ bindings are not thread safe and should not be used with the Platform MPI
threaded libraries (for example, libmtmpi). Platform MPI does not provide
bindings for Fortran 90. Some features of Fortran 90 might interact with MPI
non-blocking semantics to produce unexpected results. For details, see the Platform
MPI User’s Guide.

Using TotalView

To use the-tv option to mpirun, the TotalView binary must be in the user’s PATH, or
the TOTALVIEW environment variable must be set to the full path of the TotalView
binary.

% export TOTALVIEW=/usr/toolworks/totalview/bin/totalview

Platform MPI 9.1.2 includes the $MPI_ROOT/bin/tv_launch script to be used to
instruct TotalView to attach to the Platform MPI job, rather than launching through
TotalView. To enable this alternate debugging method with TotalView, ensure that

Information about this release 63

the totalview executable is in your path on all compute nodes, and set the
TOTALVIEW environment variable to point to this script rather than to the
totalview executable. Launch your job through mpirun -tv as normal. Each rank
will be paused in MPI_Init.

Extended collectives with lightweight instrumentation

Extended collectives with intercommunicators are not profiled by the Platform MPI
lightweight instrumentation mode.

Using high availability with diagnostic library

You cannot use high availability (-ha) mode and the diagnostic library
simultaneously.

Using MPICH with diagnostic library

You cannot use MPICH mode and the diagnostic library simultaneously.

Using high availability with MPICH

High availability (-ha) mode has not been tested with MPICH mode.

Using MPI-2 with diagnostic library

The diagnostic library strict mode is not compatible with some MPI-2 features.

Additional product information
Product documentation

Additional product documentation:
v Platform MPI manpages are installed in$MPI_ROOT/share/man

Table 11. Manpage Categories

Category Manpages Description

General MPI.1 The general features of Platform MPI

Compilation v mpicc.1

v mpiCC.1

v mpif77.1

v mpif90.1

The available compilation utilities

Runtime v mpiclean.1

v mpidebug.1

v mpienv.1

v mpiexec.1

v mpijob.1

v mpimtsafe.1

v mpirun.1

v mpistdio.1

v autodbl.1

v system_check.1

runtime utilities, environment
variables, debugging, thread-safe,
and diagnostic libraries

64 Platform MPI: Release Notes for Linux

Product packaging

Platform MPI is packaged as an optional software product installed in
/opt/ibm/platform_mpi by default.

Software availability in native languages

Platform MPI only supports the English language, however, users may translate
and replace nls/msg/C/hpmpi.cat as required.

Information about this release 65

66 Platform MPI: Release Notes for Linux

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1994, 2013 67

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Intellectual Property Law
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application

68 Platform MPI: Release Notes for Linux

programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and
service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at "Copyright and trademark information"
at http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

LSF®, Platform, and Platform Computing are trademarks or registered trademarks
of International Business Machines Corp., registered in many jurisdictions
worldwide.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 69

http://www.ibm.com/legal/copytrade.shtml

70 Platform MPI: Release Notes for Linux

����

Printed in USA

GI13-1896-01

	Contents
	Information about this release
	Bug fixes in Platform MPI 9.1.2
	New or changed features in Platform MPI 9.1.2
	New installer and installation instructions
	Event-based progression (Linux only)
	Dynamic shared memory
	Scale launching with DNS
	ISV licensing removed
	CPU affinity and srun
	File cache flushing integrated with CPU binding
	Alternate lazy deregistration
	Support for Torus-configured Infiniband networks
	Intel MIC usage
	Command line aliasing
	GPU message copy improvements
	TCP Alltoall flooding algorithm
	RDMA to TCP failover
	MPI 3.1 High Availability features
	MPI 3.0 non-blocking collective support/preview
	SR-IOV
	Multi-threaded collective performance improvements
	On-demand connections for SRQ/TCP
	Scale improvements to 128K ranks support
	PSM -intra=mix mode
	XRC multi-card
	PE-POE startup support
	CPU affinity features for Platform MPI 9.1
	Cluster test tools
	Changed default installation path
	MPI 3.0 non-blocking collective support/preview
	Removed FLEXlm license file requirement
	Setting memory policies with libnuma for internal buffers
	Performance enhancements to collectives
	Enhanced error messaging for FCA failures
	GPU-Direct 2.0 enhancements
	Infiniband QoS service level
	-env_inherit flag
	System Check benchmarking improvements
	Single mpid per host
	Progression thread
	New Infiniband/RoCE card selection
	Using the KNEM module
	Topology querying with -cpu_bind
	-machinefile flag
	Shared memory usage optimization
	RDMA buffer message alignment for better performance
	RDMA buffer alignment
	General memory alignment
	GPU-enabled systems and applications
	GPU-Direct 1.0
	RDMA transfers that do not guarantee bit order
	KNEM kernel-memcopy modules
	FCA 2.0 features
	uDAPL protocol selection
	-cpu_bind and the NUMA library
	Use single quotes for submissions to HPC scheduler
	RDMA options for NUMA control
	NUMA control
	Collective algorithms
	TCP performance improvements
	Tunable TCP large message protocols
	Support for the LSF_BIND_JOB environment variable in Platform LSF
	Support for the bkill command in Platform LSF
	FCA integration into libcoll and collective libraries
	-rank0 flag
	RDMA Coalescing improvements
	On-demand connections
	WLM scheduler functionality
	System Check
	System Check benchmarking option
	Tuning the message checking on MPI_ANY_SOURCE
	Dynamic library interface
	Aggressive RDMA progression

	Submitting WLM scheduler jobs
	Listing environment variables
	Installing Platform MPI
	Known issues
	Additional product information

	Notices
	Trademarks

