
IBM z/VSE
5.2

Diagnosis Tools

IBM

SC34-2628-03

Note: Before using this information and the product it supports, be sure to read the general information
under “Notices” on page 229.

This edition applies to Version 5 Release 2 of IBM® z/Virtual Storage Extended (z/VSE), Program Number 5609-ZV5, and
to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34–2628–02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1984, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... xi

Tables..xvii

About This Book..xix
Who Should Use This Book..xix
How to Use This Book..xix
Where to Find More Information..xx
Restriction...xx

Summary of Changes.. xxi

Understanding Syntax Diagrams..xxiii

Understanding Physical Addresses and VSE Addresses..................................... xxvii

Part 1. Dumps of Virtual Storage.. 1

Chapter 1. General Description... 3
Dump Contents Overview...3
The ABEND Dump Function..3

Overview of ABEND Dump Function...3
Activation of the ABEND Dump Function... 5
Contents of the ABEND Dump Output..5

The DUMP Command... 7
The Stand-Alone Dump (SADUMP) Program... 7

Support of Integrated Console by SADUMP Program..8
Output of the Standalone Dump Program..8

The SDAID Dump..9
Dump Requested by Macros.. 9
Info/Analysis...10

Chapter 2. Maintaining the Dump Library and File Environment..11
The Library and Files Required to Process Dumps..11
The SYSDUMP Sublibraries.. 11

Purpose of the SYSDUMP Library... 11
Establishing the Dump Sublibraries... 12

Chapter 3. Handling Dumps...15
Options to Activate Dump Writing..15
Options to Deactivate Dump Writing... 15
Identifying the Stored Dumps..15
Sending Dumps to IBM Support Electronically... 16
Mailing Dumps That Are Stored on Tape to IBM Support... 17
Handling a Dump Library Full Condition.. 17
Uploading Large Dumps From a Standalone Dump Tape..18

Chapter 4. Requesting a Dump..21
Overview of Dump Requests..21

 iii

Options to Control the ABEND Dump.. 21
Options to Control the Dump Contents.. 21
Options to Control the Output Destination.. 22
Requesting a Dump by the CANCEL Command... 23
Requesting a Dump by the DUMP Command...23
Taking a Stand-Alone Dump... 23
Requesting a Dump on Event (SDAID Dump)...24
Requesting a Dump from a Program.. 25
Printing the Stored Dump... 25

Archiving Expired or Unrequired Dumps... 25

Chapter 5. The DOSVSDMP Utility...27
The DOSVSDMP Utility Functions.. 27

Functions of the DOSVSDMP Utility..27
Creating the Standalone Dump Program... 27
Scanning the Dump Files on Disk or Tape.. 29
Dumps Printed with DOSVSDMP.. 30
Printing an SDAID or DUMP Command Produced Tape...31

Part 2. Interactive Trace Program...33

Chapter 6. Interactive Trace Program... 35
Introduction..35

Branch Trace... 35
Instruction Trace...35
Storage Alteration Trace... 35
ABEND Trace...35

Trace Activation..36
Interactive Trace Commands...36

TRACE Command..36
QUERY Command... 37
DISPLAY Command.. 37
ALTER Command.. 38
GO Command..38

Tracing in a User Partition with Subtasks Attached.. 39
Scope of Tracing... 39
Restrictions for Programs Using the PER Function... 39

The Interactive Trace Program versus SDAID... 39
Examples of the Interactive Trace Program.. 40

Trace Initialization Example... 40
TRACE, TRACE END and QUERY Command Example..40
Batch Trace Example.. 41
DISPLAY and ALTER Command Example...42

Part 3. SDAID Trace... 43

Chapter 7. SDAID Overview...45
The SDAID Session...45
Interaction SDAID versus Interactive Trace Program...45
How to Initialize an SDAID Trace... 45

Initialization in Direct Input Mode..46
Initialization via Job Control Procedures... 46
Initialization via Prompts in the Attention Routine..46
AR Commands to Start, Stop and End an Initialized Trace..47
Trace Type Summary.. 47
Trace Output... 49
Performance Considerations.. 49

iv

SDAID Space Requirements... 49
Number of Traces per Session..50

Chapter 8. SDAID General Description... 53
Defining the Output Device.. 53

Printer Defined as Output Destination... 53
Tape Defined as Output Destination.. 53
Buffer Defined as Output Destination.. 53
Steps to Define a Wraparound Buffer...54

Exceptional Conditions on the Output Device... 54
Summary of TRACE Types..55
BRANCH Trace..56

BRANCH Trace Output Example...56
BUFFER Trace...57
CANCEL Trace...57

CANCEL Trace Output Example..57
EXTERNAL Trace...57

SDAID Default Value... 57
EXTERNAL Interrupt Trace Output Example..58

GETVIS / FREEVIS Trace.. 58
SDAID Default Value... 58
GETVIS / FREEVIS Trace Output Example... 58

INSTRUCTION Trace.. 59
INSTRUCTION Trace Output Example... 59

IO Trace (I/O Interrupt)..59
SDAID Default Value... 59
I/O Interrupt Trace Output Example.. 60

LOCK / UNLOCK Trace.. 60
SDAID Default Value... 60
LOCK / UNLOCK Trace Output Example... 60

MONITORCALL Trace... 61
MONITORCALL Trace Output Example.. 62

OSAX Adapter Trace...62
OSAX Adapter Trace Output Example..62

PGMCheck Trace (Program Check).. 63
PGMCHECK Trace Output Example..64

PGMLOAD (Fetch/Load) Trace..64
SDAID Default Values... 64
PGMLOAD Trace Output Example.. 65

SSCH Instruction Trace.. 65
SDAID Default Value... 65

STORAGE Alteration Trace... 66
SDAID Default Value... 66

SVC Trace (Supervisor Call)..67
VTAMBU Trace (VTAM Buffer).. 67
VTAMIO Trace...68

SDAID Default Value... 69
XPCC Trace... 69

SDAID Default Value... 69
XPCC Trace Output Example.. 69

Notational Conventions..69
Defining the Area to be Traced: AREA Definition...69
Defining the Job to be Traced: JOBNAME Definition...70
Defining the Storage to be Traced: OFFset, ADDress, PHase, LTA..70

Storage Definition for AREA and JOBNAME...71
Defining Additional Trace Output: OUTPut Definition... 72

Writing the Trace Buffer..73
Recording the CCB or IORB.. 74

 v

Recording the CCW... 74
Recording the Partition Communication Region..74
Recording the Control Registers...75
Dumping Virtual Storage...75
Recording Floating-Point Registers..77
Recording General-Purpose and Access Registers..77
Recording PUB, LUB, ERBLOC, CHANQ.. 78
Dumping Processor Storage from X'00'to X'2FF'...78
Recording the Locktable Entry... 79
Recording the Logical Transient Area...79
Recording the Physical Transient Area...79
Recording Partition-Related Control Blocks.. 79
Recording the Supervisor Area...79
Recording the System Communication Region..79
Recording the Time-of-Day Clock.. 80
Recording Task-Related Control Blocks... 80
Recording the XPCC Communication Control Block.. 80
Recording the XPCC Data Buffer.. 80

Defining the Trace Options: OPTion Definition.. 80
Defining the Traced I/O Devices.. 82

Chapter 9. Initialize an SDAID Trace in Direct Input Mode.. 83
Initializing an SDAID Trace in Direct Input Mode..83

Selecting the SDAID Input Mode..84
Starting the SDAID Trace Initialization..85
Ending the SDAID Trace Initialization..86
Defining the Output Device in Direct Input Mode..86

Defining the Output Device...86
The TRACE Statement..88

Summary of Trace Types.. 88
BRanch Trace..89

Initialization Example... 89
BUffer Trace..89

Initialization Example... 90
CAncel Trace...90

Statement Example.. 90
Initialization Example... 90

EXTernal Trace..91
Statement Example.. 91
Initialization Example... 91

GETVIS Trace..92
Statement Examples...93
Initialization Example... 93

INSTruction Trace...94
Statement Examples...94
Initialization Example... 95

I/O Interrupt Trace... 95
Statement Examples...95
Initialization Example... 96

LOCK Trace... 96
Statement Examples...97
Initialization Example... 98

MONitor Call Trace... 98
Statement Examples...99

OSAX Adapter Trace...99
Statement Examples...99
Initialization Example...100

PGMCheck Trace.. 100

vi

Statement Examples.. 100
Initialization Example...101

Program Load Trace (Fetch/Load Trace)... 101
Statement Examples.. 102
Initialization Example...102

SSCH Instruction Trace..102
Statement Examples.. 103

Storage Alteration Trace.. 103
Statement Example.. 104
Initialization Example...105

Supervisor Call Trace... 105
Statement Examples.. 106
Initialization Examples... 106

VTAM BUffer Trace... 106
Statement Example.. 106

VTAMIO Trace...107
Statement Example.. 107
Initialization Example...107

XPCC Trace... 108
Statement Examples.. 109
Initialization Example...110

Additional Definitions...110
ARea or JOBNAME Definition... 111
ADDress Definition..111
OFFset Definition.. 112
PHase Definition... 112
I/O Device Definition.. 113
OUTPut Definition... 113
OPTion Definition..116

Chapter 10. Initialize an SDAID Trace via a Procedure.. 117
Introduction... 117

Notational Conventions.. 117
Default Value Considerations...118

Writing Cataloged Procedures... 119
The Statements of a Cataloged Procedure.. 119

Procedures to Initialize SDAID Traces...121
Summary of Trace Procedures... 121
Branch Trace Initialization... 121
Instruction Trace.. 123
SSCH and I/O Interrupt Trace.. 124
Fetch/Load Trace.. 125
Program Check Trace..126
Storage Alteration Trace...127
SVC Trace.. 128

Additional Keyword Operands in Trace Procedure Statements... 129
Define the Output Device in a Procedure Statement...130
TERM=Keyword Operand... 131

Chapter 11. Initialize a Trace in Prompt Input Mode... 133
Overview...133
How to Initialize an SDAID Trace in Prompt Mode..133

The Various SDAID Commands..133
Sample SDAID Trace Initialization... 134

Command Input Paths... 136
OUTDEV Command Input Path.. 137
TRACE Command Input Path... 138

Output Device Definition in Prompt Mode: OUTDEV Command... 144

 vii

Possible Buffer Sizes.. 144
Specifying the Trace: TRACE Command..145
Defining the Trace Type... 145
Summary of Trace Types..146
BRanch Trace... 147
BUffer Trace..147
CAncel Trace...147
EXTernal (External Interrupt) Trace...147
GETVis (Getvis / Freevis Request) Trace... 148
INSTruction (Instruction Execution) Trace..149
IO (I/O Interrupt) Trace... 149
LOCK (Lock / Unlock of Resources) Trace... 150
MONitorcall Trace...151
OSAX Adapter Trace...151
PGMCheck (Program Check) Trace..152
PGMLoad (Program Load) Trace.. 152
Start Subchannel Instruction Trace...154
STorage Alteration Trace..154
SVC (Supervisor Call) Trace... 154
VTAMBU (VTAM Buffer) Trace..155
VTAMIO (VTAM I/O) Trace..155
XPCC (Partition Communication) Trace...155
AREA Definition.. 157
JOBNAME Definition.. 158

Prompts after AREA and JOBNAME Definitions.. 158
I/O Definition..159
Additional Output Definition.. 160
Option Definition.. 161

Chapter 12. Start/Stop and End the Trace..163
The Required Commands.. 163

STARTSD/STOPSD Commands: Starting and Stopping... 163
ENDSD Command: Ending Execution...163
Attention Routine Command Example...163

How to Control the Trace under Exceptional Conditions.. 164
Tracing an Unintended Loop...164
Terminating SDAID Program Without the Attention Routine.. 165
Starting/Terminating Tracing in a System Wait Condition...165

Part 4. Info/Analysis..167

Chapter 13. Info/Analysis: Introduction... 169
Operating Environment.. 169

The Dump Management File.. 169
The External Routines File..170
Label Information for Info/Analysis... 171

Functional Overview...172

Chapter 14. Dump Symptoms... 173
Types of Dump Symptoms... 173

Environment..174
Required Symptoms... 174
Optional Symptoms.. 174

Chapter 15. Invoking Info/Analysis...175
Submitting a Job to Invoke Info/Analysis... 175

Standard Info/Analysis Job Stream... 176

viii

Control Statement Syntax..176
Entering Control Statements..176

Common Control Statements.. 177
SELECT - Specify a Function or End Info/Analysis.. 177
RETURN - End Current Function.. 177
DUMP NAME - Specify or Add Current Dump.. 178
Recommendations (Restrictions) for the Generation of Dump Names...................................... 178

Dump Management..179
UTILITY - Initialize Dump Management File... 179
DELETE - Delete Current Dump..180
PRINT - Print List of Managed Dumps..180

Printing Dump Information.. 182
Dump Symptoms..182

PRINT - Print Dump Symptoms..183
Dump Viewing.. 187

PRINT - Print Dump Data... 187
CALL - Initiate Analysis Routine... 189

The Stand-Alone Dump Analysis Routine IJBXCSMG...190
Activating the routine... 190

The Stand-Alone Dump Analysis Routine IJBXDBUG...190
Activating the Routine.. 190
Output of the Routine... 191

The Stand-Alone Dump Analysis Routine IJBXSDA..197
Activating the Routine.. 197

Dump Offload... 197
VOLID - Specify Output Volume... 198
BYPASS - Skip Offload.. 198
ERASE - Delete or Retain Library Copy of Dump... 198
Offloading a Dump to Tape...199
SELECT DUMP OFFLOAD versus SELECT DUMP MANAGEMENT DELETE...................................199

Dump Onload..200
VOLID - Specify Input Volume... 200
FILE - Specify Dump File on Multiple-Dump Device..201
Loading a Dump into a Dump Sublibrary..201

Printing a Dump Stored on Tape or Disk..202
Processing and Printing a Dump with Info/Analysis..203
Printing a Stand-Alone Dump with Info/Analysis.. 204
DUMP Command Dump Printed with Info/Analysis.. 208

Ending the Info/Analysis Job... 209
Control Statement Sequence Examples..209
Control Statement Summary... 211

Appendix A. Symptom Records Overview... 213
Symptom Records Structure... 213
Symptom Record Creation.. 214
Section 6.. 214

Locators.. 215
Linkage Descriptors..215
Formatting Descriptors.. 216

Appendix B. Other Diagnosis Tools... 217
ACTION: Print Linkage Editor Map.. 217

Linkage Editor Map Warning Messages... 217
DITTO: Dump a Disk or Tape..219
DSPLY/ALTER: Display or Alter Storage... 220
LIBLIST: Display Library Chains...221
LIST: Print Language Translator Source Code... 222

 ix

LISTIO: List I/O Device Assignments.. 223
LISTLOG: Display Console Communication...223
LOG: Print Job Control Statements..223
LSERV: Display Label Information Area...224
LVTOC: Display Volume Table of Contents.. 225
STOP/PAUSE: Suspend Program Execution.. 226

Appendix C. Hardware Service Aids... 227
Controlling the Recovery Management Support...227

The ROD Command..227
Retrieval and Analysis of RMS Information.. 227

The EREP Program... 227
Hardware Aids via the Operator Console..227

Hardware Alter/Display..228
Instruction Stepping Feature...228
Stop-on-Address-Compare Feature..228

Notices..229
Programming Interface Information...230
Trademarks.. 230
Terms and Conditions for Product Documentation.. 230
Trademarks.. 231

Accessibility.. 233
Using Assistive Technologies.. 233
Documentation Format..233

Glossary.. 235

Index.. 271

x

Figures

1. Overview: Dump Contents...3

2. Overview: The ABEND Dump Function... 4

3. VSE Control Blocks in System Dump.. 6

4. Example of a Memory Object Dump... 7

5. The SYSDUMP Library Concept...12

6. Example: Labels for the SYSDUMP Library Stored in BAM Space..13

7. Example: Labels for the SYSDUMP Library Stored in VSAM Space..13

8. Example: Defining SYSDUMP with the LIBR Librarian Program...13

9. Example: LIBDEF Statement for a Dump Sublibrary..14

10. Sample Job: Upload a Large Dump into a z/VSE Dump Library...18

11. Sample: Standalone Dump Program Generation... 28

12. Sample: Directory of Dump Disk/Tape... 30

13. Sample: Dump Tape Printed with DOSVSDMP... 31

14. Sample Job: Printing SDAID Tape with DOSVSDMP.. 31

15. Trace Example: Trace Initialization.. 40

16. Trace Example: TRACE, TRACE END and QUERY Command... 40

17. Trace Example: Batch Trace... 41

18. Trace Example: DISPLAY and ALTER Command.. 42

19. Overview, Tracing Events into a Buffer...54

20. BRANCH Trace Event Record..56

21. CANCEL Trace Event Record...57

22. EXTERNAL Interrupt Trace Event Record...58

23. GETVIS / FREEVIS Trace Record.. 58

 xi

24. Additional Fields Displayed By GETVIS / FREEVIS Trace.. 59

25. INSTRUCTION Execution Event Record... 59

26. I/O-Interrupt Trace Event Record...60

27. LOCK Trace Record..61

28. Contents of LOCKTABLE..61

29. MONITORCALL Trace Event Record..62

30. Example of OSAX Adapter Trace Event Record..63

31. Program Check Trace Event Record... 64

32. PGMLOAD Trace Event Records..65

33. SSCH (Start Subchannel) Trace Event Record..66

34. Storage-Alter Trace Event Record.. 67

35. SVC Trace Event Record..67

36. VTAMIO/VTAMBU Trace Record... 68

37. XPCC Trace Record..69

38. Additional Fields Displayed By XPCC Trace... 69

39. Output of OUTPut=(CCWD=256).. 74

40. Overview: Defining the Area to be Dumped... 77

41. Printout of Floating-Point Registers... 77

42. Printout of General-Purpose Registers (AMODE 31)... 78

43. Printout of General-Purpose Registers (AMODE 64)... 78

44. Printout of General-Purpose and Access Registers... 78

45. Printout of Low Address Storage.. 79

46. Program-Check Event with Time of Day...80

47. Trace Initialization Examples (Direct Input Mode).. 85

48. Example: Initializing an SDAID Trace... 87

xii

49. SDINST Sample Procedure...118

50. Example: Cataloged Procedure.. 120

51. Example: Prompt Mode Trace Initialization...134

52. Example: Help and Cancel Initialization.. 135

53. Sample Command Input Path.. 136

54. OUTDEV Command: Syntax Diagram... 137

55. TRACE Command: Syntax Diagram (1 of 7)... 138

56. TRACE Command: Syntax Diagram (2 of 7)... 139

57. TRACE Command: Syntax Diagram (3 of 7)... 140

58. TRACE Command: Syntax Diagram (4 of 7)... 141

59. TRACE Command: Syntax Diagram (5 of 7)... 142

60. TRACE Command: Syntax Diagram (6 of 7)... 143

61. TRACE Command: Syntax Diagram (7 of 7)... 144

62. Prompting for a PGMLoad Request.. 153

63. Attention Routine Commands to Start, Stop and End the Trace... 164

64. Sample Job: Dump Management File Initialization...170

65. Sample Job: Loading the External Routines File via DITTO.. 171

66. Sample Job: Loading the External Routines File via OBJMAINT...171

67. Example: File Labels for Dump Processing.. 172

68. Dump Symptoms Part...173

69. Sample Job: Invoke Info/Analysis..176

70. Sample Job: Delete Dumps.. 180

71. Sample Job: List Managed Dumps... 181

72. Example: Dump Management PRINT DATA Output...181

73. Overview: Dump Contents..182

 xiii

74. Sample Job: Print Dump Symptoms.. 183

75. Example: Output of Print Dump Symptoms... 183

76. Sample Job: Print Selected Dump Areas... 188

77. Sample Job: Print a Dump in Formatted Form...189

78. Sample Job: Call the Analysis Routines IJBXCSMG, IJBXDBUG and IJBXSDA....................................190

79. Example: WAITFFF Analysis Report...194

80. Example: System Loop Analysis Report (1 of 3).. 195

81. Example: System Loop Analysis Report (2 of 3).. 196

82. Example: System Loop Analysis Report (3 of 3).. 197

83. Offloading a Dump to Tape... 199

84. Sample Job: Onload a Dump from Tape into a Dump Sublibrary.. 202

85. Overview: Print a Dump.. 203

86. Sample Job: Print a Stand-Alone Dump (Main Dump File)..204

87. Sample Job: Print a Stand-Alone Dump (Additional Dump File)...205

88. Sample: Symptom Part of the Stand-Alone Dump Output (Main Dump File)....................................... 206

89. Summary of the DUMP VIEWING, PRINT FORMAT Operation Output (1 of 2)..................................... 206

90. Summary of the DUMP VIEWING, PRINT FORMAT Operation Output (2 of 2)..................................... 207

91. Sample Job: Print the Output of a DUMP Command... 208

92. Sample: Symptom Part of the DUMP Command Dump... 209

93. Summary: Areas to be Printed with DUMP VIEWING, PRINT FORMAT.. 209

94. Control Statement Sequence Example.. 210

95. Control Statement Sequence Example.. 211

96. Symptom Records...213

97. Sample: Linkage Editor Output (ACTION MAP) (Part 1 of 2)... 218

98. Sample: Linkage Editor Output (ACTION MAP) (Part 2 of 2)... 219

xiv

99. Sample of the DSPLY and ALTER Commands...221

100. Example: Library Chain Listing... 222

101. Sample: LSERV Output... 225

 xv

xvi

Tables

1. Dump Requesting Functions... 21

2. AR Commands to Start/Stop and End an Initialized Trace.. 47

3. Trace Type Summary...47

4. Trace Type Summary...55

5. OUTPUT Definition Summary..72

6. Input Statement Summary... 83

7. OUTDEV Summary...86

8. Trace Type Summary...88

9. Additional Definitions Summary...110

10. OUTPut Definition Summary...113

11. Trace Procedures Summary... 121

12. Additional Keywords, Summary... 129

13. Input Command Summary... 133

14. Buffer Sizes... 145

15. Trace Type Summary.. 146

16. Summary: SELECT DUMP OFFLOAD and DELETE Operation...200

17. Control Statements to Invoke LVTOC...226

 xvii

xviii

About This Book

This publication is intended for customers who need to use the diagnosis tools of IBM z/VSE. These tools
consist of the various dump types, the Interactive Trace Program, SDAID traces, and the Info/Analysis
dump management facility of z/VSE. When to use these tools, and under what circumstances, is explained
in z/VSE Guide for Solving Problems.

With interactive tools, you will find examples of the panels and the interactive dialogs that are used to
invoke and run the programs. For tools running in batch mode, you will find examples of job control
streams. If an explanation of the output is necessary, sample listings are included.

Readers of this publication should be familiar with the operational concept of the IBM z/VSE system.

IBM z/VSE includes diagnosis tools that help you in information gathering and problem diagnosis when a
system or program malfunction occurs.

This publication describes the use of these tools.

Who Should Use This Book
This publication addresses primarily the system administrator.

Note, however, that any of the following persons may be the first to encounter a problem:

• The system console operator.
• A display station user, including the system administrator.
• An application programmer.
• An application end user.

Most problems, however, will end up with the administrator. Whenever an application program seems to
be at fault, the administrator may hand the problem over to the programmer responsible.

How to Use This Book
The conventions for showing the format of job control commands and statements used in the publication
z/VSE System Control Statements apply also to this manual.

This publication is divided into the following parts:

• Dumps of Virtual Storage

Which describes the various dump functions in general and shows the file and library environment
which is needed to store dumps. The methods to request and to print storage dumps which have been
stored on tape or in a dump sublibrary are described. This part contains also the description of the
DOSVSDMP utility.

• Interactive Trace Program

The Interactive Trace Program is the tracing tool for z/VSE application programs. This part describes
how you can trace the execution of programs running in static or dynamic user partitions.

• SDAID Trace

Contains an overview of the SDAID trace program, describes all trace types and the various methods to
initialize them. How you can start, stop, or terminate the initialized traces is also described in this part.

• Info/Analysis

Info/Analysis is the dump viewing and management facility of VSE. This part describes the use of Info/
Analysis. It also describes the stand-alone dump analysis routines IJBXCSMG, IJBXDBUG and IJBXSDA.

• Appendixes

© Copyright IBM Corp. 1984, 2014 xix

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Contain a description of the symptom record, various display and list aids such as the LVTOC or the
LSERV program, and tells how to use some hardware diagnosis aids.

Where to Find More Information
You will need the following IBM publications when diagnosing a problem:

• z/VSE Guide for Solving Problems
• z/VSE Messages and Codes Volume 1
• z/VSE Operation
• z/VSE System Utilities
• z/VSE TCP/IP Support
• VTAM Diagnosis

Restriction
If any of these diagnosis tools writes the output to an IBM 3211 printer and this printer's indexing feature
is being used, a number of characters may get lost on each line of the output. The system's dump and
trace routines, for example, write output records of 120 bytes in length.

To avoid the loss of data, you should load another FCB (forms control buffer) image which disables the
indexing feature before requesting the desired printout. For information on FCB loading, refer to the z/VSE
System Control Statements.

xx IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesore61.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesste60.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iestce61.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Summary of Changes

These are the enhancements made available at General Availability of z/VSE 5.2:

• Support of dumps of memory objects generated by the new OPTION MODUMP in the interactive
interface.

© Copyright IBM Corp. 1984, 2014 xxi

xxii IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of a syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram continues on the next line.
• The ►─── symbol, at the beginning of a line, indicates that a syntax diagram continues from the previous

line.
• The ───►◄ symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

• Directly on the line (required)
• Above the line (default)
• Below the line (optional)

Uppercase Letters
Uppercase letters denote the shortest possible abbreviation. If an item appears entirely in uppercase
letters, it can not be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any combination. For example:

KEYWOrd

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in any combination of uppercase and
lowercase letters.

Symbols
You must code these symbols exactly as they appear in the syntax diagram
*

Asterisk
:

Colon
,

Comma
=

Equal Sign
-

Hyphen
//

Double slash
()

Parenthesis
.

Period
+

Add

For example:

 * $$ LST

© Copyright IBM Corp. 1984, 2014 xxiii

Variables
Highlighted lowercase letters denote variable information that you must substitute with specific
information. For example:

,USER= user_id

Here you must code USER= as shown and supply an ID for user_id. You may, of course, enter USER in
lowercase, but you must not change it otherwise.

Repetition
An arrow returning to the left means that the item can be repeated.

 repeat

A character within the arrow means you must separate repeated items with that character.

,

 repeat

A footnote (1) by the arrow references a limit that tells how many times the item can be repeated.

1
 repeat

Notes:
1 Specify repeat up to 5 times.

Defaults
Defaults are above the line. The system uses the default unless you override it. You can override the
default by coding an option from the stack below the line. For example:

A

B

C

In this example, A is the default. You can override A by choosing B or C.

Required Choices
When two or more items are in a stack and one of them is on the line, you must specify one item. For
example:

A

B

C

Here you must enter either A or B or C.

Optional Choice
When an item is below the line, the item is optional. Only one item may be chosen. For example:

xxiv IBM z/VSE: z/VSE V5R2 Diagnosis Tools

A

B

C

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space
A required blank space is indicated as such in the notation. For example:

 * $$ EOJ

This indicates that at least one blank is required before and after the characters $$.

Understanding Syntax Diagrams xxv

xxvi IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Understanding Physical Addresses and VSE Addresses

From z/VSE 4.3 onwards, z/VSE supports device addresses (that is, physical addresses) of up to X'FFFF'.
This support is implemented as follows:

• z/VSE applications, messages, commands, and so on, do not address a device by the physical address
(pcuu), but instead by the VSE address (cuu).

• VSE addresses are in the range from X'000' to X'FFF'.
• To each physical address (pcuu) there is a corresponding VSE address (cuu).
• If the physical address is less than or equal to X'FFF', the VSE address (cuu) is equal to the physical

address (pcuu).
• If the physical address is higher than X'FFF' (and therefore outside the range of VSE addresses), the

physical address (pcuu) and VSE address (cuu) will be different.

CP commands (under z/VM) always use physical addresses.

z/VSE jobs, commands, dialogs, and messages use VSE addresses. However, in specified cases (for
example, when using the QUERY IO command) physical addresses might be used.

Note: Throughout the z/VSE documentation, the term address of a device (used on its own) always refers
to the VSE address.

To obtain the VSE address of a device that corresponds to a physical address, you can use the QUERY IO
command. For example, to display the VSE address (cuu) of a tape drive that has the physical address
(pcuu) 3A61, you would enter at the z/VSE console:

query io,cuu=3A61
AR 0015 VSE ADDR PHYSICAL ADDR DEVICE CLASS
AR 0015 A61 3A61 TAPE
AR 0015 1I40I READY

The VSE address shown above is A61.

You can similarly use the QUERY IO command to obtain the physical address of a device that corresponds
to a VSE address.

For further examples of using physical addresses of up to X'FFFF', refer to the description of the ADD
command in the z/VSE System Control Statements.

© Copyright IBM Corp. 1984, 2014 xxvii

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

xxviii IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Part 1. Dumps of Virtual Storage

You may face system conditions in which you want to know what the contents of your system's storage is.
For this, the storage data can be read out, saved in a library or on a tape, or can be printed. This processed
storage data is called a dump.

This part of the publication describes how to retrieve a dump and how to use the saved dump for problem
determination.

Which of the shown methods you use to retrieve information for problem determination depends on the
error situation. For example, in case of a system wait or a system loop the Standalone Dump Program
would be the appropriate tool to save or print the storage contents.

© Copyright IBM Corp. 1984, 2014 1

2 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 1. General Description

This topic describes the various types of dump, the functions you use to create dumps in general, and how
to define dump sublibraries.

The types of dump described in this topic are:

• The ABEND dump, initiated by

– the system ABEND handling routines,
– the programmer, issuing the macro DUMP,
– the operator entering the CANCEL command;

• The DUMP command dump, initiated by the operator;
• The Stand-alone dump, initiated by the operator;
• The SDAID dump, initiated by the operator.

Dump Contents Overview
The output of the DUMP command, ABEND dump and Standalone Dump Program contains two major
parts.

• The symptom records.
• The data records.

The amount of information which is stored in these dump records depends on the function which requests
the dump. Note that pages containing only zeros are not dumped explicitly.

Figure 1 on page 3 gives an overview of a dump, which can reside either in a dump sublibrary or in a
dump file on tape or disk.

Figure 1. Overview: Dump Contents

The symptom records are built by the component which produces the dump. They contain information to
format the dump data later on. The symptom records are described in Appendix A, “Symptom Records
Overview,” on page 213.

The ABEND Dump Function
The ABEND dump function is internally called when the system detects an ABEND condition or when a
CANCEL command has been given.

Overview of ABEND Dump Function

© Copyright IBM Corp. 1984, 2014 3

What is an ABEND
ABEND stands for ABnormal END of task. This means that a program (task) is terminated prior to its
completion because of an error that could not be resolved by system recovery facilities.

What is an ABEND Dump
The system's ABEND dump function is called by VSE/Advanced Functions:

• When an ABEND (abnormal termination) occurs;
• When a CANCEL command is issued.

When the function is called, it provides a dump of the storage areas in which the program was running.

Figure 2 on page 4 shows that:

• The ABEND dump function is activated when an ABEND condition occurs;
• The output from the function is controlled by job control options. These are specified in STDOPT or

OPTION statements.
• The options determine:

– The contents of the dump;
– To which I/O device the dump is written.

Figure 2. Overview: The ABEND Dump Function

The following ABEND dumps are shown in Figure 2 on page 4 under ‘OUTPUT CONTENTS’:

• The System Dump dumps the whole supervisor area and the dump symptoms besides the partition
area.

• The Partition Dump includes only selected VSE/Advanced Functions control blocks and the dump
symptoms in addition to the partition area.

4 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• The Data Space Dump includes a dump of one or more data spaces.
• The Memory Object Dump includes a dump of one or more memory objects.

The output of the dump is either written into a dump sublibrary or on a printer device assigned to SYSLST.

Note: Memory objects are only dumped to SYSLST.

Activation of the ABEND Dump Function
The ABEND dump function is activated when

• A program or task running in one of the system's partitions comes to an ABnormal END, and no AB
exitroutine is active. The macro DUMP activates the ABEND handling routines, too. See “Options to
Control the ABEND Dump” on page 21.

• A CANCEL command is issued by the operator for one of the operating system's partitions. See
“Requesting a Dump by the CANCEL Command” on page 23.

If the activation of the ABEND dump function leads to a dump writing operation (depending on the active
job control options), the storage contents are dumped

• Before any end-of-job routine is executed.
• Before any of the attached subtasks is terminated.

Contents of the ABEND Dump Output
The output of the ABEND dump function (either in the sublibrary or on SYSLST) contains:

• A dump symptom part, which is always included.
• A system dump or a partition dump, depending on the options active at the time the dump was taken.
• A data space dump, if the corresponding option was specified.
• A memory object dump, if the corresponding option was specified.

Symptom Part of the ABEND Dump
This part of the output contains

• Control data from the symptom records, like information about the environment or the failure. For a
description of the symptom records, see Appendix A, “Symptom Records Overview,” on page 213.

System Dump
The system dump, which is produced if OPTION DUMP or STDOPT DUMP=YES is active, contains the
following information besides the symptom part:

• The ending task PSW, general purpose registers, access registers and floating point registers.
• The entire supervisor area.
• The areas containing z/VSE control blocks listed in Figure 3 on page 6.
• The allocated portion(s) of the system GETVIS area.
• If the error occurred in the SVA, that part of the SVA which holds the phase responsible for the ABEND.
• The partition for which the ABEND dump function is active including areas acquired dynamically within

the partition by GETVIS macros in your program.
• The dynamic space GETVIS area for dynamic partitions.

Partition Dump
A partition dump is produced when option OPTION PARTDUMP or STDOPT DUMP=PART is active. The
dump output includes the following system areas besides the symptom part:

• The ending task PSW, general purpose registers, access registers, and floating point registers;

Chapter 1. General Description 5

• The LOWCORE (low address storage);
• The areas containing VSE control blocks listed in Figure 3 on page 6;
• The partition for which the ABEND dump function is active including areas acquired dynamically within

the partition by GETVIS macros in the program;
• If the error occurred in the SVA, that part of the SVA which holds the phase responsible for the ABEND;
• The logical transient area (LTA), if the error causing the dump to be taken occurred in a task owning the

LTA.

Data Space Dump
If OPTION DSPDUMP or STDOPT DSPDUMP=YES is active, a data space dump is to be taken in case of
an abnormal program end. If the ABEND routine finds out that the failing program has access to a data
space, it takes a dump of that space and enters it as a separate library member in the same dump library.
The failing program must be in access register mode, and at least one of the access registers must contain
the ALET (access list entry token) of that data space. The number of different ALET pointers in the access
registers determines how many data spaces will be dumped.

The ABEND routine dumps an area of at least 4K of storage on either side of the address(es) pointed to by
the matching general register(s). However, if the size of the data space does not exceed 128K of storage,
the whole data space is dumped.

SUP Supervisor
BG Background partition
GETVIS24 24-bit GETVIS area
GETVIS31 31-bit GETVIS area
COMREG Partition's communication region
SYSCOM System communication region
PUBTABLE Physical unit block table
PUBOWN PUB ownership table
PUB2TAB Physical unit block extension table
LUBTAB Partition's logical unit block table
LUBEXT Partition's LUB table extension
DIBTAB Partition's disk information block
PIBTAB Partition information block
PIB2TAB Partition information block extension
PCB Partition control block
AF-TIB Task information block
AF-TCB Task control block
LOADLIST Partition's phase load trace table
LPT Library pointer table
LDT Library definition table
SDT Sublibrary definition table
EDT Extent definition table
DDT Device definition table
LIB_ANC Library anchor table
L-TASK-R Librarian task LOT-row
LOTPOOL Library offset table pool

Figure 3. VSE Control Blocks in System Dump

Memory Object Dump
When an "abnormal program end" (ABEND) occurs, if OPTION MODUMP or STDOPT MODUMP=YES is active
then z/VSE will create a memory object dump of 4 KB of both sides of the failing address.

A memory object dump will be created when all of the following conditions apply:

• The failing program is running in 64-bit mode when the abnormal program end occurs.
• The current primary address space owns private memory objects (defined via an IARV64 GETSTOR

request) or shared memory objects (defined via an IARV64 GETSHARED request). For details about
IARV64 requests, refer to z/VSE System Macros Reference.

• At lease one general register contains a 64-bit address within the range of a memory object.

For details about the OPTION MODUMP and STDOPT MODUMP=YES options, refer to the z/VSE System
Control Statements.

6 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

For each matching general register, an area of 4 KB of storage on either side of the 64-bit address
contained in the register is dumped. If the 64-bit address is located near a boundary of a memory object
(which results in less than 4 KB of storage on one side), the dump is only taken to the boundary of the
memory object.

An example of a memory object dump that has been produced by the ABEND routine is shown below.
MEMORY OBJECT DUMP SYMPTOM RECORDS:
 ADDRESS_SPACE=BG
 REG=02 0000000180302000
 START_ADDRESS=0000000180300000
 END_ADDRESS=00000001804FFFFF
 SHARED=NO
 FETCH_PROTECTED=YES
 STORAGE_KEY=1

DUMP BEGIN: 0000000180301000
DUMP END: 0000000180302FFF

DUMP OF MEMORY OBJECT
0000000180301000 C7C5E3E2 E3D6F5C7 00000000 00000002 C2C70000 00000000 00000000 00000000 10 GETSTO5G........BG..............
0000000180301020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0000000180301040 TO 0000000180301FFF SUPPRESSED LINE(S) SAME AS ABOVE ...
0000000180302000 PAGE(S) NOT USED
NO SHARED MEMORY OBJECTS ARE AVAILABLE FOR DUMP

Figure 4. Example of a Memory Object Dump

For further details about the symptom records of a memory object dump, refer to the information
provided under "REQUIRED SYMPTOMS FOR A MEMORY OBJECT DUMP" in “Symptom Part Description”
on page 183.

For details of how memory objects can be included or excluded in a stand-alone dump, see “Partition,
Data Space, and Memory Object Dump Files” on page 9.

The DUMP Command
You can request a dump of parts of the virtual storage with the attention routine command DUMP.

For a detailed description of the DUMP command, refer to the publication z/VSE System Control
Statements.

The Stand-Alone Dump (SADUMP) Program
If your system entered a hard or soft wait state or is in a continuous loop, no normal system operation is
possible. In this case you can invoke the Standalone Dump Program to get information about the problem.
The Standalone Dump Program records the supervisor and the SVA in one file and the page manager
address spaces and the selected partitions and data spaces in separate files on one or more stand-alone
dump tapes or on a disk device. (On disk, these files reside in one physical extent containing several
'logical' files.)

The output device on which the Standalone Dump Program is created must be a tape or disk unit. The
Standalone Dump Program writes its dump output on one or more tapes or on a disk device. It is not
possible to write the dump output directly on a line printer.

The Standalone Dump Program dumps selected parts of virtual storage of your VSE system on tape or
disk. The // OPTION SADUMP job control option allows to include important pieces of virtual storage
into the stand-alone dump. It is usually not necessary or practical to dump the complete system; DUMP
command dumps and partition dumps should be used when possible.

Before you can use the Standalone Dump Program, it has to be created with the DOSVSDMP utility. See
“Creating the Standalone Dump Program” on page 27.

The creation of the Standalone Dump Program should be done shortly after system installation via IUI
panels in order to have the program available in case of a system error.

After the dump is taken, the operator has to perform a manual IPL from SYSRES. If the dump is on
SYSRES, no manual IPL is required.

For a description of how to request a stand-alone dump, see “Taking a Stand-Alone Dump” on page 23.

Chapter 1. General Description 7

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Support of Integrated Console by SADUMP Program
The Standalone Dump Program (SADUMP) supports the integrated console as system console in addition
to 3215 and 3270 type devices. The selection of the system console depends on device availability and
the IPL load parameter.

The selection criteria are:

1. If a console is specified as load parameter, the system will route messages to that preferred device.

• In case the integrated console is specified in the load parameter, SADUMP will route messages to the
integrated console.

• In case a local console is requested in the load parameter, or the integrated console is not available,
SADUMP will route messages to the local console.

2. If the Standalone Dump Program is activated without specification of a communication device type,
SADUMP will route messages to the device which is found in the SYSCOM.

• If this device is not operational, SADUMP will route messages to the integrated console.
• If an integrated console is not available, SADUMP will abnormally terminate.

IPL Load Parameter
The IPL load parameter must be used to specify the preferred communication device.

To determine the communication path, SADUMP first analyzes the load parameter. If the hardware does
not support the load parameter, selection of the communication device is determined during the creation
of the Dump program by the DOSVSDMP utility.

If the load parameter is specified, its first byte indicates the console type.

For details of the IPL load parameter, refer to the publication z/VSE System Control Statements.

Output of the Standalone Dump Program
The Standalone Dump Program stores the dump information on the tape from where it has been loaded or
on a disk extent. It produces a main dump file of the system areas and additional dump files for the page
manager address spaces and for each partition and data space to be dumped.

Main Dump File
The 'main' dump file is always file 3 on tape (files 1 and 2 are used by the system) or file 1 on disk. The
Standalone Dump Program writes the following information into the main dump file:

• The symptom record, which holds information on the hardware and software environment, error
symptoms, and control block locators.

• The dump data, which consists of retrieved pages from processor storage, or from the page data set.
It includes the shared area (supervisor, system GETVIS area, and SVA) and control block locators for
supervisor control blocks.

• If certain system information needed for accessing the page data set is not available, you get a dump of
the data in processor storage only.

• The last 200 messages from the hardcopy file.

The main dump file can be onloaded into a VSE dump sublibrary from which it can be processed by Info/
Analysis. The Info/Analysis exit routines IJBXCSMG, IJBXDBUG and IJBXSDA can be invoked to analyze
the main dump file.

Page Manager Address Space (PMRAS) Dump Files
The first file (PMRAS-R) contains real storage areas which are used by the Page Manager but are not
mapped in any of the virtual spaces. The following files (PMRAS-nn) contain the Page Manager Address
Spaces (segment tables, page tables etc.), where nn is the space id.

8 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Partition, Data Space, and Memory Object Dump Files
The job control OPTION SADUMP=n|([n],m)|([n],[m],o) statement specifies the priority in which the
partition (n), any owned data spaces (m), or private memory objects (o) should be dumped in a stand-
alone dump. The priority setting can be 0 to 9, with 9 being the highest priority and 0 indicating that no
dump is taken. The default is ’0’.

The job control command STDOPT SADUMP=n|([n],m)|([n],[m],o) specifies the priority in which all
partitions/data spaces/private memory objects in the system should be dumped in a stand-alone dump,
unless overridden for a specific partition by a corresponding OPTION SADUMP statement.

Examples:

 F1 ... SADUMP=(5,5)
 F3 ... SADUMP=(0,0,5)
 F2 ... SADUMP=4

Dumps by priority: F1 partition, F1-owned data space(s), F3-owned memory objects, F2 partition.

 F1 ... SADUMP=(5,3)
 F2 ... SADUMP=4
 F3 ... SADUMP=(,9)

Dumps by priority: F3-owned data space(s), F1 partition, F2 partition, F1-owned data space(s).

Note that for stand-alone dumps to disk, the Standalone Dump Program stops dumping when the dump
data set becomes full. Therefore, it is possible that one or more of the partitions, data spaces, or memory
objects with SADUMP not equal to 0 will not be dumped, or that the last dump file may be incomplete.
This does not apply for stand-alone dumps to tape, since the output can be written to several tapes.

The job control command STDOPT SADMPSMO specifies whether or not the shared memory object dump
file SHARED-MEMORY_OBJ should be included in a stand-alone dump. The default is ’No’.

For details of how to use the OPTION SADUMP, STDOPT SADUMP, and STDOPT SADMPSMO statements
or commands, refer to "OPTION (Set Temporary JC Options)" and "STDOPT (Standard JC Options)" in the
publication z/VSE System Control Statements.

All dump files can be processed via DOSVSDMP which allows the contents of an appended dump file to be
printed on SYSLST.

All dump files can also be onloaded into a VSE dump sublibrary. From the VSE dump sublibrary, the
partition and data space dumps can be processed by the Info/Analysis program. You can display the
symptom string or print selected parts of the storage dump.

The Info/Analysis exit routines IJBXCSMG, IJBXDBUG and IJBXSDA cannot be invoked to analyze the
appended dump files.

A description of how to print the Standalone Dump Program output can be found under “Printing a Dump
Stored on Tape or Disk” on page 202.

The SDAID Dump
The SDAID program can also be used to dump virtual storage. You may use this program for example if
you need a dump of a certain part of storage at a defined event.

For a short description of this SDAID function, see “Requesting a Dump on Event (SDAID Dump)” on page
24.

Dump Requested by Macros
A dump of virtual storage can also be requested through dump macros.

For a short description of this method of requesting a dump, see “Requesting a Dump from a Program” on
page 25.

Chapter 1. General Description 9

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Info/Analysis
Info/Analysis is a component of VSE. It is a tool to:

• Manage the dump files
• Print or display dump information.

With Info/Analysis, you can simplify the task of using dump data to solve software problems. Info/
Analysis assists you in this task through the following functions:

• Dump management - to list the dumps being managed by Info/Analysis, to add or delete dumps from
that list, and to delete dumps from the system.

• Dump symptoms - to display problem failure information collected by the dumping component and by
subsequent analysis routines.

• Dump viewing - to display dump data in hexadecimal and character format, to format control blocks and
other dump data that may be relevant to the problem, to invoke dump analysis routines, and to display
the results of those routines.

• Dump offload - to copy a dump to tape for later retrieval.
• Dump onload - to copy a dump to a dump sublibrary (a stand-alone dump for example).

You enter input either from SYSIN or from SYSLOG. Output always goes to SYSLST. For an example of a job
to invoke Info/Analysis, see Figure 69 on page 176.

10 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 2. Maintaining the Dump Library and File
Environment

Various files are used to process and evaluate dumps stored either on a tape or disk volume or in a dump
sublibrary.

The Library and Files Required to Process Dumps
The libraries and files required to process and use dump information are:

1. The dump sublibraries (in the library SYSDUMP)
2. The dump management file (for Info/Analysis)
3. The external routines file (for Info/Analysis).

The SYSDUMP Sublibraries
The system uses the defined dump sublibraries to store dumps for later processing. These sublibraries
are also used to onload dumps which have been stored on tape either by the system's dump functions or
by a previous Info/Analysis offload operation.

Dumps can be processed using the print, analyze, and management functions of the Info/Analysis
program once the dumps have been onloaded into a dump sublibrary. How the SYSDUMP library is
defined and used is described in the following section.

Purpose of the SYSDUMP Library
The library named SYSDUMP is used to store the various dump types for further processing. It contains
one or more dump sublibraries. Each dump sublibrary should be assigned to one partition and may
contain one or more dumps. A separate dump sublibrary is used for all dynamic partitions. Figure 5 on
page 12 gives an overview of the SYSDUMP library concept.

Maintaining Dump Library and Files

© Copyright IBM Corp. 1984, 2014 11

Figure 5. The SYSDUMP Library Concept

These dump sublibraries are used by the system and by you.

VSE/Advanced Functions stores dumps for later processing from

• ABEND events
• CANCEL commands.

You can use the dump sublibraries to onload dumps which have been stored on tape or disk in order to
process them with Info/Analysis functions. You may use the dump sublibraries to store the following:

• DUMP command dumps
• Stand-alone dumps (from tape or disk)
• Dumps which have been offloaded to tape.

Establishing the Dump Sublibraries
Before dumps can be stored, the dump sublibraries have to be created. The following describes, what
job control label information is required for the SYSDUMP library and how the dump sublibraries can be
defined via the librarian program LIBR.

The following requirements have to be met if you want to use the dump library and its sublibraries:

Maintaining Dump Library and Files

12 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

1. If the dump library is located in BAM space, you have to specify DLBL and EXTENT labels for the library
SYSDUMP.

2. If the dump library is located in VSAM space, you have to specify the DLBL label for the library
SYSDUMP.

3. The library SYSDUMP and its sublibraries have to be defined with the LIBR program.
4. LIBDEF statements have to be given.
5. The SYSDUMP option has to be set in order to get ABEND dumps written into the dump sublibraries.

Label Information for SYSDUMP
Figure 6 on page 13 shows an example of the label and extent information you have to submit if you
want to define the dump library SYSDUMP.

The standard label area should be used to store this information in the SYSDUMP Library in BAM space or
in VSAM space:

 ⋮
// DLBL SYSDUMP,'VSE.DUMP.LIBRARY',1999/365,,DSF
// EXTENT SYS010,,1,0,3150,600
 ⋮

Figure 6. Example: Labels for the SYSDUMP Library Stored in BAM Space

 ⋮
// DLBL SYSDUMP,'VSE.DUMP.LIBRARY',,VSAM, X
 CAT=IJSYSCT, X
 DISP=(OLD,KEEP)
 ⋮

Figure 7. Example: Labels for the SYSDUMP Library Stored in VSAM Space

Notes:

• IBM recommends securing the dump library. Securing the dump library prevents overwriting of part of
the file(s) as a result of a faulty response to an OVERLAPPING EXTENT message. For information about
using the access control function, refer to the topic "Protecting Data" in the publication z/VSE Guide to
System Functions.

• From z/VSE 5.1 onwards, an initial installation of z/VSE will create the SYSDUMP library in VSAM space.

Defining the Dump Library
You define the dump library (normally named SYSDUMP) with the LIBR program. Figure 8 on page 13
shows an example of such a definition.

// JOB DEFINE
// EXEC LIBR
DEFINE L=SYSDUMP
DEFINE S=SYSDUMP.BG -
 SYSDUMP.F1 -
 SYSDUMP.F2 -
 SYSDUMP.F3 -
 SYSDUMP.F4 -
 ...
 SYSDUMP.FB -
 SYSDUMP.DYN REUSE=IMM
...
/*
/&

Figure 8. Example: Defining SYSDUMP with the LIBR Librarian Program

Maintaining Dump Library and Files

Chapter 2. Maintaining the Dump Library and File Environment 13

http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

LIBDEF Statement for Dump Sublibraries
To get the dumps stored into the sublibrary assigned to the partition, the ASI Job Control procedure for
each partition should contain a LIBDEF statement as shown in Figure 9 on page 14. In the example given
in Figure 9 on page 14 a dump sublibrary is connected to the BG partition.

// LIBDEF DUMP,CATALOG=SYSDUMP.BG,PERM

Figure 9. Example: LIBDEF Statement for a Dump Sublibrary

Maintaining Dump Library and Files

14 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 3. Handling Dumps

Options to Activate Dump Writing
The system writes the output of an automatically invoked ABEND dump into the dump sublibrary for the
partition if you submit either of the following statements:

 // STDOPT SYSDUMP=YES
 // OPTION SYSDUMP

With the // STDOPT SYSDUMP statement you request the system to write dumps of the next and all
subsequent jobs or job-steps into the dump sublibrary for the particular partition until the SYSDUMP
option is deactivated. The STDOPT statement must be given in the BG partition and is active for all
partitions.

You can display the current settings for the permanent options using the QUERY STDOPT command.The //
OPTION statement is active only for the duration of the particular job (this is the temporary option). After
EOJ, the permanent option given in a previous STDOPT statement will be active again.

Options to Deactivate Dump Writing
The SYSDUMP option is deactivated by:

// STDOPT SYSDUMP=NO
// OPTION NOSYSDUMP
UNBATCH (to deactivate the partition)
LIBDROP DUMP,PERM

Identifying the Stored Dumps
Once the dump library and dump sublibraries have been defined, dumps from various sources can be
stored there. The dumps stored by the ABEND dump routines have an identifier of the following format:

 SYSDUMP.partition_id.nnnnnnnn

SYSDUMP
Dump library name.

partition_id
Sublibrary name, normally the partition identifier, like BG or F3 or, for dynamic partitions, DYN.

nnnnnnnn
Dump identifier of the form:
Dppnnnnn

for address space dumps, or
Sppnnnnn

for data space dumps.

pp = partition identifier of the static or dynamic partition.

n = integers between 0 and 9 which are maintained by the system automatically with every new store
dump operation.

For example:

 SYSDUMP.F4.DF400002

© Copyright IBM Corp. 1984, 2014 15

is the name of a dump residing in the dump sublibrary for the F4 partition of the library SYSDUMP, with
the identifier DF400002.

Note: When you onload a dump into the dump library via Info/Analysis, you select a dump name by your
choice. The rules for creating a dump name are explained in “Recommendations (Restrictions) for the
Generation of Dump Names” on page 178

Sending Dumps to IBM Support Electronically
Dumps are normally stored by z/VSE in the VSE dump library. However, you may need to transmit dumps
electronically to other locations, such as to IBM Support (previously, you were required to send dumps to
IBM on a physical tape).

1. Locate the Dump Location on z/VSE. If the dump is a stand-alone dump, it will be stored on tape. If
the dump is a system dump (for example, an Attention Routine dump), it will be stored on a disk or
tape. In both cases, you must upload the dumps to the z/VSE dump library.

2. Upload the Dumps to the z/VSE Dump Library. You use the Storage Dump Management dialog
(Fastpath 43) to do so. For details, refer to the publication z/VSE Guide for Solving Problems. For
a stand-alone dump, there will be multiple dumps consisting of one for each selected partition,
dataspace, or memory object, and one for the supervisor and SVA.

If you need to upload dumps of memory objects, the INFOANA utility and Dump Management dialog
cannot be used. Instead, use skeleton SKDMPONL in VSE/ICCF Library 59 to onload a dump from
tape (for details, see “Uploading Large Dumps From a Standalone Dump Tape” on page 18). For a
stand-alone dump on disk, transfer the contents of the disk directly to IBM.

3. Format and Print Dumps (Optional). On the z/VSE dump library, you might be required to use the
Interactive Interface tools to format these dumps (for example CICS® dumps). However, in most cases
IBM Support will require unformatted dumps.

4. Download the Dumps From z/VSE to Your PC. To download dumps from z/VSE to your Personal
Computer (PC), you use the File Transfer utility of the Interactive User Interface (IUI). For the example
of “Identifying the Stored Dumps” on page 15, you would enter this command at the PC:

 receive DFH400002.dump a:DFH400002 dump (file=lib l=sysdump s=f4 binary

In this example, "a:" is the emulation session where you are signed on to CICS.

As an alternative to using the File Transfer utility of the IUI, you can use the FTP of TCP/IP to transfer
dump to transfer the dump from the z/VSE dump library to your PC. For the example used in this
procedure, a transfer using FTP would appear like this:

a. Define the z/VSE Dump Library to TCP/IP:

 DEFINE FILE,TYPE=LIBRARY,DLBL=SYSDUMP,PUBLIC='SYSDUMP',ALLOWSITE=NO

b. Start the File Transfer (in Binary):

 C:\>ftp 9.164.155.2 <----- Your IP address
 Connected to 9.164.155.2.
 ⋮
 User (9.164.155.2:(none)): sysa <----- your user id
 331 User name okay, need password.
 Password: <----- your password
 200 Command okay.
 ftp> cd sysdump
 250 Requested file action okay, completed.
 ftp> cd f4 <----- Sublib where your dump resides
 250 Requested file action okay, completed.
 ftp> bin <----- switch to binary mode
 200 Command okay.
 ftp> get DF400002.dump <----- Name of the dump
 200 Command okay.
 150-About to open data connection
 File: SYSDUMP.F4.DF400002.DUMP
 Type: Binary Recfm: S Lrecl: 4096
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON
 150 File status okay; about to open data connection

16 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf

 226-Bytes sent: 23,273,920
 Records sent: 711
 Transfer Seconds: 6.91 (3,788K/Sec)
 File I/O Seconds: 5.30 (4,545K/Sec)
 226 Closing data connection.
 ftp: 23273920 bytes received in 7,51Seconds 3098,64Kbytes/sec.

5. Send the Dump to IBM Support. Depending on the size of the dump stored on your PC, you might
need to compress the dump using the PKZIP utility. To send the dump to IBM Support, you should
send the dump to an IBM FTP server using the FTP of TCP/IP. For the example used in this procedure,
you would send the dump to the public server at IBM Boulder using these commands:

 C:\>ftp testcase.boulder.ibm.com <----- IBM Boulder IP address
 Connected to testcase-blue.boulder.ibm.com.
 ⋮
 User (testcase-blue.boulder.ibm.com:(none)): anonymous
 331 Guest login okay, need password.
 Password: <----- your Internet e-mail address
 200 Command okay.
 ftp> cd /vse/toibm <----- cd vse [enter] cd toibm [enter]
 250 Requested file action okay, completed.
 ftp> bin <----- switch to binary mode
 200 Command okay.
 ftp> put DF400002.dump <----- Name of the dump
 200 Command okay.
 150-About to open data connection
 File: SYSDUMP.F4.DF400002.DUMP
 Type: Binary Recfm: S Lrecl: 4096
 CC=ON UNIX=OFF RECLF=OFF TRCC=OFF CRLF=ON
 150 File status okay; about to open data connection
 226-Bytes sent: 23,273,920
 Records sent: 711
 Transfer Seconds: 6.91 (3,788K/Sec)
 File I/O Seconds: 5.30 (4,545K/Sec)
 226 Closing data connection.
 ftp: 23273920 bytes received in 7,51Seconds 3098,64Kbytes/sec.

Mailing Dumps That Are Stored on Tape to IBM Support
Dumps are normally stored by z/VSE in the VSE dump library. However, you may need to mail dumps that
are stored on tape to other locations, such as to IBM Support.

1. Locate the Dump Location on z/VSE.

• If the dump is stored on disk, go to Step 2 below.
• If the dump is stored on tape and you wish to format the dump, go to Step 2 below.
• If the dump is stored on tape and you do not wish to format the dump, mail the tape to the address

provided by IBM Support.
2. Upload the Dump From Disk to the z/VSE Dump Library. You use the Storage Dump Management

dialog (Fastpath 43) to do so. For details, refer to the publication z/VSE Guide for Solving Problems.

If you need to upload dumps of memory objects, the INFOANA utility and Dump Management dialog
cannot be used. Instead, transfer the contents of the disk directly to IBM.

3. Format and Print the Dump (Optional). On the z/VSE dump library, you might be required to use the
Interactive Interface dialog to format these dumps (for example CICS dumps). However, in most cases
IBM Support will require unformatted dumps.

4. Download the Dump From the z/VSE Dump Library to Tape. To download a dump from the z/VSE
dump library to tape, you use the Interactive Interface dialog.

