
IBM VisualAge PL/I for OS/390 IBM

Programming Guide
Version 2 Release 2.1

 SC26-9473-01

IBM VisualAge PL/I for OS/390 IBM

Programming Guide
Version 2 Release 2.1

 SC26-9473-01

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix,
“Notices” on page 256.

Second Edition (September 2000)

This edition applies to Version 2 Release 2.1 of IBM VisualAge PL/I for OS/390, 5655-B22, and to any subsequent releases
until otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level of the
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department HHX/H3
P.O. Box 49023
San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1964, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Part 1. Introduction . xi

About This Book . xii
Run-time environment for VisualAge PL/I for OS/390 xii
Using your documentation . xii
Notation conventions used in this book . xiii

Conventions used . xiv
How to read the syntax notation . xiv
How to read the notational symbols . xvi

Part 2. Compiling your program . 1

Chapter 1. Using compile-time options and facilities 4
Compile-time option descriptions . 4

AGGREGATE . 6
ARCH . 6
ATTRIBUTES . 6
CHECK . 7
COMPILE . 7
CURRENCY . 8
DD . 8
DEFAULT . 9
DISPLAY . 14
DLLINIT . 14
EXIT . 14
EXTRN . 14
FLAG . 15
FLOAT . 15
GONUMBER . 15
GRAPHIC . 16
INCAFTER . 16
INCDIR . 17
INCLUDE . 17
INSOURCE . 17
INTERRUPT . 18
LANGLVL . 18
LIMITS . 19
LINECOUNT . 19
LIST . 20
MACRO . 20
MAP . 20
MARGINI . 20
MARGINS . 21
MAXMEM . 22
MDECK . 22
NAMES . 22
NEST . 23
NOT . 23

 Copyright IBM Corp. 1964, 2000 iii

OBJECT . 23
OFFSET . 24
OPTIMIZE . 24
OPTIONS . 24
OR . 25
PP . 25
PPTRACE . 26
PREFIX . 26
PROCEED . 26
RESPECT . 27
RULES . 27
SEMANTIC . 30
SPILL . 31
SOURCE . 31
STORAGE . 31
SYNTAX . 32
SYSPARM . 32
SYSTEM . 33
TERMINAL . 33
TEST . 33
TUNE . 35
WIDECHAR . 35
WINDOW . 36
XREF . 36

Specifying options in the %PROCESS or *PROCESS statements 37
Using the preprocessor . 37

Invoking the preprocessor . 38
Macro facility options . 38
Using the %INCLUDE statement . 39

Using % statements . 41
Using the compiler listing . 41

Heading information . 41
Options used for compilation . 42
Preprocessor input . 42
SOURCE program . 42
Statement nesting level . 42
ATTRIBUTE and cross-reference table . 43
Aggregate length table . 43
Statement offset addresses . 44
Messages and return codes . 46

Chapter 2. Using PL/I cataloged procedures 48
IBM-supplied cataloged procedures . 48

Compile only (IBMZC) . 49
Compile and bind (IBMZCB) . 50
Compile, bind, and run (IBMZCBG) . 52
Compile, prelink, and link-edit (IBMZCPL) . 53
Compile, prelink, link-edit, and run (IBMZCPLG) 55
Compile, prelink, load and run (IBMZCPG) . 56

Invoking a cataloged procedure . 58
Specifying multiple invocations . 58

Modifying the PL/I cataloged procedures . 59
EXEC statement . 59
DD statement . 60

iv VisualAge PL/I Programming Guide

Chapter 3. Compiling your program . 62
Invoking the compiler under OS/390 UNIX . 62

Input files . 62
Specifying compile-time options under OS/390 UNIX 63
-qoption_keyword . 63
Single and multiletter flags . 64

Invoking the compiler under OS/390 using JCL 65
EXEC statement . 65
DD statements for the standard data sets . 65
Listing (SYSPRINT) . 67
Source Statement Library (SYSLIB) . 67
Specifying options . 67
Specifying options in the EXEC statement . 68
Specifying options in the EXEC statement using options file 68
Return codes in batched compilation . 69

Compiling for CICS . 70

Chapter 4. Link-editing and running . 71
Run-time considerations . 71

Formatting conventions for PRINT files . 71
Changing the format on PRINT files . 72
Automatic prompting . 73
Punctuating long input lines . 73
Punctuating GET LIST and GET DATA statements 73
ENDFILE . 74

SYSPRINT considerations . 74
Using FETCH in your routines . 76

FETCHing VisualAge PL/I routines . 76
FETCHing OS/390 C routines . 84
FETCHing assembler routines . 84

 Contents v

Part 3. Using I/O facilities . 85

Chapter 5. Using data sets and files . 89
Associating data sets with files under OS/390 . 89

Associating several files with one data set . 91
Associating several data sets with one file . 91
Concatenating several data sets . 92

Associating data sets with files under OS/390 UNIX 92
Using environment variables . 92
Using the TITLE option of the OPEN statement 93
Attempting to use files not associated with data sets 94
How PL/I finds data sets . 94
Specifying characteristics using DD_DDNAME environment variables 94

Establishing data set characteristics . 100
Blocks and records . 100
Record formats . 101
Data set organization . 102
Labels . 103
Data Definition (DD) statement . 103
Specifying characteristics using DD_DDNAME environment variables 105
Using the TITLE option of the OPEN statement 105
Associating PL/I files with data sets . 106
Specifying characteristics in the ENVIRONMENT attribute 107
Data set types used by PL/I record I/O . 114

Setting environment variables . 115
PL/I standard files (SYSPRINT and SYSIN) . 116
Redirecting standard input, output, and error devices 116

Chapter 6. Using libraries . 117
Types of libraries . 117
How to use a library . 117

Creating a library . 118
SPACE parameter . 118

Creating and updating a library member . 119
Examples . 119

Extracting information from a library directory . 121

Chapter 7. Defining and using consecutive data sets 123
Using stream-oriented data transmission . 123

Defining files using stream I/O . 123
Specifying ENVIRONMENT options . 124
Creating a data set with stream I/O . 126
Accessing a data set with stream I/O . 129
Using PRINT files with stream I/O . 130
Using SYSIN and SYSPRINT files . 134

Controlling input from the terminal . 135
Format of data . 136
Stream and record files . 136
Capital and lowercase letters . 137
End-of-file . 137
COPY option of GET statement . 137

Controlling output to the terminal . 137
Format of PRINT files . 137

vi VisualAge PL/I Programming Guide

Stream and record files . 138
Capital and lowercase characters . 138
Output from the PUT EDIT command . 138

Using record-oriented data transmission . 138
Specifying record format . 139
Defining files using record I/O . 139
Specifying ENVIRONMENT options . 140
Creating a data set with record I/O . 141
Accessing and updating a data set with record I/O 142

Chapter 8. Defining and using indexed data sets 147
Indexed organization . 147
Using keys . 147
Using indexes . 150

Defining files for an indexed data set . 151
Specifying ENVIRONMENT options . 153

Creating an indexed data set . 154
Essential information . 155
Name of the data set . 157
Record format and keys . 158
Overflow area . 160
Master index . 161

Accessing and updating an indexed data set . 162
Using sequential access . 163
Using direct access . 164

Reorganizing an indexed data set . 167

Chapter 9. Defining and using regional data sets 168
Defining files for a regional data set . 170

Specifying ENVIRONMENT options . 171
Using keys with REGIONAL data sets . 171

Using REGIONAL(1) data sets . 172
Creating a REGIONAL(1) data set . 172
Accessing and updating a REGIONAL(1) data set 174

Essential information for creating and accessing regional data sets 177

Chapter 10. Defining and using VSAM data sets 179
Using VSAM data sets . 179

How to run a program with VSAM data sets 179
VSAM organization . 179

Keys for VSAM data sets . 181
Choosing a data set type . 182

Defining files for VSAM data sets . 183
Specifying ENVIRONMENT options . 184
Performance options . 185

Defining VSAM data sets . 185
Entry-sequenced data sets . 186

Loading an ESDS . 187
Using a SEQUENTIAL file to access an ESDS 187

Key-sequenced and indexed entry-sequenced data sets 189
Loading a KSDS or indexed ESDS . 190
Using a SEQUENTIAL file to access a KSDS or indexed ESDS 192
Using a DIRECT file to access a KSDS or indexed ESDS 192

Relative-record data sets . 195

 Contents vii

Loading an RRDS . 196
Using a SEQUENTIAL file to access an RRDS 198
Using a DIRECT file to access an RRDS . 199

Part 4. Improving your program . 203

Chapter 11. Improving performance . 204
Selecting compile-time options for optimal performance 204

OPTIMIZE . 204
GONUMBER . 204
RULES . 204
PREFIX . 205
DEFAULT . 205
Summary of compile-time options that improve performance 208

Coding for better performance . 209
DATA-directed input and output . 209
Input-only parameters . 209
GOTO statements . 210
String assignments . 210
Loop control variables . 210
PACKAGEs versus nested PROCEDUREs . 211
REDUCIBLE Functions . 212
DESCLOCATOR or DESCLIST . 212
DEFINED versus UNION . 212
Named constants versus static variables . 213
Avoiding calls to library routines . 214

Part 5. Using interfaces to other products . 215

Chapter 12. Using the Sort program . 216
Preparing to use Sort . 216

Choosing the type of Sort . 217
Specifying the sorting field . 219
Specifying the records to be sorted . 221
Determining storage needed for Sort . 222

Calling the Sort program . 222
Determining whether the Sort was successful 225
Establishing data sets for Sort . 225

Sort data input and output . 227
Data input and output handling routines . 227

E15—Input handling routine (Sort Exit E15) 227
E35—Output handling routine (Sort Exit E35) 230
Calling PLISRTA example . 231
Calling PLISRTB example . 231
Calling PLISRTC example . 233
Calling PLISRTD example . 234
Sorting variable-length records example . 235

Part 6. Specialized programming tasks . 237

Chapter 13. PL/I - Language Environment descriptors 238

viii VisualAge PL/I Programming Guide

Passing an argument . 238
Argument passing by descriptor list . 238
Argument passing by descriptor-locator . 239

Descriptor header . 239
String descriptors . 240
Array descriptors . 240

Chapter 14. Using PLIDUMP . 241
PLIDUMP usage notes . 242

Chapter 15. Interrupts and attention processing 244
Using ATTENTION ON-units . 245
Interaction with a debugging tool . 245

Chapter 16. Using the Checkpoint/Restart facility 246
Requesting a checkpoint record . 246

Defining the checkpoint data set . 247
Requesting a restart . 248

Automatic restart after a system failure . 248
Automatic restart within a program . 248
Getting a deferred restart . 248
Modifying checkpoint/restart activity . 249

Chapter 17. Using user exits . 250
Procedures performed by the compiler user exit 250
Activating the compiler user exit . 251

The IBM-supplied compiler exit, IBMUEXIT 251
Customizing the compiler user exit . 251
Modifying SYSUEXIT . 251
Writing your own compiler exit . 252
Structure of global control blocks . 252
Writing the initialization procedure . 254
Writing the message filtering procedure . 254
Writing the termination procedure . 255

Appendix. Notices . 256
Programming interface information . 257
Trademarks . 258

Bibliography . 259
VisualAge PL/I for OS/390 publications . 259
Other PL/I publications . 259
OS/390 Language Environment publications . 259
IBM Debug Tool publications . 259
Softcopy publications . 259
Other books you might need . 259

Glossary . 261

Index . 275

 Contents ix

x VisualAge PL/I Programming Guide

 Part 1. Introduction

About This Book . xii
Run-time environment for VisualAge PL/I for OS/390 xii
Using your documentation . xii

PL/I information . xiii
Language Environment information . xiii

Notation conventions used in this book . xiii
Conventions used . xiv
How to read the syntax notation . xiv
How to read the notational symbols . xvi

Example of notation . xvii

 Copyright IBM Corp. 1964, 2000 xi

About This Book

This book is for PL/I programmers and system programmers. It helps you
understand how to use VisualAge PL/I for OS/390 in order to compile PL/I
programs. It also describes the operating system features that you might need to
optimize program performance or handle errors.

Important: VisualAge PL/I for OS/390 will be referred to as VisualAge PL/I
throughout this book.

Run-time environment for VisualAge PL/I for OS/390
VisualAge PL/I uses Language Environment as its run-time environment. It
conforms to Language Environment architecture and can share the run-time
environment with other Language Environment-conforming languages.

Language Environment provides a common set of run-time options and callable
services. It also improves interlanguage communication (ILC) between high-level
languages (HLL) and assembler by eliminating language-specific initialization and
termination on each ILC invocation.

Using your documentation
The publications provided with VisualAge PL/I are designed to help you program
with PL/I. The publications provided with Language Environment are designed to
help you manage your run-time environment for applications generated with
VisualAge PL/I. Each publication helps you perform a different task.

The following tables show you how to use the publications you receive with
VisualAge PL/I and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, see “Bibliography” on page 259.

xii  Copyright IBM Corp. 1964, 2000

 PL/I information
Table 1. How to use VisualAge PL/I publications

To... Use...

Evaluate VisualAge PL/I Fact Sheet

Understand warranty information Licensed Programming Specifications

Plan for and install VisualAge PL/I VisualAge PL/I Program Directory

Understand compiler and run-time changes and
adapt programs to VisualAge PL/I and Language
Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference

Diagnose compiler problems and report them to IBM Diagnosis Guide

Get details on compile-time messages Compile-Time Messages and Codes

Language Environment information
Table 2. How to use OS/390 Language Environment publications

To... Use...

Evaluate Language Environment Concepts Guide

Plan for Language Environment Concepts Guide
Run-Time Migration Guide

Install Language Environment on OS/390 OS/390 Program Directory

Customize Language Environment on OS/390 Customization

Understand Language Environment program models
and concepts

Concepts Guide
Programming Guide

Find syntax for Language Environment run-time
options and callable services

Programming Reference

Develop applications that run with Language
Environment

Programming Guide and your language
Programming Guide

Debug applications that run with Language
Environment, get details on run-time messages,
diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Applications

Migrate applications to Language Environment Run-Time Migration Guide and the migration
guide for each Language Environment-enabled
language

Notation conventions used in this book
This book uses the conventions, diagramming techniques, and notation described
in “Conventions used” on page xiv and “How to read the notational symbols” on
page xvi to illustrate PL/I and non-PL/I programming syntax.

 About This Book xiii

 Conventions used
Some of the programming syntax in this book uses type fonts to denote different
elements:

� Items shown in UPPERCASE letters indicate key elements that must be typed
exactly as shown.

� Items shown in lowercase letters indicate user-supplied variables for which you
must substitute appropriate names or values. The variables begin with a letter
and can include hyphens, numbers, or the underscore character (_).

� The term digit indicates that a digit (0 through 9) should be substituted.

� The term do-group indicates that a do-group should be substituted.

� Underlined items indicate default options.

� Examples are shown in monocase type.

� Unless otherwise indicated, separate repeatable items from each other by one
or more blanks.

Note: Any symbols shown that are not purely notational, as described in “How to
read the notational symbols” on page xvi, are part of the programming syntax itself.

For an example of programming syntax that follows these conventions, see
“Example of notation” on page xvii.

How to read the syntax notation
The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

��─── Indicates the beginning of a statement.

───� Indicates that the statement syntax is continued on the next line.

�─── Indicates that a statement is continued from the previous line.

───�� Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the

─── symbol and end with the ───
 symbol.

Conventions

� Keywords, their allowable synonyms, and reserved parameters, appear in
uppercase for MVS and OS/2 platforms, and lowercase for UNIX
platforms. These items must be entered exactly as shown.

� Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

� When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

� Enter punctuation marks (slashes, commas, periods, parentheses,
quotation marks, equal signs) and numbers exactly as given.

� Footnotes are shown by a number in parentheses, for example, (1).

� A ␣ symbol indicates one blank position.

xiv VisualAge PL/I Programming Guide

Required items

Required items appear on the horizontal line (the main path).

──REQUIRED_ITEM──
�

Optional Items

Optional items appear below the main path.

──REQUIRED_ITEM─ ──┬ ┬─────────────── ────────────────────────────────
�
 └ ┘─optional_item─

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

 ┌ ┐─optional_item─

──REQUIRED_ITEM─ ──┴ ┴─────────────── ────────────────────────────────
�

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

──REQUIRED_ITEM─ ──┬ ┬─required_choice1─ ─────────────────────────────
�
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

──REQUIRED_ITEM─ ──┬ ┬────────────────── ─────────────────────────────
�
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

 ┌ ┐───────────────────

──REQUIRED_ITEM─ ───� ┴─repeatable_item─ ──────────────────────────────
�

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

 ┌ ┐─,───────────────

──REQUIRED_ITEM─ ───� ┴─repeatable_item─ ──────────────────────────────
�

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

 About This Book xv

 ┌ ┐─default_choice──

──REQUIRED_ITEM─ ──┼ ┼───────────────── ──────────────────────────────
�
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

Fragments

Sometimes a diagram must be split into fragments. The fragments are
represented by a letter or fragment name, set off like this: | A |. The fragment
follows the end of the main diagram. The following example shows the use of
a fragment.

──STATEMENT──item 1──item 2──┤ A ├─────────────────────────────────
�

A:
├─ ──┬ ┬─item 3─ ─KEYWORD─ ──┬ ┬─item 5─ ───────────────────────────────────┤
 └ ┘─item 4─ └ ┘─item 6─

Substitution-block

Sometimes a set of several parameters is represented by a substitution-block
such as <A>. For example, in the imaginary /VERB command you could enter
/VERB LINE 1, /VERB EITHER LINE 1, or /VERB OR LINE 1.

──/VERB─ ──┬ ┬───── ─LINE──line#──
�
 └ ┘─<A>─

where <A> is:

─ ──┬ ┬─EITHER─ ──
�
 └ ┘─OR─────

Parameter endings

Parameters with number values end with the symbol '#', parameters that are
names end with 'name', and parameters that can be generic end with '*'.

──/MSVERIFY─ ──┬ ┬ ─MSNAME──msname─ ───
�
 └ ┘─SYSID──sysid#──

The MSNAME keyword in the example supports a name value and the SYSID
keyword supports a number value.

How to read the notational symbols
Some of the programming syntax in this book is presented using notational
symbols. This is to maintain consistency with descriptions of the same syntax in
other IBM publications, or to allow the syntax to be shown on single lines within a
table or heading.

� Braces, { }, indicate a choice of entry. Unless an item is underlined, indicating
a default, or the items are enclosed in brackets, you must choose at least one
of the entries.

� Items separated by a single vertical bar, |, are alternative items. You can
select only one of the group of items separated by single vertical bars. (Double
vertical bars, ||, specify a concatenation operation, not alternative items. See
the PL/I Language Reference for more information on double vertical bars.)

� Anything enclosed in brackets, [], is optional. If the items are vertically
stacked within the brackets, you can specify only one item.

xvi VisualAge PL/I Programming Guide

� An ellipsis, ..., indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

Example of notation
The following example of PL/I syntax illustrates the notational symbols described In
“How to read the notational symbols” on page xvi:

DCL file-reference FILE STREAM
{INPUT | OUTPUT [PRINT]}

 ENVIRONMENT(option ...);

Interpret this example as follows:

� You must spell and enter the first line as shown, except for file-reference, for
which you must substitute the name of the file you are referencing.

� In the second line, you can specify INPUT or OUTPUT, but not both. If you
specify OUTPUT, you can optionally specify PRINT as well. If you do not
specify either alternative, INPUT takes effect by default.

� You must enter and spell the last line as shown (including the parentheses and
semicolon), except for option ..., for which you must substitute one or more
options separated from each other by one or more blanks.

 About This Book xvii

xviii VisualAge PL/I Programming Guide

Part 2. Compiling your program

Chapter 1. Using compile-time options and facilities 4
Compile-time option descriptions . 4

AGGREGATE . 6
ARCH . 6
ATTRIBUTES . 6
CHECK . 7
COMPILE . 7
CURRENCY . 8
DD . 8
DEFAULT . 9
DISPLAY . 14
DLLINIT . 14
EXIT . 14
EXTRN . 14
FLAG . 15
FLOAT . 15
GONUMBER . 15
GRAPHIC . 16
INCAFTER . 16
INCDIR . 17
INCLUDE . 17
INSOURCE . 17
INTERRUPT . 18
LANGLVL . 18
LIMITS . 19
LINECOUNT . 19
LIST . 20
MACRO . 20
MAP . 20
MARGINI . 20
MARGINS . 21
MAXMEM . 22
MDECK . 22
NAMES . 22
NEST . 23
NOT . 23
OBJECT . 23
OFFSET . 24
OPTIMIZE . 24
OPTIONS . 24
OR . 25
PP . 25
PPTRACE . 26
PREFIX . 26
PROCEED . 26
RESPECT . 27
RULES . 27
SEMANTIC . 30
SPILL . 31
SOURCE . 31

 Copyright IBM Corp. 1964, 2000 1

STORAGE . 31
SYNTAX . 32
SYSPARM . 32
SYSTEM . 33
TERMINAL . 33
TEST . 33
TUNE . 35
WIDECHAR . 35
WINDOW . 36
XREF . 36

Specifying options in the %PROCESS or *PROCESS statements 37
Using the preprocessor . 37

Invoking the preprocessor . 38
Macro facility options . 38
Using the %INCLUDE statement . 39

Using % statements . 41
Using the compiler listing . 41

Heading information . 41
Options used for compilation . 42
Preprocessor input . 42
SOURCE program . 42
Statement nesting level . 42
ATTRIBUTE and cross-reference table . 43

Attribute table . 43
Cross-reference table . 43

Aggregate length table . 43
Statement offset addresses . 44
Messages and return codes . 46

Chapter 2. Using PL/I cataloged procedures 48
IBM-supplied cataloged procedures . 48

Compile only (IBMZC) . 49
Compile and bind (IBMZCB) . 50
Compile, bind, and run (IBMZCBG) . 52
Compile, prelink, and link-edit (IBMZCPL) . 53
Compile, prelink, link-edit, and run (IBMZCPLG) 55
Compile, prelink, load and run (IBMZCPG) . 56

Invoking a cataloged procedure . 58
Specifying multiple invocations . 58

Modifying the PL/I cataloged procedures . 59
EXEC statement . 59
DD statement . 60

Chapter 3. Compiling your program . 62
Invoking the compiler under OS/390 UNIX . 62

Input files . 62
Specifying compile-time options under OS/390 UNIX 63
-qoption_keyword . 63
Single and multiletter flags . 64

Invoking the compiler under OS/390 using JCL 65
EXEC statement . 65
DD statements for the standard data sets . 65

Input (SYSIN) . 66
Output (SYSLIN, SYSPUNCH) . 66

2 VisualAge PL/I Programming Guide

Temporary workfile (SYSUT1) . 67
Listing (SYSPRINT) . 67
Source Statement Library (SYSLIB) . 67
Specifying options . 67
Specifying options in the EXEC statement . 68
Specifying options in the EXEC statement using options file 68
Return codes in batched compilation . 69

JCL for batched processing . 69
Examples of batched compilations . 69

Compiling for CICS . 70

Chapter 4. Link-editing and running . 71
Run-time considerations . 71

Formatting conventions for PRINT files . 71
Changing the format on PRINT files . 72
Automatic prompting . 73
Punctuating long input lines . 73
Punctuating GET LIST and GET DATA statements 73
ENDFILE . 74

SYSPRINT considerations . 74
Using FETCH in your routines . 76

FETCHing VisualAge PL/I routines . 76
FETCHing OS/390 C routines . 84
FETCHing assembler routines . 84

 Part 2. Compiling your program 3

Chapter 1. Using compile-time options and facilities

This chapter describes the options that you can use for the compiler, along with
their abbreviations and IBM-supplied defaults. It's important to remember that PL/I
requires access to Language Environment run time when you compile your
applications. You can override most defaults when you compile your PL/I program.

Compile-time option descriptions
There are three types of compile-time options; however, most compile-time options
have a positive and negative form. The negative form is the positive with 'NO'
added at the beginning (as in TEST and NOTEST). Some options have only a
positive form (as in SYSTEM). The three types of compile-time options are:

1. Simple pairs of keywords: a positive form that requests a facility, and an
alternative negative form that inhibits that facility (for example, NEST and
NONEST).

2. Keywords that allow you to provide a value list that qualifies the option (for
example, FLAG(W)).

3. A combination of 1 and 2 above (for example, NOCOMPILE(E)).

Table 3 lists all compile-time options with their abbreviated syntax and their
IBM-supplied default values.

The paragraphs following Table 3 describe the options in alphabetical order. For
those options specifying that the compiler is to list information, only a brief
description is included; the generated listing is described under “Using the compiler
listing” on page 41.

Table 3 (Page 1 of 2). Compile-time options, abbreviations, and IBM-supplied defaults

Compile-Time Option Abbreviated Name OS/390 Default

AGGREGATE | NOAGGREGATE AG | NAG NAG

ARCH − ARCH(0)

ATTRIBUTES[(FULL|SHORT)] |
 NOATTRIBUTES

A[(F | S)] | NA NA [(FULL)]1

CHECK(STORAGE | NOSTORAGE) CHECK(STG | NSTG) CHECK(NSTG)

COMPILE | NOCOMPILE[(W | E | S)] C | NC[(W | E | S)] NC(S)

CURRENCY(x) − CURRENCY($)

DD(ddname-list) − DD(SYSPRINT,SYSIN,SYSLIB,
SYSPUNCH,SYSLIN)

DEFAULT(attribute | option) DFT See page 14

DISPLAY(STD | WTO) − DISPLAY(WTO)

DLLINIT | NODLLINIT − NODLLINIT

EXIT | NOEXIT − NOEXIT

EXTRN(FULL | SHORT) EXTRN(F | S) EXTRN(SHORT)

FLAG[(I | W | E | S | n)] F[(I | W | E | S | n)] F(W)

FLOAT(AFP | NOAF) − FLOAT(NOAFP)

GONUMBER | NOGONUMBER GN | NGN NGN

GRAPHIC | NOGRAPHIC GR | NGR NGR

INCAFTER([PROCESS(filename)]) − INCAFTER()

INCDIR('directory name') − INCDIR()

4  Copyright IBM Corp. 1964, 2000

Table 3 (Page 2 of 2). Compile-time options, abbreviations, and IBM-supplied defaults

Compile-Time Option Abbreviated Name OS/390 Default

INCLUDE | NOINCLUDE INC | NINC NINC

INSOURCE | NOINSOURCE IS | NIS IS

INTERRUPT | NOINTERRUPT INT | NINT NINT

LANGLVL({SAA | SAA2[,NOEXT | OS]) − LANGLVL(SAA2,OS)

LIMITS(options) − See page 19

LINECOUNT(n) LC LC(60)

LIST | NOLIST − NOLIST

MACRO | NOMACRO M | NM NM

MAP | NOMAP − NOMAP

MARGINI('c') | NOMARGINI MI('c') | NMI NMI

MARGINS(m,n) MAR(m,n) MAR
F-format: (2,72)
V-format: (10,100)

MAXMEM(n) − MAXMEM(1048576)

MDECK | NOMDECK MD | NMD NMD

NAMES − NAMES('#@$' '#@$')

NEST | NONEST − NONEST

NOT − NOT('¬')

OBJECT | NOOBJECT OBJ | NOBJ OBJ

OFFSET | NOOFFSET OF | NOF NOOFFSET

OPTIMIZE(TIME | 0 | 2) | NOOPTIMIZE OPT(TIME|0|2)|NOPT NOPT

OPTIONS | NOOPTIONS OP | NOP NOP

OR('c') − OR(' | ')

PP(pp-name) | NOPP − NOPP

PPTRACE | NOPPTRACE − NOPPTRACE

PREFIX(condition) − See page 26

PROCEED | NOPROCEED(S | E | W) PRO | NPRO NPRO(S)

RESPECT([DATE]) − RESPECT()

RULES(options) LAXCOM | NOLAXCOM See page 27

SEMANTIC | NOSEMANTIC(S | E | W) SEM | NSEM SEM or NSEM(S)

SOURCE | NOSOURCE S | NS NS

STORAGE | NOSTORAGE STG | NSTG NSTG

SYNTAX | NOSYNTAX(W | E | S) SYN | NSYN(W | E | S) NSYN(S)

SYSPARM('string') − SYSPARM('')

SYSTEM(MVS | CICS | IMS) − MVS

TERMINAL | NOTERMINAL TERM | NTERM NTERM

TEST(ALL | NONE | STMT,SYM | ,NOSYM) | NOTEST − NOTEST(NONE,SYM)2

SPILL(n) − SPILL(512)

TUNE(n) − TUNE(0)

WIDECHAR(BIGENDIAN | LITTLEENDIAN) − WIDECHAR(BIGENDIAN)

WINDOW(w) − WINDOW(1950)

XREF[(FULL | SHORT)] | NOXREF X[(F | S)] | NX NX [(FULL)]1

Notes:

1. FULL is the default suboption if the suboption is omitted with ATTRIBUTES or XREF.
2. (NONE,SYM) is the default suboption if the suboption is omitted with TEST.

 Chapter 1. Using compile-time options and facilities 5

 AGGREGATE
The AGGREGATE option creates an Aggregate Length Table that gives the lengths
of all arrays and major structures in the source program in the compiler listing.

 ┌ ┐─NOAGGREGATE─

─ ──┴ ┴─AGGREGATE─── ───
�

ABBREVIATIONS: AG, NOAG

In the Aggregate Length Table, the length of an undimensioned major or minor
structure is always expressed in bytes and might not be accurate if the major or
minor structure contains unaligned bit elements.

 ARCH
The ARCH option specifies the architecture for which the executable program's
instructions are to be generated. It allows the optimizer to take advantage of
specific hardware instruction sets. A subparameter specifies the group to which a
model number belongs.

 ┌ ┐─�─

──ARCH──(─ ──┴ ┴─n─ ─)──
�

Current groups of models that are supported include the following:

0 Produces code that is executable on all models.

1 Produces code that is optimized for the following models:

9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

9021-xx1 and 9021-xx2

9672-Rx1, 9672-Exx, and 9672-Pxx

2 Produces code that is optimized for the following and follow-on models:

9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003

3 Produces code that is optimized for the 9672 G5 and follow-on models

Note: Code that is compiled at ARCH(1) runs on machines in the ARCH(1) group
and later machines, including those in the ARCH(2) group. It cannot run on
earlier machines. Code that is compiled at ARCH(2) cannot run on
ARCH(1) or earlier machines.

 ATTRIBUTES
The ATTRIBUTES option specifies that the compiler includes a table of
source-program identifiers and their attributes in the compiler listing.

 ┌ ┐─NOATTRIBUTES─

─ ──┴ ┴─ATTRIBUTES─── ──┬ ┬───────────────── ───────────────────────────────────────
�
 │ │┌ ┐─FULL──
 └ ┘ ─(─ ──┴ ┴─SHORT─ ─)─

ABBREVIATIONS: A, NA, F, S

6 VisualAge PL/I Programming Guide

FULL
All identifiers and attributes are included in the compiler listing. FULL is the
default.

SHORT
Unreferenced identifiers are omitted, making the listing more manageable.

If you include both ATTRIBUTES and XREF (creates a cross-reference table), the
two tables are combined. However, if the SHORT and FULL suboptions are in
conflict, the last option specified is used. For example, if you specify
ATTRIBUTES(SHORT) XREF(FULL), FULL applies to the combined listing.

 CHECK
The CHECK option alters the behavior of the ALLOCATE and FREE statements.

 ┌ ┐─NOSTORAGE─

──CHECK──(─ ──┴ ┴─STORAGE─── ─)───
�

ABBREVIATIONS: STG, NSTG

When you specify CHECK(STORAGE), the compiler calls slightly different library
routines for ALLOCATE and FREE statements (except when these statements
occur within an AREA). The following built-in functions, described in the PL/I
Language Reference, can be used only when CHECK(STORAGE) has been
specified:

 � ALLOCSIZE
 � CHECKSTG
 � UNALLOCATED

 COMPILE
The COMPILE option causes the compiler to stop compiling after all semantic
checking of the source program if it produces a message of a specified severity
during preprocessing or semantic checking. Whether the compiler continues or not
depends on the severity of the error detected, as specified by the NOCOMPILE
option in the list below. The NOCOMPILE option specifies that processing stops
unconditionally after semantic checking.

 ┌ ┐ ─NOCOMPILE─ ──┬ ┬─────────────
 │ ││ │┌ ┐─S─
 │ │└ ┘ ─(─ ──┼ ┼─── ─)─
 │ │├ ┤─W─
 │ │└ ┘─E─

─ ──┴ ┴─COMPILE──────────────────── ──
�

ABBREVIATIONS: C, NC

COMPILE
Generates code unless a severe error or unrecoverable error is detected.
Equivalent to NOCOMPILE(S).

NOCOMPILE
Compilation stops after semantic checking.

 Chapter 1. Using compile-time options and facilities 7

NOCOMPILE(W)
No code generation if a warning, error, severe error, or unrecoverable error is
detected.

NOCOMPILE(E)
No code generation if an error, severe error, or unrecoverable error is detected.

NOCOMPILE(S)
No code generation if a severe error or unrecoverable error is detected.

If the compilation is terminated by the NOCOMPILE option, the cross-reference
listing and attribute listing can be produced; the other listings that follow the source
program will not be produced.

 CURRENCY
The CURRENCY option allows you to specify a unique character for the dollar sign.

 ┌ ┐─$─

──CURRENCY──(──'─ ──┴ ┴─x─ ─'──)──
�

x Character that you want the compiler and runtime to recognize and accept as
the dollar sign in picture strings.

 DD
The DD option allows you to specify alternate DD names for the compiler listing,
the primary source file, the default include dataset and the mdeck dataset.

─ ─DD─ ──┬ ┬─── ────
�
 └ ┘ ─(──SYSPRINT─ ──┬ ┬─── ─)─
 └ ┘ ─,──SYSIN─ ──┬ ┬───
 └ ┘ ─,──SYSLIB─ ──┬ ┬────────────────────────────
 └ ┘ ─,──SYSPUNCH─ ──┬ ┬───────────
 └ ┘ ─,──SYSLIN─

Up to five DD names may be specified. In order, they specify alternate DD names
for

 � SYSPRINT

 � SYSIN

 � SYSLIB

 � SYSPUNCH

 � SYSLIN

If you wanted to use ALTIN as the DD name for the primary compiler source file,
you would have to specify DD(SYSPRINT,ALTIN). If you specified DD(ALTIN),
SYSIN would be used as the DDNAME for the primary compiler source file and
ALTIN would be used as the DD name for the compiler listing.

You can also use * to indicate that the default DD name should be used. Thus
DD(*,ALTIN) is equivalent to DD(SYSPRINT,ALTIN).

8 VisualAge PL/I Programming Guide

 DEFAULT
The DEFAULT option specifies defaults for attributes and options. These defaults
are applied only when the attributes or options are not specified or implied in the
source.

──DEFAULT──(─ ──┬ ┬──────────────────────────────────── ─)───────────────────────────────────
�
 │ │┌ ┐──┬ ┬─── ─────────────────────────
 │ ││ │└ ┘─,─
 │ ││ │┌ ┐─IBM─
 └ ┘ ───� ┴──┬ ┬──┴ ┴─ANS─ ───────────────────
 │ │┌ ┐─EBCDEC─
 ├ ┤──┴ ┴─ASCII── ────────────────
 │ │┌ ┐─ASSIGNABLE────
 ├ ┤──┴ ┴─NONASSIGNABLE─ ─────────
 │ │┌ ┐─BYADDR──
 ├ ┤──┴ ┴─BYVALUE─ ───────────────
 │ │┌ ┐─NONCONNECTED─
 ├ ┤──┴ ┴─CONNECTED──── ──────────
 │ │┌ ┐─DESCRIPTOR───
 ├ ┤──┴ ┴─NODESCRIPTOR─ ──────────
 │ │┌ ┐─NATIVE────

├ ┤ ─ ─┴ ┴─NONNATIVE─ ─────────────
 │ │┌ ┐─NATIVEADDR────
 ├ ┤──┴ ┴─NONNATIVEADDR─ ─────────
 │ │┌ ┐─NOINLINE─
 ├ ┤──┴ ┴─INLINE─── ──────────────
 │ │┌ ┐─ORDER───
 ├ ┤──┴ ┴─REORDER─ ───────────────
 │ │┌ ┐─OPTLINK─
 ├ ┤ ─LINKAGE──(─ ──┴ ┴─SYSTEM── ─)─
 │ │┌ ┐─EVENDEC───

├ ┤ ─ ─┴ ┴─NOEVENDEC─ ─────────────
 │ │┌ ┐─NULL37J─
 ├ ┤──┴ ┴─NULLSYS─ ───────────────
 │ │┌ ┐─NONRECURSIVE─
 ├ ┤──┴ ┴─RECURSIVE──── ──────────
 │ │┌ ┐─DESCLOCATOR─
 ├ ┤──┴ ┴─DESCLIST──── ───────────
 │ │┌ ┐─BYADDR──
 ├ ┤ ─RETURNS──(─ ──┴ ┴─BYVALUE─ ─)─
 │ │┌ ┐─HEXADEC─
 ├ ┤ ─SHORT──(─ ──┴ ┴─IEEE──── ─)───
 │ │┌ ┐─ALIGNED───
 ├ ┤ ─DUMMY──(─ ──┴ ┴─UNALIGNED─ ─)─
 │ │┌ ┐─LOWERINC───(1)

 ├ ┤──┴ ┴─UPPERINC─── ────────────
 │ │┌ ┐─NORETCODE─

├ ┤ ─ ─┴ ┴─RETCODE─── ─────────────
 │ │┌ ┐─ALIGNED───

├ ┤ ─ ─┴ ┴─UNALIGNED─ ─────────────
 │ │┌ ┐─MIN─
 ├ ┤ ─ORDINAL──(─ ──┴ ┴─MAX─ ─)─────
 │ │┌ ┐─NOOVERLAP─

└ ┘ ─ ─┴ ┴─OVERLAP─── ─────────────

Note:
1 For OS/390 UNIX only.

ABBREVIATIONS: DFT, ASGN, NONASGN, NONCONN, CONN

IBM or ANS
Use IBM or ANS SYSTEM defaults. The arithmetic defaults for IBM and ANS
are the following:

Attributes DEFAULT(IBM) DEFAULT(ANS)

FIXED DECIMAL (5,0) (10,0)

FIXED BINARY (15,0) (31,0)

FLOAT DECIMAL (6) (6)

FLOAT BINARY (21) (21)

 Chapter 1. Using compile-time options and facilities 9

Under the IBM suboption, variables with names beginning from I to N default to
FIXED BINARY and any other variables default to FLOAT DECIMAL. If you select
the ANS suboption, the default for all variables is FIXED BINARY.

ASCII | EBCDIC
Use this option to set the default for the character set used for the internal
representation of character problem program data.

Specify ASCII only when compiling programs that depend on the ASCII
character set collating sequence. Such a dependency exists, for example, if
your program relies on the sorting sequence of digits or on lowercase and
uppercase alphabetics. This dependency also exists in programs that create
an uppercase alphabetic character by changing the state of the high-order bit.

Note: The compiler supports A and E as suffixes on character strings. The A
suffix indicates that the string is meant to represent ASCII data, even if the
EBCDIC compiler option is in effect. Alternately, the E suffix indicates that the
string is EBCDIC, even when you select DEFAULT(ASCII).

'123'A is the same as '313233'X
'123'E is the same as 'F1F2F3'X

ASSIGNABLE | NONASSIGNABLE
This option causes the compiler to apply the specified attribute to all static
variables that are not declared with the ASSIGNABLE or NONASSIGNABLE
attribute. The compiler flags statements in which NONASSIGNABLE variables
are the targets of assignments.

BYADDR | BYVALUE
Set the default for whether arguments or parameters are passed by address or
by value. BYVALUE applies only to certain arguments and parameters. See
the PL/I Language Reference for more information.

CONNECTED | NONCONNECTED
Set the default for whether parameters are connected or nonconnected.
CONNECTED allows the parameter to be used as a target or source in
record-oriented I/O or as a base in string overlay defining.

DESCRIPTOR | NODESCRIPTOR
Using DESCRIPTOR with a PROCEDURE indicates that a descriptor list was
passed, while DESCRIPTOR with ENTRY indicates that a descriptor list should
be passed. NODESCRIPTOR results in more efficient code, but has the
following restrictions:

� For PROCEDURE statements, NODESCRIPTOR is invalid if any of the
parameters have:

– An asterisk (*) specified for the bound of an array, the length of a
string, or the size of an area except if it is a VARYING or VARYINGZ
string with the NONASSIGNABLE attribute

– The NONCONNECTED attribute

– The UNALIGNED BIT attribute

� For ENTRY declarations, NODESCRIPTOR is invalid if an asterisk (*) is
specified for the bound of an array, the length of a string, or the size of an
area in the ENTRY description list.

10 VisualAge PL/I Programming Guide

NATIVE | NONNATIVE
This option affects only the internal representation of fixed binary, ordinal,
offset, area, and varying string data. When the NONNATIVE suboption is in
effect, the NONNATIVE attribute is applied to all such variables not declared
with the NATIVE attribute.

You should specify NONNATIVE only to compile programs that depend on the
nonnative format for holding these kind of variables.

If your program bases fixed binary variables on pointer or offset variables (or
conversely, pointer or offset variables on fixed binary variables), specify either:

� Both the NATIVE and NATIVEADDR suboptions
� Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

NATIVEADDR | NONNATIVEADDR
This option affects only the internal representation of pointers. When the
NONNATIVEADDR suboption is in effect, the NONNATIVE attribute is applied
to all pointer variables not declared with the NATIVE attribute.

If your program bases fixed binary variables on pointer or offset variables (or
conversely, pointer or offset variables on fixed binary variables), specify either:

� Both the NATIVE and NATIVEADDR suboptions
� Both the NONNATIVE and NONNATIVEADDR suboptions.

Other combinations produce unpredictable results.

INLINE | NOINLINE
This option sets the default for the inline procedure option.

Specifying INLINE allows your code to run faster but, in some cases, also
creates a larger executable file. For more information on how inlining can
improve the performance of your application, see Chapter 11, “Improving
performance” on page 204.

ORDER | REORDER
Affects optimization of the source code. Specifying REORDER allows further
optimization of your source code, see Chapter 11, “Improving performance” on
page 204.

LINKAGE
The linkage convention for procedure invocations is:

OPTLINK
The default linkage convention for VisualAge PL/I. This linkage provides
the best performance.

SYSTEM
The standard linking convention for system APIs.

EVENDEC | NOEVENDEC
This suboption controls the compiler's tolerance of fixed decimal variables
declared with an even precision.

Under NOEVENDEC, the precision for any fixed decimal variable is rounded up
to the next highest odd number.

 Chapter 1. Using compile-time options and facilities 11

If you specify EVENDEC and then assign 123 to a FIXED DEC(2) variable, the
SIZE condition is raised. If you specify NOEVENDEC, the SIZE condition is not
raised.

EVENDEC is the default.

NULLSYS | NULL370
This suboption determines which value is returned by the NULL built-in
function. If you specify NULLSYS, binvalue(null()) is equal to 0. If you want
binvalue(null()) to equal 'ff_00_00_00'xn as is true with previous releases of
PL/I, specify NULL370.

NULL370 is the default.

RECURSIVE | NONRECURSIVE
When you specify DEFAULT(RECURSIVE), the compiler applies the
RECURSIVE attribute to all procedures. If you specify
DEFAULT(NONRECURSIVE), all procedures are nonrecursive except
procedures with the RECURSIVE attribute.

NONRECURSIVE is the default.

DESCLIST | DESCLOCATOR
When you specify DEFAULT(DESCLIST), the compiler passes all descriptors in
a list as a 'hidden' last parameter.

If you specify DEFAULT(DESCLOCATOR), parameters requiring descriptors
are passed using a locator or descriptor in the same way as previous releases
of PL/I. This allows old code to continue to work even if it passed a structure
from one routine to a routine that was expecting to receive a pointer.

DESCLOCATOR is the default.

RETURNS (BYVALUE | BYADDR)
Sets the default for how values are returned by functions. See the PL/I
Language Reference for more information.

RETURNS(BYADDR) is the default. You should specify RETURNS(BYADDR)
if your application contains ENTRY statements and the ENTRY statements or
the containing procedure statement have the RETURNS option. You must also
specify RETURNS(BYADDR) on the entry declarations for such entries.

SHORT (HEXADEC | IEEE)
This suboption improves compatibility with other non-IBM UNIX compilers.
SHORT (HEXADEC) maps FLOAT BIN (p) to a short (4-byte) floating point
number for p <= 21. SHORT (IEEE) maps FLOAT BIN (p) to a short (4-byte)
floating point number for p <= 24.

SHORT (HEXADEC) is the default.

DUMMY (ALIGNED | UNALIGNED)
This suboption reduces the number of situations in which dummy arguments
get created.

DUMMY(ALIGNED) indicates that a dummy argument should be created even if
an argument differs from a parameter only in its alignment.
DUMMY(UNALIGNED) indicates that no dummy argument should be created
for a scalar (except a nonvarying bit) or an array of such scalars if it differs
from a parameter only in its alignment.

Consider the following example:

12 VisualAge PL/I Programming Guide

dcl
1 a1 unaligned,

 2 b1 fixed bin(31),
 2 b2 fixed bin(15),
 2 b3 fixed bin(31),
 2 b4 fixed bin(15);

dcl x entry(fixed bin(31));

call x(b3);

If you specified DEFAULT(DUMMY(ALIGNED)), a dummy argument would be
created, while if you specified DEFAULT(DUMMY(UNALIGNED)), no dummy
argument would be created.

DUMMY(ALIGNED) is the default.

LOWERINC | UPPERINC (for OS/390 UNIX only)
If you specify LOWERINC, the compiler requires that the names of INCLUDE
files are in lowercase. If you specify UPPERINC, the compiler requires that the
names are in uppercase.

LOWERINC is the default.

RETCODE | NORETCODE
If you specify RETCODE, any external procedure that does not have the
RETURNS attribute returns an integer value obtained by invoking the PLIRETV
built-in function just prior to returning from that procedure.

If you specify NORETCODE, no special code is generated from procedures
that did not have the RETURNS attribute.

ALIGNED | UNALIGNED
This suboption allows you to force byte-alignment on all of your variables.

If you specify ALIGNED, all variables other than character, bit, graphic, and
picture are given the ALIGNED attribute unless the UNALIGNED attribute is
explicitly specified (possibly on a parent structure) or implied by a DEFAULT
statement.

If you specify UNALIGNED, all variables are given the UNALIGNED attribute
unless the ALIGNED attribute is explicitly specified (possibly on a parent
structure) or implied by a DEFAULT statement.

ALIGNED is the default.

ORDINAL(MIN | MAX)
If you specify ORDINAL(MAX), all ordinals whose definition does not include a
PRECISION attribute is given the attribute PREC(31). Otherwise, they are
given the smallest precision that covers their range of values.

ORDINAL(MIN) is the default.

OVERLAP | NOOVERLAP
If you specify OVERLAP, the compiler presumes the source and target in an
assignment can overlap and generates, as needed, extra code in order to
ensure that the result of the assignment is okay.

NOOVERLAP is the default.

 Chapter 1. Using compile-time options and facilities 13

Default: DEFAULT (IBM EBCDIC ASSIGNABLE BYADDR NONCONNECTED
DESCRIPTOR NATIVE NATIVEADDR NOINLINE ORDER LINKAGE(OPTLINK)
EVENDEC LOWERINC NULL370 NONRECURSIVE DESCLOCATOR
RETURNS(BYADDR) SHORT(HEXADEC) DUMMY(ALIGNED) NORETCODE
ALIGNED ORDINAL(MIN) NOOVERLAP)

 DISPLAY
The DISPLAY option determines where out of the DISPLAY statement is directed.

 ┌ ┐─WTO─

──DISPLAY──(─ ──┴ ┴─STD─ ─)───
�

STD
All DISPLAY statements are completed by writing the text to stdout and
reading any REPLY text from stdin.

WTO
All DISPLAY statements are completed via WTOs. This is the default.

 DLLINIT
The DLLINIT option applies OPTIONS(FETCHABLE) to all external procedures that
are not MAIN. It should be used only on compilation units containing one external
proecdure, and then that procedure should be linked as a DLL.

 ┌ ┐─NODLLINIT─

─ ──┴ ┴─DLLINIT─── ───
�

NODLLINIT has no affect on your programs.

 EXIT
The EXIT option enables the compiler user exit to be invoked.

 ┌ ┐─NOEXIT────────────────────────────

─ ──┴ ┴ ─EXIT─ ──┬ ┬───────────────────────── ───────────────────────────────────────
�
 └ ┘ ─(─ ─── ──inparm_string─ ─)─

inparm_string
A string that is passed to the compiler user exit routine during initialization.
The string can be up to 31 characters long.

 EXTRN
The EXTRN option controls when EXTRNs are emitted for external entry constants.

 ┌ ┐─SHORT─

──EXTRN──(─ ──┴ ┴─FULL── ─)───
�

FULL
EXTRNs are emitted for all declared external entry constants.

14 VisualAge PL/I Programming Guide

SHORT
EXTRNs are emitted only for those constants that are referenced. This is the
default.

 FLAG
The FLAG option specifies the minimum severity of error that requires a message
listed in the compiler listing.

──FLAG─ ──┬ ┬─────────────────────── ───
�
 │ │┌ ┐──┬ ┬─── ──────
 │ ││ │└ ┘─,─
 │ ││ │┌ ┐─W─
 └ ┘ ─(─ ───� ┴──┬ ┬──┼ ┼─I─ ── ─)─
 │ │├ ┤─E─
 │ │└ ┘─S─
 │ │┌ ┐─25�─
 └ ┘──┴ ┴─n───

ABBREVIATION: F

I List all messages.

W List all except information messages.

E List all except warning and information messages.

S List only severe error and unrecoverable error messages.

n Terminate the compilation if the number of messages exceeds this value. If
messages are below the specified severity or are filtered out by a compiler exit
routine, they are not counted in the number. The value of n can range from 0
to 32767. If you specify 0, the compilation terminates when the first error of the
specified severity is encountered.

 FLOAT
The FLOAT option controls the use of additional floating-point registers.

 ┌ ┐─NOAFP─

──FLOAT──(─ ──┴ ┴─AFP─── ─)───
�

FLOAT(NOAFP)
Compiler-generated code uses the traditional 4 floating-point registers.

FLOAT(AFP)
Compiler-generated code uses 16 floating-point registers.

 GONUMBER
The GONUMBER option specifies that the compiler produces additional information
that allows line numbers from the source program to be included in run-time
messages.

 ┌ ┐─NOGONUMBER─

─ ──┴ ┴─GONUMBER─── ──
�

 Chapter 1. Using compile-time options and facilities 15

ABBREVIATIONS: GN, NGN

Alternatively, the line numbers can be derived by using the offset address, which is
always included in run-time messages and the assembler listing produced by the
LIST option.

GONUMBER is forced by the ALL and STMT suboptions of the TEST option. The
OFFSET option is separate from these numbering options and must be specified if
required.

 GRAPHIC
The GRAPHIC option specifies that the source program can contain double-byte
characters. The hexadecimal codes '0E' and '0F' are treated as the shift-out and
shift-in control codes, respectively, wherever they appear in the source program,
including occurrences in comments and string constants.

 ┌ ┐─NOGRAPHIC─

─ ──┴ ┴─GRAPHIC─── ───
�

ABBREVIATIONS: GR, NGR

The GRAPHIC option must be specified if the source program uses any of the
following:

 � DBCS identifiers
� Graphic string constants

 � Mixed-string constants
� Shift codes anywhere else in the source

 INCAFTER
The INCAFTER option specifies a file to be included after a particular statement in
your source program.

──INCAFTER──(─ ──┬ ┬───────────────────────── ─)──────────────────────────────────
�
 └ ┘ ─PROCESS──(─ ─filename──)─

filename
Name of the file to be included after the last PROCESS statement.

Currently, PROCESS is the only suboption and specifies the name of a file to be
included after the last PROCESS statement.

Consider the following example:

INCAFTER(PROCESS(DFTS))

This example is equivalent to having the statement %INCLUDE DFTS; after the last
PROCESS statement in your source.

16 VisualAge PL/I Programming Guide

 INCDIR
The INCDIR compile-time option includes a directory in the search path for the
location of include files.

──INCDIR──(──'directory name'──)───
�

directory name
Name of the directory that should be searched for include files. You can
specify the INCDIR option more than once and the directories are searched in
order.

The compiler looks for INCLUDE files in the following order:

 1. Current directory
2. Directories specified with the –I flag or with the INCDIR compile-time option

 3. /usr/include directory

 INCLUDE
The INCLUDE option specifies the file name extensions under which include files
are searched. You specify the file name on the %INCLUDE statement and the
directory search path on the IBM_SYSLIB or INCLUDE environment variables
specified in the INCDIR option.

Note: This option does not apply to the batch jobs.

──INCLUDE──(─ ──┬ ┬──────────────────────────────────── ─)────────────────────────
�
 │ │┌ ┐──┬ ┬─── ──────────────
 │ ││ │└ ┘─,─
 │ ││ │┌ ┐─inc─
 └ ┘─EXT──(─ ───� ┴──┴ ┴───── ─ext_string─ ─)─

ABBREVIATION: INC

The extension string can be up to 31 characters long, but it is truncated to the first
three characters. If required strings conform to PL/I identifier rules, you do not
need to enclose them in quotes. The compiler folds these strings to uppercase
under DFT(UPPERINC), to lowercase under DFT(LOWERINC).

If you specify more than one file name extension, the compiler searches for include
files with the left most extension you specify first. It then searches for extensions
that you specified from left to right. You can specify a maximum of 7 extensions.

Do not use PLI as an extension for an include file.

 INSOURCE
The INSOURCE option specifies that the compiler should include a listing of the
source program before the PL/I macro preprocessor translates it.

 ┌ ┐─NOINSOURCE─

─ ──┴ ┴─INSOURCE─── ──
�

ABBREVIATION: IS, NIS

 Chapter 1. Using compile-time options and facilities 17

The INSOURCE listing contains preprocessor statements that do not appear in the
SOURCE listing. This option is applicable only when the MACRO option is in
effect.

 INTERRUPT
The INTERRUPT option causes the compiled program to respond to attention
requests (interrupts).

 ┌ ┐─NOINTERRUPT─

─ ──┴ ┴─INTERRUPT─── ───
�

ABBREVIATION: INT, NINT

This option determines the effect of attention interrupts when the compiled PL/I
program runs under an interactive system. This option will have an effect only on
programs running under TSO. If you have written a program that relies on raising
the ATTENTION condition, you must compile it with the INTERRUPT option. This
option allows attention interrupts to become an integral part of programming. This
gives you considerable interactive control of the program.

If you specify the INTERRUPT option, an established ATTENTION ON-unit gets
control when an attention interrupt occurs. When the execution of an ATTENTION
ON-unit is complete, control returns to the point of interrupt unless directed
elsewhere by means of a GOTO statement. If you do not establish an ATTENTION
ON-unit, the attention interrupt is ignored.

If you specify NOINTERRUPT, an attention interrupt during a program run does not
give control to any ATTENTION ON-units.

If you require the attention interrupt capability only for testing purposes, use the
TEST option instead of the INTERRUPT option. For more information see “TEST”
on page 33.

See Chapter 15, “Interrupts and attention processing” on page 244 for more
information about using interrupts in your programs.

 LANGLVL
The LANGLVL option specifies the level of PL/I language definition that you want
the compiler to accept.

 ┌ ┐──┬ ┬─── ────────
 │ │└ ┘─,─
 │ │┌ ┐─SAA2─

──LANGLVL──(─ ───� ┴──┬ ┬──┴ ┴─SAA── ─ ─)───
�
 │ │┌ ┐─OS────
 └ ┘──┴ ┴─NOEXT─

SAA
The compiler flags keywords that are not supported by OS PL/I Version 2
Release 3 and does not recognize any built-in functions not supported by OS
PL/I Version 2 Release 3.

18 VisualAge PL/I Programming Guide

SAA2
The compiler accepts the PL/I language definition contained in the PL/I
Language Reference.

NOEXT
No extensions beyond the language level specified are allowed.

OS
The ENVIRONMENT options are allowed, such as Variable Unblocked (V) and
Variable Blocked (VB). For a complete list of the ENVIRONMENT options, see
Table 10 on page 108.

 LIMITS
The LIMITS option specifies various implementation limits.

──LIMITS──(───

 ┌ ┐──┬ ┬─── ───
 │ │└ ┘─,─
 │ │┌ ┐─1��─ ┌ ┐─1��─

─ ───� ┴──┬ ┬ ─EXTNAME──(─ ──┴ ┴─n─── ─)──────────────── ─NAME──(─ ──┴ ┴─n─── ─)─ ─)─────────
�
 │ │┌ ┐─15─
 ├ ┤ ─FIXEDDEC──(─ ──┴ ┴─31─ ─)────────────────
 │ │┌ ┐─31─
 └ ┘ ─FIXEDBIN──(─ ──┴ ┴─63─ ──┬ ┬─────────── ─)─
 └ ┘ ─,─ ──┬ ┬─31─
 └ ┘─63─

EXTNAME
Specifies the maximum length for EXTERNAL name. The maximum value for n
is 100; the minimum value is 7.

FIXEDDEC
Specifies the maximum precision for FIXED DECIMAL.

FIXEDBIN
Specifies the maximum precision for SIGNED FIXED BINARY to be either 31 or
63. The default is 31.

If FIXEDBIN(31,63) is specified, then you may declare 8-byte integers, but
unless an expression contains an 8-byte integer, all arithmetic will done using
4-byte integers.

FIXEDBIN(63,31) is not allowed.

The maximum precision for UNSIGNED FIXED BINARY is one greater, that is,
32 and 64.

NAME
Specifies the maximum length of variable names in your program. The
maximum value for n is 100; the minimum value is 7.

 LINECOUNT
The LINECOUNT option specifies the number of lines per page for compiler
listings, including blank and heading lines.

 ┌ ┐─6�─

─ ─── ──LINECOUNT─ ─(─ ──┴ ┴─n── ─)──
�

 Chapter 1. Using compile-time options and facilities 19

ABBREVIATION: LC

n The number of lines in a page in the listing. The value can be from 10 to
32,767.

 LIST
The LIST option provides a listing of the object module (in a syntax similar to
assembler language instructions) in the compiler listing.

 ┌ ┐─NOLIST─

─ ──┴ ┴─LIST─── ──
�

 MACRO
The MACRO option invokes the preprocessor.

 ┌ ┐─NOMACRO─

─ ──┴ ┴─MACRO─── ───
�

 MAP
The MAP option specifies that the compiler produces additional information that can
be used to locate static and automatic variables in dumps.

 ┌ ┐─NOMAP─

─ ──┴ ┴─MAP─── ───
�

The MAP option forces the LIST option.

 MARGINI
The MARGINI option provides a specified character in the column preceding the
left-hand margin, and also in the column following the right-hand margin, of the
listings produced by the INSOURCE and SOURCE options. The compiler shifts
any text in the source input that precedes the left-hand margin left one column. It
shifts any text that follows the right-hand margin right one column. Thus you can
easily detect text outside the source margins.

 ┌ ┐─NOMARGINI─

─ ──┴ ┴─MARGINI─── ─(──'──c──'──)───
�

ABBREVIATIONS: MI, NMI

c The character to be printed as the margin indicator.

Note: NOMARGINI is equivalent to MARGINI(' ').

20 VisualAge PL/I Programming Guide

 MARGINS
The MARGINS option specifies which part of each compiler input record contains
PL/I statements, and the position of the ANS control character that formats the
listing, if the SOURCE and/or INSOURCE options apply. The compiler does not
process data that is outside these limits, but it does include it in the source listings.

The PL/I source is extracted from the source input records so that the first data
byte of a record immediately follows the last data byte of the previous record. For
variable records, you must ensure that when you need a blank you explicitly insert
it between margins of the records.

 ┌ ┐─2─ ┌ ┐─72─

──MARGINS──(─ ──┴ ┴─m─ ─,─ ──┴ ┴─n── ──┬ ┬────── ─)────────────────────────────────────
�
 └ ┘ ─,──c─

ABBREVIATION: MAR

m The column number of the leftmost character (first data byte) that is processed
by the compiler. It must not exceed 100.

n The column number of the rightmost character (last data byte) that is
processed by the compiler. It should be greater than m, but must not exceed
100.

Variable-length records are effectively padded with blanks to give them the
maximum record length.

c The column number of the ANS printer control character. It must not exceed
100 and should be outside the values specified for m and n. A value of 0 for c
indicates that no ANS control character is present. Only the following control
characters can be used:

(blank) Skip one line before printing

0 Skip two lines before printing

– Skip three lines before printing

+ No skip before printing

1 Start new page

Any other character is an error and is replaced by a blank.

Do not use a value of c that is greater than the maximum length of a source
record, because this causes the format of the listing to be unpredictable. To
avoid this problem, put the carriage control characters to the left of the source
margins for variable-length records.

Specifying MARGINS(,,c) is an alternative to using %PAGE and %SKIP
statements (described in PL/I Language Reference).

The IBM-supplied default for fixed-length records is MARGINS(2,72). For
variable-length and undefined-length records, the IBM-supplied default is
MARGINS(10,100). This specifies that there is no printer control character.

Use the MARGINS option to override the default for the primary input in a program.
The secondary input must have the same margins as the primary input.

 Chapter 1. Using compile-time options and facilities 21

 MAXMEM
When compiling with OPTIMIZE, the MAXMEM option limits the amount of memory
used for local tables of specific, memory intensive optimizations to the specified
number of kilobytes. The maximum number of kilobytes that may be specified is
1048576, which is also the default. Use the MAXMEM option if you want to specify
a memory size of less value than the default.

If the memory specified by the MAXMEM option is insufficient for a particular
optimization, the compilation is completed in such a way that the quality of the
optimization is reduced, and a warning message is issued.

──MAXMEM──(──size──)───
�

When a large size is specified for MAXMEM, compilation may be aborted because
of insufficient virtual storage, depending on the source file being compiled, the size
of the subprogram in the source, and the virtual storage available for the
compilation.

The advantage of using the MAXMEM option is that, for large and complex
applications, the compiler produces a slightly less-optimized object module and
generates a warning message, instead of terminating the compilation with an error
message of "insufficient virtual storage".

 MDECK
The MDECK option specifies that the preprocessor produces a copy of its output
either on the file defined by the SYSPUNCH DD statement under OS/390, or on the
.dek file under OS/390 UNIX.

 ┌ ┐─NOMDECK─

─ ──┴ ┴─MDECK─── ───
�

ABBREVIATIONS: MD, NMD

The MDECK option allows you to retain the output from the preprocessor as a file
of 80-column records. This option is applicable only when the MACRO option is in
effect.

 NAMES
The NAMES option specifies the extralingual characters that are allowed in
identifiers. Extralingual characters are those characters other than the 26
alphabetic, 10 digit, and special characters defined in PL/I Language Reference.

 ┌ ┐────────────────

──NAMES──(─ ──' ───� ┴extraling_char ' ──┬ ┬───────────────────────────────── ─)───────
�
 │ │┌ ┐────────────────────
 └ ┘── ──┬ ┬─── ' ───� ┴upp_extraling_char '
 └ ┘─,─

extracting_char
An extralingual character

22 VisualAge PL/I Programming Guide

upp_extraling_char
The extralingual character that you want interpreted as the uppercase version
of the corresponding character in the first suboption.

If you omit the second suboption, PL/I uses the character specified in the first
suboption as both the lowercase and the uppercase values. If you specify the
second suboption, you must specify the same number of characters as you
specify in the first suboption.

The default is NAMES('#@$' '#@$').

 NEST
The NEST option specifies that the listing resulting from the SOURCE option
indicates the block level and the do-group level for each statement.

 ┌ ┐─NONEST─

─ ──┴ ┴─NEST─── ──
�

 NOT
The NOT option specifies up to seven alternate symbols that can be used as the
logical NOT operator.

 ┌ ┐────────

──NOT──(─ ──' ───� ┴─char─ ' ─)──
�

char
A single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in PL/I Language Reference, except for the logical NOT
symbol (¬).

When you specify the NOT option, the standard NOT symbol is no longer
recognized unless you specify it as one of the characters in the character
string.

For example, NOT('˜') means that the tilde character, X'A1', will be
recognized as the logical NOT operator, and the standard NOT symbol, '¬',
X'5F', will not be recognized. Similarly, NOT('˜¬') means that either the tilde
or the standard NOT symbol will be recognized as the logical NOT operator.

The IBM-supplied default code point for the NOT symbol is X'5F'. The logical
NOT sign might appear as a logical NOT symbol (¬) or a caret symbol (^) on your
keyboard.

 OBJECT
The OBJECT option specifies that the compiler either creates an object module and
stores it in a data set defined by the DD statement with the name SYSLIN under
OS/390, or creates a .o file under OS/390 UNIX.

 ┌ ┐─OBJECT───

─ ──┴ ┴─NOOBJECT─ ──
�

 Chapter 1. Using compile-time options and facilities 23

ABBREVIATIONS: OBJ, NOBJ

 OFFSET
The OFFSET option controls whether the offsets shown in the assembler listing are
from the start of the current module or the current procedure.

 ┌ ┐─NOOFFSET─
 ├ ┤─NOF──────

─ ──┼ ┼─OFFSET─── ──
�
 └ ┘─OF───────

 OPTIMIZE
The OPTIMIZE option specifies the type of optimization required:

 ┌ ┐─NOOPTIMIZE─

─ ──┴ ┴─OPTIMIZE─── ─(─ ──┬ ┬─TIME─ ─)───
�
 ├ ┤─J────
 └ ┘─2────

ABBREVIATIONS: OPT, NOPT

OPTIMIZE(TIME)
Optimizes the machine instructions generated to produce a more efficient
object program. This type of optimization can also reduce the amount of main
storage required for the object module. The use of OPTIMIZE(TIME) could
result in a substantial increase in compile time over NOOPTIMIZE and a
substantial increase in the space required. For example, compiling an average
size program at OPT(TIME) might take several CPU minutes and could require
a region of 50M or more. During optimization the compiler can move code to
increase run-time efficiency. As a result, statement numbers in the program
listing might not correspond to the statement numbers used in run-time
messages.

OPTIMIZE(0)
The equivalent of NOOPTIMIZE.

OPTIMIZE(2)
The equivalent of OPTIMIZE(TIME).

NOOPTIMIZE
Specifies fast compilation speed, but inhibits optimization.

 OPTIONS
The OPTIONS option specifies that the compiler includes a list showing the
compile-time options to be used during this compilation in the compiler listing.

 ┌ ┐─NOOPTIONS─

─ ──┴ ┴─OPTIONS─── ───
�

ABBREVIATIONS: OP, NOP

24 VisualAge PL/I Programming Guide

This list includes all options applied by default, those specified in the PARM
parameter of an EXEC statement or in the invoking command (pli), those specified
in a %PROCESS statement, those specified in the IBM_OPTIONS environment
variable under OS/390, and all those incorporated from any options file.

 OR
The OR option specifies up to seven alternate symbols as the logical OR operator
(|). These symbols are also used as the concatenation operator, which is defined
as two consecutive logical OR symbols.

 ┌ ┐────────────────────

──OR─ ───� ┴─(──'──char──'──)─ ──
�

Note: Do not code any blanks between the quotes.

The IBM-supplied default code point for the OR symbol (|) is X'4F'.

char
A single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in the PL/I Language Reference, except for the logical OR
symbol (|).

If you specify the OR option, the standard OR symbol is no longer recognized
unless you specify it as one of the characters in the character string.

For example, OR('\') means that the backslash character, X'E0', will be
recognized as the logical OR operator, and two consecutive backslashes will be
recognized as the concatenation operator. The standard OR symbol, ']',
X'4F', will not be recognized as either operator. Similarly, OR('\|') means that
either the backslash or the standard OR symbol will be recognized as the
logical OR operator, and either symbol or both symbols can be used to form
the concatenation operator.

 PP
The PP option specifies which (and in what order) preprocessors are invoked prior
to compilation. The MACRO option and the PP(MACRO) option both cause the
macro facility to be invoked prior to compilation. If both MACRO and PP(MACRO)
are specified, the macro facility is invoked twice. The same preprocessor can be
specified multiple times.

 ┌ ┐─NOPP───
 │ │┌ ┐──┬ ┬─── ───────────────────────────
 │ ││ │└ ┘─,─

─ ──┴ ┴ ─PP─ ─(─ ───� ┴─pp-name─ ──┬ ┬───────────────────── ─)─ ──────────────────────────
�
 │ │┌ ┐──┬ ┬─── ────
 │ ││ │└ ┘─,─
 └ ┘ ─(─ ───� ┴─pp-string─ ─)─

pp-name
The name given to a particular preprocessor. INCLUDE and MACRO are the
defined names for the preprocessors presently available. Using an undefined
name causes a diagnostic error.

 Chapter 1. Using compile-time options and facilities 25

pp-string
A string of up to 100 characters representing the options for the corresponding
preprocessor. If more than one pp-string is specified, they are concatenated
with a blank separating each string.

You can specify a maximum of 31 preprocessors.

 PPTRACE
The PPTRACE option specifies that, when a deck file is written for a preprocessor,
every nonblank line in that file is preceded by a line containing a %LINE directive.
The directive indicates the original source file and line to which the nonblank line
should be attributed.

 ┌ ┐─NOPPTRACE─

─ ──┴ ┴─PPTRACE─── ───
�

 PREFIX
The PREFIX option enables or disables the specified PL/I conditions in the
compilation unit being compiled without you having to change the source program.
The specified condition prefixes are logically prefixed to the beginning of the first
PACKAGE or PROCEDURE statement.

──PREFIX──(─ ──┬ ┬─────────────── ─)──
�
 │ │┌ ┐──┬ ┬─── ────
 │ ││ │└ ┘─,─
 └ ┘ ───� ┴─condition─

condition
Any condition that can be enabled/disabled in a PL/I program, as explained in
PL/I Language Reference.

