
IBM z/VSE
5.1

Extended Addressability

IBM

SC34-2630-02

Note: Before using this information and the product it supports, be sure to read the general information
under “Notices” on page 149.

This edition applies to Version 5 Release 1 of IBM® z/Virtual Storage Extended (z/VSE), Program Number 5609-ZV5, and
to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC34–2630–01.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Deutschland Research & Development GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1993, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xi

About This Book..xiii
Who Should Use This Book..xiii
How to Use This Book..xiii
Where to Find More Information...xiii

Summary of Changes... xv

Part 1. 31-Bit Addressing Support..1

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE..3
General Considerations for AMODE and RMODE...3

AMODE (Addressing Mode)...3
RMODE (Residency Mode).. 3
Specifying AMODE and RMODE.. 4
AMODE and RMODE Combinations at Program-Run Time.. 4

Programming Aspects.. 4
AMODE.. 4
RMODE.. 4
Programs that Must Reside Below 16 MB.. 5
Rules and Conventions for 31-Bit Addressing... 5
Changing the AMODE.. 5
Mode Sensitive Instructions... 5
AMODE Processing Capabilities... 6
z/VSE System Services and 31-Bit Addressing..7

Chapter 2. Planning for 31-Bit Programs.. 9
Converting Existing Programs.. 9

Converting a Program to Use 31-Bit Addresses...9
Moving a Program above 16 MB... 10

Writing New Programs that Use 31-Bit Addresses... 12
New Programs below 16 MB.. 12
New Programs above 16 MB.. 13
Writing 31-Bit Programs for a Mixed z/VSE Environment..13

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes............................. 15
AMODE and RMODE Combinations..15
AMODE and RMODE Combinations at Execution Time... 16

Determining the AMODE and RMODE of a Phase.. 16
High Level Assembler Support of AMODE and RMODE...16

AMODE and RMODE in the Object Module...16
AMODE and RMODE Assembler Instructions.. 16

Linkage Editor Support of AMODE and RMODE...17
Linkage Editor RMODE Processing... 18

How to Change the AMODE..19

 iii

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment... 21
Using the BASSM and BSM Instructions..23

Calling and Returning with BASSM and BSM... 24
Using Pointer-Defined Linkage...25

Using an ADCON to Obtain a Pointer-Defined Value..25
Using the CDLOAD/LOAD Macro to Obtain a Pointer-Defined Value... 26

Linkage Assist Routines... 26
Example of Using a Linkage Assist Routine..27

Using Capping - Linkage Using a Prologue and Epilogue.. 31

Chapter 5. I/O Processing in a 31-Bit Environment..33
Performing I/O in 31-Bit Mode.. 33

Using the EXCP Macro for I/O to Virtual Storage Above 16 MB...33
Example of Performing I/O While Residing Above 16 MB... 33

Chapter 6. Real Storage Considerations for User Programs (31-Bit Addressing)................................... 35

Part 2. 64-Bit Addressing Support..37

Chapter 7. Using the 64-Bit Address Space..39
What is the 64-Bit Address Space?... 40
Why Would You use Virtual Storage Above the Bar?...40
Virtual Storage Management Above the Bar... 41
Prerequisites for Using Memory Objects... 42
IARV64 Macro Services and Program Rules..42
Using Private Memory Objects...43

Creating Private Memory Objects...43
Relationship Between a Private Memory Object and Its Owner... 44
Fixing and Unfixing the Pages of a Private Memory Object... 45
Freeing a Private Memory Object... 46
Example of Creating, Using, and Freeing a Private Memory Object.. 46

Using Shared Memory Objects...47
Creating/Obtaining Access to Shared Memory Objects...47
Relationship Between a Shared Memory Object and Its Owner... 49
Freeing a Shared Memory Object... 49

User Tokens and Detach Processing..51
Protecting Storage Above the Bar..51
Dumping Memory Objects..51
Using the Storage in a Memory Object...51
Listing Information About Virtual Storage Above the Bar...51
Using a 64-Bit Application in z/VSE...52
Using 64-Bit Applications and 64-Bit Operations...52
Using 64-Bit Virtual I/O Operations on Memory Objects..53
Using Assembler 64-bit Binary Operations... 53

z/Architecture Instructions That Use the 64-Bit GPR... 54
Using the Assembler 64-bit Addressing Mode..54

Non-Modal Instructions..55
Modal Instructions..55
Setting and Checking the Addressing Mode.. 56
Linkage Conventions...56
Pitfalls to Avoid... 56

Part 3. Data Spaces and Virtual Disks...59

Chapter 8. Introducing Data Spaces... 61
Basic Concepts... 62

iv

The ASC Modes... 62
AR Mode and Data Spaces..62

Chapter 9. Using Access Registers..63
Using Access Registers for Data Reference...63

A Comparison of Data Reference in Primary and AR Mode... 65
Coding Instructions in AR Mode... 67

Using z/Architecture Instructions to Manipulate the Contents of Access Registers..........................68
Example of Loading an ALET into an AR...68

The ALESERV Macro... 72
Setting Up Addressability to a Data Space.. 73

Adding an Entry to an Access List.. 73
Example of Adding an Access List Entry for a Data Space.. 73
Obtaining and Passing ALETs and STOKENs.. 74
Examples of Establishing Addressability to Data Spaces..75

Deleting an Entry from an Access List... 78
Example of Deleting a Data Space Entry from an Access List... 78
ALET Reuse by the System... 79

Chapter 10. Creating and Using Data Spaces... 81
Referencing Data in a Data Space..81
Relationship Between the Data Space and Its Owner.. 82

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces... 82
Rules for Creating, Deleting, and Using Data Spaces..82

Example of the Rules for Accessing Data Spaces..83
Summary of Rules for Creating, Deleting, and Using Data Spaces... 84
Creating a Data Space.. 86

Choosing the Name of a Data Space.. 86
Specifying the Size of the Data Space.. 86
Identifying the Origin of the Data Space.. 87
Example of Creating a Data Space... 88
Establishing Addressability to a Data Space..88
Managing Data Space Storage..88
Limiting Data Space Use... 89
Serializing Use of Data Space Storage..89
Protecting Data Space Storage...89

Examples of Moving Data Into and Out of a Data Space...90
Programming Notes for Example 2.. 92

Extending the Current Size of a Data Space.. 92
Deleting a Data Space.. 93

Example of Deleting a Data Space... 93
Example of Creating, Using, and Deleting a Data Space... 93
Creating and Using SCOPE=COMMON Data Spaces..94

Programming Considerations... 95
Attaching a Subtask and Sharing Data Spaces with It.. 96

Example of Attaching a Task and Passing a DU-AL..96
Releasing Data Space Storage... 97
Using Data Spaces Efficiently...97
Dumping and Displaying Data Space Storage... 97

Chapter 11. Creating and Using Virtual Disks... 99
Planning for Virtual Disks... 99
Creating Virtual Disks... 99

ADD Command..99
SYSDEF Command..100
VDISK Command.. 100
Defining a Virtual Disk via the Interactive Interface..101

Getting Information about Virtual Disks..101

 v

VOLUME Command...101
QUERY DSPACE Command...101

Deleting or Redefining Virtual Disks.. 101
Programming Notes... 102

Supported CCW Codes for Virtual Disks...102
GETVCE Macro.. 102

Part 4. Programming Enhancements.. 103

Chapter 12. Linkage Stack Functions..105
Introduction... 105
Linkage Stack Characteristics..105
Instructions for Adding or Removing a Linkage Stack Entry...106

The Stacking PC (Program Call) Instruction.. 106
The BAKR (Branch and Stack) Instruction...106
The PR (Program Return) Instruction.. 106

Instructions to Work with Linkage Stack Entries and their Contents... 106
Using the STXIT and EXIT Macro in Connection with Linkage Stack..107

Chapter 13. Callable Cell Pool Services.. 109
Characteristics of a Cell Pool... 109
Storage Considerations..110
Link-Editing Programs Using Callable Cell Pool Services..110
Using Callable Cell Pool Services...111

The CALL Macro.. 111
Available Cell Pool Services... 111
Creating a Cell Pool...112
Adding an Extent and Connecting it to the Cell Storage..112
Contracting a Cell Pool, Deactivating its Extents, and Disconnect its Storage........................... 112
Reusing a Deactivated and Disconnected Extent.. 112
Allocating Cells and Deallocate Previously Allocated Cells.. 112
Obtaining Status Information About a Cell Pool..113
Invocation Requirements... 113
Register Usage.. 113
Return Codes.. 113

Cell Pool Services Coding Example... 114

Appendix A. Linkage Editor and Librarian Support.. 117
Linkage Editor Support for 31-Bit Addressing.. 117

Maximum Size of a Phase.. 117
Assigning the AMODE...117
Assigning the RMODE...118
AMODE/RMODE Hierarchy...118
Handling of Invalid AMODE/RMODE Combinations.. 120
Further Information... 121

Librarian Support for 31-Bit Addressing...121
Punching a Phase... 121
LISTDIR Output.. 122
SET SDL Processing..122

Appendix B. Macro and Command Support... 123
z/VSE Macros and Their Mode Dependencies.. 123
Macro Support for 31-Bit Addressing... 128

AMODESW Macro... 128
Storage Management Macros.. 129
Page Management Macros...130
Program Load and Retrieval Macros..130

vi

Task Communication Macros...131
I/O Processing Support for 31-Bit Addressing..132
Other Macros..133

Macro Support for 64-bit Addressing... 134
Macro and Command Support for Data Spaces..135

ALESERV Macro.. 135
ATTACH ALCOPY Macro..136
DSPSERV Macro... 136

Appendix C. Channel Program Support for Virtual Disks......................................139
Channel Commands.. 139

DEFINE EXTENT (X'63')... 139
LOCATE (X'43')... 141
READ (X'42')... 142
WRITE (X'41')... 143
NO-OPERATION (X'03')... 143
SENSE (X'04')... 143
TRANSFER IN CHANNEL..143
SENSE ID (X'E4').. 143
READ DEVICE CHARACTERISTICS (X'64').. 144

Flags...144
Sense Information... 145

Information Returned to a Sense Command...145
Fault Symptom Code (Bytes 22-23) of Sense Information.. 146

Notices..149
Programming Interface Information...150
Trademarks.. 150
Terms and Conditions for Product Documentation.. 150

Accessibility.. 153
Using Assistive Technologies.. 153
Documentation Format..153

Glossary.. 155

Index.. 163

 vii

viii

Figures

1. Maintaining Correct Interfaces to Programs.. 10

2. Example of How to Use the SPLEVEL Macro.. 14

3. Possible AMODE and RMODE Combinations..15

4. AMODE and RMODE Processing by the Linkage Editor.. 18

5. Mode Switching to Retrieve Data from Above 16 MB...19

6. Linkage Between Modules with Different AMODEs and RMODEs... 22

7. BRANCH and SAVE and Set Mode (BASSM) Description..23

8. Branch and Set Mode (BSM) Description..24

9. Using BASSM and BSM..25

10. Example of Pointer-Defined Linkage.. 26

11. Example of a Linkage Assist Routine..28

12. Cap for an AMODE 24 Program...31

13. Performing I/O While Residing Above 16 MB...34

14. Using Memory Objects in the 64-Bit Address Space... 42

15. Example of an AR/GPR..64

16. Using an ALET to Identify an Address/Data Space.. 65

17. The MVC Instruction in Primary Mode..66

18. The MVC Instruction in AR Mode..67

19. Comparison of Addressability through a PASN-AL and a DU-AL... 71

20. Example 1: Adding an Entry to a DU-AL... 75

21. Example 1: Sharing a Data Space through DU-ALs.. 76

22. Example 2: Adding an Entry to a PASN-AL... 77

23. Example 2: Sharing a Data Space through the PASN-AL... 77

 ix

24. Example 3: Sharing Data Spaces Between two Partitions...78

25. Example of Rules for Accessing Data Spaces.. 84

26. Example of Specifying the Size of a Data Space.. 87

27. Protecting Storage in a Data Space.. 90

28. Example of Extending the Current Size of a Data Space..92

29. Example of Using a SCOPE=COMMON Data Space..95

30. Two Programs Sharing a SCOPE=SINGLE Data Space...96

31. Response Example to a VOLUME Command..101

32. Cell Pool Storage...110

33. Format-0 CCW...133

34. Format-1 CCW...133

35. Performing an I/O Request When Using 64-Bit I/O Buffers..135

x

Tables

1. Establishing Correct Interfaces to Programs that Move Above 16 MB..10

2. IARV64 Services and Rules for What Programs Do with Memory Objects..43

3. Base and Index Register Addressing in AR Mode.. 67

4. Functions of the ALESERV Macro..72

5. Creating, Deleting, and Using Data Spaces.. 85

6. Implied AMODE or RMODE... 121

7. z/VSE macros and their mode dependencies.. 123

8. ATTACH Macro and Its AMODE/RMODE Characteristics... 131

9. POST Macro and Its AMODE/RMODE Characteristics..132

10. Parameters of the Define Extent command... 140

11. Supported CCW Command Flags... 145

12. General Fault Symptom Codes... 146

13. Fault Symptom Codes for DEFINE EXTENT... 146

14. Fault Symptom Codes for LOCATE... 147

15. Fault Symptom Codes for READ... 147

16. Fault Symptom Codes for WRITE... 148

 xi

xii

About This Book

This manual describes the support summarized as extended addressability and which is available with
Version 5 Release 1 of IBM z/VSE. z/VSE belongs to the z/Architecture® operating systems designed for
the z/Architecture environment.

Who Should Use This Book
The manual is intended mainly for those who plan and write programs and applications for a z/VSE
customer environment. A knowledge of z/VSE and assembler programming is required.

How to Use This Book
The information in this manual is divided into five parts:

Part 1. 31-Bit Addressing Support
Part 2. 64-Bit Addressing Support
Part 3. Data Spaces and Virtual Disks
Part 4. Programming Enhancements
Part 5. Appendixes

Part 4 provides additional usage information for the topics discussed in Part 1 and Part 2.

Where to Find More Information
Related manuals are cited in the text where appropriate. In general, the information provided in this
manual is closely related to the information provided in the following z/Architecture Principles of
Operation IBM manual.

z/VSE IBM Documentation
IBM Documentation is the new home for IBM's technical information. The z/VSE IBM Documentation can
be found here:

https://www.ibm.com/docs/en/zvse/6.2

You can also find VSE user examples (in zipped format) at

https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

© Copyright IBM Corp. 1993, 2013 xiii

http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf
https://www.ibm.com/docs/en/zvse/6.2
https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

xiv IBM z/VSE: z/VSE V5R1 Extended Addressability

Summary of Changes

These are the enhancements that have been made available via the June 2013 Service Upgrade of z/VSE
5.1:

• The support for I/O operations on memory objects is new. See “Using 64-Bit Virtual I/O Operations on
Memory Objects” on page 53.

These are the new items and changes that were delivered at General Availability of z/VSE V5R1:

• A section has been introduced that describes how you can use the 64-bit address space via memory
objects to obtain additional virtual storage. See Chapter 7, “Using the 64-Bit Address Space,” on page
39.

• The table contained in “z/VSE Macros and Their Mode Dependencies” on page 123 now includes
AMODE64 information related to the use of the 64-bit address space and memory objects.

• Other minor changes and improvements have been included in this manual.

© Copyright IBM Corp. 1993, 2013 xv

xvi IBM z/VSE: z/VSE V5R1 Extended Addressability

Part 1. 31-Bit Addressing Support

1. The information and examples provided for 31-bit addressing in this manual are based on functions of the
High Level Assembler.

2. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 1

2 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and
RMODE

This topic provides an introduction to 24-bit and 31-bit program addressing modes.

A program can have one of the following addressing modes:

• 24-bit addressing mode (a 24-bit program). Specified using the AMODE 24 and RMODE 24 program
attributes.

• 31-bit addressing mode (a 31-bit program). Specified using the AMODE 31 and RMODE ANY program
attributes.

The use of AMODE and RMODE to specify 24-bit and 31-bit addressing modes are discussed in the
remainder of this topic.

Note: z/VSE does not support AMODE and RMODE attributes for 64-bit addressing. For details of the
64-bit addressing mode, see Chapter 7, “Using the 64-Bit Address Space,” on page 39.

General Considerations for AMODE and RMODE
To determine whether a program is to run below 16 MB or above 16 MB, z/VSE analyses the program
attributes AMODE and RMODE assigned to a program. AMODE and RMODE are the programmer's
specification of the addressing mode in which a program is expected to get control and where a program
is expected to reside in virtual storage.

AMODE (Addressing Mode)
AMODE is a program attribute that can be specified or is assigned as default for each CSECT or phase. It
refers to the address length a program is prepared to handle when it gets control. For AMODE, you can
specify one of the following values:
AMODE 24

The program is designed to receive control in 24-bit addressing mode. In this mode, the processor
treats all virtual addresses as 24-bit values.

AMODE 31
The program is designed to receive control in 31-bit addressing mode. In this mode, the processor
treats all virtual addresses as 31-bit values.

AMODE ANY
The program is designed to receive control in either 24-bit or 31-bit addressing mode. The final
decision about 24-bit or 31-bit addressing mode is open until the program receives control.

RMODE (Residency Mode)
RMODE is a program attribute that can be specified (or is assigned as default) for each CSECT or phase.
RMODE states the virtual storage location (either below 16 MB or anywhere in virtual storage) where the
program is expected to reside. For RMODE, you can specify one of the following values:
RMODE 24

The program is designed to reside below 16 MB in virtual storage.
RMODE ANY

The program is designed to reside at any virtual storage location, either above or below 16 MB but
always below the 2 GB bar.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

© Copyright IBM Corp. 1993, 2013 3

Specifying AMODE and RMODE
Programmers can specify AMODE and RMODE for new programs but also for old programs through:

1. Reassembly or recompilation.

Addressing mode and residency mode can be specified in the High Level Assembler or VS COBOL II.
2. Using the linkage editor MODE control statement or PARM values in the EXEC LNKEDT statement.

z/VSE assigns default attributes to any program that does not have AMODE and RMODE specified.

AMODE and RMODE Combinations at Program-Run Time
When the program gets control at execution time, there are only three valid AMODE/RMODE
combinations:

1. AMODE 24, RMODE 24, which is the default.
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

Programming Aspects

AMODE
A program's AMODE attribute determines whether the program is to receive control in 24-bit or 31-bit
addressing mode. Once a program gets control, the program can change the AMODE if necessary.

In 24-bit addressing mode, the processor treats all virtual addresses as 24-bit values. This makes it
impossible for a program in 24-bit addressing mode to address virtual storage with an address greater
than 16,777,215 (16 MB) because that is the largest number a 24-bit binary field can hold. In 31-bit
addressing mode, the processor treats all virtual addresses as 31-bit values.

The ability of a processor to permit the execution of programs in 24-bit addressing mode as well as
programs in 31-bit addressing mode is referred to as bimodal operation.

Processors which support bimodal operation ensure that both, new programs and most old programs, can
execute correctly. Bimodal operation is necessary because certain coding practices in existing programs
depend on 24-bit addresses. For example:

• Some programs use a 4-byte field for a 24-bit address and place flags in the high-order byte.
• Some programs use the LA instruction to clear the high-order byte of a register. (In 24-bit addressing

mode, LA clears the high-order byte; in 31-bit addressing mode, it clears only the high-order bit).
• Some programs depend on BAL and BALR to return the ILC (instruction length code), the CC (condition

code), and the program mask. BAL and BALR return this information in 24-bit addressing mode. In
31-bit addressing mode they do not.

Each phase has an AMODE attribute. A CSECT can have only one AMODE, which applies to all its entry
points. Different CSECTs of a phase can have different AMODEs.

RMODE
Each phase has an RMODE attribute. RMODE specifies where a program is expected to reside in virtual
storage:

• RMODE 24 indicates that a program is coded to reside in virtual storage below 16 MB.
• RMODE ANY indicates that a program is coded to reside anywhere in virtual storage - either above or

below 16 MB but always below the 2 GB bar.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

4 IBM z/VSE: z/VSE V5R1 Extended Addressability

Programs that Must Reside Below 16 MB
The following types of programs must reside below 16 MB (addressable by 24-bit callers):

• Programs that have the AMODE 24 attribute
• Programs that have the AMODE ANY attribute
• Programs that use system services that require their callers to be AMODE 24
• Programs that use system services that require their callers to be RMODE 24
• Programs that must be addressable by callers with AMODE 24.
• Programs that use 2-byte or 3-byte relocatable address constants.

Programs without these characteristics can reside anywhere in virtual storage.

Rules and Conventions for 31-Bit Addressing
It is important to distinguish the rules from the conventions when describing 31-bit addressing. There are
only two rules, and they are associated with the hardware (processor):

1. The length of address fields is controlled by the A-mode bit (bit 32) in the PSW (program status word).
When bit 32=1, addresses are treated as 31-bit values. When bit 32=0, addresses are treated as
24-bit values.

Any data passed from a 31-bit addressing mode program to a 24-bit addressing mode program must
reside in virtual storage below 16 MB (A 24-bit addressing mode program cannot reference data above
16 MB without changing addressing mode).

2. The A-mode bit affects the way some instructions work.

The conventions, on the other hand, are more extensive. Programs using system services must follow
these conventions.

• A program must return control in the same addressing mode in which it received control.
• A program expects 24-bit addresses from 24-bit addressing mode programs and 31-bit addresses from

31-bit addressing mode programs.
• A program should validate the high-order byte of any address passed by a 24-bit addressing mode

program before using it as an address in 31-bit addressing mode.

Changing the AMODE
To change addressing mode it is necessary to change the value of the PSW A-mode bit. This can be done
in one of the following ways:

• By using the mode setting instructions BASSM and BSM.
• By using the z/VSE AMODESW macro (there is no AMODE 64 support).
• By using the addressing mode setting instructions SAM24, SAM31 and SAM64.

Refer also to “How to Change the AMODE” on page 19.

Mode Sensitive Instructions
The processor is sensitive to the addressing mode that is in effect (the setting of the PSW AMODE bit). The
current PSW controls instruction sequencing. The instruction address field in the current PSW contains
either a 24-bit address, 31-bit address, or 64-bit address depending on the current setting of the PSW
AMODE bits (bits 31 and 32). For those instructions that develop or use addresses, the addressing mode
in effect in the current PSW determines whether the addresses are 24, 31, or 64 bits long.

The z/Architecture Principles of Operation manual provide a complete description of the instructions
available. The following topics provide an overview of mode sensitive and branching instructions
regarding the 24-bit and 31-bit addressing modes. The 64-bit addressing mode is described in Chapter 7,
“Using the 64-Bit Address Space,” on page 39.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE 5

BAL and BALR
BAL and BALR are addressing-mode sensitive. In 24-bit addressing mode, BAL and BALR put link
information into the high-order byte of the first operand register and put the return address into the
remaining three bytes before branching.

In 31-bit addressing mode, BAL and BALR put the return address into bits 1 through 31 of the first
operand register and save the current addressing mode in the high-order bit. Because the addressing
mode is 31-bit, the high-order bit is always a 1.

When executing in 31-bit addressing mode, BAL and BALR do not save the instruction length code, the
condition code, or the program mask.

LA
The LA (load address) instruction, when executed in 31-bit addressing mode, loads a 31-bit value and
clears the high-order bit. When executed in 24-bit addressing mode, it loads a 24-bit value and clears the
high-order byte.

LRA
When executed in the 24-bit or 31-bit addressing mode, the LRA (load real address) instruction always
results in a 31-bit real address. The virtual address specified is based on the value of the PSW A-mode
bits (bits 31 and 32) at the time the LRA instruction is executed.

AMODE Processing Capabilities

BASSM and BSM
BASSM (branch and save and set mode) and BSM (branch and set mode) are branching instructions that
manipulate the PSW A-mode bits (bits 31 and 32). Programs can use BASSM when branching to modules
that might have different addressing modes. Programs invoked through a BASSM instruction can use a
BSM instruction to return in the caller's addressing mode. BASSM and BSM are described in more detail in
Chapter 4, “Establishing Linkage in a 31-Bit Addressing Environment,” on page 21.

BAS and BASR
BAS and BASR (branch and save) are branching instructions which

• Save the return address and the current addressing mode in the first operand.
• Replace the PSW instruction address with the branch address.

The high-order bit of the return address indicates the addressing mode. BAS and BASR perform the same
function that BAL and BALR perform in 31-bit addressing mode. In 24-bit mode, BAS and BASR put
zeroes into the high-order byte of the return address register.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

6 IBM z/VSE: z/VSE V5R1 Extended Addressability

SAM24 and SAM31
The SAM24 and SAM31 (Set Addressing Mode) instructions only set AMODE 24 and AMODE 31. A
previous AMODE setting is not saved.

AMODESW Macro
With the AMODESW macro, a program can switch addressing modes.

For a summary of the macro's functions refer to “AMODESW Macro” on page 128.

Note on the CALL macro:
The CALL macro does not change the AMODE; that is, the AMODE of the caller is passed to the called
program.

z/VSE System Services and 31-Bit Addressing
In addition to providing support for the use of 31-bit addresses by user programs, z/VSE includes many
system services that allow 31-bit addresses.

Some system services are independent of the AMODE of their callers. These services accept callers in
either AMODE 24 or AMODE 31 and use 31-bit parameter address fields. They assume 24-bit addresses
from AMODE 24 callers and 31-bit addresses from AMODE 31 callers. Many supervisor macros are in this
category.

Other services have restrictions with respect to address parameter values and might require one or more
parameter addresses to be below 16 MB. Some of these services accept callers to be in AMODE 24 or
AMODE 31, whereas others require callers to be in AMODE 24.

Some services do not support 31-bit addressing. Refer to “z/VSE Macros and Their Mode Dependencies”
on page 123 for details.

24-Bit / 31-Bit AMODE and RMODE (Introduction)

Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE 7

24-Bit / 31-Bit AMODE and RMODE (Introduction)

8 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 2. Planning for 31-Bit Programs
This topic describes how you can convert your programs from 24-bit addressing mode to 31-bit
addressing mode.

A program can have one of the following addressing modes:

• 24-bit addressing mode (a 24-bit program), specified using the AMODE 24 and RMODE 24 program
attributes.

• 31-bit addressing mode (a 31-bit program), specified using the AMODE 31 and RMODE ANY program
attributes.

• 64-bit addressing mode (a 64-bit program), specified explicitly using the IARV64 macro. Such programs
can create or maintain memory objects in the 64-bit addressing area (above the 2 GB bar).

The 64-bit addressing mode is described in Chapter 7, “Using the 64-Bit Address Space,” on page 39.

Most user programs that are running on earlier VSE/SP and VSE/ESA systems will also run unchanged in
AMODE 24 on z/VSE. It is recommended that the partition in which such a program is running does not
cross the 16 MB line.

Some programs need to be modified to execute in AMODE 31 and provide the same functions. Still other
programs need to be modified to run in AMODE 24.

The following sections helps you determine what changes to make to a program you want to convert to
AMODE 31 and what is to consider when writing new 31-bit code.

Some reasons for converting to AMODE 31 are:

• The program can use more virtual storage for tables, arrays, or additional logic.
• The program needs to reference control blocks that have been moved above 16 MB.
• The program is invoked by other AMODE 31 programs.
• The program must run in AMODE 31 because it is a user exit routine that the system invokes in 31-bit

mode.
• The program needs to invoke services that expect to get control in AMODE 31.

Converting Existing Programs
Keeping in mind that AMODE 31 programs can reside either below or above 16 MB (or cross the 16 MB
line), you can convert existing programs as described below.

Converting a Program to Use 31-Bit Addresses
This requires a change in AMODE only:

• You can change the entire module to use 31-bit addressing.
• You can change only that portion that requires 31-bit addressing mode execution.

Be sure to consider whether or not the code has any dependencies on 24-bit addresses. Such code does
not produce the same results in 31-bit mode as it did in 24-bit mode. See “Mode Sensitive Instructions”
on page 5 for an overview of instructions that function differently depending on the AMODE.

At best, converting a program into 31-bit mode means just another linkage editor run.

Figure 1 on page 10 summarizes the actions required to maintain the proper interface with a program
you plan to change to AMODE 31.

Planning for 31-Bit Programs

© Copyright IBM Corp. 1993, 2013 9

Figure 1. Maintaining Correct Interfaces to Programs

Moving a Program above 16 MB
This requires a change in both AMODE and RMODE.

In general, you move an existing program above 16 MB because there is not enough space below 16 MB.
For example:

• An existing program or application is growing so large that it no longer fits below 16 MB.
• An existing application that now runs as a series of separate programs, or that executes in an overlay

structure, would be easier to manage as one large program.
• Code is in the SVA (24-Bit) and moving it to the SVA (31-Bit) would provide more space for the private

area below 16 MB.

The techniques that are used to establish proper interfaces to modules that move above 16 MB depend
on the number of callers and the ways they invoke the program. Table 1 on page 10 summarizes
the techniques for passing control. The programs involved must ensure that any addresses passed as
parameters are treated correctly (high-order bytes of addresses to be used by a AMODE 31 program must
be validated or zeroed).