5. Mail the Tape to IBM Support. You should mail the tape to the address provided by IBM Support.

Handling a Dump Library Full Condition
Information is written to the dump sublibraries when:

1. A dump is taken automatically by the system;

Chapter 3. Handling Dumps 17

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf

2. A dump is stored in a sublibrary via the onload process of Info/Analysis dump management;
3. Dumps are examined with an Info/Analysis analysis routine function.

In all three cases, space is needed in the dump sublibrary for page maps and analysis information, in
addition to the dumps themselves. How the system reacts to a library-full condition depends on which
routine caused the condition, and what kind of information was being written at the time.

If the library becomes full while:

• The system is writing an ABEND dump into it, the whole dump is printed on SYSLST and a dump-library-
full information message is issued on SYSLOG;

– If you want to ignore the dump (rather than printing it on SYSLST) you must specify SYSDUMPC
instead of SYSDUMP. If the dump does not fit into the dump library, it will be printed.

– Refer to the IBM publication z/VSE System Control Statements for details of how to specify the
SYSDUMPC option.

• The Info/Analysis dump management function is writing a dump, the dump is flagged “to be onloaded”.
In spite of this flag, the dump may have been stored in the sublibrary. This can happen when the
library-full condition arises while additional information is being stored after the dump itself has been
written.

• An Info/Analysis dump viewing function is being used, the function fails.

In all three cases, the amount of free space in the sublibrary is kept as it was before the dump write
operation was started.

• You can clear sublibrary space to make room for new dumps by deleting dumps that are no longer
required. How to delete a dump is described under “DELETE - Delete Current Dump” on page 180.

Note: Do not delete a dump with a delete function other than the Info/Analysis delete function.
• You can also send dumps to the dump archive (sub-library PRD2.DUMP). This archive resides in VSAM

space, and is therefore automatically extended by VSAM. To set your z/VSE system to use the dump
archive, use the dialog Storage Dump Management: Specify Filter (Fast Path 43).

Uploading Large Dumps From a Standalone Dump Tape
Large dumps (that is, dumps of partitions that are larger than approximately 1 GB) cannot be uploaded
from the dump tape into z/VSE using the INFOANA ONLOAD utility. This is because for such large dumps,
the INFOANA utility cannot obtain enough storage below the 16 MB line. The job will end with these
return codes:

 BLN9002I ERROR IN EXTERNAL ROUTINE, RETURN CODE = 12, REASON CODE = 712
 BLN3002I ONLOAD FAILED, REASON CODE = 3012

To avoid this problem, you can use a DITTO job (shown in Figure 10 on page 18) to upload the dump file
into the z/VSE dump library. In this job, "file 6" represents the partition dump.

 // JOB TEST
 * MOVE DUMP FILE FROM TAPE TO DUMP LIBRARY
 *
 // UPSI 1
 // PAUSE - PLEASE MOUNT SCRATCH TAPE ON 181
 // EXEC DITTO
 $$DITTO REW OUTPUT=181
 $$DITTO TL INPUT=181,INFILE=6,RECFMIN=FB,LIBOUT=SYSDUMP.BG,
 $$DITTO MEMBEROUT=DBG00001.DUMP,RECFMOUT=S
 /*
 /&

Figure 10. Sample Job: Upload a Large Dump into a z/VSE Dump Library

18 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

If the dump was taken on a z/VM system, you can upload the dump file into the z/VM dump library using
these CMS statements:

 TAPE REW
 TAPE FSF 5
 FILEDEF OUT DISK dump_name dump_type mode (RECFM F LRECL 4112 BLKSIZE 4112
 FILEDEF IN TAP1 (RECFM F LRECL 4112 BLKSIZE 4112
 MOVEFILE IN OUT

Note:

1. In the above statements, File 6 (forward tape file 5) is the partition dump on the tape.
2. Loading of Memory Object dumps is limited to dumps smaller than 2 GB.

If required, you can now transfer the dump from the z/VSE or z/VM dump library to IBM Support (for
further analysis).

Chapter 3. Handling Dumps 19

20 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 4. Requesting a Dump

VSE/Advanced Functions offers various functions with which storage areas can be dumped. These
functions differ in their output contents, output device, and way of activation. You may use these
functions to isolate system program or application program errors.

Overview of Dump Requests
Table 1 on page 21 summarizes the dump functions offered by VSE/Advanced Functions. The table
may help you to find the dump request function which is the most effective one for your particular error
situation.

Table 1. Dump Requesting Functions

Initiated by/via Output Contents Output Device Requesting Function

System (ABEND) System, Part., Data
Space Dmp

Dump Sublib. or
SYSLST

OPTIONS to Request the Dump

Operator (Console) System, Part., Data
Space Dmp

Dump Sublib. or
SYSLST

CANCEL Command

Operator (Console) Selected Storage
Areas

Tape or Printer DUMP Command

Operator (Console) System Storage® Tape or Disk STAND-ALONE DUMP Program

Programm./Oper.
(Defined Event)

Selected Storage
Areas

Tape, Printer or
Buffer

SDAID Dump Trace

Programmer
(Macro)

Macro Dependent Macro Dependent MACROS (PDUMP, DUMP, JDUMP,
SDUMP, SDUMPX)

Note that the base structure of the ABEND dump, the DUMP command dump, and the stand-alone dump
is shown under “Dump Contents Overview” on page 3.

Each of the dump requesting functions listed in Table 1 on page 21 is described in the following sections.

Options to Control the ABEND Dump
The ABEND dump function is internally called when the VSE/Advanced Functions system detects an
ABEND condition or when a CANCEL command has been given (see the following section).

Using the job control options shown below you can define whether you want to suppress a dump, or which
kind of dump you want to take, and whether you want the dump to be stored in a dump sublibrary or
printed on a particular output device.

Use the STDOPT command or statement to specify options for all jobs in the system. This must be
entered in the BG partition, but it affects all partitions. Use the // OPTION statement to override these
options for one job.

For a detailed description of the OPTION statement, refer to the z/VSE System Control Statements.

Options to Control the Dump Contents
The options controlling the dump contents can be set with the STDOPT or the OPTION statement.
STDOPT DUMP=YES

Requests a system dump.

© Copyright IBM Corp. 1984, 2014 21

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

STDOPT DUMP=PART
Requests a partition dump.

STDOPT DUMP=NO
Suppresses the ABEND dump.

STDOPT DSPDUMP=YES
Requests a data space dump.

STDOPT MODUMP=YES
Requests a memory object dump.

OPTION DUMP
Requests a system dump.

OPTION PARTDUMP
Requests a partition dump.

OPTION NODUMP
Suppresses ABEND dump.

OPTION DSPDUMP
Requests a data space dump.

OPTION MODUMP
Requests a memory object dump.

Note: You will not get any dump output if you use the STXIT PC or STXIT AB macro, even if you include the
DUMP or PARTDUMP option.

Options to Control the Output Destination
The options controlling the output destination can be set with the STDOPT or the OPTION statement.
STDOPT SYSDUMP=NO

Dump to SYSLST
STDOPT SYSDUMP=YES

Dump to Library
OPTION NOSYSDUMP

Dump to SYSLST
OPTION SYSDUMP

Dump to Library

The output of the ABEND dump is either written into the dump sublibrary for the partition or it is printed
on SYSLST.

The ABEND dump function writes the output to a dump sublibrary if the:

• Dump Library(named SYSDUMP) and appropriate sublibrary has been created.
• LIBDEF statementfor the dump sublibrary has been submitted (usually during the ASI procedure for

the partition).
• Job Control option

STDOPT SYSDUMP=YES or OPTION SYSDUMP has been specified.
• Associated dump library is not full.

If one of the above is not true the dump is printed on SYSLST.

Note: The dump is lost if it cannot go to SYSDUMP, and SYSLST has not been assigned. Also, the output of
the ABEND dump routine is suppressed if SYSLST is assigned to a CKD-type disk device.

The contents of a system or a partition dump are described under “Contents of the ABEND Dump Output”
on page 5.

How the SYSDUMP library can be defined is described under “Establishing the Dump Sublibraries” on
page 12.

22 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

For a description of how to print the ABEND dump from a dump sublibrary see “Printing Dump
Information” on page 182.

Requesting a Dump by the CANCEL Command
The CANCEL command, when used as a job control command cancels the execution of the current job in
the partition in which the command is given. No dump is produced by the CANCEL job control command.

A detailed description of the options for the CANCEL command is given in the publication z/VSE System
Control Statements. How to print a CANCEL command dump (ABEND dump) from a dump sublibrary is
described under “Printing Dump Information” on page 182.

Requesting a Dump by the DUMP Command
The DUMP command causes selected areas of virtual address space or data space storage to be dumped.

A detailed description of the options for the DUMP command is given in the publication z/VSE System
Control Statements. How to print the DUMP command output from tape is described under “Printing a
Dump Stored on Tape or Disk” on page 202.

Taking a Stand-Alone Dump
The following steps describe how to invoke the dump process using the Standalone Dump Program. Note,
however, that the procedure outlined below is only a generalized description of the dump process. For
detailed information on the actual steps to be performed please consult the appropriate publication of
your processor.

CAUTION: Do not reset (clear) the processor storage before taking the dump.

1. Do a STORE STATUS.

Note: If your z/VSE system runs under z/VM®, you must first issue the CP SET RUN OFF command and
then the CP STORE STATUS command.

With the STORE STATUS step you save machine information that would otherwise be lost. This
information is essential for error diagnosis.

2. Record the contents of low-address storage bytes X'00' to X'17'. Use the hardware DISPLY/ALTER
function outlined under “Hardware Alter/Display” on page 228. To interpret the data stored in these
bytes refer to "VSE/Advanced Functions Codes and SVC Errors" in the z/VSE Messages and Codes
Volume 1 manual.

3. Mount a stand-alone dump tape (if the output is to be written on tape).
4. IPL the stand-alone dump tape or disk.

Note: SADUMP supports the IPL load parameter. It may be used to specify the preferred
communication device.

To determine the communication path, SADUMP first analyzes the load parameter. If the hardware
does not support the load parameter, selection of the communication device is determined during the
creation of the dump program by the DOSVSDMP utility.

CAUTION: Do not reset (clear) the processor storage at this point.

The system now takes a stand-alone dump. The following message will be issued:

 4G34I z/VSE STANDALONE DUMP IN PROGRESS ON TAPE cuu | DISK cuu

The following message indicates the end of the dump operation:

 4G10I STANDALONE DUMP COMPLETE

If a problem occurred during processing, the following message is issued:

Chapter 4. Requesting a Dump 23

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

 4G35I PROBLEM ENCOUNTERED DURING SA DUMP PROCESSING. REASON CODE nnnn

If the dump is on tape or on a work disk, the system enters a hard wait at dump completion. If the dump is
on SYSRES, VSE is re-IPLed.

You need not regenerate the Standalone Dump Program after it has been used. The dump program
remains useable for all subsequent stand-alone dump requests.

Note: An installation using only SCSI disks requires that the stand-alone dump program is generated on
tape. Stand-alone dump processing does not work on SCSI disks!

Incorrect information in the system may result in only a dump of processor storage being taken. The
Standalone Dump Program collects only those pages which are in processor storage at that moment,
without address translation. Possible causes are, among others:

• Low core overlaid
• SYSCOM overlaid
• Page or segment tables not available or invalid.

Incorrect information in the system may also prevent the program from issuing messages on SYSLOG.

The output of the Standalone Dump Program can be written on more than one dump tape. At end-of-
volume the stand-alone dump tape will be rewound and unloaded. An information message will be issued
to the console:

 4G36I END OF VOLUME ON DUMP TAPE cuu. MOUNT NEW TAPE OR RE-IPL VSE

The Standalone Dump Program will not wait for a reply. As soon as the new tape becomes ready, the
dump will continue. If the operator decides to terminate stand-alone dump processing, he just re-IPLs
VSE.

This multiple-tape support also allows stand-alone dump processing to continue if a tape error occurs in
the middle of a tape. The operator will receive the following message:

 4G37I ERROR ON DUMP TAPE cuu. MOUNT NEW TAPE OR RE-IPL VSE

The Standalone Dump Program and its output are described under “The Stand-Alone Dump (SADUMP)
Program” on page 7.

The creation of the Standalone Dump Program is described under “Creating the Standalone Dump
Program” on page 27.

A description of how to print the stand-alone dump can be found under “Printing a Stand-Alone Dump
with Info/Analysis” on page 204.

Requesting a Dump on Event (SDAID Dump)
You may define that a dump has to be produced whenever a certain trace event occurs. The OUTPUT
definition of the SDAID program is used for this purpose.

The following SDAID specifications for dump areas are possible:

• Partition
• Phase
• Area specified by storage addresses
• Area addressed by a register
• Area addressed by a pointer
• Control blocks or tables addressed by name.

The SDAID program is fully described in Chapter 7, “SDAID Overview,” on page 45.

24 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Requesting a Dump from a Program
DUMP Macro, JDUMP Macro, PDUMP Macro, SDUMP Macro, SDUMPX Macro

VSE supports the requesting of address space, data space, or memory object dumps through dump
macros. These macros may be issued in any program written in assembler language.

If your program issues the macros DUMP or JDUMP, VSE/Advanced Functions terminates task processing
and dumps the contents of the entire supervisor plus the used part of the system GETVIS area, or, if the
options DUMP=NO (NODUMP) or DUMP=PART (PARTDUMP) are active, some supervisor control blocks
plus the registers and the contents of the partition that issued the macro.

The PDUMP macro provides a dump of the general registers and of the storage area you defined with
the macro operands on SYSLST regardless of the active options. Note however, if SYSLST is assigned to a
CKD-type disk device, no output will be produced.

Detailed information on the output device and the output contents of the dump macros and the STXIT
macro, are given in the z/VSE System Macros Reference.

Printing the Stored Dump
To print dumps stored on tape/disk or in a partition's dump sublibrary use Info/Analysis.

For information on Info/Analysis refer to “Info/Analysis” on page 10.

Archiving Expired or Unrequired Dumps
You may place dumps in the dump archives that is provided by the Storage Dump Management dialog.

You can also use REXX procedure DMPMGR to regularly delete expired dumps or dumps that are no
longer required.

For details of both these facilities, refer to the publication z/VSE Guide for Solving Problems.

Chapter 4. Requesting a Dump 25

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf

26 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 5. The DOSVSDMP Utility

This topic describes the functions of the DOSVSDMP utility that is used in problem determination.

The DOSVSDMP Utility Functions
The DOSVSDMP utility is used to create the Standalone Dump Program with which virtual storage can be
dumped. The utility can also be used to print the output of the DUMP command, the Standalone Dump
Program (from tape or disk), the SDAID program, and IPL diagnostic information.

Run the DOSVSDMP utility in a partition with at least 192K of virtual storage.

The DOSVSDMP utility includes the following functions:

• “Creating the Standalone Dump Program” on page 27 (see below)
• “Dumps Printed with DOSVSDMP” on page 30, which describes how a DUMP command dump or a

stand-alone dump can be printed.
• “Printing an SDAID or DUMP Command Produced Tape” on page 31.

Functions of the DOSVSDMP Utility
The DOSVSDMP utility includes the following functions:

• “Creating the Standalone Dump Program” on page 27 (see below)
• “Dumps Printed with DOSVSDMP” on page 30, which describes how a DUMP command dump or a

stand-alone dump can be printed.
• “Printing an SDAID or DUMP Command Produced Tape” on page 31.

Creating the Standalone Dump Program
The Standalone Dump Program is mainly used in case of a hard or soft wait or if a system loop occurred.
You can generate the Standalone Dump Program to reside on magnetic tape or disk (a z/VSE-based SCSI
disk or z/VSE-based virtual disk are not valid as program residence.)

It is recommended to create the Standalone Dump Program on tape or on a work disk. If you create the
Standalone Dump Program on your SYSRES disk, then any IPL request first causes a stand-alone dump
to be taken. When the dump program has completed execution, it transfers control to the IPL program. If
a dump is not needed, you can avoid the time consuming stand-alone dump processing by selecting the
option CLEAR on the program load panel. The option CLEAR defines a fast path through the Standalone
Dump Program which will immediately transfer control to the IPL program of z/VSE.

If you create the Standalone Dump Program on disk, two data sets (IJSYSDI and IJSYSDU) are required,
as described under “Dump Program File and Dump Data Set” on page 29.

For processing the dump see “Printing a Dump Stored on Tape or Disk” on page 202.

To generate a Standalone Dump Program, invoke DOSVSDMP by entering

// EXEC DOSVSDMP

The program, once it receives control, prompts you for further control information as shown in Figure 11
on page 28.

© Copyright IBM Corp. 1984, 2014 27

Prompt Message

 4G01D SELECT ONE OF THE FOLLOWING FUNCTIONS:
 1 CREATE STAND ALONE DUMP PROGRAM
 2 SCAN DUMP TAPE/DISK
 3 PRINT DUMP TAPE/DISK
 4 PRINT SDAID TAPE
 R END DOSVSDMP PROCESSING

Enter 1 to create a stand alone dump program on tape or disk. The DOSVSDMP utility responds with

Prompt Message

 4G04D SPECIFY ADDRESS OF DUMP DEVICE (CUU OR SYSNNN)

The device defined with SYSNNN or CUU can be a tape or disk.

Note: Neither the utility DOSVSDMP nor the generated Standalone Dump Program supports streaming
mode on tape devices.

If the specified device address is that of a disk unit, DOSVSDMP responds with

Prompt Message

 4G02D CREATE THE STAND ALONE DUMP PROGRAM
 1 ON A WORK DISK
 2 ON A SYSRES DISK
 R END DOSVSDMP PROCESSING

Note: The Standalone Dump Program cannot be located on an FBA-SCSI disk!

Figure 11. Sample: Standalone Dump Program Generation

Enter 1 if you want to create the stand-alone program on a (non-SYSRES) work disk. In this case
DOSVSDMP creates a VTOC entry for a dump program file IJSYSDI, for which you have to specify labels
(see “Dump Program File and Dump Data Set” on page 29).

Enter 2 if you want to create the stand-alone program on a SYSRES disk. In this case, no labels are
required for IJSYSDI. DOSVSDMP creates the dump program within the disk extent reserved for the
system library. Note, however, that if you create the Standalone Dump Program on the SYSRES disk, a new
stand-alone dump is taken with every subsequent IPL (unless you specify CLEAR).

In both cases you have to specify labels for a dump data set IJSYSDU (see “Dump Program File and Dump
Data Set” on page 29). You can remove the Standalone Dump Program from the system disk by entering
option 3 (Remove Standalone Dump Program from a SYSRES disk) from the Dump Program Utilities
panel of the Interactive Interface. The

Completion Message

 4G09I DUMP PROGRAM HAS BEEN CREATED

indicates the successful generation of the dump program.

If the dump file is on disk, the completion message is followed by a message indicating the dump file
capacity:

Capacity Message

 4G27I DUMP FILE CAPACITY IS nnnnnnnn,nn K BYTES

Note: If the Standalone Dump Program was created on the DOSRES or SYSWK1 disk, you have to recreate
it after indirect service application. This is because during service application, the Standalone Dump
Program is overwritten by IPL records.

The description of how the Standalone Dump Program is executed can be found under “The Stand-Alone
Dump (SADUMP) Program” on page 7.

28 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Using the PARM Parameter: Instead of using the Menu selections described previously, you can simply
use the PARM parameter together with EXEC DOSVSDMP. Here is an example:

 // EXEC DOSVSDMP,PARM='CREATE DUMP DEVICE=cuu'

Dump Program File and Dump Data Set
Two data sets are required to create a Standalone Dump Program on a disk pack: the dump program file
and the dump data set. These files have to be defined on the same disk pack.

Dump Program File (IJSYSDI)
If the dump program is to be created on a SYSRES disk, the dump program becomes part of the system
library and you need not specify labels for the dump program file. If the dump program is to be created on
a non-SYSRES disk, you have to define the required disk space explicitly and create the following labels
for IJSYSDI:

// DLBL IJSYSDI,'VSE.DUMP.PROGRM'
// EXTENT ,,,,1,7 (for CKD)
// EXTENT ,,,,2,128 (for FBA but not SCSI)

Be aware of the following:

• SCSI disks can be used via the VM-Emulated FBA Support. Then they appear to z/VSE as 9336 Model 20
FBA disks.

• SCSI disks can be used as z/VSE FCP-attached SCSI disk support. Then the restrictions for SCSI disks
take place.

The dump program occupies the first eight tracks of a CKD disk or the first 130 blocks on an FBA disk (but
not SCSI). Track 0 of a CKD disk and blocks 0 and 1 of an FBA disk are used for IPL records.

Dump Data Set (IJSYSDU)
The dump data set may be defined anywhere on the disk pack. Labels for IJSYSDU are required for
Standalone Dump Program creation, for printing or scanning the dump data set, and for the dump onload
function:

// DLBL IJSYSDU,'VSE.DUMP.FILE'
// EXTENT ,,,,rel-track,no-of-tracks (for CKD)
// EXTENT ,,,,block,no-of-blocks (for FBA but not SCSI)

You need to define enough space to dump the supervisor, the shared virtual area (SVA), and space for
those partitions and/or data spaces that you want to dump. If there is not sufficient space, the areas will
be dumped until the space is full.

To make sure that the dump data set is large enough, calculate the amount of storage you want to have
dumped, add 5% to the result, and compare it to the size provided by message 4G27I. If the size is too
small, increase it and rerun the job.

If the dump data set is too small to contain a complete stand-alone dump, the remainder of the dump is
dropped. The dump data set will contain only one stand-alone dump at a time. Any subsequent dump will
overwrite the previous dump. ABEND dumps or attention routine dumps cannot be written into the dump
data set.

Scanning the Dump Files on Disk or Tape
The SCAN function of DOSVSDMP provides a file directory of the dump tape or disk. After having invoked
DOSVSDMP by entering:

// EXEC DOSVSDMP

the program prompts you for further information as shown below.

Chapter 5. The DOSVSDMP Utility 29

Prompt Message

 4G01D SELECT ONE OF THE FOLLOWING FUNCTIONS:
 1 CREATE STAND ALONE DUMP PROGRAM
 2 SCAN DUMP TAPE/DISK
 3 PRINT DUMP TAPE/DISK
 4 PRINT SDAID TAPE
 R END DOSVSDMP PROCESSING

Enter 2 to scan the dump tape or the dump data set on disk. DOSVSDMP prints the following information
on SYSLST:

1. For SCAN DUMP DISK:

PRINTOUT OF VSE DUMP DATA SET
DIRECTORY OF VSE DUMP DATA SET
DUMP FILE DUMP TYPE NAME DATE DATA DUMPED
--------- --------- -------- ---------- --------------------------
 001 SADUMP 2012/10/22 SUPERVISOR+SVA
 002 SADUMP 2012/10/22 PMRAS-R
 003 SADUMP 2012/10/22 PMRAS-00
 004 SADUMP SECSERV 2012/10/22 FB-PARTITION
 005 SADUMP VTAMSTRT 2012/10/22 F3-PARTITION
 006 SADUMP CICSICCF 2012/10/22 F2-PARTITION
 007 SADUMP POWSTART 2012/10/22 F1-PARTITION
END OF DUMP

2. For SCAN DUMP TAPE:

DIRECTORY OF VSE DUMP TAPE
DUMP FILE DUMP TYPE NAME DATE DATA DUMPED
--------- --------- -------- -------- ---------------------
 001 DOES NOT CONTAIN DUMP DATA
 002 DOES NOT CONTAIN DUMP DATA
 003 SADUMP SUPERVISOR+SVA
 004 SADUMP PMRAS-R
 005 SADUMP PMRAS-00
 006 SADUMP NO-NAME BG-PARTITION
 007 SADUMP SECSERV FB-PARTITION
 008 SADUMP NO-NAME FA-PARTITION
 009 SADUMP NO-NAME F9-PARTITION
 010 SADUMP PAUSEF8 F8-PARTITION
 011 SADUMP NO-NAME F7-PARTITION

Figure 12. Sample: Directory of Dump Disk/Tape

Using the PARM Parameter: Instead of using the Menu selections described previously, you can simply
use the PARM parameter together with EXEC DOSVSDMP. Here is an example:

 // EXEC DOSVSDMP,PARM='SCAN DEVICE=cuu'

Dumps Printed with DOSVSDMP
How to print the dumps produced by the Standalone Dump Program and the DUMP command in
unformatted form is discussed in this section. Normally Info/Analysis is used to process and print dump
tapes. In exceptional cases the use of the DOSVSDMP utility may be necessary, for example:

• If none of your dump sublibraries are big enough to hold the stand-alone dump;
• If the dump was taken with the DUMP BUFFER,cuu command.

The printed output of the DOSVSDMP utility contains for both DUMP command tape or stand-alone dump
tape/disk, the following:

• Symptom record.
• Unformatted dump data.

Sample DOSVSDMP Print Setup
To print a dump from tape or disk using the DOSVSDMP utility, invoke DOSVSDMP by submitting the
control statements shown in Figure 13 on page 31.

30 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 13. Sample: Dump Tape Printed with DOSVSDMP

The utility prompts you by messages for further control information, which you enter at SYSLOG.

// JOB DOSVSDMP
// EXEC DOSVSDMP

DOSVSDMP prompts you by messages at SYSLOG to define the operation you want to perform, with:

Prompt Message

 4G01D SELECT ONE OF THE FOLLOWING FUNCTIONS:
 1 CREATE STAND ALONE DUMP PROGRAM
 2 SCAN DUMP TAPE/DISK
 3 PRINT DUMP TAPE/DISK
 4 PRINT SDAID TAPE
 R END DOSVSDMP PROCESSING

Enter 3 to invoke DOSVSDMP Print Dump Tape/Disk processing.

The DOSVSDMP utility response is:

Prompt Message

 4G04D SPECIFY ADDRESS OF DUMP DEVICE (CUU OR SYSNNN)

Enter 280, for example, if the dump tape is mounted on the tape drive 280.

If you have selected option 3, DOSVSDMP also prompts you for the number of the dump file that you want
to print. (Option 2 - SCAN DUMP TAPE/DISK - gives you a directory of the dump files on the dump.

See also “Scanning the Dump Files on Disk or Tape” on page 29).

Prompt Message

 4G30D SPECIFY FILE NUMBER

Enter 4, for example, if you want to print file 4.

Now the DOSVSDMP utility starts printing the dump on SYSLST.

After print completion, control is returned to Job Control.

Using the PARM Parameter Instead of using the Menu selections described previously, you can simply
use the PARM parameter together with EXEC DOSVSDMP. Here is an example:

 // EXEC DOSVSDMP,PARM='PRINT DUMP DEVICE=cuu FILE=n'

Printing an SDAID or DUMP Command Produced Tape
You may specify that the SDAID trace information is to be recorded on tape. DOSVSDMP can be used to
retrieve this information from tape and to print it on SYSLST. This is done by responding to DOSVSDMP
prompts as shown below. Always use this option of DOSVSDMP to print dumps produced in response to
the attention routine command

DUMP BUFFER,cuu

When the utility gets control, it prompts you for further definitions via SYSLOG, as shown in the example
of Figure 14 on page 31.

Figure 14. Sample Job: Printing SDAID Tape with DOSVSDMP

// JOB SDAID
// EXEC DOSVSDMP

 DOSVSDMP prompts you to define the operation you want to perform:

Chapter 5. The DOSVSDMP Utility 31

Prompt Message

 4G01D SELECT ONE OF THE FOLLOWING FUNCTIONS:
 1 CREATE STAND ALONE DUMP PROGRAM
 2 SCAN DUMP TAPE/DISK
 3 PRINT DUMP TAPE/DISK
 4 PRINT SDAID TAPE
 R END DOSVSDMP PROCESSING

Enter 4 to invoke DOSVSDMP Print SDAID Tape processing.

The DOSVSDMP utility responds with:

Prompt Message

 4G05D SPECIFY ADDRESS OF SDAID TAPE (CUU OR SYSNNN)

Enter 280, for example, if the SDAID output tape is mounted on the device 280.

The DOSVSDMP utility now responds with:

Prompt Message

 4G30D SPECIFY FILE NUMBER

 Enter 2, for example, if the second file contains the SDAID output
 you want to print.
 The file number is determined by the number of STOPSD commands
 given in the SDAID session. (Every STOPSD command writes a tapemark
 on the tape if there was any trace event.)
 If, for example, you issue three times STARTSD/STOPSD within an
 SDAID session, you get three trace files on your trace output tape.

 DOSVSDMP prints the tape on the device assigned to SYSLST.
 After print completion, control is returned to Job Control.

Using the PARM Parameter: Instead of using the Menu selections described previously, you can simply
use the PARM parameter together with EXEC DOSVSDMP. Here is an example:

 // EXEC DOSVSDMP,PARM='PRINT SDAID TAPE=cuu FILE=n'

32 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Part 2. Interactive Trace Program

Interactive Trace Program

© Copyright IBM Corp. 1984, 2014 33

Interactive Trace Program

34 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 6. Interactive Trace Program

Introduction
The interactive trace program is the tracing tool for z/VSE application programs. It traces the execution
of application programs running in static or dynamic partitions. The interactive trace program is activated
via the // EXEC statement and controlled interactively from the z/VSE master console or from a user
console. It operates at the level of machine instructions and virtual storage addresses, similar to the CP
debugging facilities in z/VM.

The interactive trace program provides the following traces:

• Branch trace
• Instruction trace
• Storage alteration trace
• ABEND trace.

Branch Trace
The branch trace monitors branch instructions. The trace program displays all branch instructions which
transfer control to an address which is located within a specified storage area. That means, branches are
only recorded if the target address of the branch is located within the specified address range.

Instruction Trace
The instruction trace monitors the instructions executed within a specified storage area. An instruction
is traced if the first byte of the instruction is contained in the specified storage area. The trace program
displays also EXECUTE instructions if the first byte of the target of an EXECUTE is within the designated
storage area.

Storage Alteration Trace
The storage alteration trace monitors storage alterations within a specified storage area. A storage
alteration event occurs even if the value stored is the same as the original value. However, monitoring
does not apply if data is altered by a channel program or by system control programs.

ABEND Trace
The ABEND "abnormal end" trace allows interactive debugging if a user program terminates abnormally.
In case of an ABEND, the termination routines display the cancelation message on the screen and transfer
control to the console operator. The operator can inspect storage data or register contents to determine
the cause of the cancelation. It is, however, not possible to change the program status and return to
normal operation via the GO command (see “GO Command” on page 38) with a branch address. The
task termination is already in progress at that time. The GO command can only be used to resume the
termination process. It is also possible to modify the dump option to DUMP, PARTDUMP, or NODUMP.

The ABEND trace does not become active if an AB exit routine (STXIT routine) with the options EARLY
or NODUMP is defined. In these cases control is transferred to the user exit routine before the trace is
invoked. The code of the exit routine can, however, be traced via an instruction trace if the code segment
of the exit routine is defined as tracing range.

If the branch trace, the instruction trace, or the storage alteration trace display an instruction on the
screen, this instruction has already been executed. If the trace displays an interruptible instruction, like
an MVCL, the PSW, the general registers, and storage data at the time of the interruption are displayed. If
the MVCL is partly processed, the PSW still points to the MVCL instruction. If the execution of the MVCL is

© Copyright IBM Corp. 1984, 2014 35

completed, the PSW points to the instruction after the MVCL instruction. If the trace program displays an
SVC instruction, the related supervisor service has not been started yet.

Trace Activation
// EXEC

PGM=

progname ,TRACE

You start the interactive trace program with the parameter TRACE in the EXEC statement. An example
of the trace initialization is shown in Figure 15 on page 40. The invoked trace function is active for the
duration of one VSE job step.

The parameter TRACE implicitly defines an instruction trace and an ABEND trace. These trace definitions
allow the console operator to get interactive control over the program to be traced. The instruction trace
passes control to the console operator at the beginning of a user program, the ABEND trace allows
debugging when a program terminates abnormally.

The instruction trace defined implicitly via the TRACE parameter traces all instructions executed within
the partition. Trace boundaries are the partition begin and end address. The user program stops after
the first instruction has been executed. The trace program displays the interrupted instruction (preceded
by a reply identification) and waits for an operator response. The operator answers with an interactive
trace command. The operator may use the implicitly defined traces to step through all instructions of
the program, or replace these implicitly defined traces by specific trace definitions. The implicitly defined
traces remain in effect until they are explicitly deleted by the operator.

Interactive Trace Commands
This topic describes the following interactive trace commands:

• TRACE
• QUERY
• DISPLAY
• ALTER
• GO

Most of these commands may be abbreviated. The possible abbreviation is shown through lowercase
letters. An example of an abbreviated command is:

tr i addr=4037ac.1c

TRACE Command
TRace BRanch

Inst

STor

ADDRess= address

address.length

address1: address2

ABend

The TRACE command defines the type of trace to be activated (branch trace, instruction trace, storage
alteration trace, or ABEND trace). It is possible to issue up to 100 trace definition statements within one
interactive tracing session.

The parameter ADDRESS defines the tracing range. It has different meanings for the different types of
traces.

36 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Branch trace:
The parameter ADDRess= defines the branch target area.

Instruction trace:
The parameter ADDRess= defines the storage area within which instruction execution is monitored.
The address range must be part of the partition area. A tracing area outside the user partition is
rejected. If the specified tracing range crosses partition boundaries, only the range located within the
partition is accepted.

Storage alteration trace:
The parameter ADDRess= defines the area within which storage alteration is to be monitored.

ABEND trace:
The parameter ADDRess= is not applicable for the ABEND trace.

If the parameter ADDRESS is omitted, the whole user partition is assumed as tracing range. The following
examples explain the different forms of the address parameter.
ADDRESS=410C1F

specifies a one-byte storage interval.
ADDRESS=460C1F.C

specifies a storage interval of 12 bytes.
ADDRESS=40031C:400328

specifies a storage interval by its virtual start address and end address.

TRace END
ALL

n

The TRACE END command deletes one or all traces specified for a partition. The parameter 'n' addresses
a trace statement by its trace identification (obtained via the QUERY command). The keyword ALL
(default) deletes all traces specified for a partition.

QUERY Command
Query

The QUERY command displays a list of all traces active for a user partition. The displayed trace-
identification may be used in a subsequent TRACE END command to delete one of the specified traces. An
example of the QUERY command is shown in Figure 16 on page 40.

DISPLAY Command
Display address

address.length

address1: address2

Display GR

Gn

FR

AR

Display Psw

The DISPLAY command displays either storage data, or the general purpose registers (GR, Gn),
the floating point registers (FR), the access registers (AR), or the Program Status Word (PSW). The
specification DISPLAY GR displays all general purpose registers, the specification DISPLAY Gn, displays

Chapter 6. Interactive Trace Program 37

a particular general purpose register. An example of the DISPLAY command is shown in Figure 18 on page
42.

ALTER Command
Alter  address DATA=  data

Alter Gn DATA=  data

The ALTER command allows to alter storage data or the contents of a general purpose register.

• Altering storage data: The address parameter denotes the storage address where data is to be altered.
The DATA parameter describes the new storage data by its hexadecimal representation. Any two
hexadecimal digits describe the contents of one byte in storage. The specified data is not padded;
that means, it is required to enter an even number of hexadecimal digits. It is possible to enter up to 16
hexadecimal digits in order to alter up to 8 bytes. It is not possible to alter storage locations outside the
user partition, or to alter the mask portion of the stored PSW. Example:

The specification

ALTER 400312 DATA=03FEC7

alters the contents of addresses 400312, 400313, 400314 to the values 03, FE, C7 respectively.
• Altering the contents of a general purpose register: The parameter Gn denotes the general purpose

register n. The DATA parameter describes the new contents of the specified general purpose register.
The entered data is padded on the left with binary zeros. It is possible to enter up to 8 hexadecimal
digits.

Example:

The specification of

ALTER G5 DATA=12C

enters the value of 0000012C into general purpose register 5.

(Another example of the ALTER command is shown in Figure 18 on page 42.)

GO Command

GO

address OUTPut=SYSLST OPTion= DUMP

PARTDUMP

NODUMP

The GO command reactivates the stopped user program. The program continues processing at the
specified address. This address is not checked for validity. If the address parameter is omitted, the
program continues processing with the next sequential instruction. The interactive trace command
ignores the specified branch address if the last displayed instruction is an SVC instruction, or if a cancel
condition has occurred and the termination routines have already issued the termination messages. In
this case the GO command has the only effect to resume the termination process.

The parameter OUTPut=SYSLST switches the tracing mode from interactive tracing to batch tracing. The
trace output lines are printed on a printer device or they are written into the VSE/POWER list queue.
Switching to batch mode is not possible if the logical unit SYSLST is unassigned or assigned to a tape or
disk device.

38 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

The parameter OPTion= modifies the temporary dump options. In case of an abnormal termination, the
dump routines will print either a full dump (DUMP), a partition dump (PARTDUMP), or no dump at all
(NODUMP). If the parameter OPTION is omitted, the dump options remain unchanged.

If the parameters address, OUTPUT, and OPTION are omitted, the command name GO can be omitted,
too. A reply-ID without any parameter is processed as a 'GO' command.

Tracing in a User Partition with Subtasks Attached
The interactive trace program traces the main task and all attached subtasks. If two tasks execute in
the specified tracing range concurrently, both tasks are traced. Different VSE users can activate the trace
program independently in different partitions. It is possible that several partitions present trace messages
at the same time. Within one partition, however, only one task can present a tracing event at a time. The
first task arriving at a specified tracing event locks the tracing routine for exclusive usage. The interrupted
task writes a console message and waits for an operator response. The other tasks continue processing
until they arrive at a tracing point. As long as the operator issues interactive trace commands, no other
task can issue a tracing message. When the operator resumes program operation (via a GO command), all
tasks with a pending tracing message will be activated. The subtask with the highest priority will present
its tracing message at the screen.

Scope of Tracing
The interactive trace program is designed to trace user programs. It cannot be used to trace
supervisor routines, Job Control statements, or attention routine commands. These restrictions have
been introduced to keep the impact of tracing on the operations in other partitions to a minimum. The
system routines often lock non-reentrant system resources. Any other task in the system competing for
the same resource might enter a wait state until the locked resource becomes free. Therefore it is not
tolerable to interrupt a system routine for interactive tracing.

A program routine which runs in a user partition and owns the Logical Transient Area (LTA), cannot be
traced interactively. An example of such a user routine is an OPEN exit routine which is called from the
LTA via a CALL/RETURN interface. The trace program does not stop for exit routine instructions. Programs
running in other partitions might wait for the LTA to become free. It is, however, possible to trace such a
routine in batch mode. You may use the GO command with the parameter OUTPut=SYSLST to trace all or
selected instructions of the exit routine on SYSLST.

In exceptional cases it is possible that an interactive trace of a user written routine may have an impact
on the performance of programs running in other partitions. For example, such an interference with other
partitions may occur if the program uses the LOCK macro or the track-hold option of a DTF macro to
synchronize processing with programs in other partitions.

Restrictions for Programs Using the PER Function
The interactive trace program uses the Program Event Recording (PER) function of the z/Architecture®.
It is possible to run the interactive trace program in several partitions at the same time. However, it is
not possible to run the interactive trace program concurrently with another program which uses the PER
function.

The Interactive Trace Program versus SDAID
Some trace types of the SDAID program use the Program Event Recording function. These trace types are
the branch trace, the instruction trace and the storage alteration trace. They cannot run concurrent with
the interactive trace program. The SDAID initialization routine checks whether an interactive trace for any
partition is already active. The SDAID STARTSD command is rejected if the interactive trace program is
active for any partition. (For a description of the STARTSD command see Chapter 12, “Start/Stop and End
the Trace,” on page 163.)

An SDAID session which does not use the PER function can run concurrently with the interactive trace
program. These trace types do not interfere with the interactive trace program:

Chapter 6. Interactive Trace Program 39

• CANCEL
• EXTERNAL
• GETVIS
• IO
• LOCK
• MON
• PGML
• PGMC
• SSCH
• SVC
• VTAMBU
• VTAMIO
• XPCC

Examples of the Interactive Trace Program

Trace Initialization Example
// JOB ABC
// EXEC PROG1,TRACE
/&

BG 0000 4I01I TRACE STARTED FOR PROGRAM PROG1
BG-0000 00600078 BALR 05C0 CC 0

Figure 15. Trace Example: Trace Initialization

Figure 15 on page 40 shows a job stream which initializes an interactive trace session for program
PROG1.

The last two lines show the system response. Message 4I01I indicates that trace initialization was
successful. The traced program stops its execution after the first instruction has been executed. The trace
program displays the first instruction on the screen and waits for an operator response. The operator may
now use the implicitly defined instruction trace to step through all instructions of the program, or replace
this instruction trace by specific trace definitions.

Figure 16 on page 40 shows the available commands to modify the trace environment.

TRACE, TRACE END and QUERY Command Example
BG+0000 00400078 BALR 05C0 CC 0
0 query
BG 0000 001 TRACE INST ADDRESS=00600000:006AFFFF
BG-0000 002 TRACE ABEND
0 trace end 1
BG-0000 4I09D SPECIFIED TRACE ENDED
0 trace inst address=403BA0.70
BG-0000 003 TRACE INST ADDRESS=00603BA0:00603C0F
0 trace stor address=4002ad
BG-0000 004 TRACE STOR ADDRESS=006002AD:006002AD
0 trace inst address=4017cc:4017ff
BG-0000 005 TRACE INST ADDRESS=006017CC:006017FF
0 query
BG 0000 002 TRACE ABEND
BG 0000 003 TRACE INST ADDRESS=00403BA0:00403C0F
BG 0000 004 TRACE STOR ADDRESS=004002AD:004002AD
BG-0000 005 TRACE INST ADDRESS=004017CC:004017FF

Figure 16. Trace Example: TRACE, TRACE END and QUERY Command

40 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 16 on page 40 shows how a tracing environment can be modified. The operator deletes the
implicitly specified instruction trace (001) and defines two new instruction traces (003 and 005) and one
storage alteration trace (004). Trace 002 continues unaltered.

Batch Trace Example
0 exec testtrac,trace
BG 0000 4I01I TRACE STARTED FOR PROGRAM TESTTRAC
BG-0000 00400078 BALR 0530 CC 0
0
BG-0000 0040007A B 47103024 -> 0040009E CC 0
0
BG-0000 0040009E NOPR 0700 CC 0
0
BG-0000 004000A0 BAL 4510303E -> 004000B8 CC 0
0
BG-0000 004000B8 LR 1801 CC 0
0
BG-0000 004000BA SVC 0A26 CC 0
0
BG-0063 004001A4 LA 41603313 = 0040038D CC 0
63 go output=syslst
BG 0000 4I20I TRACING TERMINATED
BG-0000 1I00D READY FOR COMMUNICATIONS.

***** START OF BATCH TRACE *****
0063 004001A8 STCM BE67359F >> 00400619 CC 0
0063 004001AC LA 41600020 = 00000020 CC 0
0063 004001B0 STC 426035A5 >> 0040061F CC 0
0063 004001B4 L 58103606 00400680 CC 0
0063 004001B8 SVC 0A00 CC 3
0063 004001BA L 58103606 00400680 CC 0
0063 004001BE TM 91801002 004005DE CC 0
0063 004001C2 BO 4710314E 004001C8 CC 0
0063 004001C6 SVC 0A07 CC 0
0000 004000BC LTR 1211 CC 2
0000 004000BE BM 47403104 0040017E CC 2
0000 004000C2 NOPR 0700 CC 2
0000 004000C4 BAL 45103062 -> 004000DC CC 2
0000 004000DC LR 1801 CC 2
0000 004000DE SVC 0A26 CC 2
0064 0040020C LA 41603333 = 004003AD CC 2
0064 00400210 STCM BE6735AF >> 00400629 CC 2
0064 00400214 LA 41600020 = 00000020 CC 2

Figure 17. Trace Example: Batch Trace

Figure 17 on page 41 shows a program with sub tasks attached. The main task and the sub tasks have
different reply identifications (0000, 0063, 0064). After the instruction at location 4001A4 has been
executed, the operator issues the command go output=syslst to switch from the interactive tracing
mode into the batch tracing mode. A fragment of the batch output on SYSLST is shown in the second part
of the figure.

Chapter 6. Interactive Trace Program 41

DISPLAY and ALTER Command Example
5 display psw
F5-0005 PSW = 470D0000 00400EE6
5 display gr
F5 0005 GPR 0 = 00000000 00400648 00003110 00400EF4
F5 0005 GPR 4 = 00403518 004001AE 004010E0 004000E0
F5 0005 GPR 8 = 00407000 004020E0 00000590 004030E0
F5-0005 GPR 12 = 00000006 00407894 804017FC 90000004
5 alter gc data=00000007
F5-0005 GPR 12 = 00000007
5 display 403017.20
F5 0005 00403010 00E1D8E0 00E1474E 00006FBC 00000644 *..Q....+..?.....*
F5 0005 00403020 00009DA0 00E263C8 00E18598 00FC4540 *.....S.H..eq....*
F5-0005 00403030 00004930 000094E8 00E623F8 00E26414 *......mY.W.8.S..*
5 display 403017
F5-0005 00403010 00E1D8E0 00E1474E 00006FBC 00000644 *..Q....+..?.....*
5 alter 403017 data=fefefe
F5-0005 00403010 00E1D8E0 00E147FE FEFE6FBC 00000644 *..Q.......?.....*

Figure 18. Trace Example: DISPLAY and ALTER Command

42 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Part 3. SDAID Trace

In order to isolate a problem in a system or in an application program, you may need to know the
exact sequence of execution steps which have been performed. To find out about the execution steps
performed, you have to trace specific events. VSE offers a program which helps you in tracing specific
events in your system. This program is called SDAID.

SDAID traces user and system programs running either below or above the 16MB line. The tracing range
and the dump area are specified as 31-bit addresses.

You can initialize the SDAID traces by:

• Answers to prompts in the attention routine (AR);
• Direct input statements to the AR or a partition;
• Job control procedures.

This part of the publication describes each of the methods to initialize a trace and how the initialized trace
is started/stopped or ended. Trace output examples are shown for each of the trace types.

If the SDAID program is new for you, read Chapter 7, “SDAID Overview,” on page 45 as an introduction.

If you are familiar with the SDAID program conventions, read the Summary in Table 3 on page 47. This
Summary shows all trace types with references to their format descriptions for the various initialization
methods.

SDAID Trace

© Copyright IBM Corp. 1984, 2014 43

SDAID Trace

44 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 7. SDAID Overview

This topic gives an overview of the SDAID program and the various ways to initialize a trace; it includes
considerations on the performance and the environment.

The SDAID Session
Basically you will do two (or three) things:

1. Initialize a trace.
2. Start, stop, or terminate the initialized trace.
3. Print trace data via DOSVSDMP (if trace output is on tape).

Interaction SDAID versus Interactive Trace Program
The SDAID branch trace, the instruction trace and the storage alteration trace use the Program Event
Recording (PER) function of the z/Architecture. The interactive trace program also uses this hardware
function. SDAID sessions which contain one of the above mentioned traces cannot be started if an
interactive trace for any user partition is already active.

An SDAID session which does not use the PER function can run parallel to the interactive trace program.
These trace types do not interfere with the interactive trace program:

• CANCEL
• EXTERNAL
• GETVIS
• IO
• LOCK
• MON
• OSAX
• PGMC
• PGML
• SSCH
• SVC
• VTAMBU
• VTAMIO
• XPCC

How to Initialize an SDAID Trace
You initialize a trace with mainly four statement types which have to be submitted to the SDAID program:

1. The SDAID statement to start the initialization process.
2. The OUTDEV specification to define the output device for the trace data.
3. The TRACE statements to define all necessary information for the trace, like the trace type and the

area to be traced.
4. A statement which signals the end of the initialization process (/* or READY).

You submit the SDAID statements with one of the following methods:

• Direct input mode in the attention routine or partition.

© Copyright IBM Corp. 1984, 2014 45

• Job control procedures in a partition.
• Prompts in the attention routine (AR).

Initialization in Direct Input Mode
In direct input mode the SDAID information is entered in the form of commands to the attention routine or
as SYSIN statements in a partition.

The SDAID program identifies the mode of initialization via the format of the TRACE and OUTDEV
statement. In direct input mode these statements must contain at least one operand.

The following examples show two initialization jobs, one entered in a partition the other one entered via
SYSIN.

Example of a trace initialization in direct input mode in the attention routine:

sdaid
AR 4C05I PROCESSING OF 'SDAID' COMMAND SUCCESSFUL.
AR 1I40I READY
outdev tape=280
AR 4C05I PROCESSING OF 'OUTDEV' COMMAND SUCCESSFUL.
AR 1I40I READY
trace ssch unit=009
AR 4C05I PROCESSING OF 'TRACE' COMMAND SUCCESSFUL.
trace io unit=009 output=ccw
AR 4C05I PROCESSING OF 'TRACE' COMMAND SUCCESSFUL.
ready
AR 4C05I PROCESSING OF 'READY' COMMAND SUCCESSFUL.
AR 1I40I READY

Example of trace initialization by direct input mode statements read in from SYSIN:

// EXEC SDAID
OUTDEV TAPE=280
TRACE SSCH UNIT=009
TRACE IO UNIT=009 OUTPUT=CCW
/*

The direct input mode is described in Chapter 9, “Initialize an SDAID Trace in Direct Input Mode,” on page
83.

Initialization via Job Control Procedures
The easiest way to initialize a trace is to use catalogued procedures.

An example of such a trace procedure statement is shown below.

// EXEC PROC=SDIO,UNIT=009,TAPE=280

Initialization by procedures is described in Chapter 10, “Initialize an SDAID Trace via a Procedure,” on
page 117.

Initialization via Prompts in the Attention Routine
You start the initialization process with the attention routine command ‘SDAID’. The necessary trace
definitions are given in response to promptings after you entered the TRACE or OUTDEV statement
without an operand.

You enter the prompt mode whenever you define these two commands without an operand. Example of a
trace initialization via prompts in the attention routine:

46 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

sdaid ◊
AR 4C05I PROCESSING OF 'SDAID' COMMAND SUCCESSFUL
outdev ◊
AR 4C08D SPECIFY OUTPUT DEVICE.+
tape ◊
 ...

◊ indicates the ENTER key pressed

Note that you enter the prompt mode also if you specify direct input mode statements combined with
prompt mode statements like a question mark (? requests the help function of SDAID). The example
below shows, how you can combine the two input modes. You would be prompted after the question mark
has been processed.

The prompt input mode is described in Chapter 11, “Initialize a Trace in Prompt Input Mode,” on page
133.

AR Commands to Start, Stop and End an Initialized Trace
You can start, stop, or end an initialized trace via attention routine (AR) commands. The table below
shows an overview of these commands. A more detailed description about stopping, starting, and ending
a trace is given in Chapter 12, “Start/Stop and End the Trace,” on page 163.

Table 2. AR Commands to Start/Stop and End an Initialized Trace

STARTSD Starts SDAID execution; may follow READY or STOPSD.

Note: The old form of the command (STRTSD) is still accepted.

STOPSD Suspends SDAID execution; allowed only after STARTSD.

ENDSD Ends SDAID session; releases all system resources used by SDAID at any time.

Trace Type Summary
Find the trace type which you want to initialize in the following trace command summary. You will find
references to the description of the trace type and to the format of the trace initialization statements for
the various initialization methods. Locate the section according to the initialization method you choose.

The references to the available descriptions are under the following headings:
Des

Reference to the description of the trace type
Dir

Reference to the format description for initialization in direct input mode.
Prc

Reference to the format description for the initialization via procedures.
Prp

Reference to the description for the initialization in prompt mode.

Table 3. Trace Type Summary

Trace Type Des Dir Prc Prp

BRANCH* (provides
trace of successfully
executed branch
instructions)

“BRANCH Trace”
on page 56

“BRanch Trace” on
page 89

“Branch Trace
Initialization” on
page 121

“BRanch Trace” on
page 147

Chapter 7. SDAID Overview 47

Table 3. Trace Type Summary (continued)

Trace Type Des Dir Prc Prp

BUFFER (provides
trace of the trace
buffer when it is full)

“BUFFER Trace” on
page 57

“BUffer Trace” on
page 89

- “BUffer Trace” on
page 147

CANCEL (provides
trace of program -
main task - cancel or
EOJ)

“CANCEL Trace” on
page 57

“CAncel Trace” on
page 90

- “CAncel Trace” on
page 147

EXTERNAL (provides
trace of external
interrupts)

“EXTERNAL Trace”
on page 57

“EXTernal Trace” on
page 91

- “EXTernal (External
Interrupt) Trace” on
page 147

GETVIS (provides
trace of GETVIS /
FREEVIS requests)

“GETVIS / FREEVIS
Trace” on page 58

“GETVIS Trace” on
page 92

- “GETVis (Getvis /
Freevis Request)
Trace” on page 148

INSTRUCTION
(provides trace
of selected or
all instruction(s)
execution)

“INSTRUCTION
Trace” on page 59

“INSTruction Trace”
on page 94

“Instruction Trace”
on page 123

“INSTruction
(Instruction
Execution) Trace” on
page 149

IO (provides trace of
I/O interrupts)

“IO Trace (I/O
Interrupt)” on page
59

“I/O Interrupt Trace”
on page 95

“SSCH and I/O
Interrupt Trace” on
page 124

“IO (I/O Interrupt)
Trace” on page 149

LOCK (provides trace
of LOCK / UNLOCK
requests)

“LOCK / UNLOCK
Trace” on page 60

“LOCK Trace” on
page 96

- “LOCK (Lock / Unlock
of Resources) Trace”
on page 150

MONITORCALL
(provides trace of MC
instructions)

“MONITORCALL
Trace” on page 61

“MONitor Call Trace”
on page 98

- “MONitorcall Trace”
on page 151

OSAX (provides trace
of OSAX adapter)

“OSAX Adapter
Trace” on page 62

“OSAX Adapter
Trace” on page 99

- “OSAX Adapter
Trace” on page 151

PGMCHECK (provides
trace of program
checks)

“PGMCheck Trace
(Program Check)”
on page 63

“PGMCheck Trace”
on page 100

“Program Check
Trace” on page 126

“PGMCheck
(Program Check)
Trace” on page 152

PGMLOAD (provides
trace of phase load
requests, or actual
load)

“PGMLOAD (Fetch/
Load) Trace” on
page 64

“Program Load Trace
(Fetch/Load Trace)”
on page 101

“Fetch/Load Trace”
on page 125

“PGMLoad (Program
Load) Trace” on page
152

SSCH (provides trace
of start Subchannel
instructions)

“SSCH Instruction
Trace” on page 65

“Statement
Examples” on page
103

“SSCH and I/O
Interrupt Trace” on
page 124

“Start Subchannel
Instruction Trace” on
page 154

STORAGE (provides
trace of storage
alterations)

“STORAGE
Alteration Trace”
on page 66

“Storage Alteration
Trace” on page 103

“Storage Alteration
Trace” on page 127

“STorage Alteration
Trace” on page 154

SVC (provides
trace of executed
supervisor calls)

“SVC Trace
(Supervisor Call)”
on page 67

“Supervisor Call
Trace” on page 105

“SVC Trace” on
page 128

“SVC (Supervisor
Call) Trace” on page
154

48 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Table 3. Trace Type Summary (continued)

Trace Type Des Dir Prc Prp

VTAMBU (provides
trace of usage of
VTAM® buffers)

“VTAMBU Trace
(VTAM Buffer)” on
page 67

“VTAM BUffer Trace”
on page 106

- “VTAMBU (VTAM
Buffer) Trace” on
page 155

VTAMIO (provides
trace of VTAM I/O
operations)

“VTAMIO Trace” on
page 68

“VTAMIO Trace” on
page 107

- “VTAMIO (VTAM I/O)
Trace” on page 155

XPCC (provides trace
of cross partition
communication)

“XPCC Trace” on
page 69

“XPCC Trace” on
page 108

- “XPCC (Partition
Communication)
Trace” on page 155

* See, however, “System Performance Degradation Caused by PER Traces” on page 49.

Trace Output
The trace output, an event record, is supplied for each occurrence of a traced event, according to your
setup instructions.

You may request the event records to be written to a line printer, onto magnetic tape, or into a
wraparound buffer. How to define the output device is described together with each type of initialization
process.

Sample event records are shown for each trace type under “Summary of TRACE Types” on page 55.

Performance Considerations

System Performance Degradation
The tracing of events with SDAID may affect overall system performance. This may especially affect time
dependent programs (such as programs doing input/output via telecommunication lines).

As long as SDAID processes a tracing event, all external and I/O interrupts are disabled and remain
pending until trace data collection is complete. The supervisor may recognize an attention interrupt from
the system console immediately or with a significant delay. Specification of an output tape (OUTDEV
TAPE=cuu) reduces the possible time delays.

When you invoke SDAID in prompt mode, console input is blocked during the processing of each SDAID
command.

System Performance Degradation Caused by PER Traces
The following SDAID traces use the program event recording (PER) feature:

• branch trace (BRANCH)
• instruction trace (INSTRUCTION)
• storage alter trace (STORAGE).

The PER feature allows the SDAID to limit the trace address range via the control registers 10 and 11. For
this, the use of the address specification (ADDress= in direct input mode for example) helps to achieve
better performance.

SDAID Space Requirements

Chapter 7. SDAID Overview 49

Space Requirements during Initialization in the AR
The SDAID setup phases are loaded into the system GETVIS space. The SDAID setup phases require
approximately 100K bytes (K equals 1,024) of virtual storage. When initialization is complete (the READY
command is processed successfully), that GETVIS space is released.

Space Requirements during Initialization in a Partition
Beside the GETVIS space of 100K bytes the phase SDAID (called via EXEC SDAID) requires approximately
16K bytes of partition virtual storage. This is significantly less than the minimum VSE partition size.
Therefore SDAID will run in any foreground or background partition.

Space Requirements for SDAID Execution
When the READY command is entered, SDAID allocates and fixes a certain number of pages in processor
storage for SDAID execution. The amount of storage required for SDAID execution depends on the
combination of trace operations that you request and on the size of the output buffer (specified in the
OUTDEV command).

To execute SDAID, an area is allocated that is between:

• The supervisor area.
• The start-address of the SVA(24)

By default, the allocated SDAID area is 64K bytes. During IPL, you can increase the size of the SDAID area
by using the SDSIZE parameter of the SYS command.

Here are some general guidelines for determining the required size of the SDAID area:

• For simple applications (where the OUTPUT parameter is not used), SDAID requires approximately 30K
bytes.

• For more complex applications, SDAID requires approximately 60K bytes.

During execution, SDAID fixes a certain number of pages in processor storage. As a result, the number of
page frames available to VSE for the execution of programs in virtual mode is reduced, which may affect
overall system performance.

Space Requirements for the Buffer
The internal wrap-around buffer does not belong to the SDAID area. It is situated in the SVA (31) area,
which avoids the problem that storage will be exhausted if a more complex SDAID trace and a BUFFER
are specified. The buffer size is requested and prefixed as multiples of 4K bytes.