Default: PREFIX(CONVERSION FIXEDOVERFLOW INVALIDOP OVERFLOW
NOSIZE NOSTRINGRANGE NOSTRINGSIZE NOSUBSCRIPTRANGE
UNDERFLOW ZERODIVIDE)

 PROCEED
The PROCEED option stops the compiler after processing by a preprocessor is
completed depending on the severity of messages issued by previous
preprocessors.

 ┌ ┐─S─

─ ──┬ ┬─── ──NOPROCEED─ ─(─ ──┼ ┼─E─ ─)─ ──
�
 │ │└ ┘─W─
 └ ┘─── ──PROCEED─ ───────────────

ABBREVIATIONS: PRO, NPRO

PROCEED
Is equivalent to NOPROCEED(S).

NOPROCEED
Ends the processing after the preprocessor has finished compiling.

26 VisualAge PL/I Programming Guide

NOPROCEED(S)
The invocation of preprocessors and the compiler does not continue if a severe
or unrecoverable error is detected in this stage of preprocessing.

NOPROCEED(E)
The invocation of preprocessors and the compiler does not continue if an error,
severe error, or unrecoverable error is detected in this stage of preprocessing.

NOPROCEED(W)
The invocation of preprocessors and the compiler does not continue if a
warning, error, severe error, or unrecoverable error is detected in this stage of
preprocessing.

 RESPECT
The RESPECT option causes the compiler to honor any specification of the DATE
attribute and to apply the DATE attribute to the result of the DATE built-in function.

──RESPECT──(─ ──┬ ┬────── ─)──
�
 └ ┘─DATE─

Using the default, RESPECT(), causes the compiler to ignore any specification of the
DATE attribute; therefore, the DATE attribute would not be applied to the result of
the DATE built-in function.

 RULES
The RULES option allows or disallows certain language capabilities and lets you
choose semantics when alternatives are available. It can help you diagnose
common programming errors.

 ┌ ┐──┬ ┬─── ───────────────
 │ │└ ┘─,─
 │ │┌ ┐─IBM─

──RULES──(─ ───� ┴──┬ ┬──┴ ┴─ANS─ ───────── ─)──
�
 │ │┌ ┐─BYNAME───
 ├ ┤──┴ ┴─NOBYNAME─ ────
 │ │┌ ┐─GOTO───
 ├ ┤──┴ ┴─NOGOTO─ ──────
 │ │┌ ┐─NOLAXBIF─
 ├ ┤──┴ ┴─LAXBIF─── ────
 │ │┌ ┐─LAXCTL───
 ├ ┤──┴ ┴─NOLAXCTL─ ────
 │ │┌ ┐─NOLAXDCL─
 ├ ┤──┴ ┴─LAXDCL─── ────
 │ │┌ ┐─NOLAXIF─
 ├ ┤──┴ ┴─LAXIF─── ─────
 │ │┌ ┐─LAXLINK───
 ├ ┤──┴ ┴─NOLAXLINK─ ───
 │ │┌ ┐─LAXMARGINS───
 ├ ┤──┴ ┴─NOLAXMARGINS─
 │ │┌ ┐─LAXQUAL───
 ├ ┤──┴ ┴─NOLAXQUAL─ ───
 │ │┌ ┐─NOLAXSTRZ─
 ├ ┤──┴ ┴─LAXSTRZ─── ───
 │ │┌ ┐─NOLAXCOMMENT─
 ├ ┤──┴ ┴─LAXCOMMENT───
 │ │┌ ┐─MULTICLOSE───
 └ ┘──┴ ┴─NOMULTICLOSE─

ABBREVIATIONS: LAXCOM, NOLAXCOM

 Chapter 1. Using compile-time options and facilities 27

IBM|ANS
Under the IBM suboption:

� For operations requiring string data, data with the BINARY attribute is
converted to BIT.

� The second argument to the ROUND built-in function is ignored if the first
argument has the FLOAT attribute.

� Conversions in arithmetic operations or comparisons occur as described in
the PL/I Language Reference.

� Conversions for the ADD, DIVIDE, MULTIPLY, and SUBTRACT built-in
functions occur as described in the PL/I Language Reference except that
operations specified as scaled fixed binary are evaluated as scaled fixed
decimal.

� Nonzero scale factors are permitted in FIXED BIN declares.

� If the result of any precision-handling built-in function (ADD, BINARY, etc.)
has FIXED BIN attributes, the specified or implied scale factor can be
nonzero.

� UNSPEC cannot be applied to a structure and, if applied to an array,
returns an array of bit strings.

� Even if all arguments to the MAX or MIN built-in functions are UNSIGNED
FIXED BIN, the result is always SIGNED.

� Even when you ADD, MULTIPLY, or DIVIDE two UNSIGNED FIXED BIN
operands, the result has the SIGNED attribute.

� Even when you apply the MOD or REM built-in functions to two
UNSIGNED FIXED BIN operands, the result has the SIGNED attribute.

Under the ANS suboption:

� For operations requiring string data, data with the BINARY attribute is
converted to CHARACTER.

� The ROUND built-in function is implemented as described in the PL/I
Language Reference.

� Conversions in arithmetic operations or comparisons occur as described in
the PL/I Language Reference.

� Conversions for the ADD, DIVIDE, MULTIPLY, and SUBTRACT built-in
functions occur as described in the PL/I Language Reference.

� Nonzero scale factors are not permitted in FIXED BIN declares.

� If the result of any precision-handling built-in function (ADD, BINARY, etc.)
has FIXED BIN attributes, the specified or implied scale factor must be
zero.

� UNSPEC can be applied to structures and, when applied to a structure or
an array, UNSPEC returns a single bit string.

BYNAME|NOBYNAME
Specifying NOBYNAME causes the compiler to flag all BYNAME assignments
with an E-level message.

28 VisualAge PL/I Programming Guide

GOTO|NOGOTO
Specifying NOGOTO causes all GOTO statements to be flagged.

LAXBIF|NOLAXBIF
Specifying LAXBIF causes the compiler to build a contextual declaration for
built-in functions, such as NULL, even when used without an empty parameter
list.

LAXCOMMENT|NOLAXCOMMENT
If you specify RULES(LAXCOMMENT), the compiler ignores the special
characters /X/. Whatever comes between sets of these characters, then, is
interpreted as part of the syntax rather than as a comment. If you specify
RULES(NOLAXCOMMENT), the compiler treats /X/ as the start of a comment
which continues until a closing X/ is found.

LAXCTL|NOLAXCTL
Specifying LAXCTL allows a CONTROLLED variable to be declared with a
constant extent and yet to be allocated with a differing extent. NOLAXCTL
requires that if a CONTROLLED variable is to be allocated with a varying
extent, then that extent must be specified as an asterisk or as a non-constant
expression.

The following is illegal under NOLAXCTL:

dcl a bit(8) ctl;
alloc a bit(16);

LAXDCL|NOLAXDCL
Specifying LAXDCL allows implicit declarations. NOLAXDCL disallows all
implicit and contextual declarations except for BUILTINs and for files SYSIN
and SYSPRINT.

LAXIF|NOLAXIF
Specifying LAXIF allows IF, WHILE, UNTIL, and WHEN clauses to evaluate to
other than BIT(1) NONVARYING. NOLAXIF allows IF, WHILE, UNTIL, and
WHEN clauses to evaluate to only BIT(1) NONVARYING.

The following are illegal under NOLAXIF:

dcl i fixed bin;
dcl b bit(8);

...
if i then ...
if b then ...

LAXLINK|NOLAXLINK
Specifying LAXLINK causes the compiler to ignore the LINKAGE and other
options specified in the declarations of two ENTRY variables or constants when
you assign or compare one with the other.

LAXMARGINS|NOLAXMARGINS
Specifying NOLAXMARGINS causes the compiler to flag any line containing
non-blank characters after the right margin. This can be useful in detecing
code, such as a closing comment, that has accidentally been pushed out into
the right margin.

 Chapter 1. Using compile-time options and facilities 29

LAXQUAL|NOLAXQUAL
Specifying NOLAXQUAL causes the compiler to flag any reference to structure
members that are not level 1 and are not dot qualified. Consider the following
example:

dcl
 1 a,

2 b fixed bin,
2 c fixed bin;

c = 15; /X would be flagged X/
a.c = 15; /X would not be flagged X/

LAXSTRZ|NOLAXSTRZ
Specifying LAXSTRZ causes the compiler not to flag any bit or character
variable that is initialized to or assigned a constant value that is too long if the
excess bits are all zeros (or if the excess characters are all blank).

MULTICLOSE|NOMULTICLOSE
NOMULTICLOSE causes the compiler to flag all statements that force the
closure of multiple groups of statement with an E-level message.

Default: RULES (IBM BYNAME GOTO NOLAXBIF NOLAXCOMMENT LAXCTL
LAXDCL LAXIF LAXLINK LAXMARGINS LAXQUAL NOLAXSTRZ MULTICLOSE)

 SEMANTIC
The SEMANTIC option specifies that the execution of the compiler's semantic
checking stage depends on the severity of messages issued prior to this stage of
processing.

 ┌ ┐─SEMANTIC────────────────────

─ ──┴ ┴ ─NOSEMANTIC─ ──┬ ┬───────────── ───
�
 └ ┘ ─(─ ──┬ ┬─S─ ─)─
 ├ ┤─E─
 └ ┘─W─

ABBREVIATIONS: SEM, NSEM

SEMANTIC
Equivalent to NOSEMANTIC(S).

NOSEMANTIC
Processing stops after syntax checking. No semantic checking is performed.

NOSEMANTIC (S)
No semantic checking is performed if a severe error or an unrecoverable error
has been encountered.

NOSEMANTIC (E)
No semantic checking is performed if an error, a severe error, or an
unrecoverable error has been encountered.

NOSEMANTIC (W)
No semantic checking is performed if a warning, an error, a severe error, or an
unrecoverable error has been encountered.

30 VisualAge PL/I Programming Guide

Semantic checking is not performed if certain kinds of severe errors are found. If
the compiler cannot validate that all references resolve correctly (for example, if
built-in function or entry references are found with too few arguments) the suitability
of any arguments in any built-in function or entry reference is not checked.

 SPILL
The SPILL option specifies the size of the spill area to be used for the compilation.
When too many registers are in use at once, the compiler dumps some of the
registers into temporary storage that is called the spill area.

──SPILL──(──size──)──
�

If you have to expand the spill area, you will receive a compiler message telling you
the size to which you should increase it. Once you know the spill area that your
source program requires, you can specify the required size (in bytes) as shown in
the syntax diagram above. The maximum spill area size is 3900. Typically, you will
only need to specify this option when compiling very large programs with
OPTIMIZE.

 SOURCE
The SOURCE option specifies that the compiler includes a listing of the source
program in the compiler listing. The source program listed is either the original
source input or, if the MACRO option applies, the output from the preprocessor.

 ┌ ┐─NOSOURCE─

─ ──┴ ┴─SOURCE─── ──
�

ABBREVIATIONS: S, NS

 STORAGE
The STORAGE option determines whether or not the compiler produces a report in
the listing that gives the approximate amount of stack storage used by each block
in your program.

 ┌ ┐─NOSTORAGE──────────────

─ ──┴ ┴ ─STORAGE─ ──┬ ┬─────────── ──
�
 └ ┘─(──max──)─

ABBREVIATIONS: STG, NSTG

max
The limit for the number of bytes that can be used for compiler-generated
temporaries. The compiler flags any statement that uses more bytes than
those specified by max. The default for max is 100.

 Chapter 1. Using compile-time options and facilities 31

 SYNTAX
The SYNTAX option specifies that the compiler continues into syntax checking after
preprocessing when you specify the MACRO option, unless an unrecoverable error
has occurred. Whether the compiler continues with the compilation depends on the
severity of the error, as specified by the NOSYNTAX option.

 ┌ ┐ ─── ──NOSYNTAX─ ──┬ ┬─────────────
 │ ││ │┌ ┐─S─
 │ │└ ┘ ─(─ ──┼ ┼─W─ ─)─
 │ │└ ┘─E─

─ ──┴ ┴─SYNTAX──────────────────────── ───
�

ABBREVIATIONS: SYN, NSYN

SYNTAX
Continues syntax checking after preprocessing unless a severe error or an
unrecoverable error has occurred. SYNTAX is equivalent to NOSYNTAX(S).

NOSYNTAX
Processing stops unconditionally after preprocessing.

NOSYNTAX(W)
No syntax checking if a warning, error, severe error, or unrecoverable error is
detected.

NOSYNTAX(E)
No syntax checking if the compiler detects an error, severe error, or
unrecoverable error.

NOSYNTAX(S)
No syntax checking if the compiler detects a severe error or unrecoverable
error.

If the NOSYNTAX option terminates the compilation, no cross-reference listing,
attribute listing, or other listings that follow the source program is produced.

You can use this option to prevent wasted runs when debugging a PL/I program
that uses the preprocessor.

 SYSPARM
The SYSPARM option allows you to specify the value of the string that is returned
by the macro facility built-in function SYSPARM.

──SYSPARM──(──'string'──)──
�

string
Can be up to 64 characters long. A null string is the default.

For more information about the macro facility, see PL/I Language Reference.

32 VisualAge PL/I Programming Guide

 SYSTEM
The SYSTEM option specifies the format used to pass parameters to the MAIN PL/I
procedure, and generally indicates the host system under which the program runs.

 ┌ ┐─MVS──

──SYSTEM──(─ ──┼ ┼─CICS─ ─)───
�
 └ ┘─IMS──

OS/390, CICS, and IMS are the subparameters recognized. This option allows a
program compiled under one system to run under another.

Table 4 shows the type of parameter list you can expect, and how the program
runs under the specified host system. It also shows the implied settings of
NOEXECOPS. Run-time information for the SYSTEM option is provided in OS/390
Language Environment Programming Guide.. .

Table 4. SYSTEM option table

SYSTEM option

Type of parameter list

Program runs as

NOEXECOPS
implied

SYSTEM(MVS) Single varying
character string or no
parameters.

OS/390 application
program

NO

Otherwise, arbitrary
parameter list.

YES

SYSTEM(CICS) Pointer(s) CICS transaction YES

SYSTEM(IMS) Pointer(s) IMS application
program

YES

 TERMINAL
The TERMINAL option determines whether or not diagnostic and information
messages produced during compilation are displayed on the terminal.

 ┌ ┐─TERMINAL───

─ ──┴ ┴─NOTERMINAL─ ──
�

ABBREVIATIONS: TERM, NTERM

TERMINAL
Messages are displayed on the terminal.

NOTERMINAL
No information or diagnostic compiler messages are displayed on the terminal.

 TEST
The TEST option specifies the level of testing capability that the compiler generates
as part of the object code. It allows you to control the location of test hooks and to
control whether or not the symbol table will be generated.

 Chapter 1. Using compile-time options and facilities 33

 ┌ ┐─NOTEST──

─ ──┴ ┴ ─TEST─ ──┬ ┬─────────────────────────────────────── ─────────────────────────
�
 │ │┌ ┐─NONE──
 └ ┘ ─(─ ──┬ ┬ ──┼ ┼─BLOCK─ ──┬ ┬────────────── ─)─
 │ │├ ┤─STMT── │ │┌ ┐─SYM───
 │ │├ ┤─PATH── └ ┘ ─,─ ──┴ ┴─NOSYM─
 │ │└ ┘─ALL───
 │ │┌ ┐─SYM───
 └ ┘ ──┴ ┴─NOSYM─ ──┬ ┬──────────────
 │ │┌ ┐─NONE──
 └ ┘ ─,─ ──┼ ┼─BLOCK─
 ├ ┤─STMT──
 ├ ┤─PATH──
 └ ┘─ALL───

STMT
Inserts hooks at statement boundaries and block boundaries. STMT generates
a statement table.

PATH
Tells the compiler to intert hooks:

� Before the first statement enclosed by an interative DO statement

� Before the first statement of the true part of an IF statement

� Before the first statement of the false part of an IF statement

� Before the first statement of a true WHEN or OTHERWISE statement of a
SELECT group

� Before the statement following a user label

� At CALLs or function references - both before and after control is passed to
the routine

� At block boundaries

When PATH is specified, the compiler generates a statement table.

BLOCK
Tells the compiler to insert hooks at block boundaries (block entry and block
exit).

ALL
Inserts hooks at all possible locations and generates a statement table.

Note: Under opt(2), hooks are set only at block boundaries.

NONE
No hooks are put into the program.

SYM
Creates a symbol table that allows you to examine variables by name.

NOSYM
No symbol table is generated.

NOTEST
Suppresses the generation of all testing information.

Any TEST option other than NOTEST and TEST(NONE,NOSYM) will automatically
provide the attention interrupt capability for program testing.

34 VisualAge PL/I Programming Guide

If the program has an ATTENTION ON-unit that you want invoked, you must
compile the program with either of the following:

� The INTERRUPT option
� A TEST option other than NOTEST or TEST(NONE,NOSYM)

Note: ATTENTION is supported only under TSO.

The TEST option will imply GONUMBER.

Because the TEST option can increase the size of the object code and can affect
performance, you might want to limit the number and placement of hooks.

 TUNE
The TUNE option specifies the architecture for which the executable program will
be optimized. This option allows the optimizer to take advantage of architectural
differences such as scheduling of instructions.

 ┌ ┐─�─

──TUNE──(─ ──┴ ┴─n─ ─)──
�

Note: If TUNE level is lower than ARCH, TUNE is forced to ARCH.

Specify the group to which a model number belongs as a subparameter. If you
specify a model which does not exist or is not supported, a warning message is
issued stating that the suboption is invalid and that the default will be used.

The following current models are supported:

0 Generates code that is executable on all models, but it will not be able to take
advantage of architectural differences on the models specified below.

1 Generates code that is executable on all models but is optimized for the
following models:

9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

9021-xx1 and 9021-xx2

2 Generates code that is executable on all models but is optimized for the
following and follow-on models:

9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003

9672-Rx1, 9672-Exx, and 9672-Pxx

3 Produces code that is optimized for the 9672 G5 models

 WIDECHAR
The WIDECHAR option specifies the format in which WIDECHAR data will be
stored.

 ┌ ┐─BIGENDIAN────

──WIDECHAR──(─ ──┴ ┴─LITTLEENDIAN─ ─)───
�

 Chapter 1. Using compile-time options and facilities 35

BIGENDIAN
Indicates that WIDECHAR data will be stored in bigendian format. For
instance, the WIDECHAR value for the UTF-16 character '1' will be stored as
'0031'x.

LITTLEENDIAN
Indicates that WIDECHAR data will be stored in littleendian format. For
instance, the WIDECHAR value for the UTF-16 character '1' will be stored as
'3100'x.

WX constants should always be specified in bigendian format. Thus the value '1'
should always be specified as '0031'wx, even if under the
WIDECHAR(LITTLEENDIAN) option, it is stored as '3100'x.

 WINDOW
The WINDOW option sets the value for the w window argument used in various
date-related built-in functions.

 ┌ ┐─195�─

──WINDOW──(─ ──┴ ┴─w──── ─)───
�

w Either an unsigned integer that represents the start of a fixed window or a
negative integer that specifies a “sliding” window. For example, WINDOW(-2J)
indicates a window that starts 20 years prior to the year when the program
runs.

 XREF
The XREF option provides a cross-reference table of names used in the program
together with the numbers of the statements in which they are declared or
referenced in the compiler listing.

 ┌ ┐─NOXREF────────────────────────

─ ──┴ ┴ ─── ──XREF─ ──┬ ┬───────────────── ───
�
 │ │┌ ┐─FULL──
 └ ┘ ─(─ ──┴ ┴─SHORT─ ─)─

ABBREVIATIONS: X, NX

FULL
Includes all identifiers and attributes in the compiler listing.

SHORT
Omits unreferenced identifiers from the compiler listing.

The only names not included in the cross reference listing created when using the
XREF option are label references on END statements. For example, assume that
statement number 20 in the procedure PROC1 is END PROC1;. In this situation,
statement number 20 does not appear in the cross reference listing for PROC1.)

If you specify both the XREF and ATTRIBUTES options, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage is
determined by the last option specified. For example, ATTRIBUTES(SHORT)
XREF(FULL) results in the FULL option for the combined listing.

36 VisualAge PL/I Programming Guide

For a description of the format and content of the cross-reference table, see
“Cross-reference table” on page 43.

For more information about sorting identifiers and storage requirements with
DBCSOS, see “ATTRIBUTE and cross-reference table” on page 43.

Specifying options in the %PROCESS or *PROCESS statements
You can use either %PROCESS or *PROCESS in your program; they are equally
acceptable. For consistency and readability in this book, we will always refer to
%PROCESS but you can use either %PROCESS or *PROCESS whenever this
statement is used.

The %PROCESS statement identifies the start of each external procedure and
allows compile-time options to be specified for each compilation. The options you
specify in adjacent %PROCESS statements apply to the compilation of the source
statements to the end of input, or the next %PROCESS statement.

To specify options in the %PROCESS statement, code as follows:

%PROCESS options;

where options is a list of compile-time options. You must end the list of options
with a semicolon, and the options list should not extend beyond the default
right-hand source margin. The asterisk must appear in the first column of the
record. The keyword PROCESS can follow in the next byte (column) or after any
number of blanks. You must separate option keywords by a comma or at least one
blank.

The number of characters is limited only by the length of the record. If you do not
wish to specify any options, code:

%PROCESS;

If you find it necessary to continue the %PROCESS statement onto the next record,
terminate the first part of the list after any delimiter, and continue on the next
record. You cannot split keywords or keyword arguments across records. You can
continue a %PROCESS statement on several lines, or start a new %PROCESS
statement. An example of multiple adjacent %PROCESS statements is as follows:

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST TEST ;

Compile-time options, their abbreviated syntax, and their IBM-supplied defaults are
shown in Table 3 on page 4.

Using the preprocessor
The preprocessing facilities of the compiler are described in PL/I Language
Reference. You can include statements in your PL/I program that, when executed
by the preprocessor stage of the compiler, modify the source program or cause
additional source statements to be included from a library. The following discussion
provides some illustrations on the use of the preprocessor and explains how to
establish and use source statement libraries.

 Chapter 1. Using compile-time options and facilities 37

Invoking the preprocessor
The compile-time option MACRO invokes the preprocessor stage of the compiler.

Three other compile-time options, MDECK, INSOURCE, and SYNTAX, are
meaningful only when you also specify the MACRO option. For more information
about these options, see MDECK on page 22, INSOURCE on page 17, and
SYNTAX on page 32.

Table 5. Format of the preprocessor output

Column 1 Printer control character, if any, transferred from the position specified in the
MARGINS option.

Columns 2-72 Source program. If the original source program used more than 71 columns,
additional lines are included for any lines that need continuation. If the original
source program used fewer than 71 columns, extra blanks are added on the right.

Macro facility options
You can specify pp(macro) without any options or include any of the following:

──PP──(──MACRO──(──'─ ──┬ ┬────────────────────────── ──┬ ┬─────────────────────── ──

 │ │┌ ┐─DECIMAL─ │ │┌ ┐─UPPER─
 └ ┘ ─FIXED──(─ ──┴ ┴─BINARY── ─)─ └ ┘ ─CASE──(─ ──┴ ┴─ASIS── ─)─

──'──)──)───
�

FIXED (DECIMAL or BINARY)
This option specifies the default base for FIXED variables as either DECIMAL
or BINARY. (See Language Reference for more information).

CASE (ASIS or UPPER)
This option specifies if the input text is converted to uppercase. ASIS specifies
that the input text is left "as is". UPPER specifies that the input text is
converted to upper case.

A simple example of the use of the preprocessor to produce a source deck is
shown in Figure 1 on page 39. According to the value assigned to the
preprocessor variable USE, the source statements will represent either a subroutine
(CITYSUB) or a function (CITYFUN). The DSNAME used for SYSPUNCH specifies
a source program library on which the preprocessor output will be placed. Normally
compilation would continue and the preprocessor output would be compiled.

38 VisualAge PL/I Programming Guide

 //OPT4#8 JOB
 //STEP2 EXEC IBMZC,PARM.PLI='MACRO,MDECK,NOCOMPILE,NOSYNTAX'
 //PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,CATLG),UNIT=SYSDA,
 // SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB,LRECL=8J,BLKSIZE=4JJ)
 //PLI.SYSIN DD X
/X GIVEN ZIP CODE, FINDS CITY X/
%DCL USE CHAR;
%USE = 'FUN' /X FOR SUBROUTINE, %USE = 'SUB' X/ ;
%IF USE = 'FUN' %THEN %DO;
CITYFUN: PROC(ZIPIN) RETURNS(CHAR(16)) REORDER; /X FUNCTION X/

 %END;
 %ELSE %DO;
CITYSUB: PROC(ZIPIN, CITYOUT) REORDER; /X SUBROUTINE X/
DCL CITYOUT CHAR(16); /X CITY NAME X/

 %END;
DCL (LBOUND, HBOUND) BUILTIN;
DCL ZIPIN PIC '99999'; /X ZIP CODE X/
DCL 1 ZIP_CITY(7) STATIC, /X ZIP CODE - CITY NAME TABLE X/

2 ZIP PIC '99999' INIT(
95141, 95J14, 95J3J,
95J51, 95J7J, 95JJ8,
J), /X WILL NOT LOOK AT LAST ONE X/

2 CITY CHAR(16) INIT(
'SAN JOSE', 'CUPERTINO', 'LOS GATOS',
'SANTA CLARA', 'SARATOGA', 'CAMPBELL',
'UNKNOWN CITY'); /X WILL NOT LOOK AT LAST ONE X/

DCL I FIXED BIN(31);
DO I = LBOUND(ZIP,1) TO /X SEARCH FOR ZIP IN TABLE X/

HBOUND(ZIP,1)-1 /X DON'T LOOK AT LAST ELEMENT X/
WHILE(ZIPIN ¬= ZIP(I));

 END;
%IF USE = 'FUN' %THEN %DO;
RETURN(CITY(I)); /X RETURN CITY NAME X/

 %END;
 %ELSE %DO;

CITYOUT=CITY(I); /X RETURN CITY NAME X/
 %END;
 END;

Figure 1. Using the preprocessor to produce a source deck that is placed on a source
program library

Using the %INCLUDE statement
%INCLUDE statements are used to include additional PL/I files at specified points
in a compilation unit. The PL/I Language Reference describes how to use the
%INCLUDE statement to incorporate source text from a library into a PL/I program.

For an OS/390 environment

A library is an OS/390 partitioned data set that can be used to store other
data sets called members. Source text that you might want to insert into a
PL/I program using a %INCLUDE statement must exist as a member within a
library. “Source Statement Library (SYSLIB)” on page 67 further describes
the process of defining a source statement library to the compiler.

The statement:

%INCLUDE DD1 (INVERT);

specifies that the source statements in member INVERT of the library defined
by the DD statement with the name DD1 are to be inserted consecutively into
the source program. The compilation job step must include appropriate DD
statements.

 Chapter 1. Using compile-time options and facilities 39

If you omit the ddname, the ddname SYSLIB is assumed. In such a case,
you must include a DD statement with the name SYSLIB. (The IBM-supplied
cataloged procedures do not include a DD statement with this name in the
compilation procedure step.)

For an OS/390 UNIX environment

The name of the actual include file must be lowercase, unless you specify
UPPERINC. For example, if you used the include statement %include
sample, the compiler would find the file sample.inc, but would not find the file
SAMPLE.inc. Even if you used the include statement %include SAMPLE, the
compiler would still look for sample.inc.

The compiler searches for include files in the following order:

 1. Current directory
2. Directories specified with the -I flag or INCDIR compile-time option
3. The /usr/include directory

The first file found by the compiler is included into your source.

A %PROCESS statement in source text included by a %INCLUDE statement
results in an error in the compilation.

Figure 2 shows the use of a %INCLUDE statement to include the source
statements for FUN in the procedure TEST. The library HPU8.NEWLIB is defined
in the DD statement with the qualified name PLI.SYSLIB, which is added to the
statements of the cataloged procedure for this job. Since the source statement
library is defined by a DD statement with the name SYSLIB, the %INCLUDE
statement need not include a ddname.

It is not necessary to invoke the preprocessor if your source program, and any text
to be included, does not contain any macro statements.

 //OPT4#9 JOB
 //STEP3 EXEC IBMZCBG,PARM.PLI='INC,S,A,X,NEST'
 //PLI.SYSLIB DD DSN=HPU8.NEWLIB,DISP=OLD
 //PLI.SYSIN DD X

TEST: PROC OPTIONS(MAIN) REORDER;
DCL ZIP PIC '99999'; /X ZIP CODE X/
DCL EOF BIT INIT('J'B);
ON ENDFILE(SYSIN) EOF = '1'B;
GET EDIT(ZIP) (COL(1), P'99999');

 DO WHILE(¬EOF);
PUT SKIP EDIT(ZIP, CITYFUN(ZIP)) (P'99999', A(16));
GET EDIT(ZIP) (COL(1), P'99999');

 END;
 %PAGE;
 %INCLUDE FUN;
 END; /X TEST X/
 //GO.SYSIN DD X
 95141
 95J3J
 941J1
 //

Figure 2. Including source statements from a library

40 VisualAge PL/I Programming Guide

Using % statements
Statements that direct the operation of the compiler begin with a percent (%)
symbol. % statements allow you to control the source program listing and to
include external strings in the source program. % statements must not have label
or condition prefixes and cannot be a unit of a compound statement. You should
place each % statement on a line by itself.

The usage of each % control statement—%INCLUDE, %PRINT, %NOPRINT,
%OPTION, %PAGE, %POP, %PUSH, and %SKIP—is listed below. For a
complete description of these statements, see PL/I Language Reference.

%INCLUDE Directs the compiler to incorporate external strings of characters
and/or graphics into the source program.

%PRINT Directs the compiler to resume printing the source and insource
listings.

%NOPRINT Directs the compiler to suspend printing the source and insource
listings until a %PRINT statement is encountered.

%OPTION Specifies one of a selected subset of compiler options for a
segment of source code.

%PAGE Directs the compiler to print the statement immediately after a
%PAGE statement in the program listing on the first line of the next
page.

%POP Directs the compiler to restore the status of the %PRINT,
%NOPRINT, and %OPTION saved by the most recent %PUSH.

%PUSH Saves the current status of the %PRINT, %NOPRINT, and
%OPTION in a push down stack on a last-in, first-out basis.

%SKIP Specifies the number of lines to be skipped.

Using the compiler listing
During compilation, the compiler generates a listing, most of which is optional, that
contains information about the source program, the compilation, and the object
module. The following description of the listing refers to its appearance on a
printed page.

Of course, if compilation terminates before reaching a particular stage of
processing, the corresponding listings do not appear.

 Heading information
The first page of the listing is identified by the product number, the compiler version
number, and the date and the time compilation commenced. This page and
subsequent pages are numbered.

Near the end of the listing you will find either a statement that no errors or warning
conditions were detected during the compilation, or a message that one or more
errors were detected. The format of the messages is described under “Messages
and return codes” on page 46. The second to the last line of the listing shows the
CPU time taken for the compilation. The last line of the listing is END OF
COMPILATION OF xxxx. where xxxx is the external procedure name. If you

 Chapter 1. Using compile-time options and facilities 41

specify the NOSYNTAX compile-time option, or the compiler aborts early in the
compilation, the external procedure name xxxx is not included and the line
truncates to END OF COMPILATION.

The following sections describe the optional parts of the listing in the order in which
they appear.

Options used for compilation
If you specify the OPTIONS option, a complete list of the options specified for the
compilation, including the default options, appears on the first pages.

 Preprocessor input
If you specify both the MACRO and INSOURCE options, the compiler lists input to
the preprocessor, one record per line, each line numbered sequentially at the left.

If the preprocessor detects an error, or the possibility of an error, it prints a
message on the page or pages following the input listing. The format of these
messages is the same as the format for the compiler messages described under
“Messages and return codes” on page 46.

 SOURCE program
If you specify the SOURCE option, the compiler lists one record per line. If the
input records contain printer control characters, or %SKIP or %PAGE statements,
the lines are spaced accordingly. Use %NOPRINT and %PRINT statements to
stop and restart the printing of the listing.

If you specify the MACRO option, the source listing shows the included text in
place of the %INCLUDE statements in the primary input data set.

Statement nesting level
If you specify the NEST option, the block level and the DO-level are printed to the
right of the statement or line number under the headings LEV and NT respectively,
as in the following example:

 Line.File LV NT
1.1 A: PROC OPTIONS(MAIN);

 2.1 1 B: PROC;
3.1 2 DCL K(1J,1J) FIXED BIN (15);
4.1 2 DCL Y FIXED BIN (15) INIT (6);
5.1 2 DO I=1 TO 1J;
6.1 2 1 DO J=1 TO 1J;
7.1 2 2 K(I,J) = N;

 8.1 2 2 END;
 9.1 2 1 BEGIN;
 1J.1 3 1 K(1,1)=Y;
 11.1 3 1 END;
 12.1 2 1 END B;
 13.1 1 END A;

42 VisualAge PL/I Programming Guide

ATTRIBUTE and cross-reference table
If you specify the ATTRIBUTES option, the compiler prints an attribute table
containing a list of the identifiers in the source program together with their declared
and default attributes.

If you specify the XREF option, the compiler prints a cross-reference table
containing a list of the identifiers in the source program together with the file and
line numbers of the statements in which they appear.

If you specify both ATTRIBUTES and XREF, the two tables are combined. In these
tables, if you explicitly declare an identifier, the compiler will list file number and line
number of its DECLARE. Contextually declared variables are marked by +++++,
and other implicitly declared variables are marked by *****.

 Attribute table
The compiler never includes the attributes INTERNAL and REAL. You can assume
them unless the respective conflicting attributes, EXTERNAL and COMPLEX,
appear.

For a file identifier, the attribute FILE always appears, and the attribute EXTERNAL
appears if it applies; otherwise, the compiler only lists explicitly declared attributes.

The compiler prints the dimension attribute for an array first. It prints the bounds as
in the array declaration, but expressions are replaced by asterisks unless they have
been reduced by the compiler to a constant, in which case the value of the
constant is shown.

For a character string, a bit string, a graphic string, or an area variable, the
compiler prints the length, as in the declaration, but expressions are replaced by
asterisks unless they have been reduced by the compiler to a constant, in which
case the value of the constant is shown.

 Cross-reference table
If you combine the cross-reference table with the attribute table, the list of attributes
for a name is identified by file number and line number. An identifier appears in the
Sets: part of the cross-reference table if it is:

� The target of an assignment statement
� Used as a loop control variable in DO loops
� Used in the SET option of an ALLOCATE or LOCATE statement
� Used in the REPLY option of a DISPLAY statement

If you specify ATTRIBUTES and XREF, the two tables are combined.

If there are unreferenced identifiers, they are displayed in a separate table.

Aggregate length table
An aggregate length table is obtained by using the AGGREGATE option. The table
shows how the compiler maps each aggregate with constant extents in the
program. It contains the following information:

� The file and line number where the aggregate is declared.

� The name of the aggregate and each element within the aggregate.

 Chapter 1. Using compile-time options and facilities 43

� The byte offset of each element from the beginning of the aggregate. As a
word of caution, be careful when interpreting the data offsets indicated in the
data length table. An odd offset does not necessarily represent a data element
without halfword, fullword, or even double word alignment. If you specify or
infer the aligned attribute for a structure or its elements, the proper alignment
requirements are consistent with respect to other elements in the structure,
even though the table does not indicate the proper alignment relative to the
beginning of the table.

� The length of each element.

� The total length of each aggregate, structure, and substructure.

If there is padding between two structure elements, a /*PADDING*/ comment
appears, with appropriate diagnostic information.

Statement offset addresses
If the LIST compile option is used, the compiler includes a pseudo-assembler listing
in the compiler listing. The offset given in the run-time error messages can be
used to determine the erroneous statement. The offset in the run-time message is
an entry offset, and can be easily found in the compiler listing when the OFFSET
compile option is used; without the OFFSET compile option, the offsets given in the
pseudo-assembler listing will be relative to the compile-unit entry address, and
some simple calculations are required to match the run-time message entry offset
to the offsets in the listing. It is for this reason we recommend the use of the
OFFSET compile option.

In the example shown in Figure 3 on page 45, the message indicates that the
condition was raised at offset +58 from the SUB1 entry. The compiler listing
excerpt shows this offset associated with line number 8. This listing was produced
using the OFFSET compile option. The runtime output from this erroneous
statement is shoiwn if Figure 4 on page 45.

44 VisualAge PL/I Programming Guide

Compiler Source
 Line.File

2.1 TheMain: proc options(main);
 3.1 call sub1();
 4.1 Sub1: proc;

5.1 dcl (i, j) fixed bin(31);
 6.1

7.1 i = J;
8.1 j = j / i;

 9.1 end Sub1;
 1J.1 end TheMain;

 . . .

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G
JJJJJJ JJJJ2 | THEMAIN DS JD

 . . .

JJJJ4C 58JJ C1F4 JJJJ2 | L rJ,_CEECAA_(,r12,5JJ)
JJJJ5J 5JJJ DJ98 JJJJ2 | ST rJ,#_CEECAACRENT_1(,r13,152)
JJJJ54 581J DJ98 JJJJJ | L r1,#_CEECAACRENT_1(,r13,152)
JJJJ58 582J 3J62 JJJJJ | L r2,=Q(@STATIC)(,r3,98)
JJJJ5C 4152 1JJJ JJJJJ | LA r5,=Q(@STATIC)(r2,r1,J)
JJJJ6J 18BD JJJJ3 | LR r11,r13
JJJJ62 58JJ DJ98 JJJJ3 | L rJ,#_CEECAACRENT_1(,r13,152)
JJJJ66 5JJJ C1F4 JJJJ3 | ST rJ,_CEECAA_(,r12,5JJ)
JJJJ6A 58FJ 3J66 JJJJ3 | L r15,=A(SUB1)(,r3,1J2)
JJJJ6E J5EF JJJJ3 | BALR r14,r15
JJJJ7J JJJ1J | @1L1 DS JH
JJJJ7J 581J 5JJJ JJJ1J | L r1,IBMQEFSH(,r5,J)
JJJJ74 58FJ 1JJ8 JJJ1J | L r15,&Func_&WSA(,r1,8)
JJJJ78 58JJ 1JJC JJJ1J | L rJ,&Func_&WSA(,r1,12)
JJJJ7C 5JJJ C1F4 JJJ1J | ST rJ,_CEECAA_(,r12,5JJ)
JJJJ8J J5EF JJJ1J | BALR r14,r15
JJJJ82 JJJ1J | @1L4 DS JH
JJJJ82 58JJ DJ98 JJJJ2 | L rJ,#_CEECAACRENT_1(,r13,152)
JJJJ86 5JJJ C1F4 JJJJ2 | ST rJ,_CEECAA_(,r12,5JJ)

 . . .

JJJJJJ JJJJ4 | SUB1 DS JD

 . . .

JJJJ48 41JJ JJJJ JJJJ7 | LA rJ,J
JJJJ4C 5JJJ DJ98 JJJJ7 | ST rJ,I(,r13,152)
JJJJ5J 584J DJ9C JJJJ8 | L r4,J(,r13,156)
JJJJ54 8E4J JJ2J JJJJ8 | SRDA r4,32
JJJJ58 1D4J JJJJ8 | DR r4,rJ
JJJJ5A 18J5 JJJJ8 | LR rJ,r5
JJJJ5C 5JJJ DJ9C JJJJ8 | ST rJ,J(,r13,156)

Figure 3. Finding statement number (compiler listing example)

Message :

IBMJ3J1S ONCODE=32J The ZERODIVIDE condition was raised.
From entry point SUB1 at compile unit offset +JJJJJJ58 at

 address JD3J12CJ.

Figure 4. Finding statement number (runtime message example)

Entry offsets given in dump and ON-unit SNAP error messages can be compared
with this table and the erroneous statement discovered. The statement is identified
by finding the section of the table that relates to the block named in the message

 Chapter 1. Using compile-time options and facilities 45

and then finding the largest offset less than or equal to the offset in the message.
The statement number associated with this offset is the one needed.

Messages and return codes
If the preprocessor or the compiler detects an error, or the possibility of an error,
messages are generated. Messages generated by the preprocessor appear in the
listing immediately after the listing of the statements processed by the
preprocessor. You can generate your own messages in the preprocessing stage
by use of the %NOTE statement. Such messages might be used to show how
many times a particular replacement had been made. Messages generated by the
compiler appear at the end of the listing.

Messages are displayed in the following format:

PPPnnnnI X

where PPP is the prefix identifying the origin of the message (for example, IBM
indicates the PL/I compiler), nnnn is the 4-digit message number, and X identifies
the severity code. All messages are graded according to their severity, and the
severity codes are I, W, E, S, and U.

For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved. For
OS/390, this code appears in the end-of-step message that follows the listing of the
job control statements and job scheduler messages for each step.

Table 6 provides an explanation of the severity codes and the comparable return
code for each:

The compiler lists only messages that have a severity equal to or greater than that
specified by the FLAG option, as shown in Table 7 on page 47.

Table 6. Description of PL/I error codes and return codes

Severity
Code

Return
Code

Message
Type

 Description

I 0000 Informational The compiled program should run correctly. The compiler
might inform you of a possible inefficiency in your code or
some other condition of interest.

W 0004 Warning A statement might be in error (warning) even though it is
syntactically valid. The compiled program should run
correctly, but it might produce different results than expected
or be significantly inefficient.

E 0008 Error A simple error fixed by the compiler. The compiled program
should run correctly, but it might product different results than
expected.

S 0012 Severe An error not fixed by the compiler. If the program is compiled
and an object module is produced, it should not be used.

U 0016 Unrecoverable An error that forces termination of the compilation. An object
module is not successfully created.

Note: Compiler messages are printed in groups according to these severity levels.

46 VisualAge PL/I Programming Guide

The text of each message, an explanation, and any recommended programmer
response, are given in VisualAge PL/I Compile-Time Messages and Codes.

Table 7. Using the FLAG option to select the lowest
message severity listed

Type of Message Option

Information FLAG(I)
Warning FLAG(W)
Error FLAG(E)
Severe Error FLAG(S)
Unrecoverable Error Always listed

 Chapter 1. Using compile-time options and facilities 47

Chapter 2. Using PL/I cataloged procedures

This chapter describes the standard cataloged procedures supplied by IBM for use
with the IBM VisualAge PL/I for OS/390 compiler. It explains how to invoke them,
and how to temporarily or permanently modify them. The Language Environment
SCEERUN data set must be located in STEPLIB and accessable to the compiler
when you use any of the cataloged procedures described in this chapter.

A cataloged procedure is a set of job control statements, stored in a library, that
includes one or more EXEC statements, each of which can be followed by one or
more DD statements. You can retrieve the statements by naming the cataloged
procedure in the PROC parameter of an EXEC statement in the input stream.

You can use cataloged procedures to save time and reduce Job Control Language
(JCL) errors. If the statements in a cataloged procedure do not match your
requirements exactly, you can easily modify them or add new statements for the
duration of a job. You should review these procedures and modify them to obtain
the most efficient use of the facilities available and to allow for your own
conventions.

IBM-supplied cataloged procedures
The PL/I cataloged procedures supplied for use with VisualAge PL/I for OS/390 are:

IBMZC Compile only
IBMZCB Compile and bind
IBMZCPL Compile, prelink, and link-edit
IBMZCBG Compile, bind, and run
IBMZCPLG Compile, prelink, link-edit, and run
IBMZCPG Compile, prelink, load, and run

Cataloged procedures IBMZCB and IBMZCBG use features of the program
management binder introduced in DFSMS/MVS 1.4 in place of the prelinker
supplied with Language Environment. These procedures produce a program object
in a PDSE.

Cataloged procedures IBMZCPL, IBMZCPLG and IBMZCPG use the prelinker
supplied with Language Environment and produce a load module in PDS. Use
these procedures if you do not want to use a PDSE. The information in this section
describes the procedure steps of the different cataloged procedures. For a
description of the individual statements for compiling and link editing, see “Invoking
the compiler under OS/390 using JCL” on page 65 and OS/390 Language
Environment Programming Guide. These cataloged procedures do not include a
DD statement for the input data set; you must always provide one. The example
shown in Figure 5 on page 49 illustrates the JCL statements you might use to
invoke the cataloged procedure IBMZCBG to compile, bind, and run a PL/I
program.

VisualAge PL/I requires a minimum REGION size of 512K. Large programs require
more storage. If you do not specify REGION on the EXEC statement that invokes
the cataloged procedure you are running, the compiler uses the default REGION
size for your site. The default size might or might not be adequate, depending on

48  Copyright IBM Corp. 1964, 2000

the size of your PL/I program. For an example of specifying REGION on the EXEC
statement, see Figure 5 on page 49.

 //COLEGO JOB
 //STEP1 EXEC IBMZCBG, REGION.PLI=1M
 //PLI.SYSIN DD X
 .
 .
 .

(insert PL/I program to be compiled here)
 .
 .
 .
 /X

Figure 5. Invoking a cataloged procedure

Compile only (IBMZC)
The IBMZC cataloged procedure, shown in Figure 6 on page 50, includes only one
procedure step, in which the options specified for the compilation are OBJECT and
OPTIONS. (IBMZPLI is the symbolic name of the compiler.) In common with the
other cataloged procedures that include a compilation procedure step, IBMZC does
not include a DD statement for the input data set; you must always supply an
appropriate statement with the qualified ddname PLI.SYSIN.

The OBJECT compile-time option causes the compiler to place the object module,
in a syntax suitable for input to the linkage editor, in the standard data set defined
by the DD statement with the name SYSLIN. This statement defines a temporary
data set named &&LOADSET on a sequential device; if you want to retain the
object module after the end of your job, you must substitute a permanent name for
&&LOADSET (that is, a name that does not start with &&) and specify KEEP in the
appropriate DISP parameter for the last procedure step that used the data set. You
can do this by providing your own SYSLIN DD statement, as shown below. The
data set name and disposition parameters on this statement will override those on
the IBMZC procedure SYSLIN DD statement. In this example, the compile step is
the only step in the job.

 //PLICOMP EXEC IBMZC
//PLI.SYSLIN DD DSN=MYPROG,DISP=(MOD,KEEP)
 //PLI.SYSIN DD ...

The term MOD in the DISP parameter in Figure 6 on page 50 allows the compiler
to place more than one object module in the data set, and PASS ensures that the
data set is available to a later procedure step providing a corresponding DD
statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 1 cylinder and, if
necessary, 15 further allocations of 1 cylinder (a total of 16 cylinders).

 Chapter 2. Using PL/I cataloged procedures 49

 //IBMZC PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //X X
 //XX
 //X
 //X IBM VisualAge PL/I for OS/39J Version 2 Release 2 Modification J
 //X
 //X COMPILE A PL/I PROGRAM
 //X
 //X RELEASE LEVEL: J2.J2.JJ (VERSION.RELEASE.MODIFICATION LEVEL)
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24

Figure 6. Cataloged Procedure IBMZC

Compile and bind (IBMZCB)
The IBMZCB cataloged procedure, shown in Figure 7 on page 51, includes two
procedure steps: PLI, which is identical to cataloged procedure IBMZC, and BIND,
which invokes the Program Management binder (symbolic name IEWBLINK) to bind
the object module produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC statement BIND specifies that this
procedure step should be bypassed if the return code produced by the compiler is
greater than 8 (that is, if a severe or unrecoverable error occurs during
compilation).

50 VisualAge PL/I Programming Guide

 //IBMZCB PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ,GOPGM=GO
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //XX
 //X
 //X IBM VISUALAGE PL/I FOR OS/39J VERSION 2 RELEASE 2 MODIFICATION J
 //X
 //X COMPILE AND BIND A PL/I PROGRAM
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24
 //XXX
 //X BIND STEP
 //XXX
 //BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
 // PARM='XREF,COMPAT=PM3',REGION=2J48K
 //SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=X.PLI.SYSLIN,DISP=(OLD,DELETE)
 // DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(1J24,(5J,2J,1)),DSNTYPE=LIBRARY
 //SYSDEFSD DD DUMMY
 //SYSIN DD DUMMY

Figure 7. Cataloged Procedure IBMZCB

The Program Management binder always places the program objects it creates in
the standard data set defined by the DD statement with the name SYSLMOD. This
statement in the cataloged procedure specifies a new temporary library &&GOSET,
in which the program object will be placed and given the member name GO. In
specifying a temporary library, the cataloged procedure assumes that you will run
the program object in the same job; if you want to retain the program object, you
must substitute your own statement for the DD statement with the name
SYSLMOD.

 Chapter 2. Using PL/I cataloged procedures 51

Compile, bind, and run (IBMZCBG)
The IBMZCBG cataloged procedure, shown in Figure 8, includes three procedure
steps: PLI, BIND, and GO. PLI and BIND are identical to the two procedure steps
of IBMZCB, and GO runs the program object created in the step BIND. The GO
step is executed only if no severe or unrecoverable errors occurred in the
preceding procedure steps.

Input data for the compilation procedure step should be specified in a DD statement
with the name PLI.SYSIN, and for the GO step in a DD statement with the name
GO.SYSIN.

 //IBMZCBG PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ,GOPGM=GO
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //XX
 //X
 //X IBM VISUALAGE PL/I FOR OS/39J VERSION 2 RELEASE 2 MODIFICATION J
 //X
 //X COMPILE, BIND, AND RUN A PL/I PROGRAM
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X GOPGM GO MEMBER NAME FOR PROGRAM OBJECT
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24

Figure 8 (Part 1 of 2). Cataloged Procedure IBMZCBG

52 VisualAge PL/I Programming Guide

 //XXX
 //X BIND STEP
 //XXX
 //BIND EXEC PGM=IEWBLINK,COND=(8,LT,PLI),
 // PARM='XREF,COMPAT=PM3',REGION=2J48K
 //SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=X.PLI.SYSLIN,DISP=(OLD,DELETE)
 // DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(1J24,(5J,2J,1)),DSNTYPE=LIBRARY
 //SYSDEFSD DD DUMMY
 //SYSIN DD DUMMY
 //XXX
 //X RUN STEP
 //XXX
 //GO EXEC PGM=X.BIND.SYSLMOD,COND=((8,LT,PLI),(8,LE,BIND)),
 // REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
//CEEDUMP DD SYSOUT=X
 //SYSUDUMP DD SYSOUT=X

Figure 8 (Part 2 of 2). Cataloged Procedure IBMZCBG

Compile, prelink, and link-edit (IBMZCPL)
The IBMZCPL cataloged procedure, shown in Figure 9, includes three procedure
steps: PLI, which is identical to cataloged procedure IBMZC; PLKED, which
invokes the Language Environment prelinker; and LKED, which invokes the linkage
editor (symbolic name IEWL) to link-edit the object module produced in the first
procedure step.

Input data for the compilation procedure step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC statement LKED specifies that this
procedure step should be bypassed if the return code produced by the compiler is
greater than 8 (that is, if a severe or unrecoverable error occurs during
compilation).

 //IBMZCPL PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ,PLANG=EDCPMSGE,GOPGM=GO
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //XX

 Chapter 2. Using PL/I cataloged procedures 53

 //X
 //X IBM VISUALAGE PL/I FOR OS/39J VERSION 2 RELEASE 2 MODIFICATION J
 //X
 //X COMPILE, PRELINK, LINK-EDIT A PL/I PROGRAM
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X PLANG EDCPMSGE PRELINKER MESSAGES MEMBER NAME
 //X GOPGM GO MEMBER NAME FOR LOAD MODULE
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24
 //XXX
 //X PRE-LINK-EDIT STEP
 //XXX
 //PLKED EXEC PGM=EDCPRLK,COND=(8,LT,PLI),REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DSN=&LIBPRFX..SCEEMSGP(&PLANG),DISP=SHR
 //SYSLIB DD DUMMY
 //SYSMOD DD DSN=&&PLNK,DISP=(,PASS),
 // UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
 // DCB=(RECFM=FB,LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
 //SYSPRINT DD SYSOUT=X
 //SYSOUT DD SYSOUT=X
 //XXX
 //X LINK-EDIT STEP
 //XXX
 //LKED EXEC PGM=IEWL,PARM='XREF',COND=((8,LT,PLI),(8,LE,PLKED)),
 // REGION=2J48K
 //SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=X.PLKED.SYSMOD,DISP=(OLD,DELETE)
 // DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(1J24,(5J,2J,1))
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,SPACE=(1J24,(2JJ,2J)),
 // DCB=BLKSIZE=1J24
 //SYSIN DD DUMMY

Figure 9 (Part 2 of 2). Cataloged Procedure IBMZCPL

The linkage editor always places the load modules it creates in the standard data
set defined by the DD statement with the name SYSLMOD. This statement in the
cataloged procedure specifies a new temporary library &&GOSET, in which the
load module will be placed and given the member name GO. In specifying a
temporary library, the cataloged procedure assumes that you will run the load
module in the same job; if you want to retain the module, you must substitute your
own statement for the DD statement with the name SYSLMOD.

The SYSLIN DD statement in Figure 9 on page 53 shows how to concatenate a
data set defined by a DD statement named SYSIN with the primary input (SYSLIN)
to the linkage editor. You could place linkage editor control statements in the input
stream by this means, as described in the OS/390 Language Environment
Programming Guide.

54 VisualAge PL/I Programming Guide

Compile, prelink, link-edit, and run (IBMZCPLG)
The IBMZCPLG cataloged procedure, shown in Figure 10, includes four procedure
steps: PLI, PLKED, LKED, and GO. PLI, PLKED, and LKED are identical to the
three procedure steps of IBMZCPL, and GO runs the load module created in the
step LKED. The GO step is executed only if no severe or unrecoverable errors
occurred in the preceding procedure steps.

Input data for the compilation procedure step should be specified in a DD statement
with the name PLI.SYSIN, and for the GO step in a DD statement with the name
GO.SYSIN.

 //IBMZCPLG PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ,PLANG=EDCPMSGE,GOPGM=GO
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //XX
 //X
 //X IBM VISUALAGE PL/I FOR OS/39J VERSION 2 RELEASE 2 MODIFICATION J
 //X
 //X COMPILE, PRELINK, LINK-EDIT AND RUN A PL/I PROGRAM
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X PLANG EDCPMSGE PRELINKER MESSAGES MEMBER NAME
 //X GOPGM GO MEMBER NAME FOR LOAD MODULE
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24

Figure 10 (Part 1 of 2). Cataloged Procedure IBMZCPLG

 Chapter 2. Using PL/I cataloged procedures 55

 //XXX
 //X PRE-LINK-EDIT STEP
 //XXX
 //PLKED EXEC PGM=EDCPRLK,COND=(8,LT,PLI),REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DSN=&LIBPRFX..SCEEMSGP(&PLANG),DISP=SHR
 //SYSLIB DD DUMMY
 //SYSMOD DD DSN=&&PLNK,DISP=(,PASS),UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
 // DCB=(RECFM=FB,LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSIN DD DSN=X.PLI.SYSLIN,DISP=(OLD,DELETE)
 //SYSPRINT DD SYSOUT=X
 //SYSOUT DD SYSOUT=X
 //XXX
 //X LINK-EDIT STEP
 //XXX
 //LKED EXEC PGM=IEWL,PARM='XREF',COND=((8,LT,PLI),(8,LE,PLKED)),
 // REGION=2J48K
 //SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=X.PLKED.SYSMOD,DISP=(OLD,DELETE)
 // DD DDNAME=SYSIN
//SYSLMOD DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(1J24,(5J,2J,1))
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,SPACE=(1J24,(2JJ,2J)),
 // DCB=BLKSIZE=1J24
 //SYSIN DD DUMMY
 //XXX
 //X RUN STEP
 //XXX
 //GO EXEC PGM=X.LKED.SYSLMOD,
 // COND=((8,LT,PLI),(8,LE,PLKED),(8,LE,LKED)),
 // REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
//CEEDUMP DD SYSOUT=X
 //SYSUDUMP DD SYSOUT=X

Figure 10 (Part 2 of 2). Cataloged Procedure IBMZCPLG

Compile, prelink, load and run (IBMZCPG)
The IBMZCPG cataloged procedure, shown in Figure 11 on page 57, achieves the
same results as IBMZCPLG but uses the loader instead of the linkage editor.
Instead of using four procedure steps (compile, prelink, link-edit, and run), it has
only three (compile, prelink, and load-and-run). The third procedure step runs the
loader program. The loader program processes the object module produced by the
compiler and runs the resultant executable program immediately. You must provide
input data for the compilation step by supplying a qualified ddname PLI.SYSIN.

The use of the loader imposes certain restrictions on your PL/I program; before
using this cataloged procedure, see OS/390 Language Environment Programming
Guide, which explains how to use the loader.

56 VisualAge PL/I Programming Guide

 //IBMZCPG PROC LNGPRFX='IBMZ.V2R2MJ',LIBPRFX='CEE',
 // SYSLBLK=32JJ,PLANG=EDCPMSGE
 //X
 //XX
 //X X
 //X LICENSED MATERIALS - PROPERTY OF IBM X
 //X X
 //X 5655-B22 (C) COPYRIGHT IBM CORP. 1999 X
 //X ALL RIGHTS RESERVED. X
 //X X
 //X US GOVERNMENT USERS RESTRICTED RIGHTS - USE, X
 //X DUPLICATION OR DISCLOSURE RESTRICTED BY GSA X
 //X ADP SCHEDULE CONTRACT WITH IBM CORP. X
 //X X
 //XX
 //X
 //X IBM VISUALAGE PL/I FOR OS/39J VERSION 2 RELEASE 2 MODIFICATION J
 //X
 //X COMPILE, PRELINK, LOAD AND RUN A PL/I PROGRAM
 //X
//X PARAMETER DEFAULT VALUE USAGE
//X LNGPRFX IBMZ.V2R2MJ PREFIX FOR LANGUAGE DATA SET NAMES
//X LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES
//X SYSLBLK 32JJ BLKSIZE FOR OBJECT DATA SET
 //X PLANG EDCPMSGE PRELINKER MESSAGES MEMBER NAME
 //X
 //XXX
 //X COMPILE STEP
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='OBJECT,OPTIONS',REGION=512K
//STEPLIB DD DSN=&LNGPRFX..SIBMZCMP,DISP=SHR
 // DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSALLDA,
 // SPACE=(CYL,(1,1)),DCB=(LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSALLDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24
 //XXX
 //X PRE-LINK-EDIT STEP
 //XXX
 //PLKED EXEC PGM=EDCPRLK,COND=(8,LT,PLI),REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
//SYSMSGS DD DSN=&LIBPRFX..SCEEMSGP(&PLANG),DISP=SHR
 //SYSLIB DD DUMMY
 //SYSMOD DD DSN=&&PLNK,DISP=(,PASS),
 // UNIT=SYSALLDA,SPACE=(CYL,(1,1)),
 // DCB=(RECFM=FB,LRECL=8J,BLKSIZE=&SYSLBLK)
 //SYSIN DD DSN=X.PLI.SYSLIN,DISP=(OLD,DELETE)
 //SYSPRINT DD SYSOUT=X
 //SYSOUT DD SYSOUT=X
 //XXX
 //X LOAD AND RUN STEP
 //XXX
 //GO EXEC PGM=LOADER,PARM='MAP,PRINT',
 // COND=((8,LT,PLI),(8,LE,PLKED)),
 // REGION=2J48K
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR
 //SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=X.PLKED.SYSMOD,DISP=(OLD,DELETE)
//SYSLOUT DD SYSOUT=X
//CEEDUMP DD SYSOUT=X
 //SYSUDUMP DD SYSOUT=X

Figure 11. Cataloged Procedure IBMZCPG

For more information on other cataloged procedures, see OS/390 Language
Environment Programming Guide.

 Chapter 2. Using PL/I cataloged procedures 57

Invoking a cataloged procedure
To invoke a cataloged procedure, specify its name in the PROC parameter of an
EXEC statement. For example, to use the cataloged procedure IBMZC, you could
include the following statement in the appropriate position among your other job
control statements in the input stream:

 //stepname EXEC PROC=IBMZC

You do not need to code the keyword PROC. If the first operand in the EXEC
statement does not begin PGM= or PROC=, the job scheduler interprets it as the
name of a cataloged procedure. The following statement is equivalent to that given
above:

 //stepname EXEC IBMZC

If you include the parameter MSGLEVEL=1 in your JOB statement, the operating
system will include the original EXEC statement in its listing, and will add the
statements from the cataloged procedure. In the listing, cataloged procedure
statements are identified by XX or X/ as the first two characters; X/ signifies a
statement that was modified for the current invocation of the cataloged procedure.

You might be required to modify the statements of a cataloged procedure for the
duration of the job step in which it is invoked, either by adding DD statements or by
overriding one or more parameters in the EXEC or DD statements. For example,
cataloged procedures that invoke the compiler require the addition of a DD
statement with the name SYSIN to define the data set containing the source
statements. Also, whenever you use more than one standard link-edit procedure
step in a job, you must modify all but the first cataloged procedure that you invoke
if you want to run more than one of the load modules.

Specifying multiple invocations
You can invoke different cataloged procedures, or invoke the same cataloged
procedure several times, in the same job. No special problems are likely to arise
unless more than one of these cataloged procedures involves a link-edit procedure
step, in which case you must take the following precautions to ensure that all your
load modules can be run.

When the linkage editor creates a load module, it places the load module in the
standard data set defined by the DD statement with the name SYSLMOD. When
the binder creates a program object, it places the program object in the PDSE
defined by the DD statement with the name SYSLMOD. In the absence of a
linkage editor NAME statement, the linkage editor or the binder uses the member
name specified in the DSNAME parameter as the name of the module. In the
standard cataloged procedures, the DD statement with the name SYSLMOD always
specifies a temporary library &&GOSET with the member name GO.

If you use the cataloged procedure IBMZCBG twice within the same job to compile,
bind, and run two PL/I programs, and do not name each of the two program objects
that the binder creates, the first program object runs twice, and the second one not
at all.

To prevent this, use one of the following methods:

58 VisualAge PL/I Programming Guide

� Delete the library &&GOSET at the end of the GO step. In the first invocation
of the cataloged procedure at the end of the GO step, add a DD statement with
the syntax:

 //GO.SYSLMOD DD DSN=&&GOSET,
 // DISP=(OLD,DELETE)

� Modify the DD statement with the name SYSLMOD in the second and
subsequent invocations of the cataloged procedure so as to vary the names of
the load modules. For example:

 //BIND.SYSLMOD DD DSN=&&GOSET(GO1)

and so on.

� Use the NAME linkage editor option to give a different name to each program
object and change each job step EXEC statement to specify the running of the
program object with the name for that job step.

To assign a membername to the program object, you can use the linkage editor
NAME option with the DSNAME parameter on the SYSLMOD DD statement.
When you use this procedure, the membername must be identical to the name on
the NAME option if the EXEC statement that runs the program refers to the
SYSLMOD DD statement for the name of the module to be run.

Another option is to give each program a different name by using GOPGM on the
EXEC procedure statement. For example:

 // EXEC IBMZCBG,GOPGM=GO2

Modifying the PL/I cataloged procedures
You can modify a cataloged procedure temporarily by including parameters in the
EXEC statement that invokes the cataloged procedure, or by placing additional DD
statements after the EXEC statement. Temporary modifications apply only for the
duration of the job step in which the procedure is invoked. They do not affect the
master copy of the cataloged procedure in the procedure library.

Temporary modifications can apply to EXEC or DD statements in a cataloged
procedure. To change a parameter of an EXEC statement, you must include a
corresponding parameter in the EXEC statement that invokes the cataloged
procedure. To change one or more parameters of a DD statement, you must
include a corresponding DD statement after the EXEC statement that invokes the
cataloged procedure. Although you cannot add a new EXEC statement to a
cataloged procedure, you can always include additional DD statements.

 EXEC statement
If a parameter of an EXEC statement that invokes a cataloged procedure has an
unqualified name, the parameter applies to all the EXEC statements in the
cataloged procedure. The effect on the cataloged procedure depends on the
parameters, as follows:

� PARM applies to the first procedure step and nullifies any other PARM
parameters.

� COND and ACCT apply to all the procedure steps.

 Chapter 2. Using PL/I cataloged procedures 59

� TIME and REGION apply to all the procedure steps and override existing
values.

For example, the statement:

 //stepname EXEC IBMZCBG,PARM='OFFSET',REGION=512K

� Invokes the cataloged procedure IBMZCBG.

� Substitutes the option OFFSET for OBJECT and OPTIONS in the EXEC
statement for procedure step PLI.

� Nullifies the PARM parameter in the EXEC statement for procedure step BIND.

� Specifies a region size of 512K for all three procedure steps.

To change the value of a parameter in only one EXEC statement of a cataloged
procedure, or to add a new parameter to one EXEC statement, you must identify
the EXEC statement by qualifying the name of the parameter with the name of the
procedure step. For example, to alter the region size for procedure step PLI only in
the preceding example, code:

 //stepname EXEC PROC=IBMZCBG,PARM='OFFSET',REGION.PLI=512K

A new parameter specified in the invoking EXEC statement overrides completely
the corresponding parameter in the procedure EXEC statement.

You can nullify all the options specified by a parameter by coding the keyword and
equal sign without a value. For example, to suppress the bulk of the linkage editor
listing when invoking the cataloged procedure IBMZCBG, code:

 //stepname EXEC IBMZCBG,PARM.BIND=

 DD statement
To add a DD statement to a cataloged procedure, or to modify one or more
parameters of an existing DD statement, you must include a DD statement with the
form procstepname.ddname in the appropriate position in the input stream. If ddname
is the name of a DD statement already present in the procedure step identified by
procstepname, the parameters in the new DD statement override the corresponding
parameters in the existing DD statement; otherwise, the new DD statement is
added to the procedure step. For example, the statement:

 //PLI.SYSIN DD X

adds a DD statement to the procedure step PLI of cataloged procedure IBMZC and
the effect of the statement:

 //PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement SYSPRINT (causing the compiler listing to
be transmitted to the system output device of class C).

Overriding DD statements must appear after the procedure invocation and in the
same order as they appear in the cataloged procedure. Additional DD statements
can appear after the overriding DD statements are specified for that step.

To override a parameter of a DD statement, code either a revised form of the
parameter or a replacement parameter that performs a similar function (for
example, SPLIT for SPACE). To nullify a parameter, code the keyword and equal
sign without a value. You can override DCB subparameters by coding only those

60 VisualAge PL/I Programming Guide

you wish to modify; that is, the DCB parameter in an overriding DD statement does
not necessarily override the entire DCB parameter of the corresponding statement
in the cataloged procedures.

 Chapter 2. Using PL/I cataloged procedures 61

Chapter 3. Compiling your program

This chapter describes how to invoke the compiler under OS/390 UNIX System
Services (OS/390 UNIX) and the job control statements used for compiling under
OS/390. The Language Environment SCEERUN data set must be accessible to
the compiler when you compile your program.

Invoking the compiler under OS/390 UNIX
To compile your program under the OS/390 UNIX environment, use the pli
command.

─ ─pli─ ──┬ ┬─── ────────────────────────────
�
 │ │┌ ┐─────────────────────── ┌ ┐──────────────
 └ ┘ ───� ┴─command_line_option─ ───� ┴─input_file─

command_line_option
You can specify a command_line_option in the following ways:

 � -qoption
� Option flag (usually a single letter preceded by -)

If you choose to specify compile-time options on the command line, the format
differs from either setting them in your source file using %PROCESS
statements. See “Specifying compile-time options under OS/390 UNIX” on
page 63.

input_file
The OS/390 UNIX file specification for your program files. If you omit the
extension from your file specification, the compiler assumes an extension of
.pli. If you omit the complete path, the current directory is assumed.

 Input files
The pli command compiles PL/I source files, links the resulting object files with any
object files and libraries specified on the command line in the order indicated, and
produces a single executable file.

The pli command accepts the following types of files:

Source files—.pli
All .pli files are source files for compilation. The pli command sends source
files to the compiler in the order they are listed. If the compiler cannot find a
specified source file, it produces an error message and the pli command
proceeds to the next file if one exists.

Object files—.o
All .o files are object files. The pli command sends all object files along with
library files to the linkage editor at link-edit time unless you specify the -c option.
After it compiles all the source files, the compiler invokes the linkage editor to
link-edit the resulting object files with any object files specified in the input file
list, and produces a single executable output file.

62  Copyright IBM Corp. 1964, 2000

 Specifying compile-time options

Library files—.a
The pli command sends all of the library files (.a files) to the linkage editor at
link-edit time.

Specifying compile-time options under OS/390 UNIX
VisualAge PL/I provides compile-time options to change any of the compiler's
default settings. You can specify options on the command line, and they remain in
effect for all compilation units in the file, unless %PROCESS statements in your
source program override them.

Refer to “Compile-time option descriptions” on page 4 for a description of these
options.

When you specify options on the command line, they override the default settings
of the option. They are overridden by options set in the source file.

You can specify compile-time options on the command line in three ways:

 � -qoption_keyword (compiler-specific)
� Single and multiletter flags

 � -q@/u/myopts.txt

 -qoption_keyword
You can specify options on the command line using the -qoption format.

──-q──option_keyword─ ──┬ ┬───────────────────────────────── ─────────────────────
�
 │ │┌ ┐─:──────────────────────
 └ ┘─ = ─ ───� ┴──┬ ┬─suboption──────────
 └ ┘─suboption=argument─

You can have multiple -qoptions on the same command line, but they must be
separated by blanks. Option keywords can appear in either uppercase or
lowercase, but you must specify the -q in lowercase.

Some compile-time options allow you to specify suboptions. These suboptions are
indicated on the command line with an equal sign following the -qoption_keyword.
Multiple suboptions must be separated with a colon(:) and no intervening blanks.

An option, for example, that contains multiple suboptions is RULES (“RULES” on
page 27). To specify RULES(LAXDCL) on the command line, you would enter:

-qrules=ibm:laxdcl

The LIMITS option (“LIMITS” on page 19) is slightly more complex since each of its
suboptions also has an argument. You would specify
LIMITS(EXTNAME(31),FIXEDDEC(15)) on the command line as shown in the
following example:

-qlimits=extname=31:fixeddec=15

 Chapter 3. Compiling your program 63

Single and multiletter flags
The OS/390 UNIX family of compilers uses a number of common conventional
flags. Each language has its own set of additional flags.