Table 1. Establishing Correct Interfaces to Programs that Move Above 16 MB

Means of Entry to Moved Module
(AMODE 31,RMODE ANY) Few AMODE 24,RMODE 24 Callers

Many AMODE 24,RMODE 24
Callers

• BALR

 or
• Macro LOAD and BASSM

instruction

 or
• Macro CDLOAD and BASSM

instruction

• Have caller use macros LOAD/
CDLOAD and BASSM instruction
(invoked program returns via BSM
instruction)

 or
• Change caller to AMODE 31,

RMODE 24 before performing
call.

Create a linkage assist routine
(described in Chapter 4,
“Establishing Linkage in a 31-Bit
Addressing Environment,” on page
21). Give the linkage assist routine
the name of the moved program.

Planning for 31-Bit Programs

10 IBM z/VSE: z/VSE V5R1 Extended Addressability

Table 1. Establishing Correct Interfaces to Programs that Move Above 16 MB (continued)

Means of Entry to Moved Module
(AMODE 31,RMODE ANY) Few AMODE 24,RMODE 24 Callers

Many AMODE 24,RMODE 24
Callers

BALR using an address in a
common control block

• Have caller switch to AMODE 31
via BSM instruction

 or
• Change the address in the

control block to a pointer-defined
value (described in Chapter 4,
“Establishing Linkage in a 31-
Bit Addressing Environment,” on
page 21) and use BASSM
instruction. The moved program
uses instruction BSM to return.

Create a linkage assist routine
(described in Chapter 4,
“Establishing Linkage in a 31-Bit
Addressing Environment,” on page
21).

Note: BASSM and BSM instructions can be replaced by the AMODESW macro. For an example, refer to
“How to Change the AMODE” on page 19.

In deciding whether or not to modify a program to execute in AMODE 31 either below or above 16 MB,
there are several considerations:

1. How and by what is the program entered?
2. What system and user services does the module use that do not support AMODE 31 callers or

parameters?
3. What kinds of coding practices does the program use that do not produce the same results in AMODE

31 as in AMODE 24.
4. How are parameters passed? Can they reside above 16 MB?

Among the specific practices to check for are:

1. Does the module depend on the instruction length code, condition code, or program mask placed in
the high order byte of the return address register by a 24-bit mode BAL or BALR instruction? One
way to determine some of the dependencies is by checking all uses of the SPM (set program mask)
instruction. SPM might indicate places where BAL or BALR were used to save the old program mask,
which SPM might then have reset. The IPM (insert program mask) instruction can be used to save the
condition code and the program mask.

2. Does the module use an LA instruction to clear the high-order byte of a register? This practice will not
clear the high-order byte in AMODE 31.

3. Are any address fields that are less than 4 bytes still appropriate? Make sure that a load instruction
does not pick up a 4-byte field containing a 3-byte address with extraneous data in the high-order
byte. Make sure that bits 1-7 are zero.

4. Does the program use the ICM (insert characters under mask) instruction? The use of this instruction
is sometimes a problem because it can put data into the high-order byte of a register containing an
address, or it can put a 3-byte address into a register without first zeroing the register. If the register
is then used as a base, index, or branch address register in AMODE 31, it might not contain the proper
address.

5. Does the program invoke AMODE 24 programs? If so, shared data must be below 16 MB.
6. Is the program invoked by AMODE 24 or 31 programs? Is the data in an area addressable by the

programs that need to use it? The data must be below 16 MB if used by an AMODE 24 program.

Planning for 31-Bit Programs

Chapter 2. Planning for 31-Bit Programs 11

Writing New Programs that Use 31-Bit Addresses
You can write programs that execute in either AMODE 24 or AMODE 31. However, to maintain an interface
with existing programs and with some system services, your AMODE 31 programs need subroutines or
portions of code that execute in AMODE 24. If your program resides below 16 MB, it can change to
AMODE 24 when necessary.

If your program resides above 16 MB, it needs a separate phase to perform the linkage to an unchanged
AMODE 24 program or service. Such phases are called linkage assist routines and are described under
Chapter 4, “Establishing Linkage in a 31-Bit Addressing Environment,” on page 21.

When writing new programs, there are some things you can do to simplify the passing of parameters
between programs that might be in different addressing modes. In addition, there are functions that you
should consider and that you might need to accomplish your program's objectives. Following is a list of
suggestions for coding programs to run on z/VSE:

• Use fullword fields for addresses even if the addresses are only 24 bits in length.
• When obtaining addresses from 3-byte fields in existing areas, use SR (subtract register) to zero the

register followed by ICM (insert characters under mask) in place of the load instruction to clear the
high-order byte. For example:

Rather than: L 1,A

 use: SR 1,1
 ICM 1,7,A+1

The 7 specifies a 4-bit mask of 0111. The ICM instruction shown inserts bytes beginning at location A+1
into register 1 under control of the mask. The bytes to be filled correspond to the 1 bits in the mask.
Because the high-order byte in register 1 corresponds to the 0 bit in the mask, it is not filled.

• If the program needs storage above 16 MB, obtain the storage by using the GETVIS macro with
LOC=ANY. This is the only form that allows you to obtain storage above 16 MB. Do not use storage
areas above 16 MB for system save areas (subtask save areas, for example) and, possibly, parameters
that need to be passed to other programs.

• To make debugging easier, switch addressing modes only when necessary.
• Identify the intended AMODE and RMODE for the program in a prologue.
• User-written STXIT routines need to be aware of the restricted support of the BC mode PSW fields in the

new exit routine save area. Refer to “STXIT Macro” on page 134 for details.
• The CALL macro cannot be used to switch the AMODE.

When writing new programs, you need to decide whether to use AMODE 24 or AMODE 31.

For AMODE 24 you must write, for example, service routines that use system services requiring entry in
AMODE 24 or that must accept control directly from AMODE 24 programs.

When you use AMODE 31, you must decide whether the new program should reside above or below 16
MB (unless it is so large that it will not fit below). Your decision depends on what programs and system
services the new program invokes and what kind of programs invoke it.

New Programs below 16 MB
The main reason for writing new AMODE 31 programs which reside below 16 MB is to be able to address
areas above 16 MB or to invoke AMODE 31 programs while, at the same time, simplifying communication
with existing AMODE 24 programs or system services.

Even though your program resides below 16 MB, you must be concerned about dealing with programs
that require entry in AMODE 24 or that require parameters to be below 16 MB. Figure 6 on page 22
in Chapter 4, “Establishing Linkage in a 31-Bit Addressing Environment,” on page 21 contains more
information about parameter requirements.

Planning for 31-Bit Programs

12 IBM z/VSE: z/VSE V5R1 Extended Addressability

New Programs above 16 MB
When you write new programs that reside above 16 MB, your main concerns are:

• Dealing with programs that require entry in AMODE 24 or that require parameters to be below 16 MB.
Note that these are concerns of any AMODE 31 program no matter where it resides.

• How programs that remain below 16 MB invoke the new program.

Writing 31-Bit Programs for a Mixed z/VSE Environment
Up to VSE/ESA 1.2, VSE/ESA supported 24-bit programs only. Starting with VSE/ESA 1.3, VSE/ESA and
later z/VSE support 31-bit addressing. This means that for a mixed environment special considerations
are necessary as outlined below.

Programs designed to execute on systems with either 24 or 31-bit addressing mode must use fullword
addresses where possible and use no new functions. Programs must also be aware of downward
incompatible macros. Some of these can be made downward compatible by using the SPLEVEL macro.
Refer to “SPLEVEL Macro” on page 133. If this is not possible, the old (downward level) macro library
must be used for compile or assembly.

Dual Programs
Sometimes two programs may be required, one for each system. In this case, use one of the following
approaches:

• Keep each in a separate library/sublibrary.
• Keep both in the same library/sublibrary but under different names.

Using the SPLEVEL Macro
There exist macros where the level of the macro expansion generated during an assembly depends on the
value of an assembler language global SET symbol. If the SET symbol value is 1, the system generates
VSE/ESA 1.1/1.2 expansions; if it is 2 or 3, the system generates VSE/ESA 1.3 expansions; and if it is 4,
the system generates expansions suitable for VSE/ESA 2.1 and later.

The SPLEVEL macro allows programmers to change the value of the SET symbol. The SPLEVEL macro
shipped with VSE/ESA 2.1 sets a default value of 4 for the SET symbol. Therefore, unless a program
or installation specifically changes the default value, the macros generated are VSE/ESA 2.1 macro
expansions.

The SPLEVEL macro sets the SET symbol value for that program's assembly only and affects only the
expansions within the program being assembled. A single program can include multiple SPLEVEL macros
to generate different macro expansions. The example in Figure 2 on page 14 shows how to obtain
different macro expansions within the same program and make a test at execution time to determine
which expansion to execute.

Planning for 31-Bit Programs

Chapter 2. Planning for 31-Bit Programs 13

* DETERMINE WHICH SYSTEM IS EXECUTING
 .
 .
* PREPARE INPUT REGISTER
 SUBSID INQUIRY,NAME=SUP,AREA=(2),LEN=(3)
* CHECK WHETHER PROGRAM IS RUNNING ON VSE/ESA 1.1/1.2,
* VSE/ESA 1.3, or VSE/ESA 2.1
 USING XYZ,2
 CLI IJBSVERS,X'06'
 BNL SP4
 CLI IJBSVERS,X'05'
 BL SP5
 CLI IJBSREL,X'02'
 BNL SP3
 DROP 2
* INVOKE THE VSE/ESA 1.1/1.2 VERSION OF THE PFIX MACRO
SP1 SPLEVEL SET=1
 PFIX
 B CONTINUE
SP3 EQU *
* INVOKE THE VSE/ESA 1.3 VERSION OF THE PFIX MACRO
 SPLEVEL SET=3
 PFIX
 B CONTINUE
SP4 EQU *
* INVOKE THE VSE/ESA 2.1 VERSION OF THE PFIX MACRO
 SPLEVEL SET=4
 PFIX
 B CONTINUE
SP5 VSE/SP NOT CONSIDERED
CONTINUE EQU *
 .
 .
SUP DC C'SUP '
 .
 .
XYZ MAPSSID

Figure 2. Example of How to Use the SPLEVEL Macro

Certain macros produce a “map” of control blocks or parameter lists. These mapping macros do not
support the SPLEVEL macro. Mapping macros for different levels of VSE systems are available only in the
macro libraries for each system. When programs use mapping macros, a different version of the program
may be needed for each system.

Planning for 31-Bit Programs

14 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 3. Using AMODE and RMODE to Specify 24-
Bit / 31-Bit Addressing Modes

This topic describes how you can use AMODE and RMODE to specify 24-bit and 31-bit addressing modes.

A program can have one of the following addressing modes:

• 24-bit addressing mode (a 24-bit program), specified using the AMODE 24 and RMODE 24 program
attributes.

• 31-bit addressing mode (a 31-bit program), specified using the AMODE 31 and RMODE ANY program
attributes.

For an overview of how AMODE and RMODE are used, refer to Chapter 1, “Introducing 24-Bit / 31-Bit
AMODE and RMODE,” on page 3.

Note: z/VSE does not support AMODE and RMODE attributes for 64-bit addressing. For details of the
64-bit addressing mode, see Chapter 7, “Using the 64-Bit Address Space,” on page 39.

AMODE and RMODE Combinations
Figure 3 on page 15 shows all possible AMODE and RMODE combinations and indicates which are valid.

Figure 3. Possible AMODE and RMODE Combinations

Note:

1. This combination is invalid because an AMODE 24 module cannot reside above 16 MB.
2. This is a valid combination in that the assembler and linkage editor accept it from all sources. However,

the combination is not used at execution time. Specifying ANY is a way of deferring a decision about
the actual AMODE until the last possible moment before execution. At execution time, the module
must execute in either AMODE 24 or AMODE 31.

3. The attributes AMODE ANY/RMODE ANY take on a special meaning when used together (this meaning
might seem to disagree with the meaning of either taken alone). A program with the AMODE ANY/
RMODE ANY attributes will execute on either a z/VSE system that does support 31-bit addresses or on
a z/VSE system that does not support 31-bit addresses if the program is designed to:

• Use no facilities that are unique to 31-bit addressing.
• Execute entirely in AMODE 31 on a system that supports 31-bit addresses and returns control to its

caller in AMODE 31 (the AMODE could be different from invocation to invocation).
• Execute entirely in 24-bit addressing mode on a system without 31-bit addressing.

The linkage editor accepts this combination from the object module but not from the PARM field of the
linkage editor EXEC statement or the linkage editor MODE control statement. Refer also to “AMODE/
RMODE Combinations from the ESD” on page 119.

24-Bit / 31-Bit AMODE and RMODE

© Copyright IBM Corp. 1993, 2013 15

AMODE and RMODE Combinations at Execution Time
At execution time, there are only three valid AMODE/RMODE combinations:

1. AMODE 24, RMODE 24, which is the default
2. AMODE 31, RMODE 24
3. AMODE 31, RMODE ANY

Determining the AMODE and RMODE of a Phase
There are various ways to find out the AMODE and RMODE assigned to a phase:

• You can look at the source code (AMODE/RMODE statement of the High Level Assembler) to determine
the AMODE and RMODE intended for the program. However, the linkage editor can override these
specifications.

• You can look at the linkage editor map which lists the AMODE and RMODE of the phase and of each
CSECT included in the phase. Refer to z/VSE Diagnosis Tools for a description of the linkage editor map.

• You can create a librarian LISTDIR printout or display which shows the AMODE and RMODE of the
phases stored in a sublibrary.

• You can use the CDLOAD and LOAD macros as described in the manual z/VSE System Macros Reference.

High Level Assembler Support of AMODE and RMODE
The High Level Assembler supports AMODE and RMODE assembler instructions. By using such
instructions, you can specify an AMODE and an RMODE to be associated with a control section, an
unnamed control section, or a named common control section.

AMODE and RMODE in the Object Module
The assembler also checks for the following error conditions:

• Multiple AMODE/RMODE statements for a single control section
• An AMODE/RMODE statement with an incorrect or missing value
• An AMODE/RMODE statement whose name field is not that of a valid control section in the assembly.

AMODE and RMODE Assembler Instructions
The AMODE instruction specifies the addressing mode to be associated with a CSECT in an object module.
The format of the AMODE instruction is:

The name field associates the addressing mode with a control section. If there is a symbol in the name
field of an AMODE statement, that symbol must also appear in the name field of a START, CSECT, or COM
statement in the assembly. If the name field is blank, there must be an unnamed control section in the
assembly.

Similarly, the name field associates the residency mode with a control section. The RMODE statement
specifies the residency mode to be associated with a control section. The format of the RMODE
instruction is:

24-Bit / 31-Bit AMODE and RMODE

16 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesdte63.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Both the RMODE and AMODE instructions can appear anywhere in the assembly. Their appearance
does not initiate an unnamed CSECT. There can be more than one RMODE (or AMODE) instruction per
assembly, but they must have different name fields.

The High Level Assembler selects the following defaults when AMODE, RMODE, or both are not specified:
Specified

Defaulted
Neither

AMODE 24 RMODE 24
AMODE 24

RMODE 24
AMODE 31

RMODE 24
AMODE ANY

RMODE 24
RMODE 24

AMODE 24
RMODE ANY

AMODE 31

Linkage Editor Support of AMODE and RMODE
Note: Under Appendix A, “Linkage Editor and Librarian Support,” on page 117 you find additional
background information about the 31-bit support provided by the linkage editor.

The linkage editor accepts AMODE and RMODE specifications from any or all of the following:

• ESD (external symbol dictionary) entries in object modules.
• PARM field of the linkage editor EXEC statement. For example:

// EXEC LNKEDT,PARM='AMODE=31,RMODE=ANY,.....'

PARM field input overrides object module input.
• Linkage editor MODE control statements. For example:

MODE AMODE(31),RMODE(24)

MODE control statement input overrides object module and PARM field input.

Linkage editor processing results in AMODE and RMODE indicators located in the library directory entry
for the phase linked.

The linkage editor creates AMODE/RMODE indicators in the library directory entry based not only on input
from the object module but also on the PARM field of the linkage editor EXEC statement and the MODE
control statements. The last two sources of input override indicators from the object module. Figure 4 on
page 18 shows linkage editor processing of AMODE and RMODE.

24-Bit / 31-Bit AMODE and RMODE

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes 17

Figure 4. AMODE and RMODE Processing by the Linkage Editor

Note: The linkage editor uses default values of AMODE 24/RMODE 24 whenever an assembler or compiler
does not support AMODE/RMODE or if they are not specified.

The linkage editor recognizes as valid the following combinations of AMODE and RMODE:

AMODE 24 RMODE 24
AMODE 31 RMODE 24
AMODE 31 RMODE ANY
AMODE ANY RMODE 24
AMODE ANY RMODE ANY

The linkage editor accepts the ANY/ANY combination from the object module but does not accept
ANY/ANY from the PARM value or the MODE control statement.

The assignment of the AMODE/RMODE combination ANY/ANY to a CSECT may be useful when the CSECT
is a common routine which may run in both addressing modes and may be located anywhere in storage.
Refer also to the topic AMODE/RMODE Combinations from the ESD for details about assigning AMODE/
RMODE to the entry point of a phase marked with AMODE ANY/RMODE ANY.

Any AMODE value specified alone in the PARM field or MODE control statement implies an RMODE of 24.
Likewise, an RMODE of ANY specified alone implies an AMODE of 31. However, for RMODE 24 specified
alone, the linkage editor does not assume an AMODE value. Instead, it uses the AMODE value specified
for the CSECT containing the entry point for the phase.

Linkage Editor RMODE Processing
In constructing a phase, the linkage editor is frequently requested to combine multiple CSECTs.

24-Bit / 31-Bit AMODE and RMODE

18 IBM z/VSE: z/VSE V5R1 Extended Addressability

The linkage editor determines the RMODE of each CSECT. If the RMODEs are all the same, the linkage
editor assigns that RMODE to the phase. If the RMODEs are not the same (ignoring the RMODE
specification on common sections), the more restrictive value, RMODE 24, is chosen as RMODE for the
phase.

The RMODE chosen can be overridden by the RMODE specified in the PARM field of the linkage editor
EXEC statement. Likewise, the PARM field RMODE can be overridden by the RMODE value specified on the
linkage editor MODE control statement.

z/VSE treats programs in overlay structure as RMODE 24 programs. To build overlay programs, you can
use PHASE statements where the origin in the statement is defined as "ROOT", as a "symbol", or as "*",
but not if it is the first phase of a link-editing run. All phases of an link-editing job step containing such
PHASE statements are assigned an RMODE of 24, regardless of the ESD data, the PARM field parameter,
or the MODE control statement operand.

How to Change the AMODE
To change the addressing mode you must change the value of the PSW AMODE bit.

The High Level Assembler example in Figure 5 on page 19 illustrates how to make a 24-bit addressing
mode program to retrieve data from an area, which might reside above 16 MB. The example works
correctly whether or not the area is actually above 16 MB.

The example shows three ways of switching the AMODE:

• By using the BSM instruction,
• By using the AMODESW macro,
• By using the SAM24 and SAM31 instructions.

In the example, the L 2,4(,15) instruction must be executed in AMODE 31l, if register 15 points to an area
above 16 MB. The LA 12,0(,12) instruction clears the high-order byte of the base register to ensure that
its contents are correct in AMODE 31.

USER CSECT
USER RMODE 24
USER AMODE 24
 BALR 12,0 LOAD BASE REGISTER
 USING *,12 ESTABLISH ADDRESSABILITY
 LA 12,0(,12) CLEAR HIGH-ORDER BYTE
*
* Variant 1 - change the addressing mode using the BSM command
 L 1,LABEL1 SET HIGH-ORDER BIT OF REGISTER 1 TO 1
 AND PUT ADDRESS INTO BITS 1-31
 BSM 0,1 SET AMODE 31 (DOES NOT PRESERVE AMODE)
LABEL1 DC A(LABEL2 + X'80000000')
LABEL2 DS 0H
 L 2,4(,15) OBTAIN DATA FROM ABOVE 16 MB
 LA 1,LABEL3 SET HIGH-ORDER BIT OF REGISTER 1 TO 0
 AND PUT ADDRESS INTO BITS 1-31
 BSM 0,1 SET AMODE 24 (DOES NOT PRESERVE AMODE)
LABEL3 DS 0H
*
* Variant 2 - change the addressing mode using the AMODESW macro
 AMODESW SET,AMODE=31 SET AMODE 31 (DOES NOT PRESERVE AMODE)
 L 2,4(,15) OBTAIN DATA FROM ABOVE 16 MB
 AMODESW SET,AMODE=24 SET AMODE 24 (DOES NOT PRESERVE AMODE)
*
* Variant 3 - change the addressing mode using the SAM24 and SAM31
* commands
 SAM31 SET AMODE 31 (DOES NOT PRESERVE AMODE)
 L 2,4(,15) OBTAIN DATA FROM ABOVE 16 MB
 SAM24 SET AMODE 24 (DOES NOT PRESERVE AMODE)

Figure 5. Mode Switching to Retrieve Data from Above 16 MB

The example in Figure 5 on page 19 shows what is to be changed for switching an address mode.

24-Bit / 31-Bit AMODE and RMODE

Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes 19

24-Bit / 31-Bit AMODE and RMODE

20 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 4. Establishing Linkage in a 31-Bit
Addressing Environment

This section describes the mechanics of correct linkage in an 31-bit addressing environment. Keep in
mind that there are considerations other than linkage, such as locations of areas that both the calling
module and the invoked module need to address.

As shown in Figure 6 on page 22, it is the linkage between modules whose addressing modes are
different that is an area of concern. The areas of concern that appear in Figure 6 on page 22 fall into two
basic categories:

• Addresses passed as parameters from one routine to another must be addresses that both routines can
use.

– High-order bytes of addresses must contain zeroes or data that the receiving routine is programmed
to expect.

– Addresses must be less than 16 MB if they could be passed to a AMODE 24 program.
• On transfers of control between programs with different AMODEs, the receiving routine must get control

in the AMODE it needs and return control to the calling routine in the AMODE the calling routine needs.

Establishing Linkage (31-Bit Addressing)

© Copyright IBM Corp. 1993, 2013 21

Figure 6. Linkage Between Modules with Different AMODEs and RMODEs

There are a number of ways of dealing with the areas of concern that appear in Figure 6 on page 22:

• Use the instructions BASSM and BSM
• Use the macro AMODESW
• Use pointer-defined linkage
• Use linkage assist routines
• Use “capping.”

Establishing Linkage (31-Bit Addressing)

22 IBM z/VSE: z/VSE V5R1 Extended Addressability

Using the BASSM and BSM Instructions
The BASSM (branch and save and set mode) and the BSM (branch and set mode) instructions are
branching instructions that set the addressing mode. They are designed to complement each other.
BASSM is used to call (AMODESW CALL) and BSM is used to return (AMODESW RETURN) but they are not
limited to such use. The description of BASSM appears in Figure 7 on page 23.

Bits 32-63 of the current PSW, including the updated instruction address, are saved as link information
in the general register designated by R1. Subsequently, the addressing mode and instruction address
in the current PSW are replaced from the second operand. The action associated with the second
operand is not performed if the R2 field is zero.

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however when the R2 field is zero, the operation is performed without branching and
without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address is
generated from the contents of the register under the control of the new addressing mode. The new
value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: Trace (R2 field is not zero).

Figure 7. BRANCH and SAVE and Set Mode (BASSM) Description

Refer to Figure 8 on page 24 for a description of the BSM instruction.

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 23

Bit 32 of the current PSW, the addressing mode, is inserted into the first operand. Subsequently the
addressing mode and instruction address in the current PSW are replaced from the second operand.
The action associated with an operand is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit position 0 of the general register designated by R1, and
bits 1-31 of the register remain unchanged; however, when the R1 field is zero, the bit is not inserted,
and the contents of general register 0 are not changed.

The contents of the general register designated by the R2 field specify the new addressing mode and
branch address; however, when the R2 field is zero, the operation is performed without branching and
without setting the addressing mode.

When the contents of the general register designated by the R2 field are used, bit 0 of the register
specifies the new addressing mode and replaces bit 32 of the current PSW, and the branch address is
generated from the contents of the register under the control of the new addressing mode. The new
value for the PSW is computed before the register designated by R1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Figure 8. Branch and Set Mode (BSM) Description

Calling and Returning with BASSM and BSM
In the following example, a module named BELOW has the attributes AMODE 24, RMODE 24. BELOW
uses a CDLOAD macro to load phase ABOVE above 16 MB and obtain the address of phase ABOVE.
The CDLOAD macro returns the address in register 1 with the AMODE in bit 0 (a pointer-defined value).
BELOW stores this address in location EPABOVE. When BELOW is ready to branch to ABOVE, BELOW loads
ABOVE's entry point address from EPABOVE into register 15 and branches using BASSM 14,15. BASSM
places the address of the next instruction into register 14 and sets bit 0 in register 14 to 0 to correspond
to BELOW's addressing mode. BASSM replaces the PSW A-mode bit with bit 0 of register 15 (a 1 in this
example) and replaces the PSW instruction address with the branch address (bits 1-31 of register 15)
causing the branch.

ABOVE uses a BSM 0,14 to return. BSM 0,14 does not save ABOVE's addressing mode because 0 is
specified as the first operand register. It replaces the PSW A-mode bit with bit 0 of register 14 (BELOW's
addressing mode set by BASSM) and branches.

Establishing Linkage (31-Bit Addressing)

24 IBM z/VSE: z/VSE V5R1 Extended Addressability

Figure 9. Using BASSM and BSM

Using Pointer-Defined Linkage
Pointer-defined linkage is a convention whereby programs can transfer control back and forth without
having to know each other's AMODEs. Pointer-defined linkage is simple and efficient. You should use it in
new or modified phases where there might be mode switching between phases.

Pointer-defined linkage uses a pointer-defined value, which is a 4-byte area that contains both an
AMODE indicator and an address. The high-order bit contains the AMODE; the remainder of the word
contains the address. To use pointer-defined linkage, you must:

• Use a pointer-defined value to indicate the entry point address and the entry point's AMODE. Both, the
CDLOAD and LOAD macro provide a pointer-defined value.

• Use the BASSM instruction specifying a register that contains the pointer-defined value. BASSM saves
the caller's AMODE and next the address of the next sequential instruction, sets the AMODE of the
target routine, and branches to the specified location.

• Have the target routine save the full contents of the return register and use it in the BSM instruction to
return to the caller.

Using an ADCON to Obtain a Pointer-Defined Value
The following method is useful when you need to construct pointer-defined values to use in pointer-
defined linkages between control sections or phases that will be link edited into a single phase.

The method requires the use of an externally-defined address constant in the routine to be invoked that
identifies its entry mode and address. The address constant must contain a pointer-defined value. The
calling program loads the pointer-defined value and uses it in a BASSM instruction. The invoked routine
returns using a BSM instruction.

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 25

In Figure 10 on page 26, RTN1 obtains pointer-defined values from RTN2 and RTN3. RTN1, the invoking
routine does not have to know the addressing modes of RTN2 and RTN3. Later, RTN2 or RTN3 could be
changed to use different addressing modes, and at that time their address constants would be changed
to correspond to their new addressing mode. RTN1, however, would not have to change the sequence of
code it uses to invoke RTN2 and RTN3.

You can use the techniques that the previous example illustrates to handle routines that have multiple
entry points (possibly with different AMODE attributes). You need to construct a table of address
constants, one for each entry point to be handled.

RTN1 CSECT
 EXTRN RTN2AD
 EXTRN RTN3AD
 .
 .
 L 15,=A(RTN2AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
 L 15,0(,15) LOAD POINTER-DEFINED VALUE
 BASSM 14,15 GO TO RTN2 VIA BASSM
 .
 .
 L 15,=A(RTN3AD) LOAD ADDRESS OF POINTER-DEFINED VALUE
 L 15,0(,15) LOAD POINTER DEFINED-VALUE
 BASSM 14,15 GO TO RTN3 VIA BASSM
 .

RTN2 CSECT
RTN2 AMODE 24
 ENTRY RTN2AD
 .
 BSM 0,14 RETURN TO CALLER IN CALLER'S MODE
RTN2AD DC A(RTN2) WHEN USED AS A POINTER-DEFINED VALUE,
 INDICATES AMODE 24 BECAUSE BIT 0 IS 0

RTN3 CSECT
RTN3 AMODE 31
 ENTRY RTN3AD
 .
 BSM 0,14 RETURN TO CALLER IN CALLER'S MODE
RTN3AD DC A(X'80000000'+RTN3) WHEN USED AS A POINTER-DEFINED VALUE
 INDICATES AMODE 31 BECAUSE BIT 0 IS 1

Figure 10. Example of Pointer-Defined Linkage

As with all forms of linkage, there are considerations over and above the linkage mechanism. These
include:

• Both routines must have addressability to any parameters passed.
• Both routines must agree which of them will clean up any 24-bit addresses that might have extraneous

information in bits 1-7 of the high-order byte. This is a consideration for AMODE 31 programs only.

When an AMODE 24 program invokes a phase that is to execute in AMODE 31, the calling program must
ensure that register 13 contains a valid 31-bit address of the register save area with no extraneous data
in bits 1-7 of the high-order byte (3-byte address). In addition, when any program invokes an AMODE 24
program, register 13 must point to a register save area located below 16 MB.