If you specify TAPE=cuu, the BUFFER parameter will not be used. SDAID will then allocate an internal
default buffer of 8K bytes.

Space Requirements for SDAID Execution, Summary
Basic requirement for SDAID execution: 20K

Additional requirements
 Per specified trace: 2K
 If BUFFER=nn is specified: 2K + buffer size
 If OUTPUT is used and OUTDEV=Tape or Buffer 12K
 If OUTPUT is used and OUTDEV=Printer 20K

Number of Traces per Session

In prompt and direct input mode
The number of TRACE commands that you can submit per session depends on the types of the specified
traces and the requested trace options. For each TRACE command, SDAID builds at least one TRACE

50 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

command control block; for some it builds two such blocks as shown below. The program can build (and
use) a maximum of ten TRACE command control blocks per session. The number of blocks per TRACE
command is:

 PHase=phasename PHase=phasename
Type of trace not specified specified
_____________ _______________ _______________
 PGMLOAD 2 2
 VTAMIO 3 3
 all others 1 2

If the traces that you requested require more than ten trace control blocks, the program ignores the
TRACE command that was submitted last and informs you about this action with a message.

Via procedures
Only one procedure statement is possible, but it can create one or more TRACE commands.

Chapter 7. SDAID Overview 51

52 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 8. SDAID General Description

This topic contains a general description of all SDAID initialization definitions, and output examples for all
trace types.

The format of the commands and definition examples are shown under the descriptions for the
various initialization methods in Chapter 7, “SDAID Overview,” on page 45, Chapter 8, “SDAID General
Description,” on page 53, and Chapter 9, “Initialize an SDAID Trace in Direct Input Mode,” on page 83.

Defining the Output Device
The following output destinations can be defined when you initialize an SDAID trace:

• Printer
• Tape
• Wraparound buffer
• Wraparound buffer and printer
• Wraparound buffer and tape

You define the output destination for the event records in prompt and direct input mode via the
‘OUTDEV’ statement. If you use a procedure to initialize a trace, the ‘BUFFER=’, ‘TAPE=’, or ‘PRINTER=’
specifications are used to accomplish an OUTDEV definition.

Printer Defined as Output Destination
If a line printer is defined for the output, SDAID writes the event records on the printer at the time the
particular events occur.

If any program in the system writes output directly to the printer, this output will be mixed with the SDAID
output. You can avoid this by

• Collecting trace output on tape and printing it afterwards via DOSVSDMP, or
• Stopping the VSE/POWER controlled printer during tracing.

Tape Defined as Output Destination
If you define a magnetic tape as output device, the SDAID program moves the trace entries into an
internal buffer. SDAID writes event records to the available tape volume whenever this buffer becomes
full, or a ‘STOPSD’ or ‘ENDSD’ command is processed.

Every STOPSD or ENDSD command writes a tapemark on the tape if there was any trace event. However, if
there was no trace event since the last STARTSD command, the tape remains unchanged.

SDAID writes the buffers successively to the tape, and one trace entry can extend over several buffers.
For this reason, if you change reels after end-of-volume, the second tape may start with an incomplete
trace entry.

Buffer Defined as Output Destination
A buffer in storage may be defined to store the trace event records. During tracing, SDAID stores one
event record after the other. When the buffer becomes full, SDAID wraps around and continues to write
event records at the beginning of the buffer overwriting previously stored records. A buffer used in this
way is called a wraparound buffer.

A wraparound buffer is not automatically printed when it is full. SDAID writes the buffer contents on a
printer or on a tape if you request this action explicitly:

© Copyright IBM Corp. 1984, 2014 53

• The contents of the buffer will be written to the output device if a buffer trace is specified (TRACE
BUFFER). The buffer trace causes the buffer to be written whenever it is full.

• The contents of the buffer will be written to the output device if you specify OUTPut=BUffer on a
TRACE statement. The specification OUTPut=BUffer causes the buffer to be written whenever the event
specified in the TRACE statement occurs.

• The contents of the buffer will be written to the output device if you use the BUFFER and BUFFOUT
keyword in an SDAID procedure.

The information contained in the buffer can also be retrieved with the attention routine DUMP command
(see Figure 19 on page 54 and “Printing an SDAID or DUMP Command Produced Tape” on page 31).

Figure 19. Overview, Tracing Events into a Buffer

You define the size of the buffer in number of blocks of 4K bytes.

The possible buffer size which you can define depends on the device type of the buffer output device.

If you define a tape device, the possible size may vary from 4K to 32K bytes.

You can request a buffer size from 4K to 256K bytes if a printer is defined as output device, or if no output
device is defined.

Steps to Define a Wraparound Buffer
Assume, for example, that you want to:

• Collect the event records of an instruction trace in a 6K bytes buffer as long as no program check
occurs;

• Write the contents of the buffer to a tape when a program check interruption occurs.

Perform the following steps:

1. Define the buffer and the tape device with the OUTDEV command (in direct input or prompt mode) or
with the procedure statement in the form: ‘BUFFER=6 TAPE=280’;

2. Define the instruction trace;
3. Define the PGMCHECK trace with OUTPUT=BUFFER (in direct input or prompt mode), or define

BUFFOUT=PGMC in the procedure statement.

For the formats of the output definitions, see the following sections according to the input mode used:

• “Defining the Output Device in Direct Input Mode” on page 86;
• “BUFFER=, PRINTER=, TAPE=Keyword Operands” on page 130;
• “Output Device Definition in Prompt Mode: OUTDEV Command” on page 144.

Exceptional Conditions on the Output Device
You define the SDAID output device via the OUTDEV statement. It is required that the specified printer or
tape device is ready when you activate tracing via the STARTSD statement.

If an exceptional condition occurs on the output device, SDAID performs the following actions:

54 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• Unrecoverable I/O error on tape or printer

SDAID resets the control registers to the previous state and stops trace data collection. The VSE system
continues normal operation without tracing. On the next STOPSD statement SDAID presents an error
message with an error code as shown in the publication z/VSE Messages and Codes Volume 1. A final
ENDSD statement releases all resources allocated to SDAID.

• End-of-volume condition on tape

SDAID writes two trailing tape marks to close the tape file, performs a 'rewind-unload' operation, and
enters a soft wait state with the value X'00EEEEEE' in the address part of the wait PSW. The operator
should now perform the following actions:

– Mount a new tape reel
– Make the tape device ready
– Press the external interrupt key

SDAID will continue tracing onto the new tape reel.
• Intervention required on printer device (printer out of paper or stopped manually)

SDAID waits about two minutes to allow for paper refilling or other actions on the printer device. After
this time has elapsed, SDAID enters a soft wait state with the value X'00EEEEEE' in the address part of
the wait PSW. The operator should now perform the following actions:

– Make the printer device ready
– Press the external interrupt key

SDAID continues tracing on the printer device.
• Intervention required on tape device

SDAID enters a soft wait state with the value X'00EEEEEE' in the address part of the wait PSW. The
operator should now perform the following actions:

– Make the tape device ready
– Press the external interrupt key

SDAID continues tracing to the tape device.

Note: If the system is in the soft wait state with X'00EEEEEE' in the address part of the PSW and the
operator presses the interrupt key without making the SDAID output device ready, SDAID stops trace data
collection. (SDAID reacts in the same way as for unrecoverable I/O errors).

Summary of TRACE Types
SDAID offers you various trace types so that you get the most suitable information for solving the problem
in hand.

The following sections describe all SDAID trace types with their SDAID default values and shows trace
event record examples. The shown output may be written to a buffer or to a tape or printer device,
according to your output device specification.

Table 4 on page 55 lists the commands which produce the different trace types, and summarizes the
event traced in response to each command. The references in this table help you to find the description
and an output example of each trace type.

Table 4. Trace Type Summary

Trace Type Provides a Trace of: See:

BRANCH Successfully executed branch
instructions

“BRANCH Trace” on page 56

BUFFER The trace buffer when it is full “BUFFER Trace” on page 57

Chapter 8. SDAID General Description 55

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

Table 4. Trace Type Summary (continued)

Trace Type Provides a Trace of: See:

CANCEL Program (main task) cancel or EOJ “CANCEL Trace” on page 57

EXTERNAL External interrupts “EXTERNAL Trace” on page 57

EXTERNAL External interrupts “EXTERNAL Trace” on page 57

GETVIS GETVIS / FREEVIS requests “GETVIS Trace” on page 92

IO I/O interrupts “IO Trace (I/O Interrupt)” on page 59

LOCK LOCK / UNLOCK requests “LOCK Trace” on page 96

MONITORCALL MC instructions “MONITORCALL Trace” on page 61

OSAX OSAX adapter “OSAX Adapter Trace” on page 62

PGMCHECK Program checks “PGMCheck Trace (Program Check)” on page
63

PGMLOAD Phase load requests, or actual
load

“PGMLOAD (Fetch/Load) Trace” on page 64

SSCH Start Subchannel instructions “SSCH Instruction Trace” on page 65

STORAGE Storage alterations “STORAGE Alteration Trace” on page 66

SVC Executed supervisor calls “SVC Trace (Supervisor Call)” on page 67

VTAMBU Usage of VTAM buffers “VTAMBU Trace (VTAM Buffer)” on page 67

VTAMIO VTAM I/O operations “VTAMIO Trace” on page 68

XPCC Cross partition communication “XPCC Trace” on page 108

BRANCH Trace
A branch-instruction trace provides an event record for every branch taken, if the branch target address
falls into the defined area.

An example of the output is shown in Figure 20 on page 56.

BRANCH Trace Output Example

Figure 20. BRANCH Trace Event Record

56 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

BUFFER Trace
The buffer trace dumps the contents of the SDAID wraparound buffer to the output device (printer or
tape) when the buffer is full.

The buffer trace can be used only if you have also ‘Printer’ or ‘Tape’ specified in the OUTDEV command or
in a procedure.

The buffer trace output is the collection of all trace records contained in the buffer when a buffer overflow
occurs. These trace records are written sequentially.

CANCEL Trace
This trace provides an event record when the main (or only) task of the traced partition is canceled or
reaches EOJ.

You may use this trace type combined with additional output definitions to get more reasonable
information at the time of a cancel or EOJ condition.

For example, use the cancel trace type to get the buffer or areas of interest together with the cancel event
record recorded.

An example of the cancel trace output is shown in Figure 21 on page 57.

CANCEL Trace Output Example

Figure 21. CANCEL Trace Event Record

EXTERNAL Trace
The external trace provides information concerning the occurrences of external interrupts such as
pressing the external interrupt key. You may define one to eight of the following external interrupt types:

0040 Interrupt key
1003 TOD-clock sync check
1004 Clock comparator
1005 CPU timer
1200 Malfunction alert
1201 Emergency signal
1202 External call
2401 Service signal
2402 Logical device * z/VM CP
2603 PFAULT handshaking * z/VM CP
4000 IUCV, APPC * z/VM CP
4001 VMCF * z/VM CP

SDAID Default Value
If you do not define the type of interrupt, all external interrupts are traced.

The format of a printed external-interrupt trace event record is shown in Figure 22 on page 58.

Chapter 8. SDAID General Description 57

EXTERNAL Interrupt Trace Output Example

Figure 22. EXTERNAL Interrupt Trace Event Record

GETVIS / FREEVIS Trace
A GETVIS / FREEVIS trace provides information about requests made to obtain or release virtual storage.
These requests can be made using:

• SVC 3D
• SVC 3E
• An internal GETVIS call via SGETVIS and SFREEVIS macros.

The simple trace of the SVC's 3D and 3E only show the existence of SVCs at the point of invocation.
However, the GETVIS / FREEVIS trace records the results of a virtual-storage request after it has been
evaluated by the z/VSE GETVIS / FREEVIS routines.

You can limit the tracing of your GETVIS / FREEVIS requests to:

• A specific partition.
• The supervisor.
• A specific subpool name.
• A GETVIS location (24-bit or 31-bit area).

SDAID Default Value
If you do not define a partition or the supervisor, all tasks of the system are traced. All GETVIS / FREEVIS
requests are traced if you do not specify any of the GETVIS trace definitions.

The format of a GETVIS / FREEVIS event record is shown in Figure 23 on page 58.

GETVIS / FREEVIS Trace Output Example

Figure 23. GETVIS / FREEVIS Trace Record

58 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

You can also display additional lines, as shown in Figure 24 on page 59.

Figure 24. Additional Fields Displayed By GETVIS / FREEVIS Trace

INSTRUCTION Trace
An instruction trace provides information for instructions executed in the area defined for the trace. You
may select certain types of instructions to be traced by defining the instruction operation codes or all
types by defining an asterisk (*). Moreover, the trace can be defined to record all branch instructions,
without regard to whether the branch is taken or not.

Note the difference from the branch trace, which only records the branches actually taken.

The format of a printed event record for an instruction trace is shown in Figure 25 on page 59.

INSTRUCTION Trace Output Example

Figure 25. INSTRUCTION Execution Event Record

IO Trace (I/O Interrupt)
The IO trace collects information about I/O interrupts.

You may limit the I/O operations to be traced to a partition or to the supervisor. Another limitation is to
define a particular unit, control unit, or channel to be traced.

SDAID Default Value
If you do not define a partition or the supervisor, all tasks of the system are traced. All I/O devices are
traced if you do not specify any of the I/O definitions.

The format of an I/O-interrupt event record is shown in Figure 26 on page 60.

Note: Due to the fact that no tables are available in the supervisor for TP status modifier commands, the
output of TP channel programs (e.g. VTAM) may be incomplete.

Chapter 8. SDAID General Description 59

I/O Interrupt Trace Output Example

Figure 26. I/O-Interrupt Trace Event Record

LOCK / UNLOCK Trace
A LOCK / UNLOCK trace provides information about requests made to lock or unlock a resource.

You can limit the tracing of your LOCK / UNLOCK requests to:

• A specific partition.
• The supervisor.
• A specific resource name.
• A lock type.
• The scope of the lock request.
• A volume ID.
• A dedicated return code.

SDAID Default Value
If you do not define a partition or the supervisor, all tasks of the system are traced. All LOCK / UNLOCK
requests are traced if you do not specify any of the LOCK trace definitions.

The format of a LOCK / UNLOCK event record is shown in Figure 27 on page 61.

LOCK / UNLOCK Trace Output Example
The three trace output lines below are listed separately, to enable explanations to be given.

60 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 27. LOCK Trace Record

You can also display a line containing the contents of the LOCKTABLE entry, as shown in Figure 28 on page
61.

Figure 28. Contents of LOCKTABLE

MONITORCALL Trace
The monitor call trace provides information about monitor call instruction executions.

You may define all (defined via an asterisk (*)) or up to eight mc (monitor classes) in hexadecimal notation
of the MC instructions to be traced. An event record is provided when an executed MC instruction has a
monitor class which matches any of the specified classes.

You may specify any valid monitor class; however, SDAID ignores a specification of class 2, because class
2 is used by SDAID to control tracing.

The format of an MC instruction trace event record is shown in Figure 29 on page 62.

Chapter 8. SDAID General Description 61

MONITORCALL Trace Output Example

Figure 29. MONITORCALL Trace Event Record

OSAX Adapter Trace
The OSAX adapter trace provides useful information about the status of an OSAX adapter that is used in
your z/VSE system.

Using the OSAX adapter trace, you can either:

• specify an address of one data path only, or
• trace all data path addresses (the default).

The format of an OSAX adapter trace record is shown in Figure 30 on page 63.

OSAX Adapter Trace Output Example
Figure 30 on page 63 shows an example of the trace output that is generated by the following
statements:

// EXEC SDAID
 OUTDEV P=01E
 TRACE OSAX EXT=Y
/&

62 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

START OF SDAID TRACE
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_NOLST
---XMIT_PARAMETER_LIST---
005D283C 034A3F80 0000005C 09985001 035CB000
---IP_HEADER-------------
034A3F80 4500005C 00060000 FF010454 0998520C 0998520B 080013D6 00210005 00010203
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_FHDR
---OSA_HEADER------------
03598000 01060000 00000000 005C0000 00000000 00000000 00000000 00000000 09985001
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_SPNL
---RETURN CODE-----------
035CE248 00000004
---REASON CODE-----------
035CE278 0000
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_NOLST
---XMIT_PARAMETER_LIST---
005D283C 00000000 00000000 09985001 035CB000
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_QDIO
---SLSB------------------
035C9A00 A1A1A1A1 A162A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0
035C9A20 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0
035C9A40 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0
035C9A60 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0 A0A0A0A0
---RETURN CODE-----------
035D1CD4 00000000
---REASON CODE-----------
035CE278 0000
---SBAL------------------
035CA8F0 00000000 00001000 00000000 0127B000
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_SPNL
---RETURN CODE-----------
035CE248 00000000
OSAX 8 F8 C00 DATAPATH=0E02 FUNCTION=SEND SUB_FUNCTION=SEND_NOLST
 ⋮
END OF SDAID OUTPUT

Figure 30. Example of OSAX Adapter Trace Event Record

Please note that the output from an OSAX adapter trace is complex and normally only suitable for use by
IBM personnel. Typically, an OSAX adapter trace would be requested by IBM support personnel after a
related problem has been reported to them.

PGMCheck Trace (Program Check)
The program check trace provides information on the occurrence of program check interrupts.

You may limit the trace operation by defining certain program interruption codes. Up to 16 program
interruption codes of a value lower than X'40' in hexadecimal notation may be defined.

SDAID writes an event record only if the interrupt code returned by the system matches one of the
specified interrupt codes.

If you do not want to limit the trace recording to a specific interrupt code, define an asterisk (*) to
trace all program checks - except those page or segment translation exceptions which are caused by
the temporary absence of a storage page. The specification PGMC=(10 11) traces all page or segment
translation exceptions.

For a discussion of program interrupt codes, refer to the applicable Principles of Operation manual.

The format of a program-check event record is shown in Figure 31 on page 64.

Chapter 8. SDAID General Description 63

PGMCHECK Trace Output Example

Figure 31. Program Check Trace Event Record

The program check trace also displays some additional fields, as shown in the following examples:

PGMCHK 0 BG ST 58B040FA 00176BA2 PGCK-CODE=10 TEID=00581800 EAID=01 PSW=072D3000 00176BA2
 RADD=xxxxxxxx STE=xxxxxxxx
PGMCHK 0 BG ST 58B040FA 00176BA2 PGCK-CODE=10 TEID=00581800 EAID=01 PSW=072D3000 00176BA2
 RADD=xxxxxxxx
PGMCHK 0 BG ST 58B040FA 00176BA2 PGCK-CODE=11 TEID=00581800 EAID=01 PSW=072D3000 00176BA2
 RADD=xxxxxxxx PTE=xxxxxxxx
PGMCHK 0 BG ST 58B040FA 00176BA2 PGCK-CODE=2A EAID=01 PSW=072D3000 00176BA2

TEID=xxxxxxxx specifies the Translation Exception Identification. SDAID retrieves this information from
low core location 144-147. EAID=xx shows the Exception Access Identification. SDAID retrieves this
information from low core location 160. SDAID displays the fields TEID and/or EAID if the processor
updates the low core locations 144-147 and/or 160 at interrupt time.

If the programming exception is a page or a segment translation exception, SDAID displays the field RADD
and (if applicable) one of the fields PTE or STE. If the page or segment table portion of the virtual address
points inside the page or segment table, RADD=xxxxxxxx shows the real address of the invalid page or
segment table entry. The field PTE=xxxxxxxx shows the invalid page table entry. The field STE=xxxxxxxx
shows the invalid segment table entry. If the page or segment table portion of the virtual address points
outside the page or segment table, RADD shows the real address of the entry that would have been
fetched if the length violation had not occurred. In this case SDAID displays no PTE or STE field.

PGMLOAD (Fetch/Load) Trace
The program load trace provides information about program load events.

Such a program load event can be one of the following:

• Phase fetch/load request
• Completion of fetch/load operation

You may limit the trace recording if you define that only the fetch/load request (REQ) or only the actual
fetch/load completion (HDL) is to be traced.

You can limit the trace data collection to the load events of a certain phase.

You can limit the trace data collection to the load events occurring in an address range. This means that
SDAID records

• The trace load SVCs issued within the specified address range,
• The trace load completion events if the phase is loaded into the specified address range.

SDAID Default Values
If you do not define the kind of the fetch/load request, both the request and its handling is traced. All
phases are traced if you do not define a specific phase.

The format of a program load event record is shown in Figure 32 on page 65.

64 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

PGMLOAD Trace Output Example

Figure 32. PGMLOAD Trace Event Records

SSCH Instruction Trace
The SSCH instruction trace provides a trace event record for every executed start subchannel (SSCH)
instruction.

You may limit the trace operation by defining selected tasks or by defining a unit, a control unit, or a
channel address. A partition or the supervisor may be defined as the traced tasks.

The SSCH trace may print two types of SSCH records. The SSCH-1 record shows the state before the
SSCH has been performed. SDAID always displays a SSCH-1 record. The SSCH-2 record shows the
condition code after the SSCH instruction. SDAID displays a SSCH-2 record if the condition code is
different from zero; if the condition code is equal to zero, the SSCH-2 record is suppressed.

SDAID Default Value
If you do not define a partition or the supervisor, all tasks of the system are traced. All I/O devices are
traced if you do not specify any of the I/O definitions.

The format of a printed standard SSCH instruction event record is shown in Figure 33 on page 66.

Note: Due to the fact that no tables are available in the supervisor for telecommunications status modifier
commands, the output of telecommunications channel programs may be incomplete.

Chapter 8. SDAID General Description 65

Figure 33. SSCH (Start Subchannel) Trace Event Record

STORAGE Alteration Trace
The storage alteration trace writes an event record whenever a program alters the contents of a defined
storage area. Storage alterations caused by I/O operations are not recorded.

With the AREA or JOBNAME specification you define the tasks you want to watch (the source space
or partition). AREA=ALL causes all tasks of the system to be watched. With the STAREA, STJNAM, and
STDSPN operands you define the altered storage area (the target area). If the source space (or source
partition) is the same as the target space (or target partition), you may leave out the parameters STAREA,
STJNAM and STJNUM. Via the ADDRESS definition you specify the storage range where the alteration
occurs.

You may limit the trace operation by defining a certain storage pattern. If you define such a pattern, a
trace event record is written only when a storage area is set to the specified value. Specify the pattern in
hexadecimal notation. The pattern can be up to four bytes long.

If you specify an odd number of digits, a zero is inserted to the left of the first specified hexadecimal digit.

SDAID Default Value
You may omit the pattern definition. This causes each alteration of the defined storage interval to be
traced.

An example of a storage alteration trace event record is shown in Figure 34 on page 67.

66 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 34. Storage-Alter Trace Event Record

The first line of the storage-alteration trace record displays information about the altering program. The
record shows the space-id, the partition-id, the altering instruction and its storage address, and the PSW.
The second line gives information about the altered storage area. The record shows the address of the
altered storage area (ADD=) and the altered data value (DATA=).

If the traced instruction has accessed data within a different address space, the record shows the access
register number (A-REG=), the access register contents (ALET=), and the space identifier (SID=).

If the traced instruction has accessed a storage location within a data space, the record shows the access
register number (A-REG=), the access register contents (ALET=), and the name of the target data space
name (DSPN=).

SVC Trace (Supervisor Call)
The supervisor call trace provides information about one, several, or all SVC instructions executed in the
defined area.

You have to define at least one or may define up to 16 different SVC codes or an asterisk (*) specifying
that all supervisor call instructions are to be traced. Specify the SVC code in hexadecimal notation.

A typical SVC trace event record is shown in Figure 35 on page 67.

Figure 35. SVC Trace Event Record

VTAMBU Trace (VTAM Buffer)
The VTAM buffer trace provides an event record each time VTAM uses one of the buffers in its buffer pool.

The format of a printed standard VTAMBU event record is shown in Figure 36 on page 68.

Chapter 8. SDAID General Description 67

Note: For the VTAMBU trace you must condition VTAM either by entering a VTAM MODIFY command or
by specifying the TRACE operation when you start VTAM. At the end of an SDAID session, end VTAM
conditioning with the appropriate MODIFY command:

Start: F NET,TRACE,TYPE=SMS,ID=VTAMBUF
Stop: F NET,NOTRACE,TYPE=SMS,ID=VTAMBUF

For information on conditioning VTAM, see the VTAM Diagnosis publication.

(A)
I/O Interrupt Trace (for description see Figure 26 on page 60).

(B)
SVC Trace (for description see Figure 35 on page 67).

(C)
SSCH Trace (for description see Figure 33 on page 66).

(D)
Number of buffers (pages for VF and VP) in use when buffer usage was recorded.

(E)
Maximum number of buffers (pages for VF and VP) at any point in time up to the point buffer usage
was recorded.

(F)
Maximum number of requests for buffers (pages for VF and VP) that were queued at any point in time
up to the point buffer usage was recorded.

(G)
Number of times the buffer (page) pool was expanded up to the point buffer usage was recorded.

(H)
Number of buffers (pages for VF and VP) that were in the pool when buffer usage was recorded.

(I)
Maximum number of buffers (pages for VF and VP) that were in the pool at any point in time up to the
point buffer usage was recorded.

Figure 36. VTAMIO/VTAMBU Trace Record

VTAMIO Trace
The VTAMIO trace combines the following trace types:

• SVCs with codes X'31' and X'35'
• SSCH instructions
• I/O interrupts

Please find a description of the traces involved under the various trace type descriptions (SVC trace, SSCH
trace and I/O trace).

68 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SDAID Default Value
All I/O devices are traced if you do not specify any of the I/O definitions.

The format of the printed VTAMIO event records is shown in Figure 36 on page 68.

XPCC Trace
An XPCC trace provides information about connections between different applications (cross-partition
communication). The information is gathered after the requested function has been processed and
completed by the VSE cross-partition communication routine.

You can limit the tracing of your XPCC requests by using one or more of the XPCC trace definitions.

SDAID Default Value
All XPCC requests will be traced if you either:

• Do not specify one or more of the optional trace definitions.
• Code an asterisk (*) as parameter for the mandatory trace definitions.

The format of an XPCC event record is shown in Figure 37 on page 69.

XPCC Trace Output Example

Figure 37. XPCC Trace Record

You can also display additional lines, as shown in Figure 38 on page 69.

Figure 38. Additional Fields Displayed By XPCC Trace

Notational Conventions
For a description of the syntax diagrams in this topic, see “Understanding Syntax Diagrams” on page xxiii

Defining the Area to be Traced: AREA Definition
ARea= partition_id

SUP

ALL

Chapter 8. SDAID General Description 69

You define the area for which processing is traced by using the AREA (or the JOBNAME) definition. You
can specify either AREA or JOBNAME in the TRACE statement, but not both. For AREA, specify one of the
following definitions:

• partition_id (static or dynamic)
• SUP
• ALL

Only one of these definitions is possible.
partition_id

Specifies the partition in which tasks are to be observed, like BG, F3, Y1.

If, for example, BG is specified, the steps executed by the BG main task and by all attached subtasks
are traced. ARea=BG does not necessarily mean that tracing is restricted to the BG space. For a
dynamic partition (Y1, for example), the JOBNAME definition is generally used (see below).

SUP
Specifies that the activities of the supervisor are to be traced.

ALL
Specifies that the activities of all tasks in the VSE system are to be traced.

Note: For the VTAMIO trace, only ARea=partition_id can be specified, where 'partition_id' denotes the
partition where VTAM is active. In that case only the I/O activities of that partition are traced.

Defining the Job to be Traced: JOBNAME Definition
JOBNAME=  jobname

JOBNUM=  jobnumber

If you want to trace a job in a dynamic job class, the AREA specification is not sufficient, since you do
not know in which partition the job may execute. Therefore, the keywords JOBNAME and JOBNUM have
been introduced which allow to trace a VSE/POWER job in a dynamic or static partition. If VSE/POWER is
not installed in the system, JOBNAME is not applicable. You can specify either AREA or JOBNAME in the
TRACE statement, but not both.
jobname

Specifies the name of the VSE/POWER job to be traced. Tracing starts when VSE/POWER selects
the specified job for execution. The specified job name must correspond to the JNM operand of the
VSE/POWER JECL statement.

jobnumber
Specifies the VSE/POWER-defined job number. It may be used if more than one job with the specified
job name is contained in the VSE/POWER reader queue.

Note:

1. The JOBNAME operand cannot be used to trace a job in a VSE/POWER writer-only partition.
2. JOBNAME should not be used in a VSE/POWER-controlled partition started with the 'MT' option of the

PSTART command.
3. SDAID does not accept POWER® job names containing the character '-'. (The SDAID command

language uses this character as continuation character.)

Defining the Storage to be Traced: OFFset, ADDress, PHase, LTA
Whereas the ARea and JOBNAME definitions allows you to specify the tasks that you want to observe, the
storage definition determines the storage region that is to be investigated. The storage definition has to
be specified in accordance to the task definition. For example, if you specified a partition-id for ARea, the
definitions OFFset, ADDress, PHase, LTA can be used.

70 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

The following sections tell you the valid storage definitions in accordance with the various task
specifications.

Storage Definition for AREA and JOBNAME
You may use one of the following storage area definitions for the AREA and JOBNAME definitions:

OFFset=0:*

OFFset= reladdr1: reladdr2

reladdr1:*

ADDress=
0:*

addr1: addr2

addr1:*

PHase= phase_name
OFFset=0:*

OFFset= reladdr1: reladdr2

reladdr1:*

LTA

OFFset=
limits tracing to a certain address range via offsets relative to the partition start address. OFFset=0:*
is the default specification when ARea is defined by a partition-id. The OFFSET specification is not
valid for AREA=ALL.

reladdr1:reladdr2
defines a trace address range in hexadecimal notation.

‘reladdr1’ can be any relative address within the partition, supervisor or phase defined by the ARea
operand.

‘reladdr2’ must be higher than or equal to reladdr1.

reladdr1:*
defines a trace address range starting with ‘reladdr1’ up to the end of the partition, the supervisor or
the phase.

0:*
defines that the whole storage allocated to the partition, the supervisor or the phase is defined as
trace storage area.

ADDress=
limits tracing to a certain address range within the storage allocated to VSE.

addr1:addr2
defines a trace address range in hexadecimal notation. ‘addr1’ and ‘addr2’ can be any address in the
virtual storage defined for VSE.

‘addr2’ must be higher than or equal to 'addr1'.

addr1:*
defines a trace address range starting with ‘addr1’ up to the end of virtual storage.

0:*
defines that the whole storage allocated to VSE is defined as trace storage area.

PHase=
Limits tracing to a certain phase. If the named phase resides in the Shared Virtual Area (SVA), SDAID
uses the start and end address of the named phase as tracing boundaries. If the named phase does
not reside in the SVA, SDAID defers tracing until the named phase is loaded into a user partition.

Chapter 8. SDAID General Description 71

When a load request for the named phase is issued, SDAID activates the deferred trace and updates
the trace start and end address with the start and end address of the phase just loaded. This means
that only those phases can be traced via the PHase parameter which (1) reside in the SVA, or (2)
which are loaded into the traced partition after the STARTSD statement has been issued.

If you specify the PHase= operand, the operand OFFset= can be used in addition. In this case,
OFFset= defines a trace area within the phase. If you omit the OFFset= definition, the whole storage
area of the phase is traced.

reladdr1:reladdr2
defines a trace address range in hexadecimal notation.

‘reladdr1’ can be any relative address within the phase.

‘reladdr2’ must be higher than or equal to reladdr1.

reladdr1:*
defines a trace address range starting with ‘reladdr1’ up to the end of the phase.

0:*
defines that the whole storage allocated to the phase is defined as trace storage area.

LTA
defines that the logical transient area is specified as tracing range.

SDAID Default Values
If you do not specify OFFset, ADDress, PHase or LTA, the following defaults will be set:

• If AREA=partition | supervisor, the complete storage area that is allocated to the partition or supervisor
will be traced. OFFset=0:* is the definition that results in direct input-mode notation.

• If AREA=ALL, or if the parameter is omitted, the complete storage area that is allocated to z/VSE will be
traced.

Note: If you wish to trace in a particular partition (parameter Area=partition) and if parts of your program
belong to the SVA (24-bit or 31-bit), to include this event you must explicitly increase the range of the
trace using the ADDR=0:* parameter.

Defining Additional Trace Output: OUTPut Definition
OUTPut= definition

(

,

 definition)

You may specify additional trace output with the OUTPut definition. This additional trace information is
recorded together with the trace event records. For example, you may define that a dump of defined
control blocks or address ranges be recorded in addition to the trace event record.

You may select one or more definitions for a specific trace type.

For a summary of all OUTPut definitions, see Table 5 on page 72. The references in the third column
refer you to the description of the OUTPut definitions in this topic.

Table 5. OUTPUT Definition Summary

Definition Records/prints in addition: See:

BUffer Contents of SDAID output buffer “Writing the Trace Buffer” on page 73

CCB CCB or IORB (TRACE=IO, SSCH, or
VTAMIO only)

“Recording the CCB or IORB” on page
74

72 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Table 5. OUTPUT Definition Summary (continued)

Definition Records/prints in addition: See:

CCW CCWs, IRB (TRACE=IO, SSCH, or
VTAMIO only)

“Recording the CCW” on page 74

CCWD=nnnn CCWs plus nnnn bytes of data, IRB
(TRACE=IO, SSCH, or VTAMIO only)

“Recording the CCW” on page 74

COMReg Partition communication region “Recording the Partition Communication
Region” on page 74

CReg Control registers “Recording the Control Registers” on
page 75

DUMP Virtual storage “Dumping Virtual Storage” on page 75

FReg Floating point registers “Recording Floating-Point Registers” on
page 77

GReg General purpose and access registers “Recording General-Purpose and Access
Registers” on page 77

IOTab PUB, LUB, ERBLOC, ERRQ, CHANQ “Recording PUB, LUB, ERBLOC, CHANQ”
on page 78

LOCKTE Lockable entry (LOCK trace only) “LOCK / UNLOCK Trace” on page 60

LOwcore Processor storage from zero to X'2FF'. “Dumping Processor Storage from X'00'to
X'2FF'” on page 78

LTA Logical transient area “Recording the Logical Transient Area” on
page 79

PTA Physical transient area “Recording the Physical Transient Area”
on page 79

PTAB Partition related control blocks: PCB,
PIB, PIB2

“Recording Partition-Related Control
Blocks” on page 79

SUP Supervisor plus GREGs and CREGs “Recording the Supervisor Area” on page
79

SYSCom System communication region “Recording the System Communication
Region” on page 79

TOD Time-of-Day clock “Recording the Time-of-Day Clock” on
page 80

TTAB Task related control blocks: TIB, TCB,
PCB, PIB, PIB2

“Recording Task-Related Control Blocks”
on page 80

XPCCB XPCC control block (XPCC trace only) “XPCC Trace” on page 69

XPDATABU Buffer for data to be transmitted (XPCC
trace only)

“XPCC Trace” on page 69

Writing the Trace Buffer
OUTPut=BUffer

BUffer
writes the contents of the SDAID buffer to the device specified with the OUTDEV statement. The
buffer is written immediately after the associated event has been recorded in the buffer.

Chapter 8. SDAID General Description 73

Note: Specifying BUffer as one of a number of output options may result in the original event record(s)
getting lost due to the wraparound recording technique used.

Recording the CCB or IORB
OUTPut=CCB

CCB
records or prints the contents of either the CCB or the IORB (input/output request block) plus the TOD
(time-of-day clock). This output option is meaningful only with an IO or SSCH trace request.

Recording the CCW
OUTPut= CCW

(CCWD=  nnnn)

CCW
records or prints the available channel program (Channel Command Word chain) when the trace type
is SSCH. In case of an IO trace, only the CCWs which refer to transferred data are recorded or printed.

The output contains also the first 16 bytes of the associated data, the CCB, the IRB (interruption
request block) and the TOD (time of day clock).

Specifying this output option for an event other than IO or SSCH is not meaningful.

CCWD=nnnnn
(CCW plus data) records or prints up to a maximum of nnnn bytes of the transferred data, the CCB, the
IRB (interruption request block) and the TOD clock in addition to the information processed with the
CCW specification. The number nnnn may be any (decimal) number between 1 and 65535.

The most meaningful trace type to be combined with this output option is the IO trace.

For an example of the output produced with this option, see Figure 39 on page 74.

I/O S BG UNIT=0110 CSW =0000D610 0C000000
TOD = 95.016 17.53.54.333
CCB= 0000D2E0 00000004 0000880B 0000D5E8 0000D610

CCW= 0000D5E8 0700D47A 40000006 DATA= 0000000B 000A *...... *
CCW= 0000D5F0 2300D481 40000001 DATA= 9C *. *
CCW= 0000D5F8 3100D47C 60000005 DATA= 000B000A 17 *..... *
CCW= 0000D600 0800D5F8 00000000
CCW= 0000D608 8600F400 20000400

---CCW DATA---
0000F400 D7C8C1E2 C5404040 00805BD1 D6C2C3E3 D3C90020 00000000 14480048 00000000 *PHASE ..$JOBCTLI.........*
0000F420 171C0480 00060000 00010000 16E80001 F9F4F1F1 F0F90213 717CF9F4 F1F1F1F2 *.......Y..941109...@941112*

… … … …

----IRB-----
0001B940 00004007 0000D610 0C000000 00400000 00000000 00000000 00000000 00000000 *.. ...O......*
0001B960 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *..........................*

Note: For a CCW with a data length less than 17 bytes data is displayed in the CCW line, else in a
separate block.

Figure 39. Output of OUTPut=(CCWD=256)

Recording the Partition Communication Region
OUTPut=COMReg

COMReg
records or prints the contents of the partition communication region.

74 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Recording the Control Registers
OUTPut=CReg

CReg
records or prints the contents of all control registers.

Dumping Virtual Storage
OUTPut=DUMP ADDress= addr1: addr2

addr1:*

0:*

PARTITION
OFFSET=0:*

OFFset= reladdr1: reladdr2

reladdr1:*

PHase
OFFSET=0:*

OFFset= reladdr1: reladdr2

reladdr1:*

REG= reg : bytes

PTR= reg : offset DMP=  offset : length

Note: SDAID dumps only those areas which are in real storage, that is, accessible without page fault.

DUMP
records or prints the contents of virtual storage.

You may request up to ten different dumps.

Note: SDAID does not dump or record virtual storage above the 2 GB line.

You have to specify one or more of the dump area specifications as shown below.
PARTITION

allows to dump the partition for which the trace is active. This operand is valid for the static as well
as for the dynamic partitions (AREA or JOBNAME). The OFFset operand may be defined in addition to
PARTITION to limit the dump area in the partition:

reladdr1:reladdr2
defines a trace address range in hexadecimal notation.

‘reladdr1’ can be any relative address within the partition or the phase defined by the ARea operand.

‘reladdr2’ must be higher than or equal to ‘reladdr1’.

reladdr1:*
defines a trace address range starting with ‘reladdr1’ up to the end of the partition or the phase.

0:*
defines that the whole storage allocated to the partition or the phase is defined as trace storage area.

PHase
limits the dump to the phase that is specified in the applicable area definition. The OFFset operand
may be defined with the PHase operand to limit the dump area in the phase. (See above, under
"PARTITION".)

Chapter 8. SDAID General Description 75

ADDress
defines a dump range by a pair of addresses. For example, if you want to dump the contents of four
bytes starting at storage location 0080 (hexadecimal). The definition in direct input mode would look
like this:

ADD=0080:0083

addr1:addr2
defines a trace address range in hexadecimal notation. ‘addr1’ and ‘addr2’ can be any address in the
virtual storage defined for VSE.

‘addr2’ must be higher than or equal to addr1.

addr1:*
defines a trace address range starting with ‘addr1’ up to the end of virtual storage.

0:*
defines that the whole storage allocated to VSE is defined as trace storage area.

REG=reg:bytes
if the starting address of the dump is specified by a register, and the number of bytes to be dumped is
specified by a hex value.

The maximum number of bytes that can be specified is 1000.

PTR=reg:offset DMP=offset:length
if the dump area is located via a register plus an offset which addresses a pointer. The dump area
itself is determined by the definition

DMP=offset:length

which defines the dump start address relative to that pointer and the dump length.

The offsets and the dump length are specified in hexadecimal notation. The maximum value for offset
and length is 1000. The following example and Figure 40 on page 77 explain such a dump area
definition.

For example:

The contents of register E is used to locate a control block. The fullword at relative offset X'10' in this
control block is used as a pointer to another control block or data area.

Starting at offset X'200' an area of X'100' bytes is dumped.

Direct Input Mode Format

OUTPut=(DUMP PTR=E:10 DMP=200:100)

76 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 40. Overview: Defining the Area to be Dumped

In the operands REG and PTR, you can specify a general register for addressing the dump area. The PSW
of the traced program determines whether the contents of the general register is interpreted as a 24-bit
address or as a 31-bit address. If access registers are active, SDAID uses the general register X and the
access register X to address the dumped interval.

Recording Floating-Point Registers
OUTPut=FReg

FReg
records or prints the contents of all floating-point registers. Figure 41 on page 77 shows an example
of a printout of the contents of these registers.

Trace Output Example with OUTPut=FReg

Figure 41. Printout of Floating-Point Registers

Recording General-Purpose and Access Registers
OUTPut=GReg

GReg
records or prints the contents of all general-purpose and access registers (if available).

Figure 42 on page 78 and Figure 43 on page 78 show examples of printouts of the contents of the
general-purpose registers, Figure 44 on page 78 of general-purpose and access registers.

Chapter 8. SDAID General Description 77

Trace Output Example of General-Purpose Registers When Caller in AMODE
31

Figure 42. Printout of General-Purpose Registers (AMODE 31)

Trace Output Example of General-Purpose Registers When Caller in AMODE
64

Figure 43. Printout of General-Purpose Registers (AMODE 64)

Trace Output Example with Access Registers

Figure 44. Printout of General-Purpose and Access Registers

Recording PUB, LUB, ERBLOC, CHANQ
OUTPut=IOTab

IOTab
records the contents of the following I/O tables: PUB, LUB, ERBLOC, CHANQ.

Note: If the attention routine is traced, no LUB table is recorded (only partitions have LUB tables).

Dumping Processor Storage from X'00'to X'2FF'
OUTPut=LOwcore

LOwcore
(Lowcore contents) records or prints the contents of the first 768 bytes of processor storage (X'00' to
X'2FF').

See Figure 45 on page 79 for a sample output.

78 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Trace Output Example with OUTPut=LOwcore

Figure 45. Printout of Low Address Storage

Recording the Locktable Entry
OUTPut=LOCKTE

LOCKTE
records or prints the Locktable entry of the current LOCK or UNLOCK event.

Recording the Logical Transient Area
OUTPut=LTA

LTA
records the contents of the LTA on occurrence of the associated event.

Recording the Physical Transient Area
OUTPut=PTA

PTA
records or prints the contents of the physical transient area on occurrence of the associated event.

Recording Partition-Related Control Blocks
OUTPut=PTAB

PTAB
records or prints the contents of the Partition Control Block (PCB) and the Program Information Block
(PIB and PIB2) of the active partition.

Recording the Supervisor Area
OUTPut=SUP

SUP
records or prints the contents of the storage area used by the supervisor.

Recording the System Communication Region
OUTPut=SYSCom

SYSCom
records or prints the contents of the system communication region.

Chapter 8. SDAID General Description 79

Recording the Time-of-Day Clock
OUTPut=TOD

TOD
records or prints the setting of the time-of-day clock each time the associated event occurs.

Figure 46 on page 80 shows an example of this option.

Trace Output Example with OUTPut=TOD

Figure 46. Program-Check Event with Time of Day

Recording Task-Related Control Blocks
OUTPut=TTAB

TTAB
records or prints the contents of the Task Information Blocks (TIBs), the Task Control Blocks (TCBs) of
the tasks belonging to the active partition, and the partition-related control blocks PCB, PIB, PIB2.

Recording the XPCC Communication Control Block
OUTPut=XPCCB

XPCCB
records or prints the contents of the XPCC communication control block.

Recording the XPCC Data Buffer
OUTPut=XPDATABU

XPDAtabu
records or prints the contents of the XPCC data buffer which is used to transfer data.

Defining the Trace Options: OPTion Definition
OPTion=(SUPervisor

NOJCL

NOSource

NOTarget

Halt

Terminate
,

OCcurrence=  occ1: occ2

)

80 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SUPervisor
traces a code segment within the supervisor. It allows to trace supervisor routines while they are
working for a user partition (by activating the PER bit in the PSW of the supervisor routines). The
specification OPTion=SUPervisor is applicable only for the branch trace, the instruction trace, and
the storage alteration trace. You may use OPTion=SUPervisor if you specify AREA=partition-id or
JOBNAME=jobname. Examples:

 TRACE INST=* AREA=F3 ADD=5000:5200 OPTION=SUP

This statement traces the instructions in the storage interval between 5000 and 5200 if this
supervisor code is executed for the F3 partition (with the PIK of the F3 partition).

 TRACE BRANCH JOBNAME=TESTPROG ADD=0:* OUTPUT=GREG OPTION=SUP

This statement traces the effective branch instructions of the job named TESTPROG. ADD=0:* means
that all storage within and outside the private user partition is to be traced. OPTION=SUPervisor
causes supervisor routines to be traced while they are servicing the traced partition.

Halt
stops processing of the system when the defined trace event occurs. SDAID puts the system into a
wait state with address X'00EEEE' in the address portion of the wait PSW. This wait on event enables
you to perform some debugging work, for example to display registers or selected storage areas.

How to Get out of this WAIT

• Give an external interrupt.

The trace remains initialized and the system stops at the next trace event occurrence.
• Alter storage location 0 to a value of X'FF', then give an external interrupt.

The trace remains active but the Halt option is canceled.

NOJCL
suppresses tracing of Job Control Phases. If the keyword NOJCL is omitted, the user program and the
job control statements are also traced.

NOSource
Do not record if a space switch is in effect, and the current event is within the SOURCE space.

NOTarget
Do not record if a space switch is in effect, and the current event is within the TARGET space.

Terminate
allows you to terminate SDAID output at the occurrence of the specified event. You may start the
trace output again if you issue the STOPSD and the STARTSD attention routine commands. Note, that
you should issue the attention routine command ENDSD if you want to end the trace operation and
release all system resources which SDAID has used.

OCcurrence=occ1:occ2
specifies the number of associated events to be traced. For example, the specification 1:20 defines
that tracing starts with the first occurrence of the specified trace event and ends with occurrence 20.

Chapter 8. SDAID General Description 81

Defining the Traced I/O Devices

1 2 3
UNit=

,

 cuu
4

CU=

,

 cu
5

CHannel=

,

 c
6

Notes:
1 You can specify up to eight device addresses.
2 You can specify up to 16 control unit addresses.
3 You can specify up to 16 channel addresses.
4 You can specify up to eight device addresses.
5 You can specify up to 16 control unit addresses.
6 You can specify up to 16 channel addresses.

UNit=cuu
specifies one or up to 8 device addresses.

CU=cu
specifies one or up to 16 control unit addresses.

CHannel=c
specifies one channel address or a list of up to 16 addresses.

Note:

1. You may define these operands with the TRACE statements for the IO trace, the SSCH trace, and the
VTAMIO trace.

2. The parameters UNit, CHannel, and CU are optional. If you do not specify the UNit statement, all
devices are traced.

3. The parameters UNit, CHannel, and CU are mutually exclusive (in the same TRACE command).

82 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 9. Initialize an SDAID Trace in Direct Input
Mode

This topic describes how you can initialize a SDAID trace via statements read in from a SYSIN device or
the attention routine (AR).

Direct input means that you enter the trace specifications directly via control statements. Beside the
trace initialization in prompt mode or via procedures the direct input mode can be used to set up SDAID
traces. You can use the direct input mode of SDAID to enter complete SDAID commands avoiding the
time-consuming prompt input mode.

This topic contains:

• “Initializing an SDAID Trace in Direct Input Mode” on page 83
• “Starting the SDAID Trace Initialization” on page 85
• “Ending the SDAID Trace Initialization” on page 86
• “Defining the Output Device in Direct Input Mode” on page 86
• “The TRACE Statement” on page 88
• “BRanch Trace” on page 89
• “BUffer Trace” on page 89
• “CAncel Trace” on page 90
• “EXTernal Trace” on page 91
• “GETVIS Trace” on page 92
• “INSTruction Trace” on page 94
• “I/O Interrupt Trace” on page 95
• “LOCK Trace” on page 96
• “MONitor Call Trace” on page 98
• “OSAX Adapter Trace” on page 99
• “PGMCheck Trace” on page 100
• “Program Load Trace (Fetch/Load Trace)” on page 101
• “SSCH Instruction Trace” on page 102
• “Storage Alteration Trace” on page 103
• “Supervisor Call Trace” on page 105
• “VTAM BUffer Trace” on page 106
• “VTAMIO Trace” on page 107
• “XPCC Trace” on page 108
• “Additional Definitions” on page 110

Initializing an SDAID Trace in Direct Input Mode
SDAID trace initialization in direct input mode uses the following statements:

Table 6. Input Statement Summary

SDAID Statement See:

EXEC SDAID or SDAID “Starting the SDAID Trace Initialization” on page 85

© Copyright IBM Corp. 1984, 2014 83

Table 6. Input Statement Summary (continued)

SDAID Statement See:

OUTDEV specification “Defining the Output Device in Direct Input Mode” on page 86

TRACE type and additions “The TRACE Statement” on page 88

/*, READY or ENTER “Ending the SDAID Trace Initialization” on page 86

Selecting the SDAID Input Mode
In direct mode, SDAID commands can be entered either via the attention routine or via job control.

Commands Entered Via the Attention Routine:
You may initialize traces via the attention routine either in direct input mode or in prompt mode. The
SDAID program may switch from one input mode to the other according to your command input. However,
the statements described in this section are used for direct input mode only. The SDAID program is
started by the attention routine command

SDAID

You determine the direct input mode by defining at least one keyword operand together with either the
TRACE or the OUTDEV command, for example:

OUTDEV P=E

The SDAID program switches to prompt input mode when you omit all possible keyword operands, or
if you use a prompt-input-mode statement. An example of prompt input is a statement with a question
mark (?), for example:

TRACE INST=* AR=BG OUTP=?

Commands Entered Via Job Control
You may invoke the SDAID program in a partition using the job control statement:

// EXEC SDAID

This statement and the SDAID trace initialization commands may be entered from a console or from a
SYSIN device.

You specify the output device of the trace with the OUTDEV statement. Only one output device
specification is possible at one time in the system. Any subsequent OUTDEV statement overrides the
existing one.

The TRACE statement contains the definition of the trace type and additional trace keyword operands.
You can enter up to ten TRACE statements.

You end the trace initialization with the READY statement. If you entered the statements via SYSIN,
the end of data (/*), or ENTER in case of console input are treated as READY statements and end
the initialization process. When the READY statement has been read in, no further OUTDEV or TRACE
statement can be entered.

You can cancel the SDAID setup during initialization with the ENDSD or CANCEL statement. Two
initialization examples are shown in Figure 47 on page 85. One entered directly via the attention routine,
the other read in via a SYSIN device.

In both examples the same SDAID trace is initialized.

84 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 47. Trace Initialization Examples (Direct Input Mode)

Notational Conventions
• The various operands may be separated by at least one blank or by a comma.
• Enter all operands in the specified order. Examples are shown in topic “Command Input Paths” on page

136.
• For a description of the syntax diagrams please read “Understanding Syntax Diagrams” on page xxiii.
• Command continuation is allowed. It is specified by a trailing hyphen (-).
• Comments may be specified via SYSIN together with SDAID statements or as separate comment lines.

A /* sign specifies the begin of a comment. All text from the /* sign up to the end of the line is treated as
a comment. /* must not start in column 1.

Starting the SDAID Trace Initialization

//

EXEC SDAID

SDAID

You start the initialization process as follows:

• If you want to setup the trace from the AR, type only ‘sdaid’.
• If you want to initialize the trace in a partition via SYSLOG, enter ‘exec sdaid’ in that particular partition.

Submit ‘exec sdaid’ or ‘// exec sdaid’ if you use SYSRDR as input device.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 85

Ending the SDAID Trace Initialization
READY In the Attention Routine

/* In a Partition from SYSIPT

ENTER In a Partition from the Console

You end the initialization process with:

• The statement ‘READY’ or
• An end-of-file indication, that is:

– /* from SYSIPT;
– A blank line from the console.

Now you can start the initialized trace with the AR command STARTSD.

You find more information about starting and stopping a trace in Chapter 12, “Start/Stop and End the
Trace,” on page 163.

Defining the Output Device in Direct Input Mode
OUTDEV

BUffer= nn Tape=  cuu

Printer= cuu

You define the destination of your trace output with the OUTDEV statement.

Enter the OUTDEV statement with an operand to get into the direct input mode. Otherwise, if you entered
the SDAID statement from the attention routine, the SDAID program would prompt you for the necessary
information (prompt mode).

Note: An OUTDEV statement in a partition must contain at least one operand (prompt mode is not
possible in a partition).

Defining the Output Device
You can define the following output destinations with the OUTDEV statement:

• Printer
• Tape
• Wraparound buffer
• Wraparound buffer and printer
• Wraparound buffer and tape

For the appropriate OUTDEV and TRACE statement for your trace initialization, see Table 7 on page 86.

Table 7. OUTDEV Summary

Device Buffer Output when: SDAID Statements Note

Printer no immediately OUTDEV P=cuu 1

Tape yes buffer full OUTDEV T=cuu 2

- yes - OUTDEV BU=nn 3

Printer yes certain event occurs OUTDEV BU=nn P=cuu TRACE type
OUTP=BU

4

86 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Table 7. OUTDEV Summary (continued)

Device Buffer Output when: SDAID Statements Note

Tape yes certain event occurs OUTDEV BU=nn T=cuu TRACE type
OUTP=BU

5

nn..... stands for the wraparound buffer size
 in units of K bytes.
 If you do not define an output device or
 you use a printer device, nn may have a
 value of 4 up to the maximum of 256.
 If you use a tape device, nn may have a
 value of 3 up to the maximum of 32.
cuu ... stands for the unit address.
 You may abbreviate it in the following way:
 00E, 0E, E
type .. represents the type of trace event which
 forces the output operation.

Note:

1. No buffer is allocated. The event records are printed on the printer with the device address cuu.
2. The event records are written into an internal buffer. This buffer is written to a tape mounted on the

device cuu when it is full or when an ENDSD or STOPSD command is issued.
3. A trace defined with this OUTDEV statement writes the event records into a wraparound buffer. You

can retrieve the trace records only with the attention routine command:

DUMP BUFFER,cuu

DOSVSDMP can be used to print the tape. For further information,see “Printing an SDAID or DUMP
Command Produced Tape” on page 31.

4. A trace defined with this OUTDEV and TRACE statement prints the contents of the buffer when the
trace event (type), defined with the TRACE statement, occurs.

5. The defined wraparound buffer is written to tape (cuu) when the trace event (type) occurs.

Note: From z/VSE 3.1 onwards, the buffer is allocated in the 31-bit SVA. It is no longer part of the SDAID
area. The buffer file is rounded up to a multiple of 4K bytes.

SDAID Trace Initialization Example
Assume you want to use SDAID to trace instructions executed in the BG partition. The buffer should be 6K
to allow for a reasonable number of trace event records, and should be written to tape when end-of-job is
reached or the partition is canceled. Figure 48 on page 87 shows the statements necessary to initialize
this trace. The SDAID statements are entered in direct input mode via SYSIN.

// EXEC SDAID
OUTDEV BU=8 T=280
TRACE INST=* AR=BG
TRACE CA AREA=BG OUTP=BU,OPT=TERM
/*

Figure 48. Example: Initializing an SDAID Trace

For the trace initialized in Figure 48 on page 87:

• The buffer size is 8K bytes (OUTDEV BU=8 ...);
• The output tape is mounted on unit address 280 (OUTDEV T=280);
• SDAID traces instructions (TRACE INST=* ...) executed in the BG partition (... AR=BG) into the buffer;
• The buffer is written to a tape when a CANCEL or an EOJ condition is encountered (TRACE CA

OUTP=BU ...);
• Tracing stops after the buffer is written (... OPT=TERM).

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 87

The TRACE Statement
The TRACE statement is used to define the trace types you need to get the most reasonable information
about errors in your computing environment. For the appropriate trace type, see Table 8 on page 88.

This section describes the format of all SDAID trace type initializations in direct input mode and shows
trace statement and trace initialization examples.

The possible abbreviations are shown through lowercase letters.

Trace statements can be entered up to column 72 of the input line, and may be continued on the following
line or lines. To continue a statement, enter at least one blank character and a hyphen (-) after the last
operand in the first line, and continue the statement between columns 1 and 72 of the following line.

Enter all operands in the specified order. Refer to the examples in topic “Command Input Paths” on page
136.

Summary of Trace Types
Table 8. Trace Type Summary

Trace Type Provides a Trace of: See:

BRanch Successfully executed branch
instructions

“BRanch Trace” on page 89

BUffer The trace buffer when it is full “BUffer Trace” on page 89

CAncel Program (main task) cancel or EOJ “CAncel Trace” on page 90

EXTernal External interrupts “EXTernal Trace” on page 91

GETVIS Getvis / Freevis requests “GETVIS Trace” on page 92

INSTruction Selected or all instruction(s)
execution

“INSTruction Trace” on page 94

IO I/O interrupts “I/O Interrupt Trace” on page 95

LOCK Lock / unlock requests of resources “LOCK Trace” on page 96

MONitorcall MC instructions “MONitor Call Trace” on page 98

OSAX OSAX adapter “OSAX Adapter Trace” on page 99

PGMCheck Program checks “PGMCheck Trace” on page 100

PGMLoad Phase load requests, or actual load “Program Load Trace (Fetch/Load Trace)”
on page 101

SSCH Start Subchannel instructions “Statement Examples” on page 103

STorage Storage alterations “Storage Alteration Trace” on page 103

SVC Executed supervisor calls “Supervisor Call Trace” on page 105

VTAMBU Usage of VTAM buffers “VTAM BUffer Trace” on page 106

VTAMIO VTAM I/O operations “VTAMIO Trace” on page 107

XPCC XPCC communication requests “XPCC Trace” on page 108

Besides the type of the trace and some definitions which belong to the trace type, other keyword
operands like AREA, OUTPUT or OPTION may be defined to limit the trace or to produce additional trace
output.

These other operands are grouped together and their format is shown under “Additional Definitions” on
page 110.

88 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

BRanch Trace

TRACE BRanch
ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition

OPTion=  option_definition

Note: For performance reasons, ARea=all requires a specification of a limited address range via the
ADDRESS parameter.