Some flag options have arguments that form part of the flag, for example:

pli samp.pli -I/home/test3/include

In this case, /home/test3/include is an include directory to be searched for
INCLUDE files.

You can specify flags that do not take arguments in one string:

pli -Ogc samp1.pli

Specifying the flags in one string has the same effect as specifying the same
options separately.

pli -O -g -c samp1.pli

Both examples compile the PL/I source file samp1.pli with optimization (-O) and
produce symbolic information used by the debugger (-g), but do not invoke the
linkage editor (-c).

You can specify one flag option that takes arguments as part of a single string, but
it must be the last option specified. For example, you can use the -I flag (to specify
the name of an include directory to be searched for INCLUDE files) together with
the other flags, only if the -I flag and its argument are specified last:

pli -OgI/home/test3/include

The string of flags in the preceding example is equivalent to the following:

pli -O -g -I/home/test3/include

Table 8. Compile-time option flags supported by VisualAge PL/I under OS/390 UNIX

Option Description

-c Compile only.

-e Create names and entries for a FETCHable load module.

-g Produce symbolic information used by the debugger. This option is equivalent to
-qGN.

-I<dir>* Add path <dir> to the directories to be searched for INCLUDE files. -I must be
followed by a path and only a single path is allowed per -I option. To add
multiple paths, use multiple -I options. There shouldn't be any spaces between
-I and the path name.

-O, -O2 Optimize generated code. This option is equivalent to -qOPT=2.

-q<option>* Pass it to the compiler. <option> is a compile-time option. Each option should
be delimited by a comma and each suboption should be delimited by an equal
sign or colon. There shouldn't be any spaces between -q and <option>.

-v Display compile and link steps and execute them.

-# Display compile and link steps, but do not execute them.

Note: *You must specify an argument where indicated; otherwise, the results are unpredictable.

64 VisualAge PL/I Programming Guide

Invoking the compiler under OS/390 using JCL
Although you will probably use cataloged procedures rather than supply all the JCL
required for a job step that invokes the compiler, you should be familiar with these
statements so that you can make the best use of the compiler and, if necessary,
override the statements of the cataloged procedures.

The following section describes the JCL needed for compilation. The IBM-supplied
cataloged procedures described in “IBM-supplied cataloged procedures” on page
48 contain these statements. You need to code them yourself only if you are not
using the cataloged procedures.

 EXEC statement
The basic EXEC statement is:

//stepname EXEC PGM

512K is required for the REGION parameter of this statement. The PARM
parameter of the EXEC statement can be used to specify one or more of the
optional facilities provided by the compiler. These facilities are described under
“Specifying options in the EXEC statement” on page 68. See Chapter 1, “Using
compile-time options and facilities” on page 4 for a description of the options.

DD statements for the standard data sets
The compiler requires several standard data sets, the number of data sets depends
on the optional facilities specified. You must define these data sets in DD
statements with the standard ddnames shown, together with other characteristics of
the data sets, in Table 9 on page 66. The DD statements SYSIN, SYSUT1, and
SYSPRINT are always required.

You can store any of the standard data sets on a direct-access device, but you
must include the SPACE parameter in the DD statement. This parameter defines
the data set to specify the amount of auxiliary storage required. The amount of
auxiliary storage allocated in the IBM-supplied cataloged procedures should suffice
for most applications.

 Chapter 3. Compiling your program 65

Table 9. Compiler standard data sets

Standard
DDNAME

 Contents of data
set

Possible
device
classes1

Record
format
(RECFM)2

Record
size
(LRECL)3

BLKSIZE

SYSIN Input to the compiler SYSSQ F,FB,U
VB,V

<101(100)
<105(104)

—

SYSLIN Object module SYSSQ FB 80 80

SYSPUNCH Preprocessor output,
compiler output

SYSSQ
SYSCP

FB 80 80

SYSUT1 Temporary workfile SYSDA F 4051 —

SYSPRINT Listing, including
messages

SYSSQ VBA 125 129

SYSLIB Source statements for
preprocessor

SYSDA F,FB,U
V,VB

<101
<105

—

Notes:

The only value for compile-time SYSPRINT that can be overridden is BLKSIZE.

1. The possible device classes are:

SYSSQ Sequential device
SYSDA Direct-access device
SYSCP Card-punch device.

Block size can be specified except for SYSUT1. The block size and logical record length for
SYSUT1 is chosen by the compiler.

2. If the record format is not specified in a DD statement, the default value is provided by the
compiler. (Default values are shown in italics.)

3. The numbers in parentheses in the “Record Size” column are the defaults, which you can
override.

 Input (SYSIN)
Input to the compiler must be a data set defined by a DD statement with the name
SYSIN. This data set must have CONSECUTIVE organization. The input must be
one or more external PL/I procedures. If you want to compile more than one
external procedure in a single job or job step, precede each procedure, except
possibly the first, with a %PROCESS statement.

80-byte records are commonly used as the input medium for PL/I source programs.
The input data set can be on a direct-access device or some other sequential
media. The input data set can contain either fixed-length records (blocked or
unblocked), variable-length records (coded or uncoded), or undefined-length
records. The maximum record size is 100 bytes.

When data sets are concatenated for input to the compiler, the concatenated data
sets must have similar characteristics (for example, block size and record format).

Output (SYSLIN, SYSPUNCH)
Output in the form of one or more object modules from the compiler can be stored
in the data set SYSLIN if you specify the OBJECT compile-time option. This data
set is defined by the DD statement.

The object module is always in the form of 80-byte fixed-length records, blocked or
unblocked. The data set defined by the DD statement with the name SYSPUNCH
is also used to store the output from the preprocessor if you specify the MDECK
compile-time option.

66 VisualAge PL/I Programming Guide

Temporary workfile (SYSUT1)
The compiler requires a data set for use as a temporary workfile. It is defined by a
DD statement with the name SYSUT1, and is known as the spill file. It must be on
a direct-access device, and must not be allocated as a multi-volume data set.

The spill file is used as a logical extension to main storage and is used by the
compiler and by the preprocessor to contain text and dictionary information. The
LRECL and BLKSIZE for SYSUT1 is chosen by the compiler based on the amount
of storage available for spill file pages.

The DD statements given in this publication and in the cataloged procedures for
SYSUT1 request a space allocation in blocks of 1024 bytes. This is to insure that
adequate secondary allocations of direct-access storage space are acquired.

 Listing (SYSPRINT)
The compiler generates a listing that includes all the source statements that it
processed, information relating to the object module, and, when necessary,
messages. Most of the information included in the listing is optional, and you can
specify those parts that you require by including the appropriate compile-time
options. The information that can appear, and the associated compile-time options,
are described under “Using the compiler listing” on page 41.

You must define the data set, in which you wish the compiler to store its listing, in a
DD statement with the name SYSPRINT. This data set must have CONSECUTIVE
organization. Although the listing is usually printed, it can be stored on any
sequential or direct-access device. For printed output, the following statement will
suffice if your installation follows the convention that output class A refers to a
printer:

//SYSPRINT DD SYSOUT=A

Source Statement Library (SYSLIB)
If you use the preprocessor %INCLUDE statement to introduce source statements
into the PL/I program from a library, you can either define the library in a DD
statement with the name SYSLIB, or you can choose your own ddname (or
ddnames) and specify a ddname in each %INCLUDE statement. (For further
information on the preprocessor, see “Using the preprocessor” on page 37.)

If the statements are included from a SYSLIB, they must have a form that is similar
to the %INCLUDE statement. For example, they must have the same record
format (fixed, variable, undefined), the same logical record length, and matching left
and right margins.

The BLOCKSIZE of the library must be less than or equal to 32,760 bytes.

 Specifying options
For each compilation, the IBM-supplied or installation default for a compile-time
option applies unless it is overridden by specifying the option in a %PROCESS
statement or in the PARM parameter of an EXEC statement.

An option specified in the PARM parameter overrides the default value, and an
option specified in a %PROCESS statement overrides both that specified in the
PARM parameter and the default value.

 Chapter 3. Compiling your program 67

Note: When conflicting attributes are specified either explicitly or implicitly by the
specification of other options, the latest implied or explicit option is
accepted. No diagnostic message is issued to indicate that any options are
overridden in this way.

Specifying options in the EXEC statement
To specify options in the EXEC statement, code PARM= followed by the list of
options, in any order separating the options with commas and enclosing the list
within single quotation marks, for example:

//STEP1 EXEC PGM=IBMZPLI,PARM='OBJECT,LIST'

Any option that has quotation marks, for example MARGINI('c'), must have the
quotation marks duplicated. The length of the option list must not exceed 100
characters, including the separating commas. However, many of the options have
an abbreviated syntax that you can use to save space. If you need to continue the
statement onto another line, you must enclose the list of options in parentheses
(instead of in quotation marks) enclose the options list on each line in quotation
marks, and ensure that the last comma on each line except the last line is outside
of the quotation marks. An example covering all the above points is as follows:

//STEP1 EXEC PGM=IBMZPLI,PARM=('AG,A',
// 'C,F(I)',
// 'M,MI(''X''),NEST,STG,X')

If you are using a cataloged procedure, and want to specify options explicitly, you
must include the PARM parameter in the EXEC statement that invokes it, qualifying
the keyword PARM with the name of the procedure step that invokes the compiler.
For example:

//STEP1 EXEC nnnnnnn,PARM.PLI='A,LIST'

Specifying options in the EXEC statement using options file
Another way to specify options in the EXEC statement is by declaring all your
options in an options file and coding the following:

//STEP1 EXEC PGM==IBMZPLI,PARM='@DD:OPTIONS'

This method allows you to provide a consistent set of options that you frequently
use. This is especially effective if you want other programmers to use a common
set of options. It also gets you past the 100-character limit.

The MARGINS option does not apply to options files: the data in column 1 will be
read as part of the options. Also, if the file is F-format, any data after column 72 will
be ignored.

The parm string con contain "normal" options and can point to more than one
options file. For instance, to specify the option LIST as well as from both the file in
the GROUP DD and in the PROJECT DD, you could specify

PARM='LIST @DD:GROUP @DD:PROJECT'

The options in the PROJECT file would have precedence over options in the
GROUP file.

Also, in this case, the LIST option might be turned off by a NOLIST option specified
in either of the options files. To insure that the LIST option is on, you could specify

68 VisualAge PL/I Programming Guide

PARM='@DD:GROUP @DD:PROJECT LIST'

Options files may also be used under USS. For example, in USS, to compile
sample.pli with options from the file /u/pli/group.opt, you would specify

 pli -q@/u/pli/group.opt sample.pli

Return codes in batched compilation
The return code generated by a batched compilation is the highest code that is
returned if the procedures are compiled separately.

JCL for batched processing
The only special consideration relating to JCL for batched processing refers to the
data set defined by the DD statement with the name SYSLIN. If you include the
option OBJECT, ensure that this DD statement contains the parameter
DISP=(MOD,KEEP) or DISP=(MOD,PASS). (The IBM-supplied cataloged
procedures specify DISP=(MOD,PASS).) If you do not specify DISP=MOD,
successive object modules will overwrite the preceding modules.

Examples of batched compilations
If the external procedures are components of a large program and need to be run
together, you can link-edit them together and run them in subsequent job steps.
Cataloged procedure IBMZCG can be used, as shown in Figure 12.

 //OPT4#13 JOB
 //STEP1 EXEC IBMZCG
 //PLI.SYSIN DD X

First PL/I source program
 % PROCESS;

Second PL/I source program
 % PROCESS;

Third PL/I source program
 /X
 //GO.SYSIN DD X

Data processed by combined
 PL/I programs

 /X

Figure 12. Example of batched compilation, including execution

If the external procedures are independent programs to be invoked individually from
a load module library, cataloged procedure IBMZCL can be used. For example, a
job that contains three compile and link-edit operations can be run as a single
batched compilation, as shown in Figure 13.

 //OPT4#14 JOB
 //STEP1 EXEC IBMZCL,
 // PARM.PLI='SOURCE',
 // PARM.LKED=LIST
 //PLI.SYSIN DD X

PL/I source program
 /X
 //LKED.SYSLMOD DD DSN=PUBPGM,
 // DISP=OLD

Figure 13. Example of batched compilation, excluding execution

 Chapter 3. Compiling your program 69

Compiling for CICS
When coding a CICS transaction in PL/I, prior to compiling your transaction, you
must invoke the CICS Command Language Translator. You can find information
on the CICS Command Language Translator in CICS/ESA Application
Programmer's Reference Manual. After the CICS translator step ends, compile
your PL/I program with the SYSTEM(CICS) option. NOEXECOPS is implied with
this option. For a description of the SYSTEM compile-time option, see “SYSTEM”
on page 33.

70 VisualAge PL/I Programming Guide

Chapter 4. Link-editing and running

After compilation, your program consists of one or more object modules that
contain unresolved references to each other, as well as references to the Language
Environment run-time library. These references are resolved during link-editing
(statically) or during execution (dynamically). There are two ways to link-edit
statically:

1. Use the prelinker prior to the traditional link step

2. Link without the prelinker, which is similar to linking with PL/I for MVS & VM
except that you now must use a PDSE to hold the load module prior to
execution.

After you compile your PL/I program, the next step is to link and run your program
with test data to verify that it produces the results you expect. When using
VisualAge PL/I we recommend you select the method of linking without the
prelinker (as described in Item 2 above). If you do not use a PDSE to hold your
load modules, you must prelink.

Language Environment provides the run-time environment and services you need
to execute your program. For instructions on linking and running PL/I and all other
Language Environment-conforming language programs, refer to OS/390 Language
Environment Programming Guide. For information about migrating your existing
PL/I programs to Language Environment, see VisualAge PL/I for OS/390 Compiler
and Run-Time Migration Guide.

 Run-time considerations
You can specify run-time options as parameters passed to the program initialization
routine. You can also specify run-time options in the PLIXOPT variable. It might
also prove beneficial, from a performance standpoint, if you alter your existing
programs by using the PLIXOPT variable to specify your run-time options and
recompiling your programs. For a description of using PLIXOPT, see Language
Environment Programming Guide.

To simplify input/output at the terminal, various conventions have been adopted for
stream files that are assigned to the terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input.

Note: No prompting or other facilities are provided for record I/O at the terminal,
so you are strongly advised to use stream I/O for any transmission to or from a
terminal.

Formatting conventions for PRINT files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time. The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

� PAGE options or format items result in three lines being skipped.

 Copyright IBM Corp. 1964, 2000 71

� SKIP options or format items larger than SKIP (2) result in three lines being
skipped. SKIP (2) or less is treated in the usual manner.

� The ENDPAGE condition is never raised.

Changing the format on PRINT files
If you want normal spacing to apply to output from a PRINT file at the terminal, you
must supply your own tab table for PL/I. This is done by declaring an external
structure called PLITABS in the main program and initializing the element
PAGELENGTH to the number of lines that can fit on your page. This value differs
from PAGESIZE, which defines the number of lines you want to print on the page
before ENDPAGE is raised (see Figure 15). If you require a PAGELENGTH of 64
lines, declare PLITABS as shown in Figure 14. For information on overriding the
tab table, see “Overriding the tab control table” on page 133.

DCL 1 PLITABS STATIC EXTERNAL,
(2 OFFSET INIT (14),

 2 PAGESIZE INIT (6J),
 2 LINESIZE INIT (12J),
 2 PAGELENGTH INIT (64),
 2 FILL1 INIT (J),
 2 FILL2 INIT (J),
 2 FILL3 INIT (J),
 2 NUMBER_OF_TABS INIT (5),
 2 TAB1 INIT (25),
 2 TAB2 INIT (49),
 2 TAB3 INIT (73),
 2 TAB4 INIT (97),
 2 TAB5 INIT (121)) FIXED BIN (15,J);

Figure 14. Declaration of PLITABS. This declaration gives the standard page size, line size
and tabulating positions

 ┌─────────────────────────────┐ ─┐
 │ │ │

┌─ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │

PAGESIZE ─┤ │ ─────────────────────── │ ├─ PAGELENGTH
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
│ │ ─────────────────────── │ │
└─ │ ─────────────────────── │ │

 │ │ │
 │ ──────────19 │ │
 └─────────────────────────────┘ ─┘

PAGELENGTH: the number of lines that can be printed on a page

PAGESIZE: the number of lines that will be printed on a page
before the ENDPAGE condition is raised

Figure 15. PAGELENGTH and PAGESIZE. PAGELENGTH defines the size of your paper,
PAGESIZE the number of lines in the main printing area.

72 VisualAge PL/I Programming Guide

 Automatic prompting
When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input, as follows:

:
(space for entry of your data)

This type of prompt is referred to as a primary prompt.

Overriding automatic prompting: You can override the primary prompt by
making a colon the last item in the request for the data. You cannot override the
secondary prompt. For example, the two PL/I statements:

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);
GET EDIT (PERITIME) (A(1J));

result in the terminal displaying:

ENTER TIME OF PERIHELION
: (automatic prompt)
(space for entry of data)

However, if the first statement has a colon at the end of the output, as follows:

PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence is:

ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating long input lines
Line continuation character: To transmit data that requires 2 or more lines of
space at the terminal as one data-item, type an SBCS hyphen as the last character
in each line except the last line. For example, to transmit the sentence “this data
must be transmitted as one unit.” you enter:

:'this data must be transmitted -
+:as one unit.'

Transmission does not occur until you press ENTER after “unit.'”. The hyphen is
removed. The item transmitted is called a “logical line.”

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the
next line. For example:

xyz--
(press ENTER only, on this line)

Punctuating GET LIST and GET DATA statements
For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omits it. Thus there is
no need to enter blanks or commas to delimit items if they are entered on separate
logical lines. For the PL/I statement GET LIST(A,B,C); you can enter at the
terminal:

 Chapter 4. Link-editing and running 73

:1
+:2
+:3

This rule also applies when entering character-string data. Therefore, a character
string must transmit as one logical line. Otherwise, commas are placed at the
break points. For example, if you enter:

:'COMMAS SHOULD NOT BREAK
+:UP A CLAUSE.'

the resulting string is: “COMMAS SHOULD NOT BREAK, UP A CLAUSE.” The
comma is not added if a hyphen was used as a line continuation character.

Automatic padding for GET EDIT: For a GET EDIT statement, there is no need
to enter blanks at the end of the line. The data will be padded to the specified
length. Thus, for the PL/I statement:

GET EDIT (NAME) (A(15));

you can enter the 5 characters SMITH. The data will be padded with ten blanks so
that the program receives the fifteen characters:

'SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for terminal input: All uses of SKIP for input are interpreted as
SKIP(1) when the file is allocated to the terminal. SKIP(1) is treated as an
instruction to ignore all unused data on the currently available logical line.

 ENDFILE
The end-of-file can be entered at the terminal by keying in a logical line that
consists of the two characters “/*”. Any further attempts to use the file without
closing it result in the ENDFILE condition being raised.

 SYSPRINT considerations
The PL/I standard SYSPRINT file is shared by multiple enclaves within an
application. You can issue I/O requests, for example STREAM PUT, from the
same or different enclaves. These requests are handled using the standard PL/I
SYSPRINT file as a file which is common to the entire application. The SYSPRINT
file is implicitly closed only when the application terminates, not at the termination
of the enclave.

The standard PL/I SYSPRINT file contains user-initiated output only, such as
STREAM PUTs. Run-time library messages and other similar diagnostic output are
directed to the Language Environment MSGFILE. See the OS/390 V2R8 Language
Environment Programming Guide for details on redirecting SYSPRINT file output to
the Language Environment MSGFILE.

To be shared by multiple enclaves within an application, the PL/I SYSPRINT file
must be declared as an EXTERNAL FILE constant with a file name of SYSPRINT
and also have the attributes STREAM and OUTPUT as well as the (implied)

74 VisualAge PL/I Programming Guide

attribute of PRINT, when OPENed. This is the standard SYSPRINT file as
defaulted by the compiler.

There exists only one standard PL/I SYSPRINT FILE within an application and this
file is shared by all enclaves within the application. For example, the SYSPRINT
file can be shared by multiple nested enclaves within an application or by a series
of enclaves that are created and terminated within an application by the Language
Environment preinitialization function. To be shared by an enclave within an
application, the PL/I SYSPRINT file must be declared in that enclave. The
standard SYSPRINT file cannot be shared by passing it as a file argument between
enclaves. The declared attributes of the standard SYSPRINT file should be the
same throughout the application, as with any EXTERNALly declared constant. PL/I
does not enforce this rule. Both the TITLE option and the MSGFILE(SYSPRINT)
option attempt to route SYSPRINT to another data set. As such, if the two options
were used together, there will be a conflict and the TITLE option will be ignored.

Having a common SYSPRINT file within an application can be an advantage to
applications that utilize enclaves that are closely tied together. However, since all
enclaves in an application write to the same shared data set, this might require
some coordination among the enclaves.

The SYSPRINT file is opened (implicitly or explicitly) when first referenced within an
enclave of the application. When the SYSPRINT file is CLOSEd, the file resources
are released (as though the file had never been opened) and all enclaves are
updated to reflect the closed status.

If SYSPRINT is utilized in a multiple enclave application, the LINENO built-in
function only returns the current line number until after the first PUT or OPEN in an
enclave has been issued. This is required in order to maintain full compatibility with
old programs.

The COUNT built-in function is maintained at an enclave level. It always returns a
value of zero until the first PUT in the enclave is issued. If a nested child enclave
is invoked from a parent enclave, the value of the COUNT built-in function is
undefined when the parent enclave regains control from the child enclave.

When opened, the TITLE option can be used to associate the standard SYSPRINT
file with different operating system data sets. This association is retained across
enclaves for the duration of the open.

PL/I condition handling associated with the standard PL/I SYSPRINT file retains its
current semantics and scope. For example, an ENDPAGE condition raised within a
child enclave will only invoke an established ON-unit within that child enclave. It
does not cause invocation of an ON-unit within the parent enclave.

The tabs for the standard PL/I SYSPRINT file can vary when PUTs are done from
different enclaves, if the enclaves contain a user PLITABS table.

If the PL/I SYSPRINT file is utilized as a RECORD file or as a STREAM INPUT file,
PL/I supports it at an individual enclave or task level, but not as a sharable file
among enclaves. If the PL/I SYSPRINT file is open at the same time with different
file attributes (e.g. RECORD and STREAM) in different enclaves of the same
application, results are unpredictable.

 Chapter 4. Link-editing and running 75

Using FETCH in your routines
In VisualAge PL/I, you can FETCH VisualAge PL/I routines, OS/390 C DLLs, and
assembler routines.

FETCHing VisualAge PL/I routines
Almost all the restrictions on PL/I for MVS & VM FETCHed modules have been
removed, so a FETCHed module can now:

� FETCH other modules

� Perform any I/O operations on any PL/I file. The file can be opened either by
the FETCHed module, by the main module, or by some other FETCHed
module.

� ALLOCATE and FREE its own CONTROLLED variables

There are, however, a few restrictions on a VisualAge PL/I module that is to be
FETCHed. These restrictions are:

1. The ENTRY declaration in the routine that FETCHes must not specify
OPTIONS(COBOL) or OPTIONS(ASM)—these should be specified only for
COBOL or ASM routines not linked as DLLs.

2. OPTIONS(FETCHABLE) must be specified on the PROCEDURE statement for
the entry point of the DLL or the procedure must be compiled with the DLLINIT
option.

3. PROCEDURE statements specifiying OPTIONS(FETCHABLE) must be linked
as a DLL.

As an illustration of these restrictions, consider the compiler user exit. If you
specify the EXIT compile-time option, the compiler will FETCH and call a VisualAge
PL/I module named IBMUEXIT.

In accordance with Item 1 above, the DECLARE in the compiler for this routine
looks like:

dcl ibmuexit ext entry(pointer byvalue, pointer byvalue);

In accordance with Item 2 above, the PROCEDURE statement for this routine looks
like:

ibmuexit:
proc (addr_Userexit_Interface_Block,

 addr_Request_Area)
 options(fetchable);

 dcl addr_Userexit_Interface_Block pointer byvalue;

 dcl addr_Request_Area pointer byvalue;

In accordance with Item 3 above, the linker option DYNAM=DLL must be specified
when linking the user exit into a DLL. The DLL must be linked either into a PDSE
or into a temporary dataset (in which case DSNTYPE=LIBRARY must be specified
on the SYSLMOD DD statement).

All the JCL to compile, link, and invoke the user exit is given in the JCL below.
The one significant difference between the sample below and the code excerpts

76 VisualAge PL/I Programming Guide

above is that, in the code below, the FETCHed user exit does not receive two
BYVALUE pointers to structures, but instead it receives the two structures
BYADDR. In order to make this change work, the code specifies
OPTIONS(NODESCRIPTOR) on each of its PROCEDURE statements.

 //X
 //XXX
 //X compile the user exit
 //XXX
 //PLIEXIT EXEC PGM=IBMZPLI,
 // REGION=256K
 //STEPLIB DD DSN=IBMZ.V2R2MJ.SIBMZCMP,DISP=SHR
 // DD DSN=IBMZ.V2R2MJ.SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
 // SPACE=(CYL,(3,1))
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24
 //SYSIN DD X
 XProcess or('|') not('!');
 XProcess limits(extname(31));

 /XX/
 /X X/
 /X NAME - IBMUEXIT.PLI X/
 /X X/
 /X DESCRIPTION X/
/X User-exit sample program. X/

 /X X/
/X Licensed Materials - Property of IBM X/
/X 5639-A83, 5639-A24 (C) Copyright IBM Corp. 1992,2JJJ. X/
/X All Rights Reserved. X/
/X US Government Users Restricted Rights-- Use, duplication or X/
/X disclosure restricted by GSA ADP Schedule Contract with X/

 /X IBM Corp. X/
 /X X/
 /X DISCLAIMER OF WARRANTIES X/
/X The following menclosedy code is sample code created by IBM X/
/X Corporation. This sample code is not part of any standard X/
/X IBM product and is provided to you solely for the purpose of X/
/X assisting you in the development of your applications. The X/
/X code is provided "AS IS", without warranty of any kind. X/
/X IBM shall not be liable for any damages arising out of your X/
/X use of the sample code, even if IBM has been advised of the X/
/X possibility of such damages. X/

 /X X/
 /XX/

Figure 16 (Part 1 of 8). Sample JCL to compile, link, and invoke the user exit

 Chapter 4. Link-editing and running 77

 /XX/
 /X X/
 /X During initialization, IBMUEXIT is called. It reads X/
 /X information about the messages being screened from a text X/
 /X file and stores the information in a hash table. IBMUEXIT X/
 /X also sets up the entry points for the message filter service X/
 /X and termination service. X/
 /X X/
 /X For each message generated by the compiler, the compiler X/
 /X calls the message filter registered by IBMUEXIT. The filter X/
 /X looks the message up in the hash table previously created. X/
 /X X/
 /X The termination service is called at the end of the compile X/
 /X but does nothing. It could be enhanced to generates reports X/
 /X or do other cleanup work. X/
 /X X/
 /XX/

pack: package exports(X);

 Dcl
1 Uex_UIB native Based(null()),

 2 Uex_UIB_Length fixed bin(31),

2 Uex_UIB_Exit_token pointer, /X for user exit's useX/

2 Uex_UIB_User_char_str pointer, /X to exit option str X/
 2 Uex_UIB_User_char_len fixed bin(31),

2 Uex_UIB_Filename_str pointer, /X to source filename X/
 2 Uex_UIB_Filename_len fixed bin(31),

2 Uex_UIB_return_code fixed bin(31), /X set by exit procs X/
2 Uex_UIB_reason_code fixed bin(31), /X set by exit procs X/

2 Uex_UIB_Exit_Routs, /X exit entries setat
 initialization X/

3 (Uex_UIB_Termination,
Uex_UIB_Message_Filter, /X call for each msg X/
X, X, X, X)

limited entry (
X, /X to Uex_UIB X/
X /X to a request area X/

);

 /XXX/
 /X X/

/X Request Area for Initialization exit X/
 /X X/
 /XXX/

Dcl 1 Uex_ISA native based(null()),
2 Uex_ISA_Length fixed bin(31);

Figure 16 (Part 2 of 8). Sample JCL to compile, link, and invoke the user exit

78 VisualAge PL/I Programming Guide

 /XXX/
 /X X/

/X Request Area for Message_Filter exit X/
 /X X/
 /XXX/

Dcl 1 Uex_MFA native based(null()),
 2 Uex_MFA_Length fixed bin(31),
 2 Uex_MFA_Facility_Id char(3),
 2 X char(1),
 2 Uex_MFA_Message_no fixed bin(31),
 2 Uex_MFA_Severity fixed bin(15),

2 Uex_MFA_New_Severity fixed bin(15); /X set by exit proc X/

 /XXX/
 /X X/

/X Request Area for Terminate exit X/
 /X X/
 /XXX/

Dcl 1 Uex_TSA native based(null()),
2 Uex_TSA_Length fixed bin(31);

 /XXX/
 /X X/
 /X Severity Codes X/
 /X X/
 /XXX/

dcl uex_Severity_Normal fixed bin(15) value(J);
dcl uex_Severity_Warning fixed bin(15) value(4);
dcl uex_Severity_Error fixed bin(15) value(8);
dcl uex_Severity_Severe fixed bin(15) value(12);
dcl uex_Severity_Unrecoverable fixed bin(15) value(16);

 /XXX/
 /X X/
 /X Return Codes X/
 /X X/
 /XXX/

dcl uex_Return_Normal fixed bin(15) value(J);
dcl uex_Return_Warning fixed bin(15) value(4);
dcl uex_Return_Error fixed bin(15) value(8);
dcl uex_Return_Severe fixed bin(15) value(12);
dcl uex_Return_Unrecoverable fixed bin(15) value(16);

Figure 16 (Part 3 of 8). Sample JCL to compile, link, and invoke the user exit

 Chapter 4. Link-editing and running 79

 /XXX/
 /X X/
 /X Reason Codes X/
 /X X/
 /XXX/

dcl uex_Reason_Output fixed bin(15) value(J);
dcl uex_Reason_Suppress fixed bin(15) value(1);

dcl hashsize fixed bin(15) value(97);
dcl hashtable(J:hashsize-1) ptr init((hashsize) null());

dcl 1 message_item native based,
 2 message_Info,
 3 facid char(3),
 3 msgno fixed bin(31),

3 newsev fixed bin(15),
3 reason fixed bin(31),

2 link pointer;

 ibmuexit:
proc (ue, ia)
options(fetchable nodescriptor);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ia like uex_Isa byaddr;

ue.uex_Uib_Message_Filter = message_Filter;
ue.uex_Uib_Termination = exitterm;

 end;

message_Filter: proc (ue, mf)
 options(nodescriptor);

dcl 1 ue like uex_Uib byaddr;
dcl 1 mf like uex_Mfa byaddr;

dcl sysuexit file stream input env(recsize(8J));
 dcl p pointer;
 dcl bucket fixed bin(31);
 dcl based_Chars char(8) based;
 dcl title_Str char(8) var;

ue.uex_Uib_Message_Filter = message_Filter;
ue.uex_Uib_Termination = exitterm;

Figure 16 (Part 4 of 8). Sample JCL to compile, link, and invoke the user exit

80 VisualAge PL/I Programming Guide

 on undefinedfile(sysuexit)
 begin;

put edit ('XX User exit unable to open exit file ')
 (A) skip;
 put skip;
 signal error;
 end;

if ue.uex_Uib_User_Char_Len = J then
 do;
 open file(sysuexit);
 end;
 else
 do;
 title_Str

= substr(ue.uex_Uib_User_Char_Str->based_Chars,
1, ue.uex_Uib_User_Char_Len);

open file(sysuexit) title(title_Str);
 end;

on error, endfile(sysuexit)
 goto done;

allocate message_item set(p);

 /XXX/
 /X X/

/X Skip header lines and read first data line X/
 /X X/
 /XXX/

get file(sysuexit) list(p->message_info) skip(3);

 do loop;

 /XXX/
 /X X/

/X Put message information in hash table X/
 /X X/
 /XXX/

bucket = mod(p->msgno, hashsize);
p->link = hashtable(bucket);
hashtable(bucket) = p;

 /XXX/
 /X X/

/X Read next data line X/
 /X X/
 /XXX/

allocate message_item set(p);
get file(sysuexit) skip;
get file(sysuexit) list(p->message_info);

 end;

Figure 16 (Part 5 of 8). Sample JCL to compile, link, and invoke the user exit

 Chapter 4. Link-editing and running 81

 /XXX/
 /X X/
 /X Clean up X/
 /X X/
 /XXX/

 done:

 free p->message_Item;
 close file(sysuexit);

 end;

message_Filter: proc (ue, mf);

dcl 1 ue like uex_Uib byaddr;
dcl 1 mf like uex_Mfa byaddr;

dcl p pointer;
dcl bucket fixed bin(15);

on error snap system;

ue.uex_Uib_Reason_Code = uex_Reason_Output;
ue.uex_Uib_Return_Code = J;

mf.uex_Mfa_New_Severity = mf.uex_Mfa_Severity;

 /XXX/
 /X X/

/X Calculate bucket for error message X/
 /X X/
 /XXX/

bucket = mod(mf.uex_Mfa_Message_No, hashsize);

 /XXX/
 /X X/

/X Search bucket for error message X/
 /X X/
 /XXX/

do p = hashtable(bucket) repeat (p->link) while(p!=null())
until (p->msgno = mf.uex_Mfa_Message_No &

p->facid = mf.Uex_Mfa_Facility_Id);
 end;

Figure 16 (Part 6 of 8). Sample JCL to compile, link, and invoke the user exit

82 VisualAge PL/I Programming Guide

if p = null() then;
 else
 do;

 /XXX/
 /X X/

/X Filter error based on information in has table X/
 /X X/
 /XXX/

ue.uex_Uib_Reason_Code = p->reason;
if p->newsev < J then;

 else
mf.uex_Mfa_New_Severity = p->newsev;

 end;
 end;

exitterm: proc (ue, ta);

dcl 1 ue like uex_Uib byaddr;
dcl 1 ta like uex_Tsa byaddr;

ue.uex_Uib_return_Code = J;
ue.uex_Uib_reason_Code = J;

 end;

 end pack;
 //XXX
 //X link the user exit
 //XXX
 //LKEDEXIT EXEC PGM=IEWL,PARM='XREF,LIST,LET,DYNAM=DLL',
 // COND=(9,LT,PLIEXIT),REGION=5JJJK
 //SYSLIB DD DSN=IBMZ.V2R2MJ.CEE.SCEELKED,DISP=SHR
 //SYSLMOD DD DSN=&&EXITLIB(IBMUEXIT),DISP=(NEW,PASS),UNIT=SYSDA,
 // SPACE=(TRK,(7,1,1)),DSNTYPE=LIBRARY
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(CYL,(3,1)),
 // DCB=BLKSIZE=1J24
 //SYSPRINT DD SYSOUT=X
 //SYSDEFSD DD DUMMY
 //SYSLIN DD DSN=&&LOADSET,DISP=SHR
 // DD DDNAME=SYSIN
 //LKED.SYSIN DD X
 ENTRY IBMUEXIT

Figure 16 (Part 7 of 8). Sample JCL to compile, link, and invoke the user exit

 Chapter 4. Link-editing and running 83

 //XXX
 //X compile main
 //XXX
 //PLI EXEC PGM=IBMZPLI,PARM='F(I),EXIT',
 // REGION=256K
 //STEPLIB DD DSN=IBMZ.V2R2MJ.SIBMZCMP,DISP=SHR
 // DD DSN=IBMZ.V2R2MJ.SCEERUN,DISP=SHR
 // DD DSN=&&EXITLIB,DISP=SHR
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=&&LOADSET2,DISP=(MOD,PASS),UNIT=SYSSQ,
 // SPACE=(CYL,(3,1))
 //SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,
 // SPACE=(1J24,(2JJ,5J),,CONTIG,ROUND),DCB=BLKSIZE=1J24
 //SYSIN DD X
 Xprocess;
MainFet: Proc Options(Main);
/X the exit will suppress the message for the next dcl X/

 dcl one_byte_integer fixed bin(7);
 End ;
 //X
 //SYSUEXIT DD X
 Fac Id Msg No Severity Suppress Comment
 +--------+--------+----------+----------+-------------------------------

'IBM' 1J42 -1 1 String spans multiple lines
'IBM' 1J44 -1 1 FIXED BIN 7 mapped to 1 byte

Figure 16 (Part 8 of 8). Sample JCL to compile, link, and invoke the user exit

FETCHing OS/390 C routines
The ENTRY declaration in the routine that FETCHes an OS/390 C routine must not
specify OPTIONS(COBOL) or OPTIONS(ASM)—these should be specified only for
COBOL or ASM routines not linked as DLLs

The OS/390 C documentation provides instructions on how to compile and link an
OS/390 C DLL.

FETCHing assembler routines
The ENTRY declaration in the routine that FETCHes an assembler routine must
specify OPTIONS(ASM).

84 VisualAge PL/I Programming Guide

Part 3. Using I/O facilities

Chapter 5. Using data sets and files . 89
Associating data sets with files under OS/390 . 89

Associating several files with one data set . 91
Associating several data sets with one file . 91
Concatenating several data sets . 92

Associating data sets with files under OS/390 UNIX 92
Using environment variables . 92
Using the TITLE option of the OPEN statement 93
Attempting to use files not associated with data sets 94
How PL/I finds data sets . 94
Specifying characteristics using DD_DDNAME environment variables 94

APPEND . 95
ASA . 95
BUFSIZE . 95
CHARSET for record I/O . 96
CHARSET for stream I/O . 96
DELAY . 96
DELIMIT . 96
LRECL . 97
LRMSKIP . 97
PROMPT . 97
PUTPAGE . 97
RECCOUNT . 97
RECSIZE . 98
SAMELINE . 98
SKIP0 . 98
TYPE . 99

Establishing data set characteristics . 100
Blocks and records . 100
Record formats . 101

Fixed-length records . 101
Variable-length records . 102
Undefined-length records . 102

Data set organization . 102
Labels . 103
Data Definition (DD) statement . 103

Use of the conditional subparameters . 104
Data set characteristics . 104

Specifying characteristics using DD_DDNAME environment variables 105
Using the TITLE option of the OPEN statement 105
Associating PL/I files with data sets . 106
Specifying characteristics in the ENVIRONMENT attribute 107
Data set types used by PL/I record I/O . 114

Setting environment variables . 115
PL/I standard files (SYSPRINT and SYSIN) . 116
Redirecting standard input, output, and error devices 116

Chapter 6. Using libraries . 117
Types of libraries . 117
How to use a library . 117

 Copyright IBM Corp. 1964, 2000 85

Creating a library . 118
SPACE parameter . 118

Creating and updating a library member . 119
Examples . 119

Extracting information from a library directory . 121

Chapter 7. Defining and using consecutive data sets 123
Using stream-oriented data transmission . 123

Defining files using stream I/O . 123
Specifying ENVIRONMENT options . 124

CONSECUTIVE . 124
Record format options . 124
RECSIZE . 125
Defaults for record format, BLKSIZE, and RECSIZE 125
GRAPHIC option . 125

Creating a data set with stream I/O . 126
Essential information . 126
Examples . 127

Accessing a data set with stream I/O . 129
Essential information . 129
Record format . 129
Example . 130

Using PRINT files with stream I/O . 130
Controlling printed line length . 131
Overriding the tab control table . 133

Using SYSIN and SYSPRINT files . 134
Controlling input from the terminal . 135

Format of data . 136
Stream and record files . 136
Capital and lowercase letters . 137
End-of-file . 137
COPY option of GET statement . 137

Controlling output to the terminal . 137
Format of PRINT files . 137
Stream and record files . 138
Capital and lowercase characters . 138
Output from the PUT EDIT command . 138

Using record-oriented data transmission . 138
Specifying record format . 139
Defining files using record I/O . 139
Specifying ENVIRONMENT options . 140

CONSECUTIVE . 140
ORGANIZATION(CONSECUTIVE) . 140
CTLASA|CTL360 . 140

Creating a data set with record I/O . 141
Essential information . 142

Accessing and updating a data set with record I/O 142
Essential information . 143
Example of consecutive data sets . 144

Chapter 8. Defining and using indexed data sets 147
Indexed organization . 147
Using keys . 147
Using indexes . 150

86 VisualAge PL/I Programming Guide

Dummy records . 151
Defining files for an indexed data set . 151

Specifying ENVIRONMENT options . 153
KEYLOC option — key location . 153

Creating an indexed data set . 154
Essential information . 155
Name of the data set . 157
Record format and keys . 158
Overflow area . 160
Master index . 161

Accessing and updating an indexed data set . 162
Using sequential access . 163
Using direct access . 164

Essential information . 164
Example . 165

Reorganizing an indexed data set . 167

Chapter 9. Defining and using regional data sets 168
Defining files for a regional data set . 170

Specifying ENVIRONMENT options . 171
REGIONAL option . 171

Using keys with REGIONAL data sets . 171
Using REGIONAL(1) data sets . 172

Dummy Records . 172
Creating a REGIONAL(1) data set . 172

Example . 173
Accessing and updating a REGIONAL(1) data set 174

Sequential access . 174
Direct access . 174
Example . 174

Essential information for creating and accessing regional data sets 177

Chapter 10. Defining and using VSAM data sets 179
Using VSAM data sets . 179

How to run a program with VSAM data sets 179
VSAM organization . 179

Keys for VSAM data sets . 181
Keys for indexed VSAM data sets . 181
Relative byte addresses (RBA) . 182
Relative record numbers . 182

Choosing a data set type . 182
Defining files for VSAM data sets . 183

Specifying ENVIRONMENT options . 184
BKWD option . 184
GENKEY option . 185
REUSE option . 185
VSAM option . 185

Performance options . 185
Defining VSAM data sets . 185
Entry-sequenced data sets . 186

Loading an ESDS . 187
Using a SEQUENTIAL file to access an ESDS 187

Defining and loading an ESDS . 187
Updating an ESDS . 188

 Part 3. Using I/O facilities 87

Key-sequenced and indexed entry-sequenced data sets 189
Loading a KSDS or indexed ESDS . 190
Using a SEQUENTIAL file to access a KSDS or indexed ESDS 192
Using a DIRECT file to access a KSDS or indexed ESDS 192

Relative-record data sets . 195
Loading an RRDS . 196
Using a SEQUENTIAL file to access an RRDS 198
Using a DIRECT file to access an RRDS . 199

88 VisualAge PL/I Programming Guide

Chapter 5. Using data sets and files

Your PL/I programs process and transmit units of information called records. A
collection of records is called a data set. Data sets are physical collections of
information external to PL/I programs; they can be created, accessed, or modified
by programs written in PL/I or other languages or by the utility programs of the
operating system.

Your PL/I program recognizes and processes information in a data set by using a
symbolic or logical representation of the data set called a file. This chapter
describes how to associate data sets with the files known within your program. It
introduces the five major types of data sets, how they are organized and accessed,
and some of the file and data set characteristics you need to know how to specify.

Note: INDEXED is supported only under batch.

Associating data sets with files under OS/390
A file used within a PL/I program has a PL/I file name. The physical data set
external to the program has a name by which it is known to the operating system:
a data set name or dsname. In some cases the data set has no name; it is known
to the system by the device on which it exists.

The operating system needs a way to recognize which physical data set is referred
to by your program, so you must write a data definition or DD statement, external to
your program, that associates the PL/I file name with a dsname. For example, if
you have the following file declaration in your program:

DCL STOCK FILE STREAM INPUT;

you should create a DD statement with a data definition name (ddname) that
matches the name of the PL/I file. The DD statement specifies a physical data set
name (dsname) and gives its characteristics:

//GO.STOCK DD DSN=PARTS.INSTOCK, . . .

You'll find some guidance in writing DD statements in this manual, but for more
detail refer to the job control language (JCL) manuals for your system.

There is more than one way to associate a data set with a PL/I file. You associate
a data set with a PL/I file by ensuring that the ddname of the DD statement that
defines the data set is the same as one of the following:

� The declared PL/I file name

� The character-string value of the expression specified in the TITLE option of
the associated OPEN statement.

You must choose your PL/I file names so that the corresponding ddnames conform
to the following restrictions:

� If a file is opened implicitly, or if no TITLE option is included in the OPEN
statement that explicitly opens the file, the ddname defaults to the file name. If
the file name is longer than 8 characters, the default ddname is composed of
the first 8 characters of the file name.

� The character set of the JCL does not contain the break character (_).
Consequently, this character cannot appear in ddnames. Do not use break

 Copyright IBM Corp. 1964, 2000 89

characters among the first 8 characters of file names, unless the file is to be
opened with a TITLE option with a valid ddname as its expression. The
alphabetic extender characters $, @, and #, however, are valid for ddnames,
but the first character must be one of the letters A through Z.

Since external names are limited to 7 characters, an external file name of more
than 7 characters is shortened into a concatenation of the first 4 and the last 3
characters of the file name. Such a shortened name is not, however, the name
used as the ddname in the associated DD statement.

Consider the following statements:

 1. OPEN FILE(MASTER);

 2. OPEN FILE(OLDMASTER);

3. READ FILE(DETAIL) ...;

When statement number 1 is run, the file name MASTER is taken to be the same
as the ddname of a DD statement in the current job step. When statement number
2 is run, the name OLDMASTE is taken to be the same as the ddname of a DD
statement in the current job step. (The first 8 characters of a file name form the
ddname. If OLDMASTER is an external name, it will be shortened by the compiler
to OLDMTER for use within the program.) If statement number 3 causes implicit
opening of the file DETAIL, the name DETAIL is taken to be the same as the
ddname of a DD statement in the current job step.

In each of the above cases, a corresponding DD statement must appear in the job
stream; otherwise, the UNDEFINEDFILE condition is raised. The three DD
statements could start as follows:

 1. //MASTER DD ...

2. //OLDMASTE DD ...

 3. //DETAIL DD ...

If the file reference in the statement which explicitly or implicitly opens the file is not
a file constant, the DD statement name must be the same as the value of the file
reference. The following example illustrates how a DD statement should be
associated with the value of a file variable:

DCL PRICES FILE VARIABLE,
 RPRICE FILE;

PRICES = RPRICE;
 OPEN FILE(PRICES);

The DD statement should associate the data set with the file constant RPRICE,
which is the value of the file variable PRICES, thus:

//RPRICE DD DSNAME=...

Use of a file variable also allows you to manipulate a number of files at various
times by a single statement. For example:

90 VisualAge PL/I Programming Guide

DECLARE F FILE VARIABLE,
 A FILE,
 B FILE,
 C FILE;
 .
 .
 .
 DO F=A,B,C;

READ FILE (F) ...;
 .
 .
 .
 END;

The READ statement reads the three files A, B, and C, each of which can be
associated with a different data set. The files A, B, and C remain open after the
READ statement is executed in each instance.

The following OPEN statement illustrates use of the TITLE option:

OPEN FILE(DETAIL) TITLE('DETAIL1');

For this statement to be executed successfully, you must have a DD statement in
the current job step with DETAIL1 as its ddname. It could start as follows:

//DETAIL1 DD DSNAME=DETAILA,...

Thus, you associate the data set DETAILA with the file DETAIL through the
ddname DETAIL1.

Associating several files with one data set
You can use the TITLE option to associate two or more PL/I files with the same
external data set at the same time. This is illustrated in the following example,
where INVNTRY is the name of a DD statement defining a data set to be
associated with two files:

OPEN FILE (FILE1) TITLE('INVNTRY');
OPEN FILE (FILE2) TITLE('INVNTRY');

If you do this, be careful. These two files access a common data set through
separate control blocks and data buffers. When records are written to the data set
from one file, the control information for the second file will not record that fact.
Records written from the second file could then destroy records written from the
first file. PL/I does not protect against data set damage that might occur. If the
data set is extended, the extension is reflected only in the control blocks associated
with the file that wrote the data; this can cause an abend when other files access
the data set.

Associating several data sets with one file
The file name can, at different times, represent entirely different data sets. In the
above example of the OPEN statement, the file DETAIL1 is associated with the
data set named in the DSNAME parameter of the DD statement DETAIL1. If you
closed and reopened the file, you could specify a different ddname in the TITLE
option to associate the file with a different data set.

 Chapter 5. Using data sets and files 91

 Associating data sets with files under OS/390 UNIX

Use of the TITLE option allows you to choose dynamically, at open time, one
among several data sets to be associated with a particular file name. Consider the
following example:

DO IDENT='A','B','C';
 OPEN FILE(MASTER)
 TITLE('MASTER1'||IDENT);
 .
 .
 .
 CLOSE FILE(MASTER);
END;

In this example, when MASTER is opened during the first iteration of the do-group,
the associated ddname is taken to be MASTER1A. After processing, the file is
closed, dissociating the file name and the ddname. During the second iteration of
the do-group, MASTER is opened again. This time, MASTER is associated with
the ddname MASTER1B. Similarly, during the final iteration of the do-group,
MASTER is associated with the ddname MASTER1C.

Concatenating several data sets
For input only, you can concatenate two or more sequential or regional data sets
(that is, link them so that they are processed as one continuous data set) by
omitting the ddname from all but the first of the DD statements that describe them.
For example, the following DD statements cause the data sets LIST1, LIST2, and
LIST3 to be treated as a single data set for the duration of the job step in which the
statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=OLD
// DD DSNAME=LIST2,DISP=OLD
// DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program, the concatenated data sets need not be on the
same volume. You cannot process concatenated data sets backward.

Associating data sets with files under OS/390 UNIX
A file used within a PL/I program has a PL/I file name. A data set also has a name
by which it is known to the operating system.

PL/I needs a way to recognize the data set(s) to which the PL/I files in your
program refer, so you must provide an identification of the data set to be used, or
allow PL/I to use a default identification.

You can identify the data set explicitly using either an environment variable or the
TITLE option of the OPEN statement.

Using environment variables
You use the export command to establish an environment variable that identifies
the data set to be associated with a PL/I file, and, optionally, to specify the
characteristics of that data set. The information provided by the environment
variable is called data definition (or DD) information.

92 VisualAge PL/I Programming Guide

 Associating data sets with files under OS/390 UNIX

These environment variable names have the form DD_DDNAME where the
DDNAME is the name of a PL/I file constant (or an alternate DDNAME, as defined
below). For example:

declare MyFile stream output;

export DD_MYFILE=˜/datapath/mydata.dat

If you are familiar with the IBM mainframe environment, you can think of the
environment variable much like you do the:

DD statement in OS/390
ALLOCATE statement in TSO

For more about the syntax and options you can use with the DD_DDNAME
environment variable, see “Specifying characteristics using DD_DDNAME
environment variables” on page 94.

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be
associated with a PL/I file, and, optionally, to provide additional characteristics of
that data set.

──TITLE──(──expression──)──
�

The expression must yield a character string with the following syntax:

─ ──┬ ┬─alternate_ddname──────────────── ─────────────────────────────────
�
 │ │┌ ┐────────────────────

└ ┘──/filespec ───� ┴┬ ┬────────────────
 └ ┘── ─,──dd_option─

alternate_ddname
The name of an alternate DD_DDNAME environment variable. An alternate
DD_DDNAME environment variable is one not named after a file constant. For
example, if you had a file named INVENTRY in your program, and you
establish two DD_DDNAME environment variables—the first named INVENTRY
and the second named PARTS—you could associate the file with the second
one using this statement:

open file(Inventry) title('PARTS');

filespec
Any valid file specification on the system you are using.

dd_option
One or more options allowed in a DD_DDNAME environment variable. For
more about options of the DD_DDNAME environment variable, see “Specifying
characteristics using DD_DDNAME environment variables” on page 94.

Here is an example of using the OPEN statement in this manner:

open file(Payroll) title('/June.Dat,append(n),recsize(52)');

With this form, PL/I obtains all DD information either from the TITLE expression
or from the ENVIRONMENT attribute of a file declaration. A DD_DDNAME
environment variable is not referenced.

 Chapter 5. Using data sets and files 93

 Associating data sets with files under OS/390 UNIX

Attempting to use files not associated with data sets
If you attempt to use a file that has not been associated with a data set, (either
through the use of the TITLE option of the OPEN statement or by establishing a
DD_DDNAME environment variable), the UNDEFINEDFILE condition is raised.
The only exceptions are the files SYSIN and SYSPRINT; these default to stdin and
stdout, respectively.

How PL/I finds data sets
PL/I establishes the path for creating new data sets or accessing existing data sets
in one of the following ways:

� The current directory.
� The paths as defined by the export DD_DDNAME environment variable.

Specifying characteristics using DD_DDNAME environment variables
You use the export command to establish an environment variable that identifies
the data set to be associated with a PL/I file, and, optionally, provide additional
characteristics of that data set. This information provided by the environment
variable is called data definition (or DD) information.

The syntax of the DD_DDNAME environment variable is:

 ┌ ┐─────────────────

─ ──DD_DDNAME=filespec ───� ┴┬ ┬───────────── ───────────────────────────────
�
 └ ┘── ─,──option─

Blanks are acceptable within the syntax. In addition, the syntax of the statement is
not checked at the time the command is entered. It is verified when the data set is
opened. If the syntax is wrong, UNDEFINEDFILE is raised with the oncode 96.

DD_DDNAME
Specifies the name of the environment variable. The DDNAME must be in
upper case and can be either the name of a file constant or an alternate
DDNAME that you specify in the TITLE option of your OPEN statement. The
TITLE option is described in “Using the TITLE option of the OPEN statement”
on page 93.

If you use an alternate DDNAME, and it is longer than 31 characters, only the
first 31 characters are used in forming the environment variable name.

filespec
Specifies a file or the name of a device to be associated with the PL/I file.

option
The options you can specify as DD information.

The options that you can specify as DD information are described in the pages that
follow, beginning with “APPEND” on page 95 and ending with “TYPE” on page 99.

94 VisualAge PL/I Programming Guide

 Associating data sets with files under OS/390 UNIX

 APPEND
The APPEND option specifies whether an existing data set is to be extended or
recreated.

 ┌ ┐─Y─

──APPEND──(─ ──┴ ┴─N─ ─)──
�

Y Specifies that new records are to be added to the end of a sequential data set,
or inserted in a relative or indexed data set.

N Specifies that, if the file exists, it is to be recreated.

The APPEND option applies only to OUTPUT files. APPEND is ignored if:

� The file does not exist
� The file does not have the OUTPUT attribute
� The organization is REGIONAL(1)

 ASA
The ASA option applies to printer-destined files. This option specifies when the
ANS control character in each record is to be interpreted.

 ┌ ┐─N─

──ASA──(─ ──┴ ┴─Y─ ─)───
�

N Specifies that the ANS print control characters are to be translated to IBM
Proprinter control characters as records are written to the data set.

Y Specifies that the ANS print control characters are not to be translated; instead
they are to be left as is for subsequent translation by a process you determine.

If the file is not a printer-destined file, the option is ignored.

 BUFSIZE
The BUFSIZE option specifies the number of bytes for a buffer.

──BUFSIZE──(──n──)───
�

RECORD output is buffered by default and has a default value for BUFSIZE of 64k.
STREAM output is buffered, but not by default, and has a default value for
BUFSIZE of zero.

If the value of zero is given to BUFSIZE, the number of bytes for buffering is equal
to the value specified in the RECSIZE or LRECL option.

The BUFSIZE option is valid only for a consecutive binary file. If the file is used for
terminal input, you should assign the value of zero to BUFSIZE for increased
efficiency.

 Chapter 5. Using data sets and files 95

 Associating data sets with files under OS/390 UNIX

CHARSET for record I/O
This version of the CHARSET option applies only to consecutive files using record
I/O. It gives the user the capability of using ASCII data files as input files, and
specifying the character set of output files.

 ┌ ┐─ASIS───

──CHARSET──(─ ──┼ ┼─EBCDIC─ ─)──
�
 └ ┘─ASCII──

Choose a suboption of CHARSET based on what form the file has (input) or what
form you want the file have (output).

CHARSET for stream I/O
This version of the CHARSET option applies for stream input and output files. It
gives the user the capability of using ASCII data files as input files, and specifying
the character set of output files. If you attempt to specify ASIS when using stream
I/O, no error is issued and character sets are treated as EBCDIC.

 ┌ ┐─EBCDIC─

──CHARSET──(─ ──┴ ┴─ASCII── ─)──
�

Choose a suboption of CHARSET based on what form the file has (input) or what
form you want the file to have (output).

 DELAY
The DELAY option specifies the number of milliseconds to delay before retrying an
operation that fails when a file or record lock cannot be obtained by the system.

 ┌ ┐─�─

──DELAY──(─ ──┴ ┴─n─ ─)───
�

This option is applicable only to DDM files.

 DELIMIT
The DELIMIT option specifies whether the input file contains field delimiters or not.
A field delimiter is a blank or a user-defined character that separates the fields in a
record. This is applicable for sort input files only.

 ┌ ┐─N─

──DELIMIT──(─ ──┴ ┴─Y─ ─)───
�

The sort utility distinguishes text files from binary files with the presence of field
delimiters. Input files that contain field delimiters are processed as text files;
otherwise, they are considered to be binary files. The library needs this information
in order to pass the correct parameters to the sort utility.

96 VisualAge PL/I Programming Guide

 Associating data sets with files under OS/390 UNIX

 LRECL
The LRECL option is the same as the RECSIZE option.

──LRECL──(──n──)───
�

If LRECL is not specified and not implied by a LINESIZE value (except for
TYPE(FIXED) files, the default is 1024.

 LRMSKIP
The LRMSKIP option allows output to commence on the nth (n refers to the value
specified with the SKIP option of the PUT or GET statement) line of the first page
for the first SKIP format item to be executed after a file is opened.

 ┌ ┐─N─

──LRMSKIP──(─ ──┴ ┴─Y─ ─)───
�

If n is zero or 1, output commences on the first line of the first page.

 PROMPT
The PROMPT option specifies whether or not colons should be visible as prompts
for stream input from the terminal.

 ┌ ┐─N─

──PROMPT──(─ ──┴ ┴─Y─ ─)──
�

 PUTPAGE
The PUTPAGE option specifies whether or not the form feed character should be
followed by a carriage return character. This option only applies to printer-destined
files. Printer-destined files are stream output files declared with the PRINT
attribute, or record output files declared with the CTLASA environment option.

 ┌ ┐─NOCR─

──PUTPAGE──(─ ──┴ ┴─CR─── ─)──
�

NOCR
Indicates that the form feed character ('0C'x) is not followed by a carriage
return character ('0D'x).

CR
Indicates that the carriage return character is appended to the form feed
character. This option should be specified if output is sent to non-IBM printers.

 RECCOUNT
The RECCOUNT option specifies the maximum number of records that can be
loaded into a relative or regional data set that is created during the PL/I file opening
process.

──RECCOUNT──(──n──)──
�

 Chapter 5. Using data sets and files 97

 Associating data sets with files under OS/390 UNIX

The RECCOUNT option is ignored if PL/I does not create, or recreate, the data set.
If the RECCOUNT option applies and is omitted, the default is 50 for regional and
relative files.

 RECSIZE
The RECSIZE option specifies the length, n, of records in the data set.

 ┌ ┐─512─

──RECSIZE──(─ ──┴ ┴─n─── ─)───
�

For regional and fixed-length data sets, RECSIZE specifies the length of each
record in the data set; for all other data set types, RECSIZE specifies the maximum
length records may have.

 SAMELINE
The SAMELINE option specifies whether the system prompt occurs on the same
line as the statement that prompts for input.

 ┌ ┐─N─

──SAMELINE──(─ ──┴ ┴─Y─ ─)──
�

The following examples show the results of certain combinations of the PROMPT
and SAMELINE options:

Example 1
Given the statement PUT SKIP LIST('ENTER:');, output is as follows:

Example 2
Given the statement PUT SKIP LIST('ENTER');, output is as follows:

prompt(y), sameline(y)
prompt(n), sameline(y)
prompt(y), sameline(n)

prompt(n), sameline(n)

ENTER: (cursor)
ENTER: (cursor)
ENTER:
(cursor)
ENTER:
(cursor)

prompt(y), sameline(y)
prompt(n), sameline(y)
prompt(y), sameline(n)

prompt(n), sameline(n)

ENTER: (cursor)
ENTER (cursor)
ENTER
:
(cursor)
ENTER
(cursor)

 SKIP0
The SKIP0 option specifies where the line cursor moves when SKIP(0) statement is
coded in the source program. SKIP0 applies to terminal files that are not linked as
PM applications.

 ┌ ┐─N─

──SKIPJ──(─ ──┴ ┴─Y─ ─)───
�

98 VisualAge PL/I Programming Guide

 Associating data sets with files under OS/390 UNIX

SKIP0(N)
Specifies that the cursor is to be moved to the beginning of the next line.

SKIP0(Y)
Specifies that the cursor to be moved to the beginning of the current line.

The following example shows how you could make the output to the terminal skip
zero lines so that the cursor moves to the beginning of the current output line:

 export DD_SYSPRINT='stdout:,SKIPJ(Y)'

 TYPE
The TYPE option specifies the format of records in a native file.

 ┌ ┐─LF──────

──TYPE──(─ ──┼ ┼─CRLF──── ─)──
�
 ├ ┤─TEXT────
 ├ ┤─FIXED───
 ├ ┤─CRLFEOF─
 └ ┘─U───────

CRLF
Specifies that records are delimited by the CR - LF character combination.
('CR' and 'LF' represent the ASCII values of carriage return and line feed,
'0D'x and '0A'x, respectively. For an output file, PL/I places the characters at
the end of each record; for an input file, PL/I discards the characters. For both
input and output, the characters are not counted in consideration for RECSIZE.

The data set must not contain any record that is longer than the value
determined for the record length of the data set.

LF Specifies that records are delimited by the LF character combination. ('LF'
represents the ASCII values of feed or '0A'x.) For an output file, PL/I places
the characters at the end of each record; for an input file, PL/I discards the
characters. For both input and output, the characters are not counted in
consideration for RECSIZE.

The data set must not contain any record that is longer than the value
determined for the record length of the data set.

TEXT
Equivalent to LF.

FIXED
Specifies that each record in the data set has the same length. The length
determined for records in the data set is used to recognize record boundaries.

All characters in a TYPE(FIXED) file are considered as data, including control
characters if they exist. Make sure the record length you specify reflects the
presence of these characters or make sure the record length you specify
accounts for all characters in the record.

CRLFEOF
Except for output files, this suboption specifies the same information as CRLF.
When one of these files is closed for output, an end-of-file marker is appended
to the last record.

 Chapter 5. Using data sets and files 99

U Indicates that records are unformatted. These unformatted files cannot be
used by any record or stream I/O statements except OPEN and CLOSE. You
can read from a TYPE(U) file only by using the FILEREAD built-in function.
You can write to a TYPE(U) file only by using the FILEWRITE built-in function.

The TYPE option applies only to CONSECUTIVE files, except that it is ignored for
printer-destined files with ASA(N) applied.

If your program attempts to access an existing data set with TYPE(FIXED) in effect
and the length of the data set is not a multiple of the logical record length you
specify, PL/I raises the UNDEFINEDFILE condition.

When using nonprint files with the TYPE(FIXED) attribute, SKIP is replaced by
trailing blanks to the end of the line. If TYPE(LF) is being used, SKIP is replaced
by LF with no trailing blanks.

Establishing data set characteristics
A data set consists of records stored in a particular format which the operating
system data management routines understand. When you declare or open a file in
your program, you are describing to PL/I and to the operating system the
characteristics of the records that file will contain. You can also use JCL or an
expression in the TITLE option of the OPEN statement to describe to the operating
system the characteristics of the data in data sets or in the PL/I files associated
with them.

You do not always need to describe your data both within the program and outside
it; often one description will serve for both data sets and their associated PL/I files.
There are, in fact, advantages to describing your data's characteristics in only one
place. These are described later in this chapter and in following chapters.

To effectively describe your program data and the data sets you will be using, you
need to understand something of how the operating system moves and stores data.

Blocks and records
The items of data in a data set are arranged in blocks separated by interblock gaps
(IBG). (Some manuals refer to these as interrecord gaps.)

A block is the unit of data transmitted to and from a data set. Each block contains
one record, part of a record, or several records. You can specify the block size in
the BLKSIZE parameter of the DD statement or in the BLKSIZE option of the
ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program. You can specify the
record length in the LRECL parameter of the DD statement, in the TITLE option of
the OPEN statement, or in the RECSIZE option of the ENVIRONMENT attribute.

When writing a PL/I program, you need consider only the records that you are
reading or writing; but when you describe the data sets that your program will
create or access, you must be aware of the relationship between blocks and
records.

Blocking conserves storage space in a magnetic storage volume because it
reduces the number of interblock gaps, and it can increase efficiency by reducing

100 VisualAge PL/I Programming Guide

the number of input/output operations required to process a data set. Records are
blocked and deblocked by the data management routines.

Information interchange codes: The normal code in which data is recorded is
the Extended Binary Coded Decimal Interchange Code (EBCDIC).

Each character in the ASCII code is represented by a 7-bit pattern and there are
128 such patterns. The ASCII set includes a substitute character (the SUB control
character) that is used to represent EBCDIC characters having no valid ASCII
code. The ASCII substitute character is translated to the EBCDIC SUB character,
which has the bit pattern 00111111.

 Record formats
The records in a data set have one of the following formats:

 Fixed-length
 Variable-length
 Undefined-length.

Records can be blocked if required. The operating system will deblock fixed-length
and variable-length records, but you must provide code in your program to deblock
undefined-length records.

You specify the record format in the RECFM parameter of the DD statement, in the
TITLE option of the OPEN statement, or as an option of the ENVIRONMENT
attribute.

 Fixed-length records
You can specify the following formats for fixed-length records:

 F Fixed-length, unblocked
 FB Fixed-length, blocked

In a data set with fixed-length records, as shown in Figure 17, all records have the
same length. If the records are blocked, each block usually contains an equal
number of fixed-length records (although a block can be truncated). If the records
are unblocked, each record constitutes a block.

Unblocked records (F─format):

 ┌────────┐ ┌────────┐ ┌────────┐
│ Record │ IBG │ Record │ ... IBG │ Record │

 └────────┘ └────────┘ └────────┘

Blocked records (FB─format):

 ┌───────────Block──────────┐

 ┌────────┬────────┬────────┐ ┌────────┬────────┬────────┐
│ Record │ Record │ Record │ IBG │ Record │ Record │ Record │ ...

 └────────┴────────┴────────┘ └────────┴────────┴────────┘

Figure 17. Fixed-length records

Because it bases blocking and deblocking on a constant record length, the
operating system processes fixed-length records faster than variable-length records.

 Chapter 5. Using data sets and files 101

 Variable-length records
You can specify the following formats for variable-length records:

 V Variable-length, unblocked
 VB Variable-length, blocked

V-format allows both variable-length records and variable-length blocks. A 4-byte
prefix of each record and the first 4 bytes of each block contain control information
for use by the operating system (including the length in bytes of the record or
block). Because of these control fields, variable-length records cannot be read
backward.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record. The first 4 bytes of the block contain block
control information, and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate. The first 4 bytes of the block contain
block control information, and a 4-byte prefix of each record contains record control
information.

 Undefined-length records
U-format allows the processing of records that do not conform to F- and V-formats.
The operating system and the compiler treat each block as a record; your program
must perform any required blocking or deblocking.

Data set organization
The data management routines of the operating system can handle a number of
types of data sets, which differ in the way data is stored within them and in the
allowed means of access to the data. The three main types of non-VSAM data
sets and the corresponding keywords describing their PL/I organization1 are as
follows:

A fourth type, partitioned, has no corresponding PL/I organization.

PL/I also provides support for three types of VSAM data organization: ESDS,
KSDS, and RRDS. For more information about VSAM data sets, see Chapter 10,
“Defining and using VSAM data sets” on page 179.

In a sequential (or CONSECUTIVE) data set, records are placed in physical
sequence. Given one record, the location of the next record is determined by its
physical position in the data set. Sequential organization can be selected for
direct-access devices.

Type of data set PL/I organization
 Sequential CONSECUTIVE or ORGANIZATION(consecutive)
 Indexed INDEXED or ORGANIZATION(indexed)
 Direct REGIONAL or ORGANIZATION(relative)

1 Do not confuse the terms “sequential” and “direct” with the PL/I file attributes SEQUENTIAL and DIRECT. The attributes refer to
how the file is to be processed, and not to the way the corresponding data set is organized.

102 VisualAge PL/I Programming Guide

An indexed sequential (or INDEXED) data set must reside on a direct-access
volume. An index or set of indexes maintained by the operating system gives the
location of certain principal records. This allows direct retrieval, replacement,
addition, and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct-access volume. The data
set is divided into regions, each of which contains one or more records. A key that
specifies the region number allows direct-access to any record; sequential
processing is also possible.

In a partitioned data set, independent groups of sequentially organized data, each
called a member, reside in a direct-access data set. The data set includes a
directory that lists the location of each member. Partitioned data sets are often
called libraries. The compiler includes no special facilities for creating and
accessing partitioned data sets. Each member can be processed as a
CONSECUTIVE data set by a PL/I program. The use of partitioned data sets as
libraries is described under Chapter 6, “Using libraries” on page 117.

 Labels
The operating system uses internal labels to identify direct-access volumes and to
store data set attributes (for example, record length and block size). The attribute
information must originally come from a DD statement or from your program.

IBM standard labels have two parts: the initial volume label and header labels.
The initial volume label identifies a volume and its owner; the header labels
precede and follow each data set on the volume. Header labels contain system
information, device-dependent information (for example, recording technique), and
data-set characteristics.

Direct-access volumes have IBM standard labels. Each volume is identified by a
volume label, which is stored on the volume. This label contains a volume serial
number and the address of a volume table of contents (VTOC). The table of
contents, in turn, contains a label, termed a data set control block (DSCB), for each
data set stored on the volume.

Data Definition (DD) statement
A data definition (DD) statement is a job control statement that defines a data set to
the operating system, and is a request to the operating system for the allocation of
input/output resources. If the data sets are not dynamically allocated, each job step
must include a DD statement for each data set that is processed by the step.

Your OS/390 JCL User's Guide describes the syntax of job control statements.
The operand field of the DD statement can contain keyword parameters that
describe the location of the data set (for example, volume serial number and
identification of the unit on which the volume will be mounted) and the attributes of
the data itself (for example, record format).