Using the CDLOAD/LOAD Macro to Obtain a Pointer-Defined Value
CDLOAD/LOAD returns a pointer-defined value in register 1. You can preserve this pointer-defined value
and use it with a BASSM instruction to pass control without having to know the target routine's AMODE.

Linkage Assist Routines
A linkage assist routine, sometimes called an addressing mode interface routine, is a program that
performs linkage for programs executing in different AMODEs or RMODEs. Using a linkage assist routine,
an AMODE 24 program can invoke an AMODE 31 program without having to make any changes. The
invocation results in an entry to a linkage assist routine that resides below 16 MB and invokes the AMODE
31 program in the specified addressing mode.

Conversely, an AMODE 31 program, such as a new user program, can use a linkage assist routine to
communicate with other user programs that execute in AMODE 24. The caller appears to be making a

Establishing Linkage (31-Bit Addressing)

26 IBM z/VSE: z/VSE V5R1 Extended Addressability

direct branch to the target program, but branches instead to a linkage assist routine that changes modes
and performs the branch to the target program.

The main advantage of using a linkage assist routine is to insulate a program from AMODE changes that
are occurring around it.

The main disadvantage of using a linkage assist routine is that it adds overhead to the interface. In
addition, it takes time to develop and test the linkage assist routine. Some alternatives to using linkage
assist routines are:

• Changing the programs to use pointer-defined linkage (described in “Using Pointer-Defined Linkage” on
page 25).

• Adding a prologue and epilogue to a program to handle entry and exit mode switching, as described
later in this topic under “Capping.”

Example of Using a Linkage Assist Routine
Figure 11 on page 28 shows a “before” and “after” situation involving programs USER1 and USER2.
USER1 invokes USER2 by using a CDLOAD and BALR sequence. The “before” part of the figure shows
USER1 and USER2 residing below 16 megabytes and lists the changes necessary if USER2 moves above
16 megabytes. USER1 does not change.

The “after” part of the figure shows how things look after USER2 moves above 16 MB. Note that USER2 is
now called USER3 and the newly created linkage assist routine has taken the name USER2.

The figure continues with a coding example that shows all three routines after the move.

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 27

Figure 11. Example of a Linkage Assist Routine

Establishing Linkage (31-Bit Addressing)

28 IBM z/VSE: z/VSE V5R1 Extended Addressability

USER1 (This module will not change)

* USER MODULE USER1 CALLS MODULE USER2 00000100
USER1 CSECT 00000200
BEGIN SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400
* ENTRY CODING) 00000500
 .
 .
* ISSUE CDLOAD FOR MODULE USER2 00000700
 CDLOAD USER2 ISSUE CDLOAD FOR MODULE USER2 00000800
* The CDLOAD macro returns a
* pointer-defined value. However, because module USER1
* has not been changed and executes in AMODE 24,
* the pointer-defined value has no effect on the BALR
* instruction used to branch to module USER2.
 ST 1,EPUSER2 PRESERVE ENTRY POINT 00000900
 .
* MAIN PROCESS BEGINS 00001000
PROCESS DS 0H 00001100
 .
 .
 .
 .
 .
 .
* PREPARE TO GO TO MODULE USER2 00002000
 L 15,EPUSER2 LOAD ENTRY POINT 00002100
 BALR 14,15 00002200
 .
 .
 .
 .
 TM TEST FOR END 00003000
 BC PROCESS CONTINUE IN LOOP 00003100
 .
 L 13,4(,13)
 RETURN (14,12),RC=0 MODULE USER1 COMPLETED 00005000
EPUSER2 DC F'0' ADDRESS OF ENTRY POINT TO USER2 00007000
 END BEGIN 00007100

USER2 (Original application module)

* USER MODULE USER2 (INVOKED FREQUENTLY FROM USER1) 00000100
USER2 CSECT 00000200
 SAVE (14,12) SAVE REGISTER CONTENT, ETC. 00000300
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 00000400
* ENTRY CODING)
 .
 .
 .
 .
 .
 L 13,4(,13)
 RETURN (14,12),RC=0 MODULE USER2 COMPLETED 00008100
 END 00008200

USER2 (New linkage assist routine)

* THIS IS A NEW LINKAGE ASSIST ROUTINE 0000100
* (IT WAS NAMED USER2 SO THAT MODULE USER1 WOULD NOT 0000200
* HAVE TO BE CHANGED) 0000300
USER2 CSECT 0000400
USER2 AMODE 24 0000500
USER2 RMODE 24 0000600
 SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 0000700
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA (NORMAL 0000800
* ENTRY CODING)
* CLEAR HIGH-ORDER BYTE OF BASE REGISTER(S) (PREPARE BASE
* REGISTER(S) FOR 31-BIT ADDRESSING)
* FIRST TIME LOGIC, PERFORMED ON INITIAL ENTRY ONLY, 0002000

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 29

* (AFTER INITIAL ENTRY, BRANCH TO PROCESS (SHOWN BELOW)) 0002100
 .
 CDLOAD USER3 0004000
* USER2 LOADS USER3 BUT DOES NOT DELETE IT. USER2 CANNOT
* DELETE USER3 BECAUSE USER2 DOES NOT KNOW WHICH OF ITS USES
* OF USER3 IS THE LAST ONE.
 ST 1,EPUSER3 PRESERVE POINTER DEFINED VALUE 0004100
 .
* PROCESS (PREPARE FOR ENTRY TO PROCESSING MODULE) 0005000
 .
 (FOR EXAMPLE, VALIDITY CHECK REGISTER CONTENTS)
 .
 .
* PRESERVE AMODE FOR USE DURING RETURN SEQUENCE 0007000
 LA 1,XRETURN SET RETURN ADDRESS 0008000
 BSM 1,0 PRESERVE CURRENT AMODE 0008100
 ST 1,XSAVE PRESERVE ADDRESS 0008200
 L 15,EPUSER3 LOAD POINTER DEFINED VALUE 0009000
* GO TO MODULE USER3 0009100
 BASSM 14,15 TO PROCESSING MODULE 0009200
* RESTORE AMODE THAT WAS IN EFFECT 0009300
 L 1,XSAVE LOAD POINTER DEFINED VALUE 0009400
 BSM 0,1 SET ADDRESSING MODE 0009500
XRETURN DS 0H 0009600
 L 13,4(,13)
 .
 .

• Statements 8000 through 8200: These instructions prepare base registers for 31-bit addressing and
preserve the AMODE in effect at the time of entry into module USER2.

• Statement 9200: This use of the BASSM instruction:

– Causes the USER3 module to be entered in the specified AMODE (AMODE 31 in this example). This
occurs because the CDLOAD macro returns a pointer-defined value that contains the entry point of
the loaded routine, and the specified AMODE of the module.

– Puts a pointer-defined value for use as the return address into Register 14.
• Statement 9400: Module USER3 returns to this point.
• Statement 9500: Module USER2 re-establishes the AMODE that was in effect at the time the BASSM

instruction was issued (Statement 9200).

 .
 .
 RETURN (14,12),RC=0 MODULE USER2 HAS COMPLETED 0010000
EPUSER3 DC F'0' POINTER DEFINED VALUE 0010100
XSAVE DC F'0' ORIGINAL AMODE AT ENTRY 0010200
 END 0010500

USER3 (New Application Module)

* MODULE USER3 (PERFORMS FUNCTIONS OF OLD MODULE USER2) 00000100
USER3 CSECT 00000200
USER3 AMODE 31 00000300
USER3 RMODE ANY 00000400
 SAVE (14,12) (SAVE REGISTER CONTENT, ETC.) 00000500
* ESTABLISH BASE REGISTER(S) AND NEW SAVE AREA 00000600
 .
 .
 .
 .
 .
 .
* RESTORE REGISTERS AND RETURN 00008000
 .
 L 13,4(,13)
 RETURN (14,12),RC=0 MODULE USER3 HAS COMPLETED 00008100
 END 00008200

Establishing Linkage (31-Bit Addressing)

30 IBM z/VSE: z/VSE V5R1 Extended Addressability

• Statements 300 and 400 establish the AMODE and RMODE values for this phase. Unless they are
overridden by linkage editor PARM values or MODE control statements, these are the values that will be
placed in the library directory entry for this phase.

• Statement 8100 returns to the invoking phase.

Using Capping - Linkage Using a Prologue and Epilogue
An alternative to linkage assist routines is a technique called capping. You can add a “cap” (prologue
and epilogue) to a program to handle entry and exit AMODE switching. The cap accepts control in either
AMODE 24 or 31, saves the caller's registers, and switches to the AMODE in which the program is
designed to run. After the program has completed its function, the epilogue portion of the cap restores
the caller's registers and AMODE before returning control.

For example, when capping is used, a program in AMODE 24 can be invoked by programs whose AMODE
is either 24 or 31; it can perform its function in AMODE 24 and can return to its caller in the caller's
AMODE. Capped programs must be able to accept callers in either AMODE. Programs that reside above
16 MB cannot be invoked in AMODE 24. Capping, therefore, can be done only for programs that reside
below 16 MB.

Figure 12 on page 31 shows a cap for an AMODE 24 program. The caller must ensure that register 15
contains a 31-bit address.

Figure 12. Cap for an AMODE 24 Program

Establishing Linkage (31-Bit Addressing)

Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment 31

Establishing Linkage (31-Bit Addressing)

32 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 5. I/O Processing in a 31-Bit Environment

Performing I/O in 31-Bit Mode
An AMODE 31 program can perform an I/O operation by:

• Using VSE/VSAM services which accept callers in either AMODE 24 or 31.
• Using the EXCP (execute channel program) macro. All parameter lists, control blocks, CCWs, and EXCP

appendage routines must reside in virtual storage below the 2 GB bar.
• Invoking a routine that executes in AMODE 24 as an interface to access methods such as SAM or DAM

which only accept callers executing in AMODE 24. See Chapter 4, “Establishing Linkage in a 31-Bit
Addressing Environment,” on page 21 for more information about this method.

• Using the method shown in Figure 13 on page 34.

Notes:

1. To perform I/O operations to buffers located above 16 MB, a program must use either:

• The VSE/VSAM access method.
• The EXCP macro with format 1 CCWs.

2. For all other access methods, the data buffers must be located below 16 MB.

Using the EXCP Macro for I/O to Virtual Storage Above 16 MB
EXCP macro users can perform I/O to virtual storage areas above 16 MB. By using format 1 CCWs in the
EXCP channel program, users can point to 31-bit virtual addresses of an I/O buffer.

Although the I/O buffer can be in virtual storage above 16 MB, the format 1 CCW that contains the pointer
to the I/O buffer and all the other areas related to the I/O operation (such as CCBs and appendages)
must reside in virtual storage below 16 MB. Refer to “I/O Processing Support for 31-Bit Addressing” on
page 132 for further details about the restrictions which apply and to the manual z/VSE System Macros
Reference for a detailed description of the EXCP macro.

Example of Performing I/O While Residing Above 16 MB
Figure 13 on page 34 shows a “before” and “after” situation that involves two functions, USER1 and
USER2. In the BEFORE part of the example, USER1 contains both functions and resides below 16 MB. In
the AFTER part of the example USER1 has moved above 16 MB. The portion of USER1 that requests data
management services has been removed and remains below 16 MB.

Note: For details of how to perform I/O on memory objects residing above 2 GB, see “Using 64-Bit Virtual
I/O Operations on Memory Objects” on page 53.

I/O Processing (31-Bit Mode)

© Copyright IBM Corp. 1993, 2013 33

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Figure 13. Performing I/O While Residing Above 16 MB

I/O Processing (31-Bit Mode)

34 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 6. Real Storage Considerations for User
Programs (31-Bit Addressing)

In a system with more than 16 MB real storage, it is possible to obtain PFIXed storage above 16 MB (using
the PFIX macro with RLOC=ANY or the GETVIS macro with LOC=ANY and PFIX=YES).

Programs using the REALAD macro have to be aware that this macro always returns a valid 31-bit real
address.

The documentation z/VSE System Macros Reference describes the GETVIS, PFIX, and REALAD macros in
detail.

Real Storage (31-Bit I/O)

© Copyright IBM Corp. 1993, 2013 35

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Real Storage (31-Bit I/O)

36 IBM z/VSE: z/VSE V5R1 Extended Addressability

Part 2. 64-Bit Addressing Support

1. The information and examples provided for 64-bit addressing in this manual are based on functions of the
High Level Assembler.

2. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 37

38 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 7. Using the 64-Bit Address Space
This topic describes how you can (a) create and maintain (64-bit) memory objects, and (b) execute 64-bit
applications.

Note: The address space structure below the 2 GB bar is not affected by using memory objects in the
64-bit address space. All programs in AMODE 24 and AMODE 31 continue to run unchanged.

This topic contains:

• “What is the 64-Bit Address Space?” on page 40
• “Why Would You use Virtual Storage Above the Bar?” on page 40
• “Virtual Storage Management Above the Bar” on page 41
• “Prerequisites for Using Memory Objects” on page 42
• “IARV64 Macro Services and Program Rules” on page 42
• “Using Private Memory Objects” on page 43
• “Using Shared Memory Objects” on page 47
• “User Tokens and Detach Processing” on page 51
• “Protecting Storage Above the Bar” on page 51
• “Dumping Memory Objects” on page 51
• “Using the Storage in a Memory Object” on page 51
• “Listing Information About Virtual Storage Above the Bar” on page 51
• “Using a 64-Bit Application in z/VSE” on page 52
• “Using 64-Bit Applications and 64-Bit Operations” on page 52
• “Using 64-Bit Virtual I/O Operations on Memory Objects” on page 53
• “Using Assembler 64-bit Binary Operations” on page 53
• “Using the Assembler 64-bit Addressing Mode” on page 54

Related Topics:

For details of how to: Refer to:

• use the IARV64 macro to create and manage
memory objects

• use the SDUMPX macro for problem solving when
memory objects are used,

• use the STXIT macro with parameter ANY64 to
define user exits in a 64-bit environment,

"Macro Descriptions" in z/VSE System Macros
Reference.

code the assembler instructions that are used for 64-
bit operations

z/Architecture Principles of Operation.

© Copyright IBM Corp. 1993, 2013 39

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf

For details of how to: Refer to:

• use the QUERY MEMOBJ command to display the:

– Details and totals of allocated private memory
objects (PMOs),

– Size of the allocated Extended Shared Area,
– Limits and high watermarks,

• use the MAP, MAP REAL, and MAP <SYSLOG-ID>
commands to obtain information about the current
use of memory objects.

• use the STDOPT statement with option SADUMP
to specify if a standalone dump should include
memory objects

"Job Control and Attention Routines" in z/VSE
System Control Statements.

What is the 64-Bit Address Space?
The 64-bit address space is supported from z/VSE 5.1 onwards. Before z/VSE 5.1, z/VSE only supported
the 24-bit and 31-bit address spaces:

• A 24-bit address space is an address space that is supported by 24-bit addresses. It begins at address
0 and ends at address 16 MB.

• A 31-bit address space is an address space that is supported by 31-bit addresses. It begins at address
0 and ends at address 2 GB.

A 64-bit address space is an address space that is supported by 64-bit addresses. It begins at address
0 and ends at address 16 E (16 Exabytes, which is an incomprehensibly large number). z/VSE does not
support this full range of a 64-bit address space. The size of a 64-bit address space is limited by the value
of VSIZE, which is currently 90 GB.

To maintain program compatibility, z/VSE provides three addressing modes (AMODEs):

• Programs that run in AMODE 24 can only use the first 16 MB of the address space.
• Programs that run in AMODE 31 can only use the first 2 GB of the address space.
• Programs that run in AMODE 64 can use the complete 64-bit address space by explicitly switching to

AMODE 64.

In the 31-bit address space, a "virtual line" marks the 16 MB address.

The 64-bit address space includes a second "virtual line" called "the bar" that marks the 2 GB address.

The bar separates storage below the 2 GB address, called "below the bar", from storage above the 2 GB
address, called "above the bar":

• The area above the bar can only be used for data. Programs continue to run below the bar.
• There is no area above the bar that is common to all address spaces.
• IBM reserves an area of storage above the bar for special uses to be developed in the future.

Why Would You use Virtual Storage Above the Bar?
The reason why someone designing an application would want to use the area above the bar is simple:
the program needs more virtual storage than is provided by the first 2 GB of address space:

• Before z/VSE 5.1, a program's need for additional virtual storage was sometimes met by creating one
or more data spaces. Programs might also have used complex algorithms to manage storage, reallocate
and reuse areas, and check storage availability.

40 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

• Using the 64-bit address space, these types of programming complexity are no longer required. A
program can now potentially have as much virtual storage as it needs, while containing the data within
the program's primary address space.

Virtual Storage Management Above the Bar
Virtual storage above the bar is organized as memory objects that are created by programs using the
IARV64 macro. A memory object is a contiguous range of virtual addresses. Each memory object begins
on a 1 MB boundary and is multiple of 1 MB in size.

Note: Programs continue to run and execute in the first 2 GB of the address space.

There are two types of memory objects:

• Private memory objects (PMOs) that are created within the Extended Private Area (EPA) and can only be
accessed from the address space in which they were created. Private memory objects are described in
“Creating Private Memory Objects” on page 43.

• Shared memory objects (SMOs) that are created within the Extended Shared Area (ESA) and can be
accessed from any address space that requests access to the shared memory objects. Shared memory
objects are describe in “Creating/Obtaining Access to Shared Memory Objects” on page 47.

Before you can use the IARV64 macro, you must use the SYSDEF MEMOBJ statement to define the limits
for memory objects:

• MEMLIMIT defines the total amount of virtual storage that can be allocated to memory objects within
the system. MEMLIMIT also limits the use of PMOs within a single address space.

• SHRLIMIT defines the total amount of virtual storage that can be allocated to SMOs within the system.
It is included in MEMLIMIT.

• LFAREA defines the total amount of real storage that can be used to fix PMOs.
• LF64ONLY specifies that PMOs will only be fixed in the 64-bit area.

For further information about how to set MEMLIMIT, SHRLIMIT, LFAREA, and LF64ONLY, refer to z/VSE
System Control Statements.

The size of the:

• EPA is equal to MEMLIMIT minus SHRLIMIT.
• ESA is equal to SHRLIMIT.

Figure 14 on page 42 shows how memory objects are used in the 64-bit address space.

Chapter 7. Using the 64-Bit Address Space 41

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Figure 14. Using Memory Objects in the 64-Bit Address Space

Prerequisites for Using Memory Objects
To use (64-bit) memory objects in the 64-bit address space, you require:

• z/VSE Version 5 Release 1 or later.
• Values for VSIZE, MEMLIMIT, SHRLIMIT, LFAREA, and LF64ONLY that meet your system requirements.
• User applications that have been adapted to use 64-bit memory objects.

IARV64 Macro Services and Program Rules
The IARV64 macro (which has been ported from z/OS) provides the services for using memory objects.
This topic describes the use of IARV64 services in z/VSE. Programs that use the IARV64 macro with the
functionality supported by z/VSE are compatible with z/OS.

Table 2 on page 43 provides an overview of the IARV64 macro services that are supported by z/VSE.
There are two types of service:

42 IBM z/VSE: z/VSE V5R1 Extended Addressability

• Authorized services, which require that the caller has either supervisor state or PSW key with value zero.
• Unauthorized services, that are available to a caller with problem state, and a PSW key equal to the

partition key.

Table 2. IARV64 Services and Rules for What Programs Do with Memory Objects

IARV64 Request

A problem state, partition
key program (unauthorized
program)

A supervisor state or key 0
program (authorized program)

GETSTOR—create a PMO Can create a PMO in the primary
address space.

The storage key of the memory
object will be the same as the
PSW key of the caller.

Can create a PMO in the primary
address space.

Can define the storage key of the
PMO.

Can specify whether the PMO
can be freed by an authorized
program only, and whether it can
be PAGEFIX'd and PAGEUNFIX'd.

DETACH—free one or more
PMOs

Can free a PMO it owns. Can free a PMO it owns.

Can free an SMO.

Can remove a shared interest.

PAGEFIX—fix pages in one or
more PMO.

Cannot fix pages. Can fix pages in one or more
PMOs.

UNPAGEFIX—undo a pagefix
operation

Cannot unfix pages. Can unfix pages in one or more
PMOs.

LIST—list the memory objects. Cannot list memory objects. Can list memory objects in the
primary address space.

GETSHARED — create an SMO. Cannot use this service. Can create SMOs.

SHAREMEMOBJ — requests that
the specified address space be
given access to one or more
SMOs.

Cannot use this service. Can use this service in the
primary address space to
establish addressability to the
SMOs.

Note: The topics that follow describe how to use the IARV64 services. They do not describe
environmental or programming requirements, register usage, or syntax rules. For this "reference" type
of information, refer to the descriptions of the IARV64 macro in the z/VSE System Macros Reference.

Using Private Memory Objects

Creating Private Memory Objects
IARV64 GETSTOR is used to create a private memory object (PMO). PMOs are allocated in the Extended
Private Area (EPA) of an address space. The size of the EPA is equal to the value of MEMLIMIT minus
SHRLIMIT. The EPA only exists when there is at least one PMO allocated in the address space.

Once a program has created a PMO, all programs within the address space can access the PMO providing
they have a matching key.

Note: Virtual storage within the EPA is only assigned to allocated PMOs (which is different from partition
storage that has virtual storage that is permanently assigned). This means, there might be insufficient
virtual storage available to meet the GETSTOR request (see description of COND parameter in “GETSTOR

Private Memory Objects

Chapter 7. Using the 64-Bit Address Space 43

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Request” on page 44). This might be true even when the size of the allocated PMOs in the address space
is less than the size of the EPA.

The z/VSE resources required to use the EPA of an address space (for example, control blocks) are freed
when the last PMO within the EPA of the address space has been freed.

GETSTOR Request
To create a private memory object (PMO), use the IARV64 GETSTOR request.

Parameters for GETSTOR include:

• SEGMENTS=segments specifies the size, in megabytes, of the PMO you are creating. The system returns
the address of the PMO in the ORIGIN parameter.

• FPROT=YES (the default) gives the PMO fetch protection.
• KEY=key specifies the PMO's storage key (authorized programs only).
• USERTKN=user token is an 8-byte token that can be associated with a PMO and relates two or more

PMOs to each other. The user token can be specified on a DETACH request to free all PMOs that are
associated with this token.

For an unauthorized program, the high-order half (bits 0-31) of the user token must be binary zeros.

For an authorized program, the high-order half (bits 0-31) of the user token must be non-zero.
• CONTROL=AUTH is required in order to PAGEFIX or PAGEUNFIX a PMO. When specified, a PMO can only

be freed by an authorized program.
• DETACHFIXED=YES allows a PMO to be detached even if some or all pages are fixed (authorized

programs only).
• COND=YES can be used to avoid a program abend occurring when insufficient resources are available

to meet a GETSTOR request. For example, MEMLIMIT or virtual storage might be exceeded. When
COND=YES is specified and sufficient resources are not available, the system rejects the request but the
program continues to run. The IARV64 service returns to the caller with a non-zero return code.

Before issuing IARV64, issue SYSSTATE ARCHLVL=2 so that the macro generates the correct parameter
addresses.

Example of Creating a Private Memory Object
The following example creates a 1 MB memory object. It specifies a constant with value of one as a user
token.

IARV64 REQUEST=GETSTOR,
 SEGMENTS=ONE_SEG,
 USERTLM=USER_TOKEN,
 ORIGIN=VIRT64_ADDR,
 COND=YES
ONE_SEG DC ADL8(1)
USER_TOKEN DC ADL8(1)
VIRT64_ADDR DS AD

Relationship Between a Private Memory Object and Its Owner
When a program creates a private memory object (PMO), the PMO is owned by the (z/VSE) task under
which the program executes.

Once a program has created a PMO, any program within the address space can access the PMO providing
the program's PSW key matches the PMO's storage key.

A PMO is freed either:

• Explicitly, when the owning task frees the PMO via a DETACH request.
• Implicitly by the system, when the owning task terminates.

Private Memory Objects

44 IBM z/VSE: z/VSE V5R1 Extended Addressability

Fixing and Unfixing the Pages of a Private Memory Object
Authorized programs can use the IARV64 PAGEFIX request to fix (4K) pages within one or more PMOs
and therefore prevent these pages from being paged out. For example, this is required when pages are
referenced disabled.

Authorized programs can use the IARV64 PAGEUNFIX request to unfix pages that were previously fixed
via a IARV64 PAGEFIX request. A page remains fixed until the number of PAGEUNFIX operations for that
page equals the number of PAGEFIX operations.

IARV64 PAGEFIX or PAGEUNFIX can only be used for PMOs that were created using the CONTROL=AUTH
parameter of the GETSTOR request.

On the RANGLIST parameter, the program provides a list of virtual storage areas that are to be fixed
(PAGEFIX request) or unfixed (PAGEUNFIX request). Each virtual storage area must be within one PMO.

Performance Recommendation! - You are recommended to fix contiguous areas using one PAGEFIX
request (one RANGLIST entry) and not to specify one RANGLIST entry for each 4 KB page.

The format of the list is:

Example of Fixing Pages of a Private Memory Object
Using the memory object created earlier, the following example in an AMODE 31 program, fixes 5 pages of
the memory object, then unfixes them:

 SYSSTATE ARCHLVL=2
 .
 .
 .
 XC R_LIST(100),R_LIST Clear the range list
 LG 12,VIRT64_ADDR Get starting address to pagefix
 STG 12,R_START Save it in range list
 LGHI 4,5 Load number of pages to fix
 STG 4,R_PAGES Save it in range list
 SLR 12,12 Generate primary-space alet
 ST 12,R_ALET Save it in range list
 LA 4,R_LIST Get address of rangelist
 LLGTR 4,4 Make it a 64-bit pointer
 STG 4,RLISTPTR Save it
* Now pagefix the 5 pages
 IARV64 REQUEST=PAGEFIX, +
 RANGLIST=RLISTPTR
* Using the same rangelist, unfix the pages
 LA 12,R_LIST Get address of range list
 LLGTR 12,12 Make it a 64-bit pointer
 STG 12,RLISTPTR Save it
 IARV64 REQUEST=PAGEUNFIX, +
 RANGLIST=RLISTPTR
*
* Declares for example
R_LIST DS CL100
 ORG R_LIST
R_START DS ADL8
R_PAGES DS ADL8
R_ALET DS AL4

Private Memory Objects

Chapter 7. Using the 64-Bit Address Space 45

RLISTPTR DS AD
VIRT64_ADDR DS AD

Freeing a Private Memory Object
You use the IARV64 DETACH request to free one or more private memory objects (PMOs). You can only
free a PMO providing the task (under which your program executes) owns the PMO.

With an IARV64 DETACH request, you can either:

• use MATCH=SINGLE,MEMOBJSTART to free a single PMO, as identified by its origin address.
• use MATCH=USERTKN,usertkn to free all PMOs that were created with usertkn on the GETSTOR request

and are owned by the task under which your program executes.

Four conditions to avoid when you try to free a PMO are:

• Freeing a PMO that does not exist.
• Freeing a PMO that has PAGEFIXED pages and was created using DETACHFIXED=NO.
• Freeing a PMO that is not owned by the currently-active task.
• Freeing a PMO that has I/O in progress.

If either of the above conditions occurs and you have specified:

• COND=NO, then your program will abend.
• COND=YES, then the system will reject the DETACH request but the program continues to run. IARV64

DETACH returns to the caller with a non-zero return code. COND=YES also prevents a program abend
from occurring if sufficient resources (for example, virtual storage) are not available to handle the
request.

As part of normal task termination, the system frees all PMOs owned by the terminating task. If a PMO
has PAGEFIXED pages, the system will (internally) unfix the pages.

Example of Freeing a Private Memory Object
The program frees all memory objects that have the user token specified in "USER_TOKEN":

IARV64 REQUEST=DETACH,
 MATCH=USERTOKEN,
 USERTKN=USER_TOKEN
USER_TOKEN DC ADL8(1)

Example of Creating, Using, and Freeing a Private Memory Object
The following program creates a 1 MB private memory object (PMO) and writes the character string "Hi
Mom" into each 4k page of the memory object. The program then frees the memory object.

 TITLE 'TEST CASE DUNAJOB'
 ACONTROL FLAG(NOALIGN)
DUNAJOB CSECT
DUNAJOB AMODE 31
DUNAJOB RMODE 31
 SYSSTATE ARCHLVL=2
* Begin entry linkage
 BAKR 14,0
 CNOP 0,4
 BRAS 12,@PDATA
 DC A(@DATA)
@PDATA LLGF 12,0(12)
 USING @DATA,12
 LHI 0,DYNAREAL
 STORAGE OBTAIN,LENGTH=(0),SP=0,CALLRKY=YES
 LLGTR 13,1
 USING @DYNAREA,13
 MVC 4(4,13),=C'F6SA'

Private Memory Objects

46 IBM z/VSE: z/VSE V5R1 Extended Addressability

* End entry linkage
*
 SAM64 Change to amode64
 IARV64 REQUEST=GETSTOR, +
 SEGMENTS=ONE_SEG, +
 USERTKN=USER_TOKEN, +
 ORIGIN=VIRT64_ADDR
 LG 4,VIRT64_ADDR Get address of memory obj
 LHI 2,256 Set loop counter
LOOP DS 0H
 MVC 0(10,4),=C'HI_MOM!' Store HI MOM!
 AHI 4,4096
 BRCT 2,LOOP
* Get rid of all memory objects created with this
* user token
 IARV64 REQUEST=DETACH, +
 MATCH=USERTOKEN, +
 USERTKN=USER_TOKEN, +
 COND=YES
*
* Begin exit linkage
 LHI 0,DYNAREAL
 LR 1,13
 STORAGE RELEASE,LENGTH=(0),ADDR=(1),SP=0,CALLRKY=YES
 PR
* End exit linkage
@DATA DS 0D
ONE_SEG DC FD'1'
USER_TOKEN DC FD'1'
 LTORG
@DYNAREA DSECT
SAVEAREA DS 36F
VIRT64_ADDR DS AD
DYNAREAL EQU *-@DYNAREA
 END DUNAJOB

Using Shared Memory Objects
This topic describes how you can create and use shared memory objects (SMOs).