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

For a description of the trace and an example of the output, see “BRANCH Trace” on page 56.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE BR AR=BG ADDR=0:* -
 OPT=(NOJCL,SUP)
/*

The following items are covered by the trace set up as shown in the example.

• Use the SYSRDR device to set up the trace.
• Direct the output of the trace data to the tape at device address 280.
• The branch instructions under the control of the BG partition are to be traced.
• The whole system is to be observed to record the instructions executed for the BG partition, including

supervisor routines working for BG.
• Do not trace the job control branch instructions.

BUffer Trace
TRACE BUffer

OPTion=  option_definition

For an explanation of option_definition, see “OPTion Definition” on page 116.

For a description of the trace, see “BUFFER Trace” on page 57.

The BUffer trace output is the collection of all trace records contained in the buffer when a buffer overflow
occurs.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 89

Initialization Example
// EXEC SDAID
OUTDEV BU=6 T=280
TRACE BR AR=BG ADDR=0:* -
 OPT=NOJCL
TRACE BU
/*

The following items are covered by the trace set up as shown in the example.

• Use the SYSRDR device to set up the trace.
• Trace all successfully executed branch instructions.
• The branch instructions of the BG tasks are to be traced.
• Observe the whole storage.
• Collect the trace data in a 6K byte buffer.
• Output the buffer whenever it is full.
• Write the output to the tape on device address 280.
• Do not trace the job control branch instructions.

CAncel Trace

TRACE CAncel
ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition

OPTion=  option_definition

Note: The parameters ADDRESS, OFFSET, PHASE and LTA are not applicable for the CANCEL trace.

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

For a description of the trace and an example of the output, see “CANCEL Trace” on page 57.

Statement Example
TRACE CA AR=BG -
 OUTP=BU

The trace statement shown in the example initializes a CAncel trace which writes an event record and the
buffer whenever a cancel or EOJ condition occurs in the BG partition.

Initialization Example
// EXEC SDAID
OUTDEV P=E
TRACE CA AR=BG -
 OUTP=(DUMP PART OFF=78:1000)
/*

90 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace cancel and EOJ conditions.
• Print the area between BG relative address X'78' and X'1000' together with the event record.
• Output the trace record on the printer at device address 00E.

EXTernal Trace

TRACE EXTernal= (

,

 code)
1

* OUTPut=  output_definition

OPTion=  option_definition

Notes:
1 Up to eight codes may be specified.

For an explanation of:

• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

'code' may be one to 8 of the following:

0040 Interrupt key
1003 TOD-clock sync check
1004 Clock comparator
1005 CPU timer
1200 Malfunction alert
1201 Emergency signal
1202 External call
2401 Service signal
2402 Logical device * z/VM CP
2603 PFAULT handshaking * z/VM CP
4000 IUCV, APPC * z/VM CP
4001 VMCF * z/VM CP

EXTernal=* traces all external interruptions.

If you specify more than one external interrupt type, separate them by one or more blanks or by a comma
(with or without blanks) and enclose them in brackets.

For a description of the trace and an example of the output, see “EXTERNAL Trace” on page 57.

Statement Example
TRACE EXT=0040 -
 OUTP=(TOD,BU)

The example shows an external interrupt trace. 0040 is defined as external interrupt type. This interrupt
is used to have the wraparound buffer and the TOD clock recorded or printed together with the external
trace event record.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE EXT=(2401 1005) -
 OUTP=TOD
/*

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 91

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all signal and timer interrupts.
• Output the trace data to the tape on device address 280.
• Add the TOD clock to the trace data output.

GETVIS Trace
TRACE GETVIS= PARtition

SPAce

SVA

SUBPool=  subpool_name

LOCation= ANY

BELow

ARea=all

ARea= partition_id

SUP

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

GETVis=PARtition | SPAce | SVA
GETVis=PARtition traces all Getvis or Freevis requests within the Partition Getvis area.

GETVis=SPAce traces all Getvis or Freevis requests within the Space Getvis area of a dynamic
partition. Note: If you issue a Space Getvis request for a static partition, the required space will
be allocated in the SVA.

GETVis=SVA traces all Getvis or Freevis requests within the Shared Virtual Area (SVA).

SUBPool=subpool_name | nnn* | nnn<hex> | DEFAULT
A subpool_name may consist of up to six characters.

• If you specify a subpool name, Getvis or Freevis requests will be traced that are within the specified
subpool.

• If you do not specify a subpool name, all Getvis or Freevis requests will be traced.

You can enter a subpool as one of the following:
subpool_name

Printable characters (EBCDIC) which must follow the naming conventions described in the Getvis /
Freevis macros.

nnn*
If a character string is followed by an asterisk (*), all requests will be traced to those subpools
whose names begin with the character string.

nnn<hex>
A subpool name may be a mixture of printable and hexadecimal characters. Characters enclosed
in angled brackets < and > will be taken as hexadecimal characters. All requests will be traced to
those subpools whose names have this format. Here are some examples of mixed printable and
hexadecimal characters:

92 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• SUBP=INLC<21> refers to a subpool with an internal representation of C9D5D3C321.
• SUBP=INLC21 refers to a subpool with an internal representation of C9D5D3C3F2F1.

DEFAULT
Causes all requests to the common default subpool to be traced. This default subpool is used if
you do not specify a subpool_name in the GETVIS invocation macro.

Note: DEFAULT is accepted although it has a length that is greater than six characters. This is
because DEFAULT is treated as a keyword and not as a subpool name.

LOCation=BELow | ANY
LOCation can take one of two values:
LOCation=BELow

Causes only those Getvis / Freevis requests to be traced that are within the 24-bit Getvis area or
within the 24-bit SVA.

LOCation=ANY
Causes all Getvis / Freevis requests to be traced that are within the 24-bit or 31-bit areas.

ARea=partition_id | SUP | ALL
Causes Getvis / Freevis requests to be traced for tasks running within the specified area. If you omit
the ARea operand, all Getvis / Freevis requests will be traced that are executed within the system.

For a description of the trace and an example of the output, see “GETVIS / FREEVIS Trace” on page
58.

Statement Examples
 TRACE GETVIS=PAR SUBP=MYPOOL AREA=BG
 TRACE GETVIS=SVA LOC=BEL
 TRACE GETVIS=SVA SUBP=DEFAULT AREA=BG
 TRACE GETVIS=PAR SUBP=INLC<00>

In the above four examples, the TRACE statements shown:

1. Trace all BG requests within the subpool MYPOOL in the BG partition Getvis area.
2. Trace all system-wide requests within the 24-bit SVA.
3. Trace all BG requests within the common system default subpool.
4. Trace all system-wide requests within the subpool INLC00, where "00" is treated as a hex character.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE GETVIS=PAR AR=BG OPT=NOJCL
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all partition Getvis requests for BG.
• Output the trace data to the tape on device address 280.
• Do not trace the job control Getvis requests.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 93

INSTruction Trace

TRACE INSTruction=

opcode

(

,

 opcode)

*

BRanch

ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

Note: For performance reasons, ARea=all requires a specification of a limited address range via the
ADDRESS parameter.

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

opcode
(one to eight) entered as either one-byte or two-byte hexadecimal instruction codes.

If you specify more than one operation code, separate them by one or more blanks or by a comma
(with or without blanks) and enclose them in brackets.

* (asterisk)
requests a trace of all executed instructions.

BRanch
requests that all types of branch instructions be recorded.

For a description of the trace and an example of the output, see “INSTRUCTION Trace” on page 59.

Statement Examples
TRACE INST=D7 AR=BG
TRACE INSTR=* AR=BG ADD=0:*
TRACE INST=BR AR=BG
TRACE INST=(92 D204) AR=BG

The statements shown:

• Trace CLC instructions in BG partition
• Trace all BG task instructions
• Trace branch type instructions in BG partition
• Trace selected instructions in BG partition.

94 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Initialization Example
// EXEC SDAID
OUTDEV BU=4 T=280
TRACE INST=D2 AR=BG -
 OPT=NOJCL
TRACE PGMC=* AR=BG ADD=0:* -
 OUTP=BU
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Collect all trace data into a wraparound buffer.
• The MVC instructions of BG tasks are to be traced.
• Write the buffer to the tape on device address 280 when a program check occurs in the BG partition.
• Do not trace the job control MVC instructions.

I/O Interrupt Trace

TRACE IO
ARea=all

ARea= partition_id

SUP

JOBNAME=  jobname

UNit=all

UNit= cuu

CU= cu

CHannel=  c

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• cuu, cu and c, see “I/O Device Definition” on page 113.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

Note that for the area and jobname definitions, the parameters ADDress, OFFset, PHase, and LTA are not
applicable.

For a description of the trace and an example of the output, see “IO Trace (I/O Interrupt)” on page
59.

Statement Examples
TRACE IO UNIT=(130 133) -
 OUTP=(CCWD=512)

TRACE IO CU=28 OUTP=CCW

The TRACE statements shown in the example define additional trace output (CCWD=512 and CCW) to the
normal IO trace event records.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 95

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE IO -
 UN=320 -
 OUTP=CCWD=512
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all I/O interrupts from device with the address 320.
• Output the trace data to the tape on device address 280.
• Add the CCW plus up to 512 bytes of transferred data to the trace event record.

LOCK Trace
TRACE LOCK

NAME= resource_name TYPe= Lock

Unlock

SCOpe= EXTernal

INTernal

VOLid=  volume_id RC= return_code

ARea=all

ARea= partition_id

SUP

JOBNAME=  jobname

OUTPut=  output_definition

OPTion=  option_definition

For an explanation of:

• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

NAMe=resource_name | nnn* | nnn<hex>
A resource name may consist of up to twelve characters.

• If you specify a resource name, lock or unlock requests will be traced that are related to the
specified resource.

• If you do not specify a resource name, all lock or unlock requests will be traced.

You can enter a resource name as one of the following:
resource_name

Printable characters (EBCDIC) which must follow the naming conventions described in the DTL
invocation macros.

nnn*
If a character string is followed by an asterisk (*), all requests will be traced to those resources
whose names begin with the character string.

96 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

nnn<hex>
A resource name may be a mixture of printable and hexadecimal characters. Characters enclosed
in angled brackets < and > will be taken as hexadecimal characters. All requests will be traced to
those resources whose names have this format. Here are some examples of mixed printable and
hexadecimal characters:

• NAME=INLC<21> refers to a resource with an internal representation of C9D5D3C321.
• NAME=INLC<21> refers to a resource with an internal representation of C9D5D3C3F2F1.

TYPe=Lock | Unlock
Type can take one of two values:
TYPe=Lock

Causes only the locking of one or more resources to be traced.
TYPe=Unlock

Causes only the unlocking of one or more resources to be traced.
If this parameter is omitted, both locking and unlocking of one or more resources will be traced.

SCOpe=EXTernal | INTernal
Scope can take one of two values:
SCOpe=EXTernal

Causes only external locks to be traced.
SCOpe=INTernal

Causes only internal locks to be traced.
If this parameter is omitted, both external and internal locks will be traced.

VOLid=volume_id
A six-character volume ID. Only events related to the specified volume_id will be traced. If the
parameter is omitted, all volume IDs will be traced.

Note: The parameters scope and volume ID are mutually exclusive. This means, you can only specify
one of these parameters.

RC=nn | >nn | <nn | (nn ...)
Return code can take one of four values:
RC=nn

Causes all events with a final return code equal to the specified return code to be traced.
RC=>nn

Causes all events with a final return code greater than the specified return code to be traced.
RC=<nn

Causes all events with a final return code lower than the specified return code to be traced.
RC=(nn ...)

You can specify up to sixteen return codes within parentheses. This causes all events with a final
return code equal to one of the specified return codes to be traced.

ARea=partition_id | SUP | ALL
Causes lock / unlock requests to be traced for tasks running within the specified area. If you omit the
ARea operand, all lock / unlock requests will be traced that are executed within the system.

For a description of the trace and an example of the output, see “LOCK / UNLOCK Trace” on page 60.

Statement Examples
 TRACE LOCK
 TRACE LOCK NAME=MYRESOURCE TYPE=LOCK
 TRACE LOCK RC=>0 SCOPE=INT AREA=BG
 TRACE LOCK VOLID=SHARE1

In the above four examples, the TRACE statements shown:

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 97

1. Trace all lock / unlock events.
2. Trace all lock events for resource MYRESOURCE.
3. Trace all internal BG lock / unlock events with a final return code greater than zero.
4. Trace all lock / unlock events related to VOLID=SHARE1.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE LOCK AR=BG OPT=NOJCL
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all lock / unlock events for BG.
• Output the trace data to the tape on device address 280.
• Do not trace the job control Getvis requests.

MONitor Call Trace

TRACE MONitorcall= mc

(

,

 mc)

*

ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

mc (monitor classes)
defines the monitor class of the MC instructions to be traced. Only the monitor call instructions with
the defined class are traced. Up to eight classes may be defined.

The monitor classes must be specified as one-digit hexadecimal values. If you specify two or more
classes, they must be enclosed in brackets and separated by one or more blanks, or by a comma with
or without one or more blanks.

You may specify any valid monitor class; however, SDAID ignores a specification of class 2, because
class 2 is used by SDAID to control tracing.

* (asterisk)
provides an event record for any execution of an MC instruction (except an MC instruction with class 2
specified) within the range of the trace operation.

For a description of the trace and an example of the output, see “MONITORCALL Trace” on page
61.

98 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Statement Examples
TRACE MON=3 AREA=ALL

TRACE MON=* AREA=ALL

TRACE MON=(3 4) AREA=ALL

The statements shown:

• Trace all class 3 monitor calls;
• Trace all monitor calls;
• Trace all class 3 and 4 MCs.

OSAX Adapter Trace
Note: the output from an OSAX adapter trace is complex and normally only suitable for use by IBM
personnel. Typically, an OSAX adapter trace would be requested by IBM support personnel after a related
problem has been reported to them.

TRACE OSAX

DATAPath=  cuu

EXT=

No

Yes

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

DATAPath=cuu
defines the data path address of an OSAX adapter. If this parameter is omitted, the default is to trace
all data paths.

EXT=Yes|No
requests additional detailed output for the trace. The default is that additional output will not be
produced.

For a description of the trace and an example of the output, see “OSAX Adapter Trace” on page 62.

Statement Examples
TRACE OSAX

TRACE OSAX DATAP=A0D

TRACE OSAX DATAP=A0D EXT=Y

The statements shown will:

• Trace all data path addresses;
• Trace the data path address A0D;
• Trace the data path address A0D but with additional detailed output;

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 99

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE OSAX DATAP=A0D OUTP=GREG
/*

The following items are covered by the trace set up as shown in the example:

• Use the SYSRDR device to set up the trace;
• Direct the output to the tape on device address 280;
• Trace the data path A0D;
• Record GREGS as additional output for every trace event;

PGMCheck Trace

TRACE PGMCheck= pgmc

(

,

 pgmc)

*

ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

pgmc
At least one program interruption code (up to 16) must be specified in hexadecimal notation; leading
zeros may be omitted.

If you specify more than one program interruption code, they must be enclosed in parentheses and
separated by one or more blanks, or by a comma with one or more blanks.

* (asterisk)
requests a trace of all valid program interrupt codes with a value less than X'40', except those page
or segment translation exceptions which are caused by the temporary absence of a storage page. The
specification PGMC=(10 11) traces all page or segment translation exceptions.

For a description of the trace and an example of the output, see “PGMCheck Trace (Program Check)”
on page 63.

Statement Examples
TRACE PGMC=5 AR=BG

TRACE PGMC=* AR=BG ADD=0:*

TRACE PGMC=(1 A 11) AR=BG

The statements shown:

• Trace program check addressing exceptions in BG partition;

100 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• Trace all program checks of BG tasks;
• Trace the program checks of BG partition with interruption codes:

– 1 ... operation exception;
– A ... decimal overflow exception;
– 11 ... page translation exception.

Initialization Example
// EXEC SDAID
OUTDEV BU=4 T=280
TRACE INST=D2 AR=F2 -
 OPT=NOJCL
TRACE PGMC=1 AR=F2 ADD=0:* -
 OUTP=BU
/*

The following items are covered by the trace set up as shown in the example:

• Use the SYSRDR device to set up the trace;
• Direct the output to the tape on device address 280;
• Trace the MVC instructions (D2) of the F2 partition;
• Collect the trace event records in a 4K bytes wraparound buffer.
• Write the buffer to the output tape when a program check interrupt with interruption code ‘operation

exception (0001)’ occurs in the F2 partition.
• Do not trace the instructions executed during job control processing.

Program Load Trace (Fetch/Load Trace)

TRACE PGMLoad
ALL

REQ

HDL

PH= phase

ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

REQ
defines, that an event record for each request for fetching/loading a phase is to be written.

HDL
defines that an event record is to be written each time a phase fetch/load request is handled; that is,
when a requested phase is actually loaded into storage for execution.

ALL
combines REQ and HDL. This is the default.

PH=phase
defines the phase whose program load events should be traced.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 101

If the ARea definition is included, only the following ADDress definition is allowed (without OFFset, PHase,
LTA):
ADDress=addr1:addr2|addr1:*|0:*

defines that only program load events occurring within the specified address range are to be traced.

SDAID records the SVCs issued within the address range and those load completion events that occur
if the phase is loaded into the specified address range.

For a description of the trace and an example of the output, see “PGMLOAD (Fetch/Load) Trace” on
page 64.

Statement Examples
TRACE PGML AR=BG
TRACE PGML PH=PROGR1 AR=F2

The statements shown:

• Trace all program load events for BG tasks;
• Trace all F2 task program load events for the phase PROGR1;

Initialization Example
// EXEC SDAID
OUTDEV BU=6 T=280
TRACE PGML HDL AR=BG -
 OUTP=(DUMP PART OFF=1000:2000) -
 OPT=NOJCL
TRACE PGMC=1 AR=BG ADD=0:* -
 OUTP=(DUMP PART OFF=1000:2000 -
 BUFFER) -
 OPT=NOJCL
/*

The following items are covered by the trace setup as shown in the example:

• Use the SYSRDR device to set up the trace;
• Trace all fetch/load executions of the BG partition;
• Record the trace data in a 6K bytes wraparound buffer;
• Write the trace data to the output tape at device address 280 when a program check operation

exception (interrupt code 1) occurs in the BG partition;
• Add a dump of the BG area between relative address 1000 to 2000 to both event records;
• Do not trace the job control activities.

SSCH Instruction Trace

TRACE SSCH
ARea=all

ARea= partition_id

SUP

JOBNAME=  jobname

UNit=all

UNit= cuu

CU= cu

CHannel=  c

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• jobname, see “ARea or JOBNAME Definition” on page 111.

102 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• UNit=page, see “I/O Device Definition” on page 113.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

ARea=partition-id|SUP|ALL
causes SSCH instructions of tasks running in the specified area to be traced. Only the specifications
shown above are possible. If you omit the ARea operand, all SSCH instructions executed in the system
will be traced.

UNit,CU,CHannel
limits the trace to SSCH instructions to a certain unit, control unit or channel. If you omit these
operands, no device address limitation is used.

For a description of the trace and an example of the output, see “SSCH Instruction Trace” on page
65.

Statement Examples
(1) TRACE SSCH AR=F4 UNIT=009 -
 OUTPUT=CCB

(2) TRACE SSCH CHANNEL=(2 3) -
 OUTP=TOD

The TRACE statements in the example define the following functions:
(1)

Trace each SSCH instruction of F4 tasks for the device with the device address 009. Add a dump of the
CCB to each SSCH trace event record.

(2)
Trace all SSCH instructions which concern the channels 2 and 3. Add the time of day entry (TOD) to
each SSCH trace event record. You will find an example of such a TOD entry under “Trace Output
Example with OUTPut=TOD” on page 80.

Storage Alteration Trace
TRACE STorage

PATTern=  xxxxxxxx

ARea=all

ARea= partition_id

SUP

JOBNAME=  jobname

JOBNUM=  jobnumber

STARea= ALL

partition_id

STJNAM=  jobname

STJNUM=  jobnumber

STDSPN=  dataspace

ADDress=

OFFset=

PHase=

LTA

OUTPut=  output_definition OPTion=  option_definition

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 103

Note: For performance reasons, ARea=all requires a specification of a limited address range via the
ADDRESS parameter.

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• address-, offset-, and phase-definition, see “ADDress Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

The storage alteration trace monitors instructions which alter a specified storage location. The altering
program (source of alteration) and the storage area to be altered (target of alteration) may be in the same
space or in a different space. A program running in the primary address space A can alter a storage area in
the primary space A, or in an address space B, or in a data space C. The keywords AREA=partition-id|SUP|
ALL and JOBNAME specify the tasks which alter a storage location (source of alteration). The keywords
STAREA=partition-id|ALL, STJNAM, and STDSPN specify the target space where storage alteration is to be
monitored. The keywords ADDRESS, OFFSET, PHASE, and LTA specify the target address.
PATTern=xxxxxxxx

defines a hexadecimal storage pattern up to four bytes long.

If you specify an odd number of digits, a zero is inserted to the left of the first specified hexadecimal
digit.

ARea=
JOBNAME=

defines those tasks whose alteration activities you want to trace. If you do not know which task does
the alteration, specify ARea=ALL to have all tasks of the system watched.

STARea=ALL
specifies a storage alteration within any address space or data space.

STARea=partition-id
specifies a storage alteration in the private address space where the named partition is allocated.

STJNAM=jobname[STJNUM=jobnumber]
specifies a storage alteration in the private address space where the named POWER job (with the
named job number) executes. Note that SDAID does not accept POWER job names containing the
character '-'. (The SDAID command language uses this character as a continuation character.)

STDSPN=dataspace
specifies a storage alteration within the specified data space.

If none of the keywords STARea, STJNAM, STJNUM, and STDSPN is specified, the corresponding ARea,
JOBNAME, and JOBNUM keywords apply.
ADDress= | OFFset= | PHase= | LTA

specifies the address (or offset, phase, LTA) of the target area (where the alteration takes place).

Do not use the definition OFFset if STARea=ALL or STDSPN= is specified. Do not use the definition PHase
or LTA if STDSPN= is specified.

For a description of the trace and an example of the output, see “STORAGE Alteration Trace” on page
66.

Statement Example
TRACE ST PATT=D205 -
 AR=ALL -
 ADD=65674:65675

The example records all instructions which alter the contents of two bytes starting with storage location
X'65674' to the pattern X'D205'.

104 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Initialization Example
// EXEC SDAID
OUTDEV BU=3 T=280
TRACE INST=* AR=BG -
 OUTP=GREG -
 OPT=NOJCL
TRACE ST PATT=FFFF -
 AR=ALL -
 ADD=40100:40101 -
 OUTP=BU
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all BG instructions excluding the job control instructions.
• Record the event records in a 3K bytes wraparound buffer.
• Write the buffer together with a storage alter trace event record to the tape on device address 280 when

the storage area with the address 40100 to 40101 is altered to X'FFFF'.
• Observe all tasks of your system, in respect to altering the storage X'40100'-X'40101' to X'FFFF'.

Supervisor Call Trace

TRACE SVC= svc

(

.

 svc)

*

ARea=all

ARea=  area_definition

JOBNAME=  jobname

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

svc
defines a certain Supervisor Call Code. You may define up to 16 different SVC codes. Specify the SVC
code in hexadecimal notation.

If you specify more than one SVC code, the codes must be enclosed in parentheses and separated by
one or more blanks, or by a comma with or without one or more blanks.

*
(asterisk) defines that all SVC instructions are to be traced.

For a description of the trace and an example of the output, see “SVC Trace (Supervisor Call)” on
page 67.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 105

Statement Examples
TRACE SVC=* AR=BG ADD=0:*

TRACE SVC=A AR=BG

TRACE SVC=(1D 25) AR=BG

The statements shown:

• Trace all BG SVCs in BG partition and in system areas;
• Trace set timer SVCs (X'A') in BG partition;
• Trace BG partition WAITM and STXIT AB SVCs.

Initialization Examples
// EXEC SDAID
OUTDEV T=280
TRACE SVC=* AR=BG ADD=0:* -
 OPT=NOJCL
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all supervisor call instructions.
• The SVC instructions from the BG partition are to be traced.
• Output the trace data to the tape on device address 280.
• Do not trace the job control branch instructions.

VTAM BUffer Trace
TRACE VTAMBU

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

For a description of the trace and an example of the output, see “VTAMBU Trace (VTAM Buffer)” on
page 67.

Statement Example
TRACE VTAMBU

The example defines a VTAM buffer trace.

106 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

VTAMIO Trace

TRACE VTAMIO ARea=  partition_id

JOBNAME=  jobname

UNit=all

UNit= cuu

CU= cu

CHannel=  c

OUTPut=  output_definition OPTion=  option_definition

For an explanation of:

• area_definition, see “ARea or JOBNAME Definition” on page 111.
• jobname, see “ARea or JOBNAME Definition” on page 111.
• cuu, cu and c, see “I/O Device Definition” on page 113.
• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

A VTAMIO trace requires an area definition. Define the operands as shown above.

For a description of the trace and an example of the output, see “VTAMIO Trace” on page 68.

Statement Example
TRACE VTAMIO AREA=F3

The example defines a VTAMIO trace for the F3 tasks.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE VTAMIO AR=F3 -
 UN=020
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all VTAM I/O operations concerning unit at address 020 and F3 tasks.
• Output the trace data to the tape on device address 280.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 107

XPCC Trace
TRACE XPCC APPL= application_name

*

TOAPPL= to_application_name

*

FUNCtion= function_definition

*

DIRection=BOTH

DIRection= OUT

IN

RC= return_code SUSR EQ

 NE

 GT

 LT

 GE

 LE

 hex_value

RUSR EQ

 NE

 GT

 LT

 GE

 LE

 hex_value XPAREA=  xparea_definition

XPTOAREA=  xptoarea_definition OUTPut=  output_definition

OPTion=  option_definition

For an explanation of:

• output_definition, see “OUTPut Definition” on page 113.
• option_definition, see “OPTion Definition” on page 116.

APPL=application_name | nnn* | *
An application name may consist of up to eight characters which must follow the naming conventions
described in the XPCC invocation macro.

You can enter an application name as one of the following:
application_name

Only XPCC requests will be traced that have the specified name.
nnn*

If a character string is followed by an asterisk (*), all requests will be traced to those XPCC
requests whose names begin with the character string.

*
If you specify an asterisk (*), all requests will be traced for all XPCC requests.

TOAPPL=to_application_name | nnn* | *
The rules for using TOAPPL are the same as for APPL (above).

108 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

FUNCtion=TERMQsce | TERMPrg | TERMIn | DISCAll | DISCPrg | DISCOnn | SENDI | SENDR | SEND |
RECeive | REPly | IDent | COnnect | CLear | PUrge | *

FUNCtion can take any of the functions listed above, or asterisk (*). If you enter one of the functions,
only XPCC events of the specified function will be traced. If you enter an asterisk (*), XPCC events for
all functions will be traced.

DIRection=IN | OUT | BOth
You can enter a DIRection as one of the following:
DIR=IN

Only incoming XPCC events will be traced.
DIR=OUT

Only outgoing XPCC events will be traced.
DIR=BOth

Both incoming and outgoing XPCC events will be traced.
If this parameter is omitted, DIR=BOth is used as default.

RC=return_code
If you specify a value for return_code, only events with a final return code equal to this value will be
traced. If this parameter is omitted, events with any final return code will be traced.

SUSR | RUSR comparator hex_value
Compares a specified string of hexadecimal characters with the contents of the corresponding field
contained within the XPCC control block.

• SUSR corresponds to field IJBXSUSR in the XPCC control block.
• RUSR corresponds to field IJBXRUSR in the XPCC control block.
• comparator can be one of: EQ, NE, GT, LT, GE, or LE.
• hex_value is a string of up to sixteen hexadecimal characters. Characters within this string that

should not be compared can be substituted by a dot (.).

Here are some examples of the use of SUSR:

 SUSR EQ FFFFFFFFFFFFFFFF (check all hex characters in IJBXSUSR)
 SUSR NE 1020 (check only first four hex characters)
 SUSR LTFFD (check only characters 7 to 9)
 SUSR GT FF...FF.. (THIS IS AN INVALID STATEMENT!)

If the SUSR | RUSR parameter is omitted, no checking will be performed.
XPAREA=syslog_id

Defines the partition where the application that is defined using APPL=application_name is running, in
a pair of two interacting partitions. If the parameter is omitted, all XPAREAS are assumed.

XPTOAREA=syslog_id
Defines the partition where the application that is defined using TOAPPL=application_name is
running, in a pair of two interacting partitions. If the parameter is omitted, all XPTOAREAS are
assumed.

Note: Using the OUTPut=output_definition parameter (described in “OUTPut Definition” on page 113), you
can request this type of output:

 OUTPUT=XPCCB (prints the XPCC Control Block)
 OUTPUT=XPDATABU (prints the contents of the Transmit Data Buffer)

For a description of the trace and an example of the output, see “XPCC Trace” on page 69.

Statement Examples
 TRACE XPCC APPL=* TOAPPL=* FUNC=* OUTPUT=XPCCB

 TRACE XPCC APPL=RESI TOAPPL=* FUNC=SEND DIR=OUT XPAREA=BG
 XPTOAREA=F7 OUTPUT=XPDATABU

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 109

In the above two examples, the TRACE statements shown:

1. Trace all XPCC events.
2. Trace outgoing XPCC SEND events from application RESI to any partner application, but only if RESI

runs in BG and the partner application is in F7.

Initialization Example
// EXEC SDAID
OUTDEV T=280
TRACE XPCC APPL=* TOAPPL=* FUNC=*
/*

The following items are covered by the trace setup shown:

• Use the SYSRDR device to set up the trace.
• Trace all XPCC events.
• Output the trace data to the tape on device address 280.

Additional Definitions
 ARea=, JOBNAME=, ADDRess=, OFFset=, PHase=, OPTion=, OUTPut=,
 UNit=, CHannel=, CU=

The following section describes definitions which may follow the trace type specification in the TRACE
statement.

Table 9 on page 110 shows a list of all additional definitions, a summary of their function, and a reference
to their format description and examples in this topic. The various definitions are described in detail
under:

• “Defining the Area to be Traced: AREA Definition” on page 69.
• “Defining the Job to be Traced: JOBNAME Definition” on page 70.
• “Defining the Storage to be Traced: OFFset, ADDress, PHase, LTA” on page 70.
• “Defining Additional Trace Output: OUTPut Definition” on page 72.
• “Defining the Trace Options: OPTion Definition” on page 80.
• “Defining the Traced I/O Devices” on page 82.

Table 9. Additional Definitions Summary

Operand Function See:

ARea Limit tracing to a certain system
area

“ARea or JOBNAME Definition” on page
111

JOBNAME Limit tracing to a certain VSE/
POWER job

“ARea or JOBNAME Definition” on page
111

ADDress Limit tracing to a certain address
range

“ADDress Definition” on page 111

OFFset Limit tracing in a partition or phase
area

“OFFset Definition” on page 112

PHase Limit tracing to a certain phase “PHase Definition” on page 112

UNit Define the device address “I/O Device Definition” on page 113

CHannel Define the channel address “I/O Device Definition” on page 113

CU Define the control unit address “I/O Device Definition” on page 113

110 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Table 9. Additional Definitions Summary (continued)

Operand Function See:

OUTPut Define additional trace output “OUTPut Definition” on page 113

OPTion Define additional trace options “OPTion Definition” on page 116

ARea or JOBNAME Definition
The possible storage area definitions together with ARea or JOBNAME are:

ARea=
ALL

partition_id

SUP

JOBNAME=  jobname

JOBNUM=  jobnumber

ADDress=  address_definition

OFFset=  offset_definition

PHase= phase_name

OFFset=  offset_definition

LTA

ADDress=
See “ADDress Definition” on page 111.

OFFset=
See “OFFset Definition” on page 112 (not for ARea=ALL).

PHase=
See “PHase Definition” on page 112.

LTA
Defines the Logical Transient Area as tracing range.

Default Value
If you use ARea=partition-id|SUP or JOBNAME without an additional specification, OFFset=0:* is
assumed. OFFset=0:* defines the whole partition (or the area between zero and end-of-supervisor) as
trace area.

If you use ARea=ALL without an additional specification, ADDR=0:* is assumed (that is, all virtual
storage).

ADDress Definition

ADDress=

default_value

addr1: addr2

addr1:*

You can limit the trace to a certain address range within the storage allocated to VSE with the ADDress
definition.

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 111

addr1:addr2
Defines a trace address range in hexadecimal notation in any virtual storage defined to VSE.

For example:

ADD=500000:*

Default Value
If you omit the ADDress specification, the default trace address range depends upon the specifications in
the ARea= or JOBNAME= parameters.

If you use ARea=partition_id, the complete storage allocated to the partition is assumed to be trace
address range.

If you use JOBNAME=, the complete storage allocated to the specified JOB is assumed to be trace
address range.

If you use ARea=ALL, then ADDR=0:* is assumed (that is, the complete storage range is allocated to VSE).

Note: If you use ARea=partition_id and parts of your program are located in the SVA, you must specify
ADDR=0:* to include these parts of your program in the trace.

OFFset Definition

OFFset=
0:*

reladdr1: reladdr2

reladdr1:*

You can limit the trace to a certain address range via offsets relative to the defined partition, supervisor or
phase with the OFFset definition.

For example:

OFF=200:*

Default Value
If you omit the OFFset definition, 0:* is assumed.

PHase Definition
PHase= phase_name

OFFset=  offset_definition

With the PHase definition the traced storage area is defined by the area occupied by that phase.
phase-name

For example:

PH=PROGRAM1

Default Value
You may limit the traced storage area within the defined phase with the OFFset keyword operand. See
“OFFset Definition” on page 112.

For example:

112 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

PH=PROG OFF=20:400

The example above initializes a trace which is active only in the phase with the name PROG between
program address X'20' to X'400'.

I/O Device Definition
UNit= cuu

CU= cu

CHannel=  c

UNit=cuu
For example:

UN=280
UN=(280 310) Use the parentheses if you
 specify more than one address.
UN=e Same as 00e.

CU=cu
For example:

CU=28
CU=00
CU=(28 31) Use the parentheses if you
 specify more than one address.

CHannel=c
For example:

CH=2
CH=(2 3) Use the parentheses if you
 specify more than one address.

Only one of the parameters UNit, CHannel, or CU can be specified in the same TRACE command.

Default Value
If none of the I/O parameters is specified, all devices are traced.

OUTPut Definition
OUTPut= definition

(

,

 definition)

You may take one or more definitions together with one TRACE statement. If you enter more than one
OUTPut definition in direct input mode, enclose them in parentheses.

A summary of all definitions which you can specify with OUTPut= is given in Table 10 on page 113.
This table contains the format and a short description of the data which is recorded together with the
trace event record. For those output definitions which allow additional definitions, a reference to the
information contained in this topic is shown.

Table 10. OUTPut Definition Summary

Definition What it records/prints in addition: See:

BUffer Contents of SDAID output buffer -

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 113

Table 10. OUTPut Definition Summary (continued)

Definition What it records/prints in addition: See:

CCB CCB or IORB (TRACE=IO, SSCH, or VTAMIO only) -

CCW CCWs, IRB (TRACE=IO, SSCH, or VTAMIO only) “Recording CCW” on page 114

CCWD=nnnn CCWs plus nnnn bytes of data, IRB (TRACE=IO,
SSCH, or VTAMIO only)

“Recording CCW” on page 114

COMReg Partition communication region -

CReg Control registers -

DUMP Virtual storage “Dumping Virtual Storage” on
page 115

FReg Floating point registers -

GReg General purpose and access registers -

IOTab PUB, LUB, ERBLOC, ERRQ, CHANQ -

LOCKTE Lock table entry (LOCK trace only) “LOCK / UNLOCK Trace” on page
60

LOwcore Processor storage from zero to X'2FF' -

LTA Logical transient area -

PTA Physical transient area -

PTAB Partition related control blocks: PCB, PIB, PIB2 -

SUPvr Supervisor plus GREG and CREG -

SYSCom System communication region -

TOD Time-of-Day clock -

TTAB Task related control blocks: TIB, TCB, PCB, PIB,
PIB2

-

XPCCB XPCC control block (XPCC trace only) “XPCC Trace” on page 69

XPDATABU Buffer for data to be transmitted “XPCC Trace” on page 69

Note: A description of all output definitions is given under “Defining Additional Trace Output: OUTPut
Definition” on page 72.

Recording CCW
OUTPut= CCW

(CCWD=  nnnn)

CCW
(channel command word) records/prints the available channel program (CCW chain) plus the CCB and
the TOD clock when the trace type is SSCH.

In case of an IO trace only the CCWs which refer to transferred data are recorded or printed.

Specifying this output option for an event other than IO or SSCH is not meaningful.

114 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

CCWD=nnnn
(CCW plus data) records/prints up to a maximum of nnnn bytes of the transferred data, the CCB and
the TOD clock in addition to the information processed with the CCW specification. The number nnnn
may be any (decimal) number between 1 and 65535.

The most meaningful trace type to be combined with this output option is the IO trace.

For an example of the output produced with this option, see Figure 39 on page 74.

You may define either CCW or CCWD=nnnn.

Dumping Virtual Storage
OUTPut=DUMP PARTITION

OFFset=  offset_definition

PHase

OFFset=  offset_definition

ADDress=  address_definition

REG= reg : bytes

PTR= reg : offset DMP=  offset : length

DUMP
records or prints the contents of virtual storage.

You may request up to ten different dumps.

You have to specify one or more of the dump area specifications as shown below.
PARTITION

For example, dump the storage beginning with offset X'0' up to X'78' of the partition for which the
trace is active.

OUTP=(DUMP PARTITION OFF=0:78)

PHase
For example, dump the area starting with relative address X'40' up to relative address X'60' in the
phase defined via the ‘PHase=’ keyword operand.

OUTP=(DUMP PH OFF=40:60)

ADDress
For example, dump the contents of two bytes starting on storage location 0080 (hexadecimal). The
definition in direct input mode looks like this:

OUTP=(DUMP ADD=80:81)

REG=reg:bytes
For example, dump 16 bytes of storage pointed to by register 15.

OUTP=(DUMP REG=F:10)

PTR=reg:offset DMP=offset:length
For example, dump a four-byte field which is located in a table with an offset of X'20' bytes. The table
address is stored in storage pointed to by register 6 plus displacement X'100':

OUTP=(DUMP PTR=6:100 DMP=20:4)

Chapter 9. Initialize an SDAID Trace in Direct Input Mode 115

Trace Statement Example: Dump an Area in a Phase
TRACE PGMC=* -
 AR=BG -
 PH=PHASE1 -
 OUTP=(GREG DUMP PH -
 OFF=0:400 LOWC)

The following items are covered by the trace setup shown in the example:

• Trace program check interrupts
• Traced tasks: BG partition main and subtasks
• Traced storage area: phase1 storage area
• Additional trace output:

– general registers (GREG)
– dump of X'400' bytes of phase1 area starting at relative address 0 (DUMP PH OFF=0:400)
– low-core (LOWC).

OPTion Definition
OPTion=(SUPervisor

Halt

NOJCL

NOSource

NOTarget

Terminate
,

OCcurrence=  occ1: occ2

)

For a description of the OPTion definitions, see “Defining the Trace Options: OPTion Definition” on page
80.

OCCurrence Examples
OPT=OCC=1:1 Trace only the first occurrence
 of the event

OPT=OCC=1:* Trace all occurrences of the
 event (this is the default value)

OPT=OCCUR=5:12 Trace selected occurrences
 (5 to 12) of the specified event

116 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 10. Initialize an SDAID Trace via a Procedure

This topic describes how you initialize SDAID traces by using just one job control (JCL) EXEC PROC
statement. VSE/Advanced Functions offers a set of predefined JCL procedures to initialize SDAID traces
under control of a partition. These procedures are included in the system sublibrary IJSYSRS.SYSLIB.

The most frequently used SDAID functions are covered by these JCL procedures. The JCL procedures
contain reasonable default values to ease the SDAID trace initialization process. You may define your own
procedures tailored to the requirements of your installation or to a special debugging problem.

Introduction
Besides the direct input mode and prompt mode trace initialization a third initialization method is
available under VSE, the initialization via cataloged procedures. These cataloged procedures contain
direct input mode command skeletons. You activate the initialization via the job control EXEC PROC
statement.

// EXEC PROC=trace-type,specification,specification,...

The specifications in the EXEC PROC statement are translated to SDAID direct input mode command
operands.

Each EXEC PROC statement contains the name of the procedure (trace-type) plus additional
specifications. You may define the specifications in any order. A continuation sign has to follow the
comma if you use the console for input. If you use SYSIN to enter the procedure statement, the
continuation sign has to be in column 72 and the continuation line must start in column 16.

Notational Conventions
In this topic, the EXEC PROC statements needed to initialize the various SDAID traces are described in
detail. The notation of each EXEC PROC statement description shows you:

• Which operands are optional, and which are mandatory;
• What the default values of the operands are.

The syntax of the EXEC PROC statement follows the conventions for job control statements as described
in z/VSE System Control Statements.

The SDAID command defaults are not shown in this topic. The defaults for each trace type are given in
“Summary of TRACE Types” on page 55.

Figure 49 on page 118 shows a sample description of the EXEC PROC statement used to call a trace. The
handling of the operands and their default values is described in the section following the figure.

© Copyright IBM Corp. 1984, 2014 117

// EXEC PROC=SDINST

,INST='*'
1

, inst = ' codes'

'

,

 code '

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,OFFSET=0:*

,OFFSET=

,ADDRESS=

,PHASE=

offset=

,OUTPUT=GREG
2

,OUTPUT=

,OPTION=NOJCL
3

,OPTION='

,

 opt '

,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

Notes:
1 The default values are defined in the cataloged procedure SDINST.
2 The default values are defined in the cataloged procedure SDINST.
3 The default values are defined in the cataloged procedure SDINST.

Figure 49. SDINST Sample Procedure

Default Value Considerations
In an EXEC PROC statement, you can specify the SDAID trace operands in three ways:

1. Using the default value defined in the procedure;
2. Using the default value of the SDAID trace command itself;
3. By specifying a value of your choice in the EXEC PROC statement.

To use a default defined in the procedure, simply omit the appropriate operand from the EXEC PROC
statement. If the procedure has no default for the operand, this will cause the SDAID default to be used.

To use the SDAID default value, nullify the operand in the procedure by coding ‘keyword=’ in the
EXEC PROC statement. For example:

EXEC PROC=SDINST,OUTPUT=

118 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

would cause the SDAID default value for OUTPUT in the trace command to be used.

An operand which has no procedure-defined default value does not have to be nullified. Simply omit the
operand from the EXEC PROC statement.

To specify a value of your choice, include the appropriate keyword and value in the EXEC PROC
statement. This overrides the procedure-defined default, if any, and the SDAID default value. For
example:

EXEC PROC=SDINST,AREA=BG,OUTPUT=PTAB

overrides the procedure defined OUTPUT value GREG. The trace runs as if OUTPUT=PTAB had been
specified in the SDAID trace command.

Writing Cataloged Procedures
You can create and catalog your own procedures for particular problem-determination situations.

For example, you can define additional default values, or you can create a procedure for a trace type for
which no procedure has been cataloged.

When you write a procedure, consider that you have to follow the correct command-input sequence.
For example, the TRACE= definition for some trace types has to be followed by the AREA or JOBNAME
specification. You can use the figures shown under “Command Input Path Example” on page 136 to
establish the correct command-input sequence.

The Statements of a Cataloged Procedure
The result of the execution of each EXEC PROC statement is a complete direct-input trace initialization.
The direct input mode statements are cataloged as:

• Fixed definitions;
• Placeholder definitions;
• Placeholder definitions with default values.

Fixed Definitions
are those definitions in the cataloged procedure which are always active. They cannot be altered or
overridden by values specified in the EXEC PROC statement. Code them as you would in direct-mode
trace initialization.

Placeholder Definitions
can be replaced by a value which you specify in the EXEC PROC statement. These are handled as follows:

• A placeholder, beginning with an ampersand (&), takes the place of the value after the equals sign (=) in
the cataloged trace command (for example: UNIT=&UNIT);

• The placeholder name, without the ampersand, is used in the EXEC PROC statement to provide a
definition at execution time (for example: EXEC PROC=SDIO,UNIT=280).

The statement in the cataloged procedure:

UNIT=&UNIT

Your definition in the EXEC PROC statement:

UNIT=280

The created direct-input-mode statement:

UNIT=280

Chapter 10. Initialize an SDAID Trace via a Procedure 119

If the operand of a trace statement can have a list of values after the equals sign, one placeholder is still
enough. In the EXEC PROC statement, the list must be enclosed in single quotes (this is a requirement of
job control). SDAID replaces these quotes with parentheses in the trace initialization statement which the
procedures produces. For example:

The statement in the cataloged procedure:

UNIT=&UNIT

Your definition in the EXEC PROC statement:

UNIT='280 281'

The created direct-input-mode statement:

UNIT=(280 281)

Placeholder with Default Value Definitions
You can define default values for placeholders in cataloged procedures. The default value must
follow the placeholder and be enclosed in "less-than" (<) and "greater-than" (>) signs (for example:
UNIT=&UNIT<280>). In the IO trace procedure in Figure 50 on page 120, the default output value is
specified as follows:

OUTPUT=&output<CCWD=256>

If you omit OUTPUT=value definition from the EXEC PROC statement, the default value is inserted in the
direct input statement, which is generated as:

OUTPUT=CCWD=256

If you do not want to provide any definition, and also want to avoid the procedure default, you must code:

OUTPUT=

(with no value) in the EXEC PROC statement. The operand in the procedure is nullified. No OUTPUT
definition is inserted in the created direct input statement.

Figure 50 on page 120 shows an example of a fixed definition, a placeholder definition, and a placeholder
with a default value definition. The cataloged procedure in this example is called by the member name
under which you cataloged it.

// EXEC SDAID
TRACE SSCH AREA=&area -
 JOBNAME=&jobname -
 UNIT=&unit -
 OUTPUT=TOD - Fixed Definition
 OPTION=&option
TRACE IO AREA=&area - Placeholder Definition
 JOBNAME=&jobname -
 UNIT=&unit -
 OUTPUT=&output<CCWD=256> - Placeholder with Default
 Value Definition
 OPTION=&option

Figure 50. Example: Cataloged Procedure

In the two trace types which are initialized:

• The same AREA, UNIT and OPTION values are used for both traces. These values are specified in the
EXEC PROC statement;

• If you do not specify the OUTPUT operand, the default OUTPUT=CCWD=256 is defined for the IO trace;
• The SSCH trace event record always contains the time-of-day clock.

120 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Procedures to Initialize SDAID Traces
This section describes the trace procedures available with VSE/Advanced Functions to initialize SDAID
traces. The additional keyword operands which you find in the trace procedure statements are described
under “Additional Keyword Operands in Trace Procedure Statements” on page 129.

Choose the appropriate procedure from Table 11 on page 121.

Summary of Trace Procedures
Table 11. Trace Procedures Summary

Procedure Provides Information on: See:

SDBRANCH Successfully executed branch
instructions

“Branch Trace Initialization” on page 121

SDINST Selected or all instruction(s)
execution

“Instruction Trace” on page 123

SDIO I/O interrupts and SSCH instructions “SSCH and I/O Interrupt Trace” on page
124

SDLOAD Phase load requests, or actual load “Fetch/Load Trace” on page 125

SDPGMC Program check interruptions “Program Check Trace” on page 126

SDSTOR Storage alterations “Storage Alteration Trace” on page 127

SDSVC Executed supervisor calls “SVC Trace” on page 128

Branch Trace Initialization

// EXEC PROC=SDBRANCH

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,OFFSET=O:*

,OFFSET=

,ADDRESS=

,PHASE=

, offset =

,OUTPUT=

,OPTION=NOJCL

,OPTION='

.

 opt '
1

,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

Chapter 10. Initialize an SDAID Trace via a Procedure 121

Notes:
1 Up to 6 options may be specified.

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129.

The procedure SDBRANCH initializes traces for all branch instructions which actually caused a branch.

Find the description of the trace type and an example of the output under “BRANCH Trace” on page 56.

Defaults Set in the Procedure
OPTION=NOJCL is active if you omit OPTION=.

Statement Example
Here are the items of the trace setup shown below:

• Trace type: BRANCH
• Area for which events are collected: storage address 80010 up to address 80100
• Traced tasks: F4 main task and its subtasks
• Output destination: Tape with device address 280
• Avoid the tracing of JCL instructions (default)

// EXEC PROC=SDBRANCH,AREA=F4,ADDRESS='80010:80100',TAPE=280

122 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Instruction Trace

// EXEC PROC=SDINST

,INST='*'
1

, inst = ' codes'

'

,

 code '

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,OFFSET=0:*

,OFFSET=

,ADDRESS=

,PHASE=

offset=

,OUTPUT=GREG
2

,OUTPUT=

,OPTION=NOJCL
3

,OPTION='

,

 opt '

,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

Notes:
1 The default values are defined in the cataloged procedure SDINST.
2 The default values are defined in the cataloged procedure SDINST.
3 The default values are defined in the cataloged procedure SDINST.

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129.

The procedure SDINST initializes traces for all instructions or for selected instructions executed within a
specified area. Find the description of the trace type and an example of the output under “INSTRUCTION
Trace” on page 59.

Defaults Set in the Procedure
If you omit INST, all instructions are traced (INST='*' is the default). OPTION=NOJCL and OUTPUT=GREG
are assumed if you omit both these operands.

Statement Example
Here are the items of the trace setup shown below:

Chapter 10. Initialize an SDAID Trace via a Procedure 123

• Trace type: INSTRUCTION
• Trace all instructions (default)
• Area for which events are collected: storage address 40328 up to address 40350
• Traced tasks: BG main and subtasks
• Additional Output: default GREG output
• Output destination: 16K bytes buffer
• Output device for buffer: tape with device address 281
• Event to write the buffer to tape: program check in BG partition
• Avoid the tracing of JCL instructions (default)
• Note that the continuation sign has to follow the comma if you use the console for input. If you use

SYSIN to enter the procedure statement the continuation sign has to be in column 72.

// EXEC PROC=SDINST,AREA=BG,ADDRESS='40328:40350',-
 BUFFER=16,BUFFOUT=PGMC,T=281

SSCH and I/O Interrupt Trace
// EXEC PROC=SDIO

,UNIT= cuu

'

,

 cuu '

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,OUTPUT='CCWD=256'

OUTPUT='

.

 outp '

,OPTION= ,BUFFER=  nn

,BUFFOUT= ,TERM= ,TAPE=  cuu

,PRINTER=  cuu

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129.

The procedure SDIO initializes the SSCH instructions and I/O interruptions trace.

Note that the TOD clock entry is added to each SSCH instruction event record.

Find the description of the trace types and examples of the output under “IO Trace (I/O Interrupt)” on
page 59 and “SSCH Instruction Trace” on page 65.

Default Set in the Procedure
If you do not define UNIT, all devices are traced.

If you omit the AREA definition, all tasks in the system are traced.

124 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

These are both SDAID defaults.

OUTPUT='CCWD=256' is the default definition for the I/O interrupt trace.

Statement Example
• Trace types: IO, SSCH
• Traced tasks: SDAID default value used (ALL)
• Traced unit: 281
• Additional Output: procedure default CCWD=256
• Output destination: printer with device address 00E

// EXEC PROC=SDIO,UNIT=281,PRINTER=00E

Fetch/Load Trace
// EXEC PROC=SDLOAD

,PHASE=  phasename

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,ADDRESS=0:*

,ADDR=

,OUTPUT= ,OPTION= ,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129. The procedure
SDLOAD initializes traces for all phase load requests and phase load operations.

For the description of the trace type and an example of the output, see “PGMLOAD (Fetch/Load) Trace” on
page 64.

Defaults Set in the Procedure
ADDRESS='0:*' is defined if you omit ADDRESS=.

Statement Example
Here are the items of the trace setup shown below:

• Trace type: PGMLOAD
• Traced tasks: all tasks of the BG partition
• Traced storage area: whole VSE/Advanced Functions storage (default)
• Phase whose fetch/load operation is to be traced: MYPHASE
• Additional Output: dump of the storage contents with the address 0 to X'3000', relative to the BG

partition start address on occurrence of the PGMLOAD trace event.
• Output destination: tape with device address 280

Chapter 10. Initialize an SDAID Trace via a Procedure 125

• Note that the continuation sign has to follow the comma if you use the console for input. If you use
SYSIN to enter the procedure statement the continuation sign has to be in column 72.

// EXEC PROC=SDLOAD,PHASE=MYPHASE,AREA=BG,OUTPUT='DUMP PART OFF=0:3000',-
 TAPE=280

Program Check Trace

// EXEC PROC=SDPGMC
PGMC=*

PGMC= pgmc

PGMC='

,

 pgmc '

,AREA=ALL

,AREA= partition_id

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,ADDRESS=0:*

ADDR='  addr1 : addr2 '

,OUTPUT= ,OPTION= ,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129.

The procedure SDPGMC initializes traces for program check interruptions.

For a description of the trace type and an example of the output, see “PGMCheck Trace (Program Check)”
on page 63.

Defaults Set in the Procedure
ADDRESS='0:*' is defined if you omit ADDRESS=.

All program check interrupts are traced if you omit PGMC=.

Statement Example
Here are the items of the trace setup shown below:

• Trace type: PGMCHECK
• Traced tasks: all tasks of the BG partition
• Traced storage area: BG partition area (OFF=0:* defined by SDAID defaults)
• Additional Output: dump of the storage contents with the address 0 to X'5000', relative to the BG

partition start address on occurrence of the PGMCHECK trace event.
• Output destination: tape with device address 280

// EXEC PROC=SDPGMC,AREA=BG,OUTPUT='DUMP PART OFFSET=0:5000',TAPE=280

126 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Storage Alteration Trace
// EXEC PROC=SDSTOR

,PATTERN=  xxxxxxxx

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,STARea= ALL

partition_id

,STJNAM=  jobname

,STJNUM=  jobnumber

,STDSPN=  dataspace

,ADDRESS=

,OFFSET=

,PHASE=

OFFSET=

,OUTPUT= ,OPTION=

,BUFFER=  nn ,BUFFOUT= ,TERM= ,TAPE=  cuu

,PRINTER=  cuu

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129.

The procedure SDSTOR initializes traces for storage alterations.

You use this trace type as a tool to find those instructions which modify a certain storage area. In most
cases you do not know which phase in your system alters this area. For this, define AREA=ALL to watch all
tasks operating in your system. The observed storage area is defined via the ADDRESS= keyword.

The optional keyword ‘PATTERN=’ restricts monitoring to those instructions which change the storage
contents into the defined pattern. The specified storage interval which you define with the ADDRESS=
keyword should have the same length as the specified pattern (if any).

For a description of the trace type and an example of the output, see “STORAGE Alteration Trace” on page
66.

Statement Example
The example finds the instruction which alters a specified storage location into the pattern (FEFE); it puts
the system into a wait state when this event occurred.

Here are the items of the trace setup shown below:

• Trace type: STORAGE
• Traced tasks: all tasks in the VSE system
• Address area whose contents alteration is traced: X'074754' up to X'074755'
• Alteration value to be traced: FEFE

Chapter 10. Initialize an SDAID Trace via a Procedure 127

• Additional trace definition: put the system into a wait state on the event of the defined storage
alteration.

• Output destination: tape with device address 280
• Note that the continuation sign has to follow the comma if you use the console for input. If you use

SYSIN to enter the procedure statement, the continuation sign has to be in column 72.

// EXEC PROC=SDSTOR,PATTERN=FEFE,AREA=ALL,ADDRESS='74754:74755',-
 OPTION=HALT,TAPE=280

SVC Trace
// EXEC PROC=SDSVC

,SVC= code

'

,

 code

,AREA=ALL

,AREA= part

SUP

,JOBNAME=  jobname

,JOBNUM=  jobnumber

,OFFSET=0:*

,OFFSET=

,ADDRESS=

,PHASE=

,OFFSET=

,OUTPUT=

,OPTION=NOJCL

,OPTION=

.

 opt

,BUFFER=  nn ,BUFFOUT=

,TERM= ,TAPE=  cuu

,PRINTER=  cuu

See the “Additional Keyword Operands in Trace Procedure Statements” on page 129. The procedure
SDSVC initializes traces which provides event records for all or specified SVC instructions. Define the SVC
code in hexadecimal form.

For a description of the trace type and an example of the output, see “SVC Trace (Supervisor Call)” on
page 67.

Defaults Set in the Procedure
If you omit SVC=, all SVC instructions are traced.

128 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Statement Example
Here are the items of the trace setup shown below:

• Trace type: SVC
• SVC instruction defined by the SVC code: 3F
• Traced tasks: all tasks of the BG partition
• Traced storage area: BG partition area (SDAID default)
• Output destination: 10K bytes buffer
• Output device for buffer: tape with device address 280
• Event to write the buffer to tape: cancel or EOJ condition in the BG partition

// EXEC PROC=SDSVC,AREA=BG,SVC=3F,TAPE=280,BUFFER=10,BUFFOUT=CANCEL

Additional Keyword Operands in Trace Procedure Statements
When you initialize a trace using a procedure, the trace type which SDAID actually calls corresponds to
the procedure name. The additional trace operands, for example the specification of the output device,
correspond to the operands specified or defaulted in the procedure operands.

The additional operands which are specific for the trace initialization via procedures are described in this
section. The other additional operands have been described in Chapter 8, “SDAID General Description,”
on page 53.

The table shows all additional keyword operands in the format accepted in the EXEC PROC statement, a
short description for each and a reference to their detailed description.

Table 12. Additional Keywords, Summary

Operand Function See:

ADDRESS Limit tracing to a certain
address range

“Defining the Storage to be Traced:
OFFset, ADDress, PHase, LTA” on page 70

AREA Limit tracing to a certain
system area

“Defining the Area to be Traced: AREA
Definition” on page 69

JOBNAME[JOBNUM] Limit tracing to a certain VSE/
POWER job

“Defining the Job to be Traced: JOBNAME
Definition” on page 70

OFFSET Limit tracing to a partition or
phase area

“Defining the Storage to be Traced:
OFFset, ADDress, PHase, LTA” on page 70

PHASE Limit tracing to a certain phase “Defining the Storage to be Traced:
OFFset, ADDress, PHase, LTA” on page 70

OPTION Define additional trace options “Defining the Trace Options: OPTion
Definition” on page 80

OUTPUT Define additional trace output “Defining Additional Trace Output: OUTPut
Definition” on page 72

UNIT Define the device address “Defining the Traced I/O Devices” on page
82

BUFFER|BU Define the size of the output
buffer

“BUFFER=, PRINTER=, TAPE=Keyword
Operands” on page 130

BUFFOUT Define the event to write the
buffer

“BUFFOUT=Keyword Operand” on page
130

Chapter 10. Initialize an SDAID Trace via a Procedure 129

Table 12. Additional Keywords, Summary (continued)

Operand Function See:

TERM Define the event which
terminates the trace

“TERM=Keyword Operand” on page 131

PRINTER|P Define the printer device
address

“BUFFER=, PRINTER=, TAPE=Keyword
Operands” on page 130

TAPE|T Define the tape device address “BUFFER=, PRINTER=, TAPE=Keyword
Operands” on page 130

Define the Output Device in a Procedure Statement

BUFFER=, PRINTER=, TAPE=Keyword Operands

BUFFER=  nn PRINTER=  cuu

TAPE=  cuu

You define the output destination of the event trace records via the keyword operands BUFFER=nn,
TAPE=cuu, or PRINTER=cuu.