The DD statement enables you to write PL/I source programs that are independent
of the data sets and input/output devices they will use. You can modify the
parameters of a data set or process different data sets without recompiling your
program.

 Chapter 5. Using data sets and files 103

The following paragraphs describe the relationship of some operands of the DD
statement to your PL/I program.

Write validity checking, which was standard in PL/I Version 1, is no longer
performed. Write validity checking can be requested through the OPTCD
subparameter of the DCB parameter of the JCL DD statement. See OS/VS2 Job
Control Language manual.

Use of the conditional subparameters
If you use the conditional subparameters of the DISP parameter for data sets
processed by PL/I programs, the step abend facility must be used. The step abend
facility is obtained as follows:

1. The ERROR condition should be raised or signaled whenever the program is to
terminate execution after a failure that requires the application of the conditional
subparameters.

2. The PL/I user exit must be changed to request an ABEND.

Data set characteristics
The DCB (data control block) parameter of the DD statement allows you to
describe the characteristics of the data in a data set, and the way it will be
processed, at run time. Whereas the other parameters of the DD statement deal
chiefly with the identity, location, and disposal of the data set, the DCB parameter
specifies information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in your OS/390 JCL User's
Guide.

The DCB parameter contains subparameters that describe:

� The organization of the data set and how it will be accessed (CYLOFL,
DSORG, LIMCT, NTM, and OPTCD subparameters)

� Device-dependent information such as the line spacing for a printer (CODE,
FUNC, MODE, OPTCD=J, PRTSP, and STACK subparameters)

� The record format (BLKSIZE, KEYLEN, LRECL, and RECFM subparameters)

� The ASA control characters (if any) that will be inserted in the first byte of each
record (RECFM subparameter).

You can specify BLKSIZE, LRECL, KEYLEN, and RECFM (or their equivalents) in
the ENVIRONMENT attribute of a file declaration in your PL/I program instead of in
the DCB parameter.

You cannot use the DCB parameter to override information already established for
the data set in your PL/I program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied are ignored.

An example of the DCB parameter is:

DCB=(RECFM=FB,BLKSIZE=4JJ,LRECL=4J)

which specifies that fixed-length records, 40 bytes in length, are to be grouped
together in a block 400 bytes long.

OS/390 UNIX Only

104 VisualAge PL/I Programming Guide

Specifying characteristics using DD_DDNAME environment variables
You use the export command to establish an environment variable that identifies
the data set to be associated with a PL/I file and, optionally, provide additional
characteristics of that data set. This information provided by the environment
variable is called data definition (DD) information.

The syntax of the DD_DDNAME environment variable is:

 ┌ ┐───────────────

─ ──DD_DDNAME=filespec ───� ┴┬ ┬─────────── ───
�
 └ ┘ ─,──option─

Note: The option list must be enclosed by quotes when any of the suboptions are
specified.

Blanks are acceptable within the syntax. In addition, the syntax of the statement is
not checked at the time the command is entered. It is verified when the data set is
opened. If the syntax is wrong, UNDEFINEDFILE is raised with the ONCODE 96.

DD_DDNAME
Specifies the name of the environment variable. The DDNAME must be in
upper case and can be either the name of a file constant or an alternate
DDNAME that you specify in the TITLE option of your OPEN statement.

If you use an alternate DDNAME, and it is longer than 31 characters, only the
first 31 characters are used in forming the environment variable name.

filespec
Specifies a file or the name of a device to be associated with the PL/I file.

option
The options you can specify as DD information are:

End of OS/390 UNIX Only

APPEND DELAY RECOUNT
ASA LRECL RECSIZE
BUFSIZE PROMPT SKIP0
CHARSET PUTPAGE TYPE

Using the TITLE option of the OPEN statement
You can use the TITLE option of the OPEN statement to identify the data set to be
associated with a PL/I file and, optionally, to provide additional characteristics of the
data set.

──TITLE──(──expression──)──
�

The expression must yield a character string with the following syntax:

 Chapter 5. Using data sets and files 105

─ ──┬ ┬─alternate_ddname──────────────────── ─────────────────────────────────────
�
 │ │┌ ┐───────────────────────────────────
 └ ┘───� ┴─/filespec─ ──┬ ┬─── ──┬ ┬───────────
 └ ┘─,─ └ ┘─dd_option─

alternate_ddname
The name of an alternate DD_DDNAME environment variable. An alternate
DD_DDNAME environment variable is one not named after a file constant.
For example, if you had a file named INVENTRY in your program, and you
establish two DD_DDNAME environment variables—the first named
INVENTRY and the second named PARTS—you could associate the file with
the second one using this statement:

open file(Inventry) title('PARTS');

filespec
Any valid OS/390 UNIX or OS/390 PDS file specification.

dd_option
One or more options allowed in a DD_DDNAME environment variable. For
more information about options of the DD_DDNAME variable, see “Specifying
characteristics using DD_DDNAME environment variables” on page 105.

Here is an example of using the OPEN statement in this manner:

open file(Payroll) title('/June.Dat, append(n),recsize(52)');

With this form, PL/I obtains all DD information either from the TITLE
expression or from the ENVIRONMENT attribute of a file declaration. A
DD_DDNAME environment variable is not referenced.

Associating PL/I files with data sets
Opening a file: The execution of a PL/I OPEN statement associates a file with a
data set. This requires merging of the information describing the file and the data
set. If any conflict is detected between file attributes and data set characteristics,
the UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control block for the data set.
They use the file attributes from the DECLARE and OPEN statements and any
attributes implied by the declared attributes, to complete the data control block as
far as possible. (See Figure 18 on page 107.) They then issue an OPEN macro
instruction, which calls the data management routines to check that the correct
volume is mounted and to complete the data control block.

The data management routines examine the data control block to see what
information is still needed and then look for this information, first in the DD
statement, and finally, if the data set exists and has standard labels, in the data set
labels. For new data sets, the data management routines begin to create the
labels (if they are required) and to fill them with information from the data control
block.

Neither the DD statement nor the data set label can override information provided
by the PL/I program; nor can the data set label override information provided by the
DD statement.

When the DCB fields are filled in from these sources, control returns to the PL/I
library subroutines. If any fields still are not filled in, the PL/I OPEN subroutine

106 VisualAge PL/I Programming Guide

provides default information for some of them. For example, if LRECL is not
specified, it is provided from the value given for BLKSIZE.

DCL MASTER FILE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FILE(MASTER);

//MASTER DD UNIT=2400
VOLUME=SER= 1791,
DSNAME=LIST,
DCB=(BUFNO=3,
RECFM=F,
BLKSIZE=400,
LRECL=100)

Record format=F
Record length=100
Blocking factor=4
Recording density=1600

Record format

Block size

Record length

Device type

Number of buffers

Recording density

DATA CONTROL BLOCK

FB

400

40

2400

3

1600

PL/I PROGRAM

DD STATEMENT

DATA SET LABEL

Note: Information from the PL/I program overrides that from the DD statement and the data set label.
Information from the DD statement overrides that from the data set label.

Figure 18. How the operating system completes the DCB

Closing a file: The execution of a PL/I CLOSE statement dissociates a file from
the data set with which it was associated. The PL/I library subroutines first issue a
CLOSE macro instruction and, when control returns from the data management
routines, release the data control block that was created when the file was opened.
The data management routines complete the writing of labels for new data sets and
update the labels of existing data sets.

Specifying characteristics in the ENVIRONMENT attribute
You can use various options in the ENVIRONMENT attribute. Each type of file has
different attributes and environment options, which are listed below.

The ENVIRONMENT attribute: You use the ENVIRONMENT attribute of a PL/I
file declaration file to specify information about the physical organization of the data
set associated with a file, and other related information. The format of this
information must be a parenthesized option list.

──ENVIRONMENT──(──option-list──)───
�

Abbreviation: ENV

You can specify the options in any order, separated by blanks or commas.

 Chapter 5. Using data sets and files 107

The following example illustrates the syntax of the ENVIRONMENT attribute in the
context of a complete file declaration (the options specified are for VSAM and are
discussed in Chapter 10, “Defining and using VSAM data sets” on page 179).

DCL FILENAME FILE RECORD SEQUENTIAL
INPUT ENV(VSAM GENKEY);

Table 10 summarizes the ENVIRONMENT options and file attributes. Certain
qualifications on their use are presented in the notes and comments for the figure.
Those options that apply to more than one data set organization are described in
the remainder of this chapter. In addition, in the following chapters, each option is
described with each data set organization to which it applies.

Table 10. Attributes of PL/I file declarations

Data set
type

S
t
r
e
a
m

Record

Legend:

C Checked for VSAM

D Default

I Must be specified or implied

N Ignored for VSAM

O Optional

S Must be specified

- Invalid

File
Type

C
o
n
s
e
c
u
t
i
v
e

Sequential Direct

Consecutive Regional T
e
l
e
p
r
o
c
e
s
s
i
n
g

I
n
d
e
x
e
d

V
S
A
M

R
e
g
i
o
n
a
l

I
n
d
e
x
e
d

V
S
A
M

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

B
u
f
f
e
r
e
d

U
n
b
u
f
f
e
r
e
d

File attributes1 Attributes implied

File I I I I I I I I I I I
Input1 D D D D D D D D D D D File
Output O O O O O O O O O O O File
Environment I I I S S S S S S S S File
Stream D - - - - - - - - - - File
Print1 O - - - - - - - - - - File stream output
Record - I I I I I I I I I I File
Update - O O O O - O O O O O File record
Sequential - D D D D - D D - - D File record
Buffered - D - D - I D D - - S File record
Keyed2 - - - O O I O O I I O File record
Direct - - - - - - - S S S S File record keyed

ENVIRONMENT options Comments

F|FB|V|
 VB||U

I

S

S

-

-

-

-

N

-

-

N

F|FB|U S S - - - - - N - - N ASCII data sets only
F|V|U - - - S S - - N S - N Only F for REGIONAL(1)
F|FB|V|VB - - - - - - S N - S N
RECSIZE(n) I I I I I S I C I I C RECSIZE and/or BLKSIZE must be specified
BLKSIZE(n) I I I I I - I N I I N for consecutive, indexed, and regional files
SCALARVARYING - O O O O - O O O O O Invalid for ASCII data sets
CONSECUTIVE D D D - - - - O - - O Allowed for VSAM ESDS
CTLASA|CTL360 - O O - - - - - - - - Invalid for ASCII data sets
GRAPHIC O - - - - - - - - - -
INDEXED - - - - - - S O - S O Allowed for VSAM ESDS
KEYLOC(n) - - - - - - O - - O -
ORGANIZATION D - - - -

GENKEY
-

- - -
-

- O O -
O O

INPUT or UPDATE files only;
KEYED is required

REGIONAL(1) - - - S S - - - S - -
VSAM - - - - - - - S - - S
BKWD - - - - - - - O - - O
REUSE

-

-

-

-

-

-

-

O

-

-

O

OUTPUT file only

Notes:

1. A file with the INPUT attribute cannot have the PRINT attribute.
2. Keyed is required for INDEXED and REGIONAL output.

108 VisualAge PL/I Programming Guide

Data set organization options: The options that specify data set organization
are:

─ ──┬ ┬─CONSECUTIVE─────── ───
�
 ├ ┤─INDEXED───────────
 ├ ┤─REGIONAL──(──1──)─
 └ ┘─VSAM──────────────

Each option is described in the discussion of the data set organization to which it
applies.

Other ENVIRONMENT options: You can use a constant or variable with those
ENVIRONMENT options that require integer arguments, such as block sizes and
record lengths. The variable must not be subscripted or qualified, and must have
attributes FIXED BINARY(31,0) and STATIC.

The list of equivalents for ENVIRONMENT options and DCB parameters are:

ENVIRONMENT option DCB subparameter

Record format RECFM1

RECSIZE LRECL
BLKSIZE BLKSIZE
CTLASA|CTL360 RECFM
KEYLENGTH KEYLEN

Record formats for record-oriented data transmission: Record formats
supported depend on the data set organization.

─ ──┬ ┬─F── ──
�
 ├ ┤─FB─
 ├ ┤─V──
 ├ ┤─VB─
 └ ┘─U──

Records can have one of the following formats:

When U-format records are read into a varying-length string, PL/I sets the length of
the string to the block length of the retrieved data.

These record format options do not apply to VSAM data sets. If you specify a
record format option for a file associated with a VSAM data set, the option is
ignored.

Record formats for stream-oriented data transmission: The record format
options for stream-oriented data transmission are discussed in “Using
stream-oriented data transmission” on page 123.

Fixed-length F
FB

unblocked
blocked

Variable-length V
VB

unblocked
blocked
unblocked, ASCII
blocked, ASCII

Undefined-length U (cannot be blocked)

 Chapter 5. Using data sets and files 109

RECSIZE option: The RECSIZE option specifies the record length.

──RECSIZE──(──record-length──)───
�

For files associated with VSAM data sets, record-length is the sum of:

1. The length required for data. For variable-length and undefined-length records,
this is the maximum length.

2. Any control bytes required. Variable-length records require 4 (for the
record-length prefix); fixed-length and undefined-length records do not require
any.

For VSAM data sets, the maximum and average lengths of the records are
specified to the Access Method Services utility when the data set is defined. If you
include the RECSIZE option in the file declaration for checking purposes, you
should specify the maximum record size. If you specify RECSIZE and it conflicts
with the values defined for the data set, the UNDEFINEDFILE condition is raised.

You can specify record-length as an integer or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets): 32760

V-format: 32756

ASCII data sets: 9999

VSAM data sets: 32761

Zero value:
A search for a valid value is made first:

� In the DD statement for the data set associated with the file, and second
� In the data set label.

If neither of these provides a value, default action is taken (see “Record format,
BLKSIZE, and RECSIZE defaults” on page 111).

Negative Value:
The UNDEFINEDFILE condition is raised.

BLKSIZE option: The BLKSIZE option specifies the maximum block size on the
data set.

──BLKSIZE──(──block-size──)──
�

block-size is the sum of:

1. The total length(s) of one of the following:

� A single record
� A single record and either one or two record segments

 � Several records
� Several records and either one or two record segments
� Two record segments

110 VisualAge PL/I Programming Guide

� A single record segment.

For variable-length records, the length of each record or record segment
includes the 4 control bytes for the record or segment length.

The above list summarizes all the possible combinations of records and record
segments options: fixed- or variable-length blocked or unblocked

2. Any further control bytes required.

� Variable-length blocked records require 4 (for the block size).
� Fixed-length and undefined-length records do not require any further control

bytes.

3. Any block prefix bytes required (ASCII data sets only).

block-size can be specified as an integer, or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
32760

Zero value:
If you set BLKSIZE to 0, under OS/390 the Data Facility Product sets the block
size. For an elaboration of this topic, see “Record format, BLKSIZE, and
RECSIZE defaults.” BLKSIZE defaults.

Negative value:
The UNDEFINEDFILE condition is raised.

The relationship of block size to record length depends on the record format:

FB-format
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. Four control bytes.

Notes:

� Use the BLKSIZE option with unblocked (F- or V-format) records in either of the
following ways:

– Specify the BLKSIZE option, but not the RECSIZE option. Set the record
length equal to the block size (minus any control or prefix bytes), and leave
the record format unchanged.

– Specify both BLKSIZE and RECSIZE and ensure that the relationship of
the two values is compatible with blocking for the record format you use.
Set the record format to FB or VB, whichever is appropriate.

� The BLKSIZE option does not apply to VSAM data sets, and is ignored if you
specify it for one.

Record format, BLKSIZE, and RECSIZE defaults: If you do not specify either
the record format, block size, or record length for a non-VSAM data set, the
following default action is taken:

 Chapter 5. Using data sets and files 111

Record format:
A search is made in the associated DD statement or data set label. If the
search does not provide a value, the UNDEFINEDFILE condition is raised,
except for files associated with dummy data sets or the foreground terminal, in
which case the record format is set to U.

Block size or record length:
If one of these is specified, a search is made for the other in the associated
DD statement or data set label. If the search provides a value, and if this
value is incompatible with the value in the specified option, the
UNDEFINEDFILE condition is raised. If the search is unsuccessful, a value is
derived from the specified option (with the addition or subtraction of any control
or prefix bytes).

If neither is specified, the UNDEFINEDFILE condition is raised, except for files
associated with dummy data sets, in which case BLKSIZE is set to 121 for
F-format or U-format records and to 129 for V-format records. For files
associated with the foreground terminal, RECSIZE is set to 120.

If you are using OS/390 with the Data Facility Product system-determined
block size, DFP determines the optimum block size for the device type
assigned. If you specify BLKSIZE(0) in either the DD assignment or the
ENVIRONMENT statement, DFP calculates BLKSIZE using the record length,
record format, and device type.

GENKEY option — key classification: The GENKEY (generic key) option
applies only to INDEXED and VSAM key-sequenced data sets. It enables you to
classify keys recorded in a data set and to use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to their key
classes.

──GENKEY───
�

A generic key is a character string that identifies a class of keys; all keys that begin
with the string are members of that class. For example, the recorded keys “ABCD”,
“ABCE”, and “ABDF” are all members of the classes identified by the generic keys
“A” and “AB”, and the first two are also members of the class “ABC”; and the three
recorded keys can be considered to be unique members of the classes “ABCD”,
“ABCE”, and “ABDF”, respectively.

The GENKEY option allows you to start sequential reading or updating of a VSAM
data set from the first record that has a key in a particular class, and for an
INDEXED data set from the first nondummy record that has a key in a particular
class. You identify the class by including its generic key in the KEY option of a
READ statement. Subsequent records can be read by READ statements without
the KEY option. No indication is given when the end of a key class is reached.

Although you can retrieve the first record having a key in a particular class by using
a READ with the KEY option, you cannot obtain the actual key unless the records
have embedded keys, since the KEYTO option cannot be used in the same
statement as the KEY option.

In the following example, a key length of more than 3 bytes is assumed:

112 VisualAge PL/I Programming Guide

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (GENKEY);

 .
 .
 .

READ FILE(IND) INTO(INFIELD)
 KEY ('ABC');
 .
 .
 .
NEXT: READ FILE (IND) INTO (INFIELD);
 .
 .
 .

GO TO NEXT;

The first READ statement causes the first nondummy record in the data set whose
key begins with “ABC” to be read into INFIELD; each time the second READ
statement is executed, the nondummy record with the next higher key is retrieved.
Repeated execution of the second READ statement could result in reading records
from higher key classes, since no indication is given when the end of a key class is
reached. It is your responsibility to check each key if you do not wish to read
beyond the key class. Any subsequent execution of the first READ statement
would reposition the file to the first record of the key class “ABC”.

If the data set contains no records with keys in the specified class, or if all the
records with keys in the specified class are dummy records, the KEY condition is
raised. The data set is then positioned either at the next record that has a higher
key or at the end of the file.

The presence or absence of the GENKEY option affects the execution of a READ
statement which supplies a source key that is shorter than the key length specified
in the KEYLEN subparameter. This KEYLEN subparameter is found in the DD
statement that defines the indexed data set. If you specify the GENKEY option, it
causes the source key to be interpreted as a generic key, and the data set is
positioned to the first nondummy record in the data set whose key begins with the
source key. If you do not specify the GENKEY option, a READ statement's short
source key is padded on the right with blanks to the specified key length, and the
data set is positioned to the record that has this padded key (if such a record
exists). For a WRITE statement, a short source key is always padded with blanks.

Use of the GENKEY option does not affect the result of supplying a source key
whose length is greater than or equal to the specified key length. The source key,
truncated on the right if necessary, identifies a specific record (whose key can be
considered to be the only member of its class).

SCALARVARYING option — varying-length strings: You use the
SCALARVARYING option in the input/output of varying-length strings; you can use
it with records of any format.

──SCALARVARYING──
�

When storage is allocated for a varying-length string, the compiler includes a 2-byte
prefix that specifies the current length of the string. For an element varying-length

 Chapter 5. Using data sets and files 113

string, this prefix is included on output, or recognized on input, only if
SCALARVARYING is specified for the file.

When you use locate mode statements (LOCATE and READ SET) to create and
read a data set with element varying-length strings, you must specify
SCALARVARYING to indicate that a length prefix is present, since the pointer that
locates the buffer is always assumed to point to the start of the length prefix.

When you specify SCALARVARYING and element varying-length strings are
transmitted, you must allow two bytes in the record length to include the length
prefix.

A data set created using SCALARVARYING should be accessed only by a file that
also specifies SCALARVARYING.

You must not specify SCALARVARYING and CTLASA/CTL360 for the same file, as
this causes the first data byte to be ambiguous.

KEYLENGTH option: Use the KEYLENGTH option to specify the length of the
recorded key for KEYED files where n is the length. You can specify KEYLENGTH
for INDEXED files.

──KEYLENGTH──(──n──)───
�

If you include the KEYLENGTH option in a VSAM file declaration for checking
purposes, and the key length you specify in the option conflicts with the value
defined for the data set, the UNDEFINEDFILE condition is raised.

ORGANIZATION option: The ORGANIZATION option specifies the organization
of the data set associated with the PL/I file.

 ┌ ┐─CONSECUTIVE─

──ORGANIZATION──(─ ──┼ ┼─INDEXED───── ─)──
�
 └ ┘─RELATIVE────

CONSECUTIVE
Specifies that the files is associated with a consecutive data set. A
consecutive file can be either a native data set or a VSAM, ESDS, RRDS, or
KSDS data set.

RELATIVE
Specifies that the file is associated with a relative data set. RELATIVE
specifies that the data set contains records that do not have recorded keys.
A relative file is a VSAM direct data set. Relative keys range from 1 to nnnn.

Data set types used by PL/I record I/O
Data sets with the RECORD attribute are processed by record-oriented data
transmission in which data is transmitted to and from auxiliary storage exactly as it
appears in the program variables; no data conversion takes place. A record in a
data set corresponds to a variable in the program.

Table 11 on page 115 shows the facilities that are available with the various types
of data sets that can be used with PL/I Record I/O.

114 VisualAge PL/I Programming Guide

Table 11. A comparison of data set types available to PL/I record I/O

 VSAM
KSDS

VSAM
ESDS

VSAM
RRDS

INDEXED

CONSECUTIVE

REGIONAL
(1)

SEQUENCE Key
order

Entry
order

Num-
bered

Key
order

Entry
order

By
region

DEVICES DASD DASD DASD DASD DASD,
card, etc.

DASD

ACCESS
1 By key
2 Sequential

123

123

123

12

2

12

Alternate
index
 access
 as above

123

123

No

No

No

No

How
extended

With
new
keys

At
end

In
empty
slots

With
new
keys

At
end

In
empty
slots

DELETION
1 Space reusable
2 Space not

reusable

Yes, 1

No

Yes, 1

Yes, 2

No

Yes, 2

The following chapters describe how to use Record I/O data sets for different types
of data sets:

� Chapter 7, “Defining and using consecutive data sets” on page 123
� Chapter 8, “Defining and using indexed data sets” on page 147
� Chapter 9, “Defining and using regional data sets” on page 168
� Chapter 10, “Defining and using VSAM data sets” on page 179

OS/390 UNIX System Services Only

Setting environment variables
There are a number of environment variables that can be set and exported for use
with OS/390 UNIX.

To set the environment variables system wide so all users have access to them,
add the lines suggested in the subsections to the file /etc/profile. To set them
for a specific user only, add them to the file .profile in the user's home directory.
The variables are set the next time the user logs on.

The following example illustrates how to set environment variables:

LANG=ja_JP
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/prime/%N
LIBPATH=/home/joe/usr/lib:/home/joe/mylib:/usr/lib
export LANG NLSPATH LIBPATH

Rather than using the last statement in the previous example, you could have
added export to each of the preceding lines (export LANG=ja_JP...).

 Chapter 5. Using data sets and files 115

You can use the ECHO command to determine the current setting of an
environment variable. To define the value of BYPASS, you can use either of the
following two examples:

echo $LANG

echo $LIBPATH

PL/I standard files (SYSPRINT and SYSIN)
SYSIN is read from stdin and SYSPRINT is directed to stdout by default. If you
want either to be associated differently, you must use the TITLE option of the
OPEN statement, or establish a DD_DDNAME environment variable naming a data
set or another device. Environment variables are discussed above in “Setting
environment variables” on page 115.

Redirecting standard input, output, and error devices
You can also redirect standard input, standard output, and standard error devices
to a file. You could use redirection in the following program:

Hello2: proc options(main);
 put list('Hello!');
end;

After compiling and linking the program, you could invoke it from the command line
by entering:

hello2 > hello2.out

If you want to combine stdout and stderr in a single file, enter the following
command:

hello2 > hello2.out 2>&1

As is true with display statements, the greater than sign redirects the output to the
file that is specified after it, in this case hello2.out. This means that the word
'Hello' is written in the file hello2.out. Note also that the output includes printer
control characters since the PRINT attribute is applied to SYSPRINT by default.

READ statements can access data from stdin; however, the record into which the
data is to be put must have an LRECL equal to 1.

End of OS/390 UNIX System Services Only

116 VisualAge PL/I Programming Guide

 Chapter 6. Using libraries

Within the OS/390 operating system, the terms “partitioned data set,” “partitioned
data set/extension,” and “library” are synonymous and refer to a type of data set
that can be used for the storage of other data sets (usually programs in the form of
source, object or load modules). A library must be stored on direct-access storage
and be wholly contained in one volume. It contains independent, consecutively
organized data sets, called members. Each member has a unique name, not more
than 8 characters long, which is stored in a directory that is part of the library. All
the members of one library must have the same data characteristics because only
one data set label is maintained.

You can create members individually until there is insufficient space left for a new
entry in the directory, or until there is insufficient space for the member itself. You
can access members individually by specifying the member name.

Use DD statements or their conversational mode equivalent to create and access
members.

You can delete members by means of the IBM utility program IEHPROGM. This
deletes the member name from the directory so that the member can no longer be
accessed, but you cannot use the space occupied by the member itself again
unless you recreate the library or compress the unused space using, for example,
the IBM utility program IEBCOPY. If you attempt to delete a member by using the
DISP parameter of a DD statement, it causes the whole data set to be deleted.

Types of libraries
You can use the following types of libraries with a PL/I program:

� The system program library SYS1.LINKLIB or its equivalent. This can contain
all system processing programs such as compilers and the linkage editor.

� Private program libraries. These usually contain user-written programs. It is
often convenient to create a temporary private library to store the load module
output from the linkage editor until it is executed by a later job step in the same
job. The temporary library will be deleted at the end of the job. Private
libraries are also used for automatic library call by the linkage editor and the
loader.

� The system procedure library SYS1.PROCLIB or its equivalent. This contains
the job control procedures that have been cataloged for your installation.

How to use a library
A PL/I program can use a library directly. If you are adding a new member to a
library, its directory entry will be made by the operating system when the
associated file is closed, using the member name specified as part of the data set
name.

If you are accessing a member of a library, its directory entry can be found by the
operating system from the member name that you specify as part of the data set
name.

 Copyright IBM Corp. 1964, 2000 117

More than one member of the same library can be processed by the same PL/I
program, but only one such output file can be open at any one time. You access
different members by giving the member name in a DD statement.

Creating a library
To create a library include in your job step a DD statement containing the
information given in Table 12. The information required is similar to that for a
consecutively organized data set (see “Defining files using record I/O” on
page 139) except for the SPACE parameter.

Table 12. Information required when creating a library

Information Required Parameter of DD statement

Type of device that will be used UNIT=

Serial number of the volume that will contain the library VOLUME=SER

Name of the library DSNAME=

Amount of space required for the library SPACE=

Disposition of the library DISP=

 SPACE parameter
The SPACE parameter in a DD statement that defines a library must always be of
the form:

SPACE=(units,(quantity,increment,directory))

Although you can omit the third term (increment), indicating its absence by a
comma, the last term, specifying the number of directory blocks to be allocated,
must always be present.

The amount of auxiliary storage required for a library depends on the number and
sizes of the members to be stored in it and on how often members will be added or
replaced. (Space occupied by deleted members is not released.) The number of
directory blocks required depends on the number of members and the number of
aliases. You can specify an incremental quantity in the SPACE parameter that
allows the operating system to obtain more space for the data set, if such is
necessary at the time of creation or at the time a new member is added; the
number of directory blocks, however, is fixed at the time of creation and cannot be
increased.

For example, the DD statement:

// PDS DD UNIT=SYSDA,VOL=SER=3412,
// DSNAME=ALIB,
// SPACE=(CYL,(5,,1J)),
// DISP=(,CATLG)

requests the job scheduler to allocate 5 cylinders of the DASD with a volume serial
number 3412 for a new library name ALIB, and to enter this name in the system
catalog. The last term of the SPACE parameter requests that part of the space
allocated to the data set be reserved for ten directory blocks.

118 VisualAge PL/I Programming Guide

Creating and updating a library member
The members of a library must have identical characteristics. Otherwise, you might
later have difficulty retrieving them. Identical characteristics are necessary because
the volume table of contents (VTOC) will contain only one data set control block
(DSCB) for the library and not one for each member. When using a PL/I program
to create a member, the operating system creates the directory entry; you cannot
place information in the user data field.

When creating a library and a member at the same time, your DD statement must
include all the parameters listed under “Creating a library” on page 118 (although
you can omit the DISP parameter if the data set is to be temporary). The DSNAME
parameter must include the member name in parentheses. For example,
DSNAME=ALIB(MEM1) names the member MEM1 in the data set ALIB. If the
member is placed in the library by the linkage editor, you can use the linkage editor
NAME statement or the NAME compile-time option instead of including the member
name in the DSNAME parameter. You must also describe the characteristics of the
member (record format, etc.) either in the DCB parameter or in your PL/I program.
These characteristics will also apply to other members added to the data set.

When creating a member to be added to an existing library, you do not need the
SPACE parameter. The original space allocation applies to the whole of the library
and not to an individual member. Furthermore, you do not need to describe the
characteristics of the member, since these are already recorded in the DSCB for
the library.

To add two more members to a library in one job step, you must include a DD
statement for each member, and you must close one file that refers to the library
before you open another.

 Examples
The use of the cataloged procedure IBMZC to compile a simple PL/I program and
place the object module in a new library named EXLIB is shown in Figure 19 on
page 120. The DD statement that defines the new library and names the object
module overrides the DD statement SYSLIN in the cataloged procedure. (The PL/I
program is a function procedure that, given two values in the form of the character
string produced by the TIME built-in function, returns the difference in milliseconds.)

The use of the cataloged procedure IBMZCL to compile and link-edit a PL/I
program and place the load module in the existing library HPU8.CCLM is shown in
Figure 20 on page 120.

 Chapter 6. Using libraries 119

 //OPT1J#1 JOB
 //TR EXEC IBMZC
//PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPU8.EXLIB(ELAPSE),
 // SPACE=(TRK,(1,,1)),DISP=(NEW,CATLG)
 //PLI.SYSIN DD X
 ELAPSE: PROC(TIME1,TIME2);

DCL (TIME1,TIME2) CHAR(9),
H1 PIC '99' DEF TIME1,
M1 PIC '99' DEF TIME1 POS(3),
MS1 PIC '99999' DEF TIME1 POS(5),
H2 PIC '99' DEF TIME2,
M2 PIC '99' DEF TIME2 POS(3),
MS2 PIC '99999' DEF TIME2 POS(5),
ETIME FIXED DEC(7);

IF H2<H1 THEN H2=H2+24;
 ETIME=((H2X6J+M2)X6JJJJ+MS2)-((H1X6J+M1)X6JJJJ+MS1);
 RETURN(ETIME);
 END ELAPSE;
 /X

Figure 19. Creating new libraries for compiled object modules

 //OPT1J#2 JOB
 //TRLE EXEC IBMZCL
 //PLI.SYSIN DD X

MNAME: PROC OPTIONS(MAIN);
 .
 .
 .
 program
 .
 .
 .

 END MNAME;
 /X
//LKED.SYSLMOD DD DSNAME=HPU8.CCLM(DIRLIST),DISP=OLD

Figure 20. Placing a load module in an existing library

To use a PL/I program to add or delete one or more records within a member of a
library, you must rewrite the entire member in another part of the library. This is
rarely an economic proposition, since the space originally occupied by the member
cannot be used again. You must use two files in your PL/I program, but both can
be associated with the same DD statement. The program shown in Figure 22 on
page 121 updates the member created by the program in Figure 21 on page 121.
It copies all the records of the original member except those that contain only
blanks.

120 VisualAge PL/I Programming Guide

 //OPT1J#3 JOB
 //TREX EXEC IBMZCBG
 //PLI.SYSIN DD X
 NMEM: PROC OPTIONS(MAIN);

DCL IN FILE RECORD SEQUENTIAL INPUT,
OUT FILE RECORD SEQUENTIAL OUTPUT,

 P POINTER,
IOFIELD CHAR(8J) BASED(P),
EOF BIT(1) INIT('J'B);

OPEN FILE(IN),FILE (OUT);
ON ENDFILE(IN) EOF='1'B;
READ FILE(IN) SET(P);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
WRITE FILE(OUT) FROM(IOFIELD);
READ FILE(IN) SET(P);

 END;
 CLOSE FILE(IN),FILE(OUT);
 END NMEM;
 /X
 //GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.ALIB(NMEM),
 // DISP=(NEW,CATLG),SPACE=(TRK,(1,1,1)),
 // DCB=(RECFM=FB,BLKSIZE=36JJ,LRECL=8J)
 //GO.IN DD X
 MEM: PROC OPTIONS(MAIN);

/X this is an incomplete dummy library member X/

Figure 21. Creating a library member in a PL/I program

 //OPT1J#4 JOB
 //TREX EXEC IBMZCBG
 //PLI.SYSIN DD X

UPDTM: PROC OPTIONS(MAIN);
DCL (OLD,NEW) FILE RECORD SEQUENTIAL,

EOF BIT(1) INIT('J'B),
 DATA CHAR(8J);

ON ENDFILE(OLD) EOF = '1'B;
OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE('OLD');
READ FILE(OLD) INTO(DATA);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);
IF DATA=' ' THEN ;
ELSE WRITE FILE(NEW) FROM(DATA);
READ FILE(OLD) INTO(DATA);

 END;
 CLOSE FILE(OLD),FILE(NEW);
 END UPDTM;
 /X
 //GO.OLD DD DSNAME=HPU8.ALIB(NMEM),DISP=(OLD,KEEP)

Figure 22. Updating a library member

Extracting information from a library directory
The directory of a library is a series of records (entries) at the beginning of the data
set. There is at least one directory entry for each member. Each entry contains a
member name, the relative address of the member within the library, and a variable
amount of user data.

User data is information inserted by the program that created the member. An
entry that refers to a member (load module) written by the linkage editor includes
user data in a standard format, described in the systems manuals.

 Chapter 6. Using libraries 121

If you use a PL/I program to create a member, the operating system creates the
directory entry for you and you cannot write any user data. However, you can use
assembler language macro instructions to create a member and write your own
user data. The method for using macro instructions to do this is described in the
data management manuals.

122 VisualAge PL/I Programming Guide

Chapter 7. Defining and using consecutive data sets

This chapter covers consecutive data set organization and the ENVIRONMENT
options that define consecutive data sets for stream and record-oriented data
transmission. It then covers how to create, access, and update consecutive data
sets for each type of transmission.

In a data set with consecutive organization, records are organized solely on the
basis of their successive physical positions; when the data set is created, records
are written consecutively in the order in which they are presented. You can retrieve
the records only in the order in which they were written. See Table 10 on
page 108 for valid file attributes and ENVIRONMENT options for consecutive data
sets.

Using stream-oriented data transmission
This section covers how to define data sets for use with PL/I files that have the
STREAM attribute. It covers the ENVIRONMENT options you can use and how to
create and access data sets. The essential parameters of the DD statements you
use in creating and accessing these data sets are summarized in tables, and
several examples of PL/I programs are included to illustrate the text.

Data sets with the STREAM attribute are processed by stream-oriented data
transmission, which allows your PL/I program to ignore block and record
boundaries and treat a data set as a continuous stream of data values in character
or graphic form.

You create and access data sets for stream-oriented data transmission using the
list-, data-, and edit-directed input and output statements described in the PL/I
Language Reference.

For output, PL/I converts the data items from program variables into character form
if necessary, and builds the stream of characters or graphics into records for
transmission to the data set.

For input, PL/I takes records from the data set and separates them into the data
items requested by your program, converting them into the appropriate form for
assignment to program variables.

You can use stream-oriented data transmission to read or write graphic data.
There are terminals, printers, and data-entry devices that, with the appropriate
programming support, can display, print, and enter graphics. You must be sure
that your data is in a format acceptable for the intended device, or for a print utility
program.

Defining files using stream I/O
You define files for stream-oriented data transmission by a file declaration with the
following attributes:

DCL filename FILE STREAM
INPUT | {OUTPUT [PRINT]}

 ENVIRONMENT(options);

 Copyright IBM Corp. 1964, 2000 123

Default file attributes are shown in Table 10 on page 108; the FILE attribute is
described in the PL/I Language Reference. The PRINT attribute is described
further in “Using PRINT files with stream I/O” on page 130. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT options
Table 10 on page 108 summarizes the ENVIRONMENT options. The options
applicable to stream-oriented data transmission are:

CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
F|FB|V|VB|U
RECSIZE(record-length)
BLKSIZE(block-size)
GRAPHIC

BLKSIZE is described in Chapter 5, “Using data sets and files,” beginning on page
110. Descriptions of the rest of these options follow immediately below.

 CONSECUTIVE
STREAM files must have CONSECUTIVE data set organization; however, it is not
necessary to specify this in the ENVIRONMENT options since CONSECUTIVE is
the default data set organization. The CONSECUTIVE option for STREAM files is
the same as that described in “Data set organization” on page 102.

──CONSECUTIVE──
�

Record format options
Although record boundaries are ignored in stream-oriented data transmission,
record format is important when creating a data set. This is not only because
record format affects the amount of storage space occupied by the data set and the
efficiency of the program that processes the data, but also because the data set
can later be processed by record-oriented data transmission.

Having specified the record format, you need not concern yourself with records and
blocks as long as you use stream-oriented data transmission. You can consider
your data set a series of characters or graphics arranged in lines, and you can use
the SKIP option or format item (and, for a PRINT file, the PAGE and LINE options
and format items) to select a new line.

─ ──┬ ┬─F── ──
�
 ├ ┤─FB─
 ├ ┤─V──
 ├ ┤─VB─
 └ ┘─U──

Records can have one of the following formats, which are described in “Record
formats” on page 101.

Fixed-length F
FB

unblocked
blocked

Variable-length V
VB

unblocked
blocked

Undefined-length U (cannot be blocked)

124 VisualAge PL/I Programming Guide

Blocking and deblocking of records are performed automatically.

 RECSIZE
RECSIZE for stream-oriented data transmission is the same as that described in
“Specifying characteristics in the ENVIRONMENT attribute” on page 107.
Additionally, a value specified by the LINESIZE option of the OPEN statement
overrides a value specified in the RECSIZE option. LINESIZE is discussed in the
PL/I Language Reference.

Additional record-size considerations for list- and data-directed transmission of
graphics are given in the PL/I Language Reference.

Defaults for record format, BLKSIZE, and RECSIZE
If you do not specify the record format, BLKSIZE, or RECSIZE option in the
ENVIRONMENT attribute, or in the associated DD statement or data set label, the
following action is taken:

Input files:
Defaults are applied as for record-oriented data transmission, described in
“Record format, BLKSIZE, and RECSIZE defaults” on page 111.

Output files:

Record format
Set to VB-format

Record length
The specified or default LINESIZE value is used:

 PRINT files:
F, FB, or U: line size + 1
V or VB: line size + 5

 Non-PRINT files:
F, FB, or U: linesize
V or VB: linesize + 4

 Block size:
F or FB: record length
V or VB: record length + 4

 GRAPHIC option
Specify the GRAPHIC option for edit-directed I/O.

──GRAPHIC──
�

The ERROR condition is raised for list- and data-directed I/O if you have graphics
in input or output data and do not specify the GRAPHIC option.

For edit-directed I/O, the GRAPHIC option specifies that left and right delimiters are
added to DBCS variables and constants on output, and that input graphics will have
left and right delimiters. If you do not specify the GRAPHIC option, left and right
delimiters are not added to output data, and input graphics do not require left and

 Chapter 7. Defining and using consecutive data sets 125

right delimiters. When you do specify the GRAPHIC option, the ERROR condition
is raised if left and right delimiters are missing from the input data.

For information on the graphic data type, and on the G-format item for edit-directed
I/O, see the PL/I Language Reference.

Creating a data set with stream I/O
To create a data set, you must give the operating system certain information either
in your PL/I program or in the DD statement that defines the data set. For OS/390
UNIX, use one of the following to provide the additional information:

� TITLE option of the OPEN statement
� DD_DDNAME environment variable

 � ENVIRONMENT attribute

The following paragraphs indicate the essential information, and discuss some of
the optional information you can supply.

 Essential information
When your application creates a STREAM file, it must supply a line-size value for
that file from one of the following sources:

� LINESIZE option of the OPEN statement

If you choose the LINESIZE option, it overrides all other sources.
� RECSIZE option of the ENVIRONMENT attribute

The RECSIZE option of the ENVIRONMENT attribute overrides the other
RECSIZE options.

� RECSIZE option of the TITLE option of the OPEN statement

RECSIZE specified in the TITLE option of the OPEN statement has precedence
over the RECSIZE option of the DD_DDNAME environment variable.

� RECSIZE option of the DD_DDNAME environment variable
� PL/I-supplied default value

 the PL/I default is used when you do not supply any value.

If LINESIZE is not supplied, but a RECSIZE value is, PL/I derives the line-size
value from RECSIZE as follows:

� A PRINT file with the ASA(N) option applied has a RECSIZE value of 4
� A PRINT file with the ASA(Y) option applied has a RECSIZE value of 1
� In all other cases, the value of RECSIZE is assigned to the line-size value.

PL/I determines a default line-size value based on attributes of the file and the type
of associated data set. In cases where PL/I cannot supply an appropriate default
line size, the UNDEFINEDFILE condition is raised.

A default line-size value is supplied for an OUTPUT file when:

� The file has the PRINT attribute. In this case, the value is obtained from the
tab control table.

� The associated data set is the terminal (stdout: or stderr:). In this case the
value is 120.

PL/I always derives the record length of the data set from the line-size value. A
record-length value is derived from the line-size value as follows:

126 VisualAge PL/I Programming Guide

� For a PRINT file with the ASA(N) option applied, the value is line size + 4
� For a PRINT file with the ASA(Y) option applied, the value is line size + 1
� In all other cases, the line-size value is assigned to the record-length value

 Examples
The use of edit-directed stream-oriented data transmission to create a data set on a
direct access storage device is shown in Figure 23. The data read from the input
stream by the file SYSIN includes a field VREC that contains five unnamed
7-character subfields; the field NUM defines the number of these subfields that
contain information. The output file WORK transmits to the data set the whole of
the field FREC and only those subfields of VREC that contain information.

 //EX7#2 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM OUTPUT,
 1 REC,
 2 FREC,

3 NAME CHAR(19),
3 NUM CHAR(1),
3 PAD CHAR(25),

2 VREC CHAR(35),
EOF BIT(1) INIT('J'B),
IN CHAR(8J) DEF REC;

ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(WORK) LINESIZE(4JJ);
GET FILE(SYSIN) EDIT(IN)(A(8J));
DO WHILE (¬EOF);
PUT FILE(WORK) EDIT(IN)(A(45+7XNUM));
GET FILE(SYSIN) EDIT(IN)(A(8J));

 END;
 CLOSE FILE(WORK);
 END PEOPLE;
 /X
 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(NEW,CATLG),UNIT=SYSDA,
 // SPACE=(TRK,(1,1))
 //GO.SYSIN DD X
 R.C.ANDERSON J 2J2848 DOCTOR
 B.F.BENNETT 2 771239 PLUMBER VICTOR HAZEL
 R.E.COLE 5 698635 COOK ELLEN VICTOR JOAN ANN OTTO
 J.F.COOPER 5 418915 LAWYER FRANK CAROL DONALD NORMAN BRENDA
 A.J.CORNELL 3 237837 BARBER ALBERT ERIC JANET
 E.F.FERRIS 4 158636 CARPENTER GERALD ANNA MARY HAROLD
 /X

Figure 23. Creating a data set with stream-oriented data transmission

Figure 24 on page 128 shows an example of a program using list-directed output
to write graphics to a stream file. It assumes that you have an output device that
can print graphic data. The program reads employee records and selects persons
living in a certain area. It then edits the address field, inserting one graphic blank
between each address item, and prints the employee number, name, and address.

 Chapter 7. Defining and using consecutive data sets 127

 //EX7#3 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 % PROCESS GRAPHIC;
 XAMPLE1: PROC OPTIONS(MAIN);

DCL INFILE FILE INPUT RECORD,
OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);

/X GRAPHIC OPTION MEANS DELIMITERS WILL BE INSERTED ON OUTPUT FILES. X/
 DCL
 1 IN,

3 EMPNO CHAR(6),
3 SHIFT1 CHAR(1),

 3 NAME,
5 LAST G(7),
5 FIRST G(7),

3 SHIFT2 CHAR(1),
 3 ADDRESS,

5 ZIP CHAR(6),
5 SHIFT3 CHAR(1),
5 DISTRICT G(5),
5 CITY G(5),
5 OTHER G(8),
5 SHIFT4 CHAR(1);

DCL EOF BIT(1) INIT('J'B);
DCL ADDRWK G(2J);

ON ENDFILE (INFILE) EOF = '1'B;
READ FILE(INFILE) INTO(IN);

 DO WHILE(¬EOF);
 DO;
 IF SUBSTR(ZIP,1,3)¬='3JJ'
 THEN LEAVE;
 L=J;
 ADDRWK=DISTRICT;

DO I=1 TO 5;
IF SUBSTR(DISTRICT,I,1)= < >

THEN LEAVE; /X SUBSTR BIF PICKS 3P X/
END; /X THE ITH GRAPHIC CHAR X/
L=L+I+1; /X IN DISTRICT X/

 SUBSTR(ADDRWK,L,5)=CITY;
DO I=1 TO 5;
IF SUBSTR(CITY,I,1)= < >

 THEN LEAVE;
 END;
 L=L+I;
 SUBSTR(ADDRWK,L,8)=OTHER;

PUT FILE(OUTFILE) SKIP /X THIS DATA SET X/
EDIT(EMPNO,IN.LAST,FIRST,ADDRWK) /X REQUIRES UTILITY X/

(A(8),G(7),G(7),X(4),G(2J)); /X TO PRINT GRAPHIC X/
 /X DATA X/

END; /X END OF NON-ITERATIVE DO X/
READ FILE(INFILE) INTO (IN);
END; /X END OF DO WHILE(¬EOF) X/

 END XAMPLE1;
 /X
 //GO.OUTFILE DD SYSOUT=A,DCB=(RECFM=VB,LRECL=121,BLKSIZE=129)
 //GO.INFILE DD X
 ABCDEF< >3JJJ99< 3 3 3 3 3 3 3 >
 ABCD < >3JJJ11< 3 3 3 3 >
 /X

Figure 24. Writing graphic data to a stream file

128 VisualAge PL/I Programming Guide

Accessing a data set with stream I/O
A data set accessed using stream-oriented data transmission need not have been
created by stream-oriented data transmission, but it must have CONSECUTIVE
organization, and all the data in it must be in character or graphic form. You can
open the associated file for input, and read the records the data set contains; or
you can open the file for output, and extend the data set by adding records at the
end.

To access a data set, you must use one of the following to identify it:

 � ENVIRONMENT attribute
� DD_DDNAME environment variable
� TITLE option of the OPEN statement

The following paragraphs describe the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

 Essential information
When your application accesses an existing STREAM file, PL/I must obtain a
record-length value for that file. The value can come from one of the following
sources:

� The LINESIZE option of the OPEN statement
� The RECSIZE option of the ENVIRONMENT attribute
� The RECSIZE option of the DD_DDNAME environment variable
� The RECSIZE option of the TITLE option of the OPEN statement
� PL/I-supplied default value

If you are using an existing OUTPUT file, or if you supply a RECSIZE value, PL/I
determines the record-length value as described in “Creating a data set with stream
I/O” on page 126.

PL/I uses a default record-length value for an INPUT file when:

� The file is SYSIN, value = 80
� The file is associated with the terminal (stdout: or stderr:), value = 120

 Record format
When using stream-oriented data transmission to access a data set, you do not
need to know the record format of the data set (except when you must specify a
block size); each GET statement transfers a discrete number of characters or
graphics to your program from the data stream.

If you do give record-format information, it must be compatible with the actual
structure of the data set. For example, if a data set is created with F-format
records, a record size of 600 bytes, and a block size of 3600 bytes, you can access
the records as if they are U-format with a maximum block size of 3600 bytes; but if
you specify a block size of 3500 bytes, your data will be truncated.

 Chapter 7. Defining and using consecutive data sets 129

 Example
The program in Figure 25 reads the data set created by the program in Figure 23
on page 127 and uses the file SYSPRINT to list the data it contains. (For details
on SYSPRINT, see “Using SYSIN and SYSPRINT files” on page 134.) Each set of
data is read, by the GET statement, into two variables: FREC, which always
contains 45 characters; and VREC, which always contains 35 characters. At each
execution of the GET statement, VREC consists of the number of characters
generated by the expression 7*NUM, together with sufficient blanks to bring the
total number of characters to 35. The DISP parameter of the DD statement could
read simply DISP=OLD; if DELETE is omitted, an existing data set will not be
deleted.

 //EX7#5 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
PEOPLE: PROC OPTIONS(MAIN);

DCL WORK FILE STREAM INPUT,
 1 REC,
 2 FREC,

3 NAME CHAR(19),
3 NUM CHAR(1),
3 SERNO CHAR(7),
3 PROF CHAR(18),

2 VREC CHAR(35),
IN CHAR(8J) DEF REC,
EOF BIT(1) INIT('J'B);

ON ENDFILE(WORK) EOF='1'B;
 OPEN FILE(WORK);

GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7XNUM));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(IN)(A);
GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7XNUM));

 END;
 CLOSE FILE(WORK);
 END PEOPLE;
 /X
 //GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Figure 25. Accessing a data set with stream-oriented data transmission

Using PRINT files with stream I/O
Both the operating system and the PL/I language include features that facilitate the
formatting of printed output. The operating system allows you to use the first byte
of each record for a print control character. The control characters, which are not
printed, cause the printer to skip to a new line or page. (Tables of print control
characters are given in Figure 28 on page 141 and Figure 29 on page 141.)

In a PL/I program, the use of a PRINT file provides a convenient means of
controlling the layout of printed output from stream-oriented data transmission. The
compiler automatically inserts print control characters in response to the PAGE,
SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file, even if you do
not intend to print the associated data set directly. When a PRINT file is
associated with a direct-access data set, the print control characters have no effect
on the layout of the data set, but appear as part of the data in the records.

130 VisualAge PL/I Programming Guide

The compiler reserves the first byte of each record transmitted by a PRINT file for
an American National Standard print control character, and inserts the appropriate
characters automatically.

A PRINT file uses only the following five print control characters:

Character Action
Space 1 line before printing (blank character)

0 Space 2 lines before printing
− Space 3 lines before printing
+ No space before printing
1 Start new page

The compiler handles the PAGE, SKIP, and LINE options or format items by
padding the remainder of the current record with blanks and inserting the
appropriate control character in the next record. If SKIP or LINE specifies more
than a 3-line space, the compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the absence of a print
control option or format item, when a record is full the compiler inserts a blank
character (single line space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE, SKIP, and LINE
options will never cause more than 3 lines to be skipped, unless formatted output is
specified.

Controlling printed line length
You can limit the length of the printed line produced by a PRINT file either by
specifying a record length in your PL/I program (ENVIRONMENT attribute) or in a
DD statement, or by giving a line size in an OPEN statement (LINESIZE option).
The record length must include the extra byte for the print control character, that is,
it must be 1 byte larger than the length of the printed line (5 bytes larger for
V-format records). The value you specify in the LINESIZE option refers to the
number of characters in the printed line; the compiler adds the print control
character.

The blocking of records has no effect on the appearance of the output produced by
a PRINT file, but it does result in more efficient use of auxiliary storage when the
file is associated with a data set on a direct-access device. If you use the
LINESIZE option, ensure that your line size is compatible with your block size. For
F-format records, block size must be an exact multiple of (line size+1); for V-format
records, block size must be at least 9 bytes greater than line size.

Although you can vary the line size for a PRINT file during execution by closing the
file and opening it again with a new line size, you must do so with caution if you
are using the PRINT file to create a data set on a direct-access device. You
cannot change the record format that is established for the data set when the file is
first opened. If the line size you specify in an OPEN statement conflicts with the
record format already established, the UNDEFINEDFILE condition is raised. To
prevent this, either specify V-format records with a block size at least 9 bytes
greater than the maximum line size you intend to use, or ensure that the first OPEN
statement specifies the maximum line size. (Output destined for the printer can be
stored temporarily on a direct-access device, unless you specify a printer by using
UNIT=, even if you intend it to be fed directly to the printer.)

 Chapter 7. Defining and using consecutive data sets 131

Since PRINT files have a default line size of 120 characters, you need not give any
record format information for them. In the absence of other information, the
compiler assumes V-format records. The complete default information is:

 BLKSIZE=129

 LRECL=125

 RECFM=VBA.

Example: Figure 26 on page 133 illustrates the use of a PRINT file and the
printing options of stream-oriented data transmission statements to format a table
and write it onto a direct-access device for printing on a later occasion. The table
comprises the natural sines of the angles from 0° to 359° 54' in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the bottom of
each page, and set up the headings for the following page.

The DD statement defining the data set created by this program includes no
record-format information. The compiler infers the following from the file declaration
and the line size specified in the statement that opens the file TABLE:

Record format = V
(the default for a PRINT file).

Record size = 98
(line size + 1 byte for print control character + 4 bytes for
record control field).

Block size = 102
(record length + 4 bytes for block control field).

The program in Figure 31 on page 146 uses record-oriented data transmission to
print the table created by the program in Figure 26 on page 133.

132 VisualAge PL/I Programming Guide

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

 SINE: PROC OPTIONS(MAIN);
DCL TABLE FILE STREAM OUTPUT PRINT;
DCL DEG FIXED DEC(5,1) INIT(J); /X INIT(J) FOR ENDPAGE X/

 DCL MIN FIXED DEC(3,1);
 DCL PGNO FIXED DEC(2) INIT(J);
 DCL ONCODE BUILTIN;

 ON ERROR
 BEGIN;

ON ERROR SYSTEM;
DISPLAY ('ONCODE = '|| ONCODE);

 END;

 ON ENDPAGE(TABLE)
 BEGIN;
 DCL I;

IF PGNO ¬= J THEN
PUT FILE(TABLE) EDIT ('PAGE',PGNO)

 (LINE(55),COL(8J),A,F(3));
IF DEG ¬= 36J THEN

 DO;
PUT FILE(TABLE) PAGE EDIT ('NATURAL SINES') (A);
IF PGNO ¬= J THEN
PUT FILE(TABLE) EDIT ((I DO I = J TO 54 BY 6))

 (SKIP(3),1J F(9));
PGNO = PGNO + 1;

 END;
 ELSE

PUT FILE(TABLE) PAGE;
 END;

OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
 SIGNAL ENDPAGE(TABLE);

PUT FILE(TABLE) EDIT
((DEG,(SIND(DEG+MIN) DO MIN = J TO .9 BY .1) DO DEG = J TO 359))
(SKIP(2), 5 (COL(1), F(3), 1J F(9,4)));
PUT FILE(TABLE) SKIP(52);

 END SINE;

Figure 26. Creating a print file via stream data transmission. The example in Figure 31 on
page 146 will print the resultant file.

Overriding the tab control table
Data-directed and list-directed output to a PRINT file are aligned on preset tabulator
positions. See Figure 14 on page 72 and Figure 27 on page 134 for examples of
declaring a tab table. The definitions of the fields in the table are as follows:

OFFSET OF TAB COUNT:
Halfword binary integer that gives the offset of “Tab count,” the field
that indicates the number of tabs to be used.

PAGESIZE:
Halfword binary integer that defines the default page size. This page
size is used for dump output to the PLIDUMP data set as well as for
stream output.

LINESIZE: Halfword binary integer that defines the default line size.

PAGELENGTH:
Halfword binary integer that defines the default page length for printing
at a terminal.

 Chapter 7. Defining and using consecutive data sets 133

FILLERS: Three halfword binary integers; reserved for future use.

TAB COUNT:
Halfword binary integer that defines the number of tab position entries
in the table (maximum 255). If tab count = 0, any specified tab
positions are ignored.

Tab1–Tabn:
n halfword binary integers that define the tab positions within the print
line. The first position is numbered 1, and the highest position is
numbered 255. The value of each tab should be greater than that of
the tab preceding it in the table; otherwise, it is ignored. The first data
field in the printed output begins at the next available tab position.

You can override the default PL/I tab settings for your program by causing the
linkage editor to resolve an external reference to PLITABS. To cause the reference
to be resolved, supply a table with the name PLITABS, in the format described
above.

To supply this tab table, include a PL/I structure in your source program with the
name PLITABS, which you must declare to be STATIC EXTERNAL in your MAIN
proc. An example of the PL/I structure is shown in Figure 27. This example
creates three tab settings, in positions 30, 60, and 90, and uses the defaults for
page size and line size. Note that TAB1 identifies the position of the second item
printed on a line; the first item on a line always starts at the left margin. The first
item in the structure is the offset to the NO_OF_TABS field; FILL1, FILL2, and
FILL3 can be omitted by adjusting the offset value by –6.

DCL 1 PLITABS STATIC EXT,
2 (OFFSET INIT(14),

 PAGESIZE INIT(6J),
 LINESIZE INIT(12J),
 PAGELENGTH INIT(J),
 FILL1 INIT(J),
 FILL2 INIT(J),
 FILL3 INIT(J),
 NO_OF_TABS INIT(3),
 TAB1 INIT(3J),
 TAB2 INIT(6J),

TAB3 INIT(9J)) FIXED BIN(15,J);

Figure 27. PL/I structure PLITABS for modifying the preset tab settings

Using SYSIN and SYSPRINT files
If you code a GET statement without the FILE option in your program, the compiler
inserts the file name SYSIN. If you code a PUT statement without the FILE option,
the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler gives the file the attribute PRINT in
addition to the normal default attributes; the complete set of attributes will be:

FILE STREAM OUTPUT PRINT EXTERNAL

Since SYSPRINT is a PRINT file, the compiler also supplies a default line size of
120 characters and a V-format record. You need give only a minimum of
information in the corresponding DD statement; if your installation uses the usual

134 VisualAge PL/I Programming Guide

convention that the system output device of class A is a printer, the following is
sufficient:

 //SYSPRINT DD SYSOUT=A

Note: SYSIN and SYSPRINT are established in the User Exit during initialization.
IBM-supplied defaults for SYSIN and SYSPRINT are directed to the
terminal.

You can override the attributes given to SYSPRINT by the compiler by explicitly
declaring or opening the file. For more information about the interaction between
SYSPRINT and the Language Environment for OS/390 & VM message file option,
see the OS/390 Language Environment Programming Guide.

The compiler does not supply any special attributes for the input file SYSIN; if you
do not declare it, it receives only the default attributes. The data set associated
with SYSIN is usually in the input stream; if it is not in the input stream, you must
supply full DD information.

For more information about SYSPRINT, see “SYSPRINT considerations” on
page 74.

Controlling input from the terminal
You can enter data at the terminal for an input file in your PL/I program if you do
the following:

1. Declare the input file explicitly or implicitly with the CONSECUTIVE
environment option (all stream files meet this condition)

2. Allocate the input file to the terminal.

You can usually use the standard default input file SYSIN because it is a stream
file and can be allocated to the terminal.

You are prompted for input to stream files by a colon (:). You will see the colon
each time a GET statement is executed in the program. The GET statement
causes the system to go to the next line. You can then enter the required data. If
you enter a line that does not contain enough data to complete execution of the
GET statement, a further prompt, which is a plus sign followed by a colon (+:), is
displayed.

By adding a hyphen to the end of any line that is to continue, you can delay
transmission of the data to your program until you enter two or more lines.

If you include output statements that prompt you for input in your program, you can
inhibit the initial system prompt by ending your own prompt with a colon. For
example, the GET statement could be preceded by a PUT statement such as:

PUT SKIP LIST('ENTER NEXT ITEM:');

To inhibit the system prompt for the next GET statement, your own prompt must
meet the following conditions:

1. It must be either list-directed or edit-directed, and if list-directed, must be to a
PRINT file.

2. The file transmitting the prompt must be allocated to the terminal. If you are
merely copying the file at the terminal, the system prompt is not inhibited.

 Chapter 7. Defining and using consecutive data sets 135

Format of data
The data you enter at the terminal should have exactly the same format as stream
input data in batch mode, except for the following variations:

� Simplified punctuation for input: If you enter separate items of input on
separate lines, there is no need to enter intervening blanks or commas; the
compiler will insert a comma at the end of each line.

For instance, in response to the statement:

GET LIST(I,J,K);

your terminal interaction could be as follows:

:
1
+:2
+:3

with a carriage return following each item. It would be equivalent to:

:
1,2,3

If you wish to continue an item onto another line, you must end the first line
with a continuation character. Otherwise, for a GET LIST or GET DATA
statement, a comma will be inserted, and for a GET EDIT statement, the item
will be padded (see next paragraph).

� Automatic padding for GET EDIT: There is no need to enter blanks at the end
of a line of input for a GET EDIT statement. The item you enter will be padded
to the correct length.

For instance, for the PL/I statement:

GET EDIT(NAME)(A(15));

you could enter the five characters:

SMITH

followed immediately by a carriage return. The item will be padded with 10
blanks, so that the program receives a string 15 characters long. If you wish to
continue an item on a second or subsequent line, you must add a continuation
character to the end of every line except the last; the first line transmitted would
otherwise be padded and treated as the complete data item.

� SKIP option or format item: A SKIP in a GET statement asks the program to
ignore data not yet entered. All uses of SKIP(n) where n is greater than one
are taken to mean SKIP(1). SKIP(1) is taken to mean that all unused data on
the current line is ignored.

Stream and record files
You can allocate both stream and record files to the terminal. However, no
prompting is provided for record files. If you allocate more than one file to the
terminal, and one or more of them is a record file, the output of the files will not
necessarily be synchronized. The order in which data is transmitted to and from
the terminal is not guaranteed to be the same order in which the corresponding
PL/I I/O statements are executed.

136 VisualAge PL/I Programming Guide

Also, record file input from the terminal is received in upper case letters because of
a TCAM restriction. To avoid problems you should use stream files wherever
possible.

Capital and lowercase letters
For stream files, character strings are transmitted to the program as entered in
lowercase or uppercase. For record files, all characters become uppercase.

 End-of-file
The characters /* in positions one and two of a line that contains no other
characters are treated as an end-of-file mark, that is, they raise the ENDFILE
condition.

COPY option of GET statement
The GET statement can specify the COPY option; but if the COPY file, as well as
the input file, is allocated to the terminal, no copy of the data will be printed.

Controlling output to the terminal
At your terminal you can obtain data from a PL/I file that has been both:

1. Declared explicitly or implicitly with the CONSECUTIVE environment option. All
stream files meet this condition.

2. Allocated to the terminal.

The standard print file SYSPRINT generally meets both these conditions.

Format of PRINT files
Data from SYSPRINT or other PRINT files is not normally formatted into pages at
the terminal. Three lines are always skipped for PAGE and LINE options and
format items. The ENDPAGE condition is normally never raised. SKIP(n), where n
is greater than three, causes only three lines to be skipped. SKIP(0) is
implemented by backspacing, and should therefore not be used with terminals that
do not have a backspace feature.

You can cause a PRINT file to be formatted into pages by inserting a tab control
table in your program. The table must be called PLITABS, and its contents are
explained in “Overriding the tab control table” on page 133. You must initialize the
element PAGELENGTH to the length of page you require—that is, the length of the
sheet of paper on which each page is to be printed, expressed as the maximum
number of lines that could be printed on it. You must initialize the element
PAGESIZE to the actual number of lines to be printed on each page. After the
number of lines in PAGESIZE has been printed on a page, ENDPAGE is raised, for
which standard system action is to skip the number of lines equal to
PAGELENGTH minus PAGESIZE, and then start printing the next page. For other
than standard layout, you must initialize the other elements in PLITABS to the
values shown in Figure 14 on page 72. You can also use PLITABS to alter the
tabulating positions of list-directed and data-directed output. You can use PLITABS
for SYSPRINT when you need to format page breaks in ILC applications. Set
PAGESIZE to 32767 and use the PUT PAGE statement to control page breaks.

 Chapter 7. Defining and using consecutive data sets 137

Although some types of terminals have a tabulating facility, tabulating of
list-directed and data-directed output is always achieved by transmission of blank
characters.

Stream and record files
You can allocate both stream and record files to the terminal. However, if you
allocate more than one file to the terminal and one or more is a record file, the files'
output will not necessarily be synchronized. There is no guarantee that the order in
which data is transmitted between the program and the terminal will be the same
as the order in which the corresponding PL/I input and output statements are
executed. In addition, because of a TCAM restriction, any output to record files at
the terminal is printed in uppercase (capital) letters. It is therefore advisable to use
stream files wherever possible.

Capital and lowercase characters
For stream files, characters are displayed at the terminal as they are held in the
program, provided the terminal can display them. For instance, with an IBM 327x
terminal, capital and lowercase letters are displayed as such, without translation.
For record files, all characters are translated to uppercase. A variable or constant
in the program can contain lowercase letters if the program was created under the
EDIT command with the ASIS operand, or if the program has read lowercase
letters from the terminal.

Output from the PUT EDIT command
The format of the output from a PUT EDIT command to a terminal is line mode
TPUTs with “Start of field” and “end of field” characters appearing as blanks on the
screen.

Using record-oriented data transmission
PL/I supports various types of data sets with the RECORD attribute (see Table 14
on page 142). This section covers how to use consecutive data sets.

Table 13 lists the statements and options that you can use to create and access a
consecutive data set using record-oriented data transmission.

Table 13 (Page 1 of 2). Statements and options allowed for creating and accessing
consecutive data sets

File declaration1 Valid statements,2 with
Options you must specify

Other options you
can specify

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference);

138 VisualAge PL/I Programming Guide

Table 13 (Page 2 of 2). Statements and options allowed for creating and accessing
consecutive data sets

File declaration1 Valid statements,2 with
Options you must specify

Other options you
can specify

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference); FROM(reference)

SEQUENTIAL UPDATE READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD and ENVIRONMENT.

2. The statement READ FILE (file-reference); is a valid statement and is equivalent to READ
FILE(file-reference) IGNORE (1);

Specifying record format
If you give record-format information, it must be compatible with the actual structure
of the data set. For example, if you create a data set with FB-format records, with
a record size of 600 bytes and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of 3600 bytes. If you
specify a block size of 3500 bytes, your data is truncated.

Defining files using record I/O
You define files for record-oriented data transmission by using a file declaration
with the following attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 SEQUENTIAL
 BUFFERED
 ENVIRONMENT(options);

 Chapter 7. Defining and using consecutive data sets 139

Default file attributes are shown in Table 10 on page 108. The file attributes are
described in the PL/I Language Reference. Options of the ENVIRONMENT
attribute are discussed below.

Specifying ENVIRONMENT options
The ENVIRONMENT options applicable to consecutive data sets are:

F|FB|V|VB|U
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING

CONSECUTIVE or ORGANIZATION(CONSECUTIVE)
CTLASA|CTL36J

The options above the blank line are described in “Specifying characteristics in the
ENVIRONMENT attribute” on page 107, and those below the blank line are
described below.

See Table 10 on page 108 to find which options you must specify, which are
optional, and which are defaults.

 CONSECUTIVE
The CONSECUTIVE option defines a file with consecutive data set organization,
which is described in this chapter and in “Data set organization” on page 102.

──CONSECUTIVE──
�

CONSECUTIVE is the default.

 ORGANIZATION(CONSECUTIVE)
Specifies that the file is associated with a consecutive data set. The
ORGANIZATION option is described in “ORGANIZATION option” on page 114.

The file can be either a native data set or a VSAM data set.

 CTLASA|CTL360
The printer control options CTLASA and CTL360 apply only to OUTPUT files
associated with consecutive data sets. They specify that the first character of a
record is to be interpreted as a control character.

─ ──┬ ┬─CTLASA─ ──
�
 └ ┘─CTL36J─

The CTLASA option specifies American National Standard Vertical Carriage
Positioning Characters or American National Standard Pocket Select Characters
(Level 1). The CTL360 option specifies IBM machine-code control characters.

The American National Standard control characters, listed in Figure 28 on
page 141, cause the specified action to occur before the associated record is
printed or punched.

140 VisualAge PL/I Programming Guide

The machine code control characters differ according to the type of device. The
IBM machine code control characters for printers are listed in Figure 29 on
page 141.

Code Action
Space 1 line before printing (blank code)

0 Space 2 lines before printing
− Space 3 lines before printing
+ Suppress space before printing
1 Skip to channel 1
2 Skip to channel 2
3 Skip to channel 3
4 Skip to channel 4
5 Skip to channel 5
6 Skip to channel 6
7 Skip to channel 7
8 Skip to channel 8
9 Skip to channel 9
A Skip to channel 10
B Skip to channel 11
C Skip to channel 12
V Select stacker 1
W Select stacker 2

Figure 28. American National Standard print and card punch control characters (CTLASA)

Print and Act immediately
Then Act Action (no printing)

Code byte Code byte
00000001 Print only (no space) —
00001001 Space 1 line 00001011
00010001 Space 2 lines 00010011
00011001 Space 3 lines 00011011
10001001 Skip to channel 1 10001011
10010001 Skip to channel 2 10010011
10011001 Skip to channel 3 10011011
10100001 Skip to channel 4 10100011
10101001 Skip to channel 5 10101011
10110001 Skip to channel 6 10110011
10111001 Skip to channel 7 10111011
11000001 Skip to channel 8 11000011
11001001 Skip to channel 9 11001011
11010001 Skip to channel 10 11010011
11011001 Skip to channel 11 11011011
11100001 Skip to channel 12 11100011

Figure 29. IBM machine code print control characters (CTL360)

Creating a data set with record I/O
When you create a consecutive data set, you must open the associated file for
SEQUENTIAL OUTPUT. You can use either the WRITE or LOCATE statement to
write records. Table 13 on page 138 shows the statements and options for
creating a consecutive data set.