SMOs are allocated in the Extended Shared Area (ESA). The size of the ESA is determined through
SHRLIMIT. An SMO can be shared across multiple address spaces. SMO storage is similar to Shared
Virtual Area (SVA) storage except there is no automatic addressability/access to SMO storage:

• A GETSHARED request (described in “GETSHARED Request” on page 47) creates an SMO.
• A SHAREMEMOBJ request (described in “SHAREMEMOBJ Request” on page 48) allows an address

space to access an SMO.

Figure 14 on page 42 provides an overview of how SMOs are used in z/VSE.

Note: Shared memory objects can be used by authorized programs only.

Creating/Obtaining Access to Shared Memory Objects
This section describes how to create and obtain access to shared memory objects (SMOs).

GETSHARED Request
To create an SMO, use an IARV64 GETSHARED request.

Parameters for GETSHARED include:

• SEGMENTS=segments specifies the size, in megabytes, of the SMO you are creating. The system returns
the address of the SMO in the ORIGIN parameter.

• ORIGIN= origin is the name or address that will contain the address of the SMO.
• FPROT=YES (the default) gives the SMO fetch protection.

Shared Memory Objects

Chapter 7. Using the 64-Bit Address Space 47

• KEY=key specifies the SMO's storage key.
• USERTKN=usertoken is a required 8-byte token that is associated with the SMO. You can use a user

token to relate two or more SMOs to each other. Later, you can use the user token to free all SMOs that
are associated with the specified user token via one DETACH request.

The high-order half (bits 0-31) of the user token must be non-zero.
• COND=YES can be used to avoid a program abend occurring when insufficient resources are available

to meet a GETSHARED request. For example, SHRLIMIT or virtual storage might be exceeded. When
COND=YES is specified and sufficient resources are not available, the system rejects the request but the
program continues to run. The IARV64 service returns to the caller with a non-zero return code.

For an example of this request, see “Example of Creating and Using a Shared Memory Object –
GETSHARED” on page 48.

SHAREMEMOBJ Request
To get access to a shared memory object (SMO), a program must use a SHAREMEMOBJ request. A
SHAREMEMOBJ request creates a shared interest in an SMO. If an address space has a shared interest in
an SMO, any program running in this address space has access to the SMO.

An address space can issue more than one SHAREMEMOBJ request for the same SMO by using different
user tokens.

Parameters for SHAREMEMOBJ include:

• USERTKN=user token uniquely identifies the user token to be associated with the SMO (specifically, with
the shared interest in the SMO). For a single SMO, the specified user token can be duplicated in different
address spaces. However, the specified user token cannot be duplicated within a single address space
for the same SMO.

The high-order half (bits 0-31) of the user token must be non-zero.
• RANGLIST=ranglistptr specifies an address pointing to a range-list of SMOs that the program wants to

access.

Note: If the system detects an invalid ("non-existent") SMO in the range-list that was specified, the
system will unconditionally abend the request! None of the specified SMOs in the range-list will be given
access.

• NUMRANGE=numrange specifies the number of entries in the supplied range-list pointed to by
RANGLIST. You can specify up to 16 SMOs.

• COND=YES can be used to avoid a program abend occurring when insufficient resources are available
to meet a SHAREMEMOBJ request. When COND=YES is specified and sufficient resources are not
available, the system rejects the request but the program continues to run. The IARV64 service returns
to the caller with a non-zero return code.

For an example a SHAREMEMOBJ request, see “Example of Accessing a Shared Memory Object –
SHAREMEMOBJ” on page 49.

For a complete listing of the IARV64 macro, refer to z/VSE System Macros Reference.

Example of Creating and Using a Shared Memory Object – GETSHARED
The following example creates a 1 MB shared memory object (SMO). It specifies a constant with value of
one as a user token.

IARV64 REQUEST=GETSHARED,
 SEGMENTS=ONE_SEG,
 USERTKN=USERTKNA,
 ORIGIN=VIRT64_ADDR,
 COND=YES,
 FPROT=NO,
 KEY=MYKEY
ONE_SEG DC FD'1'
USERTKNA DC 0D'0'

Shared Memory Objects

48 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

 DC F'15' High Half must be non-zero
 DC F'1' UserToken of 1
VIRT64_ADDR DS D

Note: If you want the memory object to have key 9, the declaration for MYKEY is as follows:

MYKEY DC X'90'

Example of Accessing a Shared Memory Object – SHAREMEMOBJ
The following example allows access to a shared memory object (SMO):

IARV64 REQUEST=SHAREMEMOBJ,
 USERTKN=USERTKNS,
 RANGLIST=RLISTPTR,
 NUMRANGE=1,
 COND=YES
USERTKNS DC 0D'0'
 DC F'15' High Half Must Be Non-Zero
 DC F'2' User Token of 2
RLISTPTR DS AD Pointer to the IARV64 Parmlist

Relationship Between a Shared Memory Object and Its Owner
When your program creates a shared memory object (SMO), you need to understand the ownership of the
SMO to prevent illegal operations:

• A program creates an SMO, but it does not own the SMO. An SMO is always owned by the system. This is
referred to as system affinity (or system interest). System affinity for an SMO must be explicitly removed
via a DETACH␠AFFINITY=SYSTEM request, which can be done by any authorized program in the system.

• A program gains access to an SMO by creating a shared interest in the SMO via a SHAREMEMOBJ
request. A shared interest is owned by the main task within an address space. Shared interest for an
SMO can be removed via a DETACH␠AFFINITY=LOCAL request. This can be done by any authorized
program in the address space.

• When an address space has a shared interest in an SMO, any program running in this address space has
access to the SMO providing it has a matching key.

• An address space can issue more than one SHAREMEMOBJ request for the same SMO by using different
user tokens.

When the main task terminates, the system removes all shared interests owned by the main task. This
means:

• Programs in this address space can no longer access SMOs.
• If this address space was the only address space with a shared interest in an SMO, and the system
affinity has been removed from the SMO, the system will free the SMO.

• The memory object is no longer available for use.

Freeing a Shared Memory Object
To free a shared memory object (SMO), two actions are required:

• All address spaces must remove shared interests from the SMO by issuing a DETACH AFFINITY=LOCAL
request. Shared interests from an address space are implicitly removed when the main task terminates.

• The system interest must be removed from the SMO by issuing a DETACH AFFINITY=SYSTEM request.

A DETACH request can either be used with:

• MATCH=SINGLE, in which case a single SMO will be detached.
• MATCH=USERTOKEN, in which case all SMOs associated with the specified user token will be detached.

Shared Memory Objects

Chapter 7. Using the 64-Bit Address Space 49

The above applies to both AFFINITY=LOCAL and AFFINITY=SYSTEM requests.

AFFINITY=LOCAL
Using the AFFINITY=LOCAL parameter, the system removes the shared interest from a specified SMO
within the address space. Next, one of the following can happen:

• If this address space has no further shared interests in the SMO, the address space will no longer have
access to the SMO.

• If no other shared interests in the SMO exist (in either the current address space or other address
spaces) and a DETACH AFFINITY=SYSTEM has been done for the SMO, the SMO is freed and is no
longer available for use.

• If other shared interests in the SMO remain or DETACH AFFINITY=SYSTEM has not been done for the
SMO, the SMO is not freed.

The following example removes the shared interest of the address space in the specified SMO:

IARV64 REQUEST=DETACH,
 AFFINITY=LOCAL,
 ALETVALUE=0,
 COND=YES,
 MATCH=SINGLE,
 MEMOBJSTART=VIRT64_ADDR,
 USERTKN=USERTOKEN
VIRT64_ADDR DS AD
USERTOKEN DC XL8'E2C8C1D9E3D6D2D5' Value is SHARTOKN

AFFINITY=SYSTEM
Using the AFFINITY=SYSTEM parameter, the system affinity (or system interest) for the specified SMO is
removed. The SMO will be freed when there is no remaining shared interest in the SMO.

Note: After the system affinity has been removed from an SMO, any further SHAREMEMOBJ requests will
abend your program!

The following example frees the system affinity (system interest) in the SMO:

IARV64 REQUEST=DETACH,
 AFFINITY=SYSTEM,
 COND=YES,
 MATCH=SINGLE,
 MEMOBJSTART=VIRT64_ADDR,
 USERTKN=USERTOKEN
VIRT64_ADDR DS AD
USERTOKEN DC XL8'E2C8C1D9E3D6D2D5' Value is SHARTOKN

Proper Serialization of Shared Memory Objects
It is important to serialize access to SMOs. Otherwise, the system might abend your program.

Here is an example of strict serialization not being maintained:

• Tasks A obtains an SMO via a GETSHARED request.
• Tasks B and C share the SMO via SHAREMEMOBJ requests.
• Task C removes the shared interest via a DETACH AFFINITY=LOCAL request.
• Task A removes system affinity via a DETACH AFFINITY=SYSTEM request. Since task B still holds a

shared interest in the SMO, the SMO is not freed.
• If task C tries to share the SMO again (via a SHAREMEMOBJ request), the system will issue an abend

code DC2 with reason code xx0040xx. This is because task C was not serialized against the DETACH
AFFINITY=SYSTEM request issued by task A.

Shared Memory Objects

50 IBM z/VSE: z/VSE V5R1 Extended Addressability

User Tokens and Detach Processing
A program can use the same user token for both private memory objects (PMOs) and shared memory
objects (SMOs). When a program issues the following request:

 IARV64 DETACH AFFINITY=LOCAL MATCH=USERTOKEN

the processing depends on the program's authorization:

• For an unauthorized program, all PMOs associated with the specified user token will be freed.
• For an authorized program, all PMOs will be freed, and all shared interests associated with the specified

user token will be removed.

Protecting Storage Above the Bar
To limit access to a memory object, the creating program can use the FPROT and KEY parameters on
IARV64.

• KEY assigns the storage key for the memory object.
• FPROT specifies whether the storage in the memory object is fetch-protected.

Storage protection and fetch protection attributes apply for the entire memory object.

A program can only reference storage in a fetch-protected memory object that runs with the same PSW
key as the storage key of the memory object or PSW key 0.

Dumping Memory Objects
SADUMP and SDUMPX can be used to dump memory objects:

• A specific SADUMP option can be used to include memory objects in a stand-alone dump. For details,
refer to z/VSE System Control Statements.

• SDUMPX can be used to provide a dump of memory objects. For details, refer to z/VSE System Macros
Reference.

In addition, refer to z/VSE Diagnosis Tools for details of how to dump memory objects using
OPTION MODUMP or STDOPT MODUMP=YES.

Using the Storage in a Memory Object
To use the storage in a memory object, the program must be in AMODE 64. See “Setting and Checking the
Addressing Mode” on page 56 for ways to get into AMODE 64.

The IARV64 macro is the only macro that can be called in AMODE 64. All other macros can only be called
in AMODE 31 or AMODE 24. This restriction might mean that the program must first issue SAM31 to
return to AMODE 31. After a program issues a macro that is not capable of being issued in AMODE 64, it
can return to AMODE 64 through SAM64. To learn whether a program is in AMODE 64, see “Setting and
Checking the Addressing Mode” on page 56.

Managing the data, such as serializing the use of a memory object, is no different from serializing the use
of an area obtained through GETVIS.

Listing Information About Virtual Storage Above the Bar
Authorized programs can use the IARV64 LIST request to obtain information about memory objects in the
caller's address space. The system returns the information in a work area you provide.

• The V64LISTPTR parameter defines the first address of this work area.
• The V64LISTLENGTH identifies the length of the area.
• The parameter list macro is mapped by IARV64WA.

User Tokens

Chapter 7. Using the 64-Bit Address Space 51

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesdte63.pdf

The system returns the following information about usable areas (not guard areas) of memory objects:

• Beginning address
• Ending address
• Storage key
• Shared or private indicator.

To request a list of SMOs defined for the system via a GETSHARED request, specify V64SHARED=YES.

Using a 64-Bit Application in z/VSE
A 64-bit application is program that (partly or completely) executes in AMODE 64:

• The AMODE 64 attribute is not supported for these compilers:

– HLASM
– COBOL
– PL/1
– C
– RPG

• The AMODE 64 attribute is not supported for the linkage editor.
• The IARV64 macro is the only macro that can be called in AMODE 64.
• All other z/VSE system services (Supervisor, VSAM, BAM, DL/I, and so on) must be called in AMODE 24

or AMODE 31.
• Space-switching program calls (ss-PCs) are not supported in AMODE 64.
• Data areas for system services must be allocated below the bar.
• 64-bit addressing is not supported in VSE/ICCF pseudo-partitions.
• z/VSE provides limited support only for CICS® partitions. CICS services do not support 64-bit registers.

Therefore, IBM recommends that you do not use 64-bit registers in CICS transactions. However, if you
do wish to use 64-bit registers in a CICS transaction:

– The CICS transaction must initialize the 64-bit registers before they are used.
– The CICS transaction should not issue CICS services, except that the high-order half of the 64-bit

registers must be saved before the call of the CICS service, and then restored after returning from the
CICS service.

– The CICS transaction may clear 64-bit registers if they are no longer required.
– 64-bit registers may be used by sub-tasks that are attached in the CICS partition.

Using 64-Bit Applications and 64-Bit Operations
This topic describes the considerations for register-saving when using 64-bit applications and 64-bit
operations.

• Register saving:

– If a user program is interrupted, z/VSE will store the extended 64-bit registers.
– The low-order half of the registers will be stored in the problem program save area that is located at

start of the z/VSE partition.
– The high-order half of the registers will be stored (in the sequence R0 to RF) in an extended task save

area.
– The pointer to the extended task save area can be obtained via a GETFLD service. For details, refer

to the manual z/VSE Supervisor Calls and Internal Macros which you can obtain at the (whose URL is
given in “Where to Find More Information” on page xiii).

• Exit routines:

64-Bit Applications

52 IBM z/VSE: z/VSE V5R1 Extended Addressability

– z/VSE exit routines and exit services belonging to the z/OS Family API provide 64-bit register support.
– z/VSE does not store the high-order half of the registers for Vendor exits.

Using 64-Bit Virtual I/O Operations on Memory Objects
Programs can use the EXCP macro to perform I/O operations to/from virtual storage above the 2 GB bar.
To do so, your program must:

1. Create a private memory object (PMO) using an IARV64 REQUEST=GETSTOR call (described in
“Creating Private Memory Objects” on page 43). The storage key of the PMO must be equal to the
partition key.

2. Prepare CCWs (channel command words) that provide a 64-bit virtual address by specifying (a) the
IDA (Indirect Data Addressing)-bit and (b) a data address that points to a single virtual Format-2
IDAW.

3. Create a CCB indicating Format-2 IDAW by using the CCB macro with the parameter IDAW=Format2.
4. Issue an EXCP request using the EXCP macro in AMODE 24 or AMODE 31. All parameter lists, control

blocks, IDAWs, CCWs, and EXCP appendage routines must remain 31-bit addressable.

When the I/O operation is complete, your program can then detach the memory object using an IARV64
REQUEST=DETATCH call (described in “Freeing a Private Memory Object” on page 46).

Restrictions When Performing Virtual I/O Operations on Memory Objects:

• Only the EXCP macro can be used, which must be executed below the 2 GB bar.
• I/O operations can only be done on private memory objects (PMOs). I/O operations on shared memory

objects (SMOs) are not supported.
• DASD (ECKD) devices only are supported.
• FBA-SCSI devices are not supported.
• Tape devices are not supported.
• LIOCS (logical input output control system) is not supported.

For further details, see “Macro Support for 64-bit Addressing” on page 134.

Using Assembler 64-bit Binary Operations
If you want to enhance old programs or design new ones to use the virtual storage above the 2 GB bar,
you will need to use 64-bit binary operations in 64-bit address spaces

64-bit binary operations perform arithmetic and logical operations on 64-bit binary values. 64-bit AMODE
allows access to storage operands that reside anywhere in the address space. In support of both, z/
Architecture extends the GPRs to 64 bits. There is a single set of 16 64-bit GPRs, and the bits in each are
numbered from 0 to 63.

Throughout the discussion of GPRs, bits 0 through 31 of the 64-bit GPR are called the high-order half,
and bits 32 through 63 are called the low-order half.

The topic provides an overview of how you can use the 64-bit GPR and the 64-bit instructions to save
registers, perform arithmetic operations, access data. It explains some of the concepts that provide the
foundation you need. However, for detailed information you should refer to the z/Architecture Principles
of Operation:

1. Read the introduction to z/Architecture that appears in the first topic of that book.

Assembler 64-bit Binary Operations

Chapter 7. Using the 64-Bit Address Space 53

http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf

2. Then refer to the specific instructions you need to write your program.

z/Architecture Instructions That Use the 64-Bit GPR
z/Architecture provides many new instructions that use two 64-bit binary integers to produce a 64-bit
binary integer. These instructions include a "G" in the instruction mnemonic (AG and LG). Consider the
example of an Add G instruction: AG R3,NUM64. This instruction takes the value of a doubleword binary
integer at location NUM64 and adds it to the contents of GPR3, placing the sum in GPR3:

The second example, LG R3,TWOWORDS, takes a doubleword at location TWOWORDS and puts it into
GPR3.

z/Architecture provides instructions that use a 64-bit binary integer and a 32-bit binary integer. These
instructions include a "GF" in the instruction mnemonic (AGF and LGF). Consider AGF. In AGF R3,MYDATA,
assume that MYDATA holds a 32-bit positive binary integer, and GPR3 holds a 64-bit positive binary
integer. (The numbers could have been negative.) The AGF instruction adds the contents of MYDATA to
the contents of GPR3 and places the resulting signed binary integer in GPR3; the sign extension, in this
case, is zeros.

The AGFR instruction adds the contents of the low-order half of a 64-bit GPR to bits 0 through 63 in
another 64-bit GPR. Instructions that include "GF" are very useful as you move to 64-bit addressing.

Using the Assembler 64-bit Addressing Mode
If you want to enhance existing programs or design new ones to use the virtual storage above the 2 GB
bar, you will need to use the 64-bit addressing mode in 64-bit address spaces.

When generating addresses, the processor performs the following address arithmetic:

1. The processor adds these three components:

a. The contents of the 64-bit GPR.
b. The displacement (a 12-bit value).
c. (Optionally) the contents of the 64-bit index register.

2. The processor checks the addressing mode and truncates the answer accordingly.

• For AMODE 24, the processor truncates bits 0 through 39.
• For AMODE 31, the processor truncates bits 0 through 32.
• For AMODE 64, no truncation (or truncation of 0 bits) occurs.

The addressing mode also determines where the storage operands can reside:

• The storage operands for programs running in AMODE 64 can be anywhere in the address space.
• A program running in AMODE 24 can use only storage operands that reside in the first 16 MB of the

address space.

Assembler 64-bit Addressing Mode

54 IBM z/VSE: z/VSE V5R1 Extended Addressability

Non-Modal Instructions
An instruction that behaves the same, regardless of the AMODE of the program, is called a non-modal
instruction. For a non-modal instruction, AMODE can only determine where the storage operand is
located.

Two good examples of non-modal instructions have already been described: the Load and the Add
instructions.

Non-modal z/Architecture instructions that are already described also include the LG instruction and the
AGF instruction. For example, programs of any AMODE can issue AG R3,NUM64 (described earlier) which:

1. Adds the value of a doubleword binary integer at location NUM64 to the contents of GPR3.
2. Places the sum in GPR3.

The LGF instruction is another example of a non-modal instruction. In LGF R3,MYDATA, assume MYDATA
is a signed negative binary integer. This instruction places MYDATA into the low-order half of GPR3 and
propagates the sign (1s) to the high-order half, as follows:

If the current AMODE is 64, MYDATA can reside anywhere in the address space; if the AMODE is 31,
MYDATA must reside below 2 gigabytes; if the AMODE is 24, MYDATA must reside below 16 MB.

Other 64-bit instructions that are non-modal are the register form of AGF, which is AGFR, and the register
form of LGF, which is LGFR. Others are LGR, AGR, ALGR, and ALG.

Modal Instructions
Modal instructions are instructions where the addressing mode is a factor in the output of the instruction.
The AMODE determines the width of the output register operands. A good example of a modal instruction
is Load Address (LA). If you specify LA R3,VIRT_PTR successively in the three AMODEs, what are the three
results?

• In AMODE 24, the address of VIRT_PTR is a 24-bit address that is loaded into bits 40 through 63 of
GPR3 (or bits 8 through 31 of the 32-bit register imbedded in the 64-bit GPR). The processor places
zeros into bits 32 through 39, and leaves the first 31 bits unchanged, as follows:

• In AMODE 31, the address of VIRT_PTR is loaded into bits 33 through 63 of GPR3. The processor places
zero into bit 32 and leaves the first 32 bits unchanged, as follows:

• In AMODE 64, the address of VIRT_PTR fill the entire 64-bit GPR3:

Assembler 64-bit Addressing Mode

Chapter 7. Using the 64-Bit Address Space 55

Other modal instructions are Move Long (MVCL), Branch and Link (BALR), and Branch and Save (BASR).

Setting and Checking the Addressing Mode
z/Architecture provides three Set Addressing Mode (SAM) instructions that allow you to change the
addressing mode:

• SAM24, which changes the current AMODE to 24.
• SAM31, which changes the current AMODE to 31.
• SAM64, which changes the current AMODE to 64.

The AMODE bits in the PSW inform the processor as to which AMODE is currently being used.

• You can obtain the current addressing mode of a program by using the Test Addressing Mode (TAM)
instruction.

• In reply, the TAM sets a condition code based upon the setting in the PSW:

– 0 indicates AMODE 24.
– 1 indicates AMODE 31.
– 3 indicates AMODE 64.

SAM64, BASSM, and BSM are the only ways you can set the AMODE to 64. z/VSE does not support:

• The AMODE 64 assembler instruction.
• The linkage editor AMODE 64 statement.
• The setting up of a target routine to be given control in AMODE 64.

Linkage Conventions
In z/VSE, program entry is in AMODE 24 or AMODE 31; therefore linkage conventions you have used
apply. This means, passing 4-byte parameter lists and a 72-byte save area.

An older program changing from AMODE 31 to AMODE 64 to exploit z/Architecture instructions should
expect to receive 31-bit addresses and the 72-byte save area from its callers. If you are running in
AMODE 64 and want to use an address a caller has passed to you, the high-order half of the GPR will
probably not be cleared to zeros. As soon as you receive this address, use the Load Logical G Thirty One
Bits (LLGT or LLGTR) instruction to change this 31-bit address into a 64-bit address that you can use.

Pitfalls to Avoid
As you begin to use the 64-bit instructions, consider the following:

1. Some instructions reference or change all 64 bits of a GPR regardless of the AMODE.
2. Some instructions reference or change only the low-order half of a GPR regardless of the AMODE.
3. Some instructions reference or change only the high-order half of a GPR regardless of the AMODE.
4. When you are using signed integers in arithmetic operations, you can't mix instructions that handle

64-bit integers with instructions that handle 31-bit integers. The interpretation of a 32-bit-signed
number differs from the interpretation of a 64-bit-signed number. With the 32-bit-signed number, the
sign is extended in the low half of the doubleword. With the 64-bit-signed number, the sign is extended
to the left for the entire doubleword.

Consider the following example, where a 31-bit subtraction instruction has left a 31-bit negative integer in
bits 32 through 63 of GPR3 and has left the high-order half unchanged.

Assembler 64-bit Addressing Mode

56 IBM z/VSE: z/VSE V5R1 Extended Addressability

Next, the instruction AG R3,MYDOUBLEWORD (mentioned earlier):

1. Adds the doubleword at the location MYDOUBLEWORD to the contents of the GPR3.
2. Places the sum at GPR3.

Because the high-order half of the GPR has uncertain contents, the result of the AG instruction is
incorrect. To change the value in the GPR3 so that the AG instruction adds the correct integers, before you
use the AG instruction, use the Load G Fullword Register (LGFR) instruction to propagate the sign to the
high-order half of GPR3.

Assembler 64-bit Addressing Mode

Chapter 7. Using the 64-Bit Address Space 57

Assembler 64-bit Addressing Mode

58 IBM z/VSE: z/VSE V5R1 Extended Addressability

Part 3. Data Spaces and Virtual Disks

1. Before using these functions you should be familiar with the planning information provided in the topic "Using
Data Spaces and Virtual Disks" in the z/VSE Planning.

2. The information and examples provided for data spaces in this manual are based on the use of the High Level
Assembler.

3. High Level Assembler refers to High Level Assembler Version 1.6 for z/OS, z/VM, and z/VSE, which is a base
program of Version 5 Release 1 of IBM z/VSE.

© Copyright IBM Corp. 1993, 2013 59

http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf

60 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 8. Introducing Data Spaces

A data space is a range of up to 2GB of contiguous virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike an address space, a data space contains only data;
it does not contain shared areas or system data or programs. Program code does not execute in a data
space, although a program can reside in a data space as nonexecutable code.

Terminology Use: This publication uses the term "extended addressability" in a general way to
summarize the capabilities of 31-bit addressing, data spaces, and virtual disks. In the following
discussion, however, the term "extended addressability" means basically the use of data spaces and
implies in its wider context also address spaces and certain functions they support such as the use of
access registers.

Whether your application is one that can use extended addressability depends on many factors. One basic
factor is the amount of processor (real) storage available at your installation to back up virtual storage.
Extended addressability frequently requires additional amounts of virtual storage, which means that your
processor must have sufficient real storage available.

The goals for the design of a particular application are equally important in the decision-making process.
These goals might include:

• Performance.
• Efficient use of system resources, such as storage, and the use of disk devices.
• Ability to randomly access very large amounts of data.
• Data integrity and isolation.

Data in an address space is generally available to all tasks running in that address space; access to
data in a data space can be restricted. Code running in an address space can accidentally overlay data;
because of its isolation, data in a data space is less likely to be overlaid.

• Independence from individual device characteristics, from record-oriented processing, and from data
management concerns in general. Extended addressability can allow an application to focus on
controlling data as information in contrast to controlling data as records in data sets stored on disk
device volumes.

• Reduction in the size and complexity of the programming effort required to develop a new application.

Achieving these goals depends to a very great extent on choosing a way to extend addressability that
meets your needs. You need to understand, at a very high level, basic concepts related to each technique
and how you might apply extended addressability to specific programming situations.

At the detailed technical level, extended addressability can mean learning new programming techniques,
or new ways of applying existing techniques. At a higher level, extended addressability can open
completely different solutions to programming problems. With extended addressability, virtual storage,
can become, conceptually, a high-performance medium for application data. It is also important to note
that you should think of extended addressability techniques as ones you can use to modify existing
applications as well as code new ones.

To use an example of how extended addressability can open up new solutions, assume you need to write
an application to sort 5000 records:

• If you can hold only 50 records in storage, you must use disk device storage for intermediate work file
processing.

• If you can hold 500 records in storage, the solution is still the same, though it requires fewer I/O
operations.

• If you can hold all 5000 records in storage, the original solution still works, but it is now possible to
devise a completely different solution, one, for example, that does not depend on a work file on a disk
device. This new solution could both improve performance and reduce the effort required for program
development.

Introducing Data Spaces

© Copyright IBM Corp. 1993, 2013 61

This admittedly trivial example illustrates how extended addressability can both improve the performance
of existing solutions and open the possibility of new solutions. The large amounts of virtual and processor
storage now available to an application can allow totally new solutions and simplify the entire process of
application development.

Basic Concepts
No single technique for extended addressability meets all possible needs. Choosing the right one for a
particular application requires you to understand the advantages and disadvantages of the technique
and some of the key differences between them. Many applications require a combination of various
techniques. Before you decide to incorporate one or more of the techniques in the design of a new
application, or decide to use a technique to modify an existing application, consult the detailed technical
description of each technique.

The ASC Modes
The ASC (address space control) mode determines how the processor resolves address references for
the executing program. In primary ASC mode, the processor uses the contents of general purpose
registers to resolve an address to a specific location. However, for programs accessing data in storage it is
the access register (AR) ASC mode that is most important. In this mode, an access register identifies the
address or data space the processor is to use to resolve an address. In AR ASC mode, a program can use
the full set of z/Architecture instructions to manipulate data in another address space or in a data space.
The processor uses the contents of an AR as well as the contents of general purpose registers to resolve
an address to a specific location.

Terminology Use: In the following topics the short forms primary mode and either access register mode
or AR mode are used.

In AR mode, a program can move, compare, or perform operations on data in other address spaces or in
data spaces. It is important to understand, however, that ARs do not enable a program to transfer control
from one address space to another. That is, you cannot use ARs to transfer control from a program in one
address space to a program in another address space.