Note: The abbreviations BU=nn, T=cuu, or P=cuu may be used.

BUFFER=nn
Defines the size of a wraparound buffer to collect the trace event records.

Note: The definition of a large wraparound buffer may cause a lack of SDAID storage. For information, see
“Space Requirements for SDAID Execution” on page 50.

BUFFOUT=Keyword Operand
BUFFOUT= CANCEL

PGMC

FULL

EXT

Via the BUFFOUT= keyword operand you define the condition which forces the write buffer operation.
BUFFOUT=CANCEL

Defines that the contents of the wraparound buffer is to be written to the output device (Printer or
Tape) when a cancel or EOJ condition occurs.

BUFFOUT=PGMC
Defines that the contents of the wraparound buffer is to be written to the output device (Printer or
Tape) on any program check interruption (except page faults).

Note: If you specify BUFFOUT=CANCEL or BUFFOUT=PGMC, you must also specify the keyword
operand AREA=partition-id or JOBNAME=.

BUFFOUT=FULL
Defines that the buffer is to be written to the output device whenever it is full.

BUFFOUT=EXT
Defines that the buffer is to be written to the output device whenever the external interrupt key is
pressed.

130 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

TERM=Keyword Operand
TERM= CANCEL

PGMC

EXT

TERM=CANCEL
defines that tracing is to be terminated as soon as a cancel condition occurs in the traced partition.

TERM=PGMC
defines that tracing is to be terminated as soon as a program check occurs in the traced partition.

TERM=EXT
defines that tracing is to be terminated as soon as the external interrupt key is pressed.

Note: If TERM=CANCEL or TERM=PGMC is specified, AREA=partition-id or JOBNAME has to be specified,
too.

Chapter 10. Initialize an SDAID Trace via a Procedure 131

132 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 11. Initialize a Trace in Prompt Input Mode

This topic describes how you initialize an SDAID trace in prompt input mode. The prompt input mode
works only in the attention routine.

Overview
You can set up SDAID traces in prompt mode, which operates in the attention routine.

You invoke the SDAID program in prompt mode by entering the attention routine (AR) command SDAID
without another specification. Prompt mode is also activated if you process direct input mode commands
in the attention routine with at least one prompt mode statement, like the question mark (?).

The trace output device is defined via prompts after you enter the OUTDEV command.

SDAID prompts you for the trace type when you enter the TRACE command in the AR.

You end the initialization process with the READY command.

Once you have initialized the SDAID trace, attention routine commands are used to start the trace
execution (STARTSD), suspend it (STOPSD), and end it (ENDSD).

The trace output, an event record, is supplied for each occurrence of a traced event, according to your
instructions.

You may request the event records to be written to a line printer, onto a magnetic tape, or into a
wraparound buffer. The definition of the output device is given via the prompts following the OUTDEV
command.

The prompts and the possible replies are shown in “Command Input Path Example” on page 136.

How to Initialize an SDAID Trace in Prompt Mode
SDAID trace initialization in prompt mode requires the commands shown in Table 13 on page 133:

Table 13. Input Command Summary

Command Description See:

SDAID Attention routine command to invoke the
SDAID program.

-

OUTDEV Defines output device for the trace
(printer, tape, or buffer).

“Output Device Definition in Prompt Mode:
OUTDEV Command” on page 144

TRACE Defines the event(s) to be traced. At
least one TRACE command is required;
up to ten may be submitted.

“Specifying the Trace: TRACE Command” on
page 145

READY Ends input of initialization commands
OUTDEV and TRACE.

-

The Various SDAID Commands
SDAID prompts you for the output device of the trace when you enter OUTDEV.

One OUTDEV definition can be active in the system at one time. Any newly entered OUTDEV command
overwrites the existing one.

Enter TRACE to be prompted by SDAID for the type(s) of traces you want. Up to ten ‘TRACE’ commands
may be entered in one session.

© Copyright IBM Corp. 1984, 2014 133

You end the trace initialization in the attention routine with the READY command. When the READY
command has been processed, no further OUTDEV or TRACE command can be entered.

Sample SDAID Trace Initialization
Figure 51 on page 134 shows a typical trace initialization session.

The session starts with the AR command ‘SDAID’. With the command ‘OUTDEV’ the output device is
defined and the command ‘TRACE’ is entered to specify the trace type. The initialization process ends
with the READY command.

Figure 51. Example: Prompt Mode Trace Initialization

134 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Notational Conventions
• SDAID messages (or help information) are shown in uppercase with a message number.
• Responses or commands for you to enter are shown in mixed case. In most responses a short form of

the command is also allowed, and this is shown in uppercase. The non-mandatory part of the response
is in lowercase. For example, the BRanch trace type specification can be abbreviated in the following
way:

BR BRa BRan BRanc BRanc

How to Use Help and Cancel in Prompt Mode
• Messages for which you can request additional help information are indicated by a plus sign (+) at the

end of the message.
• Request additional help by entering a question mark (?).
• You can cancel data entered for the current command by entering two question marks (??).

Figure 52 on page 135 shows how you can request help information and how the initialization process
can be canceled.

Figure 52. Example: Help and Cancel Initialization

How to Read the Following Prompting Mode Syntax Diagrams
The following diagrams use a solid line, or a number of solid lines in parallel, as a specification path.
Follow the line of the option that you select for your SDAID execution.

Chapter 11. Initialize a Trace in Prompt Input Mode 135

Command Input Path Example
This section shows the prompt messages and the possible replies in the sequence of their processing.

Figure 53 on page 136 shows an example of the trace statement path. You can find the possible input in
accordance to the prompt message ‘SPECIFY TRACE TYPE’ (BR, CA, ..). The example also indicates the
prompt message after the reply ‘inst’ (SPECIFY OP * OR BR).

Figure 53. Sample Command Input Path

Command Input Paths

136 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

OUTDEV Command Input Path

Figure 54. OUTDEV Command: Syntax Diagram

Chapter 11. Initialize a Trace in Prompt Input Mode 137

TRACE Command Input Path

Figure 55. TRACE Command: Syntax Diagram (1 of 7)

138 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 56. TRACE Command: Syntax Diagram (2 of 7)

Chapter 11. Initialize a Trace in Prompt Input Mode 139

Figure 57. TRACE Command: Syntax Diagram (3 of 7)

140 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 58. TRACE Command: Syntax Diagram (4 of 7)

Chapter 11. Initialize a Trace in Prompt Input Mode 141

Figure 59. TRACE Command: Syntax Diagram (5 of 7)

142 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Note:

1. Up to ten different areas may be specified with DUMP.
2. Can be specified only if a phase was previously defined in the area definition of the TRACE.
3. You need not specify the word OUTPut in prompt mode. SDAID prompts you for the definition of the

additional output.

Figure 60. TRACE Command: Syntax Diagram (6 of 7)

Chapter 11. Initialize a Trace in Prompt Input Mode 143

Figure 61. TRACE Command: Syntax Diagram (7 of 7)

Output Device Definition in Prompt Mode: OUTDEV Command
This section shows promptings and possible replies for the trace output device definition. Detailed
information about the output device is given under “Defining the Output Device” on page 53.

When you enter the OUTDEV command, SDAID prompts you for control information as follows:

As a response to this prompting message, enter one of the following:
Printer

If printer is specified, the event records are written to a line printer at the time the particular event
occurs.

Tape
When tape is defined, the trace records are written to tape in the form of 3K bytes blocks.

SDAID prompts you for the address of the output device in the following way:

BUffer
Writes the trace output to a wraparound buffer. SDAID prompts you for the size of the buffer as
follows:

Enter the desired size of the buffer in number of blocks of 1K byte.

Possible Buffer Sizes
The possible buffer sizes depend on the output device for the buffer which is defined next.

144 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Table 14. Buffer Sizes

Buffer to Printer or no output device 4K - 256K

Buffer to Tape 4K - 32K

Now, SDAID prompts you as follows:

Respond with either Printer, Tape, or END/ENTER.

Pressing END/ENTER causes no output device being defined.

Specifying the Trace: TRACE Command
Once you enter the command: TRACE, SDAID prompts you for the following control information:
Trace-type definition:

The type of event to be traced. See “Defining the Trace Type” on page 145.
Area definition:

The range of the trace in storage. See “AREA Definition” on page 157.
I/O definition:

Limits a trace operation to one or more channels, control units, or devices. See “I/O Definition” on
page 159.

Output definition:
Additional (optional) trace information that is required to analyze the particular problem. See
“Additional Output Definition” on page 160.

Option definition:
An option to:

• Stop system execution when the specified trace event occurs.
• Discontinue tracing when the specified trace event occurs.
• Avoid tracing of Job Control phases.
• Discontinue tracing when a defined number of events has been exceeded.
• Include supervisor routines into a partition trace.

See “Option Definition” on page 161.

You will find sample event records and a description of most of the trace types under “Summary of TRACE
Types” on page 55.

Defining the Trace Type
This section, and the descriptions of the various trace types that follow, show the promptings and the
possible replies when defining an SDAID trace.

Detailed information about the various trace types is given under “Summary of TRACE Types” on page 55.

You start the definition of your trace with the trace command in the attention routine.

Respond to the prompting message with any of the available trace types. For example if you want to
initialize a branch trace, the response would look like this:

Chapter 11. Initialize a Trace in Prompt Input Mode 145

The SDAID then prompts you for additional information.

Please find a summary of the SDAID trace types in Table 15 on page 146.

Summary of Trace Types
Table 15 on page 146 gives the following information:

• The trace types shown in the format they can be entered. Note, that the uppercase letters indicate the
shortest possible abbreviation.

• A short description of the trace type. All trace types are described in more detail under “Summary of
TRACE Types” on page 55.

• A reference to the format description of the trace type.

Table 15. Trace Type Summary

Trace Type Provides a Trace of: See:

BRanch Successfully executed branch
instructions

“BRanch Trace” on page 147

BUffer The trace buffer when it is full “BUffer Trace” on page 147

CAncel Program (main task) cancel or EOJ “CAncel Trace” on page 147

EXTernal External interrupts “EXTernal (External Interrupt) Trace” on page
147

GETVIS Getvis / Freevis requests “GETVis (Getvis / Freevis Request) Trace” on
page 148

INSTruction Selected or all instruction(s)
execution

“INSTruction (Instruction Execution) Trace” on
page 149

IO I/O interrupts “IO (I/O Interrupt) Trace” on page 149

LOCK Lock / Unlock requests of resources “LOCK (Lock / Unlock of Resources) Trace” on
page 150

MONitorcall MC instructions “MONitorcall Trace” on page 151

OSAX OSAX adapter “OSAX Adapter Trace” on page 151

PGMCheck Program checks “PGMCheck (Program Check) Trace” on page
152

PGMLoad Phase load requests, or actual load “PGMLoad (Program Load) Trace” on page 152

SSCH Start Subchannel instructions “Start Subchannel Instruction Trace” on page
154

STorage Storage alterations “STorage Alteration Trace” on page 154

SVC Executed supervisor calls “SVC (Supervisor Call) Trace” on page 154

VTAMBU Usage of VTAM buffers “VTAMBU (VTAM Buffer) Trace” on page 155

VTAMIO VTAM I/O operations “VTAMIO (VTAM I/O) Trace” on page 155

XPCC XPCC communication actions “XPCC (Partition Communication) Trace” on
page 155

146 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

BRanch Trace

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

BUffer Trace

The SDAID prompts you for the OCCurrence definition as next. For the format of these definitions. see
“Option Definition” on page 161.

CAncel Trace

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

EXTernal (External Interrupt) Trace

The SDAID prompts you for additional control information until you press END/ENTER, as follows:

Your response may be one to 8 of the following:

* To trace all types of external interrupts.

0040 To trace only key interrupts.

1003 To trace TOD-clock sync check.

1004 To trace clock comparator.

1005 To trace CPU timer.

1200 To trace malfunction alert.

Chapter 11. Initialize a Trace in Prompt Input Mode 147

1201 To trace emergency signal.

1202 To trace external call.

2401 To trace service signal.

2402 To trace logical device._* z/VM CP

2603 To trace PFAULT handshaking._* z/VM CP

4000 To trace IUCV, APPC._* z/VM CP

4001 To trace VMCF._* z/VM CP

END/ENTER To continue.

The SDAID now prompts you for the definition of the OUTPUT.

GETVis (Getvis / Freevis Request) Trace

The SDAID prompts you for additional control information, as follows:

Your response may be one of the following:
PARtition

Writes an event record if the requested or released space is within the partition Getvis area.
SPAce

Writes an event record if the requested or released space is within the dynamic partition Getvis area.
SVA

Writes an event record if the requested or released space is within the SVA.

SDAID then prompts you for a specific subpool

name.

Your response may be one of the following:
Press ENTER

Writes an event record for all subpools.
subpool_name

Writes an event record for the specific subpool only.

See “GETVIS / FREEVIS Trace” on page 58 for details of a subpool name format.

SDAID then prompts you for the LOCation of a Getvis / Freevis

request:

Your response may be one of the following:
Press ENTER

Writes an event record for all Getvis/Freevis requests.
BELow

Writes an event record for requests within the 24-bit Getvis area.

148 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

ANY
Writes an event record for requests within the 24-bit and 31-bit Getvis area.

SDAID then prompts you for the definition of the trace area or the job

name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

INSTruction (Instruction Execution) Trace

The SDAID prompts you for additional control information, as follows:

Your response may be one of the following:
op code(s)

(one to eight) Entered as either one-byte or two-byte hexadecimal values. If you specify more than
one operation code, separate them by one or more blanks or by a comma (with or without blanks).

asterisk (*)
Defines all op codes.

You can also specify the following:
BRanch

Defines that all branch instructions have to be traced regardless whether the branch has been taken
or not.

Sample responses:

d2
18 41,58 40, 50 9608
*
BRanch

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

IO (I/O Interrupt) Trace

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158. ALL means all tasks of the
system.

SDAID then prompts you for the definition of the specific I/O channel(s), control unit(s), or unit(s), as
described under “I/O Definition” on page 159.

Chapter 11. Initialize a Trace in Prompt Input Mode 149

LOCK (Lock / Unlock of Resources) Trace

The SDAID prompts you for a specific resource

name:

Your response may be one of the following:
Press ENTER

Writes an event record for all resources.
resource_name

Writes an event record for the specific resource only.

See “LOCK / UNLOCK Trace” on page 60 for details of the resource-name formats.

SDAID then prompts you for the type (LOCK or

UNLOCK):

Your response may be one of the following:
Press ENTER

Writes an event record for all types of request.
Lock

Writes an event record for resource locking only.
Unlock

Writes an event record for resource unlocking only.

SDAID then prompts you for the scope (INTERNAL or

EXTERNAL):

Your response may be one of the following:
Press ENTER

Writes an event record for all scopes.
INTernal

Writes an event record for Internal Locks or Unlocks.
EXTernal

Writes an event record for External Locks or Unlocks.

SDAID then prompts you for a volume ID:

Your response may be one of the following:
Press ENTER

Writes an event record for all volume IDs.
volume_id

Writes an event record for the specified volume ID only.

SDAID then prompts you for a return code(s):

Your response may be one of the following:

150 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

*
Writes an event record for all return codes.

return_code(s)
Writes an event record for the specified return code(s) only.

See “LOCK / UNLOCK Trace” on page 60 for details of how to specify return code(s).

SDAID then prompts you for the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

MONitorcall Trace

SDAID prompts you for additional control information as follows:

Your response may be one of the following:
monitor classes

defines the MC instructions to be traced by one or up to eight monitor classes.

Monitor classes must be specified as one-digit hexadecimal values. If you specify two or more
classes, separate them by one or more blanks, or by a comma with or without blanks.

You may specify any valid monitor class; however, SDAID ignores a specification of class 2.

asterisk (*)
defines all classes except class 2.

Sample responses:

3 5, 8,c d e f
a
*

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

OSAX Adapter Trace
Note: the output from an OSAX adapter trace is complex and normally only suitable for use by IBM
personnel. Typically, an OSAX adapter trace would be requested by IBM support personnel after a related
problem has been reported to them.

SDAID prompts you for additional control information as follows:

Chapter 11. Initialize a Trace in Prompt Input Mode 151

Your response may be one of the following:
datapath

defines the data path address of an OSAX adapter, where datapath is a hexadecimal address of
between 1 and 3 characters.

Press Enter
will process the data paths for all OSAX adapters.

SDAID then prompts you to reply if you require additional detailed output:

Your response may be one of the following:
Yes

additional output will be provided.
No

no additional output will be provided.
Press Enter

Default: no additional output will be provided.

PGMCheck (Program Check) Trace

SDAID prompts you for additional control information as follows:

Your response may be one of the following:
Program interrupt codes

(one to 16) must be specified in hexadecimal notation, leading zeros may be omitted. An asterisk (*)
indicates all program check interruption codes - except those page or segment translation exceptions
which are caused by the temporary absence of a storage page. The specification 10 11 traces all page
or segment translation exceptions.

If you specify more than one program interrupt code, separate them by one or more blanks, or by a
comma with one or more blanks.

Sample specifications: 1 13,05, 10, 0A
 9
 *

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

PGMLoad (Program Load) Trace

152 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SDAID prompts you for additional control information as follows:

Your response may be one of the following:
Press ENTER

Writes an event record for all program load events (phase load, fetch request, or actual phase-load
operation) within the specified trace range.

req
Writes an event record each time loading/fetching a phase is requested (see Notes 1 and 3 below).

hdl
Writes an event record each time a phase load/fetch request is handled; that is, when a requested
phase is actually loaded into storage for execution (see Notes 1 and 3 below).

all
Writes an event record each time a phase load/fetch request occurs, and also each time a phase is
actually loaded into storage for execution. This is the default (see Notes 1 and 2 below).

Note:

1. When you have entered a response to the above prompting message, SDAID repeats the prompting
message until you respond by pressing ENTER.

2. If you want all program-load events to be traced, respond by pressing ENTER when SDAID displays the
above prompting message for the first time.

3. If you want only one phase to be traced, submit the name of this phase after specifying HDL, REQ or
ALL.

SDAID prompts you for additional control information as follows:

Your response may be one of the following:
Press ENTER

Defines all phases to be traced.
phase name

Defines the phase to be traced.
Figure 62 on page 153 is an example of a prompting sequence for a program load trace request.

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

Figure 62. Prompting for a PGMLoad Request

Chapter 11. Initialize a Trace in Prompt Input Mode 153

Start Subchannel Instruction Trace

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158. ALL means all tasks of the
system.

SDAID further prompts you for the definition of the specific I/O channel(s), control unit(s), or unit(s), as
described under “I/O Definition” on page 159.

STorage Alteration Trace

SDAID then prompts you for additional control information as follows:

Your response to this prompting message may be either of the following:
Press ENTER

Requests an event record to be written whenever storage within the trace range is altered.
hexvalue

Requests an event record to be written whenever storage within the trace range is set to the specified
value (any hexadecimal value of up to four bytes). If you specify an odd number of digits, a zero is
inserted to the left of the first specified hexadecimal digit.

Note: This option traces only program-altered storage, not that altered by I/O operations.

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

Define ALL if you want to get all tasks of your system watched.

SVC (Supervisor Call) Trace

SDAID then prompts you for additional control information as follows:

Your response to this prompting message may be either of the following:

154 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

one to 16 SVCs
Specify the SVC number in hexadecimal notation. If you specify two or more SVC numbers, they must
be separated by one or more blanks, or by a comma with or without blanks.

asterisk (*):
Defines all SVC instructions to be traced.

Sample SVC specifications:

02 9,A 26
25
*

SDAID then prompts you for the definition of the trace area or the job name:

See “AREA Definition” on page 157 and “JOBNAME Definition” on page 158.

VTAMBU (VTAM Buffer) Trace

The SDAID prompts you for the OUTPut definition. See “Additional Output Definition” on page 160.

VTAMIO (VTAM I/O) Trace

SDAID then prompts you for the definition of the partition-ID as shown below:

Specify the partition where VTAM is running, F3 for example.

SDAID then prompts you next for the definition of the specific I/O channel(s), control unit(s), or unit(s), as
described under: “I/O Definition” on page 159.

XPCC (Partition Communication) Trace

The SDAID prompts you for a specific application

name:

Your response may be one of the following:
*

Writes an event record for all applications.
application_name

Writes an event record for the specific application only.

Chapter 11. Initialize a Trace in Prompt Input Mode 155

SDAID then prompts you for a specific to_application name:

Your response may be one of the following:
*

Writes an event record for all to_applications.
to_application_name

Writes an event record for the specific to_application only.

SDAID then prompts you for an xpcc

function:

Your response may be one of the following:
*

Writes an event record for all xpcc applications.
xpcc_function

Writes an event record for the specified xpcc_function only.

SDAID then prompts you for the direction of tracing:

Your response may be one of the following:
Press ENTER

Writes an event record for incoming and outgoing xpcc requests.
in

Writes an event record for incoming xpcc requests.
out

Writes an event record for outgoing xpcc requests.
both

Writes an event record for incoming and outgoing xpcc requests.

SDAID then prompts you for a specific return code:

Your response may be one of the following:
*

Writes an event record for all return codes.
return_code

Writes an event record for the specified return code only.

SDAID then prompts you for a comparator (SUSR / IJBXSUSR):

Your response may be one of the following:
nocomp

No comparison is required.
EQ | NE | GT | GE | LT | LE

If your response is not nocomp, SDAID prompts you for a hex value which will be compared against the
content of IJBXSUSR.

156 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

See “XPCC Trace” on page 69 for details of how to prepare a compare field.

SDAID then prompts you for a comparator (RUSR / IJBXRUSR):

Your response may be one of the following:
nocomp

No comparison is required.
EQ | NE | GT | GE | LT | LE

If your response is not nocomp, SDAID prompts you for a hex value which will be compared against the
content of IJBXRUSR.

See “XPCC Trace” on page 69 for details of how to prepare a compare field.

SDAID then prompts you for an XPCC

from_area:

Your response may be one of the following:
Press ENTER

Writes an event record for all from_areas.
syslog_id

Writes an event record for the specified from_area only.

SDAID then prompts you for an XPCC

to_area:

Your response may be one of the following:
Press ENTER

Writes an event record for all to_areas.
syslog_id

Writes an event record for the specified to_area only.

AREA Definition
This section describes the SDAID promptings and gives some examples of the possible replies to the
ARea Definition. More detailed information about the ARea definition and the corresponding storage
region definitions is given in the following sections:

• “Defining the Area to be Traced: AREA Definition” on page 69.
• “Defining the Storage to be Traced: OFFset, ADDress, PHase, LTA” on page 70.

SDAID prompts you for the required area definition by displaying the message:

Enter one of the following responses:

• partition-ID
• SUP
• ALL

Chapter 11. Initialize a Trace in Prompt Input Mode 157

JOBNAME Definition
The JOBNAME (and JOBNUMBER) definition allows you to trace a VSE/POWER job in a dynamic or static
partition. You can use either the AREA or the JOBNAME definition, but not both. For details about the
JOBNAME definition, refer to “Defining the Job to be Traced: JOBNAME Definition” on page 70.

The possible prompts are the same as for the AREA definition.

SDAID prompts you for the optional JOBNUMBER definition by displaying the message:

Enter the job number of the VSE/POWER job to be traced.

Prompts after AREA and JOBNAME Definitions
SDAID prompts you for the definition of the storage area to be traced as follows:

Your response to this prompting message is one of the following:

• END/ENTER
• OFFset
• PHase
• ADDress
• LTA

Press ENTER
To trace the requested events within the storage occupied by the defined partition.

OFFset
SDAID prompts you for the actual offset values:

Your response to this message, a pair of offsets, is discussed below, under "PHase".

Note that OFFset does not apply to ARea=All.

PHase
SDAID prompts for the phase name as follows:

Then SDAID prompts you for further limitation of the trace range:

Your response to this message (for either partition or phase offset) is one of the following:

ENTER
reladdr1:reladdr2
reladdr1:*

Press ENTER
to trace the events in the entire area allocated to the specified partition, supervisor or phase.

reladdr1:reladdr2
to define an address range in hexadecimal notation.

158 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

reladdr1:*
to define an address range starting with 'reladdr1' up to the end of the specified partition,
supervisor or phase.

ADDress
SDAID prompts you for the actual address range:

Your response to this message is either of the following:

• END/ENTER
• addr1:addr2
• addr1:*

Press ENTER
to trace the events of the tasks with the defined partition-id without address limitation.

addr1:addr2
to define a certain address area within the partition or supervisor.

addr1:*
to define an address area starting with 'addr1' up to the end of the partition or supervisor.

LTA
SDAID traces the events of the specified partition or supervisor which occur in the Logical Transient
Area.

I/O Definition
The I/O definition limits the range of an IO, SSCH, or VTAMIO trace to one or more devices, to one or
more control units, or to one or more channels. This section describes the SDAID promptings. Detailed
information about the I/O definitions is provided under “Defining the Traced I/O Devices” on page 82.

SDAID prompts you for the definition as follows:

Your response to this prompting message may be one of the following: (detailed descriptions follow)

• ENTER
• UNit
• CU
• CHannel

Press ENTER
To define all I/O devices.

UNit
SDAID prompts you for the hexadecimal specification of up to 8 unit addresses as follows:

If you specify more than one address, separate them by one or more blanks, or by a comma with one
or more blanks or without a blank.

If you specify a 1-digit device address, SDAID assumes channel 0 and control unit 0; for a 2-digit
device address, SDAID assumes channel 0.

Sample device-address list specifications:

003, e 181 281
282

Chapter 11. Initialize a Trace in Prompt Input Mode 159

e (same as 00e)
0e (same as 00e)

CU
SDAID prompts you for the hexadecimal definition of up to 16 control unit addresses as follows:

If you specify more than one address, separate them by one or more blanks, or by a comma with one
or more blanks or without a blank.

Sample control-unit address list specifications:

1, 2a 3f
1c
2 (same as 02)

CHannel
The program prompts you for one or up to 16 channel addresses as follows:

If you specify more than one address, separate them by one or more blanks, or by a comma with one
or more blanks or without a blank.

Sample channel address specifications:

1
0 2, 3

Additional Output Definition
This section gives information on the various responses to the SDAID promptings. If you want more
detailed information on the output definitions, refer to “Defining Additional Trace Output: OUTPut
Definition” on page 72 and Table 5 on page 72.

SDAID prompts you to specify additional output in the following way:

You may respond with the following output definitions:

BUffer FReg PTAB

CCB GReg SUPvr

CCW IOTab SYSCom

CCWD LOCKTE TOD

COMReg LOwcore TTAB

CReg LTA XPCCB

DUMP PTA XPDATABU

For each prompt, you may specify one definition. Prompting continues until you press ENTER without a
definition. This ends the output definition.

160 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Option Definition
This section gives information on the various responses to the SDAID promptings. If you want more
detailed information on the option definitions, refer to “Defining the Trace Options: OPTion Definition” on
page 80.

SDAID prompts you for an option definition as follows:

You respond with one of the following:

Halt
NOJCL Specification
NOSource
NOTarget
OCcurrence Definition
SUPervisor
Termination Specification

If you define OCcurrence, SDAID prompts you as follows:

Respond with:

ENTER
value1:value2

Press ENTER
To indicate that you want all occurrences of the specified event to be traced (same as if you defined
1:*).

value1:value2
To limit tracing (value2 must be higher than or equal to value1). See the examples below.

Sample occurrence definitions:

1:1 trace only the first occurrence
 of the event
1:* trace all occurrences of the
 event (this is the default value)
5:12 trace selected occurrences
 (5 to 12) of the specified event

Chapter 11. Initialize a Trace in Prompt Input Mode 161

162 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 12. Start/Stop and End the Trace

This topic describes how you can start, stop, or terminate an initialized SDAID trace, and how to control
the trace under exceptional conditions.

The Required Commands

STARTSD/STOPSD Commands: Starting and Stopping
Once you have entered the READY command which ends the initialization process, you can activate the
trace at once or later. To start or restart the trace operation, enter the command

STARTSD

without any operand.

Note: If the trace was stopped by an event itself (TERMinate specified with the TRACE command), the
trace operation can be restarted by issuing the STOPSD command followed by the STARTSD command.

The STARTSD command is rejected if the interactive trace program is active for any partition.

To interrupt the trace operation with the restart capability retained, enter the command
STOPSD

without any operand.

Note: When a tape is defined as output device, every STOPSD or ENDSD command writes a tapemark on
the tape if there was any trace event. If, for example, you specify three times STARTSD/STOPSD within an
SDAID session, you get three trace files on your trace output tape. However, if there was no trace event
since the last STARTSD command, the tape remains unchanged.

ENDSD Command: Ending Execution
You can end the SDAID session by issuing the command:

ENDSD

without any operands. The ENDSD command releases all resources that were used by the program during
the session, including the storage space that was occupied by SDAID and closes the trace output device.
You may enter this command at any time during a session.

Attention Routine Command Example
The example in Figure 63 on page 164 shows how an initialized SDAID trace is started, interrupted and
ended. After the ENDSD command has been processed all of the initialized trace information is released.

© Copyright IBM Corp. 1984, 2014 163

 •
 startsd ◊
 4C05I PROCESSING OF 'STARTSD' COMMAND SUCCESSFUL
 •
 •
 •
 stopsd ◊
 4C05I PROCESSING OF 'STOPSD' COMMAND SUCCESSFUL
 •
 •
 •
 startsd ◊
 4C05I PROCESSING OF 'STARTSD' COMMAND SUCCESSFUL
 •
 •
 •
 endsd ◊
 4C05I PROCESSING OF 'ENDSD' COMMAND SUCCESSFUL

Figure 63. Attention Routine Commands to Start, Stop and End the Trace

How to Control the Trace under Exceptional Conditions
The start and stop procedures described above can be used only when the attention routine is available.
When you try to start or stop a trace, the attention routine may be unavailable because of the problem you
are trying to identify, or because SDAID is in a wait state.

This section tells you how to control traces:

• When the system is in an unintended loop;
• When a trace is running and the attention routine is not available;
• When the system is in a wait state.

Tracing an Unintended Loop
Perform the following steps to use the SDAID branch, instruction or storage-alteration traces to gather
information about an unintended loop:

1. Initialize one of the trace types mentioned above in the normal way.
2. Start the trace with the STARTSD command.
3. Display the contents of control register 9 with the control processors alter/display feature.
4. Notice the contents of this control register for later use.
5. Set bits 0 through 3 to zeros with the alter display feature. This stops the trace.
6. Recreate the loop condition by submitting the same job mix that existed when the particular loop

occurred the first time.
7. When the loop appears again, restart SDAID operation by setting those bits of control register 9 to a

value of 1 which you have set to zeros before.

Bit Effect if set to 1
--- ------------------
 0 Successful branches are traced.
 1 Instruction executions are traced.
 2 Storage alterations are traced.

(See “Hardware Alter/Display” on page 228 for information on how to use the Alter/Display feature.)

Control register A contains the start and control register B the end address of the trace. You may change
this address range by varying the addresses stored in control registers A and B.

To resume operation after SDAID has collected sufficient information about the loop, and if you cannot
exit from the loop, re-IPL VSE.

164 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Terminating SDAID Program Without the Attention Routine
It may happen that you can no longer request the attention routine to gain control of your processor. At
that point, SDAID operation cannot be stopped as usual by entering the command STOPSD. Instead you
can perform the following steps:

If the trace type is INST, BR, or STORAGE, you can use the following method:

1. Change your processor's mode of operation to manual.
2. Alter bits 0 through 2 of control register 9 to zero (using the alter/display feature).
3. Let SDAID finish execution by changing your processor's mode of operation back to normal.

For more information on the values to be set into the control registers used by SDAID, consult the
Principles of Operation manual pertaining to your processor.

If OUTDEV is a printer, the following method to stop the trace is possible:

1. Stop the printer device.
2. Wait until the system goes into the wait state.
3. Press the external interrupt key to stop the trace output.
4. Stop the trace with the STOPSD command.

Starting/Terminating Tracing in a System Wait Condition
In some cases SDAID forces a system wait condition. How you can restart the system by starting or
terminating the trace options is the subject of this section.

Wait Due to OPTION=HALT
You may define that the system enters the wait state at occurrence of a specific event. This is
accomplished by the option ‘OPTION=HALT’ defined together with the desired event.

When the system has entered the wait, the address part of the wait PSW contains the value X'00EEEE'.
The following actions may be taken to get out of the wait state:

1. If you want to continue tracing:

Press the external interrupt key once. The system will enter the wait state again on the next
occurrence of the traced event.

2. If you want to continue tracing but without OPTION=HALT:

Enter X'FF' in storage location zero,
Press the external interrupt key.

This removes the OPTION=HALT specification. The system continues tracing but does not enter the wait
state on the next occurrence of the same event again.

System Wait Due to Intervention Required at the Output Device
SDAID loads a wait PSW with the value of X'EEEEEE' in the address part. The required operator action is
described under “Exceptional Conditions on the Output Device” on page 54.

Chapter 12. Start/Stop and End the Trace 165

166 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Part 4. Info/Analysis

Info/Analysis is a tool for:

• Dump file management
• Problem source identification
• Problem analysis

Info/Analysis

© Copyright IBM Corp. 1984, 2014 167

Info/Analysis

168 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 13. Info/Analysis: Introduction

With Info/Analysis, you can simplify the task of using dump data to solve software problems. Info/
Analysis assists you in this task through the following functions:

• Dump Management - to list the dumps being managed by Info/Analysis, to add or delete dumps from
that list, and to delete dumps from the system.

• Dump Symptoms - to display problem failure information collected by the dumping component and by
subsequent analysis routines.

• Dump Viewing - to display dump data in hexadecimal and character format, format, and display control
blocks and other dump data that may be pertinent to the problem, to invoke dump analysis routines,
and to display the results of those routines.

• Dump Offload - to copy a dump to tape for later retrieval.
• Dump Onload - to copy a dump to a dump sublibrary.

Operating Environment
Info/Analysis runs in a z/VSE partition with a size of at least 1M of storage.

Info/Analysis processes storage dumps that result from errors within the system, subsystems or user
programs running on the system. The dumps are created by system dump and Standalone Dump
Programs. Info/Analysis does not directly access the dump data. Rather, it uses system facilities to
retrieve and update dump data and the symptom record. The symptom record is a collection of problem-
related information stored in the dump and its extensions.

Info/Analysis uses a dump management file to maintain information about dumps. A dump must be
identified in this file before it can be processed by Info/Analysis. This file is maintained using the Dump
Management function.

Info/Analysis also uses an external routines file. This file contains a list of analysis routines that you may
invoke to process dump data. The file also identifies user exit routines and dump access routines called
by Info/Analysis.

You may enter control statements in two modes:

• Line mode - from the operator console
• Reader mode - from the system input device reader defined as the input area

From a z/VSE partition, all output of batch operations is routed to the SYSLST device assigned to the
partition. In line mode, messages are sent to the console as well as to SYSLST. SYSLST must always be
assigned to a unit record device. When running in reader mode, SYSIPT must be assigned to a unit record
device.

The Dump Management File
The dump management file BLNDMF contains information about dumps managed by Info/Analysis.

Info/Analysis adds this information either during dump management invocation (Info/Analysis searches
the dump sublibraries for new dumps automatically), or when you specify the name of a new dump. For a
dump produced as a result of a DUMP attention routine command or for a stand-alone dump you want to
onload, supply a name via the Info/Analysis statement

 DUMP NAME (specify the current dump)

Once information about a dump has been added to the dump management file, the Info/Analysis
functions can be used to process the dump.

© Copyright IBM Corp. 1984, 2014 169

A dump entry remains in the dump management file until the dump is deleted using the Info/Analysis
function.

Initializing the Dump Management File
Before you can use the functions of Info/Analysis the dump management file has to be initialized.

This initialization is accomplished by the UTILITY statement of Info/Analysis. The statement is used at
system installation time and whenever you want to initialize or recreate the dump management file, for
example after you have increased the size of the file, or after the file has been damaged.

For an explanation of how to change the size of the dump management file see “UTILITY - Initialize Dump
Management File” on page 179. Also refer to skeleton SKDMPINI in ICCF library 59.

Figure 64 on page 170 shows a job example to initialize the dump management file.

Sample Initialization Job
// JOB INIT
// ASSGN SYSLST,00E
// ASSGN SYS020,252 Dump library
// ASSGN SYS016,252 Dump management file
// ASSGN SYS017,252 External routines file
// DLBL SYSDUMP,'VSE.DUMP.LIBRARY',,VSAM, X
 CAT=IJSYSCT, X
 DISP=(OLD,KEEP)
// DLBL BLNDMF,’INFO.ANALYSIS.DUMP.MGNT.FILE’,0
// EXTENT SYS016,SYSWK1,1,0,9030,15
// DLBL BLNXTRN,’INFO.ANALYSIS.EXT.RTNS.FILE’,1999/365,SD
// EXTENT SYS017,SYSWK1,1,0,9045,15

// EXEC INFOANA,SIZE=300K

SELECT DUMP MANAGEMENT | use the
UTILITY | utility
RETURN | function
 |
SELECT END |

/*
/&

Note: The dump library is located in VSAM space if initial installation was performed with z/VSE 5.1 or
later.

Figure 64. Sample Job: Dump Management File Initialization

The External Routines File
The external routines file contains the names of dump analysis exit routines. These routines are used to
analyze dumps stored in one of the dump sublibraries. The external routines file contains the name and,
optionally a description of each routine available for use with Info/Analysis.

Presently the external routines file contains four name lines. DFHPD410 analyses a dump of the CICS
Transaction Server partition. IJBXDBUG is the common analysis routine for stand alone dumps. IJBXSDA
formats the SDAID buffer in a stand-alone dump. IJBXCSMG formats the console buffer in a stand-alone
dump.

The name of the external routines file is BLNXTRN. The job INITDUMP.Z creates the external routines
during the system build process. If the external routines file is damaged you may recreate it via a DITTO
job (see Figure 65 on page 171), or if the DITTO program is not available in your system, via an OBJMAINT
job (see Figure 66 on page 171).

170 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Loading the Info/Analysis External Routines File
The sample jobs shown in Figure 65 on page 171 and Figure 66 on page 171 record the names of the
analysis routines DFHPD410, IJBXCSMG, IJBXDBUG and IJBXSDA in the Info/Analysis external routines
file

Sample Jobs of External Routines File
// JOB LOAD1
// DLBL BLNXTRN,'INFO.ANALYSIS.EXT.RTNS.FILE',2011/365,SD
// EXTENT SYS017,SYSWK1,1,0,9045,15
// UPSI 1
// EXEC DITTO
$$DITTO CSQ BLKFACTOR=1,FILEOUT=BLNXTRN
ANEXIT DFHPD410 CICS DUMP ANALYZER
ANEXIT IJBXCSMG ANALYSE CONSOLE BUFFER
ANEXIT IJBXDBUG ANALYSE STANDALONE DUMP ROUTINE
ANEXIT IJBXSDA SDAID BUFFER FORMATTING ROUTINE
/*
$$DITTO EOJ
/*
/&

Note: The example shows the DITTO statements for an external routines file on CKD disk. If
the external routines file is on an FBA disk the DITTO command line reads like $$DITTO CSQ
BLKFACTOR=1,FILEOUT=BLNXTRN,CISIZE=512

Figure 65. Sample Job: Loading the External Routines File via DITTO

// JOB LOAD2
// ASSGN SYS004,00C
// ASSGN SYS005,SYSWK1
// DLBL UOUT,'INFO.ANALYSIS.EXT.RTNS.FILE',2011/365,SD
// EXTENT SYS005,SYSWK1,1,0,9045,15
// EXEC OBJMAINT
./ CARD DLM=$$
./ Copy
ANEXIT DFHPD410 CICS DUMP ANALYZER
ANEXIT IJBXCSMG ANALYSE CONSOLE BUFFER
ANEXIT IJBXDBUG ANALYSE STANDALONE DUMP ROUTINE
ANEXIT IJBXSDA SDAID BUFFER FORMATTING ROUTINE
$$
/*
/&

Figure 66. Sample Job: Loading the External Routines File via OBJMAINT

Label Information for Info/Analysis
Figure 67 on page 172 shows an example of the DLBL and EXTENT information to submit if you want
to use the functions of the Info/Analysis program. These labels should be stored in the system standard
label area.

Chapter 13. Info/Analysis: Introduction 171

* LABELS FOR THE SYSDUMP LIBRARY,
* THE DUMP MANAGEMENT FILE, AND
* THE EXTERNAL ROUTINES FILE

// DLBL SYSDUMP,'VSE.DUMP.LIBRARY',,VSAM, X
 CAT=IJSYSCT, X
 DISP=(OLD,KEEP)
// DLBL BLNDMF,'INFO.ANALYSIS.DUMP.MGNT.FILE',0
// EXTENT SYS016,SYSWK1,1,0,9030,15
// DLBL BLNXTRN,'INFO.ANALYSIS.EXT.RTNS.FILE',2011/365,SD
// EXTENT SYS017,SYSWK1,1,0,9045,15

Note: The dump library is located in VSAM space if initial installation was performed with z/VSE 5.1 or
later.

If you did an FSU from z/VSE 4.3 the following shows the labels for 3380 disks.

// DLBL SYSDUMP,'VSE.DUMP.LIBRARY',1999/365,SD
// EXTENT SYS020,SYSWK1,1,0,3150,600

Figure 67. Example: File Labels for Dump Processing

Functional Overview
When a dump is created, you can use it to solve a problem by taking actions that range from printing the
dump symptoms to analyzing the dump in detail. The actions that you take depend on local procedures
for dealing with dumps and your own techniques of dump analysis. Info/Analysis is a tool that can be used
to enhance these procedures and techniques.

This section presents the stages of a dump's life cycle from problem occurrence to resolution. The ways in
which you can use Info/Analysis at each stage are briefly presented.

When a problem occurs during system operation, the detecting component captures the condition of the
system in a dump. The component stores the dump in the dump sublibrary designated for the partition
that failed. Sometimes, a system operator may detect a problem and use stand-alone dump or other
dumping facilities to create a storage dump. Stand-alone dumps are stored on tape or disk.

In either case, a dump contains a copy of system storage, and a symptom record. The symptom record is
a collection of failure-related information gathered by the dumping component when the dump is taken or
added later by dump analysis routines.

The symptom record may contain:

• A description of the operating environment at the time the problem occurred.
• Symptoms that provide clues to the problem's origins.
• Free-form text and hexadecimal information that may describe the problem.
• Entries that define the format and location of dump data that may be pertinent to the problem. These

entries are used when data is displayed in formatted mode.

For further information about the symptom record, see Appendix A, “Symptom Records Overview,” on
page 213.

172 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 14. Dump Symptoms

The first step in dump analysis is to examine any symptoms that are recorded for the problem. This
topic discusses the Dump Symptoms function with which you may display or print the problem symptoms
collected by the dumping component at the time of a failure or by subsequent analysis routines. The list
of symptoms may indicate a new problem or a duplicate of a previously encountered problem. If sufficient
symptoms are provided, they may pinpoint the cause of the failure.

The successful use of the Dump Symptoms function is dependent on the presence of a symptom record in
the dump you are processing. The symptom record is created by the dumping component when the dump
is taken (see Appendix A, “Symptom Records Overview,” on page 213). Figure 68 on page 173 shows an
example of the symptom part of a dump.

SYSDUMP.DYN.DR100008

ENVIRONMENT:
 CPU MODEL 2097
 CPU SERIAL 3B0B82
 TIME 12:59:42:00
 DATE 12/10/12
 SYSTEM ID 5686CF906
 RELEASE 5
 FEATURE 1C
 DUMPTYPE SCPREQ
 PROBLEM NUMBER

REQUIRED SYMPTOMS:
 AB/S2000
 REGS/03818
 REGS/0C990
 MS/0S03I
 RIDS/EYU9XZUT
 OFFS/00000A08
 AB/S0007

OPTIONAL SYMPTOMS (SDB):

OPTIONAL SYMPTOMS (NON-SDB):
 JOB_NAME=EYU9XZUT
 DUMPED_DATA=R1-PARTITION

Figure 68. Dump Symptoms Part

Types of Dump Symptoms
The symptoms are organized into the following sections:

• Environment data
• Required symptoms
• Optional symptoms in structured data base (SDB) format
• Optional symptoms in non-SDB format

The symptoms are initially provided by the dumping component. If you subsequently execute analysis
routines for the dump, these routines may add symptoms. A plus sign (+) appears before a symptom if it
was added by an analysis routine.

The displayed symptoms may pinpoint the cause of the failure. If not, you may compare these symptoms
to the symptoms of other locally reported problems. Your installation should set up a procedure whereby
a file of problem symptoms is kept and the symptoms can be compared to one another.

If a satisfactory match is found, the problem is considered a local duplicate. If no match is found and
the problem is related to an IBM product, a search of known IBM problems would be a logical next step.
You may contact IBM service personnel to request this search. If a duplicate set of symptoms is found in

© Copyright IBM Corp. 1984, 2014 173

either search, a solution may be immediately available or already under investigation. If no match or too
many matches occur after a search, additional analysis is necessary. You may perform this analysis using
the Dump Viewing function.

Environment
The environment section of the symptom record describes the environment at the time the dump was
created. This section is provided by the dumping component. The CPU, operating system, type of dump,
and date and time that the dump was taken are identified. Additional items such as release level may be
included.

Required Symptoms
Required symptoms are those considered essential for problem analysis. They are provided by the
dumping component or by the dump analysis routines.

All of the required symptoms are likely to occur each time the same error occurs. The format of the
required symptoms is standardized so that more effective keyword searches for duplicate problems may
be conducted.

Each symptom is formatted with a prefix and the specific data connected by a slash. The required
symptoms are described under “Symptom Part Description” on page 183.

Optional Symptoms
Optional symptoms may be provided by the dumping component or by the dump analysis routines. These
are additional symptoms that apply to the problem and may be present if the problem recurs. Some of
these symptoms, for example the component level, are formatted like the required symptoms. There are
also free-form symptoms that may be used in problem analysis, but which are not in standardized format.

174 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Chapter 15. Invoking Info/Analysis

You may use Info/Analysis in two ways:

• Line mode - from the operator console
• Reader mode - from the system input device

In either case, you invoke Info/Analysis by submitting a series of job control statements (JCL) followed
by control statements that request Info/Analysis functions. All output is routed to the SYSLST device.
The output includes the input control statements, the results of processing, and any messages issued by
Info/Analysis. If you are working at a console, Info/Analysis also routes messages there. For information
on how to print dumps, see “Printing Dump Information” on page 182.

This topic describes:

• How to invoke Info/Analysis.
• Syntax rules for control statements.
• Each Info/Analysis function and the control statements needed to request it.
• How to end Info/Analysis.

To illustrate this information, the topic includes example sequences of control statements.

Note: If the dump with which you are working is too large to be uploaded using Info/Analysis, see
“Uploading Large Dumps From a Standalone Dump Tape” on page 18.

Submitting a Job to Invoke Info/Analysis
You invoke Info/Analysis by submitting the necessary JCL followed by control statements that request
functions. You may submit the job either in line mode by entering statements on the console, or in reader
mode by submitting a job to the system input device.

Info/Analysis requires a program area of at least 300K bytes and a 24-bit partition GETVIS area of at least
600K bytes. Thus, the partition used for the execution of Info/Analysis should have a minimum of 900K
bytes.

If user-written exits are to be used when running Info/Analysis, this size has to be adjusted accordingly.
Especially the CICS Transaction Server uses such exits; therefore, a size of at least 4M bytes is necessary
to analyze a CICS dump.

With JCL, you must specify any nonstandard system device assignments and pre-allocate and assign any
files that you require other than the system libraries. A sample of the JCL for invocation is:

© Copyright IBM Corp. 1984, 2014 175

Figure 69. Sample Job: Invoke Info/Analysis

Standard Info/Analysis Job Stream
Figure 69 on page 176 shows a sample job to invoke the Info/Analysis program (// EXEC INFOANA).
Assume that the dump sublibraries in the library SYSDUMP have already been defined and the label
information for the SYSDUMP library resides in the standard label area. Information on the SYSDUMP
library can be found under “The SYSDUMP Sublibraries” on page 11.

Once the JCL has been processed, you are at the selection level in Info/Analysis. The program reads for
your control statements. An end of input (/*) statement marks the end of these statements. To end your
job, enter an end of job (/&) statement.

Control Statement Syntax
You operate Info/Analysis by entering control statements. These control statements specify the major
functions you wish to perform (Dump Management, Dump Viewing, etc.) and the information necessary to
perform each function. This section describes the syntax rules for entering the control statements.

For a description of the syntax diagrams please read “Understanding Syntax Diagrams” on page xxiii.

Entering Control Statements
The rules for entering the control statements that request Info/Analysis functions are:

• Each card or input line may contain only one control statement.
• A control statement may begin in any column.
• Control statements and their operands may be entered in uppercase or lowercase.
• Control statements must be entered in their complete form; no abbreviations are allowed.

176 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• Each word in a control statement must be a contiguous string of characters.
• Some blanks, at least one, must appear between the words in a statement.
• A blank followed by an asterisk (*) signifies the start of a comment. If the first non-blank character in

any control statement is an asterisk, the entire statement is treated as a comment.
• Sequence numbers or other characters should not be placed in columns 73 to 80 of Info/Analysis

commands if they are not designated as a comment.

If you enter an invalid control statement in reader mode, the remaining control statements in the job are
flushed and the session is canceled. The output indicates the erroneous statement. You should correct
the statement and resubmit the job. In line mode, invalid input causes Info/Analysis to flush the control
statement. You may then reenter the statement correctly.

Common Control Statements
Every function has its own set of control statements. In this topic, the control statement descriptions are
presented by function. The same control statement may have different uses within different functions.
Therefore statements such as PRINT are described more than once. A summary of the control statements
is given under “Control Statement Summary” on page 211.

The following control statements are common to all Info/Analysis functions. They may also be entered at
the selection level; that is, when Info/Analysis is initialized and no function is currently selected.

• SELECT - invoke a function or end the Info/Analysis session
• RETURN - end the current function; return to the selection level
• DUMP NAME - specifies the name of the dump to be processed.

SELECT - Specify a Function or End Info/Analysis
To perform any function, you must first select it. Use the SELECT statement to specify the function you
wish to perform or to end your Info/Analysis session.

SELECT DUMP

MANAGEMENT

SYMPTOMS

VIEWING

OFFLOAD

ONLOAD

END

You enter a SELECT statement as follows:

SELECT DUMP ONLOAD

Once you have specified a SELECT statement, you are operating at the function level. All subsequent
statements apply to the selected function until you enter a RETURN statement.

Use SELECT END to conclude your Info/Analysis session. If you end your control statement sequence
with an end of input (/*) and end of job (/&) statement without first specifying a SELECT END or RETURN
statement, Info/Analysis ends the job as though they had been included.

RETURN - End Current Function
Use the RETURN statement to end the current function. Each function you use must be requested by a
SELECT statement and ended by a RETURN statement, before you can select another function.

RETURN

Chapter 15. Invoking Info/Analysis 177

The RETURN statement has no operands. RETURN brings you back to the selection level where you
may select another function or end your session. In the following sequence, RETURN ends the Dump
Management function:

DUMP NAME SYSDUMP.F6.DF600013
SELECT DUMP MANAGEMENT
PRINT DATA
RETURN
SELECT END

You must enter RETURN to complete one function before selecting another. If you end your control
statement sequence with an end of input (/*) and end of job (/&) statement without first specifying a
RETURN and/or SELECT END statement, Info/Analysis ends the job as if they had been included.

DUMP NAME - Specify or Add Current Dump
Specify the name of the dump you wish to process by entering the DUMP NAME statement. You must
specify a dump before you perform any Info/Analysis function except the Dump Management UTILITY or
PRINT functions and the HELP function.

DUMP NAME  dumpname

“dumpname” is a variable representing the dump name. The dump you specify on a dump name
statement is considered to be the current dump; that is, all subsequently selected functions process
that dump until you enter another dump name or until it has been deleted.

When you specify a dump, Info/Analysis searches the dump management file for the name. If it finds the
name, the dump is made current.

If the dump you specify is not identified in the dump management file and does not reside in a dump
sublibrary, Info/Analysis adds the dump name and the information “TO BE ONLOADED” to the file. A
dump must reside in one of the dump sublibraries before you can act on it using any Info/Analysis
function other than Dump Onload.

You may specify the DUMP NAME statement at the selection level. In other words, the DUMP NAME
statement may be placed:

• Immediately preceding a SELECT statement, as follows:

DUMP NAME SYSDUMP.F3.DF300010
SELECT DUMP MANAGEMENT
PRINT DATA
RETURN

• After the SELECT DUMP MANAGEMENT statement and before the next RETURN statement, as follows:

SELECT DUMP MANAGEMENT
DUMP NAME SYSDUMP.F3.DF300010
PRINT DATA
RETURN

Recommendations (Restrictions) for the Generation of Dump Names
The VSE dump routines generate dump names for ABEND dumps, IDUMPs, and SDUMPS. These system
generated dump names have the format 'Dppnnnnn', or 'Sppnnnnn', where the character 'D' identifies
dumps of the executing space, and 'S' identifies dumps of associated data spaces. The character
combination 'pp' denotes the partition identification, like BG or F7, and 'nnnnn' is a unique decimal
number between 00000 and 99999

When Info/Analysis processes a dump via the dump viewing function, it enters additional members into
the dump library to save intermediate analysis results. These dumps are named 'Maaaaaaa' or 'Xaaaaaaa',
where 'M' or 'X' replace the heading character 'D' or 'S' and aaaaaaa is the unchanged trailing portion of
the name of the analysed dump. If you have, for example, a dump named SX400002 in the dump library,
then the Infoana program will create the library members MX400002 and XX400002 for its internal use.

178 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

You define the names for stand-alone dumps or attention dumps during the onload process. Here are
some recommendations which help to build unique dump names.

• Do not use D, H, L, M, N, O, S, X, as the first character of a dump member name. These initial characters
are reserved for use by the system.

• Instead use one heading letter, for example the letter 'A' as first letter of all dump names within a
sublibrary.

• If you use a partition identification within a dump name, do not enter it in positions 2 to 3. This might
generate conflicts with system generated names of ABEND dumps, IDUMPS, or SDUMPS.

• D, O, S are used for partition dumps, memory objects and dataspaces.

Dump Management
The Dump Management function enables you to manage your dump data sets by manipulating the
contents of the dump management file. This file contains descriptive information about the dumps being
managed by Info/Analysis. You can use this information to keep track of the dumps on your system, those
you have offloaded, and those you plan to onload.

To initiate Dump Management, use the following statement:
SELECT DUMP MANAGEMENT

After this selection, specify the desired combination of the following control statements:
UTILITY -

initialize a new or reallocated dump management file to contain the list of dumps managed by Info/
Analysis.

DELETE -
erase the current dump from the dump sublibrary, if it resides there, and delete information about the
dump from the dump management file.

PRINT DATA -
print the contents of the dump management file.

Info/Analysis responds by searching the dump sublibraries for dumps that are not yet identified in the
dump management file. For each of these dumps, if any, the routine adds identifying information to the
file.

UTILITY - Initialize Dump Management File
UTILITY

The UTILITY statement is intended for the system programmer at your installation who has responsibility
for Info/Analysis. UTILITY initializes the dump management file at installation time or reinitializes the file
when it is subsequently reallocated with more or less space.

The dump management file is allocated during installation of your VSE system. The size of the file is big
enough to hold some hundred dump names. (For example, the DMF allocated on a 3380 disk is sufficient
for about 1000 dump names.) For performance reasons you should not increase the size of the DMF.
Instead it is recommended that you clean-up the dump library from time to time, and delete the dumps
which are no more used or offload those dumps to tape which may be used at a later time.

You initialize the dump management file with the following statements:

SELECT DUMP MANAGEMENT
UTILITY
RETURN
SELECT END

UTILITY sets up the control information in the file for use by the dump management function. The control
record indicates the number of dumps currently being managed and the maximum number that will fit.

Chapter 15. Invoking Info/Analysis 179

DELETE - Delete Current Dump
You can erase a dump, and delete its corresponding information in the Info/Analysis dump management
file, by using the DELETE statement.

DELETE

The example in Figure 70 on page 180. shows a job to delete two dumps in one dump management run.
Note, that the DUMP NAME statement is valid prior as well as after the SELECT DUMP MANAGEMENT
statement.

If you specify DELETE and the current dump does not reside in the library (that is, it has never been
onloaded or it has been offloaded), information about the dump is deleted from the dump management
file. If a copy of the dump exists on tape, it is your responsibility to dispose that tape.

Figure 70. Sample Job: Delete Dumps

Info/Analysis indicates the successful execution of the DELETE function with a message (DUMP
dumpname DELETED).

If you want to retain the information about the dump in the dump management file, you can use the
SELECT DUMP OFFLOAD operation with the BYPASS operand. Please see Table 16 on page 200, which
shows a summary of the OFFLOAD and DELETE functions.

PRINT - Print List of Managed Dumps
Use the PRINT statement to print the contents of the dump management file.

PRINT DATA

Output from the PRINT statement is a list of the dumps being managed by Info/Analysis. For each dump,
one line of information is printed. A sample job is shown in Figure 71 on page 181.

180 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 71. Sample Job: List Managed Dumps

An output example of the PRINT DATA function is shown in Figure 72 on page 181.