When creating a data set, you must identify it to the operating system in a DD
statement. The following paragraphs, summarized in Table 14 on page 142, tell
what essential information you must include in the DD statement and discuss some
of the optional information you can supply.

 Chapter 7. Defining and using consecutive data sets 141

Table 14. Creating a consecutive data set with record I/O: essential parameters of the DD statement

Storage device

When required
What you must state

Parameters

All Always Output device

Block size1

UNIT= or SYSOUT= or
VOLUME=REF=

DCB=(BLKSIZE=...

Direct access only Always Storage space required SPACE=

Direct access Data set to be used by another job step but not
required at end of job

Data set to be kept after end of job

Data set to be on particular device

Disposition

Disposition

Name of data set

Volume serial number

DISP=

DISP=

DSNAME=

VOLUME=SER= or
VOLUME=REF=

1Or you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

 Essential information
When you create a consecutive data set you must specify:

� The name of data set to be associated with your PL/I file. A data set with
consecutive organization can exist on any type of device.

� The record length. You can specify the record length using the RECSIZE
option of the ENVIRONMENT attribute, of the DD_DDNAME environment
variable, or of the TITLE option of the OPEN statement.

For files associated with the terminal device (stdout: or stderr:), PL/I uses a
default record length of 120 when the RECSIZE option is not specified.

Accessing and updating a data set with record I/O
Once you create a consecutive data set, you can open the file that accesses it for
sequential input, for sequential output, or, for data sets on direct-access devices,
for updating. See Figure 30 on page 144 for an example of a program that
accesses and updates a consecutive data set. If you open the file for output, and
extend the data set by adding records at the end, you must specify DISP=MOD in
the DD statement. If you do not, the data set will be overwritten. If you open a file
for updating, you can only update records in their existing sequence, and if you
want to insert records, you must create a new data set. Table 13 on page 138
shows the statements and options for accessing and updating a consecutive data
set.

When you access a consecutive data set by a SEQUENTIAL UPDATE file, you
must retrieve a record with a READ statement before you can update it with a
REWRITE statement; however, every record that is retrieved need not be rewritten.
A REWRITE statement will always update the last record read.

Consider the following:

142 VisualAge PL/I Programming Guide

READ FILE(F) INTO(A);
 .
 .
 .
READ FILE(F) INTO(B);
 .
 .
 .
REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record that was read by the second READ
statement. The record that was read by the first statement cannot be rewritten
after the second READ statement has been executed.

To access a data set, you must identify it to the operating system in a DD
statement. Table 15 summarizes the DD statement parameters needed to access
a consecutive data set.

The following paragraphs indicate the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

Table 15. Accessing a consecutive data set with record I/O: essential parameters of the DD
statement

Parameters What you must state When required

DSNAME=

DISP=

Name of data set

Disposition of data set

Always

UNIT= or
VOLUME=REF=

Input device If data set not cataloged (all devices)

VOLUME=SER= Volume serial number If data set not cataloged (direct access)

DCB=(BLKSIZE= Block size1 If data set does not have standard labels

1Or you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

 Essential information
If the data set is cataloged, you need to supply only the following information in the
DD statement:

� The name of the data set (DSNAME parameter). The operating system will
locate the information describing the data set in the system catalog, and, if
necessary, will request the operator to mount the volume containing it.

� Confirmation that the data set exists (DISP parameter). If you open the data
set for output with the intention of extending it by adding records at the end,
code DISP=MOD; otherwise, opening the data set for output will result in it
being overwritten.

If the data set is not cataloged, you must additionally specify the device that will
read the data set and, direct-access devices, give the serial number of the volume
that contains the data set (UNIT and VOLUME parameters).

 Chapter 7. Defining and using consecutive data sets 143

Example of consecutive data sets
Creating and accessing consecutive data sets are illustrated in the program in
Figure 30. The program merges the contents of two data sets, in the input stream,
and writes them onto a new data set, &&TEMP; each of the original data sets
contains 15-byte fixed-length records arranged in EBCDIC collating sequence. The
two input files, INPUT1 and INPUT2, have the default attribute BUFFERED, and
locate mode is used to read records from the associated data sets into the
respective buffers. Access of based variables in the buffers should not be
attempted after the file has been closed.

 //EXAMPLE JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 %PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
 %PROCESS LIST;

MERGE: PROC OPTIONS(MAIN);
DCL (INPUT1, /X FIRST INPUT FILE X/

INPUT2, /X SECOND INPUT FILE X/
OUT) FILE RECORD SEQUENTIAL; /X RESULTING MERGED FILEX/

DCL SYSPRINT FILE PRINT; /X NORMAL PRINT FILE X/

DCL INPUT1_EOF BIT(1) INIT('J'B); /X EOF FLAG FOR INPUT1 X/
DCL INPUT2_EOF BIT(1) INIT('J'B); /X EOF FLAG FOR INPUT2 X/
DCL OUT_EOF BIT(1) INIT('J'B); /X EOF FLAG FOR OUT X/
DCL TRUE BIT(1) INIT('1'B); /X CONSTANT TRUE X/
DCL FALSE BIT(1) INIT('J'B); /X CONSTANT FALSE X/

DCL ITEM1 CHAR(15) BASED(A); /X ITEM FROM INPUT1 X/
DCL ITEM2 CHAR(15) BASED(B); /X ITEM FROM INPUT2 X/
DCL INPUT_LINE CHAR(15); /X INPUT FOR READ INTO X/
DCL A POINTER; /X POINTER VAR X/
DCL B POINTER; /X POINTER VAR X/

ON ENDFILE(INPUT1) INPUT1_EOF = TRUE;
ON ENDFILE(INPUT2) INPUT2_EOF = TRUE;

 ON ENDFILE(OUT) OUT_EOF = TRUE;

OPEN FILE(INPUT1) INPUT,
 FILE(INPUT2) INPUT,
 FILE(OUT) OUTPUT;

READ FILE(INPUT1) SET(A); /X PRIMING READ X/
READ FILE(INPUT2) SET(B);

DO WHILE ((INPUT1_EOF = FALSE) & (INPUT2_EOF = FALSE));
IF ITEM1 > ITEM2 THEN

 DO;
WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT('1>2', ITEM1, ITEM2)

 (A(5),A,A);
READ FILE(INPUT2) SET(B);

 END;
 ELSE
 DO;

WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT('1<2', ITEM1, ITEM2)

 (A(5),A,A);
READ FILE(INPUT1) SET(A);

 END;
 END;

Figure 30 (Part 1 of 2). Merge Sort—creating and accessing a consecutive data set

144 VisualAge PL/I Programming Guide

DO WHILE (INPUT1_EOF = FALSE); /X INPUT2 IS EXHAUSTED X/
WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT('1', ITEM1) (A(2),A);
READ FILE(INPUT1) SET(A);

 END;

DO WHILE (INPUT2_EOF = FALSE); /X INPUT1 IS EXHAUSTED X/
WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT('2', ITEM2) (A(2),A);
READ FILE(INPUT2) SET(B);

 END;

CLOSE FILE(INPUT1), FILE(INPUT2), FILE(OUT);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(OUT) SEQUENTIAL INPUT;

READ FILE(OUT) INTO(INPUT_LINE); /X DISPLAY OUT FILE X/
DO WHILE (OUT_EOF = FALSE);
PUT FILE(SYSPRINT) SKIP EDIT(INPUT_LINE) (A);
READ FILE(OUT) INTO(INPUT_LINE);

 END;
 CLOSE FILE(OUT);

 END MERGE;
 /X
 //GO.INPUT1 DD X
 AAAAAA
 CCCCCC
 EEEEEE
 GGGGGG
 IIIIII
 /X
 //GO.INPUT2 DD X
 BBBBBB
 DDDDDD
 FFFFFF
 HHHHHH
 JJJJJJ
 KKKKKK
 /X
 //GO.OUT DD DSN=&&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,
 // DCB=(RECFM=FB,BLKSIZE=15J,LRECL=15),SPACE=(TRK,(1,1))

Figure 30 (Part 2 of 2). Merge Sort—creating and accessing a consecutive data set

The program in Figure 31 on page 146 uses record-oriented data transmission to
print the table created by the program in Figure 26 on page 133.

 Chapter 7. Defining and using consecutive data sets 145

%PROCESS INT F(I) AG A(F) OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

 PRT: PROC OPTIONS(MAIN);
DCL TABLE FILE RECORD INPUT SEQUENTIAL;
DCL PRINTER FILE RECORD OUTPUT SEQL

ENV(V BLKSIZE(1J2) CTLASA);
 DCL LINE CHAR(94) VAR;

DCL TABLE_EOF BIT(1) INIT('J'B); /X EOF FLAG FOR TABLE X/
DCL TRUE BIT(1) INIT('1'B); /X CONSTANT TRUE X/
DCL FALSE BIT(1) INIT('J'B); /X CONSTANT FALSE X/

ON ENDFILE(TABLE) TABLE_EOF = TRUE;

 OPEN FILE(TABLE),
 FILE(PRINTER);

READ FILE(TABLE) INTO(LINE); /X PRIMING READ X/

DO WHILE (TABLE_EOF = FALSE);
WRITE FILE(PRINTER) FROM(LINE);
READ FILE(TABLE) INTO(LINE);

 END;

 CLOSE FILE(TABLE),
 FILE(PRINTER);
 END PRT;

Figure 31. Printing record-oriented data transmission

146 VisualAge PL/I Programming Guide

Chapter 8. Defining and using indexed data sets

This chapter describes data transmission statements and ENVIRONMENT options
that define indexed data sets and how to create, access, and reorganize indexed
data sets.

IMPORTANT: INDEXED currently implies VSAM and is supported only under
batch.

 Indexed organization
A data set with indexed organization must be on a direct-access device. Its
records can be either F-format or V-format records, blocked or unblocked. The
records are arranged in logical sequence, according to keys associated with each
record. A key is a character string that can identify each record uniquely. Logical
records are arranged in the data set in ascending key sequence according to the
EBCDIC collating sequence. Indexes associated with the data set are used by the
operating system data-management routines to locate a record when the key is
supplied.

Unlike consecutive organization, indexed organization does not require you to
access every record in sequential fashion. You must create an indexed data set
sequentially; but once you create it, you can open the associated file for
SEQUENTIAL or DIRECT access, as well as INPUT or UPDATE. When the file
has the DIRECT attribute, you can retrieve, add, delete, and replace records at
random.

Sequential processing of an indexed data set is slower than that of a corresponding
consecutive data set, because the records it contains are not necessarily retrieved
in physical sequence. Furthermore, random access is less efficient for an indexed
data set than for a regional data set, because the indexes must be searched to
locate a record. An indexed data set requires more external storage space than a
consecutive data set, and all volumes of a multivolume data set must be mounted,
even for sequential processing.

Table 16 on page 148 lists the data-transmission statements and options that you
can use to create and access an indexed data set.

 Using keys
There are two kinds of keys—recorded keys and source keys. A recorded key is a
character string that actually appears with each record in the data set to identify
that record. The length of the recorded key cannot exceed 255 characters and all
keys in a data set must have the same length. The recorded keys in an indexed
data set can be separate from, or embedded within, the logical records. A source
key is the character value of the expression that appears in the KEY or KEYFROM
option of a data transmission statement to identify the record to which the
statement refers. For direct access of an indexed data set, you must include a
source key in each transmission statement.

Note: All VSAM key-sequenced data sets have embedded keys.

 Copyright IBM Corp. 1964, 2000 147

Table 16 (Page 1 of 2). Statements and options allowed for creating and accessing
indexed data sets

File
declaration1

Valid statements, with
options you must include

Other options you can
include

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

SEQUENTIAL UPDATE READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

FROM(reference)

KEY(expression)

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

DIRECT UPDATE READ FILE(file reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);2

148 VisualAge PL/I Programming Guide

The use of embedded keys avoids the need for the KEYTO option during
sequential input, but the KEYFROM option is still required for output. (However,
the data specified by the KEYFROM option can be the embedded key portion of
the record variable itself.) In a data set with unblocked records, a separate
recorded key precedes each record, even when there is already an embedded key.
If the records are blocked, the key of only the last record in each block is recorded
separately in front of the block.

During execution of a WRITE statement that adds a record to a data set with
embedded keys, the value of the expression in the KEYFROM option is assigned to
the embedded key position in the record variable. Note that you can declare a
record variable as a structure with an embedded key declared as a structure
member, but that you must not declare such an embedded key as a VARYING
string.

For a REWRITE statement using SEQUENTIAL files with indexed data set
organization, you must ensure that the rewritten key is the same as the key in the
replaced record.

For a LOCATE statement, the KEYFROM string is assigned to the embedded key
when the next operation on the file is encountered.

Table 16 (Page 2 of 2). Statements and options allowed for creating and accessing
indexed data sets

File
declaration1

Valid statements, with
options you must include

Other options you can
include

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);2

UNLOCK FILE(file-reference)
KEY(expression)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT. If
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED
in the file declaration. The attribute BUFFERED is the default for INDEXED SEQUENTIAL and
SEQUENTIAL files.

2. Use of the DELETE statement is invalid if you did not specify OPTCD=L (DCB subparameter) when
the data set was created.

 Chapter 8. Defining and using indexed data sets 149

 Using indexes
To provide faster access to the records in the data set, the operating system
creates and maintains a system of indexes to the records in the data set.

The lowest level of index is the track index. There is a track index for each cylinder
in the data set. The track index occupies the first track (or tracks) of the cylinder,
and lists the key of the last record on each track in the cylinder. A search can then
be directed to the first track that has a key that is higher than or equal to the key of
the required record.

If the data set occupies more than one cylinder, the operating system develops a
higher-level index called a cylinder index. Each entry in the cylinder index identifies
the key of the last record in the cylinder.

To increase the speed of searching the cylinder index, you can request in a DD
statement that the operating system develop a master index for a specified number
of cylinders. You can have up to three levels of master index.

Figure 32 illustrates the index structure. The part of the data set that contains the
cylinder and master indexes is termed the index area.

 ┌───┬───┬────┐
 │45J│9JJ│2JJJ│
 └─┬─┴─┬─┴──┬─┘
 │ │ │
 │ │ │
 ┌────┬────┬────┬────┐ │ │ │

│ │ │ │ │ │ │ │
┌───────────────────┤ 2JJ│ 3JJ│ 375│ 45J│�─────────────┘ │ │
│ ├────┼────┼────┼────┤ │ │
│ │ │ │ │ │ │ │
│ │ 5JJ│ 6JJ│ 7JJ│ 9JJ│�─────────────────┘ │
│ ├────┼────┼────┼────┤ │
│ │ │ │ │ │�──────────────────────┘
│ │1JJJ│12JJ│15JJ│2JJJ├──────────────────┐
│ └────┴────┴──┬─┴────┘ │
│ │ │
│ │ │
│ │ Cylinder 11 │ Cylinder 12
│ ┌────┬────┬────┬────┐ │ ┌────────────┬────┐ │ ┌────────────┬────┐
│ │ │ │ │ │ Track │ │ │ │ │ │ │ │
└─
│ 1JJ│ 1JJ│ 2JJ│ 2JJ│ Index └─
│ │15JJ│ └─
│ │2JJJ│
 ├────┼────┼────┼────┤ ├────────────┴────┤ ├────────────┴────┤
 │Data│Data│Data│Data│ Prime │ │ │ │

│ 1J│ 2J│ 4J│ 1JJ│ Data │ │ │ │
 ├────┼────┼────┼────┤ ├─────────────────┤ ├─────────────────┤
 │Data│Data│Data│Data│ Prime │ │ │ │

│ 15J│ 175│ 19J│ 2JJ│ Data │ │ │ │
 ├────┴────┴────┴────┤ ├─────────────────┤ ├─────────────────┤
 │ │ │ │ │ │
 │ │ Overflow │ │ │ │
 └───────────────────┘ └─────────────────┘ └─────────────────┘

Figure 32. Index structure of an indexed data set

When you create an indexed data set, all the records are written in what is called
the prime data area. If you add more records later, the operating system does not
rearrange the entire data set; it inserts each new record in the appropriate position
and moves up the other records on the same track. Any records forced off the
track by the insertion of a new record are placed in an overflow area. The overflow
area can be either a number of tracks set aside in each cylinder for the overflow

150 VisualAge PL/I Programming Guide

records from that cylinder (cylinder overflow area), or a separate area for all
overflow records (independent overflow area).

Records in the overflow area are chained together to the track index so as to
maintain the logical sequence of the data set. This is illustrated in Figure 33 on
page 152. Each entry in the track index consists of two parts:

� The normal entry, which points to the last record on the track

� The overflow entry, which contains the key of the first record transferred to the
overflow area and also points to the last record transferred from the track to the
overflow area.

If there are no overflow records from the track, both index entries point to the last
record on the track. An additional field is added to each record that is placed in the
overflow area. It points to the previous record transferred from the same track.
The first record from each track is linked to the corresponding overflow entry in the
track index.

 Dummy records
Records within an indexed data set are either actual records, containing valid data,
or dummy records. A dummy record, identified by the constant (8)'1'B in its first
byte, can be one that you insert or it can be created by the operating system. You
insert dummy records by setting the first byte to (8)'1'B and writing the records in
the usual way. The operating system creates dummy records by placing (8)'1'B in
a record that is named in a DELETE statement.

When creating an indexed data set, you might want to insert dummy records to
reserve space in the prime data area. You can replace dummy records later with
actual data records having the same key.

The operating system removes dummy records when the data set is reorganized,
as described later in this section, and removes those forced off the track during an
update.

If you include the DCB subparameter OPTCD=L in the DD statement that defines
the data set when you create it, dummy records will not be retrieved by READ
statements and the operating system will write the dummy identifier in records
being deleted.

Defining files for an indexed data set
You define a sequential indexed data set by a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 SEQUENTIAL
 BUFFERED
 [KEYED]
 ENVIRONMENT(options);

You define a direct indexed data set by a file declaration with the following
attributes:

 Chapter 8. Defining and using indexed data sets 151

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐
│ 1JJ │ Track │ 1JJ │ Track │ 2JJ │ Track │ 2JJ │ Track │ Track
│ │ 1 │ │ 1 │ │ 2 │ │ 2 │ Index
└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘
 ───────────
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 1J │ 2J │ 4J │ 1JJ │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘ Prime
 Data
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 15J │ 175 │ 19J │ 2JJ │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘
 ───────────
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ │ │ │ │ Overflow
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐
│ 4J │ Track │1JJ │Track 3 │ 19J │ Track │ 2JJ │Track 3 │ Track
│ │ 1 │ │record 1│ │ 2 │ │record 2│ Index
└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘
 ───────────
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 1J │ 2J │ 25 │ 4J │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘ Prime
 Data
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 1J1 │ 15J │ 175 │ 19J │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘
 ───────────
┌──────┬────────┬──────┬────────┬────────────────┬───────────────┐
│ 1JJ │ Track │ 2JJ │ Track │ │ │ Overflow
│ │ 1 │ │ 2 │ │ │
└──────┴────────┴──────┴────────┴────────────────┴───────────────┘

┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐
│ 26 │ Track │ 1JJ │Track 3 │ 19J │ Track │ 2JJ │Track 3 │ Track
│ │ 1 │ │record 3│ │ 2 │ │record 4│ Index
└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘
 ───────────
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 1J │ 2J │ 25 │ 26 │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘ Prime
 Data
┌───────────────┬───────────────┬────────────────┬───────────────┐
│ 1J1 │ 15J │ 175 │ 19J │
│ │ │ │ │
└───────────────┴───────────────┴────────────────┴───────────────┘
 ───────────
┌──────┬────────┬──────┬────────┬───────┬────────┬──────┬────────┐
│ 1JJ │ Track │ 2JJ │ Track │ 4J │Track 3 │ 199 │Track 3 │ Overflow
│ │ 1 │ │ 2 │ │record 1│ │record 2│
└──────┴────────┴──────┴────────┴───────┴────────┴──────┴────────┘

Figure 33. Adding records to an indexed data set

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 DIRECT
 KEYED
 ENVIRONMENT(options);

152 VisualAge PL/I Programming Guide

Default file attributes are shown in Table 10 on page 108. The file attributes are
described in the PL/I Language Reference. Options of the ENVIRONMENT
attribute are discussed below.

Specifying ENVIRONMENT options
The ENVIRONMENT options applicable to indexed data sets are:

F|FB|V|VB
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING
KEYLENGTH(n)
GENKEY

KEYLOC(n)

The options above the blank line are described in “Specifying characteristics in the
ENVIRONMENT attribute” on page 107, and those below the blank line are
described below.

KEYLOC option — key location
Use the KEYLOC option with indexed data sets when you create the data set to
specify the starting position of an embedded key in a record.

──KEYLOC───
�

The position, n, must be within the limits:

1 ≤ n ≤ recordsize − keylength + 1

That is, the key cannot be larger than the record, and must be contained
completely within the record.

If the keys are embedded within the records, specify the KEYLOC option.

The KEYLOC option specifies the absolute position of an embedded key from the
start of the data in a record.

Thus the equivalent KEYLOC values for a particular byte are affected by the
following:

� The KEYLOC byte count starts at 1; the RKP count starts at 0.

� The record format.

For example, if the embedded key begins at the tenth byte of a record variable, the
specifications are:

Fixed-length:

KEYLOC(1J)
RKP=9

Variable-length:

KEYLOC(1J)
RKP=13

 Chapter 8. Defining and using indexed data sets 153

If KEYLOC is specified with a value equal to or greater than 1, embedded keys
exist in the record variable and on the data set. If KEYLOC is equal to zero, or is
not specified, the RKP value is used. When RKP is specified, the key is part of the
variable only when RKP≥1. As a result, embedded keys might not always be
present in the record variable or the data set. If you specify KEYLOC(1), you must
specify it for every file that accesses the data set. This is necessary because
KEYLOC(1) cannot be converted to an unambiguous RKP value. (Its equivalent is
RKP=0 for fixed format, which in turn implies nonembedded keys.) The effect of
the use of both options is shown in Table 17.

If you specify SCALARVARYING, the embedded key must not immediately precede
or follow the first byte; hence, the value specified for KEYLOC must be greater
than 2.

If you include the KEYLOC option in a VSAM file declaration for checking purposes,
and the key location you specify in the option conflicts with the value defined for the
data set, the UNDEFINEDFILE condition is raised.

Table 17. Effect of KEYLOC and RKP values on establishing embedded keys in record
variables or data sets

KEYLOC(n)

RKP

Record
variable

Data set
unblocked
records

Data set
blocked
records

n>1 RKP equivalent
= n−1+C1

Key Key Key

n=1 No equivalent Key Key2 Key

n=0
or not specified

RKP=C1

RKP>C1

No Key

Key

No Key

Key

Key3

Key

Notes:

1. C = number of control bytes, if any:
C=0 for fixed-length records.
C=4 for variable-length records.

2. In this instance the key is not recognized by data management .
3. Each logical record in the block has a key.

Creating an indexed data set
When you create an indexed data set, you must open the associated file for
SEQUENTIAL OUTPUT, and you must present the records in the order of
ascending key values. (If there is an error in the key sequence, the KEY condition
is raised.) You cannot use a DIRECT file for the creation of an indexed data set.

Table 16 on page 148 shows the statements and options for creating an indexed
data set.

You can extend an indexed data set consisting of fixed-length records by adding
records sequentially at the end, until the original space allocated for the prime data
is filled. You must open the corresponding file for SEQUENTIAL OUTPUT and you
must include DISP=MOD in the DD statement.

You can use a single DD statement to define the whole data set (index area, prime
area, and overflow area), or you can use two or three statements to define the
areas independently. If you use two DD statements, you can define either the

154 VisualAge PL/I Programming Guide

index area and the prime area together, or the prime area and the overflow area
together.

If you want the entire data set to be on a single volume, there is no advantage to
be gained by using more than one DD statement except to define an independent
overflow area (see “Overflow area” on page 160). But, if you use separate DD
statements to define the index and/or overflow area on volumes separate from that
which contains the prime area, you will increase the speed of direct-access to the
records in the data set by reducing the number of access mechanism movements
required.

When you use two or three DD statements to define an indexed data set, the
statements must appear in the order: index area; prime area; overflow area. The
first DD statement must have a name (ddname), but the name fields of a second or
third DD statement must be blank. The DD statements for the prime and overflow
areas must specify the same type of unit (UNIT parameter). You must include all
the DCB information for the data set in the first DD statement. DCB=DSORG=IS
will suffice in the other statements.

 Essential information
To create an indexed data set, you must give the operating system certain
information either in your PL/I program or in the DD statement that defines the data
set. The following paragraphs indicate the essential information, and discuss some
of the optional information you can supply.

You must supply the following information when creating an indexed data set:

� Direct-access device that will write your data set (UNIT or VOLUME parameter
of DD statement). Do not request DEFER.

� Block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE option) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

� Space requirements: Include space for future needs when you specify the size
of the prime, index, and overflow areas. Once you have created an indexed
data set, you cannot change its specification.

If you want to keep a direct-access data set (that is, you do not want the operating
system to delete it at the end of your job), the DD statement must name the data
set and indicate how it is to be disposed of (DSNAME and DISP parameters). The
DISP parameter alone will suffice if you want to use the data set in a later step but
will not need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
specify the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not specify a serial number for a data set that
you want to keep, the operating system will allocate one, inform the operator, and
print the number on your program listing. All the essential parameters required in a
DD statement for the creation of an indexed data set are summarized in Table 18
on page 156. Table 19 on page 156 lists the DCB subparameters needed. See
the MVS/370 JCL User's Guide for a description of the DCB subparameters.

 Chapter 8. Defining and using indexed data sets 155

You must request space for the prime data area in the SPACE parameter. You
cannot specify a secondary quantity for an indexed data set. Your request must be
in units of cylinders unless you place the data set in a specific position on the
volume (by specifying a track number in the SPACE parameter). In the latter case,
the number of tracks you specify must be equivalent to an integral number of
cylinders, and the first track must be the first track of a cylinder other than the first
cylinder in the volume.

You can also use the SPACE parameter to specify the amount of space to be used
for the cylinder and master indexes (unless you use a separate DD statement for
this purpose). If you do not specify the space for the indexes, the operating system
will use part of the independent overflow area. If there is no independent overflow
area, it will use part of the prime data area.

Table 18. Creating an indexed data set: essential parameters of DD statement

When required What you must state Parameters

Always Output device

Storage space required

Data control block information:
see Table 19

UNIT= or
VOLUME=REF=

SPACE=

DCB=

More than one DD statement Name of data set and area
(index, prime, overflow)

DSNAME=

Data set to be used in another
job step but not required at end
of job

Disposition DISP=

Data set to be kept after end of
job

Disposition

Name of data set

DISP=

DSNAME=

Data set to be on particular
volume

Volume serial number VOLUME=SER= or
VOLUME=REF=

Table 19 (Page 1 of 2). DCB subparameters for an indexed data set

When required To specify Subparameters

These are always required Record format

Block size

Data set organization

Key length

RECFM=F, FB, V, or VB

BLKSIZE=

DSORG=IS

KEYLEN=

Include at least one of these if
overflow is required

Cylinder overflow
area and number of
tracks per cylinder
for overflow records

Independent overflow area

OPTCD=Y and
CYLOFL=

OPTCD=I

156 VisualAge PL/I Programming Guide

You must always specify the data set organization (DSORG=IS subparameter of
the DCB parameter), and in the first (or only) DD statement you must also specify
the length of the key (KEYLEN subparameter of the DCB parameter) unless it is
specified in the ENVIRONMENT attribute.

If you want the operating system to recognize dummy records, you must code
OPTCD=L in the DCB subparameter of the DD statement. This will cause the
operating system to write the dummy identifier in deleted records and to ignore
dummy records during sequential read processing. Do not specify OPTCD=L when
using blocked or variable-length records with nonembedded keys. If you do this,
the dummy record identifier (8)'1'B will overwrite the key of deleted records.

You cannot place an indexed data set on a system output (SYSOUT) device.

Table 19 (Page 2 of 2). DCB subparameters for an indexed data set

When required To specify Subparameters

These are optional Record length

Embedded key
(relative key position)

Master index

Automatic processing
of dummy records

Number of data
management buffers

Number of tracks in
cylinder index for each
master index entry

LRECL=

OPTCD=M

OPTCD=L

NTM=

Notes:

Full DCB information must appear in the first, or only, DD statement. Subsequent statements require
only DSORG=IS.

Name of the data set
If you use only one DD statement to define your data set, you need not name the
data set unless you intend to access it in another job. But if you include two or
three DD statements, you must specify a data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement that defines an indexed data set not
only gives the data set a name, but it also identifies the area of the data set to
which the DD statement refers:

 DSNAME=name(INDEX)
 DSNAME=name(PRIME)
 DSNAME=name(OVFLOW)

If you use one DD statement to define the prime and index or one DD statement to
define the prime and overflow area, code DSNAME=name(PRIME). If you use one
DD statement for the entire file (prime, index, and overflow), code
DSNAME=name(PRIME) or simply DSNAME=name.

 Chapter 8. Defining and using indexed data sets 157

Record format and keys
An indexed data set can contain either fixed- or variable-length records, blocked or
unblocked. You must always specify the record format, either in your PL/I program
(ENVIRONMENT attribute) or in the DD statement (RECFM subparameter).

The key associated with each record can be contiguous with or embedded within
the data in the record.

If the records are unblocked, the key of each record is recorded in the data set in
front of the record even if it is also embedded within the record, as shown in (a)
and (b) of Figure 34 on page 159.

If blocked records do not have embedded keys, the key of each record is recorded
within the block in front of the record, and the key of the last record in the block is
also recorded just ahead of the block, as shown in (c) of Figure 34.

When blocked records have embedded keys, the individual keys are not recorded
separately in front of each record in the block: the key of the last record in the
block is recorded in front of the block, as shown in (d) of Figure 34.

158 VisualAge PL/I Programming Guide

a) Unblocked records, nonembedded keys

┌──────────┬──────┐ ┌──────────┬──────┐ ┌──────────┬──────┐
│ Recorded │ Data │ │ Recorded │ Data │ │ Recorded │ Data │
│ Key │ │ │ Key │ │ │ Key │ │
└──────────┴──────┘ └──────────┴──────┘ └──────────┴──────┘

b) Unblocked records, embedded keys

 ┌─────logical record─────┐ ┌─────logical record─────┐
┌──────────┬──────┬──────────┬──────┐ ┌──────────┬──────┬──────────┬──────┐
│ Recorded │ Data │ Embedded │ Data │ │ Recorded │ Data │ Embedded │ Data │
│ Key │ │ Key │ │ │ Key │ │ Key │ │
└──────────┴──────┴──────────┴──────┘ └──────────┴──────┴──────────┴──────┘
 n n
 └─────same key─────┘

c) Blocked records, nonembedded keys

┌───1st record───┬───2nd record───┬───last record──┐
┌──────────┬─────────┬──────┬─────────┬──────┬─────────┬──────┐ ┌──────────┬─────────┬────
│ Recorded │ Key │ Data │ Key │ Data │ Key │ Data │ │ Recorded │ Key │
│ Key │ │ │ │ │ │ │ │ Key │ │
└──────────┴─────────┴──────┴─────────┴──────┴─────────┴──────┘ └──────────┴─────────┴────
 n n
 └──────────────────same key──────────────────┘

d) Blocked records, embedded keys

┌───────1st record───────┬───────2nd record───────┬───────last record──────┐
┌──────────┬──────┬──────────┬──────┬──────┬──────────┬──────┬──────┬──────────┬──────┐ ┌──────────┬──────┬────
│ Recorded │ Data │ Embedded │ Data │ Data │ Embedded │ Data │ Data │ Embedded │ Data │ │ Recorded │ Data │
│ Key │ │ Key │ │ │ Key │ │ │ Key │ │ │ Key │ │
└──────────┴──────┴──────────┴──────┴──────┴──────────┴──────┴──────┴──────────┴──────┘ └──────────┴──────┴────
 n n
 └──────────────────────────────same key──────────────────────────────┘

e) Unblocked variable─length records, RKP>4

┌─────┬──┬──┬──────┬─────┬──────┐
│ Key │BL│RL│ Data │ Key │ Data │
└─────┴──┴──┴──────┴─────┴──────┘
 n n
 └─────same key─────┘

f) Blocked variable─length records, RKP>4

┌─────┬──┬──┬──────┬─────┬──────┬──┬──────┬─────┬──────┬──┬──────┬─────┬──────┐
│ Key │BL│RL│ Data │ Key │ Data │RL│ Data │ Key │ Data │RL│ Data │ Key │ Data │
└─────┴──┴──┴──────┴─────┴──────┴──┴──────┴─────┴──────┴──┴──────┴─────┴──────┘
 n n
 └────────────────────────────same key────────────────────────────┘

g) Unblocked variable─length records, RKP=4

┌─────┬──┬──┬─────┬──────┐
│ Key │BL│RL│ Key │ Data │
└─────┴──┴──┴─────┴──────┘
 n n
 └─same key──┘

f) Blocked variable─length records, RKP=4

┌─────┬──┬──┬─────┬──────┬──┬─────┬──────┬──┬─────┬──────┐
│ Key │BL│RL│ Key │ Data │RL│ Key │ Data │RL│ Key │ Data │
└─────┴──┴──┴─────┴──────┴──┴─────┴──────┴──┴─────┴──────┘

n n BL = Block length
└─────────────────same key──────────────────┘ RL = Record length

Figure 34. Record formats in an indexed data set

If you use blocked records with nonembedded keys, the record size that you
specify must include the length of the key, and the block size must be a multiple of
this combined length. Otherwise, record length and block size refer only to the
data in the record. Record format information is shown in Figure 35 on page 160.

 Chapter 8. Defining and using indexed data sets 159

If you use records with embedded keys, you must include the DCB subparameter
RKP to indicate the position of the key within the record. For fixed-length records
the value specified in the RKP subparameter is 1 less than the byte number of the
first character of the key. That is, if RKP=1, the key starts in the second byte of
the record. The default value if you omit this subparameter is RKP=0, which
specifies that the key is not embedded in the record but is separate from it.

For variable-length records, the value you specify in the RKP subparameter must
be the relative position of the key within the record plus 4. The extra 4 bytes take
into account the 4-byte control field used with variable-length records. For this
reason, you must never specify RKP less than 4. When deleting records, you must
always specify RKP equal to or greater than 5, since the first byte of the data is
used to indicate deletion.

For unblocked records, the key, even if embedded, is always recorded in a position
preceding the actual data. Consequently, you do not need to specify the RKP
subparameter for unblocked records.

RECORDS RKP LRECL BLKSIZE

Blocked Not zero R R X B

Zero or R + K BX(R+K)
 omitted

Unblocked Not zero R R

 Zero or R R
 omitted

R = Size of data in record
K = Length of keys (as specified in KEYLEN subparameter)
B = Blocking factor

Example: For blocked records, nonembedded keys, 1JJ bytes of
data per record, 1J records per block, key length = 2J:

 LRECL=12J,BLKSIZE=12JJ,RECFM=FB

Figure 35. Record format information for an indexed data set

 Overflow area
If you intend to add records to the data set on a future occasion, you must request
either a cylinder overflow area or an independent overflow area, or both.

For a cylinder overflow area, include the DCB subparameter OPTCD=Y and use
the subparameter CYLOFL to specify the number of tracks in each cylinder to be
reserved for overflow records. A cylinder overflow area has the advantage of a
short search time for overflow records, but the amount of space available for
overflow records is limited, and much of the space might be unused if the overflow
records are not evenly distributed throughout the data set.

For an independent overflow area, use the DCB subparameter OPTCD=I to
indicate that overflow records are to be placed in an area reserved for overflow
records from all cylinders, and include a separate DD statement to define the
overflow area. The use of an independent area has the advantage of reducing the
amount of unused space for overflow records, but entails an increased search time
for overflow records.

160 VisualAge PL/I Programming Guide

It is good practice to request cylinder overflow areas large enough to contain a
reasonable number of additional records and an independent overflow area to be
used as the cylinder overflow areas are filled.

If the prime data area is not filled during creation, you cannot use the unused
portion for overflow records, nor for any records subsequently added during
direct-access (although you can fill the unfilled portion of the last track used). You
can reserve space for later use within the prime data area by writing dummy
records during creation (see “Dummy records” on page 151).

 Master index
If you want the operating system to create a master index for you, include the DCB
subparameter OPTCD=M, and indicate in the NTM subparameter the number of
tracks in the cylinder index you wish to be referred to by each entry in the master
index. The operating system will create up to three levels of master index, the first
two levels addressing tracks in the next lower level of the master index.

The creation of a simple indexed data set is illustrated in Figure 36 on page 162.
The data set contains a telephone directory, using the subscribers' names as keys
to the telephone numbers.

 Chapter 8. Defining and using indexed data sets 161

 //EX8#19 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL KEYED,
 CARD CHAR(8J),

NAME CHAR(2J) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21),

 IOFIELD CHAR(3),
EOF BIT(1) INIT('J'B);

ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(DIREC) OUTPUT;
GET FILE(SYSIN) EDIT(CARD)(A(8J));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

 IOFIELD=NUMBER;
WRITE FILE(DIREC) FROM(IOFIELD) KEYFROM(NAME);
GET FILE(SYSIN) EDIT(CARD)(A(8J));

 END;
 CLOSE FILE(DIREC);
 END TELNOS;
 /X
 //GO.DIREC DD DSN=HPU8.TELNO(INDEX),UNIT=SYSDA,SPACE=(CYL,1),
 // DCB=(RECFM=F,BLKSIZE=3,DSORG=IS,KEYLEN=2J,OPTCD=LIY,
 // CYLOFL=2),DISP=(NEW,KEEP)
 // DD DSN=HPU8.TELNO(PRIME),UNIT=SYSDA,SPACE=(CYL,1),
 // DISP=(NEW,KEEP),DCB=DSORG=IS
 // DD DSN=HPU8.TELNO(OVFLOW),UNIT=SYSDA,SPACE=(CYL,1),
 // DISP=(NEW,KEEP),DCB=DSORG=IS
 //GO.SYSIN DD X
 ACTION,G. 162
 BAKER,R. 152
 BRAMLEY,O.H. 248
 CHEESEMAN,D. 141
 CORY,G. 336
 ELLIOTT,D. 875
 FIGGINS,S. 413
 HARVEY,C.D.W. 2J5
 HASTINGS,G.M. 391
 KENDALL,J.G. 294
 LANCASTER,W.R. 624
 MILES,R. 233
 NEWMAN,M.W. 45J
 PITT,W.H. 515
 ROLF,D.E. 114
 SHEERS,C.D. 241
 SUTCLIFFE,M. 472
 TAYLOR,G.C. 4J7
 WILTON,L.W. 4J4
 WINSTONE,E.M. 3J7
 /X

Figure 36. Creating an indexed data set

Accessing and updating an indexed data set
Once you create an indexed data set, you can open the file that accesses it for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. In the case
of F-format records, you can also open it for OUTPUT to add records at the end of
the data set. The keys for these records must have higher values than the existing
keys for that data set and must be in ascending order. Table 16 on page 148
shows the statements and options for accessing an indexed data set.

Sequential input allows you to read the records in ascending key sequence, and in
sequential update you can read and rewrite each record in turn. Using direct input,

162 VisualAge PL/I Programming Guide

you can read records using the READ statement, and in direct update you can read
or delete existing records or add new ones. Sequential and direct-access are
discussed in further detail below.

Using sequential access
You can open a sequential file that is used to access an indexed data set with
either the INPUT or the UPDATE attribute. You do not need to include source keys
in the data transmission statements, nor do you need to give the file the KEYED
attribute. Sequential access is in order of ascending recorded-key values. Records
are retrieved in this order, and not necessarily in the order in which they were
added to the data set. Dummy records are not retrieved if you include the
subparameter OPTCD=L in the DD statement that defines the data set.

Rules governing the relationship between the READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses an indexed data set are identical to
those for a consecutive data set (described in Chapter 7, “Defining and using
consecutive data sets” on page 123).

You must not alter embedded keys in a record to be updated. The modified record
must always overwrite the update record in the data set.

Additionally, records can be effectively deleted from the data set. Using a DELETE
statement marks a record as a dummy by putting (8)'1'B in the first byte. You
should not use the DELETE statement to process a data set with F-format blocked
records and either KEYLOC=1 or RKP=0, or a data set with V- or VB-format
records and either KEYLOC=1 or RKP=4. (The code (8)'1'B would overwrite the
first byte of the recorded key.)

You can position INDEXED KEYED files opened for SEQUENTIAL INPUT and
SEQUENTIAL UPDATE to a particular record within the data set by using either a
READ KEY or a DELETE KEY operation that specifies the key of the desired
record. Thereafter, successive READ statements without the KEY option access
the next records in the data set sequentially. A subsequent READ statement
without the KEY option causes the record with the next higher recorded key to be
read (even if the keyed record has not been found).

Define the length of the recorded keys in an indexed data set with the
KEYLENGTH ENVIRONMENT option or the KEYLEN subparameter of the DD
statement that defines the data set. If the length of a source key is greater than
the specified length of the recorded keys, the source key is truncated on the right.

The effect of supplying a source key that is shorter than the recorded keys in the
data set differs according to whether or not you specify the GENKEY option in the
ENVIRONMENT attribute. In the absence of the GENKEY option, the source key is
padded on the right with blanks to the length you specify in the KEYLENGTH
option of the ENVIRONMENT attribute, and the record with this padded key is read
(if such a record exists). If you specify the GENKEY option, the source key is
interpreted as a generic key, and the first record with a key in the class identified
by this generic key is read. (For further details, see “GENKEY option — key
classification” on page 112.)

 Chapter 8. Defining and using indexed data sets 163

Using direct access
You can open a direct file that is used to access an indexed data set with either the
INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute.

You can use a DIRECT UPDATE file to retrieve, add, delete, or replace records in
an indexed data set according to the following conventions:

Retrieval If you include the subparameter OPTCD=L in the DD statement that
defines the data set, dummy records are not made available by a
READ statement (the KEY condition is raised).

Addition A WRITE statement that includes a unique key causes a record to
be inserted into the data set. If the key is the same as the recorded
key of a dummy record, the new record replaces the dummy record.
If the key is the same as the recorded key of a record that is not
marked as deleted, or if there is no space in the data set for the
record, the KEY condition is raised.

Deletion The record specified by the source key in a DELETE statement is
retrieved, marked as deleted, and rewritten into the data set. The
effect of the DELETE statement is to insert the value (8)'1'B in the
first byte of the data in a record. Deletion is possible only if you
specify OPTCD=L in the DD statement that defines the data set
when you create it. If the data set has F-format blocked records with
RKP=0 or KEYLOC=1, or V-format records with RKP=4 or
KEYLOC=1, records cannot be deleted. (The code (8)'1'B would
overwrite the embedded keys.)

Replacement
The record specified by a source key in a REWRITE statement is
replaced by the new record. If the data set contains F-format
blocked records, a record replaced with a REWRITE statement
causes an implicit READ statement to be executed unless the
previous I/O statement was a READ statement that obtained the
record to be replaced. If the data set contains V-format records and
the updated record has a length different from that of the record
read, the whole of the remainder of the track will be removed, and
can cause data to be moved to an overflow track.

 Essential information
To access an indexed data set, you must define it in one, two, or three DD
statements. The DD statements must correspond with those used when the data
set is created. The following paragraphs indicate the essential information you
must include in each DD statement. Table 20 on page 165 summarizes this
information.

164 VisualAge PL/I Programming Guide

If the data set is cataloged, you need supply only the following information in each
DD statement:

� The name of the data set (DSNAME parameter). The operating system will
locate the information that describes the data set in the system catalog and, if
necessary, will request the operator to mount the volume that contains it.

� Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify the device that will
process the data set and give the serial number of the volume that contains it
(UNIT and VOLUME parameters).

Table 20. Accessing an indexed data set: essential parameters of DD statement

Parameters What you must state When required

DSNAME=

DISP=

DCB=

Name of data set

Disposition of
data set

Data control block
information

Always

UNIT= or
VOLUME=REF=

VOLUME=SER=

Input device

Volume serial number

If data set not cataloged

 Example
The program in Figure 37 on page 166 updates the data set of the previous
example (Figure 36 on page 162) and prints out its new contents. The input data
includes the following codes to indicate the operations required:

A Add a new record.
C Change an existing record.
D Delete an existing record.

 Chapter 8. Defining and using indexed data sets 165

 //EX8#2J JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED,
NUMBER CHAR(3),NAME CHAR(2J),CODE CHAR(1),ONCODE BUILTIN,
EOF BIT(1) INIT('J'B);

ON ENDFILE(SYSIN) EOF='1'B;
ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('NOT FOUND:',NAME)(A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('DUPLICATE:',NAME)(A(15),A);
 END;

OPEN FILE(DIREC) DIRECT UPDATE;
GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)

 (COLUMN(1),A(2J),A(3),A(1));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)

 (A(1),A(2J),A(1),A(3),A(1),A(1));
 SELECT (CODE);

WHEN('A') WRITE FILE(DIREC) FROM(NUMBER) KEYFROM(NAME);
WHEN('C') REWRITE FILE(DIREC) FROM(NUMBER) KEY(NAME);
WHEN('D') DELETE FILE(DIREC) KEY(NAME);
OTHERWISE PUT FILE(SYSPRINT) SKIP

 EDIT('INVALID CODE:',NAME)(A(15),A);
 END;

GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)
 (COLUMN(1),A(2J),A(3),A(1));
 END;
 CLOSE FILE(DIREC);

PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

 EOF='J'B;
ON ENDFILE(DIREC) EOF='1'B;
READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER)(A);
READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);

 END;
 CLOSE FILE(DIREC); END DIRUPDT;
 /X
 //GO.DIREC DD DSN=HPU8.TELNO(INDEX),DISP=(OLD,DELETE),
 // VOL=SER=nnnnnn,UNIT=SYSDA
 // DD DSN=HPU8.TELNO(PRIME),DISP=(OLD,DELETE),
 // VOL=SER=nnnnnn,UNIT=SYSDA
 // DD DSN=HPU8.TELNO(OVFLOW),DISP=(OLD,DELETE),
 // VOL=SER=nnnnnn,UNIT=SYSDA
 //GO.SYSIN DD X
 NEWMAN,M.W. 516C
 GOODFELLOW,D.T. 889A
 MILES,R. D
 HARVEY,C.D.W. 2J9A
 BARTLETT,S.G. 183A
 CORY,G. D
 READ,K.M. JJ1A
 PITT,W.H.
 ROLF,D.E. D
 ELLIOTT,D. 291C
 HASTINS,G.M. D
 BRAMLEY,O.H. 439
 /X

Figure 37. Updating an indexed data set

166 VisualAge PL/I Programming Guide

Reorganizing an indexed data set
It is necessary to reorganize an indexed data set periodically because the addition
of records to the data set results in an increasing number of records in the overflow
area. Therefore, even if the overflow area does not eventually become full, the
average time required for the direct retrieval of a record will increase. The
frequency of reorganization depends on how often you update the data set, on how
much storage is available in the data set, and on your timing requirements.

Reorganizing the data set also eliminates records that are marked as “deleted” but
are still present within the data set.

There are two ways to reorganize an indexed data set:

� Read the data set into an area of main storage or onto a temporary
consecutive data set, and then recreate it in the original area of auxiliary
storage.

� Read the data set sequentially and write it into a new area of auxiliary storage.
You can then release the original auxiliary storage.

 Chapter 8. Defining and using indexed data sets 167

Chapter 9. Defining and using regional data sets

This chapter covers regional data set organization, data transmission statements,
and ENVIRONMENT options that define regional data sets. How to create and
access regional data sets for each type of regional organization is then discussed.

A data set with regional organization is divided into regions, each of which is
identified by a region number, and each of which can contain one record or more
than one record, depending on the type of regional organization. The regions are
numbered in succession, beginning with zero, and a record can be accessed by
specifying its region number, and perhaps a key, in a data transmission statement.

Regional data sets are confined to direct-access devices.

Regional organization of a data set allows you to control the physical placement of
records in the data set, and to optimize the access time for a particular application.
Such optimization is not available with consecutive or indexed organization, in
which successive records are written either in strict physical sequence or in logical
sequence depending on ascending key values; neither of these methods takes full
advantage of the characteristics of direct-access storage devices.

You can create a regional data set in a manner similar to a consecutive or indexed
data set, presenting records in the order of ascending region numbers; alternatively,
you can use direct-access, in which you present records in random sequence and
insert them directly into preformatted regions. Once you create a regional data set,
you can access it by using a file with the attributes SEQUENTIAL or DIRECT as
well as INPUT or UPDATE. You do not need to specify either a region number or
a key if the data set is associated with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT attribute, you can retrieve, add,
delete, and replace records at random.

Records within a regional data set are either actual records containing valid data or
dummy records. The nature of the dummy records depends on the type of regional
organization; the three types of regional organization are described below.

The major advantage of regional organization over other types of data set
organization is that it allows you to control the relative placement of records; by
judicious programming, you can optimize record access in terms of device
capabilities and the requirements of particular applications.

Direct access of regional data sets is quicker than that of indexed data sets, but
regional data sets have the disadvantage that sequential processing can present
records in random sequence; the order of sequential retrieval is not necessarily that
in which the records were presented, nor need it be related to the relative key
values.

Table 21 on page 169 lists the data transmission statements and options that you
can use to create and access a regional data set.

168  Copyright IBM Corp. 1964, 2000

Table 21 (Page 1 of 2). Statements and options allowed for creating and accessing
regional data sets

File
declaration1

Valid statements,2 with
options you must include

Other options you
can also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FROM(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

KEYTO(reference)

SEQUENTIAL INPUT READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

SEQUENTIAL UPDATE3

BUFFERED
READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

SEQUENTIAL UPDATE READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference)
FROM(reference);

KEYTO(reference)

DIRECT OUTPUT WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT READ FILE(file-reference)
INTO(reference)
KEY(expression);

 Chapter 9. Defining and using regional data sets 169

Table 21 (Page 2 of 2). Statements and options allowed for creating and accessing
regional data sets

File
declaration1

Valid statements,2 with
options you must include

Other options you
can also include

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

DIRECT UPDATE READ FILE(file-reference)
INTO(reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY(expression);

UNLOCK FILE(file-reference)
KEY(expression);

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

3. The file must not have the UPDATE attribute when creating new data sets.

Defining files for a regional data set
Use a file declaration with the following attributes to define a sequential regional
data set:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 SEQUENTIAL
 BUFFERED
 [KEYED]
 ENVIRONMENT(options);

To define a direct regional data set, use a file declaration with the following
attributes:

170 VisualAge PL/I Programming Guide

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 DIRECT
 ENVIRONMENT(options);

Default file attributes are shown in Table 10 on page 108. The file attributes are
described in the PL/I Language Reference. Options of the ENVIRONMENT
attribute are discussed below.

Specifying ENVIRONMENT options
The ENVIRONMENT options applicable to regional data sets are:

REGIONAL({1})
F|V|VS|U
RECSIZE(record-length)
BLKSIZE(block-size)
SCALARVARYING
KEYLENGTH(n)

 REGIONAL option
Use the REGIONAL option to define a file with regional organization.

──REGIONAL──(──1──)──
�

1 specifies REGIONAL(1)

REGIONAL(1)
specifies that the data set contains F-format records that do not have recorded
keys. Each region in the data set contains only one record; therefore, each
region number corresponds to a relative record within the data set (that is,
region numbers start with 0 at the beginning of the data set).

Although REGIONAL(1) data sets have no recorded keys, you can use
REGIONAL(1) DIRECT INPUT or UPDATE files to process data sets that do
have recorded keys.

REGIONAL(1) organization is most suited to applications where there are no
duplicate region numbers, and where most of the regions will be filled (reducing
wasted space in the data set).

Using keys with REGIONAL data sets
There are two kinds of keys, recorded keys and source keys. A recorded key is a
character string that immediately precedes each record in the data set to identify
that record; its length cannot exceed 255 characters. A source key is the character
value of the expression that appears in the KEY or KEYFROM option of a data
transmission statement to identify the record to which the statement refers. When
you access a record in a regional data set, the source key gives a region number,
and can also give a recorded key.

You specify the length of the recorded keys in a regional data set with the
KEYLENGTH option of the ENVIRONMENT attribute, or the KEYLEN subparameter
on the DD statement. Unlike the keys for indexed data sets, recorded keys in a
regional data set are never embedded within the record.

 Chapter 9. Defining and using regional data sets 171

Using REGIONAL(1) data sets
In a REGIONAL(1) data set, since there are no recorded keys, the region number
serves as the sole identification of a particular record. The character value of the
source key should represent an unsigned decimal integer that should not exceed
16777215 (although the actual number of records allowed can be smaller,
depending on a combination of record size, device capacity, and limits of your
access method. For direct regional(1) files with fixed format records, the maximum
number of tracks which can be addressed by relative track addressing is 65,536.)
If the region number exceeds this figure, it is treated as modulo 16777216; for
instance, 16777226 is treated as 10. Only the characters 0 through 9 and the
blank character are valid in the source key; leading blanks are interpreted as zeros.
Embedded blanks are not allowed in the number; the first embedded blank, if any,
terminates the region number. If more than 8 characters appear in the source key,
only the rightmost 8 are used as the region number; if there are fewer than 8
characters, blanks (interpreted as zeros) are inserted on the left.

 Dummy Records
Records in a REGIONAL(1) data set are either actual records containing valid data
or dummy records. A dummy record in a REGIONAL(1) data set is identified by
the constant (8)'1'B in its first byte. Although such dummy records are inserted in
the data set either when it is created or when a record is deleted, they are not
ignored when the data set is read; your PL/I program must be prepared to
recognize them. You can replace dummy records with valid data. Note that if you
insert (8)'1'B in the first byte, the record can be lost if you copy the file onto a data
set that has dummy records that are not retrieved.

Creating a REGIONAL(1) data set
You can create a REGIONAL(1) data set either sequentially or by direct-access.
Table 21 on page 169 shows the statements and options for creating a regional
data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, the opening of
the file causes all tracks on the data set to be cleared, and a capacity record to be
written at the beginning of each track to record the amount of space available on
that track. You must present records in ascending order of region numbers; any
region you omit from the sequence is filled with a dummy record. If there is an
error in the sequence, or if you present a duplicate key, the KEY condition is
raised. When the file is closed, any space remaining at the end of the current
extent is filled with dummy records.

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement might raise the ERROR condition.

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is filled with dummy records when the file is opened. You
can present records in random order; if you present a duplicate, the existing record
will be overwritten.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

172 VisualAge PL/I Programming Guide

 Example
Creating a REGIONAL(1) data set is illustrated in Figure 38. The data set is a list
of telephone numbers with the names of the subscribers to whom they are
allocated. The telephone numbers correspond with the region numbers in the data
set, the data in each occupied region being a subscriber's name.

 //EX9 JOB
 //STEP1 EXEC IBMZCBG,PARM.PLI='NOP,MAR(1,72)',PARM.BIND='LIST'
//PLI.SYSIN DD X
 CRR1: PROC OPTIONS(MAIN);

/X CREATING A REGIONAL(1) DATA SET - PHONE DIRECTORY X/

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL SYSIN_REC BIT(1) INIT('1'B);

 DCL 1 CARD,
2 NAME CHAR(2J),
2 NUMBER CHAR(2),

 2 CARD_1 CHAR(58);
DCL IOFIELD CHAR(2J);

ON ENDFILE (SYSIN) SYSIN_REC = 'J'B;
 OPEN FILE(NOS);

READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);
IOFIELD = NAME;
WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
READ FILE(SYSIN) INTO(CARD);

 END;

 CLOSE FILE(NOS);
 END CRR1;
 /X
 //GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)
 //GO.NOS DD DSN=NOS,UNIT=SYSDA,SPACE=(2J,1JJ),
 // DCB=(RECFM=F,BLKSIZE=2J,DSORG=DA),DISP=(NEW,KEEP)
 //GO.SYSIN DD X
 ACTION,G. 12
 BAKER,R. 13
 BRAMLEY,O.H. 28
 CHEESNAME,L. 11
 CORY,G. 36
 ELLIOTT,D. 85
 FIGGINS,E.S. 43
 HARVEY,C.D.W. 25
 HASTINGS,G.M. 31
 KENDALL,J.G. 24
 LANCASTER,W.R. 64
 MILES,R. 23
 NEWMAN,M.W. 4J
 PITT,W.H. 55
 ROLF,D.E. 14
 SHEERS,C.D. 21
 SURCLIFFE,M. 42
 TAYLOR,G.C. 47
 WILTON,L.W. 44
 WINSTONE,E.M. 37
 /X

Figure 38. Creating a REGIONAL(1) data set

 Chapter 9. Defining and using regional data sets 173

Accessing and updating a REGIONAL(1) data set
Once you create a REGIONAL(1) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
open it for OUTPUT only if the existing data set is to be overwritten. Table 21 on
page 169 shows the statements and options for accessing a regional data set.

 Sequential access
To open a SEQUENTIAL file that is used to process a REGIONAL(1) data set, use
either the INPUT or UPDATE attribute. You must not include the KEY option in
data transmission statements, but the file can have the KEYED attribute, since you
can use the KEYTO option. If the target character string referenced in the KEYTO
option has more than 8 characters, the value returned (the 8-character region
number) is padded on the left with blanks. If the target string has fewer than 8
characters, the value returned is truncated on the left.

Sequential access is in the order of ascending region numbers. All records are
retrieved, whether dummy or actual, and you must ensure that your PL/I program
recognizes dummy records.

Using sequential input with a REGIONAL(1) data set, you can read all the records
in ascending region-number sequence, and in sequential update you can read and
rewrite each record in turn.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(1) data set are identical
to those for a consecutive data set. Consecutive data sets are discussed in detail
in Chapter 7, “Defining and using consecutive data sets” on page 123.

 Direct access
To open a DIRECT file that is used to process a REGIONAL(1) data set you can
use either the INPUT or the UPDATE attribute. All data transmission statements
must include source keys; the DIRECT attribute implies the KEYED attribute.

Use DIRECT UPDATE files to retrieve, add, delete, or replace records in a
REGIONAL(1) data set according to the following conventions:

Retrieval All records, whether dummy or actual, are retrieved. Your program
must recognize dummy records.

Addition A WRITE statement substitutes a new record for the existing
record (actual or dummy) in the region specified by the source key.

Deletion The record you specify by the source key in a DELETE statement
is converted to a dummy record.

Replacement The record you specify by the source key in a REWRITE
statement, whether dummy or actual, is replaced.

 Example
Updating a REGIONAL(1) data set is illustrated in Figure 39 on page 176. Like
the program in Figure 37 on page 166, this program updates the data set and lists
its contents. Before each new or updated record is written, the existing record in
the region is tested to ensure that it is a dummy; this is necessary because a
WRITE statement can overwrite an existing record in a REGIONAL(1) data set
even if it is not a dummy. Similarly, during the sequential reading and printing of

174 VisualAge PL/I Programming Guide

the contents of the data set, each record is tested and dummy records are not
printed.

 Chapter 9. Defining and using regional data sets 175

 //EX1J JOB
 //STEP2 EXEC IBMZCBG,PARM.PLI='NOP,MAR(1,72)',PARM.BIND='LIST'
//PLI.SYSIN DD X
ACR1: PROC OPTIONS(MAIN);
/X UPDATING A REGIONAL(1) DATA SET - PHONE DIRECTORY X/
DCL NOS FILE RECORD KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL (SYSIN_REC,NOS_REC) BIT(1) INIT('1'B);

 DCL 1 CARD,
2 NAME CHAR(2J),

 2 (NEWNO,OLDNO) CHAR(2),
2 CARD_1 CHAR(1),
2 CODE CHAR(1),

 2 CARD_2 CHAR(54);
DCL IOFIELD CHAR(2J);
DCL BYTE CHAR(1) DEF IOFIELD;

ON ENDFILE(SYSIN) SYSIN_REC = 'J'B;
OPEN FILE (NOS) DIRECT UPDATE;
READ FILE(SYSIN) INTO(CARD);

 DO WHILE(SYSIN_REC);
 SELECT(CODE);
 WHEN('A','C') DO;

IF CODE = 'C' THEN
DELETE FILE(NOS) KEY(OLDNO);

READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);
IF UNSPEC(BYTE) = (8)'1'B

THEN WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
ELSE PUT FILE(SYSPRINT) SKIP LIST ('DUPLICATE:',NAME);

 END;
WHEN('D') DELETE FILE(NOS) KEY(OLDNO);

OTHERWISE PUT FILE(SYSPRINT) SKIP LIST ('INVALID CODE:',NAME);
 END;

READ FILE(SYSIN) INTO(CARD);
 END;

 CLOSE FILE(SYSIN),FILE(NOS);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;
ON ENDFILE(NOS) NOS_REC = 'J'B;
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 DO WHILE(NOS_REC);
IF UNSPEC(BYTE) ¬= (8)'1'B

THEN PUT FILE(SYSPRINT) SKIP EDIT (NEWNO,IOFIELD)(A(2),X(3),A);
PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 END;
 CLOSE FILE(NOS);
 END ACR1;
 /X
 //GO.NOS DD DSN=J44PLI.NOS,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
 //GO.SYSIN DD X
 NEWMAN,M.W. 564J C
 GOODFELLOW,D.T. 89 A
 MILES,R. 23 D
 HARVEY,C.D.W. 29 A
 BARTLETT,S.G. 13 A
 CORY,G. 36 D
 READ,K.M. J1 A
 PITT,W.H. 55
 ROLF,D.F. 14 D
 ELLIOTT,D. 4285 C
 HASTINGS,G.M. 31 D
 BRAMLEY,O.H. 4928 C
 /X

Figure 39. Updating a REGIONAL(1) data set

176 VisualAge PL/I Programming Guide

Essential information for creating and accessing regional data sets
To create a regional data set, you must give the operating system certain
information, either in your PL/I program or in the DD statement that defines the
data set. The following paragraphs indicate the essential information, and discuss
some of the optional information you can supply.

You must supply the following information when creating a regional data set:

� Device that will write your data set (UNIT or VOLUME parameter of DD
statement).

� Block size: You can specify the block size either in your PL/I program (in the
BLKSIZE option of the ENVIRONMENT attribute) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

If you want to keep a data set (that is, you do not want the operating system to
delete it at the end of your job), the DD statement must name the data set and
indicate how it is to be disposed of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to use the data set in a later step but do not
need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
indicate the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not supply a serial number for a data set that
you want to keep, the operating system allocates one, informs the operator, and
prints the number on your program listing. All the essential parameters required in
a DD statement for the creation of a regional data set are summarized in Table 22;
and Table 23 on page 178 lists the DCB subparameters needed. See your
OS/390 JCL User's Guide for a description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT) device.

In the DCB parameter, you must always specify the data set organization as direct
by coding DSORG=DA. You cannot specify the DUMMY or DSN=NULLFILE
parameters in a DD statement for a regional data set.

Table 22 (Page 1 of 2). Creating a regional data set: essential parameters of the DD
statement

Parameters What you must state When required

UNIT= or
VOLUME=REF=

SPACE=

DCB=

Output device1

Storage space required2

Data control block information:
see Table 23 on page 178

Always

DISP= Disposition Data set to be used in another job step but not
required in another job

DISP=

DSNAME=

Disposition

Name of data set

Data set to be kept after end of job

 Chapter 9. Defining and using regional data sets 177

To access a regional data set, you must identify it to the operating system in a DD
statement. The following paragraphs indicate the minimum information you must
include in the DD statement; this information is summarized in Table 24.

If the data set is cataloged, you only need to supply the following information in
your DD statement:

� The name of the data set (DSNAME parameter). The operating system locates
the information that describes the data set in the system catalog and, if
necessary, requests the operator to mount the volume that contains it.

� Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and give the serial number of the volume that contains the data
set (UNIT and VOLUME parameters).

Unlike indexed data sets, regional data sets do not require the subparameter
OPTCD=L in the DD statement.

When opening a multiple-volume regional data set for sequential update, the
ENDFILE condition is raised at the end of the first volume.

Table 22 (Page 2 of 2). Creating a regional data set: essential parameters of the DD
statement

Parameters What you must state When required

VOLUME=SER= or
VOLUME=REF=

Volume serial number Data set to be on particular volume

1Regional data sets are confined to direct-access devices.

2For sequential access, the data set can have up to 15 extents, which can be on more than one volume.
For creation with DIRECT access, the data set can have only one extent.

Table 23. DCB subparameters for a regional data set

Subparameters To specify When required

RECFM=F

BLKSIZE=

DSORG=DA

Record format1

Block size1

Data set organization

These are always required

1Or you can specify the block size in the ENVIRONMENT attribute.

Table 24. Accessing a regional data set: essential parameters of the DD statement

Parameters What you must state When required

DSNAME=

DISP=

Name of data set

Disposition of data set

Always

UNIT= or
VOLUME=REF=

VOLUME=SER=

Input device

Volume serial number

If data set not cataloged

178 VisualAge PL/I Programming Guide

Chapter 10. Defining and using VSAM data sets

This chapter covers VSAM (the Virtual Storage Access Method) organization for
record-oriented data transmission, VSAM ENVIRONMENT options, compatibility
with other PL/I data set organizations, and the statements you use to load and
access the three types of VSAM data sets that PL/I supports—entry-sequenced,
key-sequenced, and relative record. The chapter is concluded by a series of
examples showing the PL/I statements, Access Method Services commands, and
JCL statements necessary to create and access VSAM data sets.

For additional information about the facilities of VSAM, the structure of VSAM data
sets and indexes, the way in which they are defined by Access Method Services,
and the required JCL statements, see the VSAM publications for your system.

Using VSAM data sets

How to run a program with VSAM data sets
Before you execute a program that accesses a VSAM data set, you need to know:

� The name of the VSAM data set
� The name of the PL/I file
� Whether you intend to share the data set with other users

Then you can write the required DD statement to access the data set:

 //filename DD DSNAME=dsname,DISP=OLD|SHR

For example, if your file is named PL1FILE, your data set named VSAMDS, and
you want exclusive control of the data set, enter:

 //PL1FILE DD DSNAME=VSAMDS,DISP=OLD

To share your data set, use DISP=SHR.

To optimize VSAM's performance by controlling the number of VSAM buffers used
for your data set, see the VSAM publications.

 VSAM organization
PL/I provides support for three types of VSAM data sets:

� Key-sequenced data sets (KSDS)
� Entry-sequenced data sets (ESDS)
� Relative record data sets (RRDS).

These correspond roughly to PL/I indexed, consecutive, and regional data set
organizations, respectively. They are all ordered, and they can all have keys
associated with their records. Both sequential and keyed access are possible with
all three types.

Although only key-sequenced data sets have keys as part of their logical records,
keyed access is also possible for entry-sequenced data sets (using relative-byte
addresses) and relative record data sets (using relative record numbers).

 Copyright IBM Corp. 1964, 2000 179

All VSAM data sets are held on direct-access storage devices, and a virtual storage
operating system is required to use them.

The physical organization of VSAM data sets differs from those used by other
access methods. VSAM does not use the concept of blocking, and, except for
relative record data sets, records need not be of a fixed length. In data sets with
VSAM organization, the data items are arranged in control intervals, which are in
turn arranged in control areas. For processing purposes, the data items within a
control interval are arranged in logical records. A control interval can contain one
or more logical records, and a logical record can span two or more control intervals.
Concern about blocking factors and record length is largely removed by VSAM,
although records cannot exceed the maximum specified size. VSAM allows access
to the control intervals, but this type of access is not supported by PL/I.

VSAM data sets have prime indexes. A prime index is the index to a KSDS that is
established when you define a data set; it always exists and can be the only index
for a KSDS. The prime index can never have duplicate keys.

Before using a VSAM data set for the first time, you need to define it to the system
with the DEFINE command of Access Method Services, which you can use to
completely define the type, structure, and required space of the data set. This
command also defines the data set's indexes (together with their key lengths and
locations) and the index upgrade set if the data set is a KSDS. A VSAM data set is
thus “created” by Access Method Services.

The operation of writing the initial data into a newly created VSAM data set is
referred to as loading in this publication.

Use the three different types of data sets according to the following purposes:

� Use entry-sequenced data sets for data that you primarily access in the order
in which it was created (or the reverse order).

� Use key-sequenced data sets when you normally access records through keys
within the records (for example, a stock-control file where the part number is
used to access a record).

� Use relative record data sets for data in which each item has a particular
number, and you normally access the relevant record by that number (for
example, a telephone system with a record associated with each number).

You can access records in all types of VSAM data sets either directly by means of
a key, or sequentially (backward or forward). You can also use a combination of
the two ways: Select a starting point with a key and then read forward or backward
from that point.

Table 25 on page 181 shows how the same data could be held in the three
different types of VSAM data sets and illustrates their respective advantages and
disadvantages.