AR Mode and Data Spaces
Programs that access data in data spaces must run in AR mode. They use macros to create, control, and
delete data spaces. z/Architecture instructions of a program executing in an address space can directly
manipulate data that resides in a data space.

An Example of Using a Data Space
Suppose an existing program updates several rate tables that reside on disk. Updates are random
throughout the tables. The tables are too large and too many for your program to keep in contiguous
storage in its address space. When the program updates a table, it reads that part of the table into a buffer
area in the address space, updates the table, and writes the changes back to disk. Each time it makes an
update, it issues instructions that cause I/O operations.

Assume you want to change this application to improve its performance. If the tables were to reside in
data spaces, one table to each data space, the tables would then be accessible to the program through
z/Architecture instructions. The program could move the tables to the data spaces (through buffers in the
address space) once at the beginning of the update operations and then move them back (through buffers
in the address space) at the end of the update operations.

Introducing Data Spaces

62 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 9. Using Access Registers

You cannot use access registers to branch into another address space. Through access registers, however,
you can use the z/Architecture instruction set to manipulate data in other address spaces and in data
spaces.

In addition to this topic, two sources of information can help you understand how to use access registers:

• Chapter 10, “Creating and Using Data Spaces,” on page 81 contains examples of using access registers
to manipulate data in data spaces.

• The z/Architecture Principles of Operation manual contain descriptions of how to use the instructions
that manipulate the contents of access registers. Refer to “Where to Find More Information” on page xiii
for the complete book titles.

Using Access Registers for Data Reference
Through access registers, your program, whether it is in supervisor state or problem state, can use
z/Architecture instructions to perform basic data manipulation, such as:

• Comparing data in one address space with data in another
• Moving data into and out of a data space, and within a data space
• Accessing data in an address space that is not the primary address space
• Moving data from one address space to another
• Performing arithmetic operations with values that are located in different address spaces or data spaces

What is an Access Register (AR)?

An AR is a hardware register that a program uses to identify an address space or a data space. Each
processor has 16 ARs, numbered 0 through 15, and they are paired one-to-one with the 16 general
purpose registers (GPRs).

Why would a Program Use ARs?

Generally, instructions and data reside in a single address space — the primary address space (PASN).
However, you might want your program to have more virtual storage than a single address space offers, or
you might want to separate data from instructions for:

• Storage isolation and protection
• Data security
• Data sharing among multiple users

For these reasons and others, your program can have data in address spaces other than the primary one
or in data spaces. The instructions still reside in the primary address space, but the data can reside in
another address space or in a data space.

To access data in other address spaces, your program uses ARs and executes in the address space control
mode called access register mode (AR mode).

Using Access Registers

© Copyright IBM Corp. 1993, 2013 63

http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf

What is Address Space Control (ASC) Mode?

The ASC mode determines where the system looks for the data that the address in the GPR indicates. The
two ASC modes that are generally available for your programs are primary mode and AR mode. The PSW
(program status word) determines the ASC mode. Both problem state and supervisor state programs can
use both modes, and a program can switch between the two modes.

• In primary mode, the data your program can access resides in the program's primary address space.
When it resolves the addresses in data-referencing instructions, the system does not use the contents
of the ARs.

• In AR mode, the data your program can access resides in the address/data space that the ARs indicate.
For data-referencing instructions, the system uses the AR and the GPR together to locate an address in
an address/data space. Specifically, the AR contains a value, called access list entry token (ALET), that
identifies the address space or data space that contains the data, and the GPR contains a base address
that points to the data within the address/data space.

In this book the term address/data space refers to "address space or data space".

The following chart summarizes where the system looks for the instructions and the data when the
program is in primary mode and AR mode.

ASC Mode Location of Instructions Location of Data

Primary mode Primary address space Primary address space

AR mode Primary address space Address/data space identified by
an AR

In this book, the AR and GPR pair that is used to resolve an address is called AR/GPR. Figure 15 on page
64 illustrates AR/GPR 4.

Figure 15. Example of an AR/GPR

Do not confuse addressing mode (AMODE) with ASC mode. A program can be in AR mode and also be in
either 31-bit or 24-bit addressing mode. However, programs in 24-bit addressing mode are restricted in
their use of data spaces; for example, a program in 24-bit addressing mode cannot create a data space,
nor can the program access data above 16 MB in that space.

How does your Program Switch ASC Mode?

Use the SAC instruction to change the ASC mode:

• SAC 512 sets the ASC mode to AR mode
• SAC 0 sets the ASC mode to primary mode

What does the AR Contain?

The contents of an AR designate an address/data space. The AR contains a token that specifies an entry in
a table called an access list. Each entry in the access list identifies an address/data space that programs
can reference. The token that indexes into the access list is called an ALET. When an ALET is in an AR
and the program is in AR mode, the ALET identifies the access list entry that points to an address/data
space. The corresponding GPR contains the address of the data within the address/data space. IBM
recommends that you use ARs only for ALETs and not for other kinds of data.

Using Access Registers

64 IBM z/VSE: z/VSE V5R1 Extended Addressability

The following figure shows an ALET in the AR and the access list entry that points to the address/data
space. It also shows a GPR that points to the data within the address/data space.

Figure 16. Using an ALET to Identify an Address/Data Space

By placing an entry on an access list and obtaining an ALET for that entry, a program builds the connection
between the program and the target address/data space. (In describing the subject of authorization, the
terms "target address space" and "target data space" are used to mean an address space or data space in
which a program is trying to reference data.) The process of building this connection is called establishing
addressability to an address/data space.

For programs in AR mode, when the GPR is used as a base register, the corresponding AR must contain
an ALET. Conversely, when the GPR is not used as a base register, the corresponding AR is ignored. For
example, the system ignores an AR when the associated GPR is used as an index register.

A Comparison of Data Reference in Primary and AR Mode
The best way to show how address resolution in primary mode compares with address resolution in AR
mode is through an example. Figure 17 on page 66 and Figure 18 on page 67 show two ways an MVC
instruction works to move data at location B to location A.

In Figure 17 on page 66, the move instruction, MVC, is in code that is running in primary mode. The
MVC instruction uses GPRs 1 and 2. GPR 1 is used as a base register to locate the destination of the MVC
instruction. GPR 2 is used as a base register to locate some data to be moved.

Using Access Registers

Chapter 9. Using Access Registers 65

Figure 17. The MVC Instruction in Primary Mode

In Figure 18 on page 67, the MVC instruction, in code that is in AR mode, moves the data at location B in
Space X to location A in Space Y. GPR 1 is used as a base register to locate the data to be moved, and AR
1 is used to identify Space X. GPR 2 is used to locate the destination of the data, and AR 2 identifies Space
Y. In AR mode, the MVC instruction is in code that is running in AR mode. The MVC instruction moves data
from one address/data space to another. Note that the address space that contains the MVC instruction
does not have to be either Space X or Space Y.

Using Access Registers

66 IBM z/VSE: z/VSE V5R1 Extended Addressability

Figure 18. The MVC Instruction in AR Mode

Addresses that are qualified by an ALET are called ALET-qualified addresses.

Coding Instructions in AR Mode
As you write your AR mode programs, use the advice and warnings in this section.

• Always remember that for an instruction that uses a GPR as a base register, the system uses the
contents of the associated AR to identify the address/data space that contains the data that the GPR
points to.

• Use ARs only for data reference; do not use them with branching instructions.
• Just as you do not use GPR 0 as a base register, do not use AR/GPR 0 for addressing.

Since ARs that are associated with index registers are ignored when you code z/Architecture
instructions in AR mode, place the commas very carefully. In those instructions that use both a base
register and an index register, the comma that separates the two values is very important.

Table 3 on page 67 shows four examples of how a misplaced comma can change how the assembler
resolves addresses on the load instruction.

Table 3. Base and Index Register Addressing in AR Mode

Instruction Address Resolution

L 5,4(,3) or L 5,4(0,3) There is no index register. GPR 3 is the base register. AR 3 indicates
the address/data space.

L 5,4(3) or L 5,4(3,) GPR 3 is the index register. Because there is no base register, data is
fetched from the primary address space.

Using Access Registers

Chapter 9. Using Access Registers 67

Table 3. Base and Index Register Addressing in AR Mode (continued)

Instruction Address Resolution

L 5,4(6,8) GPR 6 is the index register. GPR 8 is the base register. AR 8 indicates
the address/data space.

L 5,4(8,6) GPR 8 is the index register. GPR 6 is the base register. AR 6 indicates
the address/data space.

For the first two entries in Table 3 on page 67:

• In primary mode, the examples of the load instruction give the same result.
• In AR mode, the data is fetched using different ARs. In the first entry, data is fetched from the address/

data space represented by the ALET in AR 3. In the second entry, data is fetched from the primary
address space (because AR/GPR 0 is not used as a base register).

For the last two entries in Table 3 on page 67:

• In primary mode, the last two examples of the load instruction give the same result.
• In AR mode, the first results in a fetch from the address/data space represented by AR 8, while the

second results in a fetch from the address/data space represented by AR 6.

Using z/Architecture Instructions to Manipulate the Contents of
Access Registers

Whether the ASC mode of a program is primary or AR, the program can use assembler instructions to
save, restore, and modify the contents of the 16 ARs. Both problem state and supervisor state programs
can use these instructions.

The set of instructions that manipulate ARs includes:
CPYA

Copy the contents of one AR into another AR.
EAR

Copy the contents of an AR into a GPR.
LAE

Load a specified ALET/address into an AR/GPR pair.
SAR

Place the contents of a GPR into an AR.
LAM

Load the contents of one or more ARs from a specified location.
STAM

Store contents of one or more ARs at a specified location.

For their syntax and help with how to use them, refer to z/Architecture Principles of Operation manual.

Example of Loading an ALET into an AR
An action that is very important when a program is in AR mode, is the loading of an ALET into an AR. The
following example shows how you can use the LAM instruction to load an ALET into an AR.

The following instruction loads an ALET (located at DSALET) into AR 2:

 LAM 2,2,DSALET LOAD ALET OF DATA SPACE INTO AR2
 .
DSALET DS F DATA SPACE ALET

Using Access Registers

68 IBM z/VSE: z/VSE V5R1 Extended Addressability

Access Lists
When the system dispatches a z/VSE task (main task or subtask), for the first time, it assigns to that work
unit a DU-AL (dispatchable unit access list). When the system allocates a partition, that partition gets a
PASN-AL (primary address space number access list) assigned.

Note: Although it is called primary address space number access list, in z/VSE the PASN-AL is associated
with a partition (residing in a particular address space).

Programs add entries to the DU-AL and the PASN-AL. The entries represent the address or data spaces
that the programs want to access.

Before your program can use ARs to reference data in an address or data space, it must establish a
connection to the address or data space.

Note: Only z/VSE subsystems such as CICS/VSE*, VTAM* and VSE/POWER can establish connections to
address spaces.

The connection between the program that the z/VSE task represents and the address spaces and data
spaces is through an access list. The process of establishing this connection is called establishing
addressability.

Establishing addressability to an address or data space means your program must:

• Have authority to access data in the address or data space
• Have an access list entry that points to the address or data space
• Have the ALET that indexes to the entry

Before you can set up the access list entries and obtain ALETs, you need to know about:

• The two types of access lists, and the differences between them
• The two types of entries in access lists, and the differences between them
• The ALETs that are available to every program
• The ALESERV macro, which manages entries in access lists and gives information about ALETs and

STOKENs.

Note: The ALESERV macro is available only to control data space entries in the access list.

The term STOKEN (for "space token") identifies a data space. It is similar to a partition identifier with two
important differences: the system does not reuse the STOKEN value within an IPL, and data spaces do not
have space IDs. The STOKEN is an eight-byte variable that the system generates when you create a data
space (note that the system never generates a STOKEN value of zero).

Types of Access Lists
The access list can be one of two types:

• PASN-AL — the access list that is associated in z/VSE with a partition.
• DU-AL — the access list that is associated with a z/VSE task (main task or subtask).

A program uses the DU-AL associated with its z/VSE task and the PASN-AL associated with its partition.

The difference between a PASN-AL and a DU-AL is significant. If your program is a part of a subsystem
that provides services for many users and has its own partition, it might reference data spaces through its
PASN-AL. A program can create a data space, add an entry for the data space to the PASN-AL, and obtain
the ALET that indexes the entry. By passing the ALET to other programs in the partition, the program can
share the data space with other programs running in the same partition.

If your program is not part of a subsystem, it will probably place entries for data spaces in its DU-AL.

Each z/VSE task has one DU-AL; all programs running under a z/VSE task can use it. A DU-AL cannot
be shared with another z/VSE task. A program can, however, use the ALCOPY parameter on the ATTACH
macro at the time of the attach, to pass a copy of its DU-AL to the attached task. “Attaching a Subtask and
Sharing Data Spaces with It” on page 96 describes a program attaching a subtask and passing a copy of

Using Access Registers

Chapter 9. Using Access Registers 69

its DU-AL. This action allows two programs, the issuer of the ATTACH macro and programs running under
the attached task, to have access to the data spaces that were represented by the entries on the DU-AL at
the time of the attach.

Each partition has a PASN-AL. All programs running in the partition can use the PASN-AL of that partition.
They cannot use the PASN-AL of any other partition.

The following lists summarize the characteristics of DU-ALs and PASN-ALs.

• The DU-AL has the following characteristics:

– Each z/VSE task has its own unique DU-AL.
– All programs running under a z/VSE task can add and delete entries on the z/VSE task's DU-AL.
– A program cannot pass its task's DU-AL to a program running under another task. The one exception

is that a program can pass a copy of its DU-AL to a subtask to be attached.
– A DU-AL can have up to 253 entries.

• The PASN-AL has the following characteristics:

– Every partition has its own unique PASN-AL.
– Programs in PSW key 0 running in this partition can add and delete entries on the PASN-AL. A

PASN-AL is also updated if a SCOPE=COMMON entry for a data space is added or deleted within the
system.

– All programs running in this partition can access data spaces through the PASN-AL.
– A PASN-AL can have up to 253 entries, some of which are reserved for SCOPE=COMMON data spaces

and virtual disks.

Because DU-ALs belong to z/VSE tasks, you must remember the relationship between the program and
the z/VSE task under which the program runs. For simplicity, this section describes access lists as if they
belong to programs. For example, "your program's DU-AL" means "the DU-AL that belongs to the task
under which your program runs".

A Comparison of a PASN-AL and a DU-AL
Figure 19 on page 71 shows PGM1 that runs in partition 1. The figure shows the PASN-AL of partition 1
and PGM1's DU-AL. PGM1 shares the PASN-AL with other programs that execute in partition 1. It does not
share its DU-AL with any other programs. The PASN-AL contains entries to data spaces that program(s)
with PSW key 0 placed there. PGM1 has an entry for space X in its DU-AL and an ALET for space X. PGM1
received an ALET for space Y from a program running with PSW key 0. Assuming PGM1 has authority to
space X and space Y, it has addressability to space X through its DU-AL and space Y through its PASN-AL;
it can access data in both space X and space Y. Therefore, with one MVC instruction, PGM1 can move data
from a location in space X to a location in space Y provided the PSW key matches the storage key of space
Y or the PSW key is 0.

Using Access Registers

70 IBM z/VSE: z/VSE V5R1 Extended Addressability

Figure 19. Comparison of Addressability through a PASN-AL and a DU-AL

Loading the Value of Zero into an AR
When the code you are writing is in AR mode, you must be very conscious of the contents of the ARs.
For instructions that reference data, the ARs must always contain the ALET that identifies the data space
that contains the data. Therefore, even when the data is in the primary address space, the AR that
accompanies the GPR that has the address of the data must contain the value "0".

The following examples show several ways of placing the value "0" in an AR.

Example 1
Set AR 5 to value of zero, when GPR 5 can be changed.

 SLR 5,5 SET GPR 5 TO ZERO
 SAR 5,5 LOAD GPR 5 INTO AR 5

Example 2
Set AR 5 to value of zero, without changing value in GPR 5.

 LAM 5,5,=F'0' LOAD AR 5 WITH A VALUE OF ZERO

Another way of doing this is the following:

Using Access Registers

Chapter 9. Using Access Registers 71

 LAM 5,5,ZERO
 .
ZERO DC F'0'

Example 3
Set AR 5 to value of zero, when AR 12 is already 0.

 CPYA 5,12 COPY AR 12 INTO AR 5

Example 4
Set AR 12 to zero and set GPR 12 to the address contained in GPR 15. This code is useful to establish a
program's base register GPR and AR from an entry point address contained in register 15. The example
assumes that GPR 15 contains the entry point address of the program, PGMA.

 LAE 12,0(15,0) ESTABLISH PROGRAM'S BASE REGISTER
 USING PGMA,12

Another way to establish AR/GPR module addressability through register 12 is as follows:

 SLR 12,12
 SAR 12,12
 BASR 12,0
 USING *,12

Example 5
Set AR 5 and GPR 5 to zero.

 LAE 5,0(0,0) Set GPR and AR 5 to zero

The ALESERV Macro
Use the ALESERV macro to set up addressability to data spaces. Table 4 on page 72 lists some of the
functions of the macro, the parameter that provides the function, and the section where the function is
described.

Table 4. Functions of the ALESERV Macro

To do the following: Use this
parameter:

Described in this section:

Add an entry to an access list ADD “Adding an Entry to an Access List” on
page 73.

Delete an entry from an access list. DELETE “Deleting an Entry from an Access List”
on page 78.

Obtain the STOKEN of a data space,
given the ALET.

EXTRACT “Obtaining and Passing ALETs and
STOKENs” on page 74.

Find an ALET on an access list, given
the STOKEN.

SEARCH “Adding an Entry to an Access List” on
page 73.

You can also find examples of the ALESERV macro in Chapter 10, “Creating and Using Data Spaces,” on
page 81.

Using Access Registers

72 IBM z/VSE: z/VSE V5R1 Extended Addressability

Setting Up Addressability to a Data Space
Before your program can use ARs to reference data in a data space, it must establish a connection to the
data space. The important facts to remember about setting up an environment in which your program can
use ARs are in the following box.

Establishing addressability to a data space means that your program must:

• Have authority to access data in the data space
• Have an access list entry that points to the data space
• Have the ALET that indexes to the entry

This section describes these actions and gives some examples. The first item in the list, having authority
to access data in the data space, depends on whether the entry is for a data space. Authority to add an
entry for a data space follows certain rules that are summarized in Table 5 on page 85. This table tells
what PSW key 0 programs or programs with a non-zero PSW key can do with data spaces.

Adding an Entry to an Access List
The ALESERV ADD macro adds an entry to the access list. Two parameters are required: STOKEN, an input
parameter, and ALET, an output parameter.

• STOKEN the eight-byte STOKEN of the data space represented by the entry. You might have received
the STOKEN from DSPSERV, or from another program.

• ALET — index to the entry that ALESERV added to the access list. The system returns this value at the
address you specify on the ALET parameter.

An optional parameter, AL, allows you to limit access to a data space:

• AL=WORKUNIT or PASN

AL specifies the access list, the DU-AL (WORKUNIT parameter) or the PASN-AL (PASN parameter), to
which the ALESERV service is to add the entry. The default is WORKUNIT.

Use AL=WORKUNIT if you want to limit the sharing of the data space to programs running under the
owning z/VSE task. Use AL=PASN if you want other programs running in the same partition to have
access to the data space, or if you are adding an entry for a SCOPE=COMMON data space.

The ALESERV ADD process described in this section applies to the data spaces called SCOPE=SINGLE and
SCOPE=ALL. For SCOPE=COMMON data spaces, ALESERV ADD adds an entry to all PASN-ALs. “Creating
and Using SCOPE=COMMON Data Spaces” on page 94 describes the ALESERV ADD process for these
data spaces.

ALESERV ADD is the only way to add an entry for a data space to an access list.

For examples of adding entries to the DU-AL and PASN-AL, see:

• “Example of Adding an Access List Entry for a Data Space” on page 73.
• “Examples of Establishing Addressability to Data Spaces” on page 75.

If you want to know whether a data space already has an entry on an access list, use ALESERV SEARCH.
As input to the macro, give the STOKEN of the space, which access list is to be searched, and the location
in the list where you want the system to begin to search. If the entry is on the list, the system returns the
ALET. If the entry is not on the list, the system returns a code in register 15.

Example of Adding an Access List Entry for a Data Space
The following code uses DSPSERV to create a data space named TEMP. The system returns the STOKEN
of the data space in DSPCSTKN and the origin of the data space in DSPCORG. The ALESERV ADD macro

Using Access Registers

Chapter 9. Using Access Registers 73

returns the ALET in DSPCALET. The program then establishes addressability to the data space by loading
the ALET into AR 2 and the origin of the data space into GPR 2.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
 USING DSPCMAP,2 INFORM ASSEMBLER
 .
 .
* SWITCH TO ACCESS REGISTER MODE
 .
 .
 L 5,DSPWRD1 GET FIRST WORD FROM DATA SPACE
 USES AR/GPR 2 TO MAKE THE REFERENCE
 .
 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCNAME DC CL8'TEMP' DATA SPACE NAME
DSPBLCKS DC F'1000' DATA SPACE SIZE (IN 4K BLOCKS)
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3

Using the DSECT that the program established, the program can easily manipulate data in the data space.

A more complete example of manipulating data within this data space appears in “Example of Creating,
Using, and Deleting a Data Space” on page 93.

Obtaining and Passing ALETs and STOKENs
A program can obtain an ALET through the ALESERV macro with the ADD parameter. Or, it can receive an
ALET from another program.

A program can obtain a STOKEN through DSPSERV CREATE, ALESERV EXTRACT. Or, it can receive a
STOKEN from another program.

A program can pass an ALET or a STOKEN to another program in the same way it passes other parameter
data. z/VSE has certain rules for passing ALETs, as described in “Rules for Passing ALETs” on page 74.
It does not have rules for passing STOKENs. However, the ALESERV service determines whether the
receiving program can add an entry for the data space that a STOKEN represents.

Rules for Passing ALETs
z/VSE allows your program to pass the following ALETs:

• An ALET of zero (primary address space).
• An ALET that indexes into an entry on a DU-AL, if the program that passes the ALET and the program

that receives the ALET run under the same z/VSE task (that is, they have the same DU-AL).
• An ALET that indexes into the PASN-AL, if the program that passes the ALET and the program that

receives the ALET run in the same partition (that is, they have the same PASN-AL).
• An ALET that indexes into the PASN-AL for a SCOPE=COMMON data space.

To provide addressability to a data space, a program might pass an ALET to another program for which
examples are provided below.

Using Access Registers

74 IBM z/VSE: z/VSE V5R1 Extended Addressability

Examples of Establishing Addressability to Data Spaces
Note: Programs running in non-zero PSW key can access a data space for update only if storage and PSW
key match.

The best way to describe how to add an access list entry is through examples. This section contains three
examples:

• Example 1 sets up addressability to a data space, using the DU-AL. The example continues with a
program passing a STOKEN to another program so that both programs can access the data space.

• Example 2 sets up addressability to a data space, using the PASN-AL. This example continues with a
program passing an ALET to another program so that both programs can access the data space.

• Example 3 shows how to set up addressability so that two programs in different partitions can access
the same data space.

In these examples, programs share their data spaces with programs running under z/VSE tasks other than
their own.

Example 1: Getting Addressability through a DU-AL

Consider that a PSW key zero program named PGM1 created a data space and received a STOKEN from
DSPSERV. To add the entry to the DU-AL, PGM1 issues:

 ALESERV ADD,STOKEN=STOKDS1,ALET=ALETDS1,AL=WORKUNIT
 .
ALETDS1 DS F
STOKDS1 DS CL8

ALESERV accepts the STOKEN, adds an entry to the DU-AL and returns an ALET at location ALETDS1.
Figure 20 on page 75 shows PGM1 with the entry for data space DS1 on its DU-AL. It shows the STOKEN
and the ALET.

Figure 20. Example 1: Adding an Entry to a DU-AL

Consider that PGM2, with PSW key 0 and running under a task different from PGM1's task, would also
like to have access to data space DS1. PGM1 passes PGM2 the STOKEN for DS1. PGM2 then uses the
ALESERV ADD macro to obtain the ALET and add the entry. Figure 21 on page 76 shows PGM2 with
addressability to DS1.

Using Access Registers

Chapter 9. Using Access Registers 75

Figure 21. Example 1: Sharing a Data Space through DU-ALs

Note: A problem state program with PSW key unequal to zero cannot add entries to its PASN-AL, nor can
the program add an entry on its DU-AL for a data space that was created by another task.

Example 2: Getting Addressability through a PASN-AL

In Figure 22 on page 77, consider that PROG1, with PSW key 0, adds an entry for a data space to the
PASN-AL. PROG1 issues the following macro:

 ALESERV ADD,STOKEN=STOKDS2,ALET=ALETDS2,AL=PASN
 .
ALETDS2 DS F
STOKDS2 DS CL8

ALESERV accepts the STOKEN, adds an entry to the PASN-AL, and returns an ALET at location ALETDS2.
Figure 22 on page 77 shows PROG1 with the PASN-AL entry for data space DS2.

Using Access Registers

76 IBM z/VSE: z/VSE V5R1 Extended Addressability

Figure 22. Example 2: Adding an Entry to a PASN-AL

Consider that PROG2 running under a task different from PROG1's would like to have access to data
space DS2. In this case, both PROG1 and PROG2, because they run in the same partition, share the same
PASN-AL. PROG2 does not have to add an entry to its PASN-AL; the entry is already there. PROG1 passes
the ALET to PROG2. Figure 23 on page 77 shows that PROG2 has the ALET for DS2 and, therefore, has
addressability to DS2 through its PASN-AL.

Figure 23. Example 2: Sharing a Data Space through the PASN-AL

In a similar way, any supervisor state or problem state program that runs in the same partition and has
the ALET for DS2 can access DS2.

Using Access Registers

Chapter 9. Using Access Registers 77

The SCOPE parameter on DSPSERV determines how the creating program can share the data space.
For more information on the SCOPE parameter, see “SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON
Data Spaces” on page 82.

Example 3: Passing ALETs across Partitions

Referring to Figure 23 on page 77, consider that PROG1 wants to allow a program in another partition
(same or different address space) to access data in data space DS2. Figure 24 on page 78 shows that
PROG1 passes the STOKEN for DS2 to PROG2, a PSW key 0 program in Partition 2. PROG2 uses the
ALESERV macro to add the entry to its DU-AL. PROG2 also could have added the entry to its PASN-AL.

Figure 24. Example 3: Sharing Data Spaces Between two Partitions

Deleting an Entry from an Access List
Use ALESERV DELETE to delete an entry on an access list. The ALET parameter identifies the specific
entry.

Access lists have a limited size. Both, the DU-AL and the PASN-AL have 253 entries. Therefore, it is a good
programming practice to delete entries from an access list when the entries are no longer needed. The
specific rules are:

• The system deletes a PASN-AL when a partition is de-allocated, a DU-AL when a task is terminated.
• Once the entry is deleted, the system can immediately reuse the access list entry.

Programs that share data spaces with other programs have another action to take when they delete an
entry from an access list. They should notify the other programs that the entry is no longer connecting the
ALET to the data space. Otherwise, those programs might continue to use an ALET for the deleted entry.
See “ALET Reuse by the System” on page 79 for more information.

Example of Deleting a Data Space Entry from an Access List
The following example deletes the entry for the ALET at location DSPCALET. The example also includes
the deletion of the data space with a STOKEN at location DSPCSTKN.

 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS

Using Access Registers

78 IBM z/VSE: z/VSE V5R1 Extended Addressability

 .
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

If the program does not delete an entry, the entry remains on the access list until the z/VSE task
terminates. At that time, the system frees the access list entry.

ALET Reuse by the System
ALETs are not unique; they index a specific entry on a PASN-AL or DU-AL, connecting a program to
an address space or data space. When ALESERV DELETE removes an access list entry, the connection
between the ALET and the data space no longer exists. The access list entry and its corresponding ALET
are available for the system to be used again. The breaking of the connection and the reuse of the ALET
mean that a program using the old ALET:

• Does not gain access to the space
• Might gain access to another space

The system does not check and notify programs about the reuse of an ALET. Therefore, when a
program uses ALESERV DELETE to delete an access list entry, the program must ensure that other
programs do not use the old ALET.

Consider a program, PROGA, deleting the data space, DSA, and removing the entry from the PASN-AL.
The ALET for that entry, ALETA, ceases to have meaning in relationship to DSA. The system, free now to
reuse that ALET, assigns ALETA to a new data space, DSB. Suppose that other programs in the address
space were also using ALETA to access DSA. For this reason, PROGA should tell those programs about the
removal of ALETA to ensure that no access errors occur.

This response to the system's removal of the entry and reuse of an ALET is similar to the work a program
does after it frees address space GETVIS storage that it obtained and shared with other programs. When
that area of storage is freed, z/VSE reuses the area to satisfy a later request for storage. When an access
list entry is freed, z/VSE reuses that ALET to satisfy a later ALESERV ADD request.

Using Access Registers

Chapter 9. Using Access Registers 79

Using Access Registers

80 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 10. Creating and Using Data Spaces

The support of data spaces is based on the following command and macros:

• SYSDEF command This JCL/AR command defines the size of the virtual storage available for data
spaces. This size also depends on the values defined in the IPL VSIZE and DPD commands.