 DUMP NAME RELATED DUMP ONLINE DATE/TIME TAKEN VOLID DATA SPACE
 NAME
 SYSDUMP.BG.DBG00000 SBG00006 Y 10/11/21 11:10:00 VOLID0
 SBG00007
 SBG00008
 SYSDUMP.BG.DBG00001 --NONE-- Y 10/11/21 11:11:00 VOLID1
 SYSDUMP.BG.DBG00002 --NONE-- Y 10/11/21 11:12:51 VOLID2
 SYSDUMP.BG.DBG00003 SBG00009 Y 10/11/21 11:13:00 VOLID3
 SBG00010
 SYSDUMP.BG.DBG00004 --NONE-- Y 10/11/21 11:15:53 VOLID4
 SYSDUMP.BG.DBG00005 --NONE-- Y 10/11/21 11:16:54 VOLID5
 SYSDUMP.BG.SBG00006 DBG00000 Y 10/11/21 11:10:10 VOLID6 DATSPAC1
 SYSDUMP.BG.SBG00007 DBG00000 Y 10/11/21 11:10:20 VOLID7 DATSPAC2
 SYSDUMP.BG.SBG00008 DBG00000 Y 10/11/21 11:10:30 VOLID8 DATSPAC3
 SYSDUMP.BG.SBG00009 DBG00003 Y 10/11/21 11:13:20 VOLID9 DATSPAC4
 SYSDUMP.BG.SBG00010 DBG00003 Y 10/11/21 11:13:40 VOLI10 DATSPAC5

Figure 72. Example: Dump Management PRINT DATA Output

The column headings represent:

• DUMP NAME - The identifier of the dump.
• RELATED DUMP - Displays the correlation between an ABEND or stand-alone dump and its data space

dumps:

SYSDUMP.xx.Dxxnnnnn denotes an ABEND or stand-alone dump. SYSDUMP.xx.Sxxnnnnn denotes a
data space dump.

Note that in the column RELATED DUMP, the library and sublibrary of the dump is not displayed, since it
is the same as in the corresponding DUMP NAME column.

For lines containing an ABEND or stand-alone dump in the column DUMP NAME, the column RELATED
DUMP contains the names of the data space dumps that were created with the ABEND or stand-alone
dump. Vice versa, for lines containing a data space dump in the column DUMP NAME, the second
column contains the name of the ABEND or stand-alone dump which was taken together with the data
space dump.

If the entry in the column RELATED DUMP contains --NONE--, the named dump did not access any data
space or the data spaces are not indicated in the optional symptoms.

Information Analysis extracts this information from the optional symptoms of the symptom record.

When you delete a dump without deleting all related dumps, this overview listing becomes inconsistent,
which means that there are no longer lines for all related dumps.

• ONLINE - An indication ("Y", for yes) if the dump is currently stored in the dump sublibrary.
• DATE/TIME TAKEN - The date and time the dump was created or, if the actual date and time are not

available, the date and time the dump was identified to Info/Analysis.

Chapter 15. Invoking Info/Analysis 181

"TO BE ONLOADED" indicates that the dump is not in the dump sublibrary (for example a stand-alone
dump named to the Info/Analysis management, but not yet onloaded).

• VOLID - The identifier of the tape volume to which the dump has been offloaded or from which the
dump has been onloaded, if any. If a dump has been offloaded and then onloaded again, Info/Analysis
retains the volume id in the dump management file. Consequently, a dump may be in a dump sublibrary
("Y" in ONLINE field) and still have a VOLID.

• DATA SPACE NAME - The name of the data space (as specified in the DSPSERV macro).

Printing Dump Information
The following sections describe how Info/Analysis is used to print information from the dumps stored on a
tape or disk, or in a dump sublibrary.

The contents of a given dump depends on the function which created the dump. But the main form is
the same for all dump requesting functions which are able to store dumps on tape, disk, or in a dump
sublibrary. The functions described in the subsequent sections can be used for any type of dump stored in
a dump sublibrary.

Figure 73 on page 182 gives an overview of the various parts of a dump. Info/Analysis can be used to print
these parts selectively.

Figure 73. Overview: Dump Contents

Dump Symptoms
The Dump Symptoms function prints the failure information that is contained in the dump symptom
record. You may use this information to identify duplicate problems locally and in an IBM maintenance
data base. To initiate Dump Symptoms, enter the following statement:

SELECT DUMP SYMPTOMS

After making this selection, you may print the symptoms of the current dump using the PRINT statement.

182 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

PRINT - Print Dump Symptoms
PRINT DATA

Use the PRINT statement to print sections 1 through 5 of the symptom record of the current dump. For a
description of a symptom record, see Appendix A, “Symptom Records Overview,” on page 213.

Figure 74 on page 183 shows a sample print dump symptoms job.

Figure 74. Sample Job: Print Dump Symptoms

Symptom Part Example
“Printed Output of the Main Dump File of a Stand-Alone Dump” on page 205 shows an output example of
a print dump symptoms operation.

ENVIRONMENT:
 CPU MODEL 2097
 CPU SERIAL 000018
 TIME 12:25:48:00
 DATE 12/10/22
 SYSTEM ID 5686CF906
 RELEASE 5
 FEATURE 1C
 DUMPTYPE SADUMP
 PROBLEM NUMBER

REQUIRED SYMPTOMS:

OPTIONAL SYMPTOMS (SDB):

OPTIONAL SYMPTOMS (NON-SDB):
 DATE_NOT_AVAILABLE
 MACHINE=Z
 MODE=PAGING
 ACTIVE_SPACE_ID=S
 DUMPED_DATA_FROM_SPACE_ID=S
 PMR_ADDRESS_SPACE_ID=00
 DUMPED_DATA=SUPERVISOR+SVA

Figure 75. Example: Output of Print Dump Symptoms

Symptom Part Description
ENVIRONMENT

Chapter 15. Invoking Info/Analysis 183

The environment section of the symptom record describes the environment at the time the dump was
taken. This data is provided by the dumping system component.

All of the information in the environment section is self-explanatory except the dump type entry, which
may be:
SCPREQ

for ABEND dumps
IDUMP

for internal VSE/Advanced Functions dump requests
OPRREQ

for DUMP command dumps
SADUMP

for stand-alone dumps
SDUMP

for SDUMP and SDUMPX macro dumps

REQUIRED SYMPTOMS

Required symptoms are those considered essential to your problem analysis effort:

• The symptoms for ABEND dumps are described below.
• DUMP command dumps only provide the DUMP command itself (as typed in at the console).
• SDUMPs and IDUMPs contain the symptoms that were provided at the respective macro invocation.
• Stand-alone dumps do not contain required symptoms. Details on the dump contents can be obtained

by executing the stand-alone dump analysis routine IJBXDBUG, for example.

Each symptom is headed by a prefix; the specific data is connected by a slash. Depending on the cancel
code, the following entries might appear in this section:
AB/Sxxyy

ABEND (cancel) code

xx ... first cancel code
yy ... second cancel code or 00 if none exists

Example: AB/S0900

If a program check occurs, the symptom records contain two AB/Sxxyy entries.

• The entry for the ABEND code, AB.
• An entry in which xx is set to 00 and yy contains the program check interrupt code. For example,
AB/S0001.

The following symptoms are additional information to the various cancel codes.

ADRS/address
Reflects the absolute address of the instruction following the failing one if the failing address is
outside the LTA, SVA, or partition areas (the address is extracted from the PSW).

MS/xxxxx
Message number

Example: MS/0V15I

OFFS/offset
Offset of the instruction following the failing one relative to the phase start address, if the phase
resides in the LTA or in the SVA, or relative to the partition begin address (the address is calculated
from the PSW).

OPCS/aaaaaa
aaaaaa Represents either

184 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SVCnn (nn = SVC code) or
CODEmm (mm = program interruption code)

An entry for OPCS is generated only if an illegal SVC or if a program check occurs. If an illegal SVC
occurs, the OPCS entry contains the failing SVC code in decimal. If a program check occurs, the entry
contains the program interrupt code.

PIDS/comp.id
Component identifier

Example: PIDS/5686032V2

REGS/xxyyy

• xx is the register number in hex which contains a value, less than and within 4K (K=1024 bytes) of
the PSW address at the time of failure. This register contains an address that is close to the point of
failure.

• yyy is the difference between the PSW and the register address.

Example: REGS/0C14E

0C number of the
 general purpose register X'C'
14E is the difference between the
 PSW address minus the contents
 of register (C).

RIDS/Caaaaaaaa
aaaaaaaa stands for either:

• The name of a phase, if the failing instruction is in the SVA or LTA.
• The name of the active job that received the error, if the error occurred in a partition.

Example: RIDS/CICSICCF

VALU/Caaaaaaaa
aaaaaaaa represents either:

• phase name (for example, combined with AB/S2200 phase not found)
• SYSnnn (for example, together with AB/S2600 SYSnnn not assigned).

REQUIRED SYMPTOMS FOR A MEMORY OBJECT DUMP

A memory object dump starts with its symptom records, following by maximum 8K data. The symptom
records are:
ADDRESS_SPACE=

address space name
REG=xxyyyyyyyyyyyyyyyy

REG shows the register containing the address that the memory object dump is around.
xx is the register number (hexadecimal).
yyyy… is the content of the register (a 64-bit memory object address).

START_ADDRESS=
start address of the memory object

END_ADDRESS=
end address of the memory object

SHARED=
YES|NO

PAGE_FIXED=
YES|NO

Chapter 15. Invoking Info/Analysis 185

FETCH_PROTECTED=
YES|NO

STORAGE_KEY=
storage key

In addition, the following information is shown above the dump data:
FAILED ADDRESS IN MEMORY OBJECT

the 64-bit memory object address contained in the register
DUMP BEGIN

memory object address - '1000'X
DUMP END

memory object address + 'FFF'X

This information is shown only for SYSLST.

OPTIONAL SYMPTOMS (SDB)

SDB stands for structured data base. For information on the symptom record please refer to Appendix A,
“Symptom Records Overview,” on page 213.

These symptoms (SDB) may be provided by the function which produced the dump or by subsequently
executed analysis routines. These additional symptoms apply to the problem and may be present if
the problem recurs. They are in SDB format; for example, the component level may be included in this
section.

OPTIONAL SYMPTOMS (NON-SDB)

These symptoms (non-SDB) are optionally provided by the dump originating component or by
subsequently executed analysis routines. They are free-form symptoms that may be used in problem
analysis but do not fit into the SDB format.

Note, that a symptom added by an analysis routine contain a preceding plus sign (+).

Optional (Non-SDB) Symptoms of a Stand-Alone Dump
In addition to the symptoms described above, a symptom record of a stand-alone dump shows the
following entries (see also “Printed Output of the Main Dump File of a Stand-Alone Dump” on page 205):
ACTIVE_SPACE_ID

which identifies the address space that was active at the time the dump was taken.
DATA_DUMPED_FROM_SPACE_ID

which indicates the address space from which this dump data file was dumped.
JOB_NAME or DATA_SPACE_NAME

which indicates the job or data space name for this dump file.

DUMPED_DATA
which shows what data is in this dump file.

Optional (Non-SDB) Symptoms of an ABEND Dump
The optional symptoms part of a partition dump shows whether there are any appended data space
dumps or not. The symptom gives a list of all data space names which belong to the dumped partition:

DATA_SPACES=(aaaa,bb,cccccc)
where
 aaaa,bb,cccccc
is the name of the address space or data space.

The symptom record of the data space contains the following symptoms:

DATA_SPACE=aaaa
ALET=alet
RELATED_ABEND_DUMP=DF400001

186 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Dump Viewing
Using Dump Viewing you may print dump data and analysis summary data. You may also call an analysis
routine for execution. You cannot locate particular data or mask data for security purposes. To initiate
Dump Viewing, enter the following statement:

SELECT DUMP VIEWING

After making this selection, you may perform Dump Viewing functions by specifying the following control
statements:

• PRINT - print dump data
• CALL - initiate an analysis routine

PRINT - Print Dump Data
Use the PRINT statement to print dump data or analysis summary data. You must specify either the area
of the dump you wish to print in hexadecimal mode or that you wish to print all formatted and all analysis
summary data. The operands for the PRINT statement are mutually exclusive.

PRINT from_addr

from_addr  to_addr

from_addr END

from_addr FOR  length

FORMAT

The PRINT control statement for Dump Viewing requires either an address range or the FORMAT operand.
The results of PRINT with the addr-range operand are printed in traditional hexadecimal format with
EBCDIC translation (refer to “Printing Selective Dump Information” on page 188). The FORMAT operand
prints the analysis summary if stored during a previous analysis routine run, and formatted dump display
information (refer to “Printing Formatted Areas” on page 188). This data includes control blocks, text
data, hexadecimal data, and control block linkage descriptors as defined in section 6 of the symptom
records. For a description of the symptom records, see Appendix A, “Symptom Records Overview,” on
page 213.
PRINT

from_addr
‘from-addr’ marks the beginning of the 8192 byte area to be printed.

from_addr to_addr
‘from_addr’ marks the beginning of the area to be printed and ‘to_addr’ marks the end.

from_addr END
‘from_addr’ marks the beginning of the area to be printed and ‘END’ indicates that the data up to
the high address end of the dumped storage is to be printed.

from_addr FOR length
‘from_addr’ marks the beginning of the area to be printed and ‘length’ represents the number of
bytes in hexadecimal which are to be printed. For example, if you specify 10 as a length, 16 bytes
are printed.

All addresses are 1- to 4-byte hexadecimal values representing valid addresses in the dump.
Leading zeros are not required for an address specification.

FORMAT
causes the data to be printed with correlated field names and other identifiers. The data printed is
determined by information in section 6 of the symptom records.

For print job examples, see Figure 76 on page 188 and Figure 77 on page 189.

Chapter 15. Invoking Info/Analysis 187

Printing Selective Dump Information
The PRINT statement of the Info/Analysis SELECT DUMP VIEWING function can be used to print dump
information selected by addresses.

All addresses and the length setting are 1- to 8-character hexadecimal values representing valid
addresses in the dump. Leading zeros are not required for an address specification. The specification
of

PRINT 0 END

for example, would cause the whole dump data to be printed.

The example in Figure 76 on page 188 shows the:

• Definition of the dump SYSDUMP.F3.DF300010 to be processed.
• Definition of the selective print operation for dump data, beginning at the address X'302000' and ending

at dump end.

Figure 76. Sample Job: Print Selected Dump Areas

Printing Formatted Areas
The printed output of a dump is called formatted if selected system information is extracted and printed
separately.

The example in Figure 77 on page 189 shows how to print the dump SYSDUMP.F3.DF300010 formatted
on the device at SYSLST.

188 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 77. Sample Job: Print a Dump in Formatted Form

CALL - Initiate Analysis Routine
Use the CALL statement to invoke an analysis routine.

CALL  routine_name

The routine_name is required on a CALL statement and must be the name of an executable routine.
These routines may be provided by system components or by your location. It is the responsibility of your
location to maintain an external routines file containing the names of executable routines. Consult your
system programmer for the names of these routines.

A call job example is given in Figure 78 on page 190. It shows a job which

• Selects the dump SYSDUMP.BG.ADUMP10;
• Calls the analysis routine IJBXCSMG.
• Calls the analysis routine IJBXDBUG.
• Calls the analysis routine IJBXSDA.

Analysis routines can be used to analyze the stored dumps. For example, the routine IJBXDBUG (shipped
as part of VSE/Advanced Functions) analyzes the output of stand-alone dumps and adds the analysis
information to the dump sublibrary.

For a description of the analysis routines available with VSE, see “The Stand-Alone Dump Analysis
Routine IJBXCSMG” on page 190, “The Stand-Alone Dump Analysis Routine IJBXDBUG” on page 190 and
“The Stand-Alone Dump Analysis Routine IJBXSDA” on page 197.

Chapter 15. Invoking Info/Analysis 189

Figure 78. Sample Job: Call the Analysis Routines IJBXCSMG, IJBXDBUG and IJBXSDA

The Stand-Alone Dump Analysis Routine IJBXCSMG
IJBXCSMG is an exit routine of Info/Analysis which processes the console events by redisplaying about
the last most recent 20 messages and inputs including the timestamp and the console name where the
source is coming from. IJBXCSMG prints the last console entries on SYSLST.

Activating the routine
The routine must be contained in the Info/Analysis external routines file before you can call the routine.

Start execution of the analysis routine with the Info/Analysis statements:

SELECT DUMP VIEWING
CALL IJBXCSMG

Figure 78 on page 190 illustrates the activation of an analysis routine.

The Stand-Alone Dump Analysis Routine IJBXDBUG
The analysis routine IJBXDBUG analyses the output of a stand-alone dump onloaded to a dump
sublibrary.

When IJBXDBUG receives control from Info/Analysis, it requests portions of dump data using Info/
Analysis dump access routines. During analysis of the dump data, information from the dump is extracted
and written back to the dump sublibrary for further Info/Analysis operations.

Activating the Routine
The routine name IJBXDBUG must be contained in the Info/Analysis external routines file before you can
call the routine.

The statements

190 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SELECT DUMP VIEWING
CALL IJBXDBUG

of Info/Analysis start execution of the analysis routine.

Figure 78 on page 190 illustrates the activation of an analysis routine.

Output of the Routine
The output of the analysis routine may contain the following:

• General information.
• Specific information.

While general analysis information is provided in every dump, specific analysis information concerns only
particular error situations. The output of the analysis routine is stored in the dump sublibrary. It can be
printed together with formatted dump areas with the operation:

DUMP NAME
SELECT DUMP VIEWING
PRINT FORMAT

General Analysis Information
The general analysis information, which is provided for each dump, is not dependent on certain error
conditions.

Header entry
This contains data as follows:

• Service level identifier
• Supervisor ID
• Supervisor name
• Date the dump was taken
• Dump type
• System status
• Current task
• Owner of LTA and transient name (if active)

Address Validation
When an address has been located or calculated during the analysis process of the dump data, it is
validated. IJBXDBUG checks whether the address is

• Within the range of high and low limits of the affected areas:

– Supervisor
– Partition
– SVA.

When an address is found to be invalid, the address and information about the expected contents of the
address are added to the dump. An address validation entry might look like this:

INVALID ADDRESS FF0002 ENCOUNTERED DURING ANALYSIS.
ADDRESS OF: PUB TABLE FROM BG COMREG

Chapter 15. Invoking Info/Analysis 191

Specific Analysis Information
The data which is selected, analyzed, and finally stored in the dump sublibrary depends on the error
situation. The following error conditions can be recognized by the IJBXDBUG routine:

• Hard Waits

– WAITFFA
– WAITFFB
– WAITFFF
– WAITFF9
– WAITFFE
– WAITFD0
– Other Hard Waits

• Soft Waits or System Running (Loop)

Hard Wait Dump Entries
For all dumps that indicate a hard wait, the routine supplies

• Wait state code
• Hard wait reason code
• General purpose registers at the time the failure occurred
• Access registers at the time the failure occurred

Besides this information, the following data, depending on the specific hard wait code, is provided:

For WAITFFA, WAITFFB, or WAITFFF

• Type of program check
• Program check address
• Instruction at the program check address
• Overwritten instruction information (if applicable)
• Name of transient which program-checked and the displacement within the transient (if applicable)
• Transient areas checked are LTA, PTA, DOC, and RTA
• Name of the SVA phase which program-checked and the displacement within the phase (if applicable)
• Registers at the time of failure
• 64 bytes of data pointed to by each register

For WAITFF9 or WAITFFE

• Last device to which a sense was issued
• Sense data address
• Sense data
• Registers at the time of failure
• 64 bytes of data pointed to by each register.

For WAITFD0

• IPL cancel code
• IPL cancel reason code
• Registers at the time of the failure
• 64 bytes of data pointed to by each register

For other Hard Waits

192 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

• Registers at the time of the failure
• 64 bytes of data pointed to by each register

Soft Waits or System Running
On all dumps indicating a soft wait or a system running condition, the status of all active devices (non-
telecommunication) and active tasks is supplied. Information is provided for active devices, excluding
local telecommunication devices. A device is active if:

• It is flagged busy in the PUB table
• It has a channel queue entry queued to the PUB table.

A task is active if it is not unbatched, stopped, or flagged not active in the TIB (Task Information Block).
Tasks of VSE/POWER are classified as not active if VSE/POWER has flagged the task as waiting for work.
The following information is provided:

Device Status Information

• Device address
• Device type
• Task-id of first channel queue entry
• I/O request status (I/O started or not started)
• Reason I/O not started (CSW stored, intervention, etc.)
• CSW from channel queue entry if interrupt has been presented
• A list of additional tasks with I/O queued for this device
• The device, that last presented an interrupt to the system

Task Status Information

• Task name
• Serviced task name
• Main task name for subtask
• Status
• What the task is waiting for
• Task information (LTA active, ICCF pseudo partition, EOT active, etc.)
• Subsystems running in the partition

Output Examples
Examples of IJBXDBUG output are given:

• For a hard wait X'FFF' - See Figure 79 on page 194.
• For a system loop - See Figure 80 on page 195.

Chapter 15. Invoking Info/Analysis 193

SYSTEM STATUS: HARD WAIT HARD WAIT CODE: FFF
CURRENT TASK: AR TASK

HARD WAIT REASON CODE: 24 - PROGRAM CHECK IN SUPERVISOR

PROGRAM OLD PSW INDICATES 31 BIT ADDRESSING MODE.

PROGRAM CHECK TYPE: 0010 SEGMENT TRANSLATION EXCEPTION
ADDRESS OF PROGRAM CHECK: A0D1E4E8
PROGRAM CHECK INSTRUCTION: 58600014

SYSTEM STATUS: HARD WAIT
CURRENT TASK: AR TASK

DEVICE ANALYSIS FOR ACTIVE NON TP DEVICES ONLY:

DEV TYPE TSK I/O REQUEST STATUS AND INFORMATION
--- ---- --- ---
009 3277 N/A LAST I/O INTERRUPT WAS FROM THIS DEVICE
(NO BUSY DEVICES AND NO DEVICES WITH I/O QUEUED)

TASK ANALYSIS FOR ACTIVE TASKS ONLY:

TASK NAME STATUS TASK INFORMATION
------------ -------- ---
CMT TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
DSP TASK WAITING ON DISPATCHER SERVICE
CST TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
HCF TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0005D608
FCP TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
AR TASK READY TO RUN
F1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0027C040
 SUB SYSTEMS IN THIS PARTITION: POWER
 LIBRARIAN SERVICE ACTIVE
F2 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SUB SYSTEMS IN THIS PARTITION: ICCF CICS IUI
 LIBRARIAN SERVICE ACTIVE
SYSDUMP.BG.SAHW0001 PAGE 000011

 SVC RETRY INDICATOR ON SVC: 84 (HEX)
F3 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0028FBB8
 SUB SYSTEMS IN THIS PARTITION: VTAM
 LIBRARIAN SERVICE ACTIVE
FB MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T0099 FB SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00503CA0
T009A FB SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009B F1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00509DF8
 LIBRARIAN SERVICE ACTIVE
T009C F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009D F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009E F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 002985D4
T009F F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00555698
T00A0 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00A1 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00A2 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00A3 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00A4 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00A5 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00A6 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00A7 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00A83538

Figure 79. Example: WAITFFF Analysis Report

194 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

SYSTEM STATUS: RUNNING PSW: 04040000 00000000 00000000 0020D6E4
CURRENT TASK: AR TASK

AREA POINTED TO BY PSW: SVA PHASE NAME: $IJBAR

DEVICE ANALYSIS FOR ACTIVE NON TP DEVICES ONLY:

DEV TYPE TSK I/O REQUEST STATUS AND INFORMATION
--- ---- --- ---
F00 (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED
F02 (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED
F04 (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED
F06 (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED
F08 (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED
F0A (E0) T00 I/O STARTED, AWAITING INTERRUPT
 DEVICE END POSTING REQUIRED

TASK ANALYSIS FOR ACTIVE TASKS ONLY:

TASK NAME STATUS TASK INFORMATION
------------ -------- ---
CMT TASK WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
DSP TASK WAITING ON DISPATCHER SERVICE
CST TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
HCF TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0005CD18
FCP TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
T1F TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
AR TASK READY TO RUN
BG MAIN TASK WAITING FOR VSE/POWER SPOOLING
F1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0028C040
 SUB SYSTEMS IN THIS PARTITION: POWER
 LIBRARIAN SERVICE ACTIVE
F2 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SUB SYSTEMS IN THIS PARTITION: ICCF CICS IUI
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
F3 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 002B4BB8
 SUB SYSTEMS IN THIS PARTITION: VTAM
 LIBRARIAN SERVICE ACTIVE
F4 MAIN TASK WAITING FOR PARTITION GETVIS
 TASK IS ACTIVE IN LTA
 TASK IS LTA OWNER
 TERMINATOR ACTIVE FOR TASK
 EOT CLEANUP IN PROCESS
 LIBRARIAN SERVICE ACTIVE
F5 MAIN TASK WAITING FOR LOG. TRANSIENT AREA
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
F9 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SUB SYSTEMS IN THIS PARTITION: CICS IUI
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
FB MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
S1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
I1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 JOB CONTROL ACTIVE IN THIS PARTITION
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
R1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 006EE0EC
 LIBRARIAN SERVICE ACTIVE
R2 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)

Figure 80. Example: System Loop Analysis Report (1 of 3)

Chapter 15. Invoking Info/Analysis 195

U1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
R3 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 JOB CONTROL ACTIVE IN THIS PARTITION
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SUB SYSTEMS IN THIS PARTITION: CICS IUI
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
O1 MAIN TASK WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SUB SYSTEMS IN THIS PARTITION: CICS IUI
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T0099 FB SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00503BA8
T009A FB SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009B FB SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009C F1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0050A210
T009D F1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00501838
 LIBRARIAN SERVICE ACTIVE
T009E F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T009F F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00A0 F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 002BB5D4
T00A1 F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0054BA98
T00A2 F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00543070
T00A3 F3 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005430D0
T00A4 I1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00A5 R2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005FBCC4
T00A6 R2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0054D04C
T00A8 I1 SUB WAITING FOR LOG. TRANSIENT AREA
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00A9 I1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005C2358
T00AA F9 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00AB F9 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00AC R2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005FB20C
T00AD F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00AE F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00AF F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00B0 F2 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00B1 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00B2 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00B3 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00A83538
T00B4 F2 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00B5 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00547E10
 SYSTEM CODE ACTIVE (LIBR)
T00B6 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0052BD90
T00B7 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0052BD88
T00B8 U1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00B9 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SYSTEM CODE ACTIVE (LIBR)
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00BA S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005CA990
 SYSTEM CODE ACTIVE (LIBR)
T00BB S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005B8C10
T00BC S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005B8C08
T00BD F9 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00BE T1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)

Figure 81. Example: System Loop Analysis Report (2 of 3)

196 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

T00BF F9 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00C0 T1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00C1 T1 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00C2 F9 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00C3 F9 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00C4 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00644990
 SYSTEM CODE ACTIVE (LIBR)
T00C5 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005BFE90
T00C6 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 005BFE88
T00C7 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 006B0990
 SYSTEM CODE ACTIVE (LIBR)
T00C8 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00648F10
T00C9 S1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00648F08
T00CA O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 CONSOLE REQUEST PENDING
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00CB O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00CC O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00CD O1 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00CE O1 SUB WAITING FOR LOG. TRANSIENT AREA
 SVC RETRY INDICATOR ON SVC: 02 (HEX)
T00CF O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00D0 O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00D1 T1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 84 (HEX)
T00D3 I1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0054609C
T00D5 I1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 0052012C
 LIBRARIAN SERVICE ACTIVE
T00D6 O1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00D7 F9 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00D8 I1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 SVC RETRY INDICATOR ON SVC: 1D (HEX)
T00DB T1 SUB WAITING FOR I/O, ECB OR TECB CCB/ECB ADDRESS: 00000000
 LIBRARIAN SERVICE ACTIVE
 SVC RETRY INDICATOR ON SVC: 84 (HEX)

Figure 82. Example: System Loop Analysis Report (3 of 3)

The Stand-Alone Dump Analysis Routine IJBXSDA
The analysis routine IJBXSDA formats the contents of the SDAID buffer in a stand-alone dump, if SDAID
was active when the dump was taken. IJBXSDA prints the trace entries on SYSLST.

Activating the Routine
The routine name IJBXSDA must be contained in the Info/Analysis external routines file before you can
call the routine.

Start execution of the analysis routine with the Info/Analysis statements:

SELECT DUMP VIEWING
CALL IJBXSDA

Figure 78 on page 190 illustrates the activation of an analysis routine.

Dump Offload
Dump Offload places a dump file that resides on the dump library onto tape for later retrieval. You may
choose whether or not to maintain the copy that is on the dump library; the default is to erase the dump.
To initiate Dump Offload, use the following statement:

SELECT DUMP OFFLOAD

After making this selection, you may offload the current dump by specifying any of the following control
statements that are necessary:

• VOLID - specify the output volume and the logical unit number

Chapter 15. Invoking Info/Analysis 197

• BYPASS - skip the write-to-tape operation
• ERASE NO - does not delete the library copy of the dump

Dump Offload is valuable if you need to increase the available online space. Dump Offload does not
remove the information about the dump from the dump management file.

An example of a dump Offload job is given in Figure 83 on page 199.

VOLID - Specify Output Volume
Use the VOLID statement to specify the identifier of the output tape.

VOLID  volume_id
SYSnnn

The volume_id is a 6-character alphameric value that is added to the entry for the current dump
contained in the dump management file. The VOLID statement is required if the dump you are offloading
has not been previously onloaded or offloaded.

For subsequent offloads of the same dump, Info/Analysis can retrieve the volume_id from the dump
management file. To override the saved volume, use the VOLID statement. The most recent VOLID is the
one saved in the dump management file.

The logical unit number (SYSnnn) can be assigned to a physical tape address via the job control ‘ASSGN’
statement. If you do not define a logical unit number allocation is done automatically by the system. The
first available unit will be allocated and a message issued for the tape to be mounted on this unit.

BYPASS - Skip Offload
Use the BYPASS statement to free the library space used by the dump without writing the dump to tape.
BYPASS is allowed only if a valid offloaded copy of the dump exists; that is, if both of the following
conditions are met:

• The current dump has been previously offloaded, but is still in the library, and
• The current dump has not been modified by an analysis routine since it was last offloaded.

BYPASS

When BYPASS is processed, Info/Analysis checks for the above conditions. If they are not met, the offload
function is not performed.

The DUMP Offload BYPASS statement and the Dump Management DELETE statement differ in the
following ways:

• BYPASS checks for a copy of the dump on tape. DELETE does not.
• DELETE removes references to the dump from the dump management file. BYPASS does not.

Thus, use Dump Management with DELETE only if you no longer need a dump. Use Dump Offload with
BYPASS if you wish to remove a dump from the dump library but want to maintain a copy on tape and
keep information about the dump in the dump management file.

The BYPASS and ERASE NO statements are contradictory and thus mutually exclusive.

ERASE - Delete or Retain Library Copy of Dump
The ERASE statement specifies whether or not Info/Analysis should delete the dump library copy of the
dump when doing an offload.

ERASE
YES

NO

198 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

If you want to maintain a copy of the dump on the dump library as well as on tape, specify ERASE NO.
ERASE YES is the default. Therefore, if you specify ERASE, ERASE YES, or do not specify the ERASE
control statement during Dump Offload, Info/Analysis erases the dump from the dump library after a copy
is offloaded to tape.

By specifying ERASE NO, you can offload more than one copy of the dump. For example, you may offload
a copy of the dump, then run analysis routines, then offload the modified copy. The ERASE statement
updates the dump management file with offload information.

BYPASS and ERASE NO are contradictory and thus mutually exclusive statements.

Offloading a Dump to Tape
Figure 83 on page 199 shows how to offload a dump to a tape, erase the copy in the dump sublibrary and
update the Info/Analysis dump management file.

Figure 83. Offloading a Dump to Tape

If the tape unit is not defined via the ‘ASSGN’ and ‘VOLID’ statements during the OFFLOAD process, Info/
Analysis searches for a free tape drive and issues a volume mount request message (MOUNT VOLUME
volumename ON UNIT xxx).

Info/Analysis indicates the successful execution of the OFFLOAD function with a message (DUMP
dumpname OFFLOADED...).

SELECT DUMP OFFLOAD versus SELECT DUMP MANAGEMENT DELETE
In comparison to the SELECT DUMP OFFLOAD the SELECT DUMP MANAGEMENT DELETE operation
described in “Dump Management” on page 179 has the following functions:

• Erases the dump from the dump sublibrary;
• Erases the information about the dump from the dump management file.

Chapter 15. Invoking Info/Analysis 199

Table 16 on page 200 summarizes the functions of the SELECT DUMP OFFLOAD and the SELECT DUMP
MANAGEMENT DELETE operation and shows the differences between these two operations.

Table 16. Summary: SELECT DUMP OFFLOAD and DELETE Operation

Dump written to tape
Information kept in
Dump Management File

Dump erased from
Sublibrary Info/Analysis Function

YES YES YES OFFLOAD without
additional operands

YES YES NO OFFLOAD with ERASE
NO specified

NO YES YES OFFLOAD with BYPASS
specified

NO NO YES DELETE

Dump Onload
Dump Onload copies dumps which reside on tape or disk into the dump library so that they can be further
processed by Info/Analysis. To initiate Dump Onload, use the following statement:

SELECT DUMP ONLOAD

After making this selection, you may onload the current dump by entering the VOLID and FILE control
statements if necessary.

An example of a dump Onload job is given in Figure 84 on page 202.

VOLID - Specify Input Volume

Onloading a Dump from Tape
Use the VOLID statement to specify the volume identifier and (optional) the logical unit number of the
tape on which the current dump resides.

VOLID  volume_id
SYSnnn

The volume_id is a 6-character alphameric value that is added to the entry for the current dump
contained in the dump management file. The VOLID statement is required if you are onloading a dump for
the first time.

For subsequent offloads and onloads of the dump, Info/Analysis retrieves the volume_id from the dump
management file. To override the saved value, use the VOLID statement. The most recent VOLID is the
one saved in the dump management file.

The logical unit number (SYSnnn) can be assigned to a physical tape address via the job control ‘ASSGN’
statement. If you do not define a logical unit number allocation is done automatically by the system. The
first available unit will be allocated and a message issued for the tape to be mounted on this unit.

Specification of SYSnnn is highly recommended to prevent difficulties in mixed tape environments.

Onloading a Stand-Alone Dump from Disk
Use the VOLID statement with the DISK operand to specify the disk device on which the current dump
resides.

VOLID DISK SYSnnn

200 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

DISK indicates that the stand-alone dump is to be copied from the disk device with the logical unit
number SYSnnn. Note that SYSnnn is mandatory when onloading a dump from disk.

FILE - Specify Dump File on Multiple-Dump Device
If the tape or disk you are using contains more than one dump file, use the FILE statement to specify the
specific dump file you want to onload. In this way, you may onload more than one dump from a tape or
disk during a session. Keep in mind that you must leave Dump Onload and specify another dump name
before onloading the next file.

FILE  file_ number

LAST

The default for the FILE statement is “1” if the file statement is omitted. Therefore, if you are onloading
a dump from a single file tape/disk or if you are onloading the first file from a multiple-file tape/disk,
you need not specify the FILE statement. Also, for the main dump file of a stand-alone dump, the FILE
statement need not be specified.

The file number must designate an existing file on the input device. This sequence number is used for
searching by Dump Onload when the input file is opened.

When multiple dumps are onloaded during an Info/Analysis session, their file numbers do not have to be
in ascending order.

The LAST parameter indicates that this is the last file to be onloaded from the current volume. Specifying
LAST de-allocates the device from Info/Analysis.

Loading a Dump into a Dump Sublibrary
Dumps can be stored on tape or disk as output of the following functions:

• DUMP command (tape)
• Standalone Dump Program (tape or disk)
• Info/Analysis Offload operation (tape)

Before you can process these dumps, they have to be onloaded into a dump sublibrary.

The example in Figure 84 on page 202 shows such an onload job; it stores the dump with the name
SYSDUMP.BG.DMPLO3 in the dump sublibrary assigned to the BG partition.

Chapter 15. Invoking Info/Analysis 201

Figure 84. Sample Job: Onload a Dump from Tape into a Dump Sublibrary

The sample job in Figure 84 on page 202:

1. Assumes that the tape containing the dump is mounted on the tape drive at address 281. Assigns
programmer logical unit SYS009 to this drive.

2. Specifies the dump for processing, by name. The dump sublibrary is determined by the dump name.
3. Calls the Info/Analysis DUMP ONLOAD function.
4. Specifies the tape volume on which the dump resides.

The volume name is provided in the list of managed dumps if the dump in question has been offloaded
before. See “PRINT - Print List of Managed Dumps” on page 180, for the list function.

If the dump on tape you want to onload has not been offloaded before, the volume id is an identifier of
your own choosing. It is used to identify the volume in subsequent dump operations.

5. Defines the file sequence number 2 with the LAST operand in the FILE statement (the dump resides on
a multifile tape volume, sequence number 1 is the default value).

When the dump to be onloaded is on a disk extent, make sure that the DLBL/EXTENT statements for
the IJSYSDU file are available (see “Dump Program File and Dump Data Set” on page 29). During the
ONLOAD process Info/Analysis searches for a free tape drive if the tape unit is not defined via the ‘ASSGN’
and ‘VOLID’ statements and issues a volume mount request message (MOUNT VOLUME volumename ON
UNIT xxx).

Info/Analysis indicates the successful execution of the ONLOAD function with a message (DUMP
dumpname ONLOADED).

Printing a Dump Stored on Tape or Disk
The subsequent sections describe methods to print dumps that were written to tape or disk, like the
stand-alone dump, or to tape, like the DUMP command dump.

202 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

The Info/Analysis program can be used to format and print these dumps after they have been onloaded
to a dump sublibrary. The steps which have to be performed to print the dump are described under
“Processing and Printing a Dump with Info/Analysis” on page 203.

The DOSVSDMP utility program can be used to write dumps in unformatted form directly from the dump
device to the printer. This utility program must be used to print dumps produced in response to the
attention routine command:

DUMP BUFFER,cuu

These dumps must not be onloaded to the dump sublibrary.

DOSVSDMP can also be used to print other dumps which are too large for the dump sublibrary and
therefore cannot be handled by the Info/Analysis program.

Figure 85 on page 203 shows the different steps which you have to perform depending on the print
method you choose.

Dump Printed in Formatted Form with Info/Analysis

Dump Printed in Unformatted Form with DOSVSDMP

Figure 85. Overview: Print a Dump

The following sections describe how to print a dump with Info/Analysis and also how to use the
DOSVSDMP utility for the same purpose. Sample jobs are included and the output is explained.

Processing and Printing a Dump with Info/Analysis
This section describes the steps which have to be performed in order to get a printed output of the
stand-alone dump or the DUMP command dump. The dump has to be in one of the dump sublibraries
before Info/Analysis can be used to print information from it. Therefore the first operation to be done is to
onload the dump into one of the dump sublibraries.

Onloading the Dump into the Dump Sublibrary
The following describes in detail the steps which have to be performed.

1. Define the name of the dump.

The name of the dump determines the dump sublibrary. For example:

SYSDUMP.BG.DUMPSA2

defines the sublibrary BG as the target library for the subsequent onload process.
2. Select the Info/Analysis Onload function.
3. Use the VOLID statement to define the tape or disk volume on which the dump resides.
4. If the dump resides on tape, mount the dump tape on the device which Info/Analysis requests during

processing, or which you defined with the VOLID statement.
5. When the dump has been stored in the desired dump sublibrary, Info/Analysis can print the dump.

Chapter 15. Invoking Info/Analysis 203

Printing a Stand-Alone Dump with Info/Analysis
Note: You cannot use Info/Analysis to print 64-bit memory objects. For further information about memory
objects, refer to the topic "System Organization and Concepts" in the z/VSE Planning, SC34-2681.

Following are two examples of typical stand-alone dump print jobs and their output.

Sample Job to Print the Main Dump File of a Stand-Alone Dump
The example shown in Figure 86 on page 204 defines a job which

• Onloads a stand-alone dump with the user defined name SYSDUMP.BG.ADUMPSA2.
• Prints the following on the device assigned to SYSLST:

The symptoms of the dump.
The formatted areas of the dump.

Figure 86. Sample Job: Print a Stand-Alone Dump (Main Dump File)

You can also print the dump data using

SELECT DUMP VIEWING
PRINT 0 END

which does no formatting of the dump. See also “Printing Selective Dump Information” on page 188.

204 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Sample Job to Print an Additional File of a Stand-Alone Dump
The example shown in Figure 87 on page 205 defines a job which

• Onloads a stand-alone dump with the user defined name SYSDUMP.BG.ADUMPSA4.
• Prints the following on the device assigned to SYSLST:

The symptoms of the dump.
The formatted areas of the dump.

Figure 87. Sample Job: Print a Stand-Alone Dump (Additional Dump File)

You can also print the dump data using

SELECT DUMP VIEWING
PRINT 0 END

which does no formatting of the dump. See also “Printing Selective Dump Information” on page 188.

Printed Output of the Main Dump File of a Stand-Alone Dump
Figure 88 on page 206 shows the output (symptom part) of the sample job given in Figure 86 on page
204. A list of the formatted dump areas which are printed are given in Figure 89 on page 206 and Figure
90 on page 207.

Chapter 15. Invoking Info/Analysis 205

ENVIRONMENT:
 CPU MODEL 2097
 CPU SERIAL 100190
 TIME 13:48:04:00
 DATE 13/03/13
 SYSTEM ID 5686CF906
 RELEASE 5
 FEATURE 1C
 DUMPTYPE SADUMP
 PROBLEM NUMBER

REQUIRED SYMPTOMS:

OPTIONAL SYMPTOMS (SDB):

OPTIONAL SYMPTOMS (NON-SDB):
 DATE_NOT_AVAILABLE
 MACHINE=Z Shows the hardware type.
 MODE=PAGING Indicates paging.
 ACTIVE_SPACE_ID=S Shows which address space was active
 at the time the dump was taken.
 DUMPED_DATA_FROM_SPACE_ID=S Shows which address space this dump
 PMR_ADDRESS_SPACE_ID=00 data file was dumped from.
 DUMPED_DATA=SUPERVISOR+SVA Shows what data is in this dump file.

Figure 88. Sample: Symptom Part of the Stand-Alone Dump Output (Main Dump File)

The following stand-alone dump information is selected and printed.

Formatted Areas of the Stand-Alone Dump:

PSW
Program Status Word (at time of failure)

AREGS
Access Registers

FREGS
Floating Point Registers

GREGS
General Purpose Registers

CREGS
Control Registers

MESSAGE
Error messages and the last 200 messages from the Hard-Copy File

Hexadecimally Displayed Areas of the Stand-Alone Dump Output:

LOWCORE
Low address storage

SYSCOM
System Communication Region

UNATTCB
Re-IPL control block (previous Re-IPL invocation)

UNATTCBN
Hard Wait information (last Re-IPL invocation)

SMCOM
Storage Management Communication Area

CLIM
Class/System Limits Control Block

Figure 89. Summary of the DUMP VIEWING, PRINT FORMAT Operation Output (1 of 2)

206 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

PCB
Partition Control Block

SCB
Space Control Block

PMRAS
Page Manager Address Space

ASTE
Address Space Number Second Table Entry

PASNAL
Primary Address Space Number Access List

COMREG
Partition Communication Region

PIBTAB
Partition Information Block

PIB2TAB
Partition Information Block Extension

LUBTAB
Logical Unit Block

PUBTAB
Physical Unit Block

PUB2TAB
Physical Unit Block Extension

ERBLOC
Error Recovery Block

CHQTAB
Channel Queue Table

CHNTAB
Channel Control Table

TIBATAB
Task Information Block Address Table

TIB
Task Information Block

TCB
Task Control Block

SAVAREA
Partition Save Areas

ACCREGS
Access Registers

TDSE
Task's Data Space Extension

DUCT
Dispatchable Unit Control Table

DUAL
Dispatchable Unit Access List

DSCB-SCB
Data Space Space Control Block

LPT
Library Pointer Table

LDT
Library Definition Table

SDT
Sublibrary Definition Table

EDT
Extent Definition Table

DDT
Device Definition Table

SDBUFFER
SDAID Buffer

Figure 90. Summary of the DUMP VIEWING, PRINT FORMAT Operation Output (2 of 2)

Chapter 15. Invoking Info/Analysis 207

DUMP Command Dump Printed with Info/Analysis
This section gives an example of how to print a DUMP command dump that is on tape; it also shows the
output of the sample job.

Sample Job to Print a DUMP Command Dump
The example shown in Figure 91 on page 208 defines a job to print the dump symptoms and the
formatted dump areas of a DUMP command dump named SYSDUMP.BG.ADUMPC02 on the device
assigned to SYSLST.

An example of the output of this job is shown under Figure 92 on page 209 and Figure 93 on page 209.

Figure 91. Sample Job: Print the Output of a DUMP Command

Output of the DUMP Command Dump Printed by Info/Analysis
The output of the DUMP command dump printed by Info/Analysis consists of two parts:

• The dump symptom part (example shown in Figure 92 on page 209)
• The formatted dump areas (summary of the areas shown in Figure 93 on page 209).

208 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Figure 91 on page 208 shows the job with which these two dump parts can be produced.

Output of the DUMP SYMPTOMS, PRINT DATA Operation
ENVIRONMENT:
 CPU MODEL 2097
 CPU SERIAL 100190
 TIME 13:48:04:00
 DATE 13/03/13
 SYSTEM ID 5686CF906
 RELEASE 5
 FEATURE 1C
 DUMPTYPE OPRREQ
 PROBLEM NUMBER

REQUIRED SYMPTOMS:
DUMP which is the command
50000/65000 that requested the dump

Figure 92. Sample: Symptom Part of the DUMP Command Dump

Output of the DUMP VIEWING, PRINT FORMAT Operation
Figure 93 on page 209 gives a list of the dump areas printed.

PSW
Program status word at time of failure

AREGS
Access registers

GREGS
General purpose registers at time of failure

FREGS
Floating point registers

LOADLS
Phase load list of the partition

Figure 93. Summary: Areas to be Printed with DUMP VIEWING, PRINT FORMAT

Ending the Info/Analysis Job
You end an Info/Analysis job by submitting the SELECT END statement while you are at the selection
level. The selection level is the point in a sequence after a RETURN statement and before a function is
selected. If you wish to end your session and are at the function level, enter RETURN followed by SELECT
END. The function level is the point in a sequence after a function is selected and before a RETURN
statement is entered.

SELECT END should be followed by an end-of-input statement (/*) and an end-of-job statement (/&). If
you enter an end-of-input or end-of-job statement at any point in the sequence, the job is canceled at
that point. Any valid control statement sequences preceding the end-of-input or end-of-job statement are
performed as specified.

Control Statement Sequence Examples
The following are examples of batch execution sequences. Each example describes a possible sequence
of functions and presents the control statements to perform those functions.

Each function and the statement that selects that function are labeled with the same letter so that you
may make comparisons easily. The example in Figure 94 on page 210 contains the following operations:

1. Select the Dump Management function and request the printing of the list of managed dumps.
2. On the selection level, specify SYSDUMP.F6.DF600007 as the current dump.

Chapter 15. Invoking Info/Analysis 209

3. Use the Dump Symptoms function to print the dump symptoms that are contained in the symptom
record.

4. Use the Dump Viewing function to print selective areas of the dump. The assumed areas are written in
the comments on each statement.

5. Use Dump Offload to offload SYSDUMP.F6.DF600007 to the tape with VOLID T02512.
6. End your Info/Analysis session.

1. SELECT DUMP MANAGEMENT
 PRINT DATA
 RETURN
2. DUMP NAME SYSDUMP.F6.DF600007
3. SELECT DUMP SYMPTOMS
 PRINT DATA
 RETURN
4. SELECT DUMP VIEWING
 PRINT 0 20880 * PRINT SUPERVISOR DATA
 PRINT C80000 END * PRINT TO END OF STORAGE
 PRINT FORMAT * PRINT ALL FORMATTED DATA
 RETURN
5. SELECT DUMP OFFLOAD
 VOLID T02512
 RETURN
6. SELECT END

Figure 94. Control Statement Sequence Example

The example in Figure 95 on page 211 contains the following operations:

1. On the selection level, specify SYSDUMP.BG.ADUMPSA6 as the current dump.
2. Use Dump Onload to load the current dump (file 3 on tape T300U1) into the dump sublibrary so that

you can work with it.
3. Use Dump Viewing to call routine IJBXDBUG to analyze the stand-alone dump. Results of the routine

are printed together with all formatted data.
4. On the selection level, specify SYSDUMP.BG.ADUMPSA2 as the current dump.
5. Use Dump Offload to offload SYSDUMP.BG.ADUMPSA2, specifying the output volume and choosing to

bypass the write operation because a valid copy of the dump already exists on tape. (The information
concerning this dump in the dump management file will be kept.)

6. On the selection level, specify SYSDUMP.BG.ADUMPSA7 as the current dump.
7. Use Dump Onload to load the current dump (file 5 on tape T300U1) into a dump sublibrary, specifying

LAST because it is the last dump to be onloaded from the tape.
8. End your Info/Analysis session.

210 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

 1. DUMP NAME SYSDUMP.BG.ADUMPSA6

 2. SELECT DUMP ONLOAD
 VOLID T300U1
 FILE 003
 RETURN

 3. SELECT DUMP VIEWING
 CALL IJBXDBUG
 PRINT FORMAT
 RETURN

 4. DUMP NAME SYSDUMP.BG.ADUMPSA2

 5. SELECT DUMP OFFLOAD
 VOLID T03417
 BYPASS
 RETURN

 6. DUMP NAME SYSDUMP.BG.ADUMPSA7

 7. SELECT DUMP ONLOAD
 VOLID T300U1
 FILE 5 LAST
 RETURN

 8. SELECT END

Figure 95. Control Statement Sequence Example

Control Statement Summary
This section contains a summary of the control statements for Info/Analysis. The statements are
presented in alphabetical order. The “Valid Functions” column represents the functions during which
the control statement may be entered as follows:

M - Dump Management
S - Dump Symptoms
V - Dump Viewing
OF - Dump Offload
ON - Dump Onload
SEL - Selection level
T - Tutorial

Summary of Control Statements for Info/Analysis

Control Statement Description

Valid Functions

M S V OF ON SEL

BYPASS skip offload X

CALL routine call analysis routine X

DELETE delete dump X

DUMP NAME dumpname specify dump X X

ERASE YES|NO delete/retain system copy of
dump

X

FILE number LAST specify dump file X

PRINT addr-range|FORMAT|
DATA

print dump data or formatted
dump

X

print dump management file X X

RETURN end function X X X X X X

SELECT function|END select function X

Chapter 15. Invoking Info/Analysis 211

Summary of Control Statements for Info/Analysis (continued)

Control Statement Description

Valid Functions

M S V OF ON SEL

UTILITY initialize dump management file X

VOLID volume-id SYSnnn specify input or output tape X X

VOLID DISK SYSnnn specify input disk X

In the PRINT command, addr-range can be:

• from-addr
• from-addr to-addr
• from-addr END
• from-addr FOR length

In the SELECT command, function can be:

• DUMP MANAGEMENT
• DUMP SYMPTOMS
• DUMP VIEWING
• DUMP OFFLOAD
• DUMP ONLOAD

212 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Appendix A. Symptom Records Overview

The symptom records contain a collection of failure-related symptoms in a standard format. At the time of
problem detection, the failing component creates the symptom records. Subsequently, analysis routines
may be run to collect additional symptoms and may add them to the symptom records. The ultimate goal
of the symptom records is to reduce the amount of time necessary to analyze a dump.

Symptom Records Structure
The symptom records have six sections. Figure 96 on page 213 shows an overview of the symptom
records contents and the information used in a dump.

Figure 96. Symptom Records

The sections of the symptom records are:

1. The environment section, which describes the operating system at the time the problem is detected.
2. The pointer section, which describes the offsets of each of the other sections from the beginning of the

record and the length of each section. This data is used by the analysis tool and is not accessible to
you.

3. The required symptoms section, which contains symptoms considered essential to your dump analysis
tasks. Required symptoms are in the structured data base (SDB) format.

4. The optional symptoms (SDB) section, which contains additional symptoms in the SDB format.
5. The optional symptoms (non-SDB) section, which contains symptoms that do not conform to the SDB

format but provide failure-related information.

Symptom Records

© Copyright IBM Corp. 1984, 2014 213

6. The control block section, which contains descriptions and locations of control blocks that are
necessary for problem analysis. This section also contains text and hexadecimal entries that may
be related to the problem and descriptions of control block chains and arrays.

The contents of Sections 1, 3, 4, and 5 is displayed when you select Dump Symptoms. This information
can help you determine the nature of the problem and where it occurred.

The contents of Section 6 is used by Info/Analysis to display dump information when you select Dump
Viewing. The control block data presented via the Section 6 entries can help you determine why the
problem occurred. See the discussion of Section 6 below.

Note: The structured data base format is used to standardize problem data so that searches for duplicate
problems in the data base of existing problems used by customer engineering are accurate.

Symptom Record Creation
The symptom records are built when:

• A system component detects an error that may or may not result in a dump. The dumping component
builds the symptom records, completing the required symptoms section and as much optional data as
possible. The dumping component then calls a system dumping routine that fills out the environment
section, merges it with the rest of the symptom records, and possibly takes a dump.

• A stand-alone dump is taken. The environment section is completed by the dump program.

Section 6
Section 6 acts as a table of contents for dump data. You can use it to locate certain control blocks
without having to manually follow pointers through the dump. The component which originates the dump
is responsible for providing information about the control blocks that are pertinent to the error.

The section provides for example:

• Names and locations of dumped control block storage.
• Descriptions of conditions present at the time of the dump.
• Hexadecimal data that may not be contained in the dumped storage (such as registers).
• Algorithms for control block relationships.
• The names of control block fields.

The location of Section 6 entries is in separate records of the dump that are classified as symptom record
extensions.

At dump time, the failing component may designate the control blocks that are suspected of being in error
or are necessary for problem determination. Ideally, the dump includes only the storage in use when the
error occurred. Host system storage that provides pointers to the component address space or partition
may not be needed. This practice reduces the volume of dump output.

The failing component may include descriptions of the related control blocks in Section 6. Keep in mind
that the data for the control blocks is within the main body of the dump. The information in Section 6
describes the addressing method, the content, the format, and the chaining structure of these related
dump areas.

Each of these descriptive entries in Section 6 is called a locating block descriptor (LBD). LBDs come in
a variety of forms to describe the structure and relationships of control blocks. Each LBD consists of a
header segment and, optionally, a variable segment. The header identifies the data being described by the
LBD by providing a name, its length, and usually, its location in storage. The optional portion may be:

• One or more extensions
• A formatting descriptor
• A linkage descriptor

Symptom Records

214 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

By including a variety of LBDs, Section 6 becomes a table of contents for dump data. Through the Dump
Viewing function of Info/Analysis, you can use Section 6 to analyze the dump.

Locators
If a header portion of an LBD provides a control block address, a specific instance of a control block has
been identified. An LBD may still be a locator if the address is not provided. This would be the case for a
linkage descriptor, for example.

A locator may be simple or complex. A simple locator names a control block and defines its length,
address qualifications, and other pertinent information. A simple locator is appropriate if there is one
occurrence of a particular control block in a dump or in a linkage. A complex locator consists of a header
portion resembling a simple locator and one or more extensions that:

• Provide a way to find all occurrences of the control block that is defined in the header.
• Associate additional data with the control block defined in the header.

There are five kinds of locator extensions:

• Chain extension - describes a string of all occurrences of one type of control block in a dump. If you
select a linkage descriptor while viewing the analysis summary main display, and the locator for a
particular type of control block has a chain extension, Info/Analysis uses the locator and its chain
extension to display the chain of control blocks of that type.

• Array Extension - describes contiguous occurrences of one type of control block in a dump. If you select
a linkage descriptor while viewing the analysis summary main display, and the locator for a particular
type of control block has an array extension, Info/Analysis uses the locator and its array extension to
display the array of control blocks of that type.

• Text Extension - contains character data added to the dump by the dumping component. The text
is associated with the name defined in the locator's header. You may view text for which the
header merely provides a name by selecting this text entry from the analysis summary main display.
Alternatively, the header may describe a control block with which the text is associated. If you select a
locator while viewing the analysis summary LOCATORS display, and the locator by that name has a text
extension, the lines of text are displayed along with the control block data.

• Hexadecimal Extension - contains hexadecimal information such as register contents or storage data
areas that may pertain to the software problem that caused the dump. This data is collected and
associated with the name defined in the header portion of the locator. You may view hexadecimal data
for which the header merely provides a name by selecting the hexadecimal entry from the analysis
summary main display.

• Keyfield Extension - contains the location of a particular field (such as a completion code) that is
significant or pertinent to the associated control block identified in the header portion of the locator.
This field may be in (or apply to) the control block. According to the status of this field, you can
decide whether or not to continue to examine the control block. The keyfield is included in an analysis
summary linkage or LOCATORS display.

Linkage Descriptors
A linkage descriptor is a special type of extension to a header that defines the relationships for a set of
control blocks. That is, the control block named in the linkage is used to locate one or more control blocks
that are logically related.

Linkage descriptors are used in conjunction with locators. Together, they enable Info/Analysis to display
an ordered list of control blocks. For example, a component might create a linkage descriptor that defines
control block A pointing to B and a chain of Cs, and each C pointing to a chain of Ds. When you select the
linkage entry for that component while viewing the analysis summary main display of Dump Viewing, the
displayed data depicts the following situation:

Symptom Records

Appendix A. Symptom Records Overview 215

Info/Analysis shows the linkages by indenting control block names. To create the display, Info/Analysis
uses both locators with their extensions, if any, and a linkage descriptor.

Formatting Descriptors
A formatting descriptor is a special type of extension to a header that defines a set of simple formatting
instructions for a control block. The header portion of the formatting descriptor cannot be used to locate a
control block in the dump.

A formatting descriptor for a control block maps out some or all of the fields of the control block named
in the associated locator, their offsets from the beginning of the control block, and their lengths. When
you select a control block for display while in the formatted mode of dump display, Info/Analysis displays
the contents of each field, one or more per line. Depending on the options you have set, the field labels
and offsets may appear with the data. To create such a display, Info/Analysis uses both a locator and a
formatting descriptor.

Symptom Records

216 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Appendix B. Other Diagnosis Tools

This appendix describes various commands and facilities to process information relevant for problem
analysis.

ACTION: Print Linkage Editor Map
ACTION MAP

To obtain a linkage editor map for a program, specify, for the program's linkage editor run, the linkage
editor control statement ACTION MAP.

Figure 97 on page 218 shows a sample output from this routine.

Linkage Editor Map Warning Messages
The following messages may be included in the map output, except when NOMAP was specified in the
ACTION statement for the linkage editor run.

Root structure overlaid by succeeding phase
When this message appears, "OVEROOT" is printed to the left of the phase name that overlays the root
phase.

Possible invalid entry point duplication in input
An entry label appeared at least twice in the input. At the second (or later) appearance it was not possible
to validate it as being a true duplication. The most common reason for this message is sub-modular
structure with (source) entry labels defined before the CSECT in which the entry point appears.

Invalid transfer label on end or entry statement ignored
An overriding transfer label in the entry statement was not defined within the first phase, or a transfer
label was not defined in an end statement in its own module.