180 VisualAge PL/I Programming Guide

Table 25. Types and advantages of VSAM data sets

Data set type Method of loading Method of reading Method of updating Pros and cons

Key-Sequenced Sequentially in order
or prime index which
must be unique

KEYED by specifying
key of record in prime
index

SEQUENTIAL
backward or forward
in order of any index

Positioning by key
followed by
sequential reading
either backward or
forward

KEYED specifying a
unique key in any
index

SEQUENTIAL
following positioning
by unique key

Record deletion
allowed

Record insertion
allowed

Advantages: Complete
access and updating

Disadvantages:
Records must be in
order of prime index
before loading

Uses: For uses where
access will be related to
key

Entry-Sequenced Sequentially (forward
only)

The RBA of each
record can be
obtained and used as
a key

SEQUENTIAL
backward or forward

KEYED using RBA

Positioning by key
followed by
sequential either
backward or forward

New records at end
only

Existing records
cannot have length
changed

Record deletion not
allowed

Advantages: Simple
fast creation

No requirement for a
unique index

Disadvantages:
Limited updating
facilities

Uses: For uses where
data will primarily be
accessed sequentially

Relative Record Sequentially starting
from slot 1

KEYED specifying
number of slot

Positioning by key
followed by
sequential writes

KEYED specifying
numbers as key

Sequential forward or
backward omitting
empty records

Sequentially starting
at a specified slot and
continuing with next
slot

Keyed specifying
numbers as key

Record deletion
allowed

Record insertion into
empty slots allowed

Advantages: Speedy
access to record by
number

Disadvantages:
Structure tied to
numbering sequences

Fixed length records

Uses: For use where
records will be
accessed by number

Keys for VSAM data sets
All VSAM data sets can have keys associated with their records. For
key-sequenced data sets, the key is a defined field within the logical record. For
entry-sequenced data sets, the key is the relative byte address (RBA) of the record.
For relative-record data sets, the key is a relative record number.

Keys for indexed VSAM data sets
Keys for key-sequenced data sets are part of the logical records recorded on the
data set. You define the length and location of the keys when you create the data
set.

The ways you can reference the keys in the KEY, KEYFROM, and KEYTO options
are as described under “KEY(expression) Option,” “KEYFROM(expression) Option,”
and “KEYTO(reference) Option” in Chapter 12 of the PL/I Language Reference.
See also “Using keys” on page 147.

 Chapter 10. Defining and using VSAM data sets 181

Relative byte addresses (RBA)
Relative byte addresses allow you to use keyed access on an ESDS associated
with a KEYED SEQUENTIAL file. The RBAs, or keys, are character strings of
length 4, and their values are defined by VSAM. You cannot construct or
manipulate RBAs in PL/I; you can, however, compare their values in order to
determine the relative positions of records within the data set. RBAs are not
normally printable.

You can obtain the RBA for a record by using the KEYTO option, either on a
WRITE statement when you are loading or extending the data set, or on a READ
statement when the data set is being read. You can subsequently use an RBA
obtained in either of these ways in the KEY option of a READ or REWRITE
statement.

Do not use an RBA in the KEYFROM option of a WRITE statement.

VSAM allows use of the relative byte address as a key to a KSDS, but this use is
not supported by PL/I.

Relative record numbers
Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record. You can use these relative record
numbers as keys for keyed access to the data set.

Keys used as relative record numbers are character strings of length 8. The
character value of a source key you use in the KEY or KEYFROM option must
represent an unsigned integer. If the source key is not 8 characters long, it is
truncated or padded with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8, with leading zeros
suppressed.

Choosing a data set type
When planning your program, the first decision to be made is which type of data
set to use. There are three types of VSAM data sets and five types of non-VSAM
data sets available to you. VSAM data sets can provide all the function of the other
types of data sets, plus additional function available only in VSAM. VSAM can
usually match other data set types in performance, and often improve upon it.
However, VSAM is more subject to performance degradation through misuse of
function.

The comparison of all eight types of data sets given in Table 11 on page 115 is
helpful; however, many factors in the choice of data set type for a large installation
are beyond the scope of this book.

When choosing between the VSAM data set types, you should base your choice on
the most common sequence in which you will require your data. The following is a
suggested procedure that you can use to help ensure a combination of data sets
and indexes that provide the function you require.

1. Determine the type of data and how it will be accessed.

a. Primarily sequentially — favors ESDS.
b. Primarily by key — favors KSDS.
c. Primarily by number — favors RRDS.

182 VisualAge PL/I Programming Guide

2. Determine how you will load the data set. Note that you must load a KSDS in
key sequence.

3. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported. Figure 40 might be
helpful.

Do not try to access a dummy VSAM data set, because you will receive an error
message indicating that you have an undefined file.

Table 26 on page 186, Table 27 on page 189, and Table 28 on page 195 show
the statements allowed for entry-sequenced data sets, indexed data sets, and
relative record data sets, respectively.

 SEQUENTIAL KEYED SEQUENTIAL DIRECT

INPUT ESDS ESDS KSDS
 KSDS KSDS RRDS
 RRDS RRDS

OUTPUT ESDS ESDS KSDS
 RRDS KSDS RRDS
 RRDS

UPDATE ESDS ESDS KSDS
 KSDS KSDS RRDS
 RRDS RRDS

Key: ESDS Entry-sequenced data set
KSDS Key-sequenced data set
RRDS Relative record data set

You can combine the attributes on the left with those at
the top of the figure for the data sets and paths shown.
For example, only an ESDS and
an RRDS can be SEQUENTIAL OUTPUT.

PL/I does not support dummy VSAM data sets.

Figure 40. VSAM data sets and allowed file attributes

Defining files for VSAM data sets
You define a sequential VSAM data set by using a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 SEQUENTIAL
 BUFFERED
 [KEYED]
 ENVIRONMENT(options);

You define a direct VSAM data set by using a file declaration with the following
attributes:

 Chapter 10. Defining and using VSAM data sets 183

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE

 DIRECT
 [KEYED]
 ENVIRONMENT(options);

Table 10 on page 108 shows the default attributes. The file attributes are
described in the PL/I Language Reference. Options of the ENVIRONMENT
attribute are discussed below.

Some combinations of the file attributes INPUT or OUTPUT or UPDATE and
DIRECT or SEQUENTIAL or KEYED SEQUENTIAL are allowed only for certain
types of VSAM data sets. Figure 40 on page 183 shows the compatible
combinations.

Specifying ENVIRONMENT options
Many of the options of the ENVIRONMENT attribute affecting data set structure are
not needed for VSAM data sets. If you specify them, they are either ignored or are
used for checking purposes. If those that are checked conflict with the values
defined for the data set, the UNDEFINEDFILE condition is raised when an attempt
is made to open the file.

The ENVIRONMENT options applicable to VSAM data sets are:

BKWD
GENKEY
REUSE
SCALARVARYING
VSAM

GENKEY and SCALARVARYING options have the same effect as they do when
you use them for non-VSAM data sets.

The options that are checked for a VSAM data set are RECSIZE and, for a
key-sequenced data set, KEYLENGTH and KEYLOC. Table 10 on page 108
shows which options are ignored for VSAM. Table 10 on page 108 also shows the
required and default options.

For VSAM data sets, you specify the maximum and average lengths of the records
to the Access Method Services utility when you define the data set. If you include
the RECSIZE option in the file declaration for checking purposes, specify the
maximum record size. If you specify RECSIZE and it conflicts with the values
defined for the data set, the UNDEFINEDFILE condition is raised.

 BKWD option
Use the BKWD option to specify backward processing for a SEQUENTIAL INPUT
or SEQUENTIAL UPDATE file associated with a VSAM data set.

──BKWD───
�

Sequential reads (that is, reads without the KEY option) retrieve the previous record
in sequence. For indexed data sets, the previous record is, in general, the record
with the next lower key. For example, if the records are:

A B C1 C2 C3 D E

184 VisualAge PL/I Programming Guide

where C1, C2, and C3 have the same key, they are recovered in the sequence:

E D C1 C2 C3 B A

When a file with the BKWD option is opened, the data set is positioned at the last
record. ENDFILE is raised in the normal way when the start of the data set is
reached.

Do not specify the BKWD option with either the REUSE option or the GENKEY
option. Also, the WRITE statement is not allowed for files declared with the BKWD
option.

 GENKEY option
For the description of this option, see “GENKEY option — key classification” on
page 112.

 REUSE option
Use the REUSE option to specify that an OUTPUT file associated with a VSAM
data set is to be used as a work file.

──REUSE──
�

The data set is treated as an empty data set each time the file is opened. Any
secondary allocations for the data set are released, and the data set is treated
exactly as if it were being opened for the first time.

Do not associate a file that has the REUSE option with a data set that has the
BKWD option, and do not open it for INPUT or UPDATE.

The REUSE option takes effect only if you specify REUSE in the Access Method
Services DEFINE CLUSTER command.

 VSAM option
Specify the VSAM option for VSAM data sets.

──VSAM───
�

 Performance options
You can specify the buffer options in the AMP parameter of the DD statement; they
are explained in your Access Method Services manual.

Defining VSAM data sets
Use the DEFINE CLUSTER command of Access Method Services to define and
catalog VSAM data sets. To use the DEFINE command, you need to know:

� The name and password of the master catalog if the master catalog is
password protected

� The name and password of the VSAM private catalog you are using if you are
not using the master catalog

� Whether VSAM space for your data set is available

 Chapter 10. Defining and using VSAM data sets 185

� The type of VSAM data set you are going to create

� The volume on which your data set is to be placed

� The average and maximum record size in your data set

� The position and length of the key for an indexed data set

� The space to be allocated for your data set

� How to code the DEFINE command

� How to use the Access Method Services program.

When you have the information, you are in a position to code the DEFINE
command and then define and catalog the data set using Access Method Services.

Entry-sequenced data sets
The statements and options allowed for files associated with an ESDS are shown in
Table 26.

8/99 - Prepare for next release

Table 26. Statements and options allowed for loading and accessing VSAM
entry-sequenced data sets

File
declaration1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

KEYTO(reference) or
KEY(expression)3

KEYTO(reference) or
KEY(expression)3

IGNORE(expression)

KEYTO(reference)

FROM(reference)
and/or
KEY(expression)3

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use either of the options KEY or KEYTO, it must also include the attribute KEYED.

2. The statement “READ FILE(file-reference);” is equivalent to the statement “READ
FILE(file-reference) IGNORE (1);.”

3. The expression used in the KEY option must be a relative byte address, previously obtained by
means of the KEYTO option.

186 VisualAge PL/I Programming Guide

Loading an ESDS
When an ESDS is being loaded, the associated file must be opened for
SEQUENTIAL OUTPUT. The records are retained in the order in which they are
presented.

You can use the KEYTO option to obtain the relative byte address of each record
as it is written. You can subsequently use these keys to achieve keyed access to
the data set.

Using a SEQUENTIAL file to access an ESDS
You can open a SEQUENTIAL file that is used to access an ESDS with either the
INPUT or the UPDATE attribute. If you use either of the options KEY or KEYTO,
the file must also have the KEYED attribute.

Sequential access is in the order that the records were originally loaded into the
data set. You can use the KEYTO option on the READ statements to recover the
RBAs of the records that are read. If you use the KEY option, the record that is
recovered is the one with the RBA you specify. Subsequent sequential access
continues from the new position in the data set.

For an UPDATE file, the WRITE statement adds a new record at the end of the
data set. With a REWRITE statement, the record rewritten is the one with the
specified RBA if you use the KEY option; otherwise, it is the record accessed on
the previous READ. You must not attempt to change the length of the record that
is being replaced with a REWRITE statement.

The DELETE statement is not allowed for entry-sequenced data sets.

Defining and loading an ESDS
In Figure 41 on page 188, the data set is defined with the DEFINE CLUSTER
command and given the name PLIVSAM.AJC1.BASE. The NONINDEXED
keyword causes an ESDS to be defined.

The PL/I program writes the data set using a SEQUENTIAL OUTPUT file and a
WRITE FROM statement. The DD statement for the file contains the DSNAME of
the data set given in the NAME parameter of the DEFINE CLUSTER command.

The RBA of the records could have been obtained during the writing for subsequent
use as keys in a KEYED file. To do this, a suitable variable would have to be
declared to hold the key and the WRITE...KEYTO statement used. For example:

DCL CHARS CHAR(4);
WRITE FILE(FAMFILE) FROM (STRING)
 KEYTO(CHARS);

Note that the keys would not normally be printable, but could be retained for
subsequent use.

The cataloged procedure IBMZCBG is used. Because the same program (in
Figure 41 on page 188) can be used for adding records to the data set, it is
retained in a library. This procedure is shown in the next example.

 Chapter 10. Defining and using VSAM data sets 187

 //OPT9#7 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
//SYSIN DD X

DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC1.BASE) -
 VOLUMES(nnnnnn) -
 NONINDEXED -

RECORDSIZE(8J 8J) -
 TRACKS(2 2))
 /X
 //STEP2 EXEC IBMZCLG
 //PLI.SYSIN DD X

CREATE: PROC OPTIONS(MAIN);

 DCL
FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),
IN FILE RECORD INPUT,

 STRING CHAR(8J),
EOF BIT(1) INIT('J'B);

ON ENDFILE(IN) EOF='1'B;

READ FILE(IN) INTO (STRING);
DO I=1 BY 1 WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
WRITE FILE(FAMFILE) FROM (STRING);
READ FILE(IN) INTO (STRING);

 END;

PUT SKIP EDIT(I-1,' RECORDS PROCESSED')(A);
 END;
 /X
//LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP=(NEW,CATLG),
 // UNIT=SYSDA,SPACE=(CYL,(1,1,1))
 //GO.FAMFILE DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD
 //GO.IN DD X
 FRED 69 M
 ANDY 7J M
 SUZAN 72 F
 /X

Figure 41. Defining and loading an entry-sequenced data set (ESDS)

Updating an ESDS
Figure 42 shows the addition of a new record on the end of an ESDS. This is
done by executing again the program shown in Figure 41. A SEQUENTIAL
OUTPUT file is used and the data set associated with it by use of the DSNAME
parameter specifying the name PLIVSAM.AJC1.BASE specified in the DEFINE
command shown in Figure 41.

 //OPT9#8 JOB
 //STEP1 EXEC PGM=PGMA
//STEPLIB DD DSN=HPU8.MYDS(PGMA),DISP=(OLD,KEEP)
 // DD DSN=CEE.SCEERUN,DISP=SHR
 //SYSPRINT DD SYSOUT=A
//FAMFILE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
 //IN DD X
 JANE 75 F
 //

Figure 42. Updating an ESDS

188 VisualAge PL/I Programming Guide

You can rewrite existing records in an ESDS, provided that the length of the record
is not changed. You can use a SEQUENTIAL or KEYED SEQUENTIAL update file
to do this. If you use keys, they must be RBAs.

Delete is not allowed for ESDS.

Key-sequenced and indexed entry-sequenced data sets
The statements and options allowed for indexed VSAM data sets are shown in
Table 27. An indexed data set must be a KSDS with its prime index. Except
where otherwise stated, the following description applies to all indexed VSAM data
sets.

Table 27 (Page 1 of 2). Statements and options allowed for loading and accessing VSAM
indexed data sets

File
declaration1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)
KEYFROM(expression);

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference)

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

FROM(reference) and/or
KEY(expression)

KEY(expression)

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

 Chapter 10. Defining and using VSAM data sets 189

Table 27 (Page 2 of 2). Statements and options allowed for loading and accessing VSAM
indexed data sets

File
declaration1

Valid statements, with options
you must include

Other options you can
also include

DIRECT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED in the declaration.

The UNLOCK statement for DIRECT UPDATE files is ignored if you use it for files associated with a
VSAM KSDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

Loading a KSDS or indexed ESDS
When a KSDS is being loaded, you must open the associated file for KEYED
SEQUENTIAL OUTPUT. You must present the records in ascending key order,
and you must use the KEYFROM option. Note that you must use the prime index
for loading the data set.

If a KSDS already contains some records, and you open the associated file with the
SEQUENTIAL and OUTPUT attributes, you can only add records at the end of the
data set. The rules given in the previous paragraph apply; in particular, the first
record you present must have a key greater than the highest key present on the
data set.

Figure 43 on page 191 shows the DEFINE command used to define a KSDS. The
data set is given the name PLIVSAM.AJC2.BASE and defined as a KSDS because
of the use of the INDEXED operand. The position of the keys within the record is
defined in the KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used with a
WRITE...FROM...KEYFROM statement. The data is presented in ascending key
order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement which uses the name
given in the DEFINE command as the DSNAME parameter.

190 VisualAge PL/I Programming Guide

 //OPT9#12 JOB
 // EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
 //SYSIN DD X

DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC2.BASE) -
 VOLUMES(nnnnnn) -
 INDEXED -

TRACKS(3 1) -
KEYS(2J J) -

 RECORDSIZE(23 8J))
 /X
 // EXEC IBMZCBG
 //PLI.SYSIN DD X
TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),
 CARD CHAR(8J),

NAME CHAR(2J) DEF CARD POS(1),
NUMBER CHAR(3) DEF CARD POS(21),
OUTREC CHAR(23) DEF CARD POS(1),
EOF BIT(1) INIT('J'B);

ON ENDFILE(SYSIN) EOF='1'B;

OPEN FILE(DIREC) OUTPUT;

GET FILE(SYSIN) EDIT(CARD)(A(8J));
DO WHILE (¬EOF);
WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
GET FILE(SYSIN) EDIT(CARD)(A(8J));

 END;

 CLOSE FILE(DIREC);

 END TELNOS;
 /X
//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
//GO.SYSIN DD X
 ACTION,G. 162
 BAKER,R. 152
 BRAMLEY,O.H. 248
 CHEESEMAN,D. 141
 CORY,G. 336
 ELLIOTT,D. 875
 FIGGINS,S. 413
 HARVEY,C.D.W. 2J5
 HASTINGS,G.M. 391
 KENDALL,J.G. 294
 LANCASTER,W.R. 624
 MILES,R. 233
 NEWMAN,M.W. 45J
 PITT,W.H. 515
 ROLF,D.E. 114
 SHEERS,C.D. 241
 SUTCLIFFE,M. 472
 TAYLOR,G.C. 4J7
 WILTON,L.W. 4J4
 WINSTONE,E.M. 3J7
 //

Figure 43. Defining and loading a key-sequenced data set (KSDS)

 Chapter 10. Defining and using VSAM data sets 191

Using a SEQUENTIAL file to access a KSDS or indexed ESDS
You can open a SEQUENTIAL file that is used to access a KSDS with either the
INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are recovered in
ascending key order (or in descending key order if the BKWD option is used). You
can obtain the key of a record recovered in this way by means of the KEYTO
option.

If you use the KEY option, the record recovered by a READ statement is the one
with the specified key. Such a READ statement positions the data set at the
specified record; subsequent sequential reads will recover the following records in
sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
without respect to the position of any previous access. If you are accessing the
data set via a unique index, the KEY condition is raised if an attempt is made to
insert a record with the same key as a record that already exists on the data set.
For a nonunique index, subsequent retrieval of records with the same key is in the
order that they were added to the data set.

REWRITE statements with or without the KEY option are allowed for UPDATE files.
If you use the KEY option, the record that is rewritten is the first record with the
specified key; otherwise, it is the record that was accessed by the previous READ
statement.

Using a DIRECT file to access a KSDS or indexed ESDS
You can open a DIRECT file that is used to access an indexed VSAM data set with
the INPUT, OUTPUT, or UPDATE attribute. Do not use a DIRECT file to access
the data set via a nonunique index.

If you use a DIRECT OUTPUT file to add records to the data set, and if an attempt
is made to insert a record with the same key as a record that already exists, the
KEY condition is raised.

If you use a DIRECT INPUT or DIRECT UPDATE file, you can read, write, rewrite,
or delete records in the same way as for a KEYED SEQUENTIAL file.

Figure 44 on page 193 shows one method by which a KSDS can be updated
using the prime index.

192 VisualAge PL/I Programming Guide

 //OPT9#13 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(VSAM),
 ONCODE BUILTIN,
 OUTREC CHAR(23),

NUMBER CHAR(3) DEF OUTREC POS(21),
NAME CHAR(2J) DEF OUTREC,

 CODE CHAR(1),
EOF BIT(1) INIT('J'B);

ON ENDFILE(SYSIN) EOF='1'B;

ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

('NOT FOUND: ',NAME)(A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT

 ('DUPLICATE: ',NAME)(A(15),A);
 END;

OPEN FILE(DIREC) DIRECT UPDATE;

GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
 (COLUMN(1),A(2J),A(3),A(1));

DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)

 (A(1),A(2J),A(1),A(3),A(1),A(1));
 SELECT (CODE);

WHEN('A') WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
WHEN('C') REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);
WHEN('D') DELETE FILE(DIREC) KEY(NAME);
OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT

('INVALID CODE: ',NAME) (A(15),A);
 END;

GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
 (COLUMN(1),A(2J),A(3),A(1));
 END;

Figure 44 (Part 1 of 2). Updating a KSDS

 Chapter 10. Defining and using VSAM data sets 193

 CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

 EOF='J'B;
ON ENDFILE(DIREC) EOF='1'B;

READ FILE(DIREC) INTO(OUTREC);
 DO WHILE(¬EOF);

PUT FILE(SYSPRINT) SKIP EDIT(OUTREC)(A);
READ FILE(DIREC) INTO(OUTREC);

 END;
 CLOSE FILE(DIREC);
 END DIRUPDT;
 /X
 //GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=OLD
 //GO.SYSIN DD X
 NEWMAN,M.W. 516C
 GOODFELLOW,D.T. 889A
 MILES,R. D
 HARVEY,C.D.W. 2J9A
 BARTLETT,S.G. 183A
 CORY,G. D
 READ,K.M. JJ1A
 PITT,W.H.
 ROLF,D.F. D
 ELLIOTT,D. 291C
 HASTINGS,G.M. D
 BRAMLEY,O.H. 439C
 /X

Figure 44 (Part 2 of 2). Updating a KSDS

A DIRECT update file is used and the data is altered according to a code that is
passed in the records in the file SYSIN:

A Add a new record
C Change the number of an existing name
D Delete a record

At the label NEXT, the name, number, and code are read in and action taken
according to the value of the code. A KEY ON-unit is used to handle any incorrect
keys. When the updating is finished (at the label PRINT), the file DIREC is closed
and reopened with the attributes SEQUENTIAL INPUT. The file is then read
sequentially and printed.

The file is associated with the data set by a DD statement that uses the DSNAME
PLIVSAM.AJC2.BASE defined in the Access Method Services DEFINE CLUSTER
command in Figure 43 on page 191.

Methods of updating a KSDS: There are a number of methods of updating a
KSDS. The method shown using a DIRECT file is suitable for the data as it is
shown in the example. For mass sequential insertion, use a KEYED SEQUENTIAL
UPDATE file. This gives faster performance because the data is written onto the
data set only when strictly necessary and not after every write statement, and
because the balance of free space within the data set is retained.

Statements to achieve effective mass sequential insertion are:

194 VisualAge PL/I Programming Guide

DCL DIREC KEYED SEQUENTIAL UPDATE
 ENV(VSAM);
WRITE FILE(DIREC) FROM(OUTREC)
 KEYFROM(NAME);

The PL/I input/output routines detect that the keys are in sequence and make the
correct requests to VSAM. If the keys are not in sequence, this too is detected and
no error occurs, although the performance advantage is lost.

Relative-record data sets
The statements and options allowed for VSAM relative-record data sets (RRDS) are
shown in Table 28.

Table 28 (Page 1 of 2). Statements and options allowed for loading and accessing VSAM
relative-record data sets

File
declaration1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

KEYFROM(expression) or
KEYTO(reference)

SET(pointer-reference)

SEQUENTIAL INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

DELETE FILE(file-reference);

KEY(expression) or
KEYTO(reference)

KEY(expression) or
KEYTO(reference)

IGNORE(expression)

KEYFROM(expression) or
KEYTO(reference)

FROM(reference)
and/or
KEY(expression)

KEY(expression)

DIRECT OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DIRECT INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

 Chapter 10. Defining and using VSAM data sets 195

Table 28 (Page 2 of 2). Statements and options allowed for loading and accessing VSAM
relative-record data sets

File
declaration1

Valid statements, with options
you must include

Other options you can
also include

DIRECT UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY(expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY(expression);

DELETE FILE(file-reference)
KEY(expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, your declaration must also include the attribute KEYED.

The UNLOCK statement for DIRECT UPDATE files is ignored if you use it for files associated with a
VSAM RRDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

Loading an RRDS
When an RRDS is being loaded, you must open the associated file for OUTPUT.
Use either a DIRECT or a SEQUENTIAL file.

For a DIRECT OUTPUT file, each record is placed in the position specified by the
relative record number (or key) in the KEYFROM option of the WRITE statement
(see “Keys for VSAM data sets” on page 181).

For a SEQUENTIAL OUTPUT file, use WRITE statements with or without the
KEYFROM option. If you specify the KEYFROM option, the record is placed in the
specified slot; if you omit it, the record is placed in the slot following the current
position. There is no requirement for the records to be presented in ascending
relative record number order. If you omit the KEYFROM option, you can obtain the
relative record number of the written record by means of the KEYTO option.

If you want to load an RRDS sequentially, without use of the KEYFROM or KEYTO
options, your file is not required to have the KEYED attribute.

It is an error to attempt to load a record into a position that already contains a
record: if you use the KEYFROM option, the KEY condition is raised; if you omit it,
the ERROR condition is raised.

In Figure 45 on page 197, the data set is defined with a DEFINE CLUSTER
command and given the name PLIVSAM.AJC3.BASE. The fact that it is an RRDS
is determined by the NUMBERED keyword. In the PL/I program, it is loaded with a
DIRECT OUTPUT file and a WRITE...FROM...KEYFROM statement is used.

196 VisualAge PL/I Programming Guide

If the data had been in order and the keys in sequence, it would have been
possible to use a SEQUENTIAL file and write into the data set from the start. The
records would then have been placed in the next available slot and given the
appropriate number. The number of the key for each record could have been
returned using the KEYTO option.

The PL/I file is associated with the data set by the DD statement, which uses as
the DSNAME the name given in the DEFINE CLUSTER command.

 //OPT9#17 JOB
 //STEP1 EXEC PGM=IDCAMS,REGION=512K
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD X

DEFINE CLUSTER -
 (NAME(PLIVSAM.AJC3.BASE) -
 VOLUMES(nnnnnn) -
 NUMBERED -

TRACKS(2 2) -
 RECORDSIZE(2J 2J))
 /X
 //STEP2 EXEC IBMZCBG
 //PLI.SYSIN DD X
 CRR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(VSAM),
 CARD CHAR(8J),

NAME CHAR(2J) DEF CARD,
NUMBER CHAR(2) DEF CARD POS(21),

 IOFIELD CHAR(2J),
EOF BIT(1) INIT('J'B);

ON ENDFILE (SYSIN) EOF='1'B;
 OPEN FILE(NOS);

GET FILE(SYSIN) EDIT(CARD)(A(8J));
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);

 IOFIELD=NAME;
WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
GET FILE(SYSIN) EDIT(CARD)(A(8J));

 END;
 CLOSE FILE(NOS);
 END CRR1;

Figure 45 (Part 1 of 2). Defining and loading a relative-record data set (RRDS)

 Chapter 10. Defining and using VSAM data sets 197

 /X
 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
 //GO.SYSIN DD X
 ACTION,G. 12
 BAKER,R. 13
 BRAMLEY,O.H. 28
 CHEESNAME,L. 11
 CORY,G. 36
 ELLIOTT,D. 85
 FIGGINS.E.S. 43
 HARVEY,C.D.W. 25
 HASTINGS,G.M. 31
 KENDALL,J.G. 24
 LANCASTER,W.R. 64
 MILES,R. 23
 NEWMAN,M.W. 4J
 PITT,W.H. 55
 ROLF,D.E. 14
 SHEERS,C.D. 21
 SURCLIFFE,M. 42
 TAYLOR,G.C. 47
 WILTON,L.W. 44
 WINSTONE,E.M. 37
 //

Figure 45 (Part 2 of 2). Defining and loading a relative-record data set (RRDS)

Using a SEQUENTIAL file to access an RRDS
You can open a SEQUENTIAL file that is used to access an RRDS with either the
INPUT or the UPDATE attribute. If you use any of the options KEY, KEYTO, or
KEYFROM, your file must also have the KEYED attribute.

For READ statements without the KEY option, the records are recovered in
ascending relative record number order. Any empty slots in the data set are
skipped.

If you use the KEY option, the record recovered by a READ statement is the one
with the relative record number you specify. Such a READ statement positions the
data set at the specified record; subsequent sequential reads will recover the
following records in sequence.

WRITE statements with or without the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
regardless of the position of any previous access. For WRITE with the KEYFROM
option, the KEY condition is raised if an attempt is made to insert a record with the
same relative record number as a record that already exists on the data set. If you
omit the KEYFROM option, an attempt is made to write the record in the next slot,
relative to the current position. The ERROR condition is raised if this slot is not
empty.

You can use the KEYTO option to recover the key of a record that is added by
means of a WRITE statement without the KEYFROM option.

REWRITE statements, with or without the KEY option, are allowed for UPDATE
files. If you use the KEY option, the record that is rewritten is the record with the

198 VisualAge PL/I Programming Guide

relative record number you specify; otherwise, it is the record that was accessed by
the previous READ statement.

DELETE statements, with or without the KEY option, can be used to delete records
from the dataset.

Using a DIRECT file to access an RRDS
A DIRECT file used to access an RRDS can have the OUTPUT, INPUT, or
UPDATE attribute. You can read, write, rewrite, or delete records exactly as
though a KEYED SEQUENTIAL file were used.

Figure 46 on page 200 shows an RRDS being updated. A DIRECT UPDATE file
is used and new records are written by key. There is no need to check for the
records being empty, because the empty records are not available under VSAM.

In the second half of the program, starting at the label PRINT, the updated file is
printed out. Again there is no need to check for the empty records as there is in
REGIONAL(1).

The PL/I file is associated with the data sets by a DD statement that specifies the
DSNAME PLIVSAM.AJC3.BASE, the name given in the DEFINE CLUSTER
command in Figure 46 on page 200.

At the end of the example, the DELETE command is used to delete the data set.

 Chapter 10. Defining and using VSAM data sets 199

 //X NOTE: WITH A WRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
 //X A “DUPLICATE” MESSAGE IS EXPECTED FOR CODE 'C' ITEMS
 //X WHOSE NEWNO CORRESPONDS TO AN EXISTING NUMBER IN THE LIST,
 //X FOR EXAMPLE, ELLIOT.
 //X WITH A REWRITE STATEMENT AFTER THE DELETE FILE STATEMENT,
 //X A “NOT FOUND” MESSAGE IS EXPECTED FOR CODE 'C' ITEMS
 //X WHOSE NEWNO DOES NOT CORRESPOND TO AN EXISTING NUMBER IN
 //X THE LIST, FOR EXAMPLE, NEWMAN AND BRAMLEY.
 //OPT9#18 JOB
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 ACR1: PROC OPTIONS(MAIN);

DCL NOS FILE RECORD KEYED ENV(VSAM),NAME CHAR(2J),
(NEWNO,OLDNO) CHAR(2),CODE CHAR(1),IOFIELD CHAR(2J),
BYTE CHAR(1) DEF IOFIELD, EOF BIT(1) INIT('J'B),

 ONCODE BUILTIN;
ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(NOS) DIRECT UPDATE;
ON KEY(NOS) BEGIN;

IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('NOT FOUND:',NAME)(A(15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
 ('DUPLICATE:',NAME)(A(15),A);
 END;

GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
 (COLUMN(1),A(2J),A(2),A(2),A(1));

DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NEWNO,OLDNO,' ',CODE)

 (A(1),A(2J),A(1),2(A(2)),X(5),2(A(1)));
 SELECT(CODE);

WHEN('A') WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
 WHEN('C') DO;

DELETE FILE(NOS) KEY(OLDNO);
WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);

 END;
WHEN('D') DELETE FILE(NOS) KEY(OLDNO);
OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT
('INVALID CODE: ',NAME)(A(15),A);

 END;

Figure 46 (Part 1 of 2). Updating an RRDS

200 VisualAge PL/I Programming Guide

GET FILE(SYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
 (COLUMN(1),A(2J),A(2),A(2),A(1));
 END;
 CLOSE FILE(NOS);
 PRINT:

PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;

 EOF='J'B;
ON ENDFILE(NOS) EOF='1'B;
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
DO WHILE (¬EOF);
PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);

 END;
 CLOSE FILE(NOS);
 END ACR1;
 /X
 //GO.NOS DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
 //GO.SYSIN DD X
 NEWMAN,M.W. 564JC
 GOODFELLOW,D.T. 89 A
 MILES,R. 23D
 HARVEY,C.D.W. 29 A
 BARTLETT,S.G. 13 A
 CORY,G. 36D
 READ,K.M. J1 A
 PITT,W.H. 55
 ROLF,D.F. 14D
 ELLIOTT,D. 4285C
 HASTINGS,G.M. 31D
 BRAMLEY,O.H. 4928C
 //STEP3 EXEC PGM=IDCAMS,REGION=512K,COND=EVEN
 //SYSPRINT DD SYSOUT=A
//SYSIN DD X
 DELETE -
 PLIVSAM.AJC3.BASE
 //

Figure 46 (Part 2 of 2). Updating an RRDS

 Chapter 10. Defining and using VSAM data sets 201

202 VisualAge PL/I Programming Guide

Part 4. Improving your program

Chapter 11. Improving performance . 204
Selecting compile-time options for optimal performance 204

OPTIMIZE . 204
GONUMBER . 204
RULES . 204
PREFIX . 205

CONVERSION . 205
FIXEDOVERFLOW . 205

DEFAULT . 205
BYADDR or BYVALUE . 206
(NON)CONNECTED . 207
RETURNS(BYVALUE) or RETURNS(BYADDR) 207
(NO)DESCRIPTOR . 207
(RE)ORDER . 207
LINKAGE . 208
(NO)INLINE . 208

Summary of compile-time options that improve performance 208
Coding for better performance . 209

DATA-directed input and output . 209
Input-only parameters . 209
GOTO statements . 210
String assignments . 210
Loop control variables . 210
PACKAGEs versus nested PROCEDUREs . 211
REDUCIBLE Functions . 212
DESCLOCATOR or DESCLIST . 212
DEFINED versus UNION . 212
Named constants versus static variables . 213
Avoiding calls to library routines . 214

 Copyright IBM Corp. 1964, 2000 203

 Improving performance

 Chapter 11. Improving performance

Many considerations for improving the speed of your program are independent of
the compiler that you use and the platform on which it runs. This chapter, however,
identifies those considerations that are unique to the PL/I compiler and the code it
generates.

Selecting compile-time options for optimal performance
The compile-time options you choose can greatly improve the performance of the
code generated by the compiler; however, like most performance considerations,
there are trade-offs associated with these choices. Fortunately, you can weigh the
trade-offs associated with compile-time options without editing your source code
because these options can be specified on the command line or in the configuration
file.

If you want to avoid details, the least complex way to improve the performance of
generated code is to specify the following (nondefault) compile-time options:

 OPT(2)
 DFT(REORDER)

The following sections describe, in more detail, performance improvements and
trade-offs associated with specific compile-time options.

 OPTIMIZE
You can specify the OPTIMIZE option to improve the speed of your program;
otherwise, the compiler makes only basic optimization efforts.

Choosing OPTIMIZE(2) directs the compiler to generate code for better
performance. Usually, the resultant code is shorter than when the program is
compiled under NOOPTIMIZE. Sometimes, however, a longer sequence of
instructions runs faster than a shorter sequence. This occurs, for instance, when a
branch table is created for a SELECT statement where the values in the WHEN
clauses contain gaps. The increased number of instructions generated is usually
offset by the execution of fewer instructions in other places.

 GONUMBER
Using this option results in a statement number table used for debugging. This
added information can be extremely helpful when debugging, but including
statement number tables increases the size of your executable file. Larger
executable files can take longer to load.

 RULES
When you use the RULES(IBM) option, the compiler supports scaled FIXED
BINARY and, what is more important for performance, generates scaled FIXED
BINARY results in some operations. Under RULES(ANS), scaled FIXED BINARY
is not supported and scaled FIXED BINARY results are never generated. This
means that the code generated under RULES(ANS) always runs at least as fast as
the code generated under RULES(IBM), and sometimes runs faster.

204  Copyright IBM Corp. 1964, 2000

 Improving performance

For example, consider the following code fragment:

dcl (i,j,k) fixed bin(15);
...

i = j / k;

Under RULES(IBM), the result of the division has the attributes FIXED BIN(31,16).
This means that a shift instruction is required before the division and several more
instructions are needed to perform the assignment.

Under RULES(ANS), the result of the division has the attributes FIXED BIN(15,0).
This means that a shift is not needed before the division, and no extra instructions
are needed to perform the assignment.

 PREFIX
This option determines if selected PL/I conditions are enabled by default. The
default suboptions for PREFIX are set to conform to the PL/I language definition;
however, overriding the defaults can have a significant effect on the performance of
your program. The default suboptions are:

 CONVERSION
 INVALIDOP
 FIXEDOVERFLOW
 OVERFLOW
 INVALIDOP
 NOSIZE
 NOSTRINGRANGE
 NOSTRINGSIZE
 NOSUBSCRIPTRANGE
 UNDERFLOW
 ZERODIVIDE

By specifying the SIZE, STRINGRANGE, STRINGSIZE, or SUBSCRIPTRANGE
suboptions, the compiler generates extra code that helps you pinpoint various
problem areas in your source that would otherwise be hard to find. This extra
code, however, can slow program performance significantly.

 CONVERSION
When you disable the CONVERSION condition, some character-to-numeric
conversions are done inline and without checking the validity of the source;
therefore, specifying NOCONVERSION also affects program performance.

 FIXEDOVERFLOW
On some platforms, the FIXEDOVERFLOW condition is raised by the hardware and
the compiler does not need to generate any extra code to detect it.

 DEFAULT
Using the DEFAULT option, you can select attribute defaults. As is true with the
PREFIX option, the suboptions for DEFAULT are set to conform to the PL/I
language definition. Changing the defaults in some instances can affect
performance. The default suboptions are:

 IBM
 BYADDR
 RETURNS(BYADDR)

 Chapter 11. Improving performance 205

 Improving performance

 NONCONNECTED
 DESCRIPTOR
 ORDER
 DESCLOCATOR
 ASSIGNABLE LINKAGE(OPTLINK)
 EBCDIC
 NATIVE
 NOINLINE

The IBM/ANS and ASSIGNABLE/NONASSIGNABLE suboptions have no effect on
program performance. All of the other suboptions can affect performance to
varying degrees and, if applied inappropriately, can make your program invalid.

BYADDR or BYVALUE
When the DEFAULT(BYADDR) option is in effect, arguments are passed by
reference (as required by PL/I) unless an attribute in an entry declaration indicates
otherwise. As arguments are passed by reference, the address of the argument is
passed from one routine (calling routine) to another (called routine) as the variable
itself is passed. Any change made to the argument while in the called routine is
reflected in the calling routine when it resumes execution.

Program logic often depends on passing variables by reference. Passing a variable
by reference, however, can hinder performance in two ways:

1. Every reference to that parameter requires an extra instruction.

2. Since the address of the variable is passed to another routine, the compiler is
forced to make assumptions about when that variable might change and
generate very conservative code for any reference to that variable.

Consequently, you should pass parameters by value using the BYVALUE suboption
whenever your program logic allows. Even if you use the BYADDR attribute to
indicate that one parameter should be passed by reference, you can use the
DEFAULT(BYVALUE) option to ensure that all other parameters are passed by
value.

If a procedure receives and modifies only one parameter that is passed by
BYADDR, consider converting the procedure to a function that receives that
parameter by value. The function would then end with a RETURN statement
containing the updated value of the parameter.

Procedure with BYADDR parameter

a: proc(parm1, parm2, ..., parmN);

dcl parm1 byaddr ...;
dcl parm2 byvalue ...;

...
dcl parmN byvalue ...;

/X program logic X/

end;

Faster, equivalent function with BYVALUE parameter

206 VisualAge PL/I Programming Guide

 Improving performance

a: proc(parm1, parm2, ..., parmN)
returns(... /X attributes of parm1 X/);

dcl parm1 byvalue ...;
dcl parm2 byvalue ...;

...
dcl parmN byvalue ...;

/X program logic X/

return(parm1);

end;

 (NON)CONNECTED
The DEFAULT(NONCONNECTED) option indicates that the compiler assumes that
any aggregate parameters are NONCONNECTED. References to elements of
NONCONNECTED aggregate parameters require the compiler to generate code to
access the parameter's descriptor, even if the aggregate is declared with constant
extents.

The compiler does not generate these instructions if the aggregate parameter has
constant extents and is CONNECTED. Consequently, if your application never
passes nonconnected parameters, your code is more optimal if you use the
DEFAULT(CONNECTED) option.

RETURNS(BYVALUE) or RETURNS(BYADDR)
When the DEFAULT(RETURNS(BYVALUE)) option is in effect, the BYVALUE
attribute is applied to all RETURNS description lists that do not specify BYADDR.
This means that these functions return values in registers, when possible, in order
to produce the most optimal code.

 (NO)DESCRIPTOR
The DEFAULT(DESCRIPTOR) option indicates that, by default, a descriptor is
passed for any string, area, or aggregate parameter; however, the descriptor is
used only if the parameter has nonconstant extents or if the parameter is an array
with the NONCONNECTED attribute. In this case, the instructions and space
required to pass the descriptor provide no benefit and incur substantial cost (the
size of a structure descriptor is often greater than size of the structure itself).
Consequently, by specifying DEFAULT(NODESCRIPTOR) and using
OPTIONS(DESCRIPTOR) only as needed on PROCEDURE statements and
ENTRY declarations, your code runs more optimally.

 (RE)ORDER
The DEFAULT(ORDER) option indicates that the ORDER option is applied to every
block, meaning that variables in that block referenced in ON-units (or blocks
dynamically descendant from ON-units) have their latest values. This effectively
prohibits almost all optimization on such variables. Consequently, if your program
logic allows, use DEFAULT(REORDER) to generate superior code.

 Chapter 11. Improving performance 207

 Improving performance

 LINKAGE
This suboption tells the compiler the default linkage to use when the LINKAGE
suboption of the OPTIONS attribute or option for an entry has not been specified.

The compiler supports various linkages, each with its unique performance
characteristics. When you invoke an ENTRY provided by an external entity (such
as an operating system), you must use the linkage previously defined for that
ENTRY.

As you create your own applications, however, you can choose the linkage
convention. The OPTLINK linkage is strongly recommended because it provides
significantly better performance than other linkage conventions.

 (NO)INLINE
The suboption NOINLINE indicates that procedures and begin blocks should not be
inlined.

Inlining occurs only when you specify optimization.

Inlining user code eliminates the overhead of the function call and linkage, and also
exposes the function's code to the optimizer, resulting in faster code performance.
Inlining produces the best results when the overhead for the function is nontrivial,
for example, when functions are called within nested loops. Inlining is also
beneficial when the inlined function provides additional opportunities for
optimization, such as when constant arguments are used.

For programs containing many procedures that are not nested:

� If the procedures are small and only called from a few places, you can increase
performance by specifying INLINE.

� If the procedures are large and called from several places, inlining duplicates
code throughout the program. This increase in the size of the program might
offset any increase of speed. In this case, you might prefer to leave NOINLINE
as the default and specify OPTIONS(INLINE) only on individually selected
procedures.

When you use inlining, you need more stack space. When a function is called, its
local storage is allocated at the time of the call and freed when it returns to the
calling function. If that same function is inlined, its storage is allocated when the
function that calls it is entered, and is not freed until that calling function ends.
Ensure that you have enough stack space for the local storage of the inlined
functions.

Summary of compile-time options that improve performance
In summary, the following options (if appropriate for your application) can improve
performance:

 OPTIMIZE(2)
 IMPRECISE
 RULES(ANS)

DEFAULT with the following suboptions
 (BYVALUE
 RETURNS(BYVALUE)
 CONNECTED

208 VisualAge PL/I Programming Guide

 Coding for better performance

 NODESCRIPTOR
 REORDER
 LINKAGE(OPTLINK)

Coding for better performance
As you write code, there is generally more than one correct way to accomplish a
given task. Many important factors influence the coding style you choose, including
readability and maintainability. The following sections discuss choices that you can
make while coding that potentially affect the performance of your program.

DATA-directed input and output
Using GET DATA and PUT DATA statements for debugging can prove very helpful.
When you use these statements, however, you generally pay the price of
decreased performance. This cost to performance is usually very high when you
use either GET DATA or PUT DATA without a variable list.

Many programmers use PUT DATA statements in their ON ERROR code as
illustrated in the following example:

on error
 begin;

on error system;
...

 put data;
...

 end;

In this case, the program would perform more optimally by including a list of
selected variables with the PUT DATA statement.

The ON ERROR block in the previous example contained an ON ERROR system
statement before the PUT DATA statement. This prevents the program from
getting caught in an infinite loop if an error occurs in the PUT DATA statement
(which could occur if any variables to be listed contained invalid FIXED DECIMAL
values) or elsewhere in the ON ERROR block.

 Input-only parameters
If a procedure has a BYADDR parameter which it uses as input only, it is best to
declare that parameter as NONASSIGNABLE (rather than letting it get the default
attribute of ASSIGNABLE). If that procedure is later called with a constant for that
parameter, the compiler can put that constant in static storage and pass the
address of that static area.

This practice is particularly useful for strings and other parameters that cannot be
passed in registers (input-only parameters that can be passed in registers are best
declared as BYVALUE).

In the following declaration, for instance, the first parameter to getenv is an
input-only CHAR VARYINGZ string:

dcl getenv entry(char(X) varyingz nonasgn byaddr,
pointer byaddr)

returns(native fixed bin(31) optional)
options(nodescriptor);

 Chapter 11. Improving performance 209

 Coding for better performance

If this function is invoked with the string 'IBM_OPTIONS', the compiler can pass the
address of that string rather than assigning it to a compiler-generated temporary
storage area and passing the address of that area.

 GOTO statements
A GOTO statement that uses either a label in another block or a label variable
severely limits optimizations that the compiler might perform. If a label array is
initialized and declared AUTOMATIC, either implicitly or explicitly, any GOTO to an
element of that array will hinder optimization. However, if the array is declared as
STATIC, the compiler assumes the CONSTANT attribute for it and no optimization
is hindered.

 String assignments
When one string is assigned to another, the compiler ensures that:

� The target has the correct value even if the source and target overlap.
� The source string is truncated if it is longer than the target.

This assurance comes at the price of some extra instructions. The compiler
attempts to generate these extra instructions only when necessary, but often you,
as the programmer, know they are not necessary when the compiler cannot be
sure. For instance, if the source and target are based character strings and you
know they cannot overlap, you could use the PLIMOVE built-in function to eliminate
the extra code the compiler would otherwise be forced to generate.

In the example which follows, faster code is generated for the second assignment
statement:

dcl based_Str char(64) based(null());
dcl target_Addr pointer;
dcl source_Addr pointer;

target_Addr->based_Str = source_Addr->based_Str;

call plimove(target_Addr, source_Addr, stg(based_Str));

If you have any doubts about whether the source and target might overlap or
whether the target is big enough to hold the source, you should not use the
PLIMOVE built-in.

Loop control variables
Program performance improves if your loop control variables are one of the types in
the following list. You should rarely, if ever, use other types of variables.

FIXED BINARY with zero scale factor
 FLOAT
 ORDINAL
 HANDLE
 POINTER
 OFFSET

Performance also improves if loop control variables are not members of arrays,
structures, or unions. The compiler issues a warning message when they are.
Loop control variables that are AUTOMATIC and not used for any other purpose
give you the optimal code generation.

210 VisualAge PL/I Programming Guide

 Coding for better performance

If a loop control variable is a FIXED BIN, performance is best if it has precision 31
and is SIGNED.

Performance is decreased if your program depends not only on the value of a loop
control variable, but also on its address. For example, if the ADDR built-in function
is applied to the variable or if the variable is passed BYADDR to another routine.

PACKAGEs versus nested PROCEDUREs
Calling nested procedures requires that an extra hidden parameter (the backchain
pointer) is passed. As a result, the fewer nested procedures that your application
contains, the faster it runs.

To improve the performance of your application, you can convert a mother-daughter
pair of nested procedures into level-1 sister procedures inside of a package. This
conversion is possible if your nested procedure does not rely on any of the
automatic and internal static variables declared in its parent procedures.

If procedure b in “Example with nested procedures” does not use any of the
variables declared in a, you can improve the performance of both procedures by
reorganizing them into the package illustrated in “Example with packaged
procedures.”

Example with nested procedures

a: proc;

dcl (i,j,k) fixed bin;
dcl ib based fixed bin;

...
call b(addr(i));

...
b: proc(px);

 dcl px pointer;
display(px->ib);

 end;
end;

Example with packaged procedures

p: package exports(a);

dcl ib based fixed bin;

 a: proc;

dcl (i,j,k) fixed bin;
...

call b(addr(i));
...

 end;

b: proc(px);
 dcl px pointer;

display(px->ib);
 end;

end p;

 Chapter 11. Improving performance 211

 Coding for better performance

 REDUCIBLE Functions
REDUCIBLE indicates that a procedure or entry need not be invoked multiple times
if the argument(s) stays unchanged, and that the invocation of the procedure has
no side effects.

For example, a user-written function that computes a result based on unchanging
data should be declared REDUCIBLE. A function that computes a result based on
changing data, such as a random number or time of day, should be declared
IRREDUCIBLE.

In the following example, f is invoked only once since REDUCIBLE is part of the
declaration. If IRREDUCIBLE had been used in the declaration, f would be invoked
twice.

dcl (f) entry options(reducible) returns(fixed bin);

select;
when(f(x) < J)

...
when(f(x) > J)

...
 otherwise

...
end;

DESCLOCATOR or DESCLIST
When the DEFAULT(DESCLOCATOR) option is in effect, the compiler passes
arguments requiring descriptors (such as strings and structures) via a descriptor
locator in much the same way that the old compiler did. More information on
descriptors and how they are passed is available in Chapter 13, “PL/I - Language
Environment descriptors” on page 238.

This option allows you to invoke an entry point that is not always passed all of the
arguments that it declares.

This option also allows you to continue the somewhat unwise programming practice
of passing a structure and receiving it as a pointer.

However, the code generated by the compiler for DEFAULT(DESCLOCATOR) may,
in some situations, perform less well than that for DEFAULT(DESCLIST).

DEFINED versus UNION
The UNION attribute is more powerful than the DEFINED attribute and provides
more function. In addition, the compiler generates better code for union references.

In the following example, the pair of variables b3 and b4 perform the same function
as b1 and b2, but the compiler generates more optimal code for the pair in the
union.

212 VisualAge PL/I Programming Guide

 Coding for better performance

dcl b1 bit(31);
dcl b2 bit(16) def b1;

dcl
1 X union,
2 b3 bit(32),
2 b4 bit(16);

Code that uses UNIONs instead of the DEFINED attribute is subject to less
misinterpretation. Variable declarations in unions are in a single location making it
easy to realize that when one member of the union changes, all of the others
change also. This dynamic change is less obvious in declarations that use
DEFINED variables since the declare statements can be several lines apart.

Named constants versus static variables
You can define named constants by declaring a variable with the VALUE attribute.
If you use static variables with the INITIAL attribute and you do not alter the
variable, you should declare the variable a named constant using the VALUE
attribute. The compiler does not treat NONASSIGNABLE scalar STATIC variables
as true named constants.

The compiler generates better code whenever expressions are evaluated during
compilation, so you can use named constants to produce efficient code with no loss
in readability. For example, identical object code is produced for the two usages of
the VERIFY built-in function in the following example:

dcl numeric char value('J123456789');

jx = verify(string, numeric);

jx = verify(string, 'J123456789');

The following examples illustrate how you can use the VALUE attribute to get
optimal code without sacrificing readability.

Example with optimal code but no meaningful names

dcl x bit(8) aligned;

select(x);
when('J1'b4)

...
when('J2'b4)

...
when('J3'b4)

...
end;

 Chapter 11. Improving performance 213

 Coding for better performance

Example with meaningful names but not optimal code

dcl (a1 init('J1'b4)
 ,a2 init('J2'b4)
 ,a3 init('J3'b4)
 ,a4 init('J4'b4)
 ,a5 init('J5'b4)

) bit(8) aligned static nonassignable;

dcl x bit(8) aligned;

select(x);
when(a1)

...
when(a2)

...
when(a3)

...
end;

Example with optimal code AND meaningful names

dcl (a1 value('J1'b4)
 ,a2 value('J2'b4)
 ,a3 value('J3'b4)
 ,a4 value('J4'b4)
 ,a5 value('J5'b4)
) bit(8);

dcl x bit(8) aligned;

select(x);
when(a1)

...
when(a2)

...
when(a3)

...
end;

Avoiding calls to library routines
The bitwise operations (prefix NOT, infix AND, infix OR, and infix EXCLUSIVE OR)
are often evaluated by calls to library routines. These operations are, however,
handled without a library call if either of the following conditions is true:

� Both operands are bit(1)
� Both operands are aligned and have the same constant length.

For certain assignments, expressions, and built-in function references, the compiler
generates calls to library routines. If you avoid these calls, your code generally
runs faster.

To help you determine when the compiler generates such calls, the compiler
generates a message whenever a conversion is done using a library routine.

214 VisualAge PL/I Programming Guide

Part 5. Using interfaces to other products

Chapter 12. Using the Sort program . 216
Preparing to use Sort . 216

Choosing the type of Sort . 217
Specifying the sorting field . 219
Specifying the records to be sorted . 221

Maximum record lengths . 221
Determining storage needed for Sort . 222

Main storage . 222
Auxiliary storage . 222

Calling the Sort program . 222
Example 1 . 224
Example 2 . 224
Example 3 . 224
Example 4 . 224
Example 5 . 224

Determining whether the Sort was successful 225
Establishing data sets for Sort . 225

Sort work data sets . 225
Input data set . 226
Output data set . 226
Checkpoint data set . 226

Sort data input and output . 227
Data input and output handling routines . 227

E15—Input handling routine (Sort Exit E15) 227
E35—Output handling routine (Sort Exit E35) 230
Calling PLISRTA example . 231
Calling PLISRTB example . 231
Calling PLISRTC example . 233
Calling PLISRTD example . 234
Sorting variable-length records example . 235

 Copyright IBM Corp. 1964, 2000 215

Chapter 12. Using the Sort program

The compiler provides an interface called PLISRTx (x = A, B, C, or D) that allows
you to make use of the IBM-supplied Sort programs.

To use the Sort program with PLISRTx, you must:

1. Include a call to one of the entry points of PLISRTx, passing it the information
on the fields to be sorted. This information includes the length of the records,
the maximum amount of storage to use, the name of a variable to be used as a
return code, and other information required to carry out the sort.

2. Specify the data sets required by the Sort program in JCL DD statements.

When used from PL/I, the Sort program sorts records of all normal lengths on a
large number of sorting fields. Data of most types can be sorted into ascending or
descending order. The source of the data to be sorted can be either a data set or
a user-written PL/I procedure that the Sort program will call each time a record is
required for the sort. Similarly, the destination of the sort can be a data set or a
PL/I procedure that handles the sorted records.

Using PL/I procedures allows processing to be done before or after the sort itself,
thus allowing a complete sorting operation to be handled completely by a call to the
sort interface. It is important to understand that the PL/I procedures handling input
or output are called from the Sort program itself and will effectively become part of
it.

PL/I can operate with DFSORT or a program with the same interface. DFSORT
is a release of the program product 5740-SM1. DFSORT has many built-in
features you can use to eliminate the need for writing program logic (for example,
INCLUDE, OMIT, OUTREC and SUM statement plus the many ICETOOL
operators). See DFSORT Application Programming Guide for details and Getting
Started with DFSORT for a tutorial.

The following material applies to DFSORT. Because you can use programs other
than DFSORT, the actual capabilities and restrictions vary. For these capabilities
and restrictions, see DFSORT Application Programming Guide, or the equivalent
publication for your sort product.

To use the Sort program you must include the correct PL/I statements in your
source program and specify the correct data sets in your JCL.

Preparing to use Sort
Before using Sort, you must determine the type of sort you require, the length and
format of the sorting fields in the data, the length of your data records, and the
amount of auxiliary and main storage you will allow for sorting.

To determine the PLISRTx entry point that you will use, you must decide the
source of your unsorted data, and the destination of your sorted data. You must
choose between data sets and PL/I subroutines. Using data sets is simpler to
understand and gives faster performance. Using PL/I subroutines gives you more
flexibility and more function, enabling you to manipulate or print the data before it is
sorted, and to make immediate use of it in its sorted form. If you decide to use an

216  Copyright IBM Corp. 1964, 2000

input or output handling subroutine, you will need to read “Data input and output
handling routines” on page 227.

The entry points and the source and destination of data are as follows:

Having determined the entry point you are using, you must now determine the
following things about your data set:

� The position of the sorting fields; these can be either the complete record or
any part or parts of it

� The type of data these fields represent, for example, character or binary

� Whether you want the sort on each field to be in ascending or descending
order

� Whether you want equal records to be retained in the order of the input, or
whether their order can be altered during sorting

Specify these options on the SORT statement, which is the first argument to
PLISRTx. After you have determined these, you must determine two things about
the records to be sorted:

� Whether the record format is fixed or varying
� The length of the record, which is the maximum length for varying

Specify these on the RECORD statement, which is the second argument to
PLISRTx.

Finally, you must decide on the amount of main and auxiliary storage you will allow
for the Sort program. For further details, see “Determining storage needed for Sort”
on page 222.

Entry point Source Destination

PLISRTA Data set Data set

PLISRTB Subroutine Data set

PLISRTC Data set Subroutine

PLISRTD Subroutine Subroutine

Choosing the type of Sort
If you want to make the best use of the Sort program, you must understand
something of how it works. In your PL/I program you specify a sort by using a
CALL statement to the sort interface subroutine PLISRTx. This subroutine has four
entry points: x=A, B, C, and D. Each specifies a different source for the unsorted
data and destination for the data when it has been sorted. For example, a call to
PLISRTA specifies that the unsorted data (the input to sort) is on a data set, and
that the sorted data (the output from sort) is to be placed on another data set. The
CALL PLISRTx statement must contain an argument list giving the Sort program
information about the data set to be sorted, the fields on which it is to be sorted,
the amount of space available, the name of a variable into which Sort will place a
return code indicating the success or failure of the sort, and the name of any output
or input handling procedure that can be used.

The sort interface routine builds an argument list for the Sort program from the
information supplied by the PLISRTx argument list and the choice of PLISRTx entry

 Chapter 12. Using the Sort program 217

point. Control is then transferred to the Sort program. If you have specified an
output- or input-handling routine, this will be called by the Sort program as many
times as is necessary to handle each of the unsorted or sorted records. When the
sort operation is complete, the Sort program returns to the PL/I calling procedure
communicating its success or failure in a return code, which is placed in one of the
arguments passed to the interface routine. The return code can then be tested in
the PL/I routine to discover whether processing should continue. Figure 47 is a
simplified flowchart showing this operation.

 ┌──────────────┐
 │ │

│ CALL PLISRTx │
 │ │
 └──┬──┬──┬──┬──┘

│ │ │ │
┌────────────────────────────┘ │ │ └────────────────────────────┐

 │ ┌─────────┘ └─────────┐ │
 � � � �
 PLISRTA PLISRTB PLISRTC PLISRTD
 │ │ │ │
 � � � �
┌───────────┴─────────────────────┴──────────────────────┴─────────────────────┴───────────┐
│ SORT PROGRAM │
├───────────┬─────────────────────┬──────────────────────┬─────────────────────┬───────────┤
│ � � � � │
│ ┌─────────┴────────┐ ┌─────────┴─────────┐ ┌─────────┴────────┐ ┌─────────┴─────────┐ │
│ │ Get records from │ │ Call PL/I sub─ │ │ Get records from │ │ Call PL/I sub─ │ │
│ │ data set till │ │ routine receiving │ │ data set till │ │ routine receiving
│ │ end of file │ │ one record on │ │ end of file │ │ one record on │ │
│ │ │ │ each call │ │ │ │ each call │ │
│ └─────────┬────────┘ └─────────┬─────────┘ └─────────┬────────┘ └─────────┬─────────┘ │
│ │ │ │ │ │
│ │ └─────────┐ ┌─────────┘ │ │
│ └────────────────────────────┐ │ │ ┌────────────────────────────┘ │
│ │ │ │ │ │
│ � � � � │
│ ┌──┴──┴──┴──┴──┐ │
│ │ │ │
│ │ Sort records │ │
│ │ │ │
│ └──┬──┬──┬──┬──┘ │
│ │ │ │ │ │
│ ┌────────────────────────────┘ │ │ └────────────────────────────┐ │
│ │ ┌─────────┘ └─────────┐ │ │
│ │ │ │ │ │
│ � � � � │
│ ┌─────────┴────────┐ ┌─────────┴─────────┐ ┌─────────┴────────┐ ┌─────────┴─────────┐ │
│ │ Place sorted │ │ Place sorted │ │ Call PL/I sub─ │ │ Call PL/I sub─ │ │
│ │ records on │ │ records on │ │ routine passing │ │ routine passing │ │
│ │ data set │ │ data set │ │ one record on │ │ one record on │ │
│ │ │ │ │ │ each call │ │ each call │ │
│ └─────────┬────────┘ └─────────┬─────────┘ └─────────┬────────┘ └─────────┬─────────┘ │
│ │ │ │ │ │
│ │ └─────────┐ ┌─────────┘ │ │
│ └────────────────────────────┐ │ │ ┌────────────────────────────┘ │
│ │ │ │ │ │
│ � � � � │
│ ┌──────┴──┴──┴──┴──────┐ │
│ │ Set up return code │ │
│ │ to indicate success │ │
│ │ or failure of sort │ │
│ └──────────┬───────────┘ │
│ │ │
└──┼───┘
 │
 �
 ┌───────┴───────┐

│ Continue with │
│ PL/I program │

 └───────────────┘

Figure 47. Flow of control for Sort program

218 VisualAge PL/I Programming Guide

Within the Sort program itself, the flow of control between the Sort program and
input- and output-handling routines is controlled by return codes. The Sort program
calls these routines at the appropriate point in its processing. (Within the Sort
program, and its associated documentation, these routines are known as user exits.
The routine that passes input to be sorted is the E15 sort user exit. The routine
that processes sorted output is the E35 sort user exit.) From the routines, Sort
expects a return code indicating either that it should call the routine again, or that it
should continue with the next stage of processing.

The important points to remember about Sort are: (1) it is a self-contained program
that handles the complete sort operation, and (2) it communicates with the caller,
and with the user exits that it calls, by means of return codes.

The remainder of this chapter gives detailed information on how to use Sort from
PL/I. First the required PL/I statements are described, and then the data set
requirements. The chapter finishes with a series of examples showing the use of
the four entry points of the sort interface routine.

Specifying the sorting field
The SORT statement is the first argument to PLISRTx. The syntax of the SORT
statement must be a character string expression that takes the form:

'bSORTbFIELDS=(start1,length1,form1,seq1,
...startn,lengthn,formn,seqn)[,other options]b'

For example:

' SORT FIELDS=(1,1J,CH,A) '

b represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

start,length,form,seq
defines a sorting field. You can specify any number of sorting fields, but there
is a limit on the total length of the fields. If more than one field is to be sorted
on, the records are sorted first according to the first field, and then those that
are of equal value are sorted according to the second field, and so on. If all
the sorting values are equal, the order of equal records will be arbitrary unless
you use the EQUALS option. (See later in this definition list.) Fields can
overlay each other.

For DFSORT (5740-SM1), the maximum total length of the sorting fields is
restricted to 4092 bytes and all sorting fields must be within 4092 bytes of the
start of the record. Other sort products might have different restrictions.

start is the starting position within the record. Give the value in bytes except
for binary data where you can use a “byte.bit” notation. The first byte in
a string is considered to be byte 1, the first bit is bit 0. (Thus the
second bit in byte 2 is referred to as 2.1.) For varying length records
you must include the 4-byte length prefix, making 5 the first byte of
data.

length is the length of the sorting field. Give the value in bytes except for
binary where you can use “byte.bit” notation. The length of sorting
fields is restricted according to their data type.

 Chapter 12. Using the Sort program 219

form is the format of the data. This is the format assumed for the purpose of
sorting. All data passed between PL/I routines and Sort must be in the
form of character strings. The main data types and the restrictions on
their length are shown below. Additional data types are available for
special-purpose sorts. See the DFSORT Application Programming
Guide, or the equivalent publication for your sort product.

Code Data type and length
CH character 1–4096
ZD zoned decimal, signed 1–32
PD packed decimal, signed 1–32
FI fixed point, signed 1–256
BI binary, unsigned 1 bit to 4092 bytes
FL floating-point, signed 1–256

The sum of the lengths of all fields must not exceed 4092 bytes.

seq is the sequence in which the data will be sorted as follows:

A ascending (that is, 1,2,3,...)
D descending (that is, ...,3,2,1)

Note: You cannot specify E, because PL/I does not provide a method
of passing a user-supplied sequence.

other options
You can specify a number of other options, depending on your Sort program.
You must separate them from the FIELDS operand and from each other by
commas. Do not place blanks between operands.

FILSZ=y
specifies the number of records in the sort and allows for optimization by
Sort. If y is only approximate, E should precede y.

SKIPREC=y
specifies that y records at the start of the input file are to be ignored before
sorting the remaining records.

CKPT or CHKPT
specifies that checkpoints are to be taken. If you use this option, you must
provide a SORTCKPT data set and DFSORT's 16NCKPT=NO installation
option must be specified.

EQUALS|NOEQUALS
specifies whether the order of equal records will be preserved as it was in
the input (EQUALS) or will be arbitrary (NOEQUALS). You could improve
sort performance by using the NOEQUALS. The default option is chosen
when Sort is installed. The IBM-supplied default is NOEQUALS.

DYNALLOC=(d,n)
(OS/VS Sort only) specifies that the program dynamically allocates
intermediate storage.

d is the device type (3380, etc.).
n is the number of work areas.

220 VisualAge PL/I Programming Guide

Specifying the records to be sorted
Use the RECORD statement as the second argument to PLISRTx. The syntax of
the RECORD statement must be a character string expression which, when
evaluated, takes the syntax shown below:

'bRECORDbTYPE=rectype[,LENGTH=(L1,[,,L4,L5])]b'

For example:

' RECORD TYPE=F,LENGTH=(8J) '

b represents one or more blanks. Blanks shown are mandatory. No other blanks
are allowed.

TYPE
specifies the type of record as follows:

F fixed length
V varying length EBCDIC
D varying length ASCII

Even when you use input and output routines to handle the unsorted and
sorted data, you must specify the record type as it applies to the work data sets
used by Sort.

If varying length strings are passed to Sort from an input routine (E15 exit), you
should normally specify V as a record format. However, if you specify F, the
records are padded to the maximum length with blanks.

LENGTH
specifies the length of the record to be sorted. You can omit LENGTH if you
use PLISRTA or PLISRTC, because the length will be taken from the input data
set. Note that there is a restriction on the maximum and minimum length of the
record that can be sorted (see below). For varying length records, you must
include the four-byte prefix.

11 is the length of the record to be sorted. For VSAM data sets sorted as
varying records it is the maximum record size+4.

,, represent two arguments that are not applicable to Sort when called from
PL/I. You must include the commas if the arguments that follow are
used.

14 specifies the minimum length of record when varying length records are
used. If supplied, it is used by Sort for optimization purposes.

15 specifies the modal (most common) length of record when varying length
records are used. If supplied, it is used by Sort for optimization
purposes.

Maximum record lengths
The length of a record can never exceed the maximum length specified by the
user. The maximum record length for variable length records is 32756 bytes and
for fixed length records it is 32760 bytes.

 Chapter 12. Using the Sort program 221

Determining storage needed for Sort

 Main storage
Sort requires both main and auxiliary storage. The minimum main storage for
DFSORT is 88K bytes, but for best performance, more storage (on the order of 1
megabyte or more) is recommended. DFSORT can take advantage of storage
above 16M virtual or extended architecture processors. Under OS/390, DFSORT
can also take advantage of expanded storage. You can specify that Sort use the
maximum amount of storage available by passing a storage parameter in the
following manner:

DCL MAXSTOR FIXED BINARY (31,J);
UNSPEC(MAXSTOR)='JJJJJJJJ'B||UNSPEC('MAX');
CALL PLISRTA

(' SORT FIELDS=(1,8J,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 MAXSTOR,
 RETCODE,
 'TASK');

If files are opened in E15 or E35 exit routines, enough residual storage should be
allowed for the files to open successfully.

 Auxiliary storage
Calculating the minimum auxiliary storage for a particular sorting operation is a
complicated task. To achieve maximum efficiency with auxiliary storage, use direct
access storage devices (DASDs) whenever possible. For more information on
improving program efficiency, see the DFSORT Application Programming Guide,
particularly the information about dynamic allocation of workspace which allows
DFSORT to determine the auxiliary storage needed and allocate it for you.

If you are interested only in providing enough storage to ensure that the sort will
work, make the total size of the SORTWK data sets large enough to hold three sets
of the records being sorted. (You will not gain any advantage by specifying more
than three if you have enough space in three data sets.)

However, because this suggestion is an approximation, it might not work, so you
should check the sort manuals. If this suggestion does work, you will probably
have wasted space.

Calling the Sort program
When you have determined the points described above, you are in a position to
write the CALL PLISRTx statement. You should do this with some care; for the
entry points and arguments to use, see Table 29.

Table 29 (Page 1 of 2). The entry points and arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTA
Sort input: data set
Sort output: data set

(sort statement,record statement,storage,return code
[,data set prefix,message level, sort technique])

PLISRTB
Sort input: PL/I subroutine
Sort output: data set

(sort statement,record statement,storage,return code,input routine
[,data set prefix,message level,sort technique])

222 VisualAge PL/I Programming Guide

Table 29 (Page 2 of 2). The entry points and arguments to PLISRTx (x = A, B, C, or D)

Entry points Arguments

PLISRTC
Sort input: data set
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,output routine
[,data set prefix,message level,sort technique])

PLISRTD
Sort input: PL/I subroutine
Sort output: PL/I subroutine

(sort statement,record statement,storage,return code,input routine,output routine[,data set
prefix,message level,sort technique])

Sort statement Character string expression containing the Sort program SORT statement. Describes
sorting fields and format. See “Specifying the sorting field” on page 219.

Record statement Character string expression containing the Sort program RECORD statement. Describes
the length and record format of data. See “Specifying the records to be sorted” on
page 221.

Storage Fixed binary expression giving maximum amount of main storage to be used by the Sort
program. Must be >88K bytes for DFSORT. See also “Determining storage needed for
Sort.”