• ALESERV macro
• DSPSERV macro
• SYSSTATE macro
• SDUMPX macro

For overview information you may refer to “Macro and Command Support for Data Spaces” on page 135.

The DSPSERV macro manages data spaces. Use this macro to:

• Create a data space
• Release an area in a data space
• Delete a data space
• Expand the amount of storage in a data space currently available to a program.

A program's ability to create, delete, and access data spaces depends on whether it is a program with a
non-zero PSW key or a PSW key 0 program. All programs can create, access, and delete the data spaces
they own and share their data spaces with their subtasks. In addition, PSW key 0 programs can share
their data spaces with other programs.

Use this topic to help you create, use, and delete data spaces. In addition, two sources of information can
help you understand how to use data spaces:

• Chapter 9, “Using Access Registers,” on page 63 contains many examples of setting up addressability to
data spaces.

• z/Architecture Principles of Operation contains descriptions of how to use the instructions that
manipulate access registers.

Referencing Data in a Data Space
To reference the data in a data space, the program must be in access register (AR) mode. Assembler
instructions (such as load, store, add, and move character) move data in and out of a data space and
manipulate data within it. Assembler instructions can also perform arithmetic operations on the data.

When a program uses the DSPSERV macro to create a data space, the system returns a STOKEN that
uniquely identifies the data space (data spaces do not have IDs like address spaces). The program then
gains access to the data space: it uses the ALESERV macro to add an entry to an access list and obtain an
access list entry token (ALET). The entry on the access list identifies the newly created data space and the
ALET indexes the entry.

Creating and Using Data Spaces

© Copyright IBM Corp. 1993, 2013 81

The process of giving the STOKEN to ALESERV, adding an entry to an access list, and receiving an ALET is
called establishing addressability to the data space. The access list can be one of two types:

• DU-AL : the access list that is associated with a z/VSE main task or subtask.
• PASN-AL : the access list that is associated with a z/VSE partition.

Relationship Between the Data Space and Its Owner
The owner of a data space is a z/VSE main task or subtask. When a task terminates, the system deletes
any data spaces that the task owns.

This section describes access lists and data spaces as if they belong to programs. For example, "a
program's DU-AL" means "the DU-AL that belongs to the task under which a program is running".

SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces
Data spaces are either SCOPE=SINGLE, SCOPE=ALL, or SCOPE=COMMON, named after the SCOPE
parameter on the DSPSERV CREATE macro.

• SCOPE=SINGLE data spaces

A SCOPE=SINGLE data space with an entry on a PASN-AL can be used by programs running in the
owner's partition. A SCOPE=SINGLE data space with an entry on a DU-AL can only be used by the
creating task.

• SCOPE=ALL data spaces

A SCOPE=ALL data space can be used by programs running in the owner's partition or other partitions.
SCOPE=ALL data spaces provide a way to share data selectively among programs running in different
partitions.

• SCOPE=COMMON data spaces

A SCOPE=COMMON data space can be used by all programs in the system. It provides a commonly
addressable area similar to the shared virtual area (SVA).

Rules for Creating, Deleting, and Using Data Spaces
To protect data spaces from unauthorized use, the system uses certain rules to determine whether a
program can create or delete a data space or whether it can access data in a data space. The rules for
programs with non-zero PSW key differ from the rules for programs that are PSW key 0. The table on page
Table 5 on page 85 summarizes these rules and the example on Figure 25 on page 84 illustrates them.

A program with PSW key 0 can:

• Create a data space.

Creating and Using Data Spaces

82 IBM z/VSE: z/VSE V5R1 Extended Addressability

• Delete a data space if any task of the caller's partition owns the data space.
• Release storage in a data space if any task of the caller's partition owns the data space.
• Extend the current size of any data space it owns if any task of the caller's partition owns the data

space.
• Establish addressability to a data space through the ALESERV macro (if the program does not already

have an entry on its DU-AL or a PASN-AL) and obtain the ALET that indexes the entry. When it adds an
entry, the program can specify whether it wants the entry on its DU-AL or the PASN-AL. A program can
add entries:

– For a SCOPE=SINGLE data space to its DU-AL.
– For a SCOPE=SINGLE data space to its PASN-AL, if the PASN-AL belongs to the owner's partition.
– For any SCOPE=ALL data space to its DU-AL and its PASN-AL.
– For any SCOPE=COMMON data space to its PASN-AL.

Note that programs with non-zero PSW key cannot add entries to their PASN-ALs. PSW key 0 programs,
however, can add entries on behalf of programs with non-zero PSW key and pass copies of the ALETs
that index the entries to these programs.

• Access data in a data space.

Once an entry for the data space is on its DU-AL, a program having the ALET for the entry can access the
data space if it runs under the same task which owns the DU-AL. Once an entry for the data space is on
the PASN-AL, all programs running with that PASN-AL and having the ALET can access the data space.
Note that data space storage is also subject to storage key and fetch protection.

A program can attach a subtask and pass a copy of its DU-AL to the subtask. This action allows the
program and the subtask to share the data spaces that have entries on the DU-AL at the time of the
attach.

Example of the Rules for Accessing Data Spaces
Another way of describing the rules for accessing data spaces is through an example. Figure 25 on page
84 shows two partitions (Partition 1, Partition 2) and two data spaces (DS1, DS2). The entries in the
PASN-AL and DU-AL are identified.

Two programs run in Partition 1, both of which own data spaces:

• A program with non-zero PSW key, PGM1, running under Task A that owns the SCOPE=SINGLE data
space DS1.

• A PSW key 0 program, PGM2, running under Task B that owns the SCOPE=ALL data space DS2.

Two programs run in Partition 2, neither of which owns data spaces:

• A program with non-zero PSW key, PGM3, running under Task C.
• A PSW key 0 program, PGM4, running under Task D.

PGM2 has passed a STOKEN for the SCOPE=ALL data space DS2 to PGM4 in Partition 2. PGM4 used the
STOKEN as input to ALESERV, which placed an entry for DS2 on the DU-AL and returned the ALET. PGM4
could have added the entry for DS2 to its PASN-AL.

Earlier in this section, it was stated that storage within a data space is available to programs that run
under the task that owns the data space. The exception to this statement is when the owning task has the
data space entry on the PASN-AL.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 83

Figure 25. Example of Rules for Accessing Data Spaces

Summary of Rules for Creating, Deleting, and Using Data Spaces
Table 5 on page 85 summarizes the rules for what programs can do with data spaces. The third column
describes what a program with non-zero PSW key can do. The fourth column describes what a PSW key 0
can do.

Creating and Using Data Spaces

84 IBM z/VSE: z/VSE V5R1 Extended Addressability

Table 5. Creating, Deleting, and Using Data Spaces

Function Type of data
space

A program with non-zero PSW
key:

A program with PSW key 0:

CREATE SCOPE=SINGLE Can create a SCOPE=SINGLE data
space.

Can create the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot create the data spaces. Can create the data space.

DELETE SCOPE=SINGLE Can delete the data spaces it
owns if its PSW key matches the
storage key of the data space.

Can delete the data space if any
task of the caller's partition owns
the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot delete the data space. Can delete the data space if any
task of the caller's partition owns
the data space.

RELEASE SCOPE=SINGLE Can release storage in data
spaces it owns if its PSW key
matches the storage key of the
data space.

Can release storage in a data space
if any task of the caller's partition
owns the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot release the storage. Can release storage in a data space
if any task of the caller's partition
owns the data space.

EXTEND SCOPE=SINGLE Can extend storage in data
spaces it owns.

Can extend storage in a data space
if any task of the caller's partition
owns the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot extend the current size. Can extend the current size if any
task of the caller's partition owns
the data space.

Add or delete
entries in the
DU-AL

SCOPE=SINGLE Can add or delete entries for the
data spaces it owns.

Can add or delete entries for the
data space if any task of the caller's
partition owns the data space.

SCOPE=ALL
SCOPE=COMMON

Cannot add or delete entries. Can add or delete entries
for a SCOPE=ALL (not the
SCOPE=COMMON) data space.

Add or delete
entries in the
PASN-AL

SCOPE=SINGLE Cannot add or delete entries. Can add or delete entries for a
data space if its PASN-AL is the
same as the PASN-AL of the owner's
partition.

SCOPE=ALL
SCOPE=COMMON

Cannot add or delete entries. Can add or delete entries for a
SCOPE=ALL and a SCOPE=COMMON
data space.

Access a data
space through
a DU-AL or
PASN-AL

SCOPE=SINGLE
SCOPE=ALL
SCOPE=COMMON

Can access a data space through
an access list if the entry for
the data space exists and the
program has the ALET. Data
space storage is also subject to
storage key and fetch protection.

Can access a data space through an
access list if the entry for the data
space exists and the program has
the ALET.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 85

Creating a Data Space
To create a data space, issue the DSPSERV CREATE macro. z/VSE gives you contiguous 31-bit virtual
storage of the size you specify and initializes the storage to hexadecimal zeroes. The entire data space has
the storage key that you request, or, by default, the storage key that matches your own PSW key.

On the DSPSERV macro, you are required to specify:

• The name of the data space (NAME parameter)

To ask DSPSERV to generate a data space name unique to the address space, use the GENNAME
parameter. DSPSERV will return the name it generates at the location you specify on the OUTNAME
parameter. See “Choosing the Name of a Data Space” on page 86.

• A location where DSPSERV can return the STOKEN of the data space (STOKEN parameter)

DSPSERV CREATE returns a STOKEN that you can use to identify the data space to other DSPSERV
services and to the ALESERV macro.

Other information you might specify on the DSPSERV macro is:

• A request for a SCOPE=ALL or SCOPE=COMMON data space. If you don't code SCOPE, the system
creates a SCOPE=SINGLE data space. See “SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data
Spaces” on page 82.

• The maximum size of the data space and its initial size (BLOCKS parameter). If you do not code BLOCKS,
the data space size is determined by defaults set by your installation. In this case, use the NUMBLKS
parameter to tell the system where to return the size of the data space. See also “Specifying the Size of
the Data Space” on page 86.

Choosing the Name of a Data Space
The name you specify on the NAME parameter will identify the data space on dump requests and AR/JCL
commands.

Names of data spaces must be unique within a partition. You have a choice of choosing the name yourself
or asking the system to generate a unique name for your data space. To keep you from choosing names
that z/VSE uses, z/VSE has some specific rules for you to follow. Refer to the manual z/VSE System
Macros Reference under "DSPSERV CREATE (Create Data Space) Macro" for details.

Specifying the Size of the Data Space
When you create a data space, you tell the system on the BLOCKS parameter how large to make that
space, the largest size being 524,288 blocks. (The product of 524,288 times 4KB is 2GB.) The addressing
range for the data space depends on the processor. Before you code BLOCKS, you should know two facts
about how an installation controls the use of virtual storage for data spaces.

• An installation can set limits on the amount of storage available for all data spaces (through the SYSDEF
command). If your request for a data space would cause the installation limit to be exceeded, the
system rejects the request with a nonzero return code and a reason code.

• An installation sets a default size for data spaces (through the SYSDEF command). If you do not use
the BLOCKS parameter of the DSPSERV CREATE macro or the BLOCKS parameter is zero, the system
creates a data space with the default size. To find out about data space sizes, use the QUERY DSPACE
command.

For information on how to change IBM defaults, see “Limiting Data Space Use” on page 89.

The BLOCKS parameter allows you to specify a maximum size and initial size value.

• The maximum size identifies the largest amount of storage you will need in the data space.
• An initial size identifies the amount of the storage you will immediately use.

Note: The storage taken from VSIZE is either the initial or extended data space size rounded up to the
next multiple of 8 BLOCKS.

Creating and Using Data Spaces

86 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

As you need more space in the data space, you can use the DSPSERV EXTEND macro to increase the size
of the available storage, thus increasing the storage in the data space that is available for the program.
The amount of available storage is called the current size. (At the creation of a data space, the initial size
is the same as the current size.) When it calculates the cumulative total of data space storage, the system
uses the current size of the data space.

If you know what data space size you need and are not concerned about exceeding the installation limit,
set the maximum size and the initial size the same. BLOCKS=0, the default, establishes a data space with
the maximum size and the initial size both set to the default size.

If you do not know how large a data space you will eventually need or you are concerned with exceeding
the installation limit, set the maximum size to the largest size you might possibly use and the initial size to
a smaller amount, the amount you currently need.

Use the NUMBLKS parameter to request that the system returns the maximum size of the data space it
creates for you. You would use NUMBLKS, for example, if you did not specify BLOCKS and do not know the
default size.

Figure 26 on page 87 shows an example of using the BLOCKS parameter to request a data space with a
maximum size of 100,000 bytes of space and a current size of 20,000 bytes.

 DSPSERV CREATE,. . .BLOCKS=(DSPMAX,DSPINIT)
 .
 .
DSPMAX DC A((100000+4095)/4096) DATA SPACE MAXIMUM SIZE
DSPINIT DC A((20000+4095)/4096) DATA SPACE INITIAL SIZE

Figure 26. Example of Specifying the Size of a Data Space

As your program uses more of the data space storage, it can use DSPSERV EXTEND to extend the current
size. “Extending the Current Size of a Data Space” on page 92 describes extending the current size and
includes an example of how to extend the current size of the data space in Figure 26 on page 87.

Identifying the Origin of the Data Space
Some processors do not allow the data space to start at zero; these data spaces start at address 4096
bytes. To learn the starting address, either (1) create a data space of 1 block of storage more than you
need and then assume that the data space starts at 4096 or (2) use the ORIGIN parameter. If you use
ORIGIN, the system returns the start address of the data space at the location you specify.

Unless you specify a size of 2GB and the processor does not support an origin of zero, the system gives
you the size you request, regardless of the location of the origin. An example of the problem you want to
avoid in addressing data space storage is described as follows:

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 87

Suppose a program creates a data space of 1MB and assumes the data space starts at address
zero when it really begins at the address 4096. Then, if the program uses an address lower than
4096 in the data space, the system abends the program.

Example of Creating a Data Space
In the following example, a program creates a data space named TEMP. The system returns the origin of
the data space (either 0 or 4096) at location DSPCORG.

 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 .
 .
DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

The data space that the system creates has the same storage protection key as the PSW key of the caller.

Establishing Addressability to a Data Space
Creating a data space does not give you addressability to that data space. Before you can use the data
space, you must issue the ALESERV macro, which adds an entry to an access list and returns the ALET
that indexes the entry. Examples of this process appear in this section; section Chapter 9, “Using Access
Registers,” on page 63 contains additional examples.

When you use ALESERV, you can omit the ACCESS parameter, which specifies whether an access list entry
is public or private. Data space entries are always public, the default for ACCESS.

Example of Establishing Addressability to a Data Space
In the following example, a program establishes addressability to a data space named TEMP. Input to the
ALESERV macro is the STOKEN that the DSPSERV macro returned. ALESERV places an entry on the DU-AL
and returns the ALET for the data space.

 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .
 .

DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

Managing Data Space Storage
Managing storage in data spaces differs from managing storage in address spaces. Keep the following
advisory notes in mind:

• When you create a data space, request a maximum size large enough to handle your application's needs
and, optionally, an initial size large enough to meet its immediate needs. It is recommended to use
multiples of 8 BLOCKs for these values.

• If you do not use an area of a data space again, release that area to free the resources occupied by the
area.

Refer also to “Releasing Data Space Storage” on page 97 for additional details.
• When you are finished using a data space, remove its entry from the access list and delete the data

space.

Refer also to “Deleting a Data Space” on page 93 for additional details.

Creating and Using Data Spaces

88 IBM z/VSE: z/VSE V5R1 Extended Addressability

Limiting Data Space Use
The use of data spaces consumes system resources such as virtual storage (and real storage).
Programmers responsible for tuning and maintaining z/VSE can control the use of these resources.
Through the SYSDEF command you can specify the maximum amount of virtual storage available for all
data spaces.

You may also specify:

• The default size of a single data space.
• The number of data spaces that can be owned by a single partition.
• The maximum number of SCOPE=COMMON data spaces.

Serializing Use of Data Space Storage
At many installations, users must share access to data in a data space. Users who are updating data
for common use by other programs need exclusive access to that data during the updating operation. If
several users tried to update the same data at the same time, the result would be incorrect or damaged
data. To protect the integrity of the data, you might need to serialize access to the data in the data space.

Serializing the use of the storage in a data space requires methods like those you would use to serialize
the use of virtual storage in an address space. Use the LOCK and UNLOCK, the ENQ and DEQ macros,
compare and swap operations, or establish your own protocol for serializing data space use.

Protecting Data Space Storage
If the creating program wants the data space to have read-only access, it can use the FPROT and KEY
parameters on DSPSERV. KEY assigns the storage key for the data space and FPROT specifies whether the
storage in the data space is to be fetch-protected. Storage protection and fetch protection rules apply for
the entire data space. For example, a program cannot reference storage in a fetch-protected data space
without holding the PSW key that matches the storage key of the data space or PSW key 0.

Figure 27 on page 90 shows a SCOPE=ALL data space DSX with a storage key of 5, owned by a
subsystem. PGM1 and PGM2 have entries for the data space on their DU-ALs and have the ALETs for
these entries. However, the PSW key of PGM1 does not match the storage key of the data space. The
ability of PGM1 to access data in DSX depends on how the creating program coded the FPROT parameter
on the DSPSERV macro.

• If the creating program specified no fetch-protection (FPROT=NO), PGM1 can fetch from but not store
into the data space.

• If the creating program specified fetch-protection (FPROT=YES), PGM1 can neither fetch from nor store
into the data space.

Figure 27 on page 90 shows that only PGM2 has fetch and store capability for data space DSX.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 89

Figure 27. Protecting Storage in a Data Space

Examples of Moving Data Into and Out of a Data Space
When using data spaces, you sometimes have large amounts of data to transfer between the address
space and the data space. This section contains examples of two subroutines, both named COPYDATA,
that show you how to use the Move (MVC) or Move Long (MVCL) instruction to move a variable number
of bytes into and out of a data space. (You can also use the examples to help you move data within an
address space or within a data space.) The two examples perform exactly the same function; both are
included here to show you the relative coding effort required to use each instruction.

The use of registers for the two examples is as follows:

 Input: AR/GR 2 Target area location
 AR/GR 3 Source area location
 GR 4 Signed 32 bit length of area
 (Note: A negative length is treated as zero.)
 GR 14 Return address

 Output: AR/GR 2-14 Restored
 GR 15 Return code of zero

For establishing addressability, refer also to the coding example under “Example of Creating, Using, and
Deleting a Data Space” on page 93.

The routines can be called in either primary or AR mode; however, during the time they manipulate data
in a data space, they must be in AR mode. The source and target locations are assumed to be the same
length (that is, the target location is not filled with a padding character).

Example 1: Using the MVC Instruction

The first COPYDATA example uses the MVC instruction to move the specified data in groups of 256 bytes:

COPYDATA DS 0D
 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BASR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .
 LTR 4,4 IS LENGTH NEGATIVE OR ZERO?
 BNP COPYDONE YES, RETURN TO CALLER
 .
 S 4,=F'256' SUBTRACT 256 FROM LENGTH

Creating and Using Data Spaces

90 IBM z/VSE: z/VSE V5R1 Extended Addressability

 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART .
COPYLOOP DS 0H
 MVC 0(256,2),0(3) COPY 256 BYTES
 LA 2,256(,2) ADD 256 TO TARGET ADDRESS
 LA 3,256(,3) ADD 256 TO SOURCE ADDRESS
 S 4,=F'256' SUBTRACT 256 FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK
COPYLAST DS 0H
 LA 4,255(,4) ADD 255 TO LENGTH
 EX 4,COPYINST EXECUTE A MVC TO COPY THE
* LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE
COPYINST MVC 0(0,2),0(3) EXECUTED INSTRUCTION
COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 BR ... RETURN TO CALLER

Example 2: Using the MVCL Instruction

The second COPYDATA example uses the MVCL instruction to move the specified data in groups of
1048576 bytes:

COPYDATA DS 0D
 SAVE CALLER'S STATUS
 LAE 12,0(0,0) BASE REG AR
 BASR 12,0 BASE REG GR
 USING *,12 ADDRESSABILITY
 .
 LA 6,0(,2) COPY TARGET ADDRESS
 LA 7,0(,3) COPY SOURCE ADDRESS
 LTR 8,4 COPY AND TEST LENGTH
 BNP COPYDONE EXIT IF LENGTH NEGATIVE OR ZERO
 .
 LAE 4,0(0,3) COPY SOURCE AR/GR
 L 9,COPYLEN GET LENGTH FOR MVCL
 SR 8,9 SUBTRACT LENGTH OF COPY
 BNP COPYLAST IF LENGTH NOW NEGATIVE OR ZERO
* THEN GO COPY LAST PART
 .
COPYLOOP DS 0H
 LR 3,9 GET TARGET LENGTH FOR MVCL
 LR 5,9 GET SOURCE LENGTH FOR MVCL
 MVCL 2,4 COPY DATA
 ALR 6,9 ADD COPYLEN TO TARGET ADDRESS
 ALR 7,9 ADD COPYLEN TO SOURCE ADDRESS
 LR 2,6 COPY NEW TARGET ADDRESS
 LR 4,7 COPY NEW SOURCE ADDRESS
 SR 8,9 SUBTRACT COPYLEN FROM LENGTH
 BP COPYLOOP IF LENGTH STILL GREATER THAN
* ZERO, THEN LOOP BACK
COPYLAST DS 0H
 AR 8,9 ADD COPYLEN
 LR 3,8 COPY TARGET LENGTH FOR MVCL
 LR 5,8 COPY SOURCE LENGTH FOR MVCL
 MVCL 2,4 COPY LAST PART OF THE DATA
 B COPYDONE BRANCH TO EXIT CODE
COPYLEN DC F'1048576' AMOUNT TO MOVE ON EACH MVCL
COPYDONE DS 0H
 .
* EXIT CODE
 LA 15,0 SET RETURN CODE OF 0
 BR RETURN TO CALLER

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 91

Programming Notes for Example 2
• The MVCL instruction uses GPRs 2, 3, 4, and 5.
• The maximum amount of data that one execution of the MVCL instruction can move is 2²⁴-1 bytes (or

16,777,215 bytes).

Extending the Current Size of a Data Space
When you create a data space and specify an initial size smaller than the maximum size, you can use
DSPSERV EXTEND to increase the current size as your program uses more storage in the data space. The
BLOCKS parameter specifies the amount of storage you want to add to the current size of the data space.

The system increases the data space by the amount you specify, unless that amount would cause the
system to exceed one of the following:

• The data space maximum size, as specified by the BLOCKS parameter on DSPSERV CREATE when the
data space was created.

• The amount of virtual storage available for all data spaces. This limit is the system default or is set by
the AR/JCL SYSDEF command.

Note: The storage taken from VSIZE is either the initial or extended data space size rounded up to the
next multiple of 8 BLOCKS.

Consider the data space in Figure 26 on page 87, where the current (and initial) size is 20,000 bytes and
the maximum size is 100,000 bytes. To increase the current size to 50,000 bytes, adding 30,000 bytes to
the current size, the creating program would code the following:

 DSPSERV EXTEND,STOKEN=DSSTOK,BLOCKS=DSBLCKS
 .
DSDELTA EQU 30000 30000 BYTES OF SPACE
DSBLCKS DC A((DSDELTA+4095)/4096) NUMBER OF BLOCKS ADDED TO DATA SPACE
DSSTOK DS CL8 STOKEN RETURNED FROM DSPSERV CREATE

The storage the program can use would then be 50,000 bytes, as shown in Figure 28 on page 92 :

Figure 28. Example of Extending the Current Size of a Data Space

Creating and Using Data Spaces

92 IBM z/VSE: z/VSE V5R1 Extended Addressability

Deleting a Data Space
When a task does not need the data space any more, it can free the virtual storage and remove the entry
from the access list.

A program with a non-zero PSW key can delete only the data spaces it owns, and must have the PSW key
that matches the storage key of the data space.

Example of Deleting a Data Space
The following example shows how to delete a data space entry from an access list and then delete the
data space.

 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
DSPCALET DS F DATA SPACE ALET
DSPCSTKN DS CL8 DATA SPACE STOKEN

IBM recommends that you explicitly remove the entry for a data space from the access list and delete the
space before the owning task terminates. However, if you do not, z/VSE automatically does it for you.

Example of Creating, Using, and Deleting a Data Space
This section contains a complete example of a how a problem program creates, establishes addressability
to, uses, and deletes the data space named TEMP. The first lines of code create the data space and
establish addressability to the data space. To keep the example simple, the code does not include the
checking of the return code from the DSPSERV macro. However, you should always check the return
codes after issuing the macro.

The lines of code in the middle of the example (under the comment "MANIPULATE DATA IN THE DATA
SPACE") illustrate how, with the code in AR mode, the familiar assembler instructions store, load, and
move a simple character string into the data space and move it within the data space. The example ends
with the program deleting the data space entry from the access list, deleting the data space, and returning
control to the caller.

DSPEXMPL CSECT

 SAVE CALLER'S STATUS
 SAC 512 SWITCH INTO AR MODE
 SYSSTATE ASCENV=AR SET GLOBAL BIT FOR AR MODE
 .
* SET UP AR/GPR 12 BEFORE STORING INTO IT
 .
 LAE 12,0 SET BASE REGISTER AR
 BASR 12,0 SET BASE REGISTER GR
 USING *,12
* CREATE THE DATA SPACE AND ADD THE ENTRY TO THE ACCESS LIST
 .
 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
 ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 .

 .
* ESTABLISH ADDRESSABILITY TO THE DATA SPACE
 .
 LAM 2,2,DSPCALET LOAD ALET OF SPACE INTO AR2
 L 2,DSPCORG LOAD ORIGIN OF SPACE INTO GR2
 USING DSPCMAP,2 INFORM ASSEMBLER .
* MANIPULATE DATA IN THE DATA SPACE
 .
 L 3,DATAIN LOAD DATA FROM PRIMARY SPACE
 ST 3,DSPWRD1 STORE INTO DATA SPACE WRD1
 .
 MVC DSPWRD2,DATAIN COPY DATA FROM PRIMARY SPACE
* INTO THE DATA SPACE
 MVC DSPWRD3,DSPWRD2 COPY DATA FROM ONE LOCATION
* IN THE DATA SPACE TO ANOTHER

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 93

 MVC DATAOUT,DSPWRD3 COPY DATA FROM DATA SPACE
* INTO THE PRIMARY SPACE
 .

* DELETE THE ACCESS LIST ENTRY AND THE DATA SPACE
 .
 ALESERV DELETE,ALET=DSPCALET REMOVE DS FROM AL
 DSPSERV DELETE,STOKEN=DSPCSTKN DELETE THE DS
 .
 SAC 0 ENSURE IN PRIMARY MODE
 SYSSTATE ASCENV=P RESET GLOBAL BIT
 BR ... RETURN TO CALLER
 . DSPCNAME DC CL8'TEMP ' DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE
DATAIN DC CL4'ABCD'
DATAOUT DS CL4
*
DSPCMAP DSECT DATA SPACE STORAGE MAPPING
DSPWRD1 DS F WORD 1
DSPWRD2 DS F WORD 2
DSPWRD3 DS F WORD 3
 END

Note: You cannot code ACCESS=PRIVATE on the ALESERV macro when you request an ALET for a data
space; all data space entries are public.

Creating and Using SCOPE=COMMON Data Spaces
The SCOPE=COMMON data space provides your programs with virtual storage that is addressable from
all address spaces and all programs. In many ways, it is the same as the shared virtual area (SVA) of an
address space. You might use a SCOPE=COMMON data space instead of SVA because:

• A SCOPE=COMMON data space offers up to 2GB of commonly addressable virtual storage for data (but
not executable code). The SVA offers a much smaller amount of storage.

• The SVA is a limited resource; because it is a part of all address spaces, the use of this virtual storage
area reduces the amount of private area available for partitions (programs).

To create this space, use the SCOPE=COMMON parameter on DSPSERV CREATE. You can use any of the
parameters on that macro to establish the characteristics of that space.

To gain addressability to the space, issue the ALESERV ADD macro with the AL=PASN parameter.
ALESERV ADD then adds an entry for the data space to the caller's PASN-AL and returns the ALET for
that entry. Additionally, ALESERV ADD adds the same entry to every PASN-AL in the system. As new
address spaces come into the system, their PASN-ALs have this entry on them. All programs use the
same ALET to access the data space. In other words, with the entry on all PASN-ALs, programs in other
address spaces do not have to issue the ALESERV ADD macro. However, the creating program must pass
the ALET for the data space to the other programs.

The use of the virtual storage in the SCOPE=COMMON data space is similar to the use of the SVA. A
program wanting to share SVA storage with another program has to pass the address of that area to the
other program; the creator of the SCOPE=COMMON data space has to pass the ALET value to the other
program. (It might also have to tell the other program the origin of the data space.)

Figure 29 on page 95 shows an example of a SCOPE=COMMON data space named COMDS that
PROG1 created. PROG1 uses ALESERV ADD to add an entry to its PASN-AL. Because COMDS is
SCOPE=COMMON,that same entry appears on all PASN-ALs in the system, plus all PASN-ALs that will
exist from the time the entry for the SCOPE=COMMON data space is added to the access list until the data
space is deleted. PROG1 has the ALET for the entry.