Control sections of zero length in input
The COBOL, FORTRAN, RPG*, and PL/1 (D) compilers do not supply all of the information required by the
linkage editor in the ESD records. Specifically, the control section length is provided in the end record. If
a control section defined in the ESD information has a length of zero, it normally indicates that the length
is to appear in the end record. It is possible to generate zero-length control sections through Assembler.
Such a condition produces this message. This is not an invalid condition if it is not the last control section
that is of zero length. If the last control section is of zero length, the length is implied to be in the end
record and, if not present, causes an error condition.

Unresolved external references
These labels indicate external references that cannot be matched with a corresponding entry point. ESD
items from unused control sections may also cause this message.

Other Diagnosis Tools

© Copyright IBM Corp. 1984, 2014 217

(A) Possible invocation parameters on the PARM field of the EXEC LNKEDT statement are: MSHP,
AMODE, RMODE.

(B) Option MAP is default if SYSLST is assigned.

(C) Listing of control statements as submitted to linkage editor. (From Job Control or an included
module.)

(D) Date and time the module has been cataloged the first time.

(E) Date and time of last update.

(F) Sublibrary from where the module is included or SYSLNK.

(G) Phase statement. This statement defines the phase name, the load address (for example * to
indicate relocatable) and for example, whether the phase has to be SVA eligible or the AUTOLINK
feature has to be deactivated. The named phase is composed of the subsequent included modules.

(H) Module auto-linked, based on unresolved external reference 'MODD' in Phase 'PHASE2'.

(I) List of named and unnamed Common Control Sections with name, load address, and length.

(J) List of Pseudo Registers (External Dummy Sections) with name, origin (displacement within PR
pool), and length. The total (cumulative) length indicates the amount of storage to be allocated
during execution.

(K) Error message from invalid ACTION statement.

Figure 97. Sample: Linkage Editor Output (ACTION MAP) (Part 1 of 2)

Other Diagnosis Tools

218 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

(A) Name of each phase.

(B) Address where the phase is transferred to.

(C) Lowest and highest virtual storage location of the phase.

(D) Labels of all CSECTs which establish the phase in ascending order followed by the CSECT's entry
labels. + indicates an entry label, which was referenced and * indicates an entry label which was not
referenced.

(E) CSECT load address / ENTRY address.

(F) Difference between the start of virtual storage and the assembled CSECT start address.

(G) Offset from the partition begin plus save area length to the CSECTs start location.

(H) Offset from the phase begin to the CSECTs start location.

(I) Name of the module from which the CSECT is taken.

(J) Contains either *M or *P (or blank) of the phase:
*P indicates that the AMODE/RMODE assigned from ESD data is overridden by values from the
PARM field of the EXEC LNKEDT control statement.
*M indicates that the AMODE/RMODE assigned from ESD data or from the PARM field is overridden
by values from the MODE control statement.
The field is left blank, if neither the PARM field nor a MODE statement specifies AMODE/RMODE.

(K) Contains AMODE and RMODE of phases and CSECTs.

(L) Indicates loading characteristics of a phase.

(M) Warning messages related to unresolved external references.

Figure 98. Sample: Linkage Editor Output (ACTION MAP) (Part 2 of 2)

DITTO: Dump a Disk or Tape
DITTO

Other Diagnosis Tools

Appendix B. Other Diagnosis Tools 219

IBM Data Interfile Transfer, Testing and Operations/ESA for VSE (DITTO/ESA for VSE), an IBM program
product, is a useful tool for the recovery of data that may have become inaccessible by VSE programs.

You can use DITTO/ESA for VSE to print, on a line printer, data stored on disk or tape. The program dumps
the data either in character-only format or in the character and vertical hexadecimal format.

For more detailed information about DITTO/ESA for VSE, refer to the IBM DITTO/ESA for VSE Introducing
manual.

DSPLY/ALTER: Display or Alter Storage
The DSPLY command allows the console operator to display 16 bytes of virtual storage starting at the
specified hexadecimal address on the device assigned to SYSLOG. Two characters (0-9, A-F) appear
on SYSLOG for each byte of information; these characters represent the hexadecimal equivalent of
the current information in virtual storage. You can alter this information either by the ALTER operator
command or by using the hardware storage display feature as described under “Hardware Aids via the
Operator Console” on page 227.

To request a display of storage, enter the command:

DSPLY

S,

space_id ,

BG,

Fn,

dyn_partition ,

address

To alter, enter:
ALTER

space_id ,

part ,

address

space-id
Indicates in which address space the specified address is to be displayed or altered. Valid
specifications are:

0 through 9, A, B, R or S.

To display virtual storage in a shared area specify the space-id of any existing virtual address space.

BG, Fn
Indicates in which static or dynamic partition the specified address is to be displayed or altered. part
can specify any of the static partitions BG, F1 through FB or a partition within a dynamic class, for
example, P1.

address
Specifies the hexadecimal address at which the storage display or alteration is to start.

Figure 99 on page 221 shows an example of using the ALTER and DSPLY commands.

Other Diagnosis Tools

220 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

DSPLY 1,300
AR 015 90F21028 18215811 00185801 0014F9F9 *.2............99*
AR 015 1I40I READY

ALTER 1,300
AR 015 1I42D ADDRESS WITHIN SUPERVISOR OR SVA
AR+015
15 IGNORE
AR 015 OLD DATA: 90F21028 18215811 00185801 0014F9F9 *.2............99*
AR 015 ENTER HEX DATA (1-16 BYTES)
AR+015
15 FFF2
AR 015 1I40I

DSPLY 1,300
AR 015 FFF21028 18215811 00185801 0014F9F9 *.2............99*
AR 015 1I40I READY

Figure 99. Sample of the DSPLY and ALTER Commands

The example above shows the commands to display the contents of address X'300' in space 1 and to alter
two bytes beginning with the same address to X'FFF2'. Message 1I42D is not displayed if the area you
want to alter is in the user area.

For a detailed description of the ALTER or DSPLY command see z/VSE System Control Statements.

Restriction
• If the specified address is within an invalid address area, the command is ignored and a corresponding

information message is issued.

If the 16 bytes to be displayed cross the boundary from a valid to an invalid address area, only the bytes
in the valid address area are displayed, and a corresponding information message is issued.

Invalid addresses are:

– Locations beyond the end of virtual storage.
– Unused (not allocated) partition GETVIS space.
– A location in the page pool.
– A location within an unallocated area of the virtual address space.
– A location in the partition's virtual address area when a program in that partition is being executed in

real mode, or vice versa.

LIBLIST: Display Library Chains

//

LIBLIST libtype

* ,*

partition_id

,SYSxxx

Library search chains established with the job control LIBDEF statement can be displayed either on the
system console or on SYSLST with the LIBLIST job control statement.

libtype = Corresponds to the type operand of the
 LIBDEF statement
* = specifies that library definitions of all
 LIBDEF statements (except DUMP) are to be
 displayed.

partition-id = static or dynamic partition whose
 library chains are to be listed.
* = The library chains of the partition
 processing the statement are to be
 listed (default).

Other Diagnosis Tools

Appendix B. Other Diagnosis Tools 221

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

SYSxxx = SYSLST or SYSLOG device for output.
 Default = SYSLOG if entered from SYSLOG,
 = SYSLST if entered from SYSRDR.

Figure 100 on page 222 is an example of a listing of BG partition's active library search chains resulting
from a LIBLIST command.

// LIBLIST *,BG

TYPE: PHASE

 BG-TEMP ** NO LIBRARY INFORMATION AVAILABLE

 BG-PERM LIBNAME SUBLIB STATUS -PARTITIONS- +DYNPARTS
 SEARCH PRVLIB TCLIB 01 34
 IJSYSRS SYSLIB 0123456789AB DYNP
 CATALOG PRVLIB1 TCLIB 0 23

TYPE: OBJ

 BG-TEMP ** NO LIBRARY INFORMATION AVAILABLE

 BG-PERM LIBNAME SUBLIB STATUS -PARTITIONS-
 SEARCH PRVLIB TCLIB 01 34
 IJSYSRS SYSLIB 0123456789AB DYNP
 PRVLIBS SLIB2 SEC SHR 0 4

TYPE: SOURCE

 BG-TEMP ** NO LIBRARY INFORMATION AVAILABLE

 BG-PERM LIBNAME SUBLIB STATUS -PARTITIONS-
 SEARCH PRVLIB1 TCLIB 01 34
 IJSYSRS SYSLIB 0123456789AB DYNP
 SERVLIB S1$XE8 0

TYPE: PROC

 BG-TEMP ** NO LIBRARY INFORMATION AVAILABLE

 BG-PERM LIBNAME SUBLIB STATUS -PARTITIONS-
 SEARCH PRVLIB1 TCLIB 01 34
 IJSYSRS SYSLIB 0123456789AB DYNP

No temporary search chain is defined in the above example.

The keyword DYNPARTS means that at least one dynamic partition has a LIBDEF to the sublibrary
specified.

The device on which PRVLIBS SLIB2 resides is shared by two or more CPUs – indicated by SHR in the
STATUS column. SLIB2 also is a secured (SEC) sublibrary.

Figure 100. Example: Library Chain Listing

LIST: Print Language Translator Source Code
// OPTION LIST

Normally, a language translator source listing is requested for all language translator runs by specifying
option LIST in the STDOPT command as part of the IPL procedure. Should NOLIST have been specified
in that command, you can override it by including // OPTION LIST in the job control statements for your
language-translator run.

Other Diagnosis Tools

222 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

LISTIO: List I/O Device Assignments

//

LISTIO ALL

ASSGN

cuu

DOWN

NPGR

part

PART= dyn_partition

BG

Fn

PROG

SYS

SYSxxx

UA

UNITS

You can list I/O device assignments before execution of the program begins by inserting the job control
LISTIO statement or command in the program. The list will appear on SYSLOG if you insert the LISTIO
command without //, or on SYSLST with //. The listing represents the device assignment status at the time
the statement or command is being executed and not when an error occurred during a previous run.

For a detailed description of the operands of the LISTIO command, refer to z/VSE System Control
Statements.

LISTLOG: Display Console Communication
// EXEC LISTLOG

You can use the LISTLOG utility program to request a listing of all information collected for a specific job in
the hard copy file. The program writes this list to the device assigned to SYSLST.

You invoke the program by inserting the statement // EXEC LISTLOG immediately following the /&
statement for the job. z/VSE invokes the program automatically whenever a job is canceled.

The printout provided by the LISTLOG utility program lists:

• Job control statements submitted for the job,
• All messages displayed on the console for this job,
• Any attention routine messages and commands that occurred while the job was being executed,
• Operator responses.

LOG: Print Job Control Statements
The LOG command or statement causes the system to log all job control commands and statements.

// LOG

// OPTION LOG

The // LOG statement has the same effect as the // OPTION LOG statement.
// NOLOG

Other Diagnosis Tools

Appendix B. Other Diagnosis Tools 223

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

The two statements are interchangeable, and each can be reset by either the // NOLOG or the // OPTION
NOLOG statement.

For a detailed description of the LOG statement, refer to z/VSE System Control Statements.

LSERV: Display Label Information Area
LSERV, a system utility program, produces a printout of the label information area on the device assigned
to SYSLST.

The job control statement for LSERV is as follows:
// EXEC LSERV

,PARM=' STDLABEL

PARSTD

PARSTD=  syslogid

CLASSTD

CLASSTD=  class

ALL

FREE

'

The following is a description of the parameters used in the job control statement:
STDLABEL

prints the system standard labels only.
PARSTD

prints the partition standard labels of all active partitions.
PARSTD=syslogid

prints the partition standard labels of the specified partition only.
CLASSTD

prints all class standard labels only.
CLASSTD=class

prints the class standard labels of the specified class only.
ALL

prints all labels, including free-usage labels. In addition, label information for data secured files (see
also the DSF operand in the DLBL statement) is displayed.

FREE
prints all free-usage labels only.

If no parameter is specified, all labels (but not DSF labels and free-usage labels) are printed. User labels
from static or dynamic partitions are only included when no parameter or ALL is specified. User labels
change from job to job and, therefore, no special support is needed in the LSERV program.

A sample, partial output of an LSERV run for the above control statements, is shown in the example in
Figure 101 on page 225. The output shows label-information records contained in different label groups,
such as system standard labels, class standard labels, or partition labels. Each active partition (static or
dynamic) can establish up to three label groups: free-usage, temporary, and permanent partition labels.

The output shows the relationship between job control DLBL and EXTENT statements. Fur further
information, refer to the z/VSE Guide to System Functions.

For VSAM files only
There is an additional label information record following the VSAM label record if, in the DLBL statement,
at least one of the operands DISP, RECORDS, or RECSIZE is specified.

Other Diagnosis Tools

224 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

Note: A warning message is issued on SYSLST if you request LSERV while another partition is updating the
label area. The free-usage label groups which are used internally by VSE/ICCF and vendor software, are
only shown with PARM='ALL' or PARM='FREE'.

 LABEL INFORMATION DISPLAY PAGE nnn
EXAMPLE
 FILE IDENTIFIER EXAMPLE
 FILE SERIAL NUMBER OMITTED
 VOLUME SEQUENCE NUMBER 01
 CREATION DATE OMITTED
 RETENTION PERIOD (DAYS) 0999
 FILE TYPE SEQUENTIAL

 EXTENT INFORMATION
 EXTENT SEQUENCE NUMBER 000
 EXTENT TYPE 1 (PRIME DATA)
 RELATIVE START ADDRESS 002
 NUMBER OF TRACKS/BLOCKS 045107
 SYMBOLIC UNIT SYSRES LOGICAL UNIT FORMAT
 TYP=00,NUM=06
 VOLUME SERIAL NUMBER OMITTED

 ADDITIONAL INFORMATION
 DISPOSITION (OLD,KEEP)
 RECORDS (0000000500,0000000100)
 RECORD SIZE 0000000080

SALARY
 FILE IDENTIFIER SALARY.1999.FILE
 FILE SERIAL NUMBER DASD02
 VOLUME SEQUENCE NUMBER 01
 CREATION DATE OMITTED
 EXPIRATION DATE 11/365
 FILE TYPE SEQUENTIAL

 EXTENT INFORMATION
 EXTENT SEQUENCE NUMBER 000
 EXTENT TYPE 1 (PRIME DATA)
 RELATIVE START ADDRESS IN TRACKS/BLOCKS 010000
 NUMBER OF TRACKS/BLOCKS 001000
 SYMBOLIC UNIT SYS019 LOGICAL UNIT FORMAT
 TYP=01,NUM=13
 VOLUME SERIAL NUMBER DASD02

Figure 101. Sample: LSERV Output

LVTOC: Display Volume Table of Contents
// ASSGN SYS004,cuu
// ASSGN SYS005,cuu
// EXEC LVTOC

A volume table of contents (VTOC) is an index of all files, and the remaining space, on a disk volume. A
VTOC display can be requested by executing the LVTOC program with SYS004 assigned to the applicable
disk drive and SYS005 to a printer. LVTOC lists the file labels contained in a VTOC in alphabetic sequence
by file name. It also provides a listing of free space on the volume, with the start and end addresses and
sizes of the unused space. The control statements needed to invoke that program may be submitted via
SYSRDR or via the console as shown in Table 17 on page 226.

A display of a VTOC can be requested also in response to messages. Such a response is CANCELV or
DSPLYV. Use CANCELV if you intend to cancel the job, or DSPLYV if the condition allows program execution
to be continued after the VTOC display.

Other Diagnosis Tools

Appendix B. Other Diagnosis Tools 225

Table 17. Control Statements to Invoke LVTOC

Submission via SYSRDR Submission via the console

// JOB anyname
// ASSGN SYS004,cuu (A)
// ASSGN SYS005,cuu (B)
// EXEC LVTOC
 /&

1. Press the Request key
2. Enter:
 PAUSE p.-id,EOJ (C)
3. Wait for end-of-job in the
 specified partition.
4. Enter:
 // ASSGN SYS004,cuu (A)
 // ASSGN SYS005,cuu (B)
 // EXEC LVTOC

(A)
The unit address of the disk for which the VTOC is desired.

(B)
The unit address of the device on which the VTOC is to be listed (normally a line printer).

(C)
The identifier of the partition (F1 ...) in which LVTOC is to run.

STOP/PAUSE: Suspend Program Execution
STOP/PAUSE

Suspending program execution between job steps can be of much help during hands-on diagnosis.

You suspend program execution with the STOP command either via the console or, if you use a card
reader, via SYSRDR. Another possibility is to submit the job control PAUSE statement or command.
Both methods result in program execution to be suspended when job control executes the statement or
command. The PAUSE command is used to interrupt the execution of the job. The operator may enter
additional job control statements via SYSLOG at this time. The STOP command removes the partition from
the system's task selection mechanism and no read is issued to the SYSLOG or SYSRDR device for that
partition.

To resume program execution after a STOP command, issue an attention routine START command for the
partition. To resume program execution after a PAUSE statement or command, simply press END/ENTER.
Note that the STOP and START commands can be given in a static partition only. For dynamic partitions,
use the CANCEL or VSE/POWER PFLUSH command.

Other Diagnosis Tools

226 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Appendix C. Hardware Service Aids

Controlling the Recovery Management Support
The recording activity of RMS can be controlled via the operator command ROD.

Use the ROD command to:

• Add error statistics to the system recorder file.
• Have RMS write MDR records into the SYSREC file for those devices that are equipped with an internal

error log.
• Have RMS build an end-of-day (EOD) record and write this record on SYSREC.
• Write the hardcopy buffer into the hardcopy file.

The ROD command is discussed in more detail in the following section.

The ROD Command
ROD

The ROD command has no operands. Issuing the ROD command causes the hardcopy buffer written to
the hardcopy file and RMS to record, on SYSREC:

• Error statistics that were compiled for I/O devices (except telecommunication devices).
• An end-of-day record if RMS received an appropriate response to a prompting message via the console.

Retrieval and Analysis of RMS Information

The EREP Program
For the retrieval of information recorded by RMS on SYSREC, use the IBM EREP program. How to use this
program is described in the separate publications, EREP User's Guide and EREP Reference.

For a number of VSE messages, the recommended response in z/VSE Messages and Codes Volume 2
includes instructions to run EREP.

Hardware Aids via the Operator Console
Current IBM processors provide a variety of hardware aids for hands-on diagnosis. The procedures for
using these aids are, for the most part, processor-model dependent, and are described in detail in the
operating procedures manuals for these processors. Therefore, this section discusses only aspects such
as usefulness of the aids, when to use them, and requirements or precautions for their use.

CAUTION: If you use one of the following hardware serviceability and debugging aids, you
interfere with normal processing under VSE. Consider using these aids only (with your local
management approval) in situations such as total system failure or a hard wait condition with
no VSE-supported recovery possible.

The most important hardware aids available via the operator's console for system service and program
diagnosis are:

• Alter/display feature.
• Instruction stepping feature.
• Stop on address compare feature.

Hardware Aids

© Copyright IBM Corp. 1984, 2014 227

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc291.pdf

Hardware Alter/Display
With the alter/display feature you can display the contents of storage areas and registers as indicated
below. You can also alter any of these storage areas.

Note: The alter/display feature can be used only from the operator's console of your processor; the
feature is not available, for example, from a channel-attached IBM 3277 that you use as an operator's
console.

Following is a list of storage areas (and registers) that you can display and alter by using this hardware aid:

• Any selected area of real or virtual storage.
• Contents of the general purpose registers.
• Contents of the floating point registers.
• Contents of the control registers.
• Current PSW.
• Storage protection key.

For detailed information on how to use this feature and on the areas that you can display or alter from
your processor's console, refer to IBM's operating procedures publication for your central processor.

Instruction Stepping Feature
With the instruction stepping feature you can check and record the address of each instruction that is
executed during program operation. By combined application of this feature and the alter/display feature,
you can trace, for example, a short program loop. This approach of tracing executable code of a program
is indicated when only short sections of code are to be traced or if, for any reason, the SDAID tracing
facility cannot be used.

Refer to the operations publication for your processor for details of this feature.

Stop-on-Address-Compare Feature
This feature is provided primarily for IBM service personnel. It enables one, for example, to stop all
system activity at a selected instruction address within a program. In combination with the alter/display
feature (or commands ALTER, DSPLY, or DUMP), the stop-on-address-compare feature can be used to
display or alter the contents of storage at this selected address. The feature can be used, for example, if
there is a need for a dump of a specific area of virtual storage at a specific point of program execution.

Another use of this feature is the generation of a sync signal at a certain instruction address (this is
primarily a hardware service aid).

For more information refer to the operating procedures publication for your processor.

Hardware Aids

228 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1984, 2014 229

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain services of z/VSE.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

230 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above
instructions are not being properly followed. You may not download, export or re-export this information
except in full compliance with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at .

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Notices 231

https://www.ibm.com/legal/copytrade

232 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/VSE enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/VSE.
Consult the assistive technology documentation for specific information when using such products to
access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF) and should be compliant
with accessibility standards. If you experience difficulties when you use the PDF files and want to request
a web-based format for a publication, you can either write an email to s390id@de.ibm.com, or use the
Reader Comment Form in the back of this publication or direct your mail to the following address:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1984, 2014 233

234 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Glossary

This glossary includes terms and definitions for IBM z/VSE.

The following cross-references are used in this glossary:

1. See refers the reader from a term to a preferred synonym, or from an acronym or abbreviation to the
defined full form.

2. See also refers the reader to a related or contrasting term.

A

Access Control Logging and Reporting
An IBM licensed program to log all attempts of access to protected data and to print selected formatted
reports on such attempts.

access control table (DTSECTAB)
A table that is used by the system to verify a user's right to access a certain resource.

access list
A table in which each entry specifies an address space or data space that a program can reference.

access method
A program, that is, a set of commands (macros) to define files or addresses and to move data to and from
them; for example VSE/VSAM or VTAM.

account file
A disk file that is maintained by VSE/POWER containing accounting information that is generated by VSE/
POWER and the programs running under VSE/POWER.

addressing mode (AMODE)
A program attribute that refers to the address length that a program is prepared to handle on entry.
Addresses can be either 24 bits, 31 bits, or 64 bits in length. In 24 bit addressing mode, the processor
treats all virtual addresses as 24-bit values; in 31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values and in 64-bit addressing mode, the processor treats all virtual addresses as
64-bit values. Programs with an addressing mode of ANY can receive control in either 24 bit or 31 bit
addressing mode. 64 bit addressing mode cannot be used as program attribute.

administration console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed to
one particular console. Contrast this with the user console, which receives only those messages that are
directed to it, for example messages that are issued from a job that was submitted with the request to
echo its messages to that console. The operator of an administration console can reply to all outstanding
messages and enter all system commands.

alternate block
On an FBA disk, a block that is designated to contain data in place of a defective block.

© Copyright IBM Corp. 1984, 2014 235

alternate index
In systems with VSE/VSAM, the index entries of a given base cluster that is organized by an alternate
key, that is, a key other than the prime key of the base cluster. For example, a personnel file preliminary
ordered by names can be indexed also by department number.

alternate library
An interactively accessible library that can be accessed from a terminal when the user of that terminal
issues a connect or switch library request.

alternate track
A library, which becomes accessible from a terminal when the user of that terminal issues a connect or
switch (library) request.

AMODE
Addressing mode.

APA
All points addressable.

APAR
Authorized Program Analysis Report.

appendage routine
A piece of code that is physically located in a program or subsystem, but logically and extension of a
supervisor routine.

application profile
A control block in which the system stores the characteristics of one or more application programs.

application program
A program that is written for or by a user that applies directly to the user's work, such as a program that
does inventory control or payroll. See also batch program and online application program.

AR/GPR
Access register and general-purpose register pair.

ASC mode
Address space control mode.

ASI (automated system initialization) procedure
A set of control statements, which specifies values for an automatic system initialization.

attention routine (AR)
A routine of the system that receives control when the operator presses the Attention key. The routine
sets up the console for the input of a command, reads the command, and initiates the system service that
is requested by the command.

236 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

automated system initialization (ASI)
A function that allows control information for system startup to be cataloged for automatic retrieval during
system startup.

autostart
A facility that starts VSE/POWER with little or no operator involvement.

auxiliary storage
Addressable storage that is not part of the processor, for example storage on a disk unit. Synonymous
with external storage.

B

B-transient
A phase with a name beginning with $$B and running in the Logical Transient Area (LTA). Such a phase is
activated by special supervisor calls.

bar
2 GigyByte (GB) line

basic telecommunications access method (BTAM)
An access method that permits read and write communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD
A subtype of Large DASD that has a capacity of more than 64 K tracks and uses up to 10017 cylinders of
the disk.

block
Usually, a block consists of several records of a file that are transmitted as a unit. But if records are very
large, a block can also be part of a record only. On an FBA disk, a block is a string of 512 bytes of data. See
also a control block.

block group
In VSE/POWER, the basic organizational unit for fixed-block architecture (FBA) devices. Each block group
consists of a number of 'units of transfer' or blocks.

C

CA splitting
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R. In VSE/VSAM, to double a
control area dynamically and distribute its CIs evenly when the specified minimum of free space get used
up by more data.

Glossary 237

carriage control character
The fist character of an output record (line) that is to be printed; it determines how many lines should be
skipped before the next line is printed.

catalog
A directory of files and libraries, with reference to their locations. A catalog may contain other information
such as the types of devices in which the files are stored, passwords, blocking factors. To store a library
member such as a phase, module, or book in a sublibrary. See also VSE/VSAM catalog.

cell pool
An area of virtual storage that is obtained by an application program and managed by the callable cell
pool services. A cell pool is located in an address space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location
The place at which a computer system's control device, normally the systems console in the computer
room, is installed.

chained sublibraries
A facility that allows sublibraries to be chained by specifying the sequence in which they must be
searched for a certain library member.

chaining
A logical connection of sublibraries to be searched by the system for members of the same type (phases
or object modules, for example).

channel command word (CCW)
A doubleword at the location in main storage that is specified by the channel address word. One or more
CCWs make up the channel program that directs data channel operations.

channel program
One or more channel command words that control a sequence of data channel operations. Execution of
this sequence is initiated by a start subchannel instruction.

channel scheduler
The part of the supervisor that controls all input/output operations.

channel subsystem
A feature of z/Architecture that provides extensive additional channel (I/O) capabilities to IBM Z.

channel to channel attachment (CTCA)
A function that allows data to be exchanged

1. Under the control of VSE/POWER between two virtual VSE machines running under VM or
2. Under the control of VTAM between two processors.

character-coded request
A request that is encoded and transmitted as a character string. Contrast with field-formatted request.

238 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

checkpoint
1. A point at which information about the status of a job and the system can be recorded so that the job

step can be restarted later.
2. To record such information.

CICS (Customer Information Control System)
An IBM program that controls online communication between terminal users and a database.
Transactions that are entered at remote terminals are processed concurrently by user-written application
programs. The program includes facilities for building, using, and servicing databases.

CICS ECI
The CICS External Call Interface (ECI) is one possible requester type of the CICS business logic interface
that is provided by the CICS Transaction Server for z/VSE. It is part of the CICS client and allows
workstation programs to CICS function on the z/VSE host.

CICS EXCI
The EXternal CICS Interface (EXCI) is one possible requester type of the CICS business logic interface that
is provided by the CICS Transaction Server for z/VSE. It allows any BSE batch application to call CICS
functions.

CICS system definition data set (CSD)
A VSAM KSDS cluster that contains a resource definition record for every record defined to CICS using
resource definition online (RDO).

CICS Transaction Server for z/VSE
A z/VSE base program that controls online communication between terminal users and a database. This is
the successor system to CICS/VSE.

CICS TS
CICS Transaction Server

CICS/VSE
Customer Information Control System/VSE. No longer shipped on the Extended Base Tape and no longer
supported, cannot run on z/VSE 5.1 or later.

class
In VSE/POWER, a group of jobs that either come from the same input device or go to the same output
device.

CMS
Conversational monitor system running on z/VM.

common library
A library that can be interactively accessed by any user of the (sub)system that owns the library.

Glossary 239

communication adapter
A circuit card with associated software that enables a processor, controller, or other device to be
connected to a network.

communication region
An area of the supervisor that is set aside for transfer of information within and between programs.

component
1. Hardware or software that is part of a computer system.
2. A functional part of a product, which is identified by a component identifier.
3. In z/VSE, a component program such as VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored records, such as the data component or index

component of a key-sequenced file or alternate index.

component identifier
A 12-byte alphanumeric string, uniquely defining a component to MSHP.

conditional job control
The capability of the job control program to process or to skip one or more statements that are based on a
condition that is tested by the program.

connect
To authorize library access on the lowest level. A modifier such as "read" or "write" is required for the
specified use of a sublibrary.

connection pooling
Introduced with an z/VSE 5.1 update to manage (reuse) connections of the z/VSE database connector in
CICS TS.

connector
In the context of z/VSE, a connector provides the middleware to connect two platforms: Web Client and
z/VSE host, middle-tier and z/VSE host, or Web Client and middle-tier.

connector (e-business connector)
A piece of software that is provided to connect to heterogeneous environments. Most connectors
communicate to non-z/VSE Java-capable platforms.

container
Is part of the JVM of application servers such as the IBM WebSphere Application Server, and facilitates
the implementation of servlets, EJBs, and JSPs, by providing resource and transaction management
resources. For example, an EJB developer must not code against the JVM of the application server, but
instead against the interface that is provided by the container. The main role of a container is to act as
an intermediary between EJBs and clients, Is the host part of the VSE JavaBeans, and is started using
the job STARTVCS, which is placed in the reader queue during the installation of z/VSE. Runs by default
in dynamic class R. and also to manage multiple EJB instances. After EJBs have been written, they must
be stored in a container residing on an application server. The container then manages all threading and
client-interactions with the EJBs, and co-ordinate connection- and instance pooling.

240 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

control interval (CI)
A fixed-length area of disk storage where VSE/VSAM stores records and distributes free space. It is the
unit of information that VSE/VSAM transfers to or from disk storage. For FBA it must be an integral
multiple to be defined at cluster definition, of the block size.

control program
A program to schedule and supervise the running of programs in a system.

conversational monitor system (CMS)
A virtual machine operating system that provides general interactive time sharing, problem solving, and
program development capabilities and operates under the control of z/VM.

count-key-data (CKD) device
A disk device that store data in the record format: count field, key field, data field. The count field
contains, among others, the address of the record in the format: cylinder, head (track), record number,
and the length of the data field. The key field, if present, contains the record's key or search argument.
CKD disk space is allocated by tracks and cylinders. Contrast with FBA disk device. See also extended
count-key-data device.

cross-partition communication control
A facility that enables VSE subsystems and user programs to communicate with each other; for example,
with VSE/POWER.

cryptographic token
Usually referred to simply as a token, this is a device, which provides an interface for performing
cryptographic functions like generating digital signatures or encrypting data.

cryptography
1. A method for protecting information by transforming it (encrypting it) into an unreadable format, called

ciphertext. Only users who possess a secret key can decipher (or decrypt) the message into plaintext.
2. The transformation of data to conceal its information content and to prevent its unauthorized use or

undetected modification .

D

data block group
The smallest unit of space that can be allocated to a VSE/POWER job on the data file. This allocation is
independent of any device characteristics.

data conversion descriptor file (DCDF)
With a DCDF, you can convert individual fields within a record during data transfer between a PC and its
host. The DCDF defines the record fields of a particular file for both, the PC and the host environment.

data import
The process of reformatting data that was used under one operating system such that it can subsequently
be used under a different operating system.

Glossary 241

Data Interfile Transfer, Testing, and Operations (DITTO) utility
An IBM program that provides file-to-file services for card I/O, tape, and disk devices. The latest version is
called DITTO/ESA for VSE.

Data Language/I (DL/I)
A database access language that is used with CICS.

data link
In SNA, the combination of the link connection and the link stations joining network noes, for example, a
z/Architecture channel and its associated protocols. A link is both logical and physical.

data security
The protection of data against unauthorized disclosure, transfer, modification, or destruction, whether
accidental or intentional .

data set header record
In VSE/POWER abbreviated as DSHR, alias NDH or DSH. An NJE control record either preceding output
data or, in the middle of input data, indicating a change in the data format.

data space
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike an address space, a data space can hold only
user data; it does not contain shared areas, or programs. Instructions do not execute in a data space.
Contrast with address space.

data terminal equipment (DTE)
In SNA, the part of a data station that serves a data source, data sink, or both.

database connector
Is a function introduced with z/VSE 5.1.1, which consists of a client and server part. The client provides
an API (CBCLI) to be used by applications on z/VSE, the server on any Java capable platform connects a
JDBC driver that is provided by the database. Both client and server communicate via TCP/IP.

Database 2 (Db2)
An IBM rational database management system.

Db2-based connector
Is a feature introduced with VSE/ESA 2.5, which includes a customized Db2 version, together with VSAM
and DL/I functionality, to provide access to Db2, VSAM, and DL/I data, using Db2 Stored Procedures.

Db2 Runtime only Client edition
The Client Edition for z/VSE comes with some enhanced features and improved performance to integrate
z/VSE and Linux on z Systems.

Db2 Stored Procedure
In the context of z/VSE, a Db2 Stored Procedure is a Language Environment (LE) program that accesses
Db2 data. However, from VSE/ESA 2.5 onwards you can also access VSAM and DL/I data using a Db2
Stored Procedure. In this way, it is possible to exchange data between VSAM and Db2.

242 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

DBLK
Data block.

DCDF
Data conversion descriptor file.

deblocking
The process of making each record of a block available for processing.

dedicated (disk) device
A device that cannot be shared among users.

device address
1. The identification of an input/output device by its device number.
2. In data communication, the identification of any device to which data can be sent or from which data

can be received.

device driving system (DDS)
A software system external to VSE/POWER, such as a CICS spooler or PSF, that writes spooled output to a
destination device.

Device Support Facilities (DSF)
An IBM supplied system control program for performing operations on disk volumes so that they can
be accessed by IBM and user programs. Examples of these operations are initializing a disk volume and
assigning an alternative track.

device type code
The four- or five-digit code that is used for defining an I/O device to a computer system. See also ICKDSF

dialog
In an interactive system, a series of related inquiries and responses similar to a conversation between two
people. For z/VSE, a set of panels that can be used to complete a specific task; for example, defining a file.

dialog manager
The program component of z/VSE that provides for ease of communication between user and system.

digital signature
In computer security, encrypted data, which is appended to or part of a message, that enables a recipient
to prove the identity of the sender.

Digital Signature Algorithm (DSA)
The Digital Signature Algorithm is the US government-defined standard for digital signatures. The DSA
digital signature is a pair of large numbers, computed using a set of rules (that is, the DSA) and a set
of parameters such that the identity of the signatory and integrity of the data can be verified. The DSA
provides the capability to generate and verify signatures.

Glossary 243

directory
In z/VSE the index for the program libraries.

direct access
Accessing data on a storage device using their address and not their sequence. This is the typical access
on disk devices as opposed to magnetic tapes. Contrast with sequential access.

disk operating system residence volume (DOSRES)
The disk volume on which the system sublibrary IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing
An option that lets independent computer systems uses common data on shared disk devices.

disposition
A means of indicating to VSE/POWER how a job input or output entry is to be handled: according to its
local disposition in the RDR/LST/PUN queue or its transmission disposition when residing in the XMT
queue. A job might, for example, be deleted or kept after processing.

distribution tape
A magnetic tape that contains, for example, a preconfigured operating system like z/VSE. This tape is
shipped to the customer for program installation.

DITTO/ESA for VSE
Data Interfile Transfer, Testing, and Operations utility. An IBM program that provides file-to-file services
for disk, tape, and card devices.

DSF
Device Support Facilities.

DSH (R)
Data set header record.

dummy device
A device address with no real I/O device behind it. Input and output for that device address are spooled
on disk.

duplex
Pertaining to communication in which data can be sent and received at the same time.

DU-AL (dispatchable unit - access list)
The access list that is associated with a z/VSE main task or subtask. A program uses the DU-AL associated
with its task and the PASN-AL associated with its partition. See also “PASN-AL (primary address space
number - access list)” on page 256.

dynamic class table
Defines the characteristics of dynamic partitions.

244 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

dynamic partition
A partition that is created and activated on an 'as needed' basis that does not use fixed static allocations.
After processing, the occupied space is released. Dynamic partitions are grouped by class, and jobs are
scheduled by class. Contrast with static partition.

dynamic space reclamation
A librarian function that provides for space that is freed by the deletion of a library member to become
reusable automatically.

E

ECI
See “CICS ECI” on page 239.

emulation
The use of programming techniques and special machine features that permit a computer system to
execute programs that are written for another system or for the use of I/O devices different from those
that are available.

emulation program (EP)
An IBM control program that allows a channel-attached 3705 or 3725 communication controller to
emulate the functions of an IBM 2701 Data Adapter Unit, or an IBM 2703 Transmission Control.

end user
1. A person who makes use of an application program.
2. In SNA, the ultimate source or destination of user data flowing through an SNA network. Might be an

application program or a terminal operator.

Enterprise Java Bean
An EJB is a distributed bean. "Distributed" means, that one part of an EJB runs inside the JVM of a web
application server, while the other part runs inside the JVM of a web browser. An EJB either represents
one data row in a database (entity bean), or a connection to a remote database (session bean). Normally,
both types of an EJB work together. This allows to represent and access data in a standardized way in
heterogeneous environments with relational and non-relational data. See also JavaBean.

entry-sequenced file
A VSE/VSAM file whose records are loaded without respect to their contents and whose relative byte
addresses cannot change. Records are retrieved and stored by addressed access, and new records are
added to the end of the file.

Environmental Record Editing and Printing (EREP) program
A z/VSE base program that makes the data that is contained in the system record file available for further
analysis.

EPI
See CICS EPI.

Glossary 245

ESCON Channel (Enterprise Systems Connection Channel)
A serial channel, using fiber optic cabling, that provides a high-speed connection between host and
control units for I/O devices. It complies with the ESA/390 and IBM Z I/O Interface until z114. The zEC12
processors do not support ESCON channels.

exit routine
1. Either of two types of routines: installation exit routines or user exit routines. Synonymous with exit

program.
2. See user exit routine.

extended addressability
The ability of a program to use 31 bit or 64 bit virtual storage in its address space or outside the address
space.

extended recovery facility (XRF)
In z/VSE, a feature of CICS that provides for enhanced availability of CICS by offering one CICS system as
a backup of another.

External Security Manager (ESM)
A priced vendor product that can provide extended functionality and flexibility that is compared to that of
the Basic Security Manager (BSM), which is part of z/VSE.

F

FASTCOPY
See “VSE/Fast Copy” on page 267.

fast copy data set program (VSE/Fast Copy)
See “VSE/Fast Copy” on page 267.

fast service upgrade (FSU)
A service function of z/VSE for the installation of a refresh release without regenerating control
information such as library control tables.

FAT-DASD
A subtype of Large DASD, it supports a device with more than 4369 cylinders (64 K tracks) up to 64 K
cylinders.

FCOPY
See VSE/Fast Copy.

fence
A separation of one or more components or elements from the remainder of a processor complex. The
separation is by logical boundaries. It allows simultaneous user operations and maintenance procedures.

fetch
1. To locate and load a quantity of data from storage.

246 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

2. To bring a program phase into virtual storage from a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to accomplish 2. See also loader.

Fibre Channel Protocol (FCP)
A combination of hardware and software conforming to the Fibre Channel standards and allowing system
and peripheral connections via FICON and FICON Express feature cards on IBM zSeries processors. In
z/VSE, zSeries FCP is employed to access industry-standard SCSI disk devices.

fragmentation (of storage)
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

FSU
Fast service upgrade.

FULIST (FUnction LIST)
A type of selection panel that displays a set of files and/or functions for the choice of the user.

G

generation
See macro generation.

generation feature
An IBM licensed program order option that is used to tailer the object code of a program to user
requirements.

GETVIS space
Storage space within partition or the shared virtual area, available for dynamic allocation to programs.

guest system
A data processing system that runs under control of another (host) system. On the mainframe z/VSE can
run as a guest of z/VM.

H

hard wait
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup.

hash function
A hash function is a transformation that takes a variable-size input and returns a fixed-size string, which is
called the hash value. In cryptography, the hash functions should have some additional properties:

• The hash function should be easy to compute.
• The hash function is one way; that is, it is impossible to calculate the 'inverse' function.

Glossary 247

• The hash function is collision-free; that is, it is impossible that different input leads to the same hash
value.

hash value
The fixed-sized string resulting after applying a hash function to a text.

High-Level Assembler for VSE
A programming language providing enhanced assembler programming support. It is a base program of
z/VSE.

home interface
Provides the methods to instantiate a new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed because the deployment tool generates the
implementation class. Every Session bean's home interface must supply at least one create() method.

host mode
In this operating mode, a PC can access a VSE host. For programmable workstation (PWS) functions, the
Move Utilities of VSE can be used.

host system
The controlling or highest level system in a data communication configuration.

host transfer file (HTF)
Used by the Workstation File Transfer Support of z/VSE as an intermediate storage area for files that are
sent to and from IBM personal computers.

HTTP Session
In the context of z/VSE, identifies the web-browser client that calls a servlet (in other words, identifies the
connection between the client and the middle-tier platform).

I

ICCF
See VSE/ICCF.

ICKDSF (Device Support Facilities)
A z/VSE base program that supports the installation, use, and maintenance of IBM disk devices.

include function
Retrieves a library member for inclusion in program input.

index
1. A table that is used to locate records in an indexed sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of a key and a pointer, used by to sequence and

locate the records of a key-sequenced data set or file; it is organized in levels of index records. See
also alternate index.

248 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

input/output control system (IOCS)
A group of IBM supplied routines that handle the transfer of data between main storage and auxiliary
storage devices.

integrated communication adapter (ICA)
The part of a processor where multiple lines can be connected.

integrated console
In z/VSE, the service processor console available on IBM Z that operates as the z/VSE system console.
The integrated console is typically used during IPL and for recovery purposes when no other console is
available.

Interactive Computing and Control Facility (ICCF)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

interactive partition
An area of virtual storage for the purpose of processing a job that was submitted interactively via VSE/
ICCF.

Interactive User Communication Vehicle (IUCV)
Programming support available in a VSE supervisor for operation under z/VM. The support allows users to
communicate with other users or with CP in the same way they would with a non-preferred guest.

intermediate storage
Any storage device that is used to hold data temporarily before it is processed.

IOCS
Input/output control system.

IPL
Initial program load.

irrecoverable error
An error for which recovery is impossible without the use of recovery techniques external to the computer
program or run.

IUCV
Interactive User Communication Vehicle.

J

JAR
Is a platform-independent file format that aggregates many files into one. Multiple applets and their
requisite components (.class files, images, and sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP transaction (much improving the download speed).
The JAR format also supports compression, which reduces the files size (and further improves the

Glossary 249

download speed). The compression algorithm that is used is fully compatible with the ZIP algorithm. The
owner of an applet can also digitally sign individual entries in a JAR file to authenticate their origin.

Java application
A Java program that runs inside the JVM of your web browser. The program's code resides on a local
hard disk or on the LAN. Java applications might be large programs using graphical interfaces. Java
applications have unlimited access to all your local resources.

Java bytecode
Bytecode is created when a file containing Java source language statements is compiled. The compiled
Java code or "bytecode" is similar to any program module or file that is ready to be executed (run on a
computer so that instructions are performed one at a time). However, the instructions in the bytecode
are really instructions to the Java Virtual Machine. Instead of being interpreted one instruction at a time,
bytecode is instead recompiled for each operating-system platform using a just-in-time (JIT) compiler.
Usually, this enables the Java program to run faster. Bytecode is contained in binary files that have the
suffix.CLASS

Java servlet
See servlet.

JHR
Job header record.

job accounting interface
A function that accumulates accounting information for each job step, to be used for charging the users of
the system, for planning new applications, and for supervising system operation more efficiently.

job accounting table
An area in the supervisor where accounting information is accumulated for the user.

job catalog
A catalog made available for a job by means of the file name IJSYSUC in the respective DLBL statement.

job entry control language (JECL)
A control language that allows the programmer to specify how VSE/POWER should handle a job.

job step
In 1 of a group of related programs complete with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an EXEC statement under one JOB statement for the
whole job.

job trailer record (JTR)
As VSE/POWER parameter JTR, alias NJT. An NJE control record terminating a job entry in the input or
output queue and providing accounting information.

250 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

K

key
In VSE/VSAM, one or several characters that are taken from a certain field (key field) in data records for
identification and sequence of index entries or of the records themselves.

key sequence
The collating sequence either of records themselves or of their keys in the index or both. The key
sequence is alphanumeric.

key-sequenced file
A VSE/VSAM file whose records are loaded in key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access, and new records are inserted in the file in
key sequence.

KSDS
Key-sequenced data sets. See key-sequenced file.

L

label
1. An identification record for a tape, disk, or diskette volume or for a file on such a volume.
2. In assembly language programming, a named instruction that is generally used for branching.

label information area
An area on a disk to store label information that is read from job control statements or commands.
Synonymous with label area.

Language Environment for z/VSE
An IBM software product that is the implementation of Language Environment on the VSE platform.

language translator
A general term for any assembler, compiler, or other routine that accepts statements in one language and
produces equivalent statements in another language.

Large DASD
A DASD device that

1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to VSE/ESA 2.6 that is owned by a catalog.

LE/VSE
Short form of Language Environment for z/VSE.

librarian
The set of programs that maintains, services, and organizes the system and private libraries.

Glossary 251

library block
A block of data that is stored in a sublibrary.

library directory
The index that enables the system to locate a certain sublibrary of the accessed library.

library member
The smallest unit of a data that can be stored in and retrieved from a sublibrary.

line commands
In VSE/ICCF, special commands to change the declaration of individual lines on your screen. You can
copy, move, or delete a line declaration, for example.

linkage editor
A program that is used to create a phase (executable code) from one or more independently translated
object modules, from one or more existing phases, or from both. In creating the phase, the linkage editor
resolves cross-references among the modules and phases available as input. The program can catalog the
newly built phases.

linkage stack
An area of protected storage that the system gives to a program to save status information for a branch
and stack or a stacking program call.

link station
In SNA, the combination of hardware and software that allows a node to attach to and provide control for
a link.

loader
A routine, commonly a computer program, that reads data or a program into processor storage. See also
relocating loader.

local shared resources (LSR)
A VSE/VSAM option that is activated by three extra macros to share control blocks among files.

lock file
In a shared disk environment under VSE, a system file on disk that is used by the sharing systems to
control their access to shared data.

logical partition
In LPAR mode, a subset of the server unit hardware that is defined to support the operation of a system
control program.

logical record
A user record, normally pertaining to a single subject and processed by data management as a unit.
Contrast with physical record, which may be larger or smaller.

252 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

logical unit (LU)
1. A name that is used in programming to represent an I/O device address. physical unit (PU), system

services control point (SSCP), primary logical unit (PLU), and secondary logical unit (SLU).
2. In SNA, a port through which a user accesses the SNA network,

a. To communicate with another user and
b. To access the functions of the SSCP. An LU can support at least two sessions. One with an SSCP and

one with another LU and might be capable of supporting many sessions with other LUs.

logical unit name
In programming, a name that is used to represent the address of an input/output unit.

logical unit 6.2
A SNA/SDLC protocol for communication between programs in a distributed processing environment. LU
6.2 is characterized by

1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API) consisting of structured verbs that are mapped into

a product implementation.

logons interpret interpret routine
In VTAM, an installation exit routine, which is associated with an interpret table entry, that translates
logon information. It also verifies the logon.

LPAR mode
Logically partitioned mode. The CP mode that is available on the Configuration (CONFIG) frame when
the PR/SM feature is installed. LPAR mode allows the operator to allocate the hardware resources of the
processor unit among several logical partitions.

M

macro definition
A set of statements and instructions that defines the name of, format of, and conditions for generating a
sequence of assembler statements and machine instructions from a single source statement.

macro expansion
See macro generation

macro generation
An assembler operation by which a macro instruction gets replaced in the program by the statements of
its definition. It takes place before assembly. Synonymous with macro expansion.

macro (instruction)
1. In assembler programming, a user-invented assembler statement that causes the assembler to

process a set of statements that are defined previously in the macro definition.

Glossary 253

2. A sequence of VSE/ICCF commands that are defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP)
A program that is used for automating and controlling various installation, tailoring, and service activities
for a VSE system.

main task
The main program within a partition in a multiprogramming environment.

master console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed
to one particular console. Contrast this with the user console, which receives only those messages that
are specifically directed to it, for example messages that are issued from a job that was submitted with
the request to echo its messages to that console. The operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA
A unit of allocation equivalent to the maximum control area size on a count-key-data or fixed-block
device. On a CKD device, the max CA is equal to one cylinder.

memory object
Chunk of virtual storage that is allocated above the bar (2 GB) to be created with the IARV64 macro.

message
In VSE, a communication that is sent from a program to the operator or user. It can appear on a console, a
display terminal or on a printout.

MSHP
See maintain system history program.

multitasking
Concurrent running of one main task and one or several subtasks in the same partition.

MVS
Multiple Virtual Storage. Implies MVS/390, MVS/XA, MVS/ESA, and the MVS element of the z/OS (OS/390)
operating system.

N

NetView
A z/VSE optional program that is used to monitor a network, manage it, and diagnose its problems.

network address
In SNA, an address, consisting of subarea and element fields, that identifies a link, link station, or NAU.
Subarea nodes use network addresses; peripheral nodes use local addresses. The boundary function in
the subarea node to which a peripheral node is attached transforms local addresses to network addresses
and vice versa. See also network name.

254 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point. It is the origin or the destination
of information that is transmitted by the path control network. Each NAU has a network address that
represents it to the path control network. See also network name, network address.

Network Control Program (NCP)
An IBM licensed program that provides communication controller support for single-domain, multiple-
domain, and interconnected network capability. Its full name is ACF/NCP.

network definition table (NDT)
In VSE/POWER networking, the table where every node in the network is listed.

network name
1. In SNA, the symbolic identifier by which users refer to a NAU, link, or link station. See also network

address.
2. In a multiple-domain network, the name of the APPL statement defining a VTAM application program.

This is its network name, which must be unique across domains.

node
1. In SNA, an end point of a link or junction common to several links in a network. Nodes can be

distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities.

2. In VTAM, a point in a network that is defined by a symbolic name. Synonymous with network node. See
major node and minor node.

node type
In SNA, a designation of a node according to the protocols it supports and the network addressable units
(NAUs) it can contain.

O

object module (program)
A program unit that is the output of an assembler or compiler and is input to a linkage editor.

online application program
An interactive program that is used at display stations. When active, it waits for data. Once input arrives, it
processes it and send a response to the display station or to another device.

operator command
A statement to a control program, issued via a console or terminal. It causes the control program
to provide requested information, alter normal operations, initiate new operations, or end existing
operations.

optional licensed program
An IBM licensed program that a user can install on VSE by way of available installation-assist support.

Glossary 255

output parameter text block (OPTB)
in VSE/POWER's spool-access support, information that is contained in an output queue record if a * $$
LST or * $$ PUN statement includes any user-defined keywords that have been defined for autostart.

P

page data set (PDS)
One or more extents of disk storage in which pages are stored when they are not needed in processor
storage.

page fixing
Marking a page so that it is held in processor storage until explicitly released. Until then, it cannot be
paged out.

page I/O
Page-in and page-out operations.

page pool
The set of page frames available for paging virtual-mode programs.

panel
The complete set of information that is shown in a single display on terminal screen. Scrolling back and
forth through panels like turning manual pages. See also selection panel.

partition balancing
A z/VSE facility that allows the user to specify that two or more or all partitions of the system should
receive about the same amount of time on the processor.

PASN-AL (primary address space number - access list)
The access list that is associated with a partition. A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work unit). See also DU-AL.

Each partition has its own unique PASN-AL. All programs running in this partition can access data spaces
through the PASN-AL. Thus a program can create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing the ALET to other programs in the partition, the
program can share the data space with other programs running in the same partition.

PDS
Page data sets.

phase
The smallest complete unit of executable code that can be loaded into virtual storage.

physical record
The amount of data that is transferred to or from auxiliary storage. Synonymous with block.

256 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

PNET
Programming support available with VSE/POWER; it provides for the transmission of selected jobs,
operator commands, messages, and program output between the nodes of a network.

POWER
See VSE/POWER.

pregenerated operating system
An operating system such as z/VSE that is shipped by IBM mainly in object code. IBM defines such key
characteristics as the size of the main control program, the organization, and size of libraries, and required
system areas on disk. The customer does not have to generate an operating system.

preventive service
The installation of one or more PTFs on a VSE system to avoid the occurrence of anticipated problems.

primary address space
In z/VSE, the address space where a partition is executed. A program in primary mode fetches data from
the primary address space.

primary library
A VSE library owned and directly accessible by a certain terminal user.

printer/keyboard mode
Refers to 1050 or 3215 console mode (device dependent).

Print Services Facility (PSF)/VSE
An access method that provides support for the advanced function printers.

private area
The virtual space between the shared area (24 bit) and shared area (31 bit), where (private) partitions are
allocated. Its maximum size can be defined during IPL. See also shared area.

private memory object
Memory object (chunk of virtual storage) that is allocated above the 2 GB line (bar) only accessible by the
partition that created it.

private partition
Any of the system's partitions that are not defined as shared. See also shared partition.

production library
1. In a pre-generated operating system (or product), the program library that contains the object code for

this system (or product).
2. A library that contains data that is needed for normal processing. Contrast with test library.

programmer logical unit
A logical unit available primarily for user-written programs. See also logical unit name.

Glossary 257

program temporary fix (PTF)
A solution or by-pass of one or more problems that are documented in APARs. PTFs are distributed to IBM
customers for preventive service to a current release of a program.

PSF/VSE
Print Services Facility/VSE.

PTF
See Program temporary fix.

Q

Queue Control Area (QCA)
In VSE/POWER, an area of the data file, which might contain:

• Extended checkpoint information
• Control information for a shared environment.

queue file
A direct-access file that is maintained by VSE/POWER that holds control information for the spooling of
job input and job output.

R

random processing
The treatment of data without respect to its location on disk storage, and in an arbitrary sequence that is
governed by the input against which it is to be processed.

real address area
In z/VSE, processor storage to be accessed with dynamic address translation (DAT) off

real address space
The address space whose addresses map one-to-one to the addresses in processor storage.

real mode
In VSE, a processing mode in which a program might not be paged. Contrast with virtual mode.

recovery management support (RMS)
System routines that gather information about hardware failures and that initiate a retry of an operation
that failed because of processor, I/O device, or channel errors.

refresh release
An upgraded VSE system with the latest level of maintenance for a release.

relative-record file
A VSE/VSAM file whose records are loaded into fixed-length slots and accessed by the relative-record
numbers of these slots.

258 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

release upgrade
Use of the FSU functions to install a new release of z/VSE.

relocatable module
A library member of the type object. It consists of one or more control sections cataloged as one member.

relocating loader
A function that modifies addresses of a phase, if necessary, and loads the phase for running into the
partition that is selected by the user.

remote interface
In the context of z/VSE, the remote interface allows a client to make method calls to an EJB although the
EJB is on a remote z/VSE host. The container uses the remote interface to create client-side stubs and
server-side proxy objects to handle incoming method calls from a client to an EJB.

remote procedure call (RPC)
1. A facility that a client uses to request the execution of a procedure call from a server. This facility

includes a library of procedures and an external data representation.
2. A client request to service provider in another node.

residency mode (RMODE)
A program attribute that refers to the location where a program is expected to reside in virtual storage.
RMODE 24 indicates that the program must reside in the 24-bit addressable area (below 16 megabytes),
RMODE ANY indicates that the program can reside anywhere in 31-bit addressable storage (above or
below 16 megabytes).

REXX/VSE
A general-purpose programming language, which is particularly suitable for command procedures, rapid
batch program development, prototyping, and personal utilities.

RMS
Recovery management support.

RPG II
A commercially oriented programming language that is specifically designed for writing application
programs that are intended for business data processing.

S

SAM ESDS file
A SAM file that is managed in VSE/VSAM space, so it can be accessed by both SAM and VSE/VSAM
macros.

SCP
System control programming.

Glossary 259

SDL
System directory list.

search chain
The order in which chained sublibraries are searched for the retrieval of a certain library member of a
specified type.

second-level directory
A table in the SVA containing the highest phase names that are found on the directory tracks of the
system sublibrary.

Secure Sockets Layer (SSL)
A security protocol that allows the client to authenticate the server and all data and requests to be
encrypted. SSL was developed by Netscape Communications Corp. and RSA Data Security, Inc..

segmentation
In VSE/POWER, a facility that breaks list or punch output of a program into segments so that printing or
punching can start before this program has finished generating such output.

selection panel
A displayed list of items from which a user can make a selection. Synonymous with menu.

sense
Determine, on request or automatically, the status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM)
A data access method that writes to and reads from an I/O device record after record (or block after
block). On request, the support performs device control operations such as line spacing or page ejects on
a printer or skip some tape marks on a tape drive.

service node
Within the VSE unattended node support, a processor that is used to install and test a master VSE system,
which is copied for distribution to the unattended nodes. Also, program fixes are first applied at the
service node and then sent to the unattended nodes.

service program
A computer program that performs function in support of the system. See with utility program.

service refresh
A form of service containing the current version of all software. Also referred to as a system refresh.

service unit
One or more PTFs on disk or tape (cartridge).

260 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

shared area
In z/VSE, shared areas (24 bit) contain the Supervisor areas and SVA (24 bit) and shared areas (31 bit) the
SVA (31 bit). Shared areas (24 bit) are at the beginning of the address space (below 16 MB), shared area
(31 bit) at the end (below 2 GB).

shared disk option
An option that lets independent computer systems use common data on shared disk devices.

shared memory objects
Chunks of virtual storage allocated above the 2 GB line (bar), that can be shared among partitions.

shared partition
In z/VSE, a partition that is allocated for a program (VSE/POWER, for example) that provides services and
communicates with programs in other partitions of the system's virtual address spaces. In most cases
shared partitions are no longer required.

shared spooling
A function that permits the VSE/POWER account file, data file, and queue file to be shared among several
computer systems with VSE/POWER.

shared virtual area (SVA)
In z/VSE, a high address area that contains a list system directory list (SDL) of frequently used phases,
resident programs that are shared between partitions, and an area for system support.

SIT (System Initialization Table)
A table in CICS that contains data used the system initialization process. In particular, the SIT can
identify (by suffix characters) the version of CICS system control programs and CICS tables that you have
specified and that are to be loaded.

skeleton
A set of control statements, instructions, or both, that requires user-specific information to be inserted
before it can be submitted for processing.

socksified
See socks-enabled.