Return code Fixed binary variable of precision (31,0) in which Sort places a return code when it has
completed. The meaning of the return code is:

 0=Sort successful
 16=Sort failed

20=Sort message data set missing

Input routine (PLISRTB and PLISRTD only.) Name of the PL/I external or internal procedure used to
supply the records for the Sort program at sort exit E15.

Output routine (PLISRTC and PLISRTD only.) Name of the PL/I external or internal procedure to which
Sort passes the sorted records at sort exit E35.

Data set prefix Character string expression of four characters that replaces the default prefix of 'SORT' in
the names of the sort data sets SORTIN, SORTOUT, SORTWKnn and SORTCNTL, if
used. Thus if the argument is “TASK”, the data sets TASKIN, TASKOUT, TASKWKnn, and
TASKCNTL can be used. This facility enables multiple invocations of Sort to be made in
the same job step. The four characters must start with an alphabetic character and must
not be one of the reserved names PEER, BALN, CRCX, OSCL, POLY, DIAG, SYSC, or
LIST. You must code a null string for this argument if you require either of the following
arguments but do not require this argument.

Message level Character string expression of two characters indicating how Sort's diagnostic messages
are to be handled, as follows:

NO No messages to SYSOUT
AP All messages to SYSOUT
CP Critical messages to SYSOUT

SYSOUT will normally be allocated to the printer, hence the use of the mnemonic letter “P”.
Other codes are also allowed for certain of the Sort programs. For further details on these
codes, see DFSORT Application Programming Guide. You must code a null string for this
argument if you require the following argument but you do not require this argument.

Sort technique (This is not used by DFSORT; it appears for compatibility reasons only.) Character string
of length 4 that indicates the type of sort to be carried out, as follows:

 PEER Peerage sort
 BALN Balanced
 CRCX Criss-cross sort
 OSCL Oscillating
 POLY Polyphase sort

Normally the Sort program will analyze the amount of space available and choose the most
effective technique without any action from you. You should use this argument only as a
bypass for sorting problems or when you are certain that performance could be improved
by another technique. See DFSORT Application Programming Guide for further
information.

The examples below indicate the form that the CALL PLISRTx statement normally
takes.

 Chapter 12. Using the Sort program 223

 Example 1
A call to PLISRTA sorting 80-byte records from SORTIN to SORTOUT using
1048576 (1 megabyte) of storage, and a return code, RETCODE, declared as
FIXED BINARY (31,0).

CALL PLISRTA (' SORT FIELDS=(1,8J,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576,
 RETCODE);

 Example 2
This example is the same as example 1 except that the input, output, and work
data sets are called TASKIN, TASKOUT, TASKWK01, and so forth. This might
occur if Sort was being called twice in one job step.

CALL PLISRTA (' SORT FIELDS=(1,8J,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576,
 RETCODE,
 'TASK');

 Example 3
This example is the same as example 1 except that the sort is to be undertaken on
two fields. First, bytes 1 to 10 which are characters, and then, if these are equal,
bytes 11 and 12 which contain a binary field, both fields are to be sorted in
ascending order.

CALL PLISRTA (' SORT FIELDS=(1,1J,CH,A,11,2,BI,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576,
 RETCODE);

 Example 4
This example shows a call to PLISRTB. The input is to be passed to Sort by the
PL/I routine PUTIN, the sort is to be carried out on characters 1 to 10 of an 80 byte
fixed length record. Other information as above.

CALL PLISRTB (' SORT FIELDS=(1,1J,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576,
 RETCODE,
 PUTIN);

 Example 5
This example shows a call to PLISRTD. The input is to be supplied by the PL/I
routine PUTIN and the output is to be passed to the PL/I routine PUTOUT. The
record to be sorted is 84 bytes varying (including the length prefix). It is to be
sorted on bytes 1 through 5 of the data in ascending order, then if these fields are
equal, on bytes 6 through 10 in descending order. (Note that the 4-byte length
prefix is included so that the actual values used are 5 and 10 for the starting
points.) If both these fields are the same, the order of the input is to be retained.
(The EQUALS option does this.)

224 VisualAge PL/I Programming Guide

CALL PLISRTD (' SORT FIELDS=(5,5,CH,A,1J,5,CH,D),EQUALS ',
' RECORD TYPE=V,LENGTH=(84) ',

 1J48576,
 RETCODE,

PUTIN, /Xinput routine (sort exit E15)X/
PUTOUT); /Xoutput routine (sort exit E35)X/

Determining whether the Sort was successful
When the sort is completed, Sort sets a return code in the variable named in the
fourth argument of the call to PLISRTx. It then returns control to the statement that
follows the CALL PLISRTx statement. The value returned indicates the success or
failure of the sort as follows:

0 Sort successful
16 Sort failed
20 Sort message data set missing

You must declare the variable to which the return code is passed as FIXED
BINARY (31,0). It is standard practice to test the value of the return code after the
CALL PLISRTx statement and take appropriate action according to the success or
failure of the operation.

For example (assuming the return code was called RETCODE):

IF RETCODE¬=J THEN DO;
 PUT DATA(RETCODE);
 SIGNAL ERROR;
END;

If the job step that follows the sort depends on the success or failure of the sort,
you should set the value returned in the Sort program as the return code from the
PL/I program. This return code is then available for the following job step. The
PL/I return code is set by a call to PLIRETC. You can call PLIRETC with the value
returned from Sort thus:

CALL PLIRETC(RETCODE);

You should not confuse this call to PLIRETC with the calls made in the input and
output routines, where a return code is used for passing control information to Sort.

Establishing data sets for Sort
If DFSORT was installed in a library not know to the system, you must specify the
DFSORT library in a JOBLIB or STEPLIB DD statement.

When you call Sort, certain sort data sets must not be open. These are:

SYSOUT
A data set (normally the printer) on which messages from the Sort program will
be written.

Sort work data sets

 Chapter 12. Using the Sort program 225

SORTWK01–SORTWK32

Note: If you specify more than 32 sort work data sets, DFSORT will only use
the first 32.

****WK01–****WK32
From 1 to 32 working data sets used in the sorting process. These must be
direct-access. For a discussion of space required and number of data sets,
see “Determining storage needed for Sort” on page 222.

**** represents the four characters that you can specify as the data set prefix
argument in calls to PLISRTx. This allows you to use data sets with prefixes
other than SORT. They must start with an alphabetic character and must not
be the names PEER, BALN, CRCX, OSCL, POLY, SYSC, LIST, or DIAG.

Input data set

SORTIN

****IN
The input data set used when PLISRTA and PLISRTC are called.

See ****WK01–****WK32 above for a detailed description.

Output data set

SORTOUT

****OUT
The output data set used when PLISRTA and PLISRTB are called.

See ****WK01–****WK32 above for a detailed description.

Checkpoint data set

SORTCKPT

Data set used to hold checkpoint data, if CKPT or CHKPT option was used in
the SORT statement argument and DFSORT's 16NCKPT=NO installation
option was specified. For information on this program DD statement, see
DFSORT Application Programming Guide.

DFSPARM
SORTCNTL

Data set from which additional or changed control statements can be read
(optional). For additional information on this program DD statement, see
DFSORT Application Programming Guide.

226 VisualAge PL/I Programming Guide

See ****WK01–****WK32 above for a detailed description.

Sort data input and output
The source of the data to be sorted is provided either directly from a data set or
indirectly by a routine (Sort Exit E15) written by the user. Similarly, the destination
of the sorted output is either a data set or a routine (Sort Exit E35) provided by the
user.

PLISRTA is the simplest of all of the interfaces because it sorts from data set to
data set. An example of a PLISRTA program is in Figure 51 on page 231. Other
interfaces require either the input handling routine or the output handling routine, or
both.

Data input and output handling routines
The input handling and output handling routines are called by Sort when PLISRTB,
PLISRTC, or PLISRTD is used. They must be written in PL/I, and can be either
internal or external procedures. If they are internal to the routine that calls
PLISRTx, they behave in the same way as ordinary internal procedures in respect
of scope of names. The input and output procedure names must themselves be
known in the procedure that makes the call to PLISRTx.

The routines are called individually for each record required by Sort or passed from
Sort. Therefore, each routine must be written to handle one record at a time.
Variables declared as AUTOMATIC within the procedures will not retain their values
between calls. Consequently, items such as counters, which need to be retained
from one call to the next, should either be declared as STATIC or be declared in
the containing block.

E15—Input handling routine (Sort Exit E15)
Input routines are normally used to process the data in some way before it is
sorted. You can use input routines to print the data, as shown in the Figure 52 on
page 232 and Figure 54 on page 234, or to generate or manipulate the sorting
fields to achieve the correct results.

The input handling routine is used by Sort when a call is made to either PLISRTB
or PLISRTD. When Sort requires a record, it calls the input routine which should
return a record in character string format, with a return code of 12. This return
code means that the record passed is to be included in the sort. Sort continues to
call the routine until a return code of 8 is passed. A return code of 8 means that all
records have already been passed, and that Sort is not to call the routine again. If
a record is returned when the return code is 8, it is ignored by Sort.

The data returned by the routine must be a character string. It can be fixed or
varying. If it is varying, you should normally specify V as the record format in the
RECORD statement which is the second argument in the call to PLISRTx.
However, you can specify F, in which case the string will be padded to its
maximum length with blanks. The record is returned with a RETURN statement,
and you must specify the RETURNS attribute in the PROCEDURE statement. The
return code is set in a call to PLIRETC. A flowchart for a typical input routine is
shown in Figure 48 on page 228.

 Chapter 12. Using the Sort program 227

Input Handling Subroutine Output Handling Subroutine

START START

END

END

LAST
RECORD
ALREADY

SENT

Your code to
process record

CALL
PLIRETC(12)

RETURN
RECORD

RECEIVE
RECORD
PARAMETER

Your code to
process record

CALL
PLIRETC(4)

CALL
PLIRETC(8)

YES

NO

Figure 48. Flowcharts for input and output handling subroutines

Skeletal code for a typical input routine is shown in Figure 49 on page 229.

228 VisualAge PL/I Programming Guide

E15: PROC RETURNS (CHAR(8J));
 /X---X/

/XRETURNS attribute must be used specifying length of data to be X/
/X sorted, maximum length if varying strings are passed to Sort. X/

 /X---X/
DCL STRING CHAR(8J); /X--X/

/XA character string variable will normally beX/
/X required to return the data to Sort X/

 /X--X/

IF LAST_RECORD_SENT THEN
 DO;
 /X---X/

/XA test must be made to see if all the records have been sent, X/
/Xif they have, a return code of 8 is set up and control returnedX/

 /Xto Sort X/
 /X---X/

 CALL PLIRETC(8); /X---X/
/X Set return code of 8, meaning last record X/
/X already sent. X/

 /X---X/
 GOTO FINAL;

 END;

 ELSE
 DO;
 /X--X/

/X If another record is to be sent to Sort, do theX/
/X necessary processing, set a return code of 12 X/
/X by calling PLIRETC, and return the data as a X/
/X character string to Sort X/

 /X--X/

XXXX(The code to do your processing goes here)

CALL PLIRETC (12); /X--------------------------------------X/
/X Set return code of 12, meaning this X/
/X record is to be included in the sort X/

 /X--------------------------------------X/
RETURN (STRING); /XReturn data with RETURN statementX/

 END;
FINAL:
END; /XEnd of the input procedureX/

Figure 49. Skeletal code for an input procedure

Examples of an input routine are given in Figure 52 on page 232 and Figure 54 on
page 234.

In addition to the return codes of 12 (include current record in sort) and 8 (all
records sent), Sort allows the use of a return code of 16. This ends the sort and
causes Sort to return to your PL/I program with a return code of 16–Sort failed.

Note: A call to PLIRETC sets a return code that will be passed by your PL/I
program, and will be available to any job steps that follow it. When an output
handling routine has been used, it is good practice to reset the return code with a
call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero completion
code. By calling PLIRETC with the return code from Sort as the argument, you can
make the PL/I return code reflect the success or failure of the sort. This practice is
shown in Figure 53 on page 233.

 Chapter 12. Using the Sort program 229

E35—Output handling routine (Sort Exit E35)
Output handling routines are normally used for any processing that is necessary
after the sort. This could be to print the sorted data, as shown in Figure 53 on
page 233 and Figure 54 on page 234, or to use the sorted data to generate
further information. The output handling routine is used by Sort when a call is
made to PLISRTC or PLISRTD. When the records have been sorted, Sort passes
them, one at a time, to the output handling routine. The output routine then
processes them as required. When all the records have been passed, Sort sets up
its return code and returns to the statement after the CALL PLISRTx statement.
There is no indication from Sort to the output handling routine that the last record
has been reached. Any end-of-data handling must therefore be done in the
procedure that calls PLISRTx.

The record is passed from Sort to the output routine as a character string, and you
must declare a character string parameter in the output handling subroutine to
receive the data. The output handling subroutine must also pass a return code of 4
to Sort to indicate that it is ready for another record. You set the return code by a
call to PLIRETC.

The sort can be stopped by passing a return code of 16 to Sort. This will result in
Sort returning to the calling program with a return code of 16–Sort failed.

The record passed to the routine by Sort is a character string parameter. If you
specified the record type as F in the second argument in the call to PLISRTx, you
should declare the parameter with the length of the record. If you specified the
record type as V, you should declare the parameter as adjustable, as in the
following example:

DCL STRING CHAR(X);

Figure 55 on page 235 shows a program that sorts varying length records.

A flowchart for a typical output handling routine is given in Figure 48 on page 228.
Skeletal code for a typical output handling routine is shown in Figure 50.

E35: PROC(STRING); /XThe procedure must have a character string
parameter to receive the record from SortX/

DCL STRING CHAR(8J); /XDeclaration of parameterX/

 (Your code goes here)

CALL PLIRETC(4); /XPass return code to Sort indicating that the next
sorted record is to be passed to this procedure.X/

END E35; /XEnd of procedure returns control to SortX/

Figure 50. Skeletal code for an output handling procedure

You should note that a call to PLIRETC sets a return code that will be passed by
your PL/I program, and will be available to any job steps that follow it. When you
have used an output handling routine, it is good practice to reset the return code
with a call to PLIRETC after the call to PLISRTx to avoid receiving a nonzero
completion code. By calling PLIRETC with the return code from Sort as the
argument, you can make the PL/I return code reflect the success or failure of the
sort. This practice is shown in the examples at the end of this chapter.

230 VisualAge PL/I Programming Guide

Calling PLISRTA example
After each time that the PL/I input- and output-handling routines communicate the
return-code information to the Sort program, the return-code field is reset to zero;
therefore, it is not used as a regular return code other than its specific use for the
Sort program.

For details on handling conditions, especially those that occur during the input- and
output-handling routines, see OS/390 Language Environment Programming Guide.

 //OPT14#7 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
EX1J6: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,J);

CALL PLISRTA (' SORT FIELDS=(7,74,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576
 RETURN_CODE);
 SELECT (RETURN_CODE);

WHEN(J) PUT SKIP EDIT
('SORT COMPLETE RETURN_CODE J') (A);

WHEN(16) PUT SKIP EDIT
('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2J) PUT SKIP EDIT
('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT (
'INVALID SORT RETURN_CODE = ', RETURN_CODE) (A,F(2));

END /X select X/;
 CALL PLIRETC(RETURN_CODE);

/Xset PL/I return code to reflect success of sortX/
 END EX1J6;
 //GO.SORTIN DD X
 JJ3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 JJ2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 JJ3J77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 J59334HOOK E.H. 1J9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 J73872HOME TAVERN, WESTLEIGH
 JJJ931FOREST, IVER, BUCKS
 /X
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTWKJ1 DD UNIT=SYSDA,SPACE=(CYL,2)
 /X

Figure 51. PLISRTA—sorting from input data set to output data set

Calling PLISRTB example

 Chapter 12. Using the Sort program 231

 //OPT14#8 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 EX1J7: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,J);

CALL PLISRTB (' SORT FIELDS=(7,74,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576
 RETURN_CODE,
 E15X);
 SELECT(RETURN_CODE);

WHEN(J) PUT SKIP EDIT
('SORT COMPLETE RETURN_CODE J') (A);

WHEN(16) PUT SKIP EDIT
('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2J) PUT SKIP EDIT
('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT
('INVALID RETURN_CODE = ',RETURN_CODE)(A,F(2));

END /X select X/;
 CALL PLIRETC(RETURN_CODE);

/Xset PL/I return code to reflect success of sortX/

E15X: /X INPUT HANDLING ROUTINE GETS RECORDS FROM THE INPUT
STREAM AND PUTS THEM BEFORE THEY ARE SORTEDX/

PROC RETURNS (CHAR(8J));
DCL SYSIN FILE RECORD INPUT,

 INFIELD CHAR(8J);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT')(A);
CALL PLIRETC(8); /X signal that last record has

already been sent to sortX/
 GOTO ENDE15;
 END;

READ FILE (SYSIN) INTO (INFIELD);
PUT SKIP EDIT (INFIELD)(A(8J)); /XPRINT INPUTX/
CALL PLIRETC(12); /X request sort to include current

record and return for moreX/
 RETURN(INFIELD);
 ENDE15:
 END E15X;
 END EX1J7;
 /X
 //GO.SYSIN DD X
 JJ3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 JJ2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 JJ3J77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 J59334HOOK E.H. 1J9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 J73872HOME TAVERN, WESTLEIGH
 JJJ931FOREST, IVER, BUCKS
 /X
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //X
 //GO.SORTCNTL DD X
 OPTION DYNALLOC=(338J,2),SKIPREC=2
 /X

Figure 52. PLISRTB—sorting from input handling routine to output data set

232 VisualAge PL/I Programming Guide

Calling PLISRTC example

 //OPT14#9 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 EX1J8: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,J);

CALL PLISRTC (' SORT FIELDS=(7,74,CH,A) ',
' RECORD TYPE=F,LENGTH=(8J) ',

 1J48576
 RETURN_CODE,
 E35X);
 SELECT(RETURN_CODE);

WHEN(J) PUT SKIP EDIT
('SORT COMPLETE RETURN_CODE J') (A);

WHEN(16) PUT SKIP EDIT
('SORT FAILED, RETURN_CODE 16') (A);

WHEN(2J) PUT SKIP EDIT
('SORT MESSAGE DATASET MISSING ') (A);

OTHER PUT SKIP EDIT
('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));

END /X select X/;
CALL PLIRETC (RETURN_CODE);
/Xset PL/I return code to reflect success of sortX/

E35X: /X output handling routine prints sorted recordsX/
 PROC (INREC);

DCL INREC CHAR(8J);
PUT SKIP EDIT (INREC) (A);
CALL PLIRETC(4); /Xrequest next record from sortX/

 END E35X;
 END EX1J8;
 /X
 //GO.STEPLIB DD DSN=SYS1.SORTLINK,DISP=SHR
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTIN DD X
 JJ3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 JJ2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 JJ3J77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 J59334HOOK E.H. 1J9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 J73872HOME TAVERN, WESTLEIGH
 JJJ931FOREST, IVER, BUCKS
 /X
 //GO.SORTCNTL DD X
 OPTION DYNALLOC=(338J,2),SKIPREC=2
 /X

Figure 53. PLISRTC—sorting from input data set to output handling routine

 Chapter 12. Using the Sort program 233

Calling PLISRTD example

 //OPT14#1J JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X
 EX1J9: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,J);
CALL PLISRTD (' SORT FIELDS=(7,74,CH,A) ',

' RECORD TYPE=F,LENGTH=(8J) ',
 1J48576
 RETURN_CODE,
 E15X,
 E35X);

 SELECT(RETURN_CODE);
WHEN(J) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE J') (A);
WHEN(2J) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);
OTHER PUT SKIP EDIT

('INVALID RETURN_CODE = ', RETURN_CODE) (A,F(2));
END /X select X/;

 CALL PLIRETC(RETURN_CODE);
/Xset PL/I return code to reflect success of sortX/

E15X: /X Input handling routine prints input before sortingX/
 PROC RETURNS(CHAR(8J));

DCL INFIELD CHAR(8J);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. ',

'SORTED OUTPUT SHOULD FOLLOW')(A);
CALL PLIRETC(8); /X Signal end of input to sortX/

 GOTO ENDE15;
 END;

GET FILE (SYSIN) EDIT (INFIELD) (A(8J));
PUT SKIP EDIT (INFIELD)(A);
CALL PLIRETC(12); /XInput to sort continuesX/

 RETURN(INFIELD);
 ENDE15:
 END E15X;

 E35X: /X Output handling routine prints the sorted recordsX/
 PROC (INREC);

DCL INREC CHAR(8J);
PUT SKIP EDIT (INREC) (A);

NEXT: CALL PLIRETC(4); /X Request next record from sortX/
 END E35X;
 END EX1J9;
 /X
//GO.SYSOUT DD SYSOUT=A
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTWKJ1 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWKJ2 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWKJ3 DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SYSIN DD X
JJ3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
JJ2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
JJ3J77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
J59334HOOK E.H. 1J9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
J73872HOME TAVERN, WESTLEIGH
JJJ931FOREST, IVER, BUCKS
/X

Figure 54. PLISRTD—sorting from input handling routine to output handling routine

234 VisualAge PL/I Programming Guide

Sorting variable-length records example

 //OPT14#11 JOB ...
 //STEP1 EXEC IBMZCBG
 //PLI.SYSIN DD X

/X PL/I EXAMPLE USING PLISRTD TO SORT VARIABLE-LENGTH
 RECORDS X/

 EX13J6: PROC OPTIONS(MAIN);
DCL RETURN_CODE FIXED BIN(31,J);
CALL PLISRTD (' SORT FIELDS=(11,14,CH,A) ',

' RECORD TYPE=V,LENGTH=(84,,,24,44) ',
/XNOTE THAT LENGTH IS MAX AND INCLUDES
4 BYTE LENGTH PREFIXX/

 1J48576
 RETURN_CODE,
 PUTIN,
 PUTOUT);

 SELECT(RETURN_CODE);
WHEN(J) PUT SKIP EDIT (

'SORT COMPLETE RETURN_CODE J') (A);
WHEN(16) PUT SKIP EDIT (

'SORT FAILED, RETURN_CODE 16') (A);
WHEN(2J) PUT SKIP EDIT (

'SORT MESSAGE DATASET MISSING ') (A);
OTHER PUT SKIP EDIT (

'INVALID RETURN_CODE = ', RETURN_CODE)
 (A,F(2));

END /X SELECT X/;

 CALL PLIRETC(RETURN_CODE);
/XSET PL/I RETURN CODE TO REFLECT SUCCESS OF SORTX/
PUTIN: PROC RETURNS (CHAR(8J) VARYING);
/XOUTPUT HANDLING ROUTINEX/
/XNOTE THAT VARYING MUST BE USED ON RETURNS ATTRIBUTE
WHEN USING VARYING LENGTH RECORDSX/
DCL STRING CHAR(8J) VAR;

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP EDIT ('END OF INPUT')(A);

 CALL PLIRETC(8);
 GOTO ENDPUT;
 END;

 GET EDIT(STRING)(A(8J));
I=INDEX(STRING||' ',' ')-1;/XRESET LENGTH OF THEX/
STRING = SUBSTR(STRING,1,I); /X STRING FROM 8J TO X/

/X LENGTH OF TEXT IN X/
/X EACH INPUT RECORD.X/

Figure 55 (Part 1 of 2). Sorting varying-length records using input and output handling
routines

 Chapter 12. Using the Sort program 235

PUT SKIP EDIT(I,STRING) (F(2),X(3),A);
 CALL PLIRETC(12);
 RETURN(STRING);
 ENDPUT: END;
 PUTOUT:PROC(STRING);

/XOUTPUT HANDLING ROUTINE OUTPUT SORTED RECORDSX/
DCL STRING CHAR (X);
/XNOTE THAT FOR VARYING RECORDS THE STRING
PARAMETER FOR THE OUTPUT-HANDLING ROUTINE
SHOULD BE DECLARED ADJUSTABLE BUT CANNOT BE

 DECLARED VARYINGX/
PUT SKIP EDIT(STRING)(A); /XPRINT THE SORTED DATAX/

 CALL PLIRETC(4);
 END; /XENDS PUTOUTX/
 END;
 /X
 //GO.SYSIN DD X
 JJ3329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
 JJ2886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
 JJ3J77ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
 J59334HOOK E.H. 1J9 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
 J73872HOME TAVERN, WESTLEIGH
 JJJ931FOREST, IVER, BUCKS
 /X
 //GO.SYSPRINT DD SYSOUT=A
 //GO.SORTOUT DD SYSOUT=A
 //GO.SYSOUT DD SYSOUT=A
 //GO.SORTWKJ1 DD UNIT=SYSDA,SPACE=(CYL,1)
 //GO.SORTWKJ2 DD UNIT=SYSDA,SPACE=(CYL,1)
 //X

Figure 55 (Part 2 of 2). Sorting varying-length records using input and output handling
routines

236 VisualAge PL/I Programming Guide

Part 6. Specialized programming tasks

Chapter 13. PL/I - Language Environment descriptors 238
Passing an argument . 238

Argument passing by descriptor list . 238
Argument passing by descriptor-locator . 239

Descriptor header . 239
String descriptors . 240
Array descriptors . 240

Chapter 14. Using PLIDUMP . 241
PLIDUMP usage notes . 242

Chapter 15. Interrupts and attention processing 244
Using ATTENTION ON-units . 245
Interaction with a debugging tool . 245

Chapter 16. Using the Checkpoint/Restart facility 246
Requesting a checkpoint record . 246

Defining the checkpoint data set . 247
Requesting a restart . 248

Automatic restart after a system failure . 248
Automatic restart within a program . 248
Getting a deferred restart . 248
Modifying checkpoint/restart activity . 249

Chapter 17. Using user exits . 250
Procedures performed by the compiler user exit 250
Activating the compiler user exit . 251

The IBM-supplied compiler exit, IBMUEXIT 251
Customizing the compiler user exit . 251
Modifying SYSUEXIT . 251
Writing your own compiler exit . 252
Structure of global control blocks . 252
Writing the initialization procedure . 254
Writing the message filtering procedure . 254
Writing the termination procedure . 255

 Copyright IBM Corp. 1964, 2000 237

Chapter 13. PL/I - Language Environment descriptors

This chapter describes PL/I parameter passing conventions between PL/I routines
at run time. For additional information about Language Environment run-time
environment considerations, other than descriptors, see OS/390 Language
Environment Programming Guide. This includes run-time environment conventions
and assembler macros supporting these conventions.

Passing an argument
When a string, an array, or a structure is passed as an argument, the compiler
passes a descriptor for that argument unless the called routine is declared with
OPTIONS(NODESCRIPTOR). There are two methods for passing such
descriptors:

� By descriptor list
� By descriptor locator

The following key features should be noted about each of these two methods:

� When arguments are passed with a descriptor list

– The number of arguments passed is one greater than the number of
arguments specified if any of the arguments needs a descriptor.

– An argument passed with a descriptor can be received as a pointer passed
by value (BYVALUE).

� When arguments are passed by descriptor locator

– The number of arguments passed always matches the number of
arguments specified.

– An argument passed with a descriptor can be received as a pointer passed
by address (BYADDR).

Argument passing by descriptor list
When arguments and their descriptors are passed with a descriptor list, an extra
argument is passed whenever at least one argument needs a descriptor. This
extra argument is a pointer to a list of pointers. The number of entries in this list
equals the number of arguments passed. For arguments that don't require a
descriptor, the corresponding pointer in the descriptor list is set to SYSNULL. For
arguments that do require a descriptor, the corresponding pointer in the descriptor
list is set to the address of that argument's descriptor.

So, for example, suppose the routine sample is declared as

declare sample entry(fixed bin(31), varying char(X))
options(byaddr descriptor);

Then, if sample is called as in the following statement:

call sample(1, 'test');

The following three arguments are passed to the routine:

� Address of a fixed bin(31) temporary with the value 1

� Address of a varying char(4) temporary with the value test

238  Copyright IBM Corp. 1964, 2000

� Address of a descriptor list consisting of the following:

 – SYSNULL()

– Address of the descriptor for a varying char(4) string

Argument passing by descriptor-locator
When arguments and their descriptors are passed by descriptor-locator, whenever
an argument requires a descriptor, the address of a locator/descriptor for it is
passed instead.

The locator/descriptor is a pair of pointers. The first pointer is the address of the
data; the second pointer is the address of the descriptor.

So, for example, suppose the routine sample is declared again as

declare sample entry(fixed bin(31), varying char(X))
options(byaddr descriptor);

Then, if sample is called as in the following statement

call sample(1, 'test');

The following two arguments are passed to the routine:

� Address of a fixed bin(31) temporary with the value 1

� Address of a descriptor-locator consisting of the following:

– Address of a varying char(4) temporary with the value test

– Address of the descriptor for a varying char(4) string

 Descriptor header
Every descriptor starts with a 4-byte field. The first byte specifies the descriptor
type (scalar, array, structure or union). The remaining three bytes are zero unless
they are set by the particular descriptor type.

The declare for a descriptor header is:

declare
1 dsc_Header based(sysnull()),
2 dsc_Type fixed bin(8) unsigned,
2 dsc_Datatype fixed bin(8) unsigned,
2 X fixed bin(8) unsigned,
2 X fixed bin(8) unsigned;

The possible values for the dsc_Type field are:

declare
dsc_Type_Unset fixed bin(8) value(J),
dsc_Type_Element fixed bin(8) value(2),
dsc_Type_Array fixed bin(8) value(3),
dsc_Type_Structure fixed bin(8) value(4),
dsc_Type_Union fixed bin(8) value(4);

 Chapter 13. PL/I - Language Environment descriptors 239

 String descriptors
In a string descriptor, the second byte of the header indicates the string type (bit,
character or graphic as well as nonvarying, varying or varyingz).

In a string descriptor for a nonvarying bit string, the third byte of the header gives
the bit offset.

In a string descriptor for a varying string, the fourth byte has a bit indicating if the
string length is held in nonnative format.

In a string descriptor for a character string, the fourth byte also has a bit indicating
if the string data is in EBCDIC.

The declare for a string descriptor is:

declare
1 dsc_String based(sysnull()),

 2 dsc_String_Header,
3 X fixed bin(8) unsigned,
3 dsc_String_Type fixed bin(8) unsigned,
3 dsc_String_BitOfs fixed bin(8) unsigned,

 3 X,
 4 dsc_String_Has_Nonnative_Len bit(1),
 4 dsc_String_Is_Ebcdic bit(1),
 4 dsc_String_Has_Nonnative_Data bit(1),
 4 X bit(5),

2 dsc_String_Length fixed bin(31); /X max length of string X/

The possible values for the dsc_String_Type field are:

declare
dsc_String_Type_Unset fixed bin(8) value(J),
dsc_String_Type_Char_Nonvarying fixed bin(8) value(2),
dsc_String_Type_Char_Varyingz fixed bin(8) value(3),
dsc_String_Type_Char_Varying2 fixed bin(8) value(4),
dsc_String_Type_Bit_Nonvarying fixed bin(8) value(6),
dsc_String_Type_Bit_Varying2 fixed bin(8) value(7),
dsc_String_Type_Graphic_Nonvarying fixed bin(8) value(9),
dsc_String_Type_Graphic_Varyingz fixed bin(8) value(1J),
dsc_String_Type_Graphic_Varying2 fixed bin(8) value(11),
dsc_String_Type_Widechar_Nonvarying fixed bin(8) value(13),
dsc_String_Type_Widechar_Varyingz fixed bin(8) value(14),
dsc_String_Type_Widechar_Varying2 fixed bin(8) value(15);

 Array descriptors
The declare for an array descriptor is:

declare
1 dsc_Array based(sysnull()),

 2 dsc_Array_Header like dsc_Header,
2 dsc_Array_EltLen fixed bin(31), /X Length of array element X/
2 dsc_Array_Rank fixed bin(31), /X Count of dimensions X/
2 dsc_Array_RVO fixed bin(31), /X Relative virtual origin X/
2 dsc_Array_Data(1: 1 refer(dsc_Array_Rank)),
3 dsc_Array_LBound fixed bin(31), /X LBound X/
3 dsc_Array_Extent fixed bin(31), /X HBound - LBound + 1 X/
3 dsc_Array_Stride fixed bin(31); /X Multiplier X/

240 VisualAge PL/I Programming Guide

 Chapter 14. Using PLIDUMP

This section provides information about dump options and the syntax used to call
PLIDUMP, and describes PL/I-specific information included in the dump that can
help you debug your routine.

Note: PLIDUMP conforms to National Language Support standards.

Figure 56 shows an example of a PL/I routine calling PLIDUMP to produce an
Language Environment for OS/390 & VM dump. In this example, the main routine
PLIDMP calls PLIDMPA, which then calls PLIDMPB. The call to PLIDUMP is made
in routine PLIDMPB.

%PROCESS MAP GOSTMT SOURCE STG LIST OFFSET LC(1J1);
 PLIDMP: PROC OPTIONS(MAIN) ;

 Declare (H,I) Fixed bin(31) Auto;
 Declare Names Char(17) Static init('Bob Teri Bo Jason');

H = 5; I = 9;
Put skip list('PLIDMP Starting');

 Call PLIDMPA;

 PLIDMPA: PROC;
Declare (a,b) Fixed bin(31) Auto;
a = 1; b = 3;
Put skip list('PLIDMPA Starting');

 Call PLIDMPB;

 PLIDMPB: PROC;
 Declare 1 Name auto,
 2 First Char(12) Varying,
 2 Last Char(12) Varying;

First = 'Teri';
 Last = 'Gillispy';

Put skip list('PLIDMPB Starting');
Call PLIDUMP('TBFC','PLIDUMP called from procedure PLIDMPB');

 Put Data;
 End PLIDMPB;

 End PLIDMPA;

 End PLIDMP;

Figure 56. Example PL/I routine calling PLIDUMP

The syntax and options for PLIDUMP are shown below.

──PLIDUMP──(──character-string-expression 1──,──character-string-expression 2───

──)───
�

character-string-expression 1
is a dump options character string consisting of one or more of the following:

A Requests information relevant to all tasks in a multitasking program.

B BLOCKS (PL/I hexadecimal dump).

C Continue. The routine continues after the dump.

E Exit from current task of a multitasking program. Program continues
to run after requested dump is completed.

 Copyright IBM Corp. 1964, 2000 241

F FILES.

H STORAGE.

Note: A ddname of CEESNAP must be specified with the H option
to produce a SNAP dump of a PL/I routine.

K BLOCKS (when running under CICS). The Transaction Work Area
is included.

NB NOBLOCKS.

NF NOFILES.

NH NOSTORAGE.

NK NOBLOCKS (when running under CICS).

NT NOTRACEBACK.

O Only information relevant to the current task in a multitasking
program.

S Stop. The enclave is terminated with a dump.

T TRACEBACK.

T, F, and C are the default options.

character-string-expression 2
is a user-identified character string up to 80 characters long that is printed as
the dump header.

PLIDUMP usage notes
If you use PLIDUMP, the following considerations apply:

� If a routine calls PLIDUMP a number of times, use a unique user-identifier for
each PLIDUMP invocation. This simplifies identifying the beginning of each
dump.

� A DD statement with the ddname PLIDUMP, PL1DUMP, or CEEDUMP can be
used to define the data set for the dump.

� The data set defined by the PLIDUMP, PL1DUMP, or CEEDUMP DD statement
should specify a logical record length (LRECL) of at least 133 to prevent dump
records from wrapping.

� When you specify the H option in a call to PLIDUMP, the PL/I library issues an
OS SNAP macro to obtain a dump of virtual storage. The first invocation of
PLIDUMP results in a SNAP identifier of 0. For each successive invocation,
the ID is increased by one to a maximum of 256, after which the ID is reset to
0.

� Support for SNAP dumps using PLIDUMP is only provided under OS/390.
SNAP dumps are not produced in a CICS environment.

– If the SNAP is not successful, the CEE3DMP DUMP file displays the
message:

Snap was unsuccessful

– If the SNAP is successful, CEE3DMP displays the message:

Snap was successful; snap ID = nnn

242 VisualAge PL/I Programming Guide

where nnn corresponds to the SNAP identifier described above. An
unsuccessful SNAP does not result in an incrementation of the identifier.

If you want to ensure portability across system platforms, use PLIDUMP to
generate a dump of your PL/I routine.

 Chapter 14. Using PLIDUMP 243

Chapter 15. Interrupts and attention processing

To enable a PL/I program to recognize attention interrupts, two operations must be
possible:

� You must be able to create an interrupt. This is done in different ways
depending upon both the terminal you use and the operating system.

� Your program must be prepared to respond to the interrupt. You can write an
ON ATTENTION statement in your program so that the program receives
control when the ATTENTION condition is raised.

Note: If the program has an ATTENTION ON-unit that you want invoked, you
must compile the program with either of the following:

– The INTERRUPT option (supported only in TSO)
– A TEST option other than NOTEST or TEST(NONE,NOSYM).

Compiling this way causes INTERRUPT(ON) to be in effect, unless
you explicitly specify INTERRUPT(OFF) in PLIXOPT.

You can find the procedure used to create an interrupt in the IBM instruction
manual for the operating system and terminal that you are using.

There is a difference between the interrupt (the operating system recognized your
request) and the raising of the ATTENTION condition.

An interrupt is your request that the operating system notify the running program. If
a PL/I program was compiled with the INTERRUPT compile-time option,
instructions are included that test an internal interrupt switch at discrete points in
the program. The internal interrupt switch can be set if any program in the load
module was compiled with the INTERRUPT compile-time option.

The internal switch is set when the operating system recognizes that an interrupt
request was made. The execution of the special testing instructions (polling) raises
the ATTENTION condition. If a debugging tool hook (or a CALL PLITEST) is
encountered before the polling occurs, the debugging tool can be given control
before the ATTENTION condition processing starts.

Polling ensures that the ATTENTION condition is raised between PL/I statements,
rather than within the statements.

Figure 57 on page 245 shows a skeleton program, an ATTENTION ON-unit, and
several situations where polling instructions will be generated. In the program
polling will occur at:

 � LABEL1
� Each iteration of the DO
� The ELSE PUT SKIP ... statement
� Block END statements

244  Copyright IBM Corp. 1964, 2000

%PROCESS INTERRUPT;
 .
 .
 .
 ON ATTENTION
 BEGIN;

DCL X FIXED BINARY(15);
PUT SKIP LIST ('Enter 1 to terminate, J to continue.');
GET SKIP LIST (X);
IF X = 1 THEN

 STOP;
 ELSE

PUT SKIP LIST ('Attention was ignored');
 END;
 .
 .
 .
 LABEL1:

IF EMPNO ...
 .
 .
 .

DO I = 1 TO 1J;
 .
 .
 .
 END;
 .
 .
 .

Figure 57. Using an ATTENTION ON-unit

Using ATTENTION ON-units
You can use processing within the ATTENTION ON-unit to terminate potentially
endless looping in a program.

Control is given to an ATTENTION ON-unit when polling instructions recognize that
an interrupt has occurred. Normal return from the ON-unit is to the statement
following the polling code.

Interaction with a debugging tool
If the program has the TEST(ALL) or TEST(ERROR) run-time option in effect, an
interrupt causes the debugging tool to receive control the next time a hook is
encountered. This might be before the program's polling code recognizes that the
interrupt occurred.

Later, when the ATTENTION condition is raised, the debugging tool receives
control again for condition processing.

 Chapter 15. Interrupts and attention processing 245

Chapter 16. Using the Checkpoint/Restart facility

This chapter describes the PL/I Checkpoint/Restart feature which provides a
convenient method of taking checkpoints during the execution of a long-running
program in a batch environment.

At points specified in the program, information about the current status of the
program is written as a record on a data set. If the program terminates due to a
system failure, you can use this information to restart the program close to the point
where the failure occurred, avoiding the need to rerun the program completely.

This restart can be either automatic or deferred. An automatic restart is one that
takes place immediately (provided the operator authorizes it when requested by a
system message). A deferred restart is one that is performed later as a new job.

You can request an automatic restart from within your program without a system
failure having occurred.

PL/I Checkpoint/Restart uses the Advanced Checkpoint/Restart Facility of the
operating system. This facility is described in the books listed in “Bibliography” on
page 259.

To use checkpoint/restart you must do the following:

� Request, at suitable points in your program, that a checkpoint record is written.
This is done with the built-in subroutine PLICKPT.

� Provide a data set on which the checkpoint record can be written.

� Also, to ensure the desired restart activity, you might need to specify the RD
parameter in the EXEC or JOB statement (see OS/390 JCL Reference).

Note: You should be aware of the restrictions affecting data sets used by your
program. These are detailed in the “Bibliography” on page 259.

Requesting a checkpoint record
Each time you want a checkpoint record to be written, you must invoke, from your
PL/I program, the built-in subroutine PLICKPT.

──CALL──PLICKPT─ ──┬ ┬── ───
�
 └ ┘ ─(─ ─ddname─ ──┬ ┬────────────────────────────────────── ─)─
 └ ┘ ─,──check-id─ ──┬ ┬─────────────────────
 └ ┘ ─,──org─ ──┬ ┬─────────
 └ ┘ ─,──code─

The four arguments are all optional. If you do not use an argument, you need not
specify it unless you specify another argument that follows it in the given order. In
this case, you must specify the unused argument as a null string (''). The
following paragraphs describe the arguments.

ddname
is a character string constant or variable specifying the name of the DD
statement defining the data set that is to be used for checkpoint records. If you
omit this argument, the system will use the default ddname SYSCHK.

246  Copyright IBM Corp. 1964, 2000

check-id
is a character string constant or variable specifying the name that you want to
assign to the checkpoint record so that you can identify it later. If you omit this
argument, the system will supply a unique identification and print it at the
operator's console.

org
is a character string constant or variable with the attributes CHARACTER(2)
whose value indicates, in operating system terms, the organization of the
checkpoint data set. PS indicates sequential (that is, CONSECUTIVE)
organization; PO represents partitioned organization. If you omit this argument,
PS is assumed.

code
is a variable with the attributes FIXED BINARY (31), which can receive a return
code from PLICKPT. The return code has the following values:

0 A checkpoint has been successfully taken.

4 A restart has been successfully made.

8 A checkpoint has not been taken. The PLICKPT statement should be
checked.

12 A checkpoint has not been taken. Check for a missing DD statement, a
hardware error, or insufficient space in the data set. A checkpoint will fail if
taken while a DISPLAY statement with the REPLY option is still
incomplete.

16 A checkpoint has been taken, but ENQ macro calls are outstanding and
will not be restored on restart. This situation will not normally arise for a
PL/I program.

Defining the checkpoint data set
You must include a DD statement in the job control procedure to define the data
set in which the checkpoint records are to be placed. This data set can have either
CONSECUTIVE or partitioned organization. You can use any valid ddname. If you
use the ddname SYSCHK, you do not need to specify the ddname when invoking
PLICKPT.

You must specify a data set name only if you want to keep the data set for a
deferred restart. The I/O device can be any direct-access device.

To obtain only the last checkpoint record, then specify status as NEW (or OLD if
the data set already exists). This will cause each checkpoint record to overwrite
the previous one.

To retain more than one checkpoint record, specify status as MOD. This will cause
each checkpoint record to be added after the previous one.

If the checkpoint data set is a library, “check-id” is used as the member-name.
Thus a checkpoint will delete any previously taken checkpoint with the same name.

For direct-access storage, you should allocate enough primary space to store as
many checkpoint records as you will retain. You can specify an incremental space
allocation, but it will not be used. A checkpoint record is approximately 5000 bytes
longer than the area of main storage allocated to the step.

 Chapter 16. Using the Checkpoint/Restart facility 247

No DCB information is required, but you can include any of the following, where
applicable:

OPTCD=W, OPTCD=C, RECFM=UT

These subparameters are described in the OS/390 JCL User's Guide.

Requesting a restart
A restart can be automatic or deferred. You can make automatic restarts after a
system failure or from within the program itself. The system operator must
authorize all automatic restarts when requested by the system.

Automatic restart after a system failure
If a system failure occurs after a checkpoint has been taken, the automatic restart
will occur at the last checkpoint if you have specified RD=R (or omitted the RD
parameter) in the EXEC or JOB statement.

If a system failure occurs before any checkpoint has been taken, an automatic
restart, from the beginning of the job step, can still occur if you have specified
RD=R in the EXEC or JOB statement.

After a system failure occurs, you can still force automatic restart from the
beginning of the job step by specifying RD=RNC in the EXEC or JOB statement.
By specifying RD=RNC, you are requesting an automatic step restart without
checkpoint processing if another system failure occurs.

Automatic restart within a program
You can request a restart at any point in your program. The rules for the restart
are the same as for a restart after a system failure. To request the restart, you
must execute the statement:

CALL PLIREST;

To effect the restart, the compiler terminates the program abnormally, with a
system completion code of 4092. Therefore, to use this facility, the system
completion code 4092 must not have been deleted from the table of eligible codes
at system generation.

Getting a deferred restart
To ensure that automatic restart activity is canceled, but that the checkpoints are
still available for a deferred restart, specify RD=NR in the EXEC or JOB statement
when the program is first executed.

─ ─RESTART──═──(──stepname─ ──┬ ┬────────── ─)─────────────────────────────────────
�
 ├ ┤─,────────
 └ ┘─check-id─

If you subsequently require a deferred restart, you must submit the program as a
new job, with the RESTART parameter in the JOB statement. Use the RESTART
parameter to specify the job step at which the restart is to be made and, if you
want to restart at a checkpoint, the name of the checkpoint record.

248 VisualAge PL/I Programming Guide

For a restart from a checkpoint, you must also provide a DD statement that defines
the data set containing the checkpoint record. The DD statement must be named
SYSCHK. The DD statement must occur immediately before the EXEC statement
for the job step.

Modifying checkpoint/restart activity
You can cancel automatic restart activity from any checkpoints taken in your
program by executing the statement:

CALL PLICANC;

However, if you specified RD=R or RD=RNC in the JOB or EXEC statement,
automatic restart can still take place from the beginning of the job step.

Also, any checkpoints already taken are still available for a deferred restart.

You can cancel any automatic restart and the taking of checkpoints, even if they
were requested in your program, by specifying RD=NC in the JOB or EXEC
statement.

 Chapter 16. Using the Checkpoint/Restart facility 249

Chapter 17. Using user exits

PL/I provides a number of user exits that allow you to customize the PL/I product to
suit your needs. The PL/I products supply default exits and the associated source
files.

If you want the exits to perform functions that are different from those supplied by
the default exits, we recommend that you modify the supplied source files as
appropriate.

At times, it is useful to be able to tailor the compiler to meet the needs of your
organization. For example, you might want to suppress certain messages or alter
the severity of others. You might want to perform a specific function with each
compilation, such as logging statistical information about the compilation into a file.
A compiler user exit handles this type of function.

With PL/I, you can write your own user exit or use the exit provided with the
product, either 'as is' or modified, depending on what you want to do with it. The
purpose of this chapter is to describe:

� Procedures that the compiler user exit supports
� How to activate the compiler user exit
� IBMUEXIT, the IBM-supplied compiler user exit
� Requirements for writing your own compiler user exit.

Procedures performed by the compiler user exit
The compiler user exit performs three specific procedures:

 � Initialization
� Interception and filtering of compiler messages

 � Termination

As illustrated in Figure 58, the compiler passes control to the initialization
procedure, the message filter procedure, and the termination procedure. Each of
these three procedures, in turn, passes control back to the compiler when the
requested procedure is completed.

 ┌────────┐
 │ │

│ │ ┌───────────────┐
 │ ├───────
│Initialization │
 │ C │�───────┤procedure │
 │ O │ └───────────────┘
 │ M │ ┌───────────────┐

│ P ├───────
│Message filter │
 │ I │�───────┤procedure │
 │ L │ └───────────────┘
 │ E │ ┌───────────────┐
 │ R ├───────
│Termination │
 │ │�───────┤procedure │

│ │ └───────────────┘
 │ │
 └────────┘

Figure 58. PL/I compiler user exit procedures

Each of the three procedures is passed two different control blocks:

250  Copyright IBM Corp. 1964, 2000

� A global control block that contains information about the compilation. This is
passed as the first parameter. For specific information on the global control
block, see “Structure of global control blocks” on page 252.

� A function-specific control block that is passed as the second parameter. The
content of this control block depends upon which procedure has been invoked.
For detailed information, see “Writing the initialization procedure” on page 254,
“Writing the message filtering procedure” on page 254, and “Writing the
termination procedure” on page 255.

Activating the compiler user exit
In order to activate the compiler user exit, you must specify the EXIT compile-time
option. For more information on the EXIT option, see “EXIT” on page 14.

The EXIT compile-time option allows you to specify a user-option-string which
specifies the DDname for the user exit input file. If you do not specify a string,
SYSUEXIT is used as the DDname for the user exit input file.

The user-option-string is passed to the user exit functions in the global control block
which is discussed in “Structure of global control blocks” on page 252. Please
refer to the field “Uex_UIB_User_char_str” in the section “Structure of global control
blocks” on page 252 for additional information.

The IBM-supplied compiler exit, IBMUEXIT
IBM supplies you with the sample compiler user exit, IBMUEXIT, which filters
messages for you. It monitors messages and, based on the message number that
you specify, suppresses the message or changes the severity of the message.

Customizing the compiler user exit
As was mentioned earlier, you can write your own compiler user exit or simply use
the one shipped with the compiler. In either case, the name of the fetchable file for
the compiler user exit must be IBMUEXIT.

This section describes how to:

� Modify the user exit input file for customized message filtering
� Create your own compiler user exit

 Modifying SYSUEXIT
Rather than spending the time to write a completely new compiler user exit, you
can simplify modify the user exit input file.

Edit the file to indicate which message numbers you want to suppress, and which
message number severity levels you would like changed. A sample file is shown in
Figure 59.

 Chapter 17. Using user exits 251

Fac Id Msg No Severity Suppress Comment
+--------+--------+----------+----------+--------------------------------
'IBM' 1J42 -1 1 String spans multiple lines
'IBM' 1J44 -1 1 FIXED BIN 7 mapped to 1 byte
'IBM' 1J47 8 J Order inhibits optimization
'IBM' 1J52 -1 1 Nodescriptor with X extent arg
'IBM' 1J59 J J Select without OTHERWISE
'IBM' 1169 J 1 Precision of result determined

Figure 59. Example of an user exit input file

The first two lines are header lines and are ignored by IBMUEXIT. The remaining
lines contain input separated by a variable number of blanks.

Each column of the file is relevant to the compiler user exit:

� The first column must contain the letters 'IBM' in single quotes, which is the
message prefix.

� The second column contains the four digit message number.

� The third column shows the new message severity. Severity -1 indicates that
the severity should be left as the default value.

� The fourth column indicates whether or not the message is to be suppressed.
A '1' indicates the message is to be suppressed, and a '0' indicates that it
should be printed.

� The comment field, found in the last column, is for your information, and is
ignored by IBMUEXIT.

Writing your own compiler exit
To write your own user exit, you can use IBMUEXIT (see the source in Figure 16.)
as a model. As you write the exit, make sure it covers the areas of initialization,
message filtering, and termination.

Structure of global control blocks
The global control block is passed to each of the three user exit procedures
(initialization, filtering, and termination) whenever they are invoked. The following
code and accompanying explanations describe the contents of each field in the
global control block.

252 VisualAge PL/I Programming Guide

 Dcl
1 Uex_UIB native based(null()),

 2 Uex_UIB_Length fixed bin(31),

2 Uex_UIB_Exit_token pointer, /X for user exit's use X/

2 Uex_UIB_User_char_str pointer, /X to exit option str X/
 2 Uex_UIB_User_char_len fixed bin(31),

2 Uex_UIB_Filename_str pointer, /X to source filename X/
 2 Uex_UIB_Filename_len fixed bin(31),

2 Uex_UIB_return_code fixed bin(31), /X set by exit procs X/
2 Uex_UIB_reason_code fixed bin(31), /X set by exit procs X/

2 Uex_UIB_Exit_Routs, /X exit entries set at
 initialization X/

3 (Uex_UIB_Termination,
 Uex_UIB_Message_Filter, /X call for each msg X/

X, X, X, X)
limited entry (

X, /X to Uex_UIB X/
X, /X to a request area X/

);

Data Entry Fields

� Uex_UIB_ Length: Contains the length of the control block in bytes. The value
is storage (Uex_UIB).

� Uex_UIB_Exit_token: Used by the user exit procedure. For example, the
initialization may set it to a data structure which is used by both the message
filter, and the termination procedures.

� Uex_UIB_User_char_str: Points to an optional character string, if you specify
it. For example, in pli filename (EXIT ('string'))...fn can be a character
string up to thirty-one characters in length.

� Uex_UIB_char_len: Contains the length of the string pointed to by the
User_char_str. The compiler sets this value.

� Uex_UIB_Filename_str: Contains the name of the source file that you are
compiling, and includes the drive and subdirectories as well as the filename.
The compiler sets this value.

� Uex_UIB_Filename_len: Contains the length of the name of the source file
pointed to by the Filename_str. The compiler sets this value.

� Uex_UIB_return_code: Contains the return code from the user exit procedure.
The user sets this value.

� Uex__UIB_reason_code: Contains the procedure reason code. The user sets
this value.

� Uex_UIB_Exit_Routs: Contains the exit entries set up by the initialization
procedure.

� Uex_UIB_Termination: Contains the entry that is to be called by the compiler
at termination time. The user sets this value.

 Chapter 17. Using user exits 253

� Uex_UIB_Message_Filter: Contains the entry that is to be called by the
compiler whenever a message needs to be generated. The user sets this
value.

Writing the initialization procedure
Your initialization procedure should perform any initialization required by the exit,
such as opening files and allocating storage. The initialization procedure-specific
control block is coded as follows:

Dcl 1 Uex_ISA native based(null()),
2 Uex_ISA_Length_fixed bin(31); /X storage(Uex_ISA) X /

The global control block syntax for the initialization procedure is discussed in the
section “Structure of global control blocks” on page 252.

Upon completion of the initialization procedure, you should set the return/reason
codes to the following:

0/0 Continue compilation

4/n Reserved for future use

8/n Reserved for future use

12/n Reserved for future use

16/n Abort compilation

Writing the message filtering procedure
The message filtering procedure permits you to either suppress messages or alter
the severity of messages. You can increase the severity of any of the messages
but you can only decrease the severity of WARNING (severity code 4) messages to
INFORMATIONAL (severity code 0) messages.

The procedure-specific control block contains information about the messages. It is
used to pass information back to the compiler indicating how a particular message
should be handled.

The following is an example of a procedure-specific message filter control block:

Dcl 1 Uex_MFA native based(null()),
 2 Uex_MFA_Length fixed bin(31),

2 Uex_MFA_Facility_Id char(3), /X of component writing
 message X/
 2 X char(1),
 2 Uex_MFA_Message_no fixed bin(31),
 2 Uex_MFA_Severity fixed bin(15),

2 Uex_MFA_New_Severity fixed bin(15); /X set by exit proc X/

Data Entry Fields

� Uex_MFA_Length: Contains the length of the control block in bytes. The
value is storage (Uex_MFA).

� Uex_MFA_Facility_Id: Contains the ID of the facility; in this case, the ID is
IBM. The compiler sets this value.

254 VisualAge PL/I Programming Guide

� Uex_MFA_Message_no: Contains the message number that the compiler is
going to generate. The compiler sets this value.

� Uex_MFA_Severity: Contains the severity level of the message; it can be from
one to fifteen characters in length. The compiler sets this value.

� Uex_MFA_New_Severity: Contains the new severity level of the message; it
can be from one to fifteen characters in length. The user sets this value.

Upon completion of the message filtering procedure, set the return/reason codes to
one of the following:

0/0 Continue compilation, output message

0/1 Continue compilation, do not output message

4/n Reserved for future use

8/n Reserved for future use

16/n Abort compilation

Writing the termination procedure
You should use the termination procedure to perform any cleanup required, such as
closing files. You might also want to write out final statistical reports based on
information collected during the error message filter procedures and the initialization
procedures.

The termination procedure-specific control block is coded as follows:

Dcl 1 Uex_ISA native based,
2 Uex_ISA_Length_fixed bin(31); /X storage(Uex_ISA) X/

The global control block syntax for the termination procedure is discussed in
“Structure of global control blocks” on page 252. Upon completion of the
termination procedure, set the return/reason codes to one of the following:

0/0 Continue compilation

4/n Reserved for future use

8/n Reserved for future use

12/n Reserved for future use

16/n Abort compilation

 Chapter 17. Using user exits 255

 Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
 IBM Corporation

North Castle Drive
 Armonk, NY 10504-1785
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
 Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

256  Copyright IBM Corp. 1964, 2000

 IBM Corporation
 J74/G4

555 Bailey Avenue
P.O. Box 49023
San Jose, CA 95161-9023

 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

If you are viewing this information softcopy, the photographs and color illustrations
might not appear.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM VisualAge PL/I for
OS/390.

Macros for customer use
IBM VisualAge PL/I for OS/390 provides no macros that allow a customer
installation to write programs that use the services of IBM VisualAge PL/I for
OS/390.

Attention: Do not use as programming interfaces any IBM VisualAge PL/I for
OS/390 macros.

 Appendix. Notices 257

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Windows is a trademark of Microsoft Corporation in the United States and/or other
countries.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

AIX
CICS
CICS/ESA
DFSMS/MVS
DFSORT
IBM

IMS
IMS/ESA
Language Environment
OS/2
OS/390
Proprinter
VisualAge

258 VisualAge PL/I Programming Guide

 Bibliography

VisualAge PL/I for OS/390
publications

Fact Sheet, GC26-9470

Licensed Program Specifications, GC26-9471

Programming Guide, SC26-9473

Compiler and Run-Time Migration Guide,
SC26-9474

Diagnosis Guide, SC26-9475

Language Reference, SC26-9476

Messages and Codes, SC26-9478

Other PL/I publications
PL/I for MVS & VM

Installation and Customization under MVS,
SC26-3119

Programming Guide, SC26-3113

Language Reference, SC26-3114

Reference Summary, SX26-3821

Compiler and Run-Time Migration Guide,
SC26-3118

Compile-Time Message and Codes, SC26-3229

Diagnosis Guide, SC26-3149

VisualAge PL/I Enterprise (OS/2 and Windows)

Fact Sheet, GC26-9187

Programming Guide, GC26-9177

Language Reference, GC26-9178

Messages and Codes, GC26-9179

Building GUIs on OS/2, GC26-9180

PL/I Set for AIX

Programming Guide, SC26-8456

Language Reference, SC26-8455

Messages and Codes, SC26-8457

Program Builder User's Guide, SC09-2201

LPEX User's Guide and Reference, SC09-2202

OS/390 Language Environment
publications

Concepts Guide, GC28-1945

Programming Guide, SC28-1939

Programming Reference, SC28-1940

 Customization, SC28-1941

Debugging Guide and Run-Time Messages,
SC28-1942

Run-Time Migration Guide, SC28-1944

Writing Interlanguage Applications, SC28-1943

IBM Debug Tool publications
User's Guide and Reference, SC09-2137

Reference Summary, SX26-3840

 Softcopy publications

Online publications are distributed on CD-ROMs and
can be ordered from Mechanicsburg through your IBM
representative. PL/I books are distributed on the
following collection kits:

OS/390 Collection Kit, SK2T-6700
Messages & Codes Collection Kit, SK2T-2068

Other books you might need

CICS/ESA

Application Programming Guide, SC33-1169

Application Programming Reference, SC33-1170

Sample Applications Guide, SC33-1173

DFSORT

Application Programming Guide, SC33-4035

Installation and Customization, SC33-4034

IMS/ESA

Application Programming: Database Manager,
SC26-8015

Application Programming: Database Manager
Summary, SC26-8037

Application Programming: Design Guide,
SC26-8016

 Copyright IBM Corp. 1964, 2000 259

Application Programming: Transaction Manager,
SC26-8017

Application Programming: Transaction Manager
Summary, SC26-8038

Application Programming: EXEC DL/I Commands
for CICS and IMS, SC26-8018

Application Programming: EXEC DL/I Commands
for CICS and IMS Summary, SC26-8036

OS/390 TSO/E

User's Guide, SC28-1968

Command Reference, SC28-1969

260 VisualAge PL/I Programming Guide

 Glossary

This glossary defines terms for all platforms and releases of PL/I. It might contain terms that
this manual does not use. If you do not find the terms for which you are looking, see the
index in this manual or IBM Dictionary of Computing, SC20-1699.

A
access. To reference or retrieve data.

action specification. In an ON statement, the ON-unit
or the single keyword SYSTEM, either of which
specifies the action to be taken whenever the
appropriate condition is raised.

activate (a block). To initiate the execution of a block.
A procedure block is activated when it is invoked. A
begin-block is activated when it is encountered in the
normal flow of control, including a branch. A package
cannot be activated.

activate (a preprocessor variable or preprocessor
entry point). To make a macro facility identifier eligible
for replacement in subsequent source code. The
%ACTIVATE statement activates preprocessor variables
or preprocessor entry points.

active. (1) The state of a block after activation and
before termination. (2) The state in which a
preprocessor variable or preprocessor entry name is
said to be when its value can replace the corresponding
identifier in source program text. (3) The state in which
an event variable is said to be during the time it is
associated with an asynchronous operation. (4) The
state in which a task variable is said to be when its
associated task is attached. (5) The state in which a
task is said to be before it has been terminated.

actual origin (AO). The location of the first item in the
array or structure.

additive attribute. A file description attribute for which
there are no defaults, and which, if required, must be
stated explicitly or implied by another explicitly stated
attribute. Contrast with alternative attribute.

adjustable extent. The bound (of an array), the length
(of a string), or the size (of an area) that might be
different for different generations of the associated
variable. Adjustable extents are specified as
expressions or asterisks (or by REFER options for
based variables), which are evaluated separately for
each generation. They cannot be used for static
variables.

aggregate. See data aggregate.

aggregate expression. An array, structure, or union
expression.

aggregate type. For any item of data, the specification
whether it is structure, union, or array.

allocated variable. A variable with which main storage
is associated and not freed.

allocation. (1) The reservation of main storage for a
variable. (2) A generation of an allocated variable.
(3) The association of a PL/I file with a system data set,
device, or file.

alignment. The storing of data items in relation to
certain machine-dependent boundaries (for example, a
fullword or halfword boundary).

alphabetic character. Any of the characters A through
Z of the English alphabet and the alphabetic extenders
#, $, and @ (which can have a different graphic
representation in different countries).

alphameric character. An alphabetic character or a
digit.

alternative attribute. A file description attribute that is
chosen from a group of attributes. If none is specified,
a default is assumed. Contrast with additive attribute.

ambiguous reference. A reference that is not
sufficiently qualified to identify one and only one name
known at the point of reference.

area. A portion of storage within which based variables
can be allocated.

argument. An expression in an argument list as part
of an invocation of a subroutine or function.

argument list. A parenthesized list of zero or more
arguments, separated by commas, following an entry
name constant, an entry name variable, a generic
name, or a built-in function name. The list becomes the
parameter list of the entry point.

arithmetic comparison. A comparison of numeric
values. See also bit comparison, character comparison.

 Copyright IBM Corp. 1964, 2000 261

arithmetic constant. A fixed-point constant or a
floating-point constant. Although most arithmetic
constants can be signed, the sign is not part of the
constant.

arithmetic conversion. The transformation of a value
from one arithmetic representation to another.

arithmetic data. Data that has the characteristics of
base, scale, mode, and precision. Coded arithmetic
data and pictured numeric character data are included.

arithmetic operators. Either of the prefix operators +
and −, or any of the following infix operators: + − * / **

array. A named, ordered collection of one or more
data elements with identical attributes, grouped into one
or more dimensions.

array expression. An expression whose evaluation
yields an array of values.

array of structures. An ordered collection of identical
structures specified by giving the dimension attribute to
a structure name.

array variable. A variable that represents an
aggregate of data items that must have identical
attributes. Contrast with structure variable.

ASCII. American National Standard Code for
Information Interchange.

assignment. The process of giving a value to a
variable.

asynchronous operation. (1) The overlap of an
input/output operation with the execution of statements.
(2) The concurrent execution of procedures using
multiple flows of control for different tasks.

attachment of a task. The invocation of a procedure
and the establishment of a separate flow of control to
execute the invoked procedure (and procedures it
invokes) asynchronously, with execution of the invoking
procedure.

attention. An occurrence, external to a task, that could
cause a task to be interrupted.

attribute. (1) A descriptive property associated with a
name to describe a characteristic represented. (2) A
descriptive property used to describe a characteristic of
the result of evaluation of an expression.

automatic storage allocation. The allocation of
storage for automatic variables.

automatic variable. A variable whose storage is
allocated automatically at the activation of a block and
released automatically at the termination of that block.

B
base. The number system in which an arithmetic value
is represented.

base element. A member of a structure or a union
that is itself not another structure or union.

base item. The automatic, controlled, or static variable
or the parameter upon which a defined variable is
defined.

based reference. A reference that has the based
storage class.

based storage allocation. The allocation of storage
for based variables.

based variable. A variable whose storage address is
provided by a locator. Multiple generations of the same
variable are accessible. It does not identify a fixed
location in storage.

begin-block. A collection of statements delimited by
BEGIN and END statements, forming a name scope. A
begin-block is activated either by the raising of a
condition (if the begin-block is the action specification
for an ON-unit) or through the normal flow of control,
including any branch resulting from a GOTO statement.

binary. A number system whose only numerals are 0
and 1.

binary digit. See bit.

binary fixed-point value. An integer consisting of
binary digits and having an optional binary point and
optional sign. Contrast with decimal fixed-point value.

binary floating-point value. An approximation of a
real number in the form of a significand, which can be
considered as a binary fraction, and an exponent, which
can be considered as an integer exponent to the base
of 2. Contrast with decimal floating-point value.

bit. (1) A 0 or a 1. (2) The smallest amount of space
of computer storage.

bit comparison. A left-to-right, bit-by-bit comparison of
binary digits. See also arithmetic comparison, character
comparison.

bit string constant. (1) A series of binary digits
enclosed in and followed immediately by the suffix B.
Contrast with character constant. (2) A series of
hexadecimal digits enclosed in single quotes and
followed by the suffix B4.

bit string. A string composed of zero or more bits.

262 VisualAge PL/I Programming Guide

bit string operators. The logical operators not and
exclusive-or (¬), and (&), and or (|).

bit value. A value that represents a bit type.

block. A sequence of statements, processed as a unit,
that specifies the scope of names and the allocation of
storage for names declared within it. A block can be a
package, procedure, or a begin-block.

bounds. The upper and lower limits of an array
dimension.

break character. The underscore symbol (_). It can
be used to improve the readability of identifiers. For
instance, a variable could be called
OLD_INVENTORY_TOTAL instead of
OLDINVENTORYTOTAL.

built-in function. A predefined function supplied by
the language, such as SQRT (square root).

built-in function reference. A built-in function name,
which has an optional argument list.

built-in name. The entry name of a built-in subroutine.

built-in subroutine. Subroutine that has an entry
name that is defined at compile-time and is invoked by
a CALL statement.

buffer. Intermediate storage, used in input/output
operations, into which a record is read during input and
from which a record is written during output.

C
call. To invoke a subroutine by using the CALL
statement or CALL option.

character comparison. A left-to-right,
character-by-character comparison according to the
collating sequence. See also arithmetic comparison, bit
comparison.

character string constant. A sequence of characters
enclosed in single quotes; for example,
'Shakespeare''s 'Hamlet:''.

character set. A defined collection of characters. See
language character set and data character set. See
also ASCII and EBCDIC.

character string picture data. Picture data that has
only a character value. This type of picture data must
have at least one A or X picture specification character.
Contrast with numeric picture data.

closing (of a file). The dissociation of a file from a
data set or device.

coded arithmetic data. Data items that represent
numeric values and are characterized by their base
(decimal or binary), scale (fixed-point or floating-point),
and precision (the number of digits each can have).
This data is stored in a form that is acceptable, without
conversion, for arithmetic calculations.

combined nesting depth. The deepest level of
nesting, determined by counting the levels of
PROCEDURE/BEGIN/ON, DO, SELECT, and
IF...THEN...ELSE nestings in the program.

comment. A string of zero or more characters used for
documentation that are delimited by /* and */.

commercial character.

� CR (credit) picture specification character
� DB (debit) picture specification character

comparison operator. An operator that can be used
in an arithmetic, string locator, or logical relation to
indicate the comparison to be done between the terms
in the relation. The comparison operators are:

= (equal to)
> (greater than)
< (less than)
>= (greater than or equal to)
<= (less than or equal to)
¬= (not equal to)
¬> (not greater than)
¬< (not less than)

compile time. In general, the time during which a
source program is translated into an object module. In
PL/I, it is the time during which a source program can
be altered, if desired, and then translated into an object
program.

compiler options. Keywords that are specified to
control certain aspects of a compilation, such as: the
nature of the object module generated, the types of
printed output produced, and so forth.

complex data. Arithmetic data, each item of which
consists of a real part and an imaginary part.

composite operator. An operator that consists of
more than one special character, such as <=, **, and /*.

compound statement. A statement that contains
other statements. In PL/I, IF, ON, OTHERWISE, and
WHEN are the only compound statements. See
statement body.

concatenation. The operation that joins two strings in
the order specified, forming one string whose length is
equal to the sum of the lengths of the two original
strings. It is specified by the operator ||.