To allow programs in other partitions to access data space COMDS, PROG1 can pass the ALET to these
other programs.

Creating and Using Data Spaces

94 IBM z/VSE: z/VSE V5R1 Extended Addressability

Figure 29. Example of Using a SCOPE=COMMON Data Space

Programming Considerations
When you use SCOPE=COMMON data spaces, keep in mind the following advice:

• Use the SCOPE=COMMON data space when your program has large amounts of data that it wants to
share across multiple address spaces. For example, to share more than 10MB of commonly addressable
data, consider using a SCOPE=COMMON data space. To use less than 10 MB, consider using SVA
(31-Bit).

• The system can reuse the ALET associated with a SCOPE=COMMON data space after the space
terminates. Therefore, manage the termination and reuse of ALETs for the SCOPE=COMMON data
space. This action is described in “ALET Reuse by the System” on page 79.

• To help solve system problems and error conditions, use the data space dumping services to dump
appropriate areas of the SCOPE=COMMON data space. See “Dumping and Displaying Data Space
Storage” on page 97 for information about dumping data space areas.

Note: Your installation can set limits on the total number of SCOPE=COMMON data spaces available to
programs.

The maximum number is 253, minus the number of virtual disks specified. The minimum number is 5, and
the default is also 5. These numbers include the SCOPE=COMMON data spaces that the system has for its
own use.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 95

When you set this limit, remember that the number it establishes affects the number of PASN-AL entries
that are available for data spaces other than SCOPE=COMMON. The number of entries each PASN-AL
has available for SCOPE=SINGLE and SCOPE=ALL data spaces is 253 minus the number you set for
SCOPE=COMMON minus the number of virtual disks specified.

Attaching a Subtask and Sharing Data Spaces with It
A program can use the ALCOPY=YES parameter on the ATTACH macro to attach a subtask and pass a copy
of its DU-AL to this subtask. In this way, the program can share data spaces with a program running under
the subtask. The two programs both have access to the data spaces that have DU-AL entries at the time of
the ATTACH macro invocation. Note that it is not possible to pass only a part of the DU-AL.

The following example, represented by Figure 30 on page 96, assumes that program PGM1 (running
under Task A) has created a SCOPE=SINGLE data space (DS1) and established addressability to it. Its
DU-AL has several entries on it, including one for DS1. PGM1 uses the ATTACH macro to attach Subtask B
(Task B). PGM1 uses the ALCOPY=YES parameter to pass a copy of its DU-AL to Task B. It can also pass
ALETs to PGM2. Upon return from ATTACH, PGM1 and PGM2 have access to the same data spaces.

The figure shows the two programs, PGM1 and PGM2, sharing the same data space, DS1.

Figure 30. Two Programs Sharing a SCOPE=SINGLE Data Space

Example of Attaching a Task and Passing a DU-AL
The following example shows you how Task A attaches Subtask B and passes its DU-AL:

 DSPSERV CREATE,NAME=DSNAME,BLOCKS=DSSIZE,STOKEN=DSSTOK,ORIGIN=DSORG
 ALESERV ADD,STOKEN=DSSTOK,ALET=DSALET
 ATTACH PGM2,...,ALCOPY=YES
 .
DSNAME DC CL8'MYDSPACE' DATA SPACE NAME
DSSTOK DS CL8 DATA SPACE STOKEN
DSALET DS F DATA SPACE ALET

Creating and Using Data Spaces

96 IBM z/VSE: z/VSE V5R1 Extended Addressability

DSORG DS F ORIGIN RETURNED
DSSIZE DC F'2560' DATA SPACE 10 MEGABYTES IN SIZE

The two DU-ALs do not necessarily stay identical; after the attach, PGM1 and PGM2 are free to add and
delete entries on their own DU-ALs.

If Task A terminates, the system deletes the data space that belonged to Task A. PGM2 can no longer
access DS1.

Releasing Data Space Storage
Your program can release storage when it used a data space for one purpose and wants to reuse it
for another purpose, or when your program is finished using the area. To release (that is, initialize to
hexadecimal zeroes and return the resources to the system) the virtual storage of a data space, use the
DSPSERV RELEASE macro. Specify the STOKEN to identify the data space and the START and BLOCKS
parameters to identify the beginning and the length of the area you need to release.

Releasing storage in a data space requires that a program's PSW key to be zero or equal to the key of the
data space storage the system is to release. Otherwise, the system abends the caller.

Use DSPSERV RELEASE instead of the MVCL instruction to clear 4K byte blocks of storage to zeroes
because:

• DSPSERV RELEASE is faster than MVCL for very large areas.
• Pages released through DSPSERV RELEASE do not occupy space in processor or auxiliary storage.

Using Data Spaces Efficiently
Although a task can own many data spaces, it is important that it references these data spaces carefully.
It is more efficient for the system to reference the same data space ten times, than it is to reference each
of ten data spaces one time. For example, a CICS application might have many users, each one having a
data space. System performance is best if each program completes its work with one data space before it
starts work with another data space.

z/VSE limits the number of access list entries and the number of data spaces available to each task.
Therefore, IBM recommends that, given a choice, you use one large data space rather than a number of
small data spaces that add up to the size of the one large data space.

Dumping and Displaying Data Space Storage
z/VSE provides various ways to dump areas of data space storage. You can use the SDUMPX macro or ask
the operator to use the DUMP command. After the system enters a wait state or hangs or enters a loop,
the operator can request a stand-alone dump.

Use the following to dump data space storage:

1. Use the SDUMPX macro to dump storage from any data space that the caller has addressability to.
2. An operator can use the DSPACE parameter on the DUMP command to dump all the storage of a data

space.

The operator can use the QUERY command to determine the names of the data spaces owned by a
partition or the names of all data spaces of the system.

3. An operator can request a stand-alone dump as described in the z/VSE Guide for Solving Problems
under "Taking a Stand-Alone Dump" .

The following options support the dumping of data space storage:

• // OPTION statement

– Use DSPDUMP to specify that a data space dump is to be taken in case of an abnormal program end.
– Use SADUMP to specify the data spaces to be included in a stand-alone dump.

Creating and Using Data Spaces

Chapter 10. Creating and Using Data Spaces 97

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse31.pdf

• For the standard options (STDOPT) you can specify DSPDUMP to specify that a data space dump is to
be taken in case of an abnormal program end.

In addition, it is possible to specify SADUMP to define the priority in which the partitions and any owned
data spaces should be included in a stand-alone dump.

For further details about these options, refer to z/VSE System Control Statements.

Creating and Using Data Spaces

98 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Chapter 11. Creating and Using Virtual Disks

On an z/Architecture processor, z/VSE supports data spaces of up to 2GB. Virtual disks are based on this
support. Such disks emulate real FBA disk devices and allow data that normally would be stored on a
real disk device to reside in memory (virtual storage). Since such data can be accessed at memory speed,
response time and throughput in general may improve significantly.

Planning for Virtual Disks
Since virtual disks are not permanent, they should be used for files that easily can be recovered in case of
loss (because of an IPL, for instance). These include, for example:

• Temporary work files or test files
• VSE/VSAM space and user catalogs
• VSE libraries

Before you can use virtual disks, you need to allocate virtual storage for data spaces in your system
layout. You do this by adjusting the IPL parameter VSIZE. If no other data spaces are needed besides
those for virtual disks, then add the size of all virtual disks that might be used concurrently to the value of
VSIZE.

Once you have determined the value for VSIZE, also use this value to adjust the size of your page data set
(defined through the IPL command DPD).

Creating Virtual Disks
You can easily create virtual disks by:

1. Updating your IPL procedure with an IPL ADD command for each virtual disk.
2. Using the AR SYSDEF or JCL SYSDEF command from the BG partition to specify the total amount of

space used by all data spaces (including those for virtual disks).
3. Issuing a JCL VDISK command from the BG partition for each virtual disk.

Note:

1. You may use the Tailor IPL Procedure dialog for adding ADD commands. The dialog is described in
z/VSE Administration.

2. You may include the VDISK command in the JCL startup procedure for the BG partition. The skeleton
to be used for this modification is SKJCL0. The SYSDEF command is included in the ALLOC startup
procedure and can be modified with one of the SKALLOCx skeletons. All skeletons are described in the
z/VSE Administration manual.

3. You can define up to 128 virtual disks.

Following is an overview of the commands mentioned above. For further command details, refer to z/VSE
System Control Statements.

ADD Command
As for real disks, you need to define your virtual disks by ADD commands at system IPL. The ADD
command has the following operands:
cuu

Specifies the device address of the virtual disk. This can be any unused cuu of your system.
FBAV

Indicates that the device is a virtual disk with FBA characteristics.

Creating and Using Virtual Disks

© Copyright IBM Corp. 1993, 2013 99

http://publibfp.dhe.ibm.com/epubs/pdf/iesame81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesame81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

SYSDEF Command
The SYSDEF command defines limits and defaults for data spaces. In particular, it defines the amount of
virtual storage which may be allocated to data spaces if available and not used by partitions. It must be
large enough to accommodate all concurrently used virtual disks, plus any other data spaces. This virtual
storage is part of the virtual storage defined with the VSIZE parameter at IPL. The SYSDEF command has
the following operands:
DSPACE

Indicates a request for virtual storage used by data spaces.
DSIZE=nK|mM

Defines the total amount of virtual storage to be reserved for data spaces.

Note: 0K or 0M can be used to free up all data space allocations.

MAX=n
Defines the maximum number of data spaces which may be allocated.

PARTMAX=m
Defines the maximum number of data spaces which may be created by a partition at any one time.

COMMAX=k
Defines the maximum number of data spaces with SCOPE=COMMON which may exist at any one time.

DFSIZE=nK|mM
Defines the default size for the creation of a single data space.

VDISK Command
For every virtual disk needed, you must issue a VDISK command from the BG partition. This command
creates the data space used for the virtual disk and a VTOC that indicates an empty disk.

After the command completes, the virtual disk is initialized and ready for use. You do not have to initialize
the disk using the ICKDSF (Device Support Facilities) program. The VDISK command has the following
operands:
UNIT=cuu

Indicates the device address of the virtual disk.
BLKS=nnnnnnn

Defines the size of the virtual disk in 512-byte blocks.

This value is always rounded to a multiple of 960, as described in z/VSE System Control Statements.

Note: For information about redefining the space allocated for an existing virtual disk, see “Deleting or
Redefining Virtual Disks” on page 101.

VOLID=volser
Specifies the volume serial number (one to six characters) of the virtual disk.

VTOC=v
Defines the number of blocks to be used for the VTOC. The VTOC is located at the end of the virtual
disk.

USAGE=DLA
Indicates that this virtual disk is to hold the label information area. The z/VSE Planning explains how
the label area is placed on a virtual disk at IPL time.

Note: Once a virtual disk is defined and ready for use, you can work with it like a real device. This includes
using the following job control commands and statements: ASSGN, CLOSE, DVCDN, DVCUP, OFFLINE, and
ONLINE. ASSGN and CLOSE now also allow a device-class specification of FBAV (or ANYFBA or ANYDISK)
for virtual disks.

Creating and Using Virtual Disks

100 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf

Defining a Virtual Disk via the Interactive Interface
The Hardware Configuration dialog of the Interactive Interface supports the device type FBAV for a virtual
disk. The selection list for disk devices includes this device type.

The Interactive Interface dialogs do not support the following functions for virtual disks:

• Specify SWITCHED or SHARED.
• Create a stand-alone dump program.
• Define the lock file.
• Define the page data set.
• Define the recorder file.
• Define the VSE/VSAM master catalog.

Getting Information about Virtual Disks

VOLUME Command
At the system console, you can use the Attention Routine VOLUME command to display information about
existing virtual disks. In the following example of the system's response to this command:

1. Parameter D0 in the VOLUME command is used to request information about devices with cuu=D0x.
2. The virtual disk at address D01 is ready for use. It was added during IPL and a subsequent VDISK

command was used to define space for it. Thus the information for this device shows:

a. FBA0-00 as device type.
b. VDID01 as a system-generated volume ID.
c. 4800 as the number of blocks specified in the VDISK command.

3. The virtual disks at addresses D02 through D05 only have been added at IPL. A VDISK command has
not yet been used to allocate space to them. Here the DEVICE column shows FBAV as device type.
DOWN (disk is turned off) is the status of these virtual disks.

VOLUME D0
AR 0015 CUU CODE DEV.-TYP VOLID USAGE SHARED STATUS CAPACITY
AR 0015 D01 90 FBA0-00 VDID01 UNUSED 4800 BLK
AR 0015 D02 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D03 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D04 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 D05 90E5 FBAV *NONE* UNUSED DOWN N/A
AR 0015 1I40I READY

Figure 31. Response Example to a VOLUME Command

For a description of the VOLUME command, refer to z/VSE System Control Statements.

QUERY DSPACE Command
To retrieve information about data spaces and related virtual disks, you can use the QUERY DSPACE
command. For a description of the QUERY SPACE command, refer to z/VSE System Control Statements.

Deleting or Redefining Virtual Disks
Every time you shut down your system, you "delete" all virtual disks and the data they contain. As shown
below, you also can effectively delete a disk by setting the number of blocks assigned to it to 0. Later, you
can reuse that virtual disk by reallocating space to it.

Creating and Using Virtual Disks

Chapter 11. Creating and Using Virtual Disks 101

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

The following example assumes a virtual disk with device address 256. The VDISK command for that disk
specified BLKS=960 (about 0.5MB). The first VDISK command in the example "deletes" the virtual disk by
deallocating the space used for it. The second VDISK command redefines the disk with a larger allocation.

0 DVCDN 256 (Makes the virtual disk no longer available to
 the system)
0 VDISK UNIT=256,BLKS=0 (Deallocates previously defined space)

0 VDISK UNIT=256,BLKS=1920 (Redefines the space for the virtual disk;
 DVCUP done implicitly)

Note: The DVCDN command can be issued from any static partition. VDISK must be used from the BG
partition.

Programming Notes

Supported CCW Codes for Virtual Disks
The major CCW commands for accessing a real FBA disk device are also supported for virtual disks. These
include:

• X'63' DEFINE EXTENT
• X'43' LOCATE
• X'42' READ
• X'41' WRITE
• X'03' NO OPERATION
• X'04' SENSE
• X'08' TRANSFER IN CHANNEL
• X'64' READ DEVICE CHARACTERISTICS
• X'E4' SENSE ID

Other commands that are valid for a real FBA device (X'94' DEVICE RELEASE, for example) are not
supported for virtual disks. For further information about CCW commands, see Appendix C, “Channel
Program Support for Virtual Disks,” on page 139.

GETVCE Macro
To retrieve the device characteristics of a virtual disk from an application, you can use the GETVCE macro,
together with macro AVRLIST. The external device type code you receive for a virtual disk is FBA000 for a
virtual disk defined with the VDISK command. Otherwise, it is FBAV.

Creating and Using Virtual Disks

102 IBM z/VSE: z/VSE V5R1 Extended Addressability

Part 4. Programming Enhancements

© Copyright IBM Corp. 1993, 2013 103

104 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 12. Linkage Stack Functions

Linkage stack functions are available with z/Architecture processors and are documented in the following
manual:

z/Architecture Principles of Operation

This manual describe in detail the linkage stack instructions introduced in this topic.

Introduction
The linkage stack is an area of protected storage that the system gives to a program to save status
information in case of a branch or a program call.

Each VSE task has its own linkage stack, which is available for all programs running under this task.
The programs can run in primary ASC (address space control) mode or in access register ASC mode. A
program can be in problem or supervisor state and be enabled or disabled.

The linkage stack consists of two stacks, the

• normal linkage stack, and the
• recovery linkage stack.

The normal linkage stack consists of a maximum of 96 entries for use by programs that run under a
single VSE task. When the system needs an entry and finds that all entries in the normal stack are used, it
abends the program with a "stack full" interruption code.

The recovery linkage stack is available to the program's recovery routines after a "stack full" interruption
occurred. The recovery linkage stack has a maximum of 24 entries.

Linkage Stack Characteristics
A linkage stack has the following characteristics.

• Each VSE task has its own linkage stack.
• All associated linkage stack entries of a VSE task are freed when the task is terminated.
• A program called by a // EXEC ... JCL statement will receive an empty linkage stack.
• The following instructions can be used to add and remove linkage stack entries and access their

contents:

BAKR, EREG, ESTA, MSTA, PC, PR

These instructions can execute in both primary and access register ASC mode and are further explained
in the following paragraphs.

• A linkage stack entry contains the following saved program status information:

– Contents of the 16 (0-15) general purpose registers (GRPs).
– Contents of the 16 (0-15) access registers (ARs).
– Primary and secondary address space numbers (PASN and SASN).
– Extended authorization index (EAX).
– Entire current program status word (PSW).
– PSW key mask (PKM).
– PC (program call) number if a PC instruction caused the entry; or a return address if a BAKR

instruction caused the entry.
– An eight-byte area that can be changed with the MSTA (modify stacked state) instruction.

Linkage Stack Functions

© Copyright IBM Corp. 1993, 2013 105

http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf

Instructions for Adding or Removing a Linkage Stack Entry
There are three instructions for adding or removing entries in a linkage stack:

• The stacking program call (PC) instruction which adds an entry when it passes control to another
routine.

• The branch and stack (BAKR) instruction which adds an entry whether it branches to another routine or
not.

• The program return (PR) instruction which removes an entry when it returns from a call or branch made
with either a stacking PC or a BAKR instruction.

The Stacking PC (Program Call) Instruction
The stacking PC uses the linkage stack to save the user's environment. The following restrictions apply:

• z/VSE supports the stacking PC for system provided program call (PC) routines only (it does not support
the basic PC).

• z/VSE does not support the stacking PC in supervisor appendages.

The BAKR (Branch and Stack) Instruction
The BAKR instruction performs a branch and link in a similar way as the BALR instruction. The difference
is that BAKR does not change the link register contents (the register contents will be used for the
return via the PR instruction). Additionally, it adds an entry to the linkage stack. The entry includes the
return address of the calling program. A program return (PR) instruction returns control to the calling
program and removes the entry from the linkage stack. The BAKR instruction does not change the current
addressing mode.

z/VSE does not support the BAKR instruction in most supervisor appendages.

The PR (Program Return) Instruction
The PR instruction performs several actions on the current entry in the linkage stack (the current entry is
the entry created by the most recent BAKR or stacking PC instruction):

• If the current entry was added by a stacking PC or a BAKR instruction, the PR instruction returns control
to the calling program.

• It restores the contents of the current entry, including the PSW and contents of ARs and GPRs 2 through
14.

• It removes the current linkage stack entry.

Instructions to Work with Linkage Stack Entries and their Contents
A program cannot change the order of the entries on the linkage stack, nor can it change any part of an
entry, except for the eight-byte modifiable area of the current entry. Three instructions copy information
from the current entry or copy information to the modifiable area of the current entry:

• The EREG (extract stacked registers) instruction loads ARs and GPRs from the current linkage stack
entry.

• The ESTA (extract stacked state) instruction obtains non-register information from the current linkage
stack entry.

• The MSTA (modify stacked state) instruction copies the contents of an even/odd GPR pair to the
modifiable area of the current linkage stack entry.

Linkage Stack Functions

106 IBM z/VSE: z/VSE V5R1 Extended Addressability

Using the STXIT and EXIT Macro in Connection with Linkage Stack
A STXIT macro (AB, IT, OC, or PC exit) is allowed only if the linkage stack is empty. If a STXIT macro is
issued in a module called with a PC or BAKR instruction (causing the linkage stack to be not empty), the
calling task is canceled with cancel code X'47'.

If an AB exit completes with macro EXIT AB, the program continues with an empty linkage stack. For
the other exits (IT, OC, or PC) the program continues with the linkage stack contents at the time of exit
initiation.

When an exit routine returns control, the contents of the linkage stack must be the same as it was on
entry of the exit routine, otherwise the exit routine is canceled with cancel code X'47'. To ensure that the
contents is the same, an exit routine must use paired instructions (BAKR/PC - PR).

Linkage Stack Functions

Chapter 12. Linkage Stack Functions 107

Linkage Stack Functions

108 IBM z/VSE: z/VSE V5R1 Extended Addressability

Chapter 13. Callable Cell Pool Services

Callable cell pool services manage virtual storage located in either an address space or a data space.
The GETVIS macro or the DSPSERV macro can be used to obtain the virtual storage to be managed by
cell pool services. Applications that use callable cell pool services must be compiled with the High Level
Assembler.

Characteristics of a Cell Pool
Cell storage is an area of virtual storage that is subdivided into fixed-sized areas of storage called cells,
where the cells are of the size you specify. To manage cell storage (shown in Figure 32 on page 110), cell
pool services also require virtual storage for anchor and extent areas. Thus, a cell pool contains:

• An anchor
• At least one extent
• Any number of cells (all having the same size).

The anchor is the starting point or foundation on which you build a cell pool. Each cell pool has only one
anchor. An extent contains information that helps callable cell pool services manage cells and provides
information you might request about the cell pool. A cell pool can have up to 65,536 extents, each
responsible for its own cell storage. Your program determines the size of the cells and the cell storage.

Note that the cell pool services manage a cell pool but do not access the cell storage itself.

The virtual storage for the cell pool must reside in an address space or a data space. The following
requirements exist:

• The anchor and extents must reside within the same address space or data space.
• The cells must reside within one address space or data space; that space can be different from the one

that contains the anchor and extents.

Figure 32 on page 110 illustrates the cell pool structure. In the example, the anchor and extents reside in
Address or Data Space A and the cell storage in Address or Data Space B.

Before you can obtain the first cell from a cell pool, you must plan the location of the anchor, the extents,
and the cell storage. You must obtain the storage for the following areas and pass the following addresses
to the services:

• The anchor, which requires 64 bytes of storage.
• The extent, which requires 128 bytes plus one byte for every eight cells of cell storage.
• The cell storage.

Through the callable cell pool services, you build the cell pool. You can then obtain cells from the pool.
When there are no more cells available in a pool, you can use callable cell pool services to enlarge the
pool.

Cell Pool Services

© Copyright IBM Corp. 1993, 2013 109

Figure 32. Cell Pool Storage

Storage Considerations
When you plan the size of the cell storage, consider the total requirements of your application for
this storage and some performance factors. A single extent can control any number of cells up to 2²⁴
(16,777,216) cells.

The size of a single extent can be up to 2²⁴ - 1 bytes. You can have multiple extents for performance
purposes.

Avoid having a large number of extents, where each extent is responsible for a small number of cells. In
general, a greater requirement for cells should mean a proportionately smaller number of extents. The
following two examples illustrate this point.

• If you have 10,000 cells in the pool, a good extent size is 2,500 cells per extent.
• If you have 100,000 cells in the pool, a good extent size is 10,000 cells per extent.

“Cell Pool Services Coding Example” on page 114 contains an example of using callable cell pool services
with data spaces. It also describes some storage considerations.

Link-Editing Programs Using Callable Cell Pool Services
Any program that invokes cell pool services must be link-edited with an IBM-provided linkage-assist
routine. The linkage-assist routine provides the logic needed to locate and invoke the callable services.
The linkage-assist routine resides in IJSYSRS.SYSLIB. The following example shows the job stream
required for link-editing a program with the linkage-assist routine.

Cell Pool Services

110 IBM z/VSE: z/VSE V5R1 Extended Addressability

// JOB LNKJOB
// LIBDEF PHASE,CATALOG=libray.sublibrary
// OPTION CATAL
 PHASE userprog,*
 INCLUDE userprog
 INCLUDE CSRCPOOL
/*
// EXEC LNKEDT
/&

The example assumes that the program you are link-editing is reentrant.

Using Callable Cell Pool Services
The following sections describe how you can use callable cell pool services to control storage and request
information about the cell pools. The discussion of creating a cell pool and adding an extent assumes that
you have already obtained the storage for these areas.

The CALL Macro
Cell pool services are invoked through the CALL macro.

The CALL macro passes control to another program at a specified entry point. The linkage established
when control is passed is the same as when using the BAL instruction: the issuing program expects
control to be returned.

The CALL macro was modified with VSE/ESA 2.1 and is compatible with the z/OS* macro of the same
name.

Characteristics of the CALL Macro:

If a control section is not part of the object module which applies the CALL macro, the linkage editor
attempts to resolve this external reference by including the object module which contains the control
section (AUTOLINK feature). When the CALL macro is executed, control is passed to the control section at
the specified entry point.

Further characteristics and restrictions:

• Programs in either the primary or the access register (AR) ASC mode can invoke the CALL macro.
• An address parameter list can be constructed and a calling sequence identifier can be provided.
• The CALL macro does not generate any return codes. A return code in GPR 15 or AR 15 originates from

the called program.
• Control parameters must be in the caller's primary address space.
• The CALL macro cannot be used to pass control to a program in a different addressing mode (24-bit or

31-bit) than the calling program is.

Available Cell Pool Services
To use cell pool services, a program must issue the CALL macro specifying one of the following services:

• CSRPBLD: Create a cell pool and initialize an anchor.
• CSRPEXP: Expand a cell pool by adding an extent.
• CSRPCON: Connect cell storage to an extent.
• CSRPACT: Activate previously connected storage.
• CSRPDAC: Deactivate an extent.
• CSRPDIS: Disconnect the cell storage for an extent.
• CSRPGET or CSRPRGT: Allocate a cell from a cell pool.
• CSRPFRE or CSRPRFR: Return a cell to the cell pool.
• CSRPQPL: Query the cell pool.

Cell Pool Services

Chapter 13. Callable Cell Pool Services 111

• CSRPQEX: Query a cell pool extent.
• CSRPQCL: Query a cell.

Further Information: The syntax and parameter description of the CALL macro and the cell pool services
are provided in z/VSE System Macros Reference. A coding example is provided in this documentation.
Refer to “Cell Pool Services Coding Example” on page 114.

Creating a Cell Pool
To create a cell pool, call the CSRPBLD service. This service initializes the anchor for the cell pool, assigns
the name of the pool, and establishes the size of the cells.

Adding an Extent and Connecting it to the Cell Storage
To add an extent and connect it to the cell storage, call the CSRPEXP service. You need at least one extent
in a cell pool. Each extent is responsible for one cell storage area. You can add an extent to increase
the numbers of cells; the maximum number of extents in a cell pool is 65,536. The CSRPEXP service
initializes an extent for the cell pool, connects the cell storage area to the extent, and activates the cell
storage for the extent.

Having activated the cell storage for an extent, you can now process CSRPGET requests from the cells
that the extent represents.

Contracting a Cell Pool, Deactivating its Extents, and Disconnect its Storage
To contract a cell pool, deactivate its extents, and disconnect its storage, use the CSRPDAC and CSRPDIS
services. CSRPDAC deactivates an extent and prevents the processing of any further CSRPGET requests
from the storage that the extent represents. Cell FREE (CSRPFRE) requests are unaffected. You can use
the CSRPACT service to reactivate an inactive extent (which was deactivated with CSRPDAC).

CSRPDIS disconnects the cell storage from an extent and makes cell storage unavailable. After you
disconnect an extent, you can free the cell storage associated with the extent.

Reusing a Deactivated and Disconnected Extent
To reuse a deactivated and disconnected extent, call the CSRPCON and CSRPACT services, not CSRPEXP.
This is generally the only time you will need to use these two services. CSRPCON reconnects an extent to
cell pool storage that you have not explicitly freed or that connects the extent to cells in newly-obtained
storage. If you reconnect the extent to new cell storage, be sure that the extent is large enough to support
the size of the cell storage. (CSRPCON undoes the effects of using CSRPDIS.) CSRPACT activates the cell
storage for the extent. You can now issue CSRPGET requests for the cells.

Allocating Cells and Deallocate Previously Allocated Cells
To allocate (that is, obtain) cells and deallocate (that is, free) previously allocated cells, you can choose
between two forms of the same services. One service form supports the standard CALL interface. The
other supports a register interface and is appropriate for programs that cannot obtain storage for a
parameter list. The two service functions are identical; however, the calling interface is different.

The CSRPGET (standard CALL interface) and CSRPRGT (register interface) services allocate a cell from the
cell pool. You can allocate cells only from extents that have not been deactivated. Such an extent is called
an active extent. The services return to the caller the address of the allocated cell.

The CSRPFRE (standard CALL interface) and CSRPRFR (register interface) services return a previously
allocated cell to a cell pool. They return a code to the caller if they cannot find the cell associated with an
extent. If you free the last allocated cell in an inactive extent, you will receive a unique code. You may use
this information to initiate cell pool contraction.

Cell Pool Services

112 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Obtaining Status Information About a Cell Pool
To obtain status information about a cell pool, use one of three services. These services do not prevent
the cell pool from changing during a status query. They return status as it is at the time you issue the
CALL.

The CSRPQPL service returns information about the entire cell pool. It returns the following:

• Pool name
• Cell size
• Total number of cells in active extents
• Total number of available cells associated with active extents
• Number of extents in the cell pool.

The CSRPQEX service returns information about a specific extent. It returns the following:

• Address and length of the extent
• Address and length of the cell storage area
• Total number of cells associated with the extent
• Number of available cells associated with the extent.