Socks-enabled
Pertaining to TCP/IP software, or to a specific TCP/IP application, that understands the socks protocol.
"Socksified" is a slang term for socks-enabled.

socks protocol
A protocol that enables an application in a secure network to communicate through a firewall via a socks
server.

socks server
A circuit-level gateway that provides a secure one-way connection through a firewall to server
applications in a nonsecure network.

Glossary 261

source member
A library member containing source statements in any of the programming languages that are supported
by VSE.

split
To double a specific unit of storage space (CI or CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling
The use of disk storage as buffer storage to reduce processing delays when transferring data between
peripheral equipment and the processor of a computer. In z/VSE, this is done under the control of VSE/
POWER.

Spool Access Protection
An optional feature of VSE/POWER that restricts individual spool file entry access to user IDs that have
been authenticated by having performed a security logon.

spool file
1. A file that contains output data that is saved for later processing.
2. One of three VSE/POWER files on disk: queue file, data file, and account file.

SSL
See Secure Sockets Layer.

stacked tape
An IBM supplied product-shipment tape containing the code of several licensed programs.

standard label
A fixed-format record that identifies a volume of data such as a tape reel or a file that is part of a volume
of data.

stand-alone program
A program that runs independently of (not controlled by) the VSE system.

startup
The process of performing IPL of the operating system and of getting all subsystems and applications
programs ready for operation.

start option
In VTAM, a user-specified or IBM specified option that determines conditions for the time a VTAM system
is operating. Start options can be predefined or specified when VTAM is started.

static partition
A partition, which is defined at IPL time and occupying a defined amount of virtual storage that remains
constant. See also dynamic partition.

262 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

storage director
An independent component of a storage control unit; it performs all of the functions of a storage control
unit and thus provides one access path to the disk devices that are attached to it. A storage control unit
has two storage directors.

storage fragmentation
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

suballocated file
A VSE/VSAM file that occupies a portion of an already defined data space. The data space might contain
other files. See also unique file.

sublibrary
In VSE, a subdivision of a library. Members can only be accessed in a sublibrary.

sublibrary directory
An index for the system to locate a member in the accessed sublibrary.

submit
A VSE/POWER function that passes a job to the system for processing.

SVA
See shared virtual area.

Synchronous DataLink Control (SDLC)
A discipline for managing synchronous, code-transparent, serial-by-bit information transfer over a link
connection. Transmission exchanges might be duplex or half-duplex over switched or non-switched links.
The configuration of the link connection might be point-to-point, multipoint, or loop.

SYSRES
See system residence volume.

system control programming (SCP)
IBM supplied, non-licensed program fundamental to the operation of a system or to its service or both.

system directory list (SDL)
A list containing directory entries of frequently used phases and of all phases resident in the SVA. The list
resides in the SVA.

system file
In z/VSE, a file that is used by the operating system, for example, the hardcopy file, the recorder file, the
page data set.

Glossary 263

System Initialization Table (SIT)
A table in CICS that contains data that is used by the system initialization process. In particular, the SIT
can identify (by suffix characters) the version of CICS system control programs and CICS tables that you
have specified and that are to be loaded.

system recorder file
The file that is used to record hardware reliability data. Synonymous with recorder file.

system refresh
See service refresh.

system refresh release
See refresh release.

system residence file (SYSRES)
The z/VSE system sublibrary IJSYSRS.SYSLIB that contains the operating system. It is stored on the
system residence volume DORSES.

system residence volume (SYSRES)
The disk volume on which the system sublibrary is stored and from which the hardware retrieves the
initial program load routine for system startup.

system sublibrary
The sublibrary that contains the operating system. It is stored on the system residence volume (SYSRES).

T

task management
The functions of a control program that control the use, by tasks, of the processor and other resources
(except for input/output devices).

time event scheduling support
In VSE/POWER, the time event scheduling support offers the possibility to schedule jobs for processing
in a partition at a predefined time once repetitively. The time event scheduling operands of the * $$ JOB
statement are used to specify the wanted scheduling time.

TLS
See Transport Layer Security.

track group
In VSE/POWER, the basic organizational unit of a file for CKD devices.

track hold
A function that protects a track that is being updated by one program from being accessed by another
program.

264 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

transaction
1. In a batch or remote batch entry, a job or job step. 2. In CICS TS, one or more application programs

that can be used by a display station operator. A given transaction can be used concurrently from one
or more display stations. The execution of a transaction for a certain operator is also referred to as a
task.

2. A given task can relate only to one operator.

transient area
An area within the control program that is used to provide high-priority system services on demand.

Transport Layer Security
The newest SSL cryptographic protocol. It provides additional strength to privacy and data integrity.

Turbo Dispatcher
A facility of z/VSE that allows to use multiprocessor systems (also called CEC: Central Electronic
Complexes). Each CPU within such a CEC has accesses to be shared virtual areas of z/VSE: supervisor,
shared areas (24 bit), and shared areas (31 bit). The CPUs have equal rights, which means that any CPU
might receive interrupts and work units are not dedicated to any specific CPU.

U

UCB
Universal character set buffer.

universal character set buffer (UCB)
A buffer to hold UCS information.

UCS
Universal character set.

user console
In z/VSE, a console that receives only those system messages that are specifically directed to it. These
are, for example, messages that are issued from a job that was submitted with the request to echo its
messages to that console. Contrast with master console.

user exit
A programming service that is provided by an IBM software product that can be requested during the
execution of an application program for the service of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS)
A relative-record data set with variable-length records. See also relative-record data set.

variable-length relative-record file
A VSE/VSAM relative-record file with variable-length records. See also relative-record file.

Glossary 265

VIO
See virtual I/O area.

virtual address
An address that refers to a location in virtual storage. It is translated by the system to a processor storage
address when the information stored at the virtual address is to be used.

virtual addressability extension (VAE)
A storage management support that allows to use multiple virtual address spaces.

virtual address space
A subdivision of the virtual address area (virtual storage) available to the user for the allocation of private,
nonshared partitions.

virtual disk
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can use as workspace.
Although the virtual disk exists in storage, it appears as a real FBA disk device to the user program. All I/O
operations that are directed to a virtual disk are intercepted and the data to be written to, or read from,
the disk is moved to or from a data space.

Like a data space, a virtual disk can hold only user data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space, data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must perform I/O operations.

Starting with z/VSE 5.2, a virtual disk may be defined in a shared memory object.

virtual I/O area (VIO)
An extension of the page data set; used by the system as intermediate storage, primarily for control data.

virtual mode
The operating mode of a program, where the virtual storage of the program can be paged, if not enough
processor (real) storage is available to back the virtual storage.

virtual partition
In VSE, a division of the dynamic area of virtual storage.

virtual storage
Addressable space image for the user from which instructions and data are mapped into processor
storage locations.

virtual tape
In z/VSE, a virtual tape is a file (or data set) containing a tape image. You can read from or write to a
virtual tape in the same way as if it were a physical tape. A virtual tape can be:

• A VSE/VSAM ESDS file on the z/VSE local system.
• A remote file on the server side; for example, a Linux, UNIX, or Windows file. To access such a remote

virtual tape, a TCP/IP connection is required between z/VSE and the remote system.

266 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

volume ID
The volume serial number, which is a number in a volume label that is assigned when a volume is
prepared for use by the system.

VRDS
Variable-length relative-record data sets. See variable-length relative record file.

VSAM
See VSE/VSAM.

VSE (Virtual Storage Extended)
A system that consists of a basic operating system and any IBM supplied and user-written programs that
are required to meet the data processing needs of a user. VSE and hardware it controls form a complete
computing system. Its current version is called z/VSE.

VSE/Advanced Functions
A program that provides basic system control and includes the supervisor and system programs such as
the Librarian and the Linkage Editor.

VSE Connector Server
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and Operations Utility)
An IBM licensed program that provides file-to-file services for disk, tape, and card devices.

VSE/ESA (Virtual Storage Extended/Enterprise Systems Architecture)
The predecessor system of z/VSE.

VSE/Fast Copy
A utility program for fast copy data operations from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program)
An IBM licensed program for fast copy data operations from disk to disk and dump/restore operations via
an intermediate dump file on magnetic tape or disk. There is also a stand-alone version: the FASTCOPY
utility.

VSE/ICCF (VSE/Interactive Computing and Control Facility)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

VSE/ICCF library
A file that is composed of smaller files (libraries) including system and user data, which can be accessed
under the control of VSE/ICCF.

Glossary 267

VSE JavaBeans
Are JavaBeans that allow access to all VSE-based file systems (VSE/VSAM, Librarian, and VSE/ICCF),
submit jobs, and access the z/VSE operator console. The class library is contained in the VSEConnector.jar
archive. See also JavaBeans.

VSE library
A collection of programs in various forms and storage dumps stored on disk. The form of a program is
indicated by its member type such as source code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain any type of member.

VSE/POWER
An IBM licensed program that is primarily used to spool input and output. The program's networking
functions enable a VSE system to exchange files with or run jobs on another remote processor.

VSE/VSAM (VSE/Virtual Storage Access Method)
An IBM access method for direct or sequential processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog
A file containing extensive file and volume information that VSE/VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or an operator to gain access to a
file, and to accumulate use statistics for files.

VSE/VSAM managed space
A user-defined space on disk that is placed under the control of VSE/VSAM.

W

wait for run subqueue
In VSE/POWER, a subqueue of the reader queue with dispatchable jobs ordered in execution start time
sequence.

wait state
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup. See hard wait.

Workstation File Transfer Support
Enables the exchange of data between IBM Personal Computers (PCs) linked to a z/VSE host system
where the data is kept in intermediate storage. PC users can retrieve that data and work with it
independently of z/VSE.

work file
A file that is used for temporary storage of data being processed.

268 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Numerics

24-bit addressing
Provides addressability for address spaces up to 16 megabytes.

31-bit addressing
Provides addressability for address spaces up to 2 gigabytes.

64-bit addressing
Provides addressability for address spaces up to 2 gigabytes and above.

Glossary 269

270 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

Index

Numerics
3211

use of with indexing xx

A
AB/S 183
ABEND

definition of 3
ABEND dump

activation via
OPTION statement 5
STDOPT command 5

contents
data space dump 6
memory object dump 6
partition dump 5
symptom part 5
system dump 5

contents controlled via
OPTION statement 21
STDOPT command 21

definition of 4
options for

partition or system 21
output contents 5
output destination 22
output device 22
output written into

a dump sublibrary 22
ABEND trace (interactive trace program) 35
absolute addresses 158
access register 66
access registers, displaying 77
accessibility 233
ACF/VTAM traces (see VTAM traces) 67, 106
activating dump writing 14
adding dumps 178
additional output for tracing events 160
ADDress definition 111
ADDress parameter (interactive trace program) 36
addresses

of phases in storage
on linkage editor map 217

to define trace range 158
ADRS 183
aids 227
ALET 66
alter

low address storage
with DSPLY/ALTER commands
220

virtual storage 220
ALTER command

interactive trace program 38
alter/display feature

alter/display feature (continued)
areas accessible by 228

altering
with the ALTER command 220

AMODE 64
trace, general-purpose registers 78

analysis routines
IJBXCSMG 189
IJBXDBUG 190
IJBXSDA 193
invocation 189
selecting 189

area definition
by partition-ID 157
for tracing events

by absolute addresses 158
by partition-ID 158
by phase name 158
by relative addresses 158
for address spaces 158
in the LTA 158
space ID 158

in a DUMP command 23
AREA definition

ALL 69, 111
for tracing events

by partition-ID
157

general description 69
in direct input mode 111
partition_id 69
partition-id 111
SUP 69, 111

array extensions 215
assignments, I/O devices 223
audience of this manual xix

B
batch

batch mode 169
reader mode 169

batch mode 169
branch execution trace 56, 89
branch trace (interactive trace program) 35
branch trace (SDAID)

general description 56
in direct input mode 89
in procedure mode 121

buffer
contents of

on event 72, 113
tracing usage of by VTAM 67, 106

buffer sizes for SDAID 144
buffer trace

general description 57
in direct input mode 89

Index 271

buffer-overflow trace 57, 89
BUFFOUT keyword operand 130
BUFFOUT=CANCEL 130
BUFFOUT=EXT 130
BUFFOUT=PGMC 130
BYPASS

statement 198

C
CALL statement 189
calling an analysis routine 189
CANCEL command

dump stored in
dump sublibraries 11

output
as partition dump 23
as system dump 23

cancel trace
general description 57
in direct input mode 90

CCB 74, 160
CCW 74, 114, 160
CCWD (CCW with data), display of on event 74, 114
chain extensions 215
chaining

of control blocks 215
channel command word

display of on event 74, 114, 160
channel command word (CCW) 74, 114, 160
CHannnel definition 113
CICS/VSE dump 175
command control block (CCB)

contents of on event 74, 160
command symbols xxiii
commands

ALTER 38, 220
CANCEL 23
DISPLAY 37
DSPLY 220
DUMP 23
ENDSD 163
for tracing events

method of syntax presentation 135
prompting for 145
sequence of 136
summary 133
syntax summary 136

GO 38
LISTIO 223
OUTDEV 53, 144
PAUSE 226
QUERY 37
SDAID 133
STOP 226
STOPSD 163
TRACE 145
tracing events

syntax diagrams 135
COMREG 74, 160
console

console 169
console communication per job 223
continuation

continuation (continued)
EXEC PROC statement 117

control block
display contents of

on event 72, 113
formatting 216
linkages 215
locating 215

control blocks
dumped by ABEND dump 6

control information
OUTDEV command

prompting for 144
control information input

DUMP command 23
invoking DOSVSDMP 27
LVTOC program 225
SDAID program

sequence of commands 133
tracing events

additional output 160
TRACE command 145

control record 179
control registers (CREG)

display of on event 75, 160
control statements

ACTION 217
invoking DOSVSDMP 27
invoking LVTOC program 225
LISTIO 223
PAUSE 226
Standalone Dump Program 27

conventions
notational, SDAID commands 135

conventions, command xxiii
creating a Standalone Dump Program 27
CREG 75, 160
CU definition 82, 113
current dump

selecting 178

D
DATA

for PRINT statement 180, 183
data recovery 219
data space

dump file 9
dumping priority (OPTION SADUMP) 9

data space dump
option for 21
output contents 6

DDT 6
deactivating dump writing 15
debugging

hardware aids for 227
default values

set by procedures 117
set by SDAID 117

defining
dump area 23
dump sublibraries

example 13
I/O device range for tracing events 159

272 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

defining (continued)
occurrence of events 161
output device for tracing events 53, 144
type of a trace 145

DELETE
Info/Analysis control statement
180

DELETE statement 180
deleting a dump

from a dump sublibrary 180
device assignments

DOSVSDMP 27
for printing from tape 27
listing of 223

device definition table 6
device specification

in an OUTDEV command 53, 144
device status information

saving disk usage statistics 227
writing of onto SYSREC 227

devices
input 169
output 169

DIBEXT 6
DIBTAB 6
direct input mode

trace initialization 83
disability 233
disk data, dumping of 219
disk information block 6
disk information block extension 6
display

console communication per job 223
label information area 224
low address storage

on event 78, 160
of current event

XPCCB (XPCC communication control block) 80
XPDATABU (XPCC data buffer) 80

of current LOCK or UNLOCK event
LOCKTE (Locktable entry) 79

on event
CCB (command control block) 74, 160
CCW (channel command word) 74, 114, 160
CCW with data 74, 114
COMREG (partition communication region) 74, 160
CREG (control registers) 75, 160
GReg (general registers) 77
GREG (general registers) 160
IORB (I/O request block) 74, 160
IOTab (I/O tables and blocks) 78
IOTAB (I/O tables and blocks) 160
low address storage 78, 160
LTA (logical transient area) 79, 160

volume table of contents 225
with the DSPLY command 220

DISPLAY command
interactive trace program 37

display feature 228
documenting

system problems 15
DOSVSDMP utility

control statements for 27
functions 27

DOSVSDMP utility (continued)
printing stand-alone dump 30
SDAID tape printing 31

DSPLY/ALTER commands 220
dump

ABEND dump 3
adding 178
analysis routine call 189
CANCEL command dump 23
CICS/VSE 175
contents

overview 3, 182
contents of

for a DUMP command 23
creation 172
current 178
data from disk or tape 219
data records 3
data space 6
deleting 180
DUMP command 23
DUMP command dump

printed output 208
DUMP NAME

statement 178
event triggered 75, 115
external routines file 170
files to process 11
identification of 15
invoking from within a program 25
library 172
life cycle 172
listing of

examples 180
memory object 6
methods of requesting 17, 21
name format 15
onloading 201
overview 1
partition 3
PRINT control statement 180
printed from tape 201
printing

formatted areas 188
selective areas 187
symptoms 183

requested by macros 25
SDAID dump trace 24
selecting 178
sending dump to the dump archive 17
sending to IBM Support 16
stand-alone 172, 214
stand-alone dump

formatted output 205
Standalone Dump Program 7
stored in

dump sublibraries 11
summary 21
symptom records 3
system 3
types 183
uploading large dumps from a tape 18
virtual storage dump, on event 115
written into sublibraries

Index 273

dump (continued)
written into sublibraries (continued)

prerequisites 22
written to SYSDUMP 11

DUMP (virtual storage dump) output definition 75, 115
dump archive, using 17
dump area definition

by OPTION specification 21
in a DUMP command 23
in a TRACE command 75, 115

DUMP command
area definition 23
control information 23
dump stored in

dump sublibraries 11
formatted output 208, 209

DUMP command dump
formatted printout 208

dump contents
DDT 6
DIBEXT 6
DIBTAB 6
EDT 6
LDT 6
LOADLS 6
LPT 6
LUBEXT 6
LUBTAB 6
PUB2TAB 6
PUBOWN 6
PUBTAB 6
SDT 6
SYSFIL 6
TCB 6
TIB 6

dump library
defining

example 13
labels needed 12
purpose of 11
requirements 12
security of 13

DUMP macro 25
dump management

adding dump 178
deleting dump 180
file

control record 179
initialization 179

selecting dump 178
dump management file

initialization 169
labels 171

dump management library 11
DUMP NAME

control statement 169
statement 178

dump offload
volume 198

dump onload
volume 200

dump option 38
dump output definition

SDAID 24

dump sublibraries
clear space 17
concept 11
contents 11
defining

example 13
deleting a dump 180
dump storing

deactivation 15
full condition

handling of 15
identify dumps 15
load dump into 201
required JCL options 14
required LIBDEF statement 13
requirements 11
used to store dumps

requirements 12
writing dumps into 11

dump symptoms
description 183
dump type 183
dump types 183
environment 183
function 182
interactive mode 173
optional symptoms 183
panel 173
printing 183
summary 183

dump tape
sending to IBM Support 17

dump types
in dump symptoms 183

dump utilities 27
dump viewing 187
dumps

DOSVSDMP utility 27
virtual storage dump, on event 75

dumps requested by
CANCEL command 23
DUMP command 23
macros 25
SDAID dump 24
stand-alone dump 23

E
EDT 6
electronic

sending of a dump to IBM Support 16
end SDAID trace initialization

in direct input mode 86
end-of-input 176, 209
end-of-job 176, 209
ending

SDAID control information input 163
SDAID execution

by an ENDSD command 163
on event 161

ending a session 209
ENDSD command

description 163
summary of 47

274 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

environment
for Info/Analysis
169

ENVIRONMENT 183
environment section 174, 183, 213
EOJ (end of job) trace 57, 90
ERASE

statement 198
EREP program

use of
in response to VSE messages 227

event record
instruction-execution trace 59
program-load trace 65
storage-alter trace 66

events
limiting number of to be traced 161
number of, traceable per session 50
traceable by SDAID 145
tracing of 45, 133

examples
call an analysis routine 189
delete a dump job 180
DOSVSDMP prints SDAID tape 31
DOSVSDMP utility

prints stand-alone dump 30
DUMP command dump

symptoms 209
dump symptom output 183
file labels for

dump management file 171
external routines file 171
SYSDUMP library 171

generate the Standalone Dump Program 27
IJBXDBUG output 193
Info/Analysis control statements 209
initialization of

dump management file 170
instruction-execution trace event record 59
interactive trace program 40
invoke Info/Analysis 176
label information area, display of 224
library chain listing 221
linkage editor output 217
list managed dumps 180
loading the

external routines file 171
map of virtual storage

by the linkage editor 217
offload a dump job 199
onload a dump job 201
print active partition of stand-alone dump tape 205
PRINT control statement

output 180
print DUMP command dump formatted 208
print dump symptoms 183
print formatted dump 188
print main dump file of stand-alone dump tape 204
print selective dump areas 188
program-load trace event record 65
prompting sequence

program-load trace request 152
storage-alter trace event record 66
symptoms in a

examples (continued)
symptoms in a (continued)

stand-alone dump output 205
extensions

array 215
chain 215
hexadecimal 215
keyfield 215
text 215

extent definition table 6
external interrupt trace

external interrupt 91
general description 57
in direct input mode 91

external routines file
labels 171
loading 171

F
file

external routines 169
sequence number 201

FILE
statement 201

floating point registers (FREG), display of on event 160
floating-point registers (FReg), display of on event 77
format

DUMP command 23
of a dump name 15

FORMAT
for PRINT statement 187

formatted
control blocks 216

formatted dump print 188
formatting descriptor 216
free-form symptoms 174, 183
freeform symptoms 213
functions

dump management 179
dump offload 197
dump onload 200
dump symptoms

interactive mode 173
dump viewing 187
overview 172

G
generating a Standalone Dump Program 27
GETVis (getvis / freevis request) trace 148
GETVIS / FREEVIS trace (SDAID)

general description 58
GETVIS trace (SDAID)

in direct input mode 92
GO command

interactive trace program 38
GReg (general registers)

display of on event 77
GREG (general registers)

display of on event 160

Index 275

H
halt (processing) on event 161
Halt option 80
halt temporarily

program execution 226
tracing of events 163

hardware aids
alter/display feature 228
instruction stepping feature 228
overview 227
stop-on-address-compare feature 228

header record
symptom 213

help function, event tracing 145
hex addresses, to define trace range 158
hexadecimal

extensions 215
high-speed dump 7
high-speed dumps 27

I
I/O device range definition

by channel address 159
by control unit address 159
by unit address 159

I/O interrupt trace
device range definition 159
general description 59
in direct input mode 95
in procedure mode 124

I/O request block (IORB)
display of on event 74, 160

I/O tables and blocks
(IOTab)

display of on event 78
I/O tables and blocks

(IOTAB)
display of on event 160

IBM Support
mailing a dump stored on tape 17
sending a dump to, electronically 16

ICCF
interfaces 169

IJBXCSMG
activation 190
functions 189
invocation 189

IJBXDBUG
activation 190
invocation 189
name loaded into

external routines file 171
output

address validation 191
from hard wait dumps 192
from loop dumps 193
from soft wait dumps 193
general dump information 191
header information 191
specific analysis information 192

output examples 193
IJBXSDA

IJBXSDA (continued)
activation 197
functions 193
invocation 189

Info/Analysis
functions 10
print dumps from tape 203
prints DUMP command dump 208
prints stand-alone dump 204

Info/Analysis control
statements

BYPASS 198
CALL 189
common 177
DELETE 180
DUMP NAME 178
entering 176
ERASE 198
examples 209
FILE 201
PRINT

dump management 180
dump symptoms 183
dump viewing 187

reference 211
RETURN 177
SELECT 177
summary 211
syntax 176
UTILITY 169, 179
VOLID

for dump offload 198
for dump onload 200

Info/Analysis functions 169
INFOANA

invocation 176
information gathering

aids for
dump of disk or tape 219
LISTLOG utility 223
LSERV (label service) program 224
LVTOC program 225

information retrieval 227
initialization of

dump management file 169
input/output 78, 160
instruction stepping feature 228
instruction trace (interactive trace program) 35
instruction trace (SDAID)

general description 59
in direct input mode 94
in procedure mode 123

instruction-execution trace
event record 59

integrated console 8
interactive trace commands

ALTER 38
DISPLAY 37
GO 38
QUERY 37
TRACE definition 36
TRACE END 36

interactive trace examples 40
interactive trace program

276 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

interactive trace program (continued)
ABEND trace 35
activation 36
branch trace 35
commands 36
examples 40
instruction trace 40
interactive trace program 35
restrictions 39
scope of tracing 39
storage alteration trace 40
trace activation 36

Interactive Trace Program
tracing in a user partition with subtasks attached 39

interfaces 169
invalid address space

display of virtual storage 221
invocation

of Info/Analysis
176

invoking
dump

by the DUMP command 23
from within a program 25

dumps from within a program 25
LVTOC program 225
SDAID program 163
Standalone Dump Program 7

IO (I/O) interrupt trace
for VTAM 155

IORB 74, 160
IOTab (I/O tables and blocks), display of on event 78
IOTAB (I/O tables and blocks), display of on event 160
IPL load parameter 8

J
JDUMP macro 25
job cancel trace 57, 90
job control

for Info/Analysis invocation
175

job control statements
logging of on SYSLST 223

JOBNAME definition
general description 70
in direct input mode 111

JOBNUM definition 70

K
keyfield

extension 215

L
label information

for SYSDUMP library
example 12

label information area
display of 224

label service (LSERV) program 224
language translator source code 222

LBD 213, 214
LDT 6
LIBDEF statement

to establish the
dump sublibraries 13

LIBR program
used to define

the dump sublibraries 13
library chain listing 221
library chains, display of 221
library definition table 6
library pointer block 6
life cycle of a dump 172
limiting occurrence of events to be traced 161
line mode 169, 175
linkage

descriptor 215
linkage editor

obtaining a map of virtual storage 217
output of, example 217

linkage editor map
example 217

list log utility (LIST LOG) 223
list option 222
listing

device assignments 223
job related SYSLOG communication 223

LISTIO command/statement 223
load a dump

into a dump sublibrary 201
load parameter 8
LOADLS 6
locating block descriptor 213, 214
locator 215
LOCK (lock / unlock of resources) trace 150
LOCK / UNLOCK trace (SDAID)

general description 60
record/print Locktable entry 79

LOCK trace (SDAID)
in direct input mode 96

Locktable entry (LOCKTE)
display or print 79

LOCKTE 79
logging job control statements on SYSLST 223
logical transient area (LTA)

display of on event 79, 160
logical unit block 6
logical unit block extension 6
loop

prompting
program-load trace request 152

tracing events for 164
lost characters on IBM 3211 printouts xx
low address range of storage (LOwcore), contents of on
event 78
low address range of storage (LOWCORE), contents of on
event 160
low address storage

display of
on event 78, 160

display/alter
with DSPLY/ALTER commands
220

LOwcore 78

Index 277

LOWCORE 160
LPT 6
LSERV (label service) program 224
LTA 79, 160
LUBEXT 6
LUBTAB 6
LVTOC (list volume table of contents) program 225
LVTOC program

invoking of 225

M
macros, dump invoking 25
mapping virtual storage

by the linkage editor
example 217

map of virtual storage 217
memory object dump

option for 21
output contents 6

memory object dumps
required symptoms 183

memory objects
dump file 9
dumping priority (OPTION SADUMP) 9
trace, general-purpose registers 78

modes of operation 169
MON (monitor call) trace 98, 151
monitor call trace

general description 61
in direct input mode 98

MS 183
multiple tape support (stand-alone dump) 23

N
name of dumps 15
no-dump option 21
NOJCL option 80
NOJCL specification 161
NOSource option 80
NOTarget option 80
notational conventions 135
notations, command xxiii
number of

events per trace type 161
trace types per session 50

O
OBJMAINT

used to load
external routines file 171

occurrence definition 161
OCcurrence option 80
offload 197
OFFS 183
OFFset definition 112
onload 200
OPCS 183
operating

system 169
operating environment 169

operational hints
dump sublibraries 11
invoking

dumps from within a program 25
the SDAID program 163

tracing events
for a loop 164
traces per SDAID session 50

operator console 169
OPTion definition

Halt 80
HALT 116
in direct input mode 116
NOJCL 80, 116
NOSource 80, 116
NOTarget 80, 116
OCcurrence 80
OCCurrence 116
SUPervisor 80, 116
Terminate 80
TERMinate 116

OPTION statement
for ABEND dump function 21
for stand-alone dumps 9
SADUMP option 9
to store dumps

into dump sublibraries 14
optional symptoms

non-SDB section 183,
213
SDB section 183, 213

options
controlling the ABEND dump function 21
invoking

data space dumps 21
memory object dumps 21
partition or system dumps 21

listing language translator source code 222
to activate dump storing

OPTION SYSDUMP 14
STDOPT SYSDUMP=YES 14

to deactivate dump storing
// OPTION NOSYSDUMP 15
LIBDROP DUMP,PERM 15
STDOPT SYSDUMP=NO 15
UNBATCH command to deactivate the partition. 15

OSAX adapter trace
general description 62

OSAX adapter trace (prompt mode) 151
OUTDEV

general description 53
OUTDEV command

description 144
prompting for 144
summary of 133
syntax diagram 137

OUTDEV specification
description 53

OUTDEV statement
in direct input mode 86

output
ABEND dump function 22
DUMP command dump

formatted output 208

278 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

output (continued)
from IJBXDBUG 193
language translator 222
linkage editor 217
lost characters on IBM 3211 xx
of IJBXDBUG 191
of the

Standalone Dump Program 8
routing 169
SDAID

from tape 31
SDAID program

definition of 160
device for 53, 144
to magnetic tape 53, 144
to printer 53, 144
to wraparound buffer 53, 144

stand-alone dump
printing of tape 30

output definition 160
OUTPut definition 113
output definition, tracing events

buffer 72, 113
CCB (command control block) 74, 160
CCW (channel command word) 74, 114, 160
CCW with data 74, 114
COMREG 74, 160
control registers 75, 160
FReg (floating-point registers) 77
FREG (floating-point registers) 160
GReg (general registers) 77
GREG (general registers) 160
I/O tables and blocks 78, 160
IORB (I/O request block) 74, 160
LOCKTE (Locktable entry) 79
LOwcore (low address storage) 78
LOWCORE (low address storage) 160
LTA (logical transient area 79, 160
partition communication region 74, 160
partition-related control blocks 79
PIB (program information block) 160
PTA (physical transient area) 79, 160
supervisor area 79, 160
SYSCom 79
SYSCOM 160
task-related control blocks 80, 160
time of day 80, 160
virtual storage dump 115
virtual storage dumps 75
XPCCB (XPCC communication control block) 80
XPDATABU (XPCC data buffer) 80

output device 169
output device (SDAID)

direct input mode 86
general description 53, 72
overview 49
procedure mode 130

output device specification
for tracing events 53, 144

P
page manager address space (PMRAS) dump file 8
panels

panels (continued)
dump symptoms 173

partition communication region
display of on event 74, 160

partition dump
option for 21
output contents 5
produced by

the CANCEL command 23
partition information block extension 6
pattern specification

for storage-alter trace 66, 103, 154
PAUSE command/statement 226
PDUMP macro 25
PER 39
performance considerations, tracing of events 49
PHase definition 112
phase load trace table 6
physical transient area (PTA), display of on event 79, 160
physical unit block (PUB) 6
physical unit block table 6
PIB 160
PIB2TAB 6
PIDS 183
plus sign 173
PMRAS (page manager address space) dump file 8
pointer section 213
prefix 174
print

DUMP command dump formatted 208
dump symptoms 183
dumps from tape

steps 203
with Info/Analysis
203

selective dump areas 187
stand-alone dump formatted 204
stand-alone dump unformatted 30

PRINT
statement

for dump management 180
for dump symptoms 183
for dump viewing 187

PRINT statement 187
printed output xx
printer definition

procedure mode 130
printing

error information
from SYSREC 227

printing dumps
sample job to

invoke Info/Analysis
176

printing the stored dump 182
problem

log 15
problem data collection 172
procedure

creation for SDAID trace 119
statement for SDAID trace 117
to initialize SDAID traces 121

procedure mode
trace initialization 117

Index 279

program check
trace 152

program check trace
general description 63
in direct input mode 99, 100
in procedure mode 126

Program Event Recording (PER)
interactive trace program 39
synchronization with the interactive trace program 39

program information block
display of on event 160

program load trace
event record 65
general description 64
in direct input mode 101
in procedure mode 125
prompting sequence for 152

prompting control information
additional output 160
creating a Standalone Dump Program 27
event occurrence definition 161
event type 145
halt on event 161
I/O definition in TRACE command 159
OUTDEV command 53, 144
output definition 160
TRACE command 145
trace type 145
tracing events

number of event occurrences 161
PTA (physical transient area), display of on event 79, 160
PTAB (partition-related control blocks) 79, 160
PTRACE 39
PUB (physical unit block) 6
PUB ownership table 6
PUBOWN 6
PUBTAB 6

Q
QUERY command

interactive trace program 37
question mark

single, request help function 145

R
range of trace

defining of
by occurrence definition 161

of devices, for I/O events 159
reader mode 169, 175
READY command

summary of 133
record

header 169
recording hardware failures

controls for
via the console 227

recording time of day, on event 80, 160
recovery management support

control of
via the console 227

recovery of data 219
REGS 183
relative addresses, to define the trace range 158
required symptoms

memory object dumps 183
required symptoms section 174, 183, 213
restrictions

display of virtual storage 221
program-load trace request prompting loop 152
SDAID tape output 53
using an IBM 3211 with indexing xx

retrieval of error information 227
RETURN

statement 177
RIDS 183
ROD command 227
routines 189

S
SADMPSMO option 9
SADUMP option 9
scope of tracing 39
SDAID

general description 53
overview 43
session 45
trace options 80

SDAID buffer formatting 189
SDAID buffer sizes 144
SDAID commands

prompting for 145
SDAID commands, summary 133
SDAID dump trace 24
SDAID program

ending execution 163
invoking of 163
output from tape 31
prompting control information 145
storage requirements 50

SDAID trace
additional keywords 129

SDAID trace initialization
direct input mode 46
in direct input mode 83
in procedure mode 117
overview 45
procedure mode 46

SDAID trace procedures
summary 121

SDAID trace types
summary 47, 88, 110, 146
summary(general description) 55

SDAID wait states 165
SDAID wraparound 57, 89
SDB 174, 183
SDT 6
SDUMP macro 25
SDUMPX macro 25
section 6 214
SELECT statement 177
selection

level 177
sequence of commands, SDAID program 133

280 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

serviceability aids
aids for

DSPLYV message reply 225
CANCELV message reply 225
display of

library chains 221
dump invoking macros 25
dump libraries 11
dump sublibraries 11
dump utility DOSVSDMP 27
hardware 227
library chain listing 221
list log utility 223
listing I/O device assignments
223
LSERV program 224
map of virtual storage

by the linkage editor 217
stand-alone dump 7

single question mark 135
SSCH (start subchannel) trace

device range definition 159
for VTAM 155

SSCH (start subchannel) Trace 152
SSCH instruction trace

general description 65
in direct input mode 102
in procedure mode 124

stand-alone dump
dumping priority (OPTION SADUMP) 9
dumping shared memory objects or not (OPTION
SADMPSMO) 9
formatted output 205
formatted print 204
multiple tape support 23
OPTION SADMPSMO 9
OPTION SADUMP 9
printed output 205
requesting a 23
SADMPSMO option 9
SADUMP option 9
saving machine information 23
STORE STATUS command 23
unformatted output 30

Standalone Dump Program
creating 27
output 8
unformatted output 30
when to use 7

start I/O trace 152
start SDAID after Halt 80
start SDAID trace initialization

in direct input mode 85
overview 47

start subchannel trace 65, 102
start tracing of events 163
STARTSD command

STARTSD 163
summary of 47

statements 175, 176, 226
STDOPT command

for ABEND dump function 21
SADUMP option 9
to store dumps

STDOPT command (continued)
to store dumps (continued)

into dump sublibraries 14
STOP command 226
stop temporarily

program execution 226
tracing of events 163

stop-on-address-compare feature 228
STOPSD command

description 163
summary of 47

storage alteration trace (interactive trace program) 35
storage alteration trace (SDAID)

general description 66
in direct input mode 103
in procedure mode 127

storage requirements
SDAID program 50

storage-alter trace
event record 66
pattern for 66, 103, 154

structured data base 213
structured data base (SDB) 183
sublibrary definition table 6
sublibrary name 15
SUP (supervisor area), dumping on event 79
supervisor area, contents of on event 79, 160
SUPervisor option 80
Supvr (supervisor area), dumping on event 160
suspend program execution 226
suspend tracing of events 163
SVC (supervisor call) trace

for VTAM 155
SVC trace

general description 67
in direct input mode 105
in procedure mode 128

symptom part
DUMP command dump 209
of an ABEND Dump 5
stand-alone dump 205

symptom records
creation 214
environment section 174, 183, 213
formatting descriptors 216
introduction 172
linkage descriptor 215
locator 215
optional symptoms

non-SDB section 183,
213
SDB section 183, 213

overview 213
pointer section 213
required symptoms section 174, 213
section 6 213

symptoms 173
syntax

for Info/Analysis control statements
176

syntax diagram
OUTDEV command 137
TRACE command 138

syntax symbols xxiii

Index 281

syntax, of commands xxiii
SYSCom 79
SYSCOM 160
SYSDUMP

label information 11
library 11
option 11, 14

SYSDUMP library
concept 11
labels

example 12
requirements 12

SYSDUMP used by
ABEND dump function 22
CANCEL command 23

SYSFIL 6
SYSLST 169
SYSREC file, printing of 227
system

input device 169
operating 169
output device 169

system areas
dumped 205

system communication region, display of on event 79, 160
system dump

option for 21
output contents 5
produced by

the CANCEL command 23
system dump library 11
system file buffer 6

T
tables

SDAID command summary 133
tape

mailing to IBM Support (containing a dump) 17
uploading large dumps from 18

tape data, dumping of 219
tape definition

procedure mode 130
task control block 6
task information block 6
TCB 6
temporarily stop

program execution 226
tracing of events 163

TERM keyword operand 131
TERM=CANCEL 131
TERM=EXT 131
TERM=PGMC 131
Terminate option 80
termination 163, 209
text

extension 215
TIB 6
time of day, recording of on event 80, 160
trace buffer definition

procedure mode 130
TRACE command

prompting for
output definition 160

TRACE command (continued)
prompting for (continued)

trace type 145
summary of 133
syntax diagram 138

TRACE command (interactive) 36
trace commands (interactive trace program)

ALTER 38
DISPLAY 37
GO 38
QUERY 37
TRACE 36

TRACE commands (SDAID)
prompting for 145

trace examples (interactive trace program)
trace initialization 40

trace output, overview 49
TRACE statement

in direct input mode 88
trace type definition

branch 147
branch-execution 89
buffer 147
buffer-overflow 89
cancel 147
cancel (end-of-job) 90
external interruption 147
GETVis 148
GETVIS 92
instruction execution 94, 149
IO (I/O) interrupt 95, 149
LOCK 96, 150
MON (monitor call) 98, 151
OSAX adapter trace (prompt mode) 151
program check 99, 100, 152
program load 101, 152
SSCH (start subchannel) 102, 152
storage alter 103, 154
summary 145
SVC (supervisor call) 105, 154
VTAM I/O 107
VTAMBU 155
VTAMBU (VTAM buffer usage) 106
XPCC 108, 155

trace type description
branch-execution 56
buffer-overflow 57
cancel (end-of-job) 57
external interrupt 57
GETVIS / FREEVIS 58
instruction execution 59
IO (I/O) interrupt 59
LOCK / UNLOCK 60
OSAX adapter trace 62
program check 63
program load 64
SSCH (start subchannel) 65
storage alter 66
SVC (supervisor call) 67
VTAM I/O 68
VTAMBU (VTAM buffer usage) 67
XPCC 69

tracing branch instructions
using SDAID program 147

282 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

tracing buffer
using SDAID program 147, 155

tracing cancel events
using SDAID program 147

tracing events
additional output for 160
command summary 133
command syntax summary 135
control information for

syntax diagrams 135
defining the I/O range 159
defining type of trace 145
dump on event 75, 115
ending control information input 163
ending of 161
for a loop 164
information input 145
invoking the SDAID program 163
number of trace types per session 50
output device for 53, 144
overview 45, 133
performance considerations 49
prompting loop

program-load trace request 152
start after control-information input 163
stopping of temporarily 163
storage requirements for 50

tracing external interruptions
using SDAID program 147

tracing getvis / freevis request
using SDAID program 148

tracing in a user partition with subtasks attached 39
tracing instruction execution

using instruction stepping feature 228
using SDAID program 59, 94, 149

tracing interactively 35
tracing lock / unlock of resources request

using SDAID program 150
tracing partition communication request

using SDAID program 155
tracing, scope of 39
TTAB (task-related control blocks) 80, 160
types of traces 145

U
UNit definition 82, 113
UTILITY statement 169, 179

V
viewing dumps 187
virtual storage

altering 220
display of 220
mapping of

by the linkage editor 217
virtual storage dump 1, 7
virtual storage dumps 27
virtual storage map 217
VOLID

statement
for dump offload 198

VOLID (continued)
statement (continued)

for dump onload 200
volume

device for offload 198
device for onload 200

volume table of contents
display of

by LVTOC 225
by LVTOC program 225
by response to messages 225

free space
by LVTOC program 225

VSE/Advanced Functions 169
VSE/ICCF 169
VTAM buffer trace

general description 67
in direct input mode 106

VTAM traces
device range definition 159
VTAM buffer usage 67, 106
VTAM I/O events 68, 107

VTAMBU (VTAM buffer usage) trace 67, 106
VTAMIO trace

general description 68
in direct input mode 107

VTOC 225

W
wait state

caused by SDAID 165
wraparound buffer

contents of on overflow 57, 89
tracing of overflow 57

X
XPCC (partition communication) trace 155
XPCC communication control block (XPCCB)

display or print 80
XPCC data buffer (XPDATABU)

display or print 80
XPCC trace (SDAID)

general description 69
in direct input mode 108

XPCCB 80
XPDATABU 80

Index 283

284 IBM z/VSE: z/VSE V5R2 Diagnosis Tools

IBM®

Product Number: 5609-ZV5

SC34-2628-03

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information
	Restriction

	Summary of Changes
	Understanding Syntax Diagrams
	Understanding Physical Addresses and VSE Addresses
	Part 1. Dumps of Virtual Storage
	Chapter 1. General Description
	Dump Contents Overview
	The ABEND Dump Function
	Overview of ABEND Dump Function
	What is an ABEND
	What is an ABEND Dump

	Activation of the ABEND Dump Function
	Contents of the ABEND Dump Output
	Symptom Part of the ABEND Dump
	System Dump
	Partition Dump
	Data Space Dump
	Memory Object Dump

	The DUMP Command
	The Stand-Alone Dump (SADUMP) Program
	Support of Integrated Console by SADUMP Program
	IPL Load Parameter

	Output of the Standalone Dump Program
	Main Dump File
	Page Manager Address Space (PMRAS) Dump Files
	Partition, Data Space, and Memory Object Dump Files

	The SDAID Dump
	Dump Requested by Macros
	Info/Analysis

	Chapter 2. Maintaining the Dump Library and File Environment
	The Library and Files Required to Process Dumps
	The SYSDUMP Sublibraries
	Purpose of the SYSDUMP Library
	Establishing the Dump Sublibraries
	Label Information for SYSDUMP
	Defining the Dump Library
	LIBDEF Statement for Dump Sublibraries

	Chapter 3. Handling Dumps
	Options to Activate Dump Writing
	Options to Deactivate Dump Writing
	Identifying the Stored Dumps
	Sending Dumps to IBM Support Electronically
	Mailing Dumps That Are Stored on Tape to IBM Support
	Handling a Dump Library Full Condition
	Uploading Large Dumps From a Standalone Dump Tape

	Chapter 4. Requesting a Dump
	Overview of Dump Requests
	Options to Control the ABEND Dump
	Options to Control the Dump Contents
	Options to Control the Output Destination
	Requesting a Dump by the CANCEL Command
	Requesting a Dump by the DUMP Command
	Taking a Stand-Alone Dump
	Requesting a Dump on Event (SDAID Dump)
	Requesting a Dump from a Program
	Printing the Stored Dump

	Archiving Expired or Unrequired Dumps

	Chapter 5. The DOSVSDMP Utility
	The DOSVSDMP Utility Functions
	Functions of the DOSVSDMP Utility
	Creating the Standalone Dump Program
	Dump Program File and Dump Data Set
	Dump Program File (IJSYSDI)
	Dump Data Set (IJSYSDU)

	Scanning the Dump Files on Disk or Tape
	Dumps Printed with DOSVSDMP
	Sample DOSVSDMP Print Setup

	Printing an SDAID or DUMP Command Produced Tape

	Part 2. Interactive Trace Program
	Chapter 6. Interactive Trace Program
	Introduction
	Branch Trace
	Instruction Trace
	Storage Alteration Trace
	ABEND Trace

	Trace Activation
	Interactive Trace Commands
	TRACE Command
	QUERY Command
	DISPLAY Command
	ALTER Command
	GO Command

	Tracing in a User Partition with Subtasks Attached
	Scope of Tracing
	Restrictions for Programs Using the PER Function
	The Interactive Trace Program versus SDAID

	Examples of the Interactive Trace Program
	Trace Initialization Example
	TRACE, TRACE END and QUERY Command Example
	Batch Trace Example
	DISPLAY and ALTER Command Example

	Part 3. SDAID Trace
	Chapter 7. SDAID Overview
	The SDAID Session
	Interaction SDAID versus Interactive Trace Program
	How to Initialize an SDAID Trace
	Initialization in Direct Input Mode
	Initialization via Job Control Procedures
	Initialization via Prompts in the Attention Routine
	AR Commands to Start, Stop and End an Initialized Trace
	Trace Type Summary
	Trace Output
	Performance Considerations
	System Performance Degradation
	System Performance Degradation Caused by PER Traces

	SDAID Space Requirements
	Space Requirements during Initialization in the AR
	Space Requirements during Initialization in a Partition
	Space Requirements for SDAID Execution
	Space Requirements for the Buffer
	Space Requirements for SDAID Execution, Summary

	Number of Traces per Session
	In prompt and direct input mode
	Via procedures

	Chapter 8. SDAID General Description
	Defining the Output Device
	Printer Defined as Output Destination
	Tape Defined as Output Destination
	Buffer Defined as Output Destination
	Steps to Define a Wraparound Buffer

	Exceptional Conditions on the Output Device
	Summary of TRACE Types
	BRANCH Trace
	BRANCH Trace Output Example

	BUFFER Trace
	CANCEL Trace
	CANCEL Trace Output Example

	EXTERNAL Trace
	SDAID Default Value
	EXTERNAL Interrupt Trace Output Example

	GETVIS / FREEVIS Trace
	SDAID Default Value
	GETVIS / FREEVIS Trace Output Example

	INSTRUCTION Trace
	INSTRUCTION Trace Output Example

	IO Trace (I/O Interrupt)
	SDAID Default Value
	I/O Interrupt Trace Output Example

	LOCK / UNLOCK Trace
	SDAID Default Value
	LOCK / UNLOCK Trace Output Example

	MONITORCALL Trace
	MONITORCALL Trace Output Example

	OSAX Adapter Trace
	OSAX Adapter Trace Output Example

	PGMCheck Trace (Program Check)
	PGMCHECK Trace Output Example

	PGMLOAD (Fetch/Load) Trace
	SDAID Default Values
	PGMLOAD Trace Output Example

	SSCH Instruction Trace
	SDAID Default Value

	STORAGE Alteration Trace
	SDAID Default Value

	SVC Trace (Supervisor Call)
	VTAMBU Trace (VTAM Buffer)
	VTAMIO Trace
	SDAID Default Value

	XPCC Trace
	SDAID Default Value
	XPCC Trace Output Example

	Notational Conventions
	Defining the Area to be Traced: AREA Definition
	Defining the Job to be Traced: JOBNAME Definition
	Defining the Storage to be Traced: OFFset, ADDress, PHase, LTA
	Storage Definition for AREA and JOBNAME
	SDAID Default Values

	Defining Additional Trace Output: OUTPut Definition
	Writing the Trace Buffer
	Recording the CCB or IORB
	Recording the CCW
	Recording the Partition Communication Region
	Recording the Control Registers
	Dumping Virtual Storage
	Recording Floating-Point Registers
	Trace Output Example with OUTPut=FReg

	Recording General-Purpose and Access Registers
	Trace Output Example of General-Purpose Registers When Caller in AMODE 31
	Trace Output Example of General-Purpose Registers When Caller in AMODE 64
	Trace Output Example with Access Registers

	Recording PUB, LUB, ERBLOC, CHANQ
	Dumping Processor Storage from X'00'to X'2FF'
	Trace Output Example with OUTPut=LOwcore

	Recording the Locktable Entry
	Recording the Logical Transient Area
	Recording the Physical Transient Area
	Recording Partition-Related Control Blocks
	Recording the Supervisor Area
	Recording the System Communication Region
	Recording the Time-of-Day Clock
	Trace Output Example with OUTPut=TOD

	Recording Task-Related Control Blocks
	Recording the XPCC Communication Control Block
	Recording the XPCC Data Buffer

	Defining the Trace Options: OPTion Definition
	Defining the Traced I/O Devices

	Chapter 9. Initialize an SDAID Trace in Direct Input Mode
	Initializing an SDAID Trace in Direct Input Mode
	Selecting the SDAID Input Mode
	Commands Entered Via the Attention Routine:
	Commands Entered Via Job Control
	Notational Conventions

	Starting the SDAID Trace Initialization
	Ending the SDAID Trace Initialization
	Defining the Output Device in Direct Input Mode
	Defining the Output Device
	SDAID Trace Initialization Example

	The TRACE Statement
	Summary of Trace Types

	BRanch Trace
	Initialization Example

	BUffer Trace
	Initialization Example

	CAncel Trace
	Statement Example
	Initialization Example

	EXTernal Trace
	Statement Example
	Initialization Example

	GETVIS Trace
	Statement Examples
	Initialization Example

	INSTruction Trace
	Statement Examples
	Initialization Example

	I/O Interrupt Trace
	Statement Examples
	Initialization Example

	LOCK Trace
	Statement Examples
	Initialization Example

	MONitor Call Trace
	Statement Examples

	OSAX Adapter Trace
	Statement Examples
	Initialization Example

	PGMCheck Trace
	Statement Examples
	Initialization Example

	Program Load Trace (Fetch/Load Trace)
	Statement Examples
	Initialization Example

	SSCH Instruction Trace
	Statement Examples

	Storage Alteration Trace
	Statement Example
	Initialization Example

	Supervisor Call Trace
	Statement Examples
	Initialization Examples

	VTAM BUffer Trace
	Statement Example

	VTAMIO Trace
	Statement Example
	Initialization Example

	XPCC Trace
	Statement Examples
	Initialization Example

	Additional Definitions
	ARea or JOBNAME Definition
	Default Value

	ADDress Definition
	Default Value

	OFFset Definition
	Default Value

	PHase Definition
	Default Value

	I/O Device Definition
	Default Value

	OUTPut Definition
	Recording CCW
	Dumping Virtual Storage
	Trace Statement Example: Dump an Area in a Phase

	OPTion Definition
	OCCurrence Examples

	Chapter 10. Initialize an SDAID Trace via a Procedure
	Introduction
	Notational Conventions
	Default Value Considerations

	Writing Cataloged Procedures
	The Statements of a Cataloged Procedure
	Fixed Definitions
	Placeholder Definitions
	Placeholder with Default Value Definitions

	Procedures to Initialize SDAID Traces
	Summary of Trace Procedures
	Branch Trace Initialization
	Defaults Set in the Procedure
	Statement Example

	Instruction Trace
	Defaults Set in the Procedure
	Statement Example

	SSCH and I/O Interrupt Trace
	Default Set in the Procedure
	Statement Example

	Fetch/Load Trace
	Defaults Set in the Procedure
	Statement Example

	Program Check Trace
	Defaults Set in the Procedure
	Statement Example

	Storage Alteration Trace
	Statement Example

	SVC Trace
	Defaults Set in the Procedure
	Statement Example

	Additional Keyword Operands in Trace Procedure Statements
	Define the Output Device in a Procedure Statement
	BUFFER=, PRINTER=, TAPE=Keyword Operands
	BUFFOUT=Keyword Operand

	TERM=Keyword Operand

	Chapter 11. Initialize a Trace in Prompt Input Mode
	Overview
	How to Initialize an SDAID Trace in Prompt Mode
	The Various SDAID Commands
	Sample SDAID Trace Initialization
	Notational Conventions
	How to Use Help and Cancel in Prompt Mode
	How to Read the Following Prompting Mode Syntax Diagrams
	Command Input Path Example

	Command Input Paths
	OUTDEV Command Input Path
	TRACE Command Input Path

	Output Device Definition in Prompt Mode: OUTDEV Command
	Possible Buffer Sizes

	Specifying the Trace: TRACE Command
	Defining the Trace Type
	Summary of Trace Types
	BRanch Trace
	BUffer Trace
	CAncel Trace
	EXTernal (External Interrupt) Trace
	GETVis (Getvis / Freevis Request) Trace
	INSTruction (Instruction Execution) Trace
	IO (I/O Interrupt) Trace
	LOCK (Lock / Unlock of Resources) Trace
	MONitorcall Trace
	OSAX Adapter Trace
	PGMCheck (Program Check) Trace
	PGMLoad (Program Load) Trace
	Start Subchannel Instruction Trace
	STorage Alteration Trace
	SVC (Supervisor Call) Trace
	VTAMBU (VTAM Buffer) Trace
	VTAMIO (VTAM I/O) Trace
	XPCC (Partition Communication) Trace
	AREA Definition
	JOBNAME Definition
	Prompts after AREA and JOBNAME Definitions

	I/O Definition
	Additional Output Definition
	Option Definition

	Chapter 12. Start/Stop and End the Trace
	The Required Commands
	STARTSD/STOPSD Commands: Starting and Stopping
	ENDSD Command: Ending Execution
	Attention Routine Command Example

	How to Control the Trace under Exceptional Conditions
	Tracing an Unintended Loop
	Terminating SDAID Program Without the Attention Routine
	Starting/Terminating Tracing in a System Wait Condition
	Wait Due to OPTION=HALT
	System Wait Due to Intervention Required at the Output Device

	Part 4. Info/Analysis
	Chapter 13. Info/Analysis: Introduction
	Operating Environment
	The Dump Management File
	Initializing the Dump Management File
	Sample Initialization Job

	The External Routines File
	Loading the Info/Analysis External Routines File
	Sample Jobs of External Routines File

	Label Information for Info/Analysis

	Functional Overview

	Chapter 14. Dump Symptoms
	Types of Dump Symptoms
	Environment
	Required Symptoms
	Optional Symptoms

	Chapter 15. Invoking Info/Analysis
	Submitting a Job to Invoke Info/Analysis
	Standard Info/Analysis Job Stream

	Control Statement Syntax
	Entering Control Statements

	Common Control Statements
	SELECT - Specify a Function or End Info/Analysis
	RETURN - End Current Function
	DUMP NAME - Specify or Add Current Dump
	Recommendations (Restrictions) for the Generation of Dump Names

	Dump Management
	UTILITY - Initialize Dump Management File
	DELETE - Delete Current Dump
	PRINT - Print List of Managed Dumps

	Printing Dump Information
	Dump Symptoms
	PRINT - Print Dump Symptoms
	Symptom Part Example
	Symptom Part Description
	Optional (Non-SDB) Symptoms of a Stand-Alone Dump
	Optional (Non-SDB) Symptoms of an ABEND Dump

	Dump Viewing
	PRINT - Print Dump Data
	Printing Selective Dump Information
	Printing Formatted Areas

	CALL - Initiate Analysis Routine

	The Stand-Alone Dump Analysis Routine IJBXCSMG
	Activating the routine

	The Stand-Alone Dump Analysis Routine IJBXDBUG
	Activating the Routine
	Output of the Routine
	General Analysis Information
	Header entry
	Address Validation

	Specific Analysis Information
	Hard Wait Dump Entries
	Soft Waits or System Running

	Output Examples

	The Stand-Alone Dump Analysis Routine IJBXSDA
	Activating the Routine

	Dump Offload
	VOLID - Specify Output Volume
	BYPASS - Skip Offload
	ERASE - Delete or Retain Library Copy of Dump
	Offloading a Dump to Tape
	SELECT DUMP OFFLOAD versus SELECT DUMP MANAGEMENT DELETE

	Dump Onload
	VOLID - Specify Input Volume
	Onloading a Dump from Tape
	Onloading a Stand-Alone Dump from Disk

	FILE - Specify Dump File on Multiple-Dump Device
	Loading a Dump into a Dump Sublibrary

	Printing a Dump Stored on Tape or Disk
	Processing and Printing a Dump with Info/Analysis
	Onloading the Dump into the Dump Sublibrary

	Printing a Stand-Alone Dump with Info/Analysis
	Sample Job to Print the Main Dump File of a Stand-Alone Dump
	Sample Job to Print an Additional File of a Stand-Alone Dump
	Printed Output of the Main Dump File of a Stand-Alone Dump

	DUMP Command Dump Printed with Info/Analysis
	Sample Job to Print a DUMP Command Dump
	Output of the DUMP Command Dump Printed by Info/Analysis
	Output of the DUMP SYMPTOMS, PRINT DATA Operation
	Output of the DUMP VIEWING, PRINT FORMAT Operation

	Ending the Info/Analysis Job
	Control Statement Sequence Examples
	Control Statement Summary

	Appendix A. Symptom Records Overview
	Symptom Records Structure
	Symptom Record Creation
	Section 6
	Locators
	Linkage Descriptors
	Formatting Descriptors

	Appendix B. Other Diagnosis Tools
	ACTION: Print Linkage Editor Map
	Linkage Editor Map Warning Messages
	Root structure overlaid by succeeding phase
	Possible invalid entry point duplication in input
	Invalid transfer label on end or entry statement ignored
	Control sections of zero length in input
	Unresolved external references

	DITTO: Dump a Disk or Tape
	DSPLY/ALTER: Display or Alter Storage
	Restriction

	LIBLIST: Display Library Chains
	LIST: Print Language Translator Source Code
	LISTIO: List I/O Device Assignments
	LISTLOG: Display Console Communication
	LOG: Print Job Control Statements
	LSERV: Display Label Information Area
	For VSAM files only

	LVTOC: Display Volume Table of Contents
	STOP/PAUSE: Suspend Program Execution

	Appendix C. Hardware Service Aids
	Controlling the Recovery Management Support
	The ROD Command

	Retrieval and Analysis of RMS Information
	The EREP Program

	Hardware Aids via the Operator Console
	Hardware Alter/Display
	Instruction Stepping Feature
	Stop-on-Address-Compare Feature

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation
	Trademarks

	Accessibility
	Using Assistive Technologies
	Documentation Format

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