 Glossary 263

condition. An exceptional situation, either an error
(such as an overflow), or an expected situation (such as
the end of an input file). When a condition is raised
(detected), the action established for it is processed.
See also established action and implicit action.

condition name. Name of a PL/I-defined or
programmer-defined condition.

condition prefix. A parenthesized list of one or more
condition names prefixed to a statement. It specifies
whether the named conditions are to be enabled or
disabled.

connected aggregate. An array or structure whose
elements occupy contiguous storage without any
intervening data items. Contrast with nonconnected
aggregate.

connected reference. A reference to connected
storage. It must be apparent, prior to execution of the
program, that the storage is connected.

connected storage. Main storage of an uninterrupted
linear sequence of items that can be referred to by a
single name.

constant. (1) An arithmetic or string data item that
does not have a name and whose value cannot change.
(2) An identifier declared with the VALUE attribute.
(3) An identifier declared with the FILE or the ENTRY
attribute but without the VARIABLE attribute.

constant reference. A value reference which has a
constant as its object

contained block, declaration, or source text. All
blocks, procedures, statements, declarations, or source
text inside a begin, procedure, or a package block. The
entire package, procedure, and the BEGIN statement
and its corresponding END statements are not
contained in the block.

containing block. The package, procedure, or
begin-block that contains the declaration, statement,
procedure, or other source text in question.

contextual declaration. The appearance of an
identifier that has not been explicitly declared in a
DECLARE statement, but whose context of use allows
the association of specific attributes with the identifier.

control character. A character in a character set
whose occurrence in a particular context specifies a
control function. One example is the end-of-file (EOF)
marker.

control format item. A specification used in
edit-directed transmission to specify positioning of a
data item within the stream or printed page.

control variable. A variable that is used to control the
iterative execution of a DO statement.

controlled parameter. A parameter for which the
CONTROLLED attribute is specified in a DECLARE
statement. It can be associated only with arguments
that have the CONTROLLED attribute.

controlled storage allocation. The allocation of
storage for controlled variables.

controlled variable. A variable whose allocation and
release are controlled by the ALLOCATE and FREE
statements, with access to the current generation only.

control sections. Grouped machine instructions in an
object module.

conversion. The transformation of a value from one
representation to another to conform to a given set of
attributes. For example, converting a character string to
an arithmetic value such as FIXED BINARY (15,0).

cross section of an array. The elements represented
by the extent of at least one dimension of an array. An
asterisk in the place of a subscript in an array reference
indicates the entire extent of that dimension.

current generation. The generation of an automatic or
controlled variable that is currently available by referring
to the name of the variable.

D
DDM file. A &system. file that is associated with a
remote file that is accessed using DDM. The DDM file
provides the information needed for a local (source)
system to locate a remote (target) system and to
access the file at the target system where the requested
data is stored.

data. Representation of information or of value in a
form suitable for processing.

data aggregate. A data item that is a collection of
other data items.

data attribute. A keyword that specifies the type of
data that the data item represents, such as FIXED
BINARY.

data-directed transmission. The type of
stream-oriented transmission in which data is
transmitted. It resembles an assignment statement and
is of the form name = constant.

data item. A single named unit of data.

264 VisualAge PL/I Programming Guide

data list. In stream-oriented transmission, a
parenthesized list of the data items used in GET and
PUT statements. Contrast with format list.

data set. (1) A collection of data external to the
program that can be accessed by reference to a single
file name. (2) A device that can be referenced.

data specification. The portion of a stream-oriented
transmission statement that specifies the mode of
transmission (DATA, LIST, or EDIT) and includes the
data list(s) and, for edit-directed mode, the format list(s).

data stream. Data being transferred from or to a data
set by stream-oriented transmission, as a continuous
stream of data elements in character form.

data transmission. The transfer of data from a data
set to the program or vice versa.

data type. A set of data attributes.

DBCS. In the character set, each character is
represented by two consecutive bytes.

deactivated. The state in which an identifier is said to
be when its value cannot replace a preprocessor
identifier in source program text. Contrast with active.

debugging. Process of removing bugs from a
program.

decimal. The number system whose numerals are 0
through 9.

decimal digit picture character. The picture
specification character 9.

decimal fixed-point constant. A constant consisting
of one or more decimal digits with an optional decimal
point.

decimal fixed-point value. A rational number
consisting of a sequence of decimal digits with an
assumed position of the decimal point. Contrast with
binary fixed-point value.

decimal floating-point constant. A value made up of
a significand that consists of a decimal fixed-point
constant, and an exponent that consists of the letter E
followed by an optionally signed integer constant not
exceeding three digits.

decimal floating-point value. An approximation of a
real number, in the form of a significand, which can be
considered as a decimal fraction, and an exponent,
which can be considered as an integer exponent to the
base 10. Contrast with binary floating-point value.

decimal picture data. See numeric picture data.

declaration. (1) The establishment of an identifier as
a name and the specification of a set of attributes
(partial or complete) for it. (2) A source of attributes of
a particular name.

default. Describes a value, attribute, or option that is
assumed when none has been specified.

defined variable. A variable that is associated with
some or all of the storage of the designated base
variable.

delimit. To enclose one or more items or statements
with preceding and following characters or keywords.

delimiter. All comments and the following characters:
percent, parentheses, comma, period, semicolon, colon,
assignment symbol, blank, pointer, asterisk, and single
quote. They define the limits of identifiers, constants,
picture specifications, iSUBs, and keywords.

descriptor. A control block that holds information
about a variable, such as area size, array bounds, or
string length.

digit. One of the characters 0 through 9.

dimension attribute. An attribute that specifies the
number of dimensions of an array and indicates the
bounds of each dimension.

disabled. The state of a condition in which no interrupt
occurs and no established action will take place.

do-group. A sequence of statements delimited by a
DO statement and ended by its corresponding END
statement, used for control purposes. Contrast with
block.

do-loop. See iterative do-group.

dummy argument. Temporary storage that is created
automatically to hold the value of an argument that
cannot be passed by reference.

dump. Printout of all or part of the storage used by a
program as well as other program information, such as
a trace of an error's origin.

E
EBCDIC. (Extended Binary-Coded Decimal
Interchange Code). A coded character set consisting of
8-bit coded characters.

edit-directed transmission. The type of
stream-oriented transmission in which data appears as
a continuous stream of characters and for which a
format list is required to specify the editing desired for
the associated data list.

 Glossary 265

element. A single item of data as opposed to a
collection of data items such as an array; a scalar item.

element expression. An expression whose evaluation
yields an element value.

element variable. A variable that represents an
element; a scalar variable.

elementary name. See base element.

enabled. The state of a condition in which the
condition can cause an interrupt and then invocation of
the appropriate established ON-unit.

end-of-step message. message that follows the listng
of the job control statements and job scheduler
messages and contains return code indicating success
or failure for each step.

entry constant. (1) The label prefix of a
PROCEDURE statement (an entry name). (2) The
declaration of a name with the ENTRY attribute but
without the VARIABLE attribute.

entry data. A data item that represents an entry point
to a procedure.

entry expression. An expression whose evaluation
yields an entry name.

entry name. (1) An identifier that is explicitly or
contextually declared to have the ENTRY attribute
(unless the VARIABLE attribute is given) or (2) An
identifier that has the value of an entry variable with the
ENTRY attribute implied.

entry point. A point in a procedure at which it can be
invoked. primary entry point and secondary entry point.

entry reference. An entry constant, an entry variable
reference, or a function reference that returns an entry
value.

entry variable. A variable to which an entry value can
be assigned. It must have both the ENTRY and
VARIABLE attributes.

entry value. The entry point represented by an entry
constant or variable; the value includes the environment
of the activation that is associated with the entry
constant.

environment (of an activation). Information
associated with and used in the invoked block regarding
data declared in containing blocks.

environment (of a label constant). Identity of the
particular activation of a block to which a reference to a
statement-label constant applies. This information is

determined at the time a statement-label constant is
passed as an argument or is assigned to a
statement-label variable, and it is passed or assigned
along with the constant.

established action. The action taken when a
condition is raised. See also implicit action and
ON-statement action.

epilogue. Those processes that occur automatically at
the termination of a block or task.

evaluation. The reduction of an expression to a single
value, an array of values, or a structured set of values.

event. An activity in a program whose status and
completion can be determined from an associated event
variable.

event variable. A variable with the EVENT attribute
that can be associated with an event. Its value
indicates whether the action has been completed and
the status of the completion.

explicit declaration. The appearance of an identifier
(a name) in a DECLARE statement, as a label prefix, or
in a parameter list. Contrast with implicit declaration.

exponent characters. The following picture
specification characters:

1. K and E, which are used in floating-point picture
specifications to indicate the beginning of the
exponent field.

2. F, the scaling factor character, specified with an
integer constant that indicates the number of
decimal positions the decimal point is to be moved
from its assumed position to the right (if the
constant is positive) or to the left (if the constant is
negative).

expression. (1) A notation, within a program, that
represents a value, an array of values, or a structured
set of values. (2) A constant or a reference appearing
alone, or a combination of constants and/or references
with operators.

extended alphabet. The uppercase and lowercase
alphabetic characters A through Z, $, @ and #, or those
specified in the NAMES compiler option.

extent. (1) The range indicated by the bounds of an
array dimension, by the length of a string, or by the size
of an area. (2) The size of the target area if this area
were to be assigned to a target area.

external name. A name (with the EXTERNAL
attribute) whose scope is not necessarily confined only
to one block and its contained blocks.

266 VisualAge PL/I Programming Guide

external procedure. (1) A procedure that is not
contained in any other procedure. (2) A level-2
procedure contained in a package that is also exported.

external symbol. Name that can be referred to in a
control section other than the one in which it is defined.

External Symbol Dictionary (ESD). Table containing
all the external symbols that appear in the object
module.

extralingual character. Characters (such as $, @,
and #) that are not classified as alphanumeric or
special. This group includes characters that are
determined with the NAMES compiler option.

F
factoring. The application of one or more attributes to
a parenthesized list of names in a DECLARE statement,
eliminating the repetition of identical attributes for
multiple names.

field (in the data stream). That portion of the data
stream whose width, in number of characters, is defined
by a single data or spacing format item.

field (of a picture specification). Any character-string
picture specification or that portion (or all) of a numeric
character picture specification that describes a
fixed-point number.

file. A named representation, within a program, of a
data set or data sets. A file is associated with the data
set(s) for each opening.

file constant. A name declared with the FILE attribute
but not the VARIABLE attribute.

file description attributes. Keywords that describe
the individual characteristics of each file constant. See
also alternative attribute and additive attribute.

file expression. An expression whose evaluation
yields a value of the type file.

file name. A name declared for a file.

file variable. A variable to which file constants can be
assigned. It has the attributes FILE and VARIABLE and
cannot have any of the file description attributes.

fixed-point constant. See arithmetic constant.

fix-up. A solution, performed by the compiler after
detecting an error during compilation, that allows the
compiled program to run.

floating-point constant. See arithmetic constant.

flow of control. Sequence of execution.

format. A specification used in edit-directed data
transmission to describe the representation of a data
item in the stream (data format item) or the specific
positioning of a data item within the stream (control
format item).

format constant. The label prefix on a FORMAT
statement.

format data. A variable with the FORMAT attribute.

format label. The label prefix on a FORMAT
statement.

format list. In stream-oriented transmission, a list
specifying the format of the data item on the external
medium. Contrast with data list.

fully qualified name. A name that includes all the
names in the hierarchical sequence above the member
to which the name refers, as well as the name of the
member itself.

function (procedure). (1) A procedure that has a
RETURNS option in the PROCEDURE statement.
(2) A name declared with the RETURNS attribute. It is
invoked by the appearance of one of its entry names in
a function reference and it returns a scalar value to the
point of reference. Contrast with subroutine.

function reference. An entry constant or an entry
variable, either of which must represent a function,
followed by a possibly empty argument list. Contrast
with subroutine call.

G
generation (of a variable). The allocation of a static
variable, a particular allocation of a controlled or
automatic variable, or the storage indicated by a
particular locator qualification of a based variable or by
a defined variable or parameter.

generic descriptor. A descriptor used in a GENERIC
attribute.

generic key. A character string that identifies a class
of keys. All keys that begin with the string are
members of that class. For example, the recorded keys
'ABCD', 'ABCE', and 'ABDF', are all members of the
classes identified by the generic keys 'A' and 'AB',
and the first two are also members of the class 'ABC';
and the three recorded keys can be considered to be
unique members of the classes 'ABCD', 'ABCE',
'ABDF', respectively.

generic name. The name of a family of entry names.
A reference to the generic name is replaced by the

 Glossary 267

entry name whose parameter descriptors match the
attributes of the arguments in the argument list at the
point of invocation.

group. A collection of statements contained within
larger program units. A group is either a do-group or a
select-group and it can be used wherever a single
statement can appear, except as an on-unit.

H
hex. See hexadecimal digit.

hexadecimal. Pertaining to a numbering system with a
base of sixteen; valid numbers use the digits 0 through
9 and the characters A through F, where A represents
10 and F represents 15.

hexadecimal digit. One of the digits 0 through 9 and
A through F. A through F represent the decimal values
10 through 15, respectively.

I
identifier. A string of characters, not contained in a
comment or constant, and preceded and followed by a
delimiter. The first character of the identifier must be
one of the 26 alphabetic characters and extralingual
characters, if any. The other characters, if any, can
additionally include extended alphabetic, digit, or the
break character.

IEEE. Institute of Electrical and Electronics Engineers.

implicit. The action taken in the absence of an explicit
specification.

implicit action. The action taken when an enabled
condition is raised and no ON-unit is currently
established for the condition. Contrast with
ON-statement action.

implicit declaration. A name not explicitly declared in
a DECLARE statement or contextually declared.

implicit opening. The opening of a file as the result of
an input or output statement other than the OPEN
statement.

infix operator. An operator that appears between two
operands.

inherited dimensions. For a structure, union, or
element, those dimensions that are derived from the
containing structures. If the name is an element that is
not an array, the dimensions consist entirely of its
inherited dimensions. If the name is an element that is
an array, its dimensions consist of its inherited
dimensions plus its explicitly declared dimensions. A

structure with one or more inherited dimensions is
called a nonconnected aggregate. Contrast with
connected aggregate.

input/output. The transfer of data between auxiliary
medium and main storage.

insertion point character. A picture specification
character that is, on assignment of the associated data
to a character string, inserted in the indicated position.
When used in a P-format item for input, the insertion
character is used for checking purposes.

integer. (1) An optionally signed sequence of digits or
a sequence of bits without a decimal or binary point.
(2) An optionally signed whole number, commonly
described as FIXED BINARY (p,0) or FIXED DECIMAL
(p,0).

integral boundary. A byte multiple address of any
8-bit unit on which data can be aligned. It usually is a
halfword, fullword, or doubleword (2-, 4-, or 8-byte
multiple respectively) boundary.

interleaved array. An array that refers to
nonconnected storage.

interleaved subscripts. Subscripts that exist in levels
other than the lowest level of a subscripted qualified
reference.

internal block. A block that is contained in another
block.

internal name. A name that is known only within the
block in which it is declared, and possibly within any
contained blocks.

internal procedure. A procedure that is contained in
another block. Contrast with external procedure.

interrupt. The redirection of the program's flow of
control as the result of raising a condition or attention.

invocation. The activation of a procedure.

invoke. To activate a procedure.

invoked procedure. A procedure that has been
activated.

invoking block. A block that activates a procedure.

iteration factor. (1) In an INITIAL attribute
specification, an expression that specifies the number of
consecutive elements of an array that are to be
initialized with the given value. (2) In a format list, an
expression that specifies the number of times a given
format item or list of format items is to be used in
succession.

268 VisualAge PL/I Programming Guide

iterative do-group. A do-group whose DO statement
specifies a control variable and/or a WHILE or UNTIL
option.

K
key. Data that identifies a record within a direct-access
data set. See source key and recorded key.

keyword. An identifier that has a specific meaning in
PL/I when used in a defined context.

keyword statement. A simple statement that begins
with a keyword, indicating the function of the statement.

known (applied to a name). Recognized with its
declared meaning. A name is known throughout its
scope.

L
label. (1) A name prefixed to a statement. A name on
a PROCEDURE statement is called an entry constant; a
name on a FORMAT statement is called a format
constant; a name on other kinds of statements is called
a label constant. (2) A data item that has the LABEL
attribute.

label constant. A name written as the label prefix of a
statement (other than PROCEDURE, ENTRY,
FORMAT, or PACKAGE) so that, during execution,
program control can be transferred to that statement
through a reference to its label prefix.

label data. A label constant or the value of a label
variable.

label prefix. A label prefixed to a statement.

label variable. A variable declared with the LABEL
attribute. Its value is a label constant in the program.

leading zeroes. Zeros that have no significance in an
arithmetic value. All zeros to the left of the first nonzero
in a number.

level number. A number that precedes a name in a
DECLARE statement and specifies its relative position
in the hierarchy of structure names.

level-one variable. (1) A major structure or union
name. (2) Any unsubscripted variable not contained
within a structure or union.

lexically. Relating to the left-to-right order of units.

library. An MVS partitioned data set or a CMS
MACLIB that can be used to store other data sets
called members.

list-directed. The type of stream-oriented transmission
in which data in the stream appears as constants
separated by blanks or commas and for which
formatting is provided automatically.

locator. A control block that holds the address of a
variable or its descriptor.

locator/descriptor. A locator followed by a descriptor.
The locator holds the address of the variable, not the
address of the descriptor.

locator qualification. In a reference to a based
variable, either a locator variable or function reference
connected by an arrow to the left of a based variable to
specify the generation of the based variable to which
the reference refers. It might be an implicit reference.

locator value. A value that identifies or can be used to
identify the storage address.

locator variable. A variable whose value identifies the
location in main storage of a variable or a buffer. It has
the POINTER or OFFSET attribute.

locked record. A record in an EXCLUSIVE DIRECT
UPDATE file that has been made available to one task
only and cannot be accessed by other tasks until the
task using it relinquishes it.

logical level (of a structure or union member). The
depth indicated by a level number when all level
numbers are in direct sequence (when the increment
between successive level numbers is one).

logical operators. The bit-string operators not and
exclusive-or (¬), and (&), and or (|).

loop. A sequence of instructions that is executed
iteratively.

lower bound. The lower limit of an array dimension.

M
main procedure. An external procedure whose
PROCEDURE statement has the OPTIONS (MAIN)
attribute. This procedure is invoked automatically as
the first step in the execution of a program.

major structure. A structure whose name is declared
with level number 1.

member. (1) A structure, union, or element name in a
structure or union. (2) Data sets in a library.

minor structure. A structure that is contained within
another structure or union. The name of a minor
structure is declared with a level number greater than
one and greater than its parent structure or union.

 Glossary 269

mode (of arithmetic data). An attribute of arithmetic
data. It is either real or complex.

multiple declaration. (1) Two or more declarations of
the same identifier internal to the same block without
different qualifications. (2) Two or more external
declarations of the same identifier.

multiprocessing. The use of a computing system with
two or more processing units to execute two or more
programs simultaneously.

multiprogramming. The use of a computing system to
execute more than one program concurrently, using a
single processing unit.

multitasking. A facility that allows a program to
execute more than one PL/I procedure simultaneously.

N
name. Any identifier that the user gives to a variable
or to a constant. An identifier appearing in a context
where it is not a keyword. Sometimes called a
user-defined name.

nesting. The occurrence of:

� A block within another block

� A group within another group

� An IF statement in a THEN clause or in an ELSE
clause

� A function reference as an argument of a function
reference

� A remote format item in the format list of a
FORMAT statement

� A parameter descriptor list in another parameter
descriptor list

� An attribute specification within a parenthesized
name list for which one or more attributes are being
factored

nonconnected storage. Storage occupied by
nonconnected data items. For example, interleaved
arrays and structures with inherited dimensions are in
nonconnected storage.

null locator value. A special locator value that cannot
identify any location in internal storage. It gives a
positive indication that a locator variable does not
currently identify any generation of data.

null statement. A statement that contains only the
semicolon symbol (;). It indicates that no action is to be
taken.

null string. A character, graphic, or bit string with a
length of zero.

numeric-character data. See decimal picture data.

numeric picture data. Picture data that has an
arithmetic value as well as a character value. This type
of picture data cannot contain the characters 'A' or
'X.'

O
object. A collection of data referred to by a single
name.

offset variable. A locator variable with the OFFSET
attribute, whose value identifies a location in storage
relative to the beginning of an area.

ON-condition. An occurrence, within a PL/I program,
that could cause a program interrupt. It can be the
detection of an unexpected error or of an occurrence
that is expected, but at an unpredictable time.

ON-statement action. The action explicitly established
for a condition that is executed when the condition is
raised. When the ON-statement is encountered in the
flow of control for the program, it executes, establishing
the action for the condition. The action executes when
the condition is raised if the ON-unit is still established
or a RESIGNAL statement reestablishes it. Contrast
with implicit action.

ON-unit. The specified action to be executed when the
appropriate condition is raised.

opening (of a file). The association of a file with a
data set.

operand. The value of an identifier, constant, or an
expression to which an operator is applied, possibly in
conjunction with another operand.

operational expression. An expression that consists
of one or more operators.

operator. A symbol specifying an operation to be
performed.

option. A specification in a statement that can be used
to influence the execution or interpretation of the
statement.

P
package constant. The label prefix on a PACKAGE
statement.

packed decimal. The internal representation of a
fixed-point decimal data item.

270 VisualAge PL/I Programming Guide

padding. (1) One or more characters, graphics, or bits
concatenated to the right of a string to extend the string
to a required length. (2) One or more bytes or bits
inserted in a structure or union so that the following
element within the structure or union is aligned on the
appropriate integral boundary.

parameter. A name in the parameter list following the
PROCEDURE statement, specifying an argument that
will be passed when the procedure is invoked.

parameter descriptor. The set of attributes specified
for a parameter in an ENTRY attribute specification.

parameter descriptor list. The list of all parameter
descriptors in an ENTRY attribute specification.

parameter list. A parenthesized list of one or more
parameters, separated by commas and following either
the keyword PROCEDURE in a procedure statement or
the keyword ENTRY in an ENTRY statement. The list
corresponds to a list of arguments passed at invocation.

partially qualified name. A qualified name that is
incomplete. It includes one or more, but not all, of the
names in the hierarchical sequence above the structure
or union member to which the name refers, as well as
the name of the member itself.

picture data. Numeric data, character data, or a mix
of both types, represented in character form.

picture specification. A data item that is described
using the picture characters in a declaration with the
PICTURE attribute or in a P-format item.

picture specification character. Any of the
characters that can be used in a picture specification.

PL/I character set. A set of characters that has been
defined to represent program elements in PL/I.

PL/I prompter. Command processor program for the
PLI command that checks the operands and allocates
the data sets required by the compiler.

point of invocation. The point in the invoking block at
which the reference to the invoked procedure appears.

pointer. A type of variable that identifies a location in
storage.

pointer value. A value that identifies the pointer type.

pointer variable. A locator variable with the POINTER
attribute that contains a pointer value.

precision. The number of digits or bits contained in a
fixed-point data item, or the minimum number of
significant digits (excluding the exponent) maintained for
a floating-point data item.

prefix. A label or a parenthesized list of one or more
condition names included at the beginning of a
statement.

prefix operator. An operator that precedes an
operand and applies only to that operand. The prefix
operators are plus (+), minus (−), and not (¬).

preprocessor. A program that examines the source
program before the compilation takes place.

preprocessor statement. A special statement
appearing in the source program that specifies the
actions to be performed by the preprocessor. It is
executed as it is encountered by the preprocessor.

primary entry point. The entry point identified by any
of the names in the label list of the PROCEDURE
statement.

priority. A value associated with a task, that specifies
the precedence of the task relative to other tasks.

problem data. Coded arithmetic, bit, character,
graphic, and picture data.

problem-state program. A program that operates in
the problem state of the operating system. It does not
contain input/output instructions or other privileged
instructions.

procedure. A collection of statements, delimited by
PROCEDURE and END statements. A procedure is a
program or a part of a program, delimits the scope of
names, and is activated by a reference to the procedure
or one of its entry names. See also external procedure
and internal procedure.

procedure reference. An entry constant or variable. It
can be followed by an argument list. It can appear in a
CALL statement or the CALL option, or as a function
reference.

program. A set of one or more external procedures or
packages. One of the external procedures must have
the OPTIONS(MAIN) specification in its procedure
statement.

program control data. Area, locator, label, format,
entry, and file data that is used to control the
processing of a PL/I program.

prologue. The processes that occur automatically on
block activation.

pseudovariable. Any of the built-in function names
that can be used to specify a target variable. It is
usually on the left-hand side of an assignment
statement.

 Glossary 271

Q
qualified name. A hierarchical sequence of names of
structure or union members, connected by periods,
used to identify a name within a structure. Any of the
names can be subscripted.

R
range (of a default specification). A set of identifiers
and/or parameter descriptors to which the attributes in a
DEFAULT statement apply.

record. (1) The logical unit of transmission in a
record-oriented input or output operation. (2) A
collection of one or more related data items. The items
usually have different data attributes and usually are
described by a structure or union declaration.

recorded key. A character string identifying a record
in a direct-access data set where the character string
itself is also recorded as part of the data.

record-oriented data transmission. The transmission
of data in the form of separate records. Contrast with
stream data transmission.

recursive procedure. A procedure that can be called
from within itself or from within another active
procedure.

reentrant procedure. A procedure that can be
activated by multiple tasks, threads, or processes
simultaneously without causing any interference
between these tasks, threads, and processes.

REFER expression. The expression preceding the
keyword REFER, which is used as the bound, length, or
size when the based variable containing a REFER
option is allocated, either by an ALLOCATE or LOCATE
statement.

REFER object. The variable in a REFER option that
holds or will hold the current bound, length, or size for
the member. The REFER object must be a member of
the same structure or union. It must not be
locator-qualified or subscripted, and it must precede the
member with the REFER option.

reference. The appearance of a name, except in a
context that causes explicit declaration.

relative virtual origin (RVO). The actual origin of an
array minus the virtual origin of an array.

remote format item. The letter R followed by the label
(enclosed in parentheses) of a FORMAT statement.
The format statement is used by edit-directed data

transmission statements to control the format of data
being transmitted.

repetition factor. A parenthesized unsigned integer
constant that specifies:

1. The number of times the string constant that follows
is to be repeated.

2. The number of times the picture character that
follows is to be repeated.

repetitive specification. An element of a data list that
specifies controlled iteration to transmit one or more
data items, generally used in conjunction with arrays.

restricted expression. An expression that can be
evaluated by the compiler during compilation, resulting
in a constant. Operands of such an expression are
constants, named constants, and restricted expressions.

returned value. The value returned by a function
procedure.

RETURNS descriptor. A descriptor used in a
RETURNS attribute, and in the RETURNS option of the
PROCEDURE and ENTRY statements.

S
scalar variable. A variable that is not a structure,
union, or array.

scale. A system of mathematical notation whose
representation of an arithmetic value is either fixed-point
or floating-point.

scale factor. A specification of the number of
fractional digits in a fixed-point number.

scaling factor. See scale factor.

scope (of a condition prefix). The portion of a
program throughout which a particular condition prefix
applies.

scope (of a declaration or name). The portion of a
program throughout which a particular name is known.

secondary entry point. An entry point identified by
any of the names in the label list of an entry statement.

select-group. A sequence of statements delimited by
SELECT and END statements.

selection clause. A WHEN or OTHERWISE clause of
a select-group.

self-defining data. An aggregate that contains data
items whose bounds, lengths, and sizes are determined

272 VisualAge PL/I Programming Guide

at program execution time and are stored in a member
of the aggregate.

separator. See delimiter.

shift. Change of data in storage to the left or to the
right of original position.

shift-in. Symbol used to signal the compiler at the end
of a double-byte string.

shift-out. Symbol used to signal the compiler at the
beginning of a double-byte string.

sign and currency symbol characters. The picture
specification characters. S, +, −, and $ (or other national
currency symbols enclosed in < and >).

simple parameter. A parameter for which no storage
class attribute is specified. It can represent an
argument of any storage class, but only the current
generation of a controlled argument.

simple statement. A statement other than IF, ON,
WHEN, and OTHERWISE.

source. Data item to be converted for problem data.

source key. A key referred to in a record-oriented
transmission statement that identifies a particular record
within a direct-access data set.

source program. A program that serves as input to
the source program processors and the compiler.

source variable. A variable whose value participates
in some other operation, but is not modified by the
operation. Contrast with target variable.

spill file. Data set named SYSUT1 that is used as a
temporary workfile.

standard default. The alternative attribute or option
assumed when none has been specified and there is no
applicable DEFAULT statement.

standard file. A file assumed by PL/I in the absence
of a FILE or STRING option in a GET or PUT
statement. SYSIN is the standard input file and
SYSPRINT is the standard output file.

standard system action. Action specified by the
language to be taken for an enabled condition in the
absence of an ON-unit for that condition.

statement. A PL/I statement, composed of keywords,
delimiters, identifiers, operators, and constants, and
terminated by a semicolon (;). Optionally, it can have a
condition prefix list and a list of labels. See also

keyword statement, assignment statement, and null
statement.

statement body. A statement body can be either a
simple or a compound statement.

statement label. See label constant.

static storage allocation. The allocation of storage for
static variables.

static variable. A variable that is allocated before
execution of the program begins and that remains
allocated for the duration of execution.

stream-oriented data transmission. The transmission
of data in which the data is treated as though it were a
continuous stream of individual data values in character
form. Contrast with record-oriented data transmission.

string. A contiguous sequence of characters, graphics,
or bits that is treated as a single data item.

string variable. A variable declared with the BIT,
CHARACTER, or GRAPHIC attribute, whose values can
be either bit, character, or graphic strings.

structure. A collection of data items that need not
have identical attributes. Contrast with array.

structure expression. An expression whose
evaluation yields a structure set of values.

structure of arrays. A structure that has the
dimension attribute.

structure member. See member.

structuring. The hierarchy of a structure, in terms of
the number of members, the order in which they
appear, their attributes, and their logical level.

subroutine. A procedure that has no RETURNS
option in the PROCEDURE statement. Contrast with
function.

subroutine call. An entry reference that must
represent a subroutine, followed by an optional
argument list that appears in a CALL statement.
Contrast with function reference.

subscript. An element expression that specifies a
position within a dimension of an array. If the subscript
is an asterisk, it specifies all of the elements of the
dimension.

subscript list. A parenthesized list of one or more
subscripts, one for each dimension of the array, which
together uniquely identify either a single element or
cross section of the array.

 Glossary 273

subtask. A task that is attached by the given task or
any of the tasks in a direct line from the given task to
the last attached task.

synchronous. A single flow of control for serial
execution of a program.

T
target. Attributes to which a data item (source) is
converted.

target reference. A reference that designates a
receiving variable (or a portion of a receiving variable).

target variable. A variable to which a value is
assigned.

task. The execution of one or more procedures by a
single flow of control.

task name. An identifier used to refer to a task
variable.

task variable. A variable with the TASK attribute
whose value gives the relative priority of a task.

termination (of a block). Cessation of execution of a
block, and the return of control to the activating block by
means of a RETURN or END statement, or the transfer
of control to the activating block or to some other active
block by means of a GO TO statement.

termination (of a task). Cessation of the flow of
control for a task.

truncation. The removal of one or more digits,
characters, graphics, or bits from one end of an item of
data when a string length or precision of a target
variable has been exceeded.

type. The set of data attributes and storage attributes
that apply to a generation, a value, or an item of data.

U
undefined. Indicates something that a user must not
do. Use of a undefined feature is likely to produce
different results on different implementations of a PL/I
product. In that case, the application program is in
error.

union. A collection of data elements that overlay each
other, occupying the same storage. The members can
be structures, unions, elementary variables, or arrays.
They need not have identical attributes.

union of arrays. A union that has the DIMENSION
attribute.

upper bound. The upper limit of an array dimension.

V
value reference. A reference used to obtain the value
of an item of data.

variable. A named entity used to refer to data and to
which values can be assigned. Its attributes remain
constant, but it can refer to different values at different
times.

variable reference. A reference that designates all or
part of a variable.

virtual origin (VO). The location where the element of
the array whose subscripts are all zero are held. If
such an element does not appear in the array, the
virtual origin is where it would be held.

Z
zero-suppression characters. The picture
specification characters Z and *, which are used to
suppress zeros in the corresponding digit positions and
replace them with blanks or asterisks respectively.

274 VisualAge PL/I Programming Guide

 Index

Special Characters
/ (forward slash) 93
*PROCESS, specifying options in 37
% statements 41
%INCLUDE statement 17, 41
%NOPRINT statement 41
%OPTION 41
%PAGE statement 41
%POP statement 41
%PRINT statement 41
%PROCESS, specifying options in 37
%PUSH statement 41
%SKIP statement 41

A
access

ESDS 188
indexed data set 162

direct access 164
sequential access 163

REGIONAL(1) data set 175
relative-record data set 199

access method services
regional data set 177
REGIONAL(1) data set

direct access 174
sequential access 174

ACCT EXEC statement parameter 59
aggregate

AGGREGATE compile-time option 6
length table 43

ALIGNED compile-time suboption 13
ALL option

hooks location suboption 33
ALLOCATE statement 43
alternate ddname under OS/390 UNIX, in TITLE

option 93
AMP parameter 179
ANS

compile-time suboption 9
APPEND option under OS/390 UNIX 95
ARCH compile-time option 6
area

overflow 150
prime data 150

argument
sort program 222

argument passing
by descriptor list 238
by descriptor-locator 239

array descriptor 240
ASA option under OS/390 UNIX 95
ASCII

compile-time suboption
description 10

assembler routines
FETCHing 84

ASSIGNABLE compile-time suboption 10
ATTENTION ON-units 245
attention processing

attention interrupt,effect of 18
ATTENTION ON-units 245
debugging tool 245
main description 244

attribute table 43
ATTRIBUTES option 6
automatic

padding 74
prompting

overriding 73
using 73

restart
after system failure 248
checkpoint/restart facility 246
within a program 248

auxiliary storage for sort 222
avoiding calls to library routines 214

B
batch compile

examples of 69
JCL 69
OS/390 62, 65
return code 69

BKWD option 108, 184
BLKSIZE

BUFFERS option
comparison with DCB subparameter 109

consecutive data sets 141
CTLASA and CTL360

comparison with DCB subparameter 109
DCB subparameter

indexed data set 156
ENVIRONMENT 108

comparison with DCB subparameter 109
for record I/O 110

KEYLENGTH option
comparison with DCB subparameter 109

option of ENVIRONMENT
for stream I/O 124

subparameter 104

 Copyright IBM Corp. 1964, 2000 275

block
and record 100
size

consecutive data sets 141
indexed data sets 155
maximum 111
object module 66
PRINT files 131
record length 111
regional data sets 178
specifying 100

BUFFERS option
for stream I/O 124

BUFSIZE option under OS/390 UNIX 95
BYADDR

description 206
effect on performance 206
using with DEFAULT option 10

BYVALUE
description 206
effect on performance 206
using with DEFAULT option 10

C
C routines

FETCHing 84
capacity record

REGIONAL(1) 172
carriage return-line feed (CR - LF) 99
cataloged procedure

compile and bind 50
compile only 49
compile, bind, and run 52
compile, input data for 52, 55
compile, prelink and link-edit 53
compile, prelink, link-edit, and run 55
compile, prelink, load and run 56
description of 48
invoking 58
listing 58
modifying

DD statement 60
EXEC statement 59

multiple invocations 58
under OS/390

IBM-supplied 48
to invoke 58
to modify 59

character string attribute table 43
CHECK compile-time option 7
checkpoint data

for sort 226
checkpoint data, defining, PLICKPT built-in

suboption 247

checkpoint/restart
deferred restart 248
PLICANC statement 249

checkpoint/restart facility
CALL PLIREST statement 248
checkpoint data set 247
description of 246
modify activity 249
PLICKPT built-in subroutine 246
request checkpoint record 246
request restart 248
RESTART parameter 248
return codes 246

CHKPT sort option 220
CICS, compiling transactions in PL/I 70
CKPT sort option 220
COBOL

map structure 43
CODE subparameter 104
coding

improving performance 209
compilation

user exit
activating 251
customizing 251
IBMUEXIT 251
procedures 250

compile and bind, input data for 50
COMPILE compile-time option 7
compile-time options

abbreviations 4
AGGREGATE 6
ARCH 6
ATTRIBUTES 6
CHECK 7
COMPILE 7
CURRENCY 8
DD 8
default 4, 9, 205
description of 4
DISPLAY 14
DLLINIT 14
EXIT 14
EXTRN 14
FLAG 15
FLOAT 15
GONUMBER 15, 204
GRAPHIC 16
INCAFTER 16
INCDIR 17
INCLUDE 17
INSOURCE 17
INTERRUPT 18
LANGLVL 18
LIMITS 19
LINECOUNT 19

276 VisualAge PL/I Programming Guide

compile-time options (continued)
LIST 20
MACRO 20
MAP 20
MARGINI 20
MARGINS 21
MAXMEM 22
MDECK 22
NAMES 22
NEST 23
NOT 23
OBJECT 23
OFFSET 24
OPTIMIZE 24, 204
OPTIONS 24
OR 25
PP 25
PPTRACE 26
PREFIX 26, 205
PROCEED 26
RESPECT 27
RULES 27, 204
SEMANTIC 30
SOURCE 31
SPILL 31
STORAGE 31
SYNTAX 32
SYSPARM 32
SYSTEM 33
TERMINAL 33
TEST 33
TUNE 35
under OS/390 UNIX 63
WIDECHAR 35
WINDOW 36
XREF 36

compile, prelink, and link-edit, input data for 53
compiler

% statements 41
DBCS identifier 16
descriptions of options 4
general description of 62
graphic string constant 16
invoking 62
JCL statements, using 65
listing

aggregate length table 43
attribute table 43
block level 42
cross-reference table 43
DO-level 42
error messages 15
heading information 41
include source program 17
input to compiler 42
input to preprocessor 42
messages 46

compiler (continued)
listing (continued)

printing options 67
return codes 46
SOURCE option program 42
source program 31
stack storage used 31
statement offset addresses 44
SYSPRINT 67
using 41

mixed string constant 16
preprocessor 37
PROCESS statement 37
reduce storage requirement 24
severity of error condition 7
temporary workfile (SYSUT1) 67
under OS/390 batch 65

compiling
CICS transactions in PL/I 70
under OS/390 UNIX 62

concatenating
data sets 92
external references 90

COND EXEC statement parameter 59
conditional compilation 7
conditional subparameter 104
CONNECTED compile-time suboption

description 10
effect on performance 207

CONSECUTIVE
option of ENVIRONMENT 124, 140

consecutive data sets
controlling input from the terminal

capital and lowercase letters 137
condition format 135
COPY option of GET statement 137
end-of-file 137
format of data 136
stream and record files 136

controlling output to the terminal
capital and lowercase letters 138
conditions 137
format of PRINT files 137
output from the PUT EDIT command 138
stream and record files 138

defining and using 123
input from the terminal 135
output to the terminal 137
record-oriented data transmission

accessing and updating a data set 142
creating a data set 141
defining files 139
specifying ENVIRONMENT options 140
statements and options allowed 138

record-oriented I/O 138
stream-oriented data transmission 123

accessing a data set 129

 Index 277

consecutive data sets (continued)
stream-oriented data transmission (continued)

creating a data set 126
defining files 123
specifying ENVIRONMENT options 124
using PRINT files 130
using SYSIN and SYSPRINT files 134

control
area 180
characters 130
CONTROL option

EXEC statement 68
interval 180

control blocks
function-specific 250
global control 252

COPY option 137
cross-reference table

compiler listing 43
using XREF option 43

CTLASA and CTL360 options
ENVIRONMENT option

for consecutive data sets 140
SCALARVARYING 114

CURRENCY compile-time option 8
customizing

user exit
modifying SYSUEXIT 251
structure of global control blocks 252
writing your own compiler exit 252

cylinder
index 150
overflow area 150, 160

CYLOFL subparameter
DCB parameter 104
indexed data set 156
overflow area 160

D
data

conversion under OS/390 UNIX 92
files

creating under OS/390 UNIX 94
sort program 227

PLISRT(x) command 231
sorting 216

description of 216
data definition (DD) information under OS/390

UNIX 92
data set

associating PL/I files with
closing a file 107
opening a file 106
specifying characteristics in the ENVIRONMENT

attribute 107

data set (continued)
associating several data sets with one file 91
blocks and records 100
checkpoint 247
conditional subparameter characteristics 104
consecutive stream-oriented data 123
data set control block (DSCB) 103
ddnames 65
defining for dump

DD statement 242
logical record length 242

defining relative-record 196
direct 102, 103
dissociating from a file 107
dissociating from PL/I file 92
establishing characteristics 100
independent overflow area 160
indexed 154

defining and using 147
master index 161
name 157
overflow area 160
record format 158
sequential 102

information interchange codes 101
input in cataloged procedures 48
label modification 106
labels 103, 117
libraries

extracting information 121
SPACE parameter 118
types of 117
updating 119
use 117

master index 161
organization

conditional subparameters 104
data definition (DD) statement 103
types of 102

partitioned 117
record format defaults 109
record formats

fixed-length 101
undefined-length 102
variable-length 102

records 100
regional 168
REGIONAL(1) 172

accessing and updating 174
creating 172

sequential 102
sort program

checkpoint data set 226
input data set 226
output data set 226
sort work data set 225

278 VisualAge PL/I Programming Guide

data set (continued)
sorting 225

SORTWK 222
source statement library 67
SPACE parameter 65
stream files 123
temporary 67
to establish characteristics 100
types of

comparison 114
organization 102
used by PL/I record I/O 114

unlabeled 103
using 89
VSAM

blocking 180
data set type 182
defining 185
defining files 183
dummy data set 183
file attribute 183
indexed data set 189
keys 181
mass sequential insert 194
organization 179
running a program 179
specifying ENVIRONMENT options 184
VSAM option 185

VSAM.
performance options 185

data set under OS/390
associating one data set with several files 91
concatenating 92

data set under OS/390 UNIX
associating a PL/I file with a data set

how PL/I finds data sets 94
using environment variables under 92
using the TITLE option of the OPEN

statement 93
using unassociated files 94

DD_DDNAME environment variable 92
default identification 92
establishing a path 94
establishing characteristics

DD_DDNAME environment variable 94
extending on output 95
maximum number of regions 97
number of regions 97
recreating output 95

data sets
associating data sets with files 89
closing 107
defining data sets under OS/390 89

data-directed I/O 209
coding for performance 209

DBCS identifier compilation 16
DCB subparameter 107, 109

equivalent ENVIRONMENT options 109
indexed data set 157
main discussion of 104
overriding in cataloged procedure 60
regional data set 178

DD (data definition) information under OS/390
UNIX 92

DD compile-time option 8
DD information under OS/390 UNIX

TITLE statement 93
DD statement 103

%INCLUDE 39
add to cataloged procedure 60
cataloged procedure, modifying 60
checkpoint/restart 246
create a library 118
indexed data set 156, 157, 164
input data set in cataloged procedure 48
modify cataloged procedure 60
modifying cataloged procedure 59
OS/390 batch compile 65
regional data set 177
separate, for index, prime, and overflow areas 154
standard data set 65

input (SYSIN) 66
output (SYSLIN, SYSPUNCH) 66

DD_DDNAME
specifying characteristics 105

DD_DDNAME environment variables
alternate ddname under OS/390 UNIX 93
APPEND 95
ASA 95
DELAY 96
DELIMIT 96
LRECL 97
LRMSKIP 97
PROMPT 97
PUTPAGE 97
RECCOUNT 97
RECSIZE 98
SAMELINE 98
SKIP0 98
specifying characteristics under OS/390 UNIX 94
TYPE 99

ddname
%INCLUDE 39
standard data sets 65

deblocking of records 100
declaration

of files under OS/390 89
DEFAULT compile-time option

description and syntax 9
suboptions

ALIGNED 13
ASCII or EBCDIC 10

 Index 279

DEFAULT compile-time option (continued)
suboptions (continued)

ASSIGNABLE or NONASSIGNABLE 10
BYADDR or BYVALUE 10
CONNECTED or NONCONNECTED 10
DESCLIST or DESCLOCATOR 12
DESCRIPTOR or NODESCRIPTOR 10
DUMMY 12
EVENDEC or NOEVENDEC 11
IBM or ANS 9
INLINE or NOINLINE 11
LINKAGE 11
LOWERINC | UPPERINC 13
NATIVE or NONNATIVE 11
NATIVEADDR or NONNATIVEADDR 11
NULLSYS or NULL370 12
ORDER or REORDER 11
ORDINAL(MIN | MAX) 13
OVERLAP | NOOVERLAP 13
RECURSVIE or NONRECURSIVE 12
RETCODE 13
RETURNS 12
SHORT 12

using default suboptions 205
deferred restart 248
define data set

associating several data sets with one file 91
associating several files with one data set 91
closing a file 107
concatenating several data sets 92
ENVIRONMENT attribute 107
ESDS 187
opening a file 106
specifying characteristics 107

define file 151
associating several files with one data set 91
closing a file 107
concatenating several data sets 92
ENVIRONMENT attribute 107
indexed data set

ENV options 153
opening a file 106
regional data set 170

ENV options 171
keys 171

specifying characteristics 107
VSAM data set 183

define file under OS/390
associating several data sets with one file 91

DEFINED
versus UNION 212

DELAY option under OS/390 UNIX
description 96

DELIMIT option under OS/390 UNIX
description 96

depth of replacement maximum 38
DESCLIST compile-time suboption 12
DESCLOCATOR compile-time suboption 12
descriptor 238
DESCRIPTOR compile-time option

effect on performance 207
DESCRIPTOR compile-time suboption

description 10
descriptor header
descriptor list, argument passing 238
descriptor-locator, argument passing 239
DFSORT 216
direct access

indexed data set 164
direct data sets 102, 103
DIRECT file

indexed ESDS with VSAM
accessing data set 192
updating data set 194

RRDS
access data set 199

DISP parameter
batch processing 69
consecutive data sets 143
for consecutive data sets 141
to delete a data set 117

DISPLAY compile-time option 14
DLLINIT compile-time option 14
DSCB (data set control block) 103, 119
DSNAME parameter

for consecutive data sets 141, 143
for indexed data sets 157

DSORG subparameter 104
indexed data set 156

DUMMY compile-time suboption 12
dummy records

indexed data set 151
REGIONAL(1) data set 172
VSAM 183

dump
calling PLIDUMP 241
defining data set for

DD statement 242
logical record length 242

identifying beginning of 242
PLIDUMP built-in subroutine 241
producing Language Environment for OS/390 & VM

dump 241
SNAP 242

DYNALLOC sort option 220

E
E compiler message 46
E15 input handling routine 227

280 VisualAge PL/I Programming Guide

E35 output handling routine 230
EBCDIC

compile-time suboption 10
EBCDIC (Extended Binary Coded Decimal Interchange

Code) 101
embedded keys 149, 163
ENDFILE

under OS/390 74
entry point

sort program 222
entry-sequenced data set

defining 187
updating 188
VSAM 180

loading an ESDS 187
SEQUENTIAL file 187
statements and options 186

ENVIRONMENT attribute
list 107
specifying characteristics under OS/390 UNIX

BUFSIZE 95
ENVIRONMENT options

BUFFERS option
CONSECUTIVE 124, 140
CTLASA and CTL360 140
equivalent DCB subparameters 109
GRAPHIC option 125
indexed data set 153

KEYLOC option 153
KEYLENGTH option
organization options 109
record format options 124
RECSIZE option

comparison with DCB subparameter 109
record format 125
usage 125

regional data set 171
VSAM

BKWD option 184
GENKEY option 185
REUSE option 185
VSAM option 185

environment variables
setting under OS/390 UNIX 115

EQUALS sort option 220
error

message severity option 15
severity of error compilation 7

error devices
redirecting 116

ESDS (entry-sequenced data set)
defining 187
updating 188
VSAM 180

loading 187
statements and options 186

EVENDEC compile-time suboption 11
examples

calling PLIDUMP 241
EXEC statement

cataloged procedure, modifying 59
compiler 65
introduction 65
maximum length of option list 68
minimum region size 65
modify cataloged procedure 59
OS/390 batch compile 62, 65
PARM parameter 67
to specify options 68

Exit (E15) input handling routine 227
Exit (E35) output handling routine 230
EXIT compile-time option 14
export command 94
extended binary coded decimal interchange code

(EBCDIC) 101
EXTERNAL attribute 43
external references

concatenating names 90
EXTRN compile-time option 14

F
F option of ENVIRONMENT

for record I/O 109
for stream I/O 124

F-format records 101
FB option of ENVIRONMENT

for record I/O 109
for stream I/O 124

FB-format records 101
FETCH

assembler routines 84
OS/390 C routines 84
VisualAge PL/I routines 76

field for sorting 219
file

associating data sets with files 89
closing 107
defining data sets under OS/390 89
establishing characteristics 100

FILE attribute 43
filespec 94
FILLERS, for tab control table 133
FILSZ sort option 220
filtering messages 251
FIXED

TYPE option under OS/390 UNIX 99
fixed-length records 101
FLAG option 15
flags, specifying compile-time options 64
FLOAT option 15

 Index 281

flowchart for sort 227
format notation, rules for xiv
forward slash (/) 93
FUNC subparameter

usage 104

G
GENKEY option

key classification 112
usage 108
VSAM 184

GET DATA statement 73
GET EDIT statement 74
GET LIST statement 73
global control blocks

data entry fields 253
writing the initialization procedure 254
writing the message filtering procedure 254
writing the termination procedure 255

GONUMBER compile-time option 204
definition 15

GOTO statements 210
graphic data 123
GRAPHIC option

compile-time 16
of ENVIRONMENT 108, 125
stream I/O 124

graphic string constant compilation 16

H
handling routines

data for sort
input (sort exit E15) 227
output (sort exit E35) 230
PLISRTB 231
PLISRTC 233
PLISRTD 234
to determine success 225
variable length records 235

header label 103
hook

location suboptions 33

I
I compiler message 46
IBM compile-time suboption 9
IBMUEXIT compiler exit 251
IBMZC cataloged procedure 49
IBMZCB cataloged procedure 50
IBMZCBG cataloged procedure 52
IBMZCPG cataloged procedure 56
IBMZCPL cataloged procedure 53

IBMZCPLG cataloged procedure 55
identifiers

not referenced 6
source program 6

improving application performance 204
INCAFTER compile-time option 16
INCDIR compile-time option 17
%INCLUDE statement 41, 67

control statement 41
source statement library 67

INCLUDE option 17
%INCLUDE statement 17

compiler 39
without full preprocessor 17

index
cylinder 150
master 150
track 150

index area 150
INDEXAREA option 108
indexed data sets

accessing and updating 162
creating 154, 161
DD statement 156
defining files for 151
direct access 164
dummy records 151
index area separate DD statement 154
index structure 150
indexed sequential data set 102
master index 161
name of 157
organization 147
overflow area 160
record format and keys 158
reorganizing 167
REWRITE statement 149
sequential access 163
SEQUENTIAL files 149
specifying ENVIRONMENT options 153
SYSOUT device restriction 157
updating 165
using indexes 150
using keys 147

indexed ESDS (entry-sequenced data set)
DIRECT file 192
loading 190
SEQUENTIAL file 192

information interchange codes 101
initial volume label 103
initialization procedure of compiler user exit 254
INLINE compile-time suboption 11
input

data for PLISRTA 231
data for sort 227
defining data sets for stream files 123

282 VisualAge PL/I Programming Guide

input (continued)
redirecting 116
routines for sort program 227
SEQUENTIAL 141
skeletal code for sort 230
sort data set 226

input/output
compiler

data sets 66
data for compile and bind 50
data for compile, prelink, and link-edit 53
in cataloged procedures 49
OS/390, punctuating long lines 73
skeletal code for sort 228
sort data set 226

INSOURCE option 17
interactive program

attention interrupt 18
interblock gap (IBG) 100
interchange codes 101
INTERNAL attribute 43
INTERRUPT compile-time option 18
interrupts

attention interrupts under interactive system 18
ATTENTION ON-units 245
debugging tool 245
main description 244

invoking
cataloged procedure 58

link-editing multitasking programs 59
multiple invocations 58

preprocessor 38

J
JCL (job control language)

batched processing 69
improving efficiency 48
using during compilation 65

K
key indexed VSAM data set 181
key-sequenced data sets

accessing with a DIRECT file 192
accessing with a SEQUENTIAL file 192
loading 190
statements and options for 189

KEYLEN subparameter 104
indexed data set 156

KEYLENGTH option 108, 114
sequential access for indexed data sets 163

KEYLOC option
description 153
effect on embedded keys 154
usage 108

KEYLOC value
indexed data set 160

keys
indexed data set 147
REGIONAL(1) data set 171

dummy records 172
VSAM

indexed data set 181
relative byte address 182
relative record number 182

KEYTO option
under VSAM 187

KSDS (key-sequenced data set)
define and load 190
updating 192
VSAM

DIRECT file 192
loading 190
SEQUENTIAL file 192

L
label

for data sets 103
LANGLVL compile-time option 18
Language Environment library xiii
length of record

specifying under OS/390 UNIX 98
library

compiled object modules 120
creating a data set library 118
creating a member 121
creating and updating a library member 119
creating, examples of 119
directory 118
extracting information from a library directory 121
general description of 103
how to use 117
information required to create 118
placing a load module 120
source statement 67
source statement library 62
SPACE parameter 118
structure 121
system procedure (SYS1.PROCLIB) 117
types of 117
updating a library member 121
using 117

LIMCT subparameter 104, 178
LIMITS compile-time option 19
line

length 131
numbers in messages 15

line feed (LF)
definition 99

 Index 283

LINE option 124, 131
LINECOUNT compile-time option 19
LINESIZE option

for tab control table 133
OPEN statement 125

link-editing
description of 71

LINKAGE compile-time suboption
effect on performance 208
syntax 11

LIST compile-time option 20
listing

cataloged procedure 58
compiler

aggregate length table 43
ATTRIBUTE and cross-reference table 43
ddname list 4
heading information 41
messages 46
options 42
preprocessor input 42
return codes 46
SOURCE option program 42
statement nesting level 42
statement offset addresses 44

OS/390 batch compile 62, 67
source program 31
statement offset address 44
SYSPRINT 67

loader program, using 56
logical not 23
logical or 25
loops

control variables 210
LOWERINC compile-time suboption 13
LRECL option under OS/390 UNIX 97
LRECL subparameter 100, 104

indexed data set 156
LRMSKIP option under OS/390 UNIX 97

M
macro facility

options 38
MACRO option 20
main storage for sort 222
MAP compile-time option 20
MARGINI compile-time option 20
MARGINS compile-time option 21
mass sequential insert 194
master index 150, 161
MAXMEM 22
MDECK compile-time option

description 22
message

compiler error severity option 15

message (continued)
compiler list 46
printed format 134
run-time message line numbers 15

messages
filter function 254
modifying in compiler user exit 251

mixed string constant compilation 16
MODE subparameter

usage 104
module

create and store object module 23
multiple

invocations
cataloged procedure 58

Multitasking
options in PLIDUMP 241

N
name indexed data set 157
named constants

defining 213
versus static variables 213

NAMES compile-time option 22
NATIVE compile-time suboption

description 11
NATIVEADDR compile-time suboption 11
negative value

block-size 111
record length 110

NEST option 23
NODESCRIPTOR compile-time suboption 10
NOEQUALS sort option 220
NOEVENDEC compile-time suboption 11
NOINLINE compile-time suboption 11
NOINTERRUPT compile-time option 18
NOMAP option 43
NONASSIGNABLE compile-time suboption 10
NONCONNECTED compile-time suboption 10
NONE, hooks location suboption 33
NONNATIVE compile-time suboption 11
NONNATIVEADDR compile-time suboption 11
NONRECURSIVE compile-time suboption 12
NOOVERLAP compile-time suboption 13
%NOPRINT 41

control statement 41
NOSYNTAX compile-time option 32
NOT compile-time option 23
note statement 46
notices 256
NTM subparameter

creating a master index 161
indexed data set 156
usage 104

284 VisualAge PL/I Programming Guide

NULL370 compile-time suboption 12
NULLSYS compile-time suboption 12

O
object

module
create and store 23
record size 66

OBJECT compile-time option
definition 23

offset
of tab count 133
table 44

OFFSET compile-time option 24
OPEN statement

subroutines of PL/I library 106
TITLE option 105

Operating system
data definition (DD) information under OS/390

UNIX 92
OPTCD subparameter 104

indexed data set 156
overflow area 160

optimal coding
coding style 209
compile-time options 204

OPTIMIZE compile-time option 204
OPTIMIZE option 24
%OPTION statement 41
options

for compiling 42
for creating regional data set 168
indexed data sets 148
to specify for compilation 67

OPTIONS option 24
options under OS/390 UNIX

DD_DDNAME environment variables
APPEND 95
ASA 95
DELAY 96
DELIMIT 96
LRECL 97
LRMSKIP 97
PROMPT 97
PUTPAGE 97
RECCOUNT 97
RECSIZE 98
SAMELINE 98
SKIP0 98
TYPE 99

PL/I ENVIRONMENT attribute
BUFSIZE 95

using
DD information 93
TITLE 93

OR compile-time option 25
ORDER compile-time suboption

description 11
effect on performance 207

ORDINAL compile-time suboption 13
ORGANIZATION option 114

usage 108
OS/390

batch compilation
batched processing JCL 69
DD statement 65
examples of 69
EXEC statement 65, 68
listing (SYSPRINT) 67
return codes 69
source statement library (SYSLIB) 67
specifying options 67
temporary workfile (SYSUT1) 67

general compilation 62
OS/390 UNIX

compile-time options
specifying 63

compiling under 62
DD_DDNAME environment variable 94
export command 94
setting environment variables 115
specifying compile-time options

command line 63
using flags 64

output
data for PLISRTA 231
data for sort 227
defining data sets for stream files 123
limit preprocessor output 22
redirecting 116
routines for sort program 227
SEQUENTIAL 141
skeletal code for sort 230
sort data set 226
SYSLIN 66
SYSPUNCH 66

overflow area
indexed data set 160
main discussion of 160
records forces off track 150
separate DD statement 154

OVERLAP compile-time suboption 13

P
PACKAGEs versus nested PROCEDUREs 211
%PAGE 41

control statement 41
PAGE option 124
PAGELENGTH, for tab control table 133

 Index 285

PAGESIZE, for tab control table 133
parameter passing

argument passing 238
descriptor header 239

PARM parameter
for cataloged procedure 59
specify options 68

passing an argument 238
performance

VSAM options 185
performance improvement

coding for performance
avoiding calls to library routines 214
DATA-directed input and output 209
DEFINED versus UNION 212
GOTO statements 210
input-only parameters 209
loop control variables 210
named constants versus static variables 213
PACKAGEs versus nested PROCEDUREs 211
REDUCIBLE functions 212
string assignments 210

selecting compile-time options
DEFAULT 205
GONUMBER 204
OPTIMIZE 204
PREFIX 205
RULES 204

PL/I
compiler

user exit procedures 250
files

associating with a data set under OS/390
UNIX 92

PLICANC statement, and checkpoint/request 249
PLICKPT built-in subroutine 246
PLIDUMP built-in subroutine

calling to produce a Language Environment for
OS/390 & VM dump 241

H option 242
syntax of 241
user-identifier 242

PLIREST statement 248
PLIRETC built-in subroutine

return codes for sort 225
PLISRTA interface 231
PLISRTB interface 231
PLISRTC interface 233
PLISRTD interface 234
PLITABS external structure

control section 134
declaration 72

PLIXOPT variable 71
%POP statement 41
PP compile-time option 25

PPTRACE compile-time option 26
PREFIX compile-time option 26, 205

using default suboptions 205
preprocessing

%INCLUDE statement 39
description of 37
input 42
invoking 38
limit output to 80 bytes 22
output format 38
source program 20
with MACRO 20

prime data area
overflow 150
separate DD statement 154, 155

%PRINT 41
control statement 41
PRINT file

format 137
line length 131
stream I/O 130

PRINT file
formatting conventions 71
punctuating output 72

printer control character 38
record I/O 144

procedure
cataloged, using under OS/390 48
compile and bind (IBMZCB) 50
compile and link-edit (IBMZCPL) 53
compile only (IBMZC) 49
compile, bind, and run (IBMZCBG) 52
compile, prelink, link-edit, and run (IBMZCPLG) 55
compile, prelink, load and run (IBMZCPG) 56

PROCEED compile-time option 26
PROCESS statement

description 37
override option defaults 67

PROMPT option under OS/390 UNIX 97
prompting

automatic, overriding 73
automatic, using 73

PRTSP subparameter
usage 104

punctuation
automatic prompting

overriding 73
using 73

OS/390
automatic padding for GET EDIT 74
continuation character 73
entering ENDFILE at terminal 74
GET DATA statement 73
GET LIST statement 73
long input lines 73
SKIP option 74

286 VisualAge PL/I Programming Guide

punctuation (continued)
output from PRINT files 72

%PUSH statement 41
PUT EDIT command 138
PUTPAGE option under OS/390 UNIX 97

R
REAL attribute 43
RECCOUNT option under OS/390 UNIX 97
RECFM subparameter 104

in organization of data set 104
indexed data set 156
usage 104

record
checkpoint 246

data set 247
data set

indexed data set 151
deblocking 100
maximum size for compiler input 66
sort program 221

record format
fixed-length records 101
indexed data set 160
options 124
stream I/O 129
to specify 139
types 101
undefined-length records 102
variable-length records 102

record I/O
data set

access 142
consecutive data sets 144
create 141
types of 114

data transmission 138
ENVIRONMENT option 140
format 109
record format 139

record length
indexed data set 155
regional data sets 168
specify 100
value of 110
variable 160

RECORD statement 221
recorded key

indexed data set 147
regional data set 171

records
length under OS/390 UNIX 97

RECSIZE option
consecutive data set 125
defaults 125

RECSIZE option (continued)
definition 110
description under OS/390 UNIX 98
for stream I/O 124—125

RECURSIVE compile-time suboption 12
reduce storage requirement 24
REDUCIBLE functions 212
region

REGION parameter 59
size, EXEC statement 65

REGION size, minimum required 48
regional data sets

DD statement
accessing 178
creating 177

defining files for
regional data set 170
specifying ENVIRONMENT options 171
using keys 171

operating system requirement 177
REGIONAL(1) data set

accessing and updating 174
creating 172
using 172

REGIONAL option of ENVIRONMENT 171
regions under OS/390 UNIX 97
relative byte address (RBA) 182
relative record number 182
relative-record data sets

accessing with a DIRECT file 199
accessing with a SEQUENTIAL file 198
loading 196
statements and options for 195

REORDER compile-time suboption
description 11
effect on performance 207

reorganizing indexed data set 167
RESPECT compile-time option 27
restarting

requesting 248
RESTART parameter 248
to request

automatic after system failure 248
automatic within a program 248
deferred restart 248
to cancel 248
to modify 249

RETCODE compile-time suboption 13
return code

checkpoint/restart routine 246
PLIRETC 225

return codes
batch compile 69
in compiler listing 46

RETURNS compile-time suboption 12, 207

 Index 287

REUSE option 108, 185
RKP subparameter 154

effect on embedded keys 154
indexed data set 160

RRDS (relative record data set)
define 197
load statements and options 195
load with VSAM 196
updating 199
VSAM

DIRECT file 199
loading 196
SEQUENTIAL file 198

RULES compile-time option 27
effect on performance 204

run-time
message line numbers 15
OS/390 considerations

automatic prompting 73
formatting conventions 71
GET EDIT statement 74
GET LIST and GET DATA statements 73
punctuating long lines 73
SKIP option 74

using PLIXOPT 71

S
S compiler message 46
SAMELINE option under OS/390 UNIX 98
SCALARVARYING option 113
SEMANTIC compile-time option 30
sequential access

REGIONAL(1) data set 174
sequential data set 102
SEQUENTIAL file

ESDS with VSAM
defining and loading 187
updating 188

indexed ESDS with VSAM
access data set 192

RRDS, access data set 198
serial number volume label 103
shift code compilation 16
SHORT compile-time suboption 12
%SKIP 41

control statement 41
SKIP option

in stream I/O 124
under OS/390 74

SKIP0 option under OS/390 UNIX 98
SKIPREC sort option 220
sorting

assessing results 225
calling sort 222
CHKPT option 220

sorting (continued)
choosing type of sort 217
CKPT option 220
data 216
data input and output 227
description of 216
DYNALLOC option 220
E15 input handling routine 227
EQUALS option 220
FILSZ option 220
maximum record length 221
PLISRT 216
PLISRTA(x) command 231—236
preparation 216
RECORD statement 227
RETURN statement 227
SKIPREC option 220
SORTCKPT 226
SORTCNTL 226
SORTIN 226
sorting field 219
SORTLIB 225
SORTOUT 226
SORTWK 222, 225
storage

auxiliary 222
main 222

writing input/output routines 227
source

key
in REGIONAL(1) data sets 172
indexed data set 147

listing
location 21

program
compiler list 42
data set 66
identifiers 6
included in compiler list 17
list 31
preprocessor 20
shifting outside text 20

SOURCE compile-time option 31
source statement library 67
SPACE parameter

library 118
standard data sets 65

specifying compile-time options
using flags under 64

SPILL 31
spill file 67
STACK subparameter

usage 104
standard data set 65
standard files (SYSPRINT and SYSIN) 116

288 VisualAge PL/I Programming Guide

statement
nesting level 42
offset addresses 44

% statements 41
step abend 104
STMT suboption of test 33
storage

blocking print files 131
indexed data sets 147, 155
library data sets 118
report in listing 31
sort program 222

auxiliary storage 222
main storage 222

standard data sets 65
to reduce requirement 24

STORAGE compile-time option 31
stream and record files 136, 138
STREAM attribute 123
stream I/O

consecutive data sets 123
data set

access 129
create 126
record format 129

DD statement 127, 130
ENVIRONMENT options 124
file

define 123
PRINT file 130
SYSIN and SYSPRINT files 134

record formats for data transmission 109
string

graphic string constant compilation 16
string assignments 210
string descriptors 240

refid desch.string descriptors 240
structure of global control blocks

writing the initialization procedure 254
writing the message filtering procedure 254
writing the termination procedure 255

SUB control character 101
symbol table 33
SYNTAX option 32
syntax, diagrams, how to read xiv
SYS1.PROCLIB (system procedure library) 117
SYSCHK default 246, 247
SYSIN 66, 116
SYSIN and SYSPRINT files 134
SYSLIB

%INCLUDE 39
preprocessing 67

SYSLIN 66
SYSOUT 225
SYSPARM compile-time option 32

SYSPRINT 116
run-time considerations

SYSPUNCH 66
system

failure 248
restart after failure 248
SYSTEM compile-time options

SYSTEM(CICS) 33
SYSTEM(IMS) 33
SYSTEM(MVS) 33
type of parameter list 33

SYSUT1 compiler data set 67

T
tab control table 133
temporary workfile

SYSUT1 67
terminal

input 135
capital and lowercase letters 137
COPY option of GET statement 137
end of file 137
format of data 136
stream and record files 136

output 137
capital and lowercase characters 138
format of PRINT file 137
output from PUT EDIT command 138
stream and record files 138

TERMINAL compile-time option 33
terminating

compilation 7
termination procedure

compiler user exit 255
example of procedure-specific control block 255
syntax

global 252
specific 255

TEST compile-time option
definition 33

TIME parameter 59
TITLE option

associating standard SYSPRINT file 75
description under OS/390 UNIX 93
using 105

TITLE option under OS/390
specifying character string value 89

TITLE option under OS/390 UNIX
using files not associated with data sets 93

track index 150
trailer label 103
TUNE compile-time option 35
TYPE option under OS/390 UNIX 99

 Index 289

U
U compiler message 46
U option of ENVIRONMENT

for record I/O 109
for stream I/O 124

U-format 102
unblocked records for indexed data set 160
undefined-length records 102
UNDEFINEDFILE condition

BLKSIZE error 111
line size conflict in OPEN 131
raising when opening a file under OS/390

UNIX 100
UNDEFINEDFILE condition under OS/390

DD statement error 90
UNDEFINEDFILE condition under OS/390 UNIX

using files not associated with data sets 100
UNIT parameter

consecutive data sets 143
unreferenced identifiers 6
updating

ESDS 188
indexed data set

direct access 164
sequential access 163

REGIONAL(1) data set 175
relative-record data set 199

UPPERINC compile-time suboption 13
user exit

compiler 250
customizing

modifying SYSUEXIT 251
structure of global control blocks 252
writing your own compiler exit 252

functions 250
sort 219

V
V option of ENVIRONMENT

for record I/O 109
for stream I/O 124

variable-length records
format 102
sort program 235

VB option of ENVIRONMENT
for record I/O 109
for stream I/O 124

VB-format records 102
VisualAge PL/I library xiii
VOLUME parameter

consecutive data sets 141, 143
volume serial number

direct access volumes 103
indexed data sets 155

volume serial number (continued)
regional data sets 177

VSAM (virtual storage access method)
data sets

blocking 180
choosing a type 182
defining 185
defining files for 183
dummy data set 183
entry-sequenced 186
file attribute 183
key-sequenced and indexed

entry-sequenced 189
keys for 181
organization 179
performance options 185
relative record 195
running a program with 179
specifying ENVIRONMENT options 184
using 179

defining files 183
ENV option 184
performance option 185

indexed data set
load statement and options 189

mass sequential insert 194
relative-record data set 196
VSAM option 185

VTOC 103

W
W compiler message 46
WIDECHAR compile-time option 35
WINDOW compile-time option 36
work data sets for sort 225

X
XREF compile-time option 36

Z
zero value 110

290 VisualAge PL/I Programming Guide

We'd Like to Hear from You

IBM VisualAge PL/I for OS/390
Programming Guide
Version 2 Release 2.1

Publication No. SC26-9473-01

Please use one of the following ways to send us your comments about this book:

� Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

� Electronic mail—Use one of the following network IDs:

Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

IBM VisualAge PL/I for OS/390
Programming Guide
Version 2 Release 2.1

Publication No. SC26-9473-01

How satisfied are you with the information in this book?

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �
Grammatically correct and consistent � � � � �
Graphically well designed � � � � �
Overall satisfaction � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments
SC26-9473-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
PO Box 49023
San Jose, CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

SC26-9473-01

IBM

Program Number: 5655-B22

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

VisualAge PL/I for OS/390 Library

GC26-9471 Licensed Program Specifications
SC26-9473 Programming Guide
SC26-9474 Compiler and Run-Time Migration Guide
SC26-9475 Diagnosis Guide
SC26-9478 Compile-Time Messages and Codes

Common VisualAge PL/I Library

SC26-9476 Language Reference

SC26-9473-J1

S
pine inform

ation:

IB
M

IB
M

 V
isualA

ge P
L

/I for O
S/390

P
rogram

m
ing G

uide
V

ersion 2 R
elease 2.1