The CSRPQCL service returns information about a cell. It returns the following:

• Number of the extent that represents the cell
• Cell allocation status.

Invocation Requirements
The requirements for the calling program are:
Authorization

Problem state or supervisor state.
AMODE

24-bit or 31-bit addressing mode. All input addresses must be valid 31-bit addresses.
ASC mode

Primary or AR mode.

If the anchor and the extents are located in a data space, the caller must be in AR mode.

If an AR mode program invokes the macro, it must first issue SYSSTATE ASCENV=AR to ensure that
the CALL macro generates the correct code for AR mode.

Control parameters
All parameters must reside in a single address or data space, and must be addressable by the caller.
They must be in the primary address space or in an address/data space that is addressable through a
public entry on the caller's dispatchable unit access list (DU-AL).

Register Usage
Some callers depend on register contents remaining the same before and after requesting a service. If the
system changes the contents of registers on which the caller depends, the caller must save them before
requesting the service, and restore them after the system returns control.

The exact register usage is shown for each cell pool service in z/VSE System Macros Reference.

Return Codes
Each time you call a cell pool service, you receive a return code. The return code indicates whether
the service completed successfully, encountered an unusual condition, or was unable to complete

Cell Pool Services

Chapter 13. Callable Cell Pool Services 113

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

successfully. When you receive a return code that indicates a problem or an unusual condition, your
program can either attempt to correct the problem, or can terminate its processing.

The services pass return codes in both the parameter list and in register 15. Return codes are described
for each cell pool service in z/VSE System Macros Reference.

Cell Pool Services Coding Example
This example shows how to use cell pool services. The anchor, the one extent, and the cell storage are
all in the same data space. The caller obtains a cell from the cell storage area and requests information
about the pool, the extent, and the cell.

 CSRCPASM INVOKE CELL POOL SERVICES ASSEMBLER DECLARES
 SAC 512 SET AR ASC MODE
 SYSSTATE ASCENV=AR
*
* Establish addressability to code. *
*
 LAE AR12,0
 BASR R12,0
 USING *,R12
*
* Get data space for the cell pool. *
*
GETDSP DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN, X
 BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
*
* Add the data space to caller's access list. *
*
GETALET ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET,AL=WORKUNIT
 L 2,DSPCORG ORIGIN OF SPACE IN GR2
 ST 2,DSPCMARK DSPCMARK IS MARK FOR DATA SPACE
*
* Copy ALET to ANCHALET for calls to cell pool services. *
*
 MVC ANCHALET(4),DSPCALET
*
* Set address and size of the anchor
*
 L R4,DSPCMARK
 ST R4,ANCHADDR
 A R4,ANCHSIZE
 ST R4,DSPCMARK
*
* Call the build service. *
*
 CALL CSRPBLD,(ANCHALET,ANCHADDR,USERNAME,CELLSIZE,RTNCODE)
*
* Set address and size of the extent and connect extent to cells *
*
 L R4,DSPCMARK RESERVES
 ST R4,XTNTADDR
 A R4,XTNTSIZE SETS SIZE OF EXTENT
 ST R4,CELLSTAD
 A R4,CELLSTLN SETS SIZE OF CELL STORAGE
 ST R4,DSPCMARK DATA
 CALL CSRPEXP,(ANCHALET,ANCHADDR,XTNTADDR,XTNTSIZE, X
 CELLSTAD,CELLSTLN,EXTENT,RTNCODE)
** Get a cell. CELLADDR receives the address of the cell. *
*
 CALL CSRPGET,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* The program uses the cells.
*
* Query the pool, the extent, and the cell. *
*
 CALL CSRPQPL,(ANCHALET,ANCHADDR,QNAME,QCELLSZ,QTOT_CELLS, X
 QAVAIL_CELLS,QNUMEXT,QRTNCODE)
 CALL CSRPQEX,(ANCHALET,ANCHADDR,EXTENT,QEXSTAT,QXTNT_ADDR, X
 QXTNT_LEN,QCELL_ADDR,QCELL_LEN,QTOT_CELLS, X

Cell Pool Services

114 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

 QAVAIL_CELLS,QRTNCODE)
 CALL CSRPQCL,(ANCHALET,ANCHADDR,CELLADDR,QCLAVL,QCLEXT, X
 QRTNCODE)
*
* Free the cell. *
*
 CALL CSRPFRE,(ANCHALET,ANCHADDR,CELLADDR,RTNCODE)
*
* Deactivate the extent. *
*
 CALL CSRPDAC,(ANCHALET,ANCHADDR,EXTENT,RTNCODE)
*
* Disconnect the extent. *
*
 CALL CSRPDIS,(ANCHALET,ANCHADDR,EXTENT,QCELL_ADDR,QCELL_LEN, X
 QRTNCODE)
*
* Remove the data space from the access list. *
*
 ALESERV DELETE,ALET=DSPCALET
*
* Delete the data space. *
*
 DSPSERV DELETE,STOKEN=DSPCSTKN
*
* Return to caller.
*
 SAC 0 ENSURE IN PRIMARY MODE
 SYSSTATE ASCENV=P RESET GLOBAL BIT
 BR ... RETURN TO CALLER
*

* Constants and data areas used by cell pool services *

*
CELLS_PER_EXTENT EQU 512
EXTENTS_PER_POOL EQU 10
CELLSIZE_EQU EQU 256
CELLS_PER_POOL EQU CELLS_PER_EXTENT*EXTENTS_PER_POOL
XTNTSIZE_EQU EQU 128+(((CELLS_PER_EXTENT+63)/64)*8)
STORSIZE_EQU EQU CELLS_PER_EXTENT*CELLSIZE_EQU
CELLS_IN_POOL DC A(CELLS_PER_POOL)ANCHALET DS F
ANCHADDR DS F
CELLSIZE DC A(CELLSIZE_EQU)
USERNAME DC CL8'MYCELLPL'
ANCHSIZE DC F'64'
XTNTSIZE DC A(XTNTSIZE_EQU)
XTNTADDR DS F
CELLSTAD DS F
CELLSTLN DC A(STORSIZE_EQU)
CELLADDR DS F
EXTENT DS F
STATUS DS F
RTNCODE DS F
*

* Constant data and areas for data space *

*
 DS 0D
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU STORSIZE_EQU*EXTENTS_PER_POOL 1.28MB DATA SPACE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) BLOCKS FOR 1.28MB DATA SPACE
DSPCALET DS F
DSPCMARK DS F HIGH WATER MARK FOR DATA SPACE
DSPCNAME DC CL8'DATASPC1' DATA SPACE NAME
*

* Values returned by queries *

*

Cell Pool Services

Chapter 13. Callable Cell Pool Services 115

QNAME DS CL8
QCELLSZ DS F
QNUMEXT DS F
QEXTNUM DS F
QEXSTAT DS F
QXTNT_ADDR DS F
QXTNT_LEN DS F
QCELL_ADDR DS F
QCELL_LEN DS F
QTOT_CELLS DS F
QAVAIL_CELLS DS F
QRTNCODE DS F
RC DS F
QCLADDR DS F
QCLEXT DS F
QCLAVL DS F

Cell Pool Services

116 IBM z/VSE: z/VSE V5R1 Extended Addressability

Appendix A. Linkage Editor and Librarian Support

Linkage Editor Support for 31-Bit Addressing
The linkage editor assigns an AMODE (addressing mode) and a RMODE (residency mode) value for a
phase as defined in one of the following:

• The AMODE and RMODE flags in the ESD (external symbol dictionary) data (set, for example, by the High
Level Assembler).

• The AMODE and RMODE values provided as a parameter in the PARM field of the EXEC LNKEDT
statement.

• The AMODE and RMODE operands provided via the linkage editor MODE control statement.

The linkage editor stores the AMODE and RMODE values assigned to a phase into the directory entry of
that phase.

To support portability among different systems, the z/VSE linkage editor determines AMODE and RMODE
values in a similar way as does the linkage editor of z/OS.

Maximum Size of a Phase
The maximum size of a phase that can be link-edited is:

16 MB minus "specified origin in the PHASE card"

For example, if "S" is specified as origin, the maximum size is 16 MB minus the partition start address (of
the partition in which the linkage editor is running).

Assigning the AMODE
The addressing mode (AMODE) is the attribute of the entry point of the loaded phase. It specifies the
addressing mode that will be in effect when the phase is entered at that entry point at execution time.

The linkage editor will assign the addressing mode for the entry point according to the following rules:

1. A default AMODE of 24 is assigned.
2. If the AMODE is specified in the ESD data for the entry point (set by the High Level Assembler, for

example), the linkage editor assigns that AMODE to the phase.
3. If the AMODE is specified as a parameter in the PARM field of the EXEC LNKEDT statement, the linkage

editor assigns that AMODE to the phase. This AMODE value overrides the AMODE value, if any, found in
the ESD data.

4. If the AMODE is specified as an operand in the MODE control statement, the linkage editor assigns that
AMODE to the entry point of the phase. This AMODE value overrides any AMODE value specified as an
operand in the PARM field of the EXEC LNKEDT statement or any AMODE values found in the ESD data.

Additional Considerations:

The AMODE value provided in the ESD data of the object modules for the entry point of the phase is
retained in the directory entry of the phase. That is, when the phase is punched with the VSE librarian the
ESD card for the phase in the punched deck contains the AMODE value assigned from the ESD data.

In addition, if the AMODE was assigned during link editing from the overriding AMODE specifications (from
the PARM field of the EXEC statement or the MODE control statement), a MODE control statement is
punched following the PHASE card in the punched deck containing this overriding AMODE value.

Linkage Editor Support for 31-Bit Addressing

© Copyright IBM Corp. 1993, 2013 117

Assigning the RMODE
The residency mode (RMODE) is the attribute of the phase that specifies where the phase can reside in
virtual storage.

The linkage editor determines the residency mode for a phase according to the following rules:

1. A default RMODE of 24 is assigned.
2. If the RMODE is specified in the ESD data (set by the H Assembler, for example) the linkage editor

assigns the RMODE value from the control section or private code that contributes to the phase.

As the control sections and private code that contribute to the phase are processed, the RMODE value
for the phase, based on the ESD data, is accumulated on a "most restrictive" basis. This means:

• If any section in the phase has an RMODE of 24, the RMODE for the phase is 24.
• If all sections in the phase have an RMODE of ANY, the RMODE for the phase is ANY.

3. If the RMODE is specified as a parameter in the PARM field of the EXEC LNKEDT statement the linkage
editor assigns that RMODE to the phase. This RMODE value overrides the RMODE value, if any, found in
the ESD data.

4. If the RMODE is specified as an operand in the MODE control statement the linkage editor assigns that
RMODE to the phase. This RMODE value overrides any RMODE value specified as an operand in the
PARM field of the EXEC LNKEDT statement or any RMODE values found in the ESD data.

Additional Considerations:

• If PHASE statements are encountered during link editing which are needed to construct Overlay
Programs (that is, where the origin in the PHASE statement is ROOT or a symbol, or the origin is a
* and it is not the first phase), all phases linked in this link edit job step are assigned an RMODE of 24,
regardless of the ESD data, the PARM field parameter, or the MODE control statement operand.

• For non-relocatable phases, RMODE=ANY is not accepted.
• The RMODE value provided in the ESD data of the object modules for the entry point of the phase is

retained in the directory entry of the phase (except for the case that PHASE statements are encountered
during link editing which are needed to construct Overlay Programs); that is, when the phase is punched
with the VSE librarian, the ESD card for the phase in the punched deck contains the RMODE value
assigned from the ESD data.

In addition, if the RMODE was assigned during link editing from the overriding RMODE specifications
(from the PARM field of the EXEC statement or the MODE control statement), a MODE control statement
is punched following the PHASE card in the punched deck containing this overriding RMODE value.

AMODE/RMODE Hierarchy
The following hierarchy is used to determine the addressing and residency modes assigned to a phase:

1. AMODE/RMODE values of the linkage editor MODE statement. The AMODE/RMODE values from the
MODE statement override the AMODE/RMODE values from the PARM field of the EXEC LNKEDT
statement and the ESD data.

2. AMODE/RMODE values of the PARM field of the EXEC LNKEDT statement.

The AMODE/RMODE values of the PARM field of the EXEC LNKEDT statement override the AMODE/
RMODE values from the ESD data.

3. AMODE/RMODE values of the ESD data produced by the AMODE or RMODE assembler statement of
the High Level Assembler.

4. A default value of 24.

Additional Considerations:

• The specification of the AMODE/RMODE values in the MODE control statement applies only to the phase
which includes the MODE control statement.

Linkage Editor Support for 31-Bit Addressing

118 IBM z/VSE: z/VSE V5R1 Extended Addressability

The specification of the AMODE/RMODE values in the PARM field of the EXEC LNKEDT statement applies
to all phases listed in the link-edit job step unless they are overridden for a specific phase by a MODE
control statement.

• A phase produced from multiple object modules results in an RMODE of 24, if any one of the object
modules has an RMODE of 24 (unless it is overridden by the linkage editor MODE control statement or
the PARM field of the EXEC LNKEDT statement).

• The use of PHASE statements where the origin for the phase is specified as ROOT or as symbol, or as
* and it is not the first phase in the link-edit job step, results in an RMODE of 24 for all phases linked in
that link-edit job step.

On the other hand, you get an RMODE of ANY with PHASE statements where the origin for the phase
is specified as S or * and it is the first phase in the link-edit job or a displacement must be used. This
means, in principle an RMODE of ANY is assigned only to a single linked phase or to re-linked phases
(which have been punched by the librarian, for example). The librarian inserts an S as the origin into the
punched PHASE statement for relocatable phases.

AMODE/RMODE Combinations in the MODE Control Statement
The linkage editor validates the combination of the AMODE value and the RMODE value, as specified by
the user in the MODE control statement, according to the following table:

AMODE/RMODE Combinations in the PARM Field
The linkage editor validates the combination of the AMODE value and the RMODE value, as specified by
the user in the PARM field of the EXEC LNKEDT statement, according to the following table:

AMODE/RMODE Combinations from the ESD
When AMODE and RMODE data have not been specified on either the linkage editor MODE control
statement or in the PARM field of the EXEC LNKEDT statement, the linkage editor determines the AMODE
for the entry point of the phase and the RMODE for the phase based on the ESD data. The linkage editor
validates the AMODE/RMODE combinations from the ESD as follows:

Linkage Editor Support for 31-Bit Addressing

Appendix A. Linkage Editor and Librarian Support 119

Note: An AMODE/RMODE combination ANY/ANY from the ESD data is valid (contrary to the MODE control
statement and the PARM field). The reason is that the final AMODE/RMODE combination for a phase can
be determined from the CSECTs of a phase as described below.

The entry point of a phase may be specified either by the external symbol of a control section or an entry
name. When an entry point is a control section name, the linkage editor acquires the AMODE and RMODE
directly from the control section name ESD entry. When an entry point is an entry name external symbol,
the linkage editor acquires the AMODE and RMODE data from the associated control section name ESD
entry.

Based on the AMODE/RMODE data acquired from the ESD, the linkage editor determines the RMODE of
the phase, and assigns an AMODE to the entry point of the phase as follows:

• If the external symbol of the entry point is marked with any of the allowed AMODE values and an
RMODE of 24, the entry point of the phase is assigned the same AMODE attribute as its associated
external symbol.

• The AMODE 24/RMODE ANY combination is invalid as it could allow 24-bit addressing above the 16 MB
line. If the linkage editor does find this combination, it issues a warning message on SYSLST, forces the
RMODE of the phase to 24, and assigns an AMODE of 24 to the entry point of the phase.

• If the external symbol of the entry point is marked with AMODE 31/RMODE ANY, the entry point of
the phase is assigned an AMODE 31 and the RMODE will be that of the phase; (which is the RMODE
accumulated on the "most restrictive" basis as described under “Linkage Editor RMODE Processing” on
page 18).

• If the external symbol of the entry point is marked with AMODE ANY/RMODE ANY, the entry point of the
phase is assigned an AMODE and RMODE according to the following hierarchy:

– If the phase contains one or more CSECTs marked AMODE 24, the linkage editor assigns an AMODE
of 24 to the entry point of the phase.

– If the phase has an RMODE of 24 and it contains no CSECTs marked AMODE 24, the linkage editor
assigns an AMODE of ANY to the entry point of the phase.

– If the RMODE of the phase is ANY, the linkage editor assigns an AMODE of 31 to the entry point of the
phase.

Handling of Invalid AMODE/RMODE Combinations
If the linkage editor finds the invalid AMODE/RMODE combination AMODE(24)/RMODE(ANY) in the input
ESD card, it issues warning message 2174I on SYSLST and forces the RMODE of the CSECT to 24.

If the AMODE/RMODE combination resulting from the EXEC LNKEDT statement is invalid, the linkage
editor issues the warning message 2175I on SYSLST and ignores the AMODE/RMODE values from the
PARM field.

If the AMODE/RMODE combination resulting from the linkage editor MODE control statement is invalid,
the linkage editor issues the warning message 2176I on SYSLST and ignores the AMODE/RMODE
operands from the MODE control statement.

Linkage Editor Support for 31-Bit Addressing

120 IBM z/VSE: z/VSE V5R1 Extended Addressability

Further Information
For a detailed description of linkage editor statements such as MODE and EXEC LNKEDT and how to use
them, refer to z/VSE System Control Statements under "Linkage Editor".

Notes on the MODE Control Statement
To assign the addressing mode (AMODE) for the entry point of a phase and the residency mode (RMODE)
for a phase, the MODE control statement has been introduced for the linkage editor.

The MODE control statement must follow the PHASE card of a phase. If more than one MODE control
statement is encountered during the link-editing of a phase, the mode specification from the first valid
MODE control statement is used.

AMODE and RMODE specifications are not handled independently, that is, if only one value, either AMODE
or RMODE, is specified in the MODE control statement, the other value is implied according to the values
shown in Table 6 on page 121.

Notes on the EXEC LNKEDT Statement
To assign the addressing mode for the entry point of a phase, the AMODE/RMODE parameters have been
introduced in the PARM field of the EXEC LNKEDT statement.

The AMODE/RMODE values specified in the PARM field are valid for all phases linked in a link-editing job
except for those phases for which a MODE control statement has been specified.

AMODE and RMODE are not handled independently, that is, if only one value, either AMODE or RMODE, is
specified in the PARM field, the other value is implied according to the values shown in Table 6 on page
121.

Table 6. Implied AMODE or RMODE

Value specified Value implied

AMODE = 24 RMODE = 24

AMODE = 31 RMODE = 24

AMODE = ANY RMODE = 24

RMODE = 24 (see Note below)

RMODE = ANY AMODE = 31

Note: If only an RMODE value of 24 is specified in the MODE control statement or in the PARM field of the
EXEC LNKEDT statements, no overriding AMODE value is assigned. Instead, the AMODE value in the ESD
data for the entry point is used.

Librarian Support for 31-Bit Addressing
The new program attributes AMODE and RMODE are stored in the directory entry of a phase and in the
ESD card for punched OBJ members. To support AMODE and RMODE, the following librarian functions
have been extended:

1. Librarian PUNCH
2. Librarian LISTDIR
3. SET SDL Processing

Punching a Phase
The librarian PUNCH (punch member contents) command stores in the ESD card of the punched object
the AMODE and RMODE as originally specified in the ESD data. In addition, if the AMODE or RMODE

Librarian Support for 31-Bit Addressing

Appendix A. Linkage Editor and Librarian Support 121

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

was assigned during link editing from the overriding specifications (from the linkage editor PARM field or
MODE control statement) a MODE control statement is punched following the PHASE card.

Thus, you can get the original AMODE/RMODE specifications from the ESD data of the program by
relinking the phase without the generated MODE control statement.

LISTDIR Output
The layout of LISTDIR (list directory information) output has been changed. It now shows the new
attributes AMODE and RMODE for each phase stored in a library/sublibrary. The documentation z/VSE
Guide to System Functions provides further details about the librarian LISTDIR command under "List
Library, Sublibrary, or Member Information".

SET SDL Processing
Starting with VSE/ESA 1.3, a second SVA (shared virtual area), here referred to as SVA (31-Bit), has been
introduced. This SVA resides at the high end of the address space which is usually above 16 MB and SVA
phases with RMODE ANY are loaded into the VLA (virtual library area) of this area.

The new "high" VLA is an extension of the "old" VLA in the SVA (24-Bit) area. As with previous releases,
there is only one SDL (system directory list) located in the SVA (24-Bit) but this SDL also addresses the
phases in the high VLA.

The SET SDL function tries to load RMODE ANY phases to the high VLA first. If the space is not sufficient,
the VLA in the SVA (24-Bit) is selected.

Librarian Support for 31-Bit Addressing

122 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

Appendix B. Macro and Command Support

z/VSE Macros and Their Mode Dependencies
Table 7 on page 123 lists the z/VSE macros and the modes allowed at execution time. The list mainly
applies to the 31-bit addressing support, except for the AR MODE column which applies to the data space
support, and the AMODE 64 column which applies to the 64-bit virtual support.

• AMODE indicates the addressing mode that is expected to be in effect when the program is entered.
AMODE can have one of the following values:
AMODE 24

Specifies 24-bit addressing mode.
AMODE 31

Specifies 31-bit addressing mode.
AMODE 64

Specifies 64-bit addressing mode.

An X in column AMODE 24, AMODE 31, or AMODE 64 indicates that the macro can be invoked by a
program executing in that mode. An X in both AMODE 24 and AMODE 31 columns implies AMODE ANY
which indicates that the macro can be used and executed in 24-bit and 31-bit addressing mode. AMODE
ANY does not imply 64-bit addressing mode.

• RMODE indicates the residency mode, that is, the virtual storage location where the program must
reside. RMODE can have one of the following values:
RMODE 24

Indicates that the program must reside in virtual storage below 16 MB.
RMODE ANY

Indicates that the program can reside anywhere in virtual storage, either above or below 16 MB, but
always below the 2 GB bar. RMODE ANY does not imply storage above the bar.

An X in column RMODE 24 or RMODE ANY indicates that the macro can be invoked by a program
executing in that mode.

The parameter list of a requested macro must have the same RMODE as the macro itself. The
most important exceptions are pointed out in the 'Comments' column; for more details, see the
corresponding macro description.

• AR MODE: Most macros listed in Table 7 on page 123 can only be called in primary ASC (address space
control) mode, except those that have an indication for Access Register (AR) ASC mode in column AR
MODE (for macros supporting data spaces). An X in that column indicates that both primary and AR
mode are possible.

Most macro services based on branch and link interfaces do not check for execution mode violations, that
is, the program requesting the macro service is responsible for the correct execution mode (AMODE and
RMODE). An execution mode violation may lead to unpredictable results.

Further Information: The following table reflects the z/VSE macro support as documented in the manual
z/VSE System Macros Reference. For VSE/VSAM and VSE/POWER macros and their mode dependencies,
refer to the manuals VSE/VSAM Commands and VSE/POWER Application Programming.

Table 7. z/VSE macros and their mode dependencies

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

ALESERVxx x x x x x

© Copyright IBM Corp. 1993, 2013 123

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesvoe70.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

AMODESWxx x x x x

ASPL x x

ASSIGN x x x x

ATTACH x x x x Subtask save area
RMODE=24

AVRLIST x

CALL x x x x x

CALL CSxx x x x x x Caller must be in AR mode
if anchor and extents are
located in a data space

CANCEL x x x x

CCB x x VSE/POWER supports
RMODE=24 only

CDDELETE x x x x

CDLOAD x x x x

CDMOD x x

CHAP x x x x

CHECK x x

CHKPT x x

CLOSE|CLOSER x x x DTF has to be allocated
below 16MB

CNTRL x x

COMRG x x x x

CPCLOSE x x

CSRCMPSC x x

CSRYCMPS x

DCTENTRY x

DEQ x x x x

DETACH x x x x Subtask save area
RMODE=24

DIMOD x x

DOM x x x

DSPSERVxx x x x x AR mode: SYSSTATE
required

DTFxx x

124 IBM z/VSE: z/VSE V5R1 Extended Addressability

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

DTL x x x x

DUMODFx x x

DUMP x x x

ENDFL x x

ENQ x x x x

EOJ x x x x RMODE=ANY if RC is omitted

ERET x x

ESETL x x

EXCP x x x x Control blocks RMODE=24

EXIT x x x x

EXTRACT x x x x

FCEPGOUT x x SPLEVEL SET=1

x x x x SPLEVEL SET>1

FEOV x x

FEOVD x x

FETCH x x x

FREE x x

FREEVIS x x x x

GENDTL x x x

GENIORB x x

GENL x x x

GET x x

GETIME x x x x

GETSYMB x x x x

GETVCE x x x

GETVIS x x x x

IARV64 x x x x

IJBPUB N/A N/A N/A N/A N/A

IJJLBSER x x

IORB x

ISMOD x x

JDUMP x x x

JOBCOM x x

Appendix B. Macro and Command Support 125

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

LBRET x x

LBSERV xx x x x

LFCB x x

LIBRDCB x x x

LIBRM xxx x x x

LOAD x x x x RMODE=24 when LIST, SYS,
DE, TXT, MFG, or RET
specified; RMODE=ANY not
allowed with parameter list

LOCK x x x

MAPDBY x x

MAPBDYVR x x

MAPDNTRY

MAPEXTR x x

MAPSAVAR x x

MAPSSID N/A N/A N/A N/A

MAPSYSP N/A N/A N/A N/A

MAPXPCCB N/A N/A N/A N/A

MODDTL x x x

MVCOM x x

NOTE x x

OPEN|OPENR x x x DTF has to be allocated
below 16MB

PAGEIN x x SPLEVEL SET=1

x x x x SPLEVEL SET>1

PDUMP x x x

PFIX x x SPLEVEL SET=1

x x x x SPLEVEL SET>1

PFREE x x SPLEVEL SET=1

x x x x SPLEVEL SET>1

POINTR x x

POINTS x x

POINTW x x

POST x x x x

126 IBM z/VSE: z/VSE V5R1 Extended Addressability

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

PRMOD x x

PRTOV x x

PUT x x

PUTR x x

QSETPRT x x

RCB x x

READ x x

REALAD x x x x

RELEASE x x

RELPAG x x SPLEVEL SET=1

x x x x SPLEVEL SET>1

RELSE x x

RETURN x x x x Returns with mode of issuer

RUNMODE x x

SAVE x x x x

SDUMP|SDUMPX x x x x x AR mode: SYSSTATE
required

SECTVAL x x x x

SEOV x x

SETFL x x

SETIME x x x x

SETL x x

SETPFA x x

SETPRT x x

SPLEVEL N/A N/A N/A N/A

STXIT x x x x x

SUBSID x x x x

SYSSTATE x x x x x x

TECB x x

TPIN x x

TPOUT x x

TRUNC x x

TTIMER x x x x

Appendix B. Macro and Command Support 127

Table 7. z/VSE macros and their mode dependencies (continued)

Macro Name
AMODE RMODE

AR
MODE

Comments

24 31 64 24 ANY

UNLOCK x x x

VIRTAD x x x x BTAM: AMODE=24 only

WAIT x x x x

WAITF x x

WAITM x x x x

WRITE x x

WTO x x x x

WTOR x x x x

XECBTAB x x

XPCC x x x x

XPCCB x x

XPOST x x

XWAIT x x

YEAR224 x x x

1. IPv6 not supported.
2. Supported, but with differences. For details refer to the IPv6/VSE Programming Guide.

Macro Support for 31-Bit Addressing
This section introduces selected macros that are new or that have been enhanced for the 31-bit
addressing support. For the syntax and a detailed keyword and parameter description refer to the
manual z/VSE System Macros Reference.

AMODESW Macro
The AMODESW macro can be used to:

• Switch the AMODE and, optionally, save a program's current AMODE.
• Switch the AMODE as part of a subroutine call and return.

For calling a subroutine and returning from it, AMODESW generates code reflecting the support provided
by the instructions BASSM and BSM.

The AMODESW macro provides the following set of functions:

• AMODESW CALL - make a subroutine call with an appropriate mode switch.
• AMODESW RETURN - return from a subroutine.
• AMODESW QRY - determine the current addressing mode.
• AMODESW SET - switch addressing modes.

While the AMODESW macro allows a program to switch addressing modes, the user must make sure that
the programs follow 24-bit or 31-bit addressing conventions.

Macro Support for 31-Bit Addressing

128 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesipp30.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Notes on Using the AMODESW Macro
1. Users must restore their program's addressability (set up the proper base register) on return from the

call. You can use the address VSE returns in the return register to set up program addressability.
2. AMODESW CALL and AMODESW RETURN allow you to call and return from subroutines. You can use

them anywhere you can use a BALR and BR sequence.

AMODESW Example

 .
 .
 AMODESW CALL,ADDRESS=MYSUB,AMODE=31,WR=(1)
 .
 .
 .
MYSUB EQU *
 .
 .
 .
 AMODESW RETURN
 .
 .

The sequence of instructions shown in the example does the following:

1. Calls via AMODESW the subroutine at label MYSUB by using a BASSM instruction.
2. Switches to 31-bit addressing mode.
3. Saves the return address and the addressing mode in register 14 (default value).
4. Returns via AMODESW to the caller and restores the addressing mode saved in register 14.

You can use the REGS and REG parameters on CALL and RETURN to override the registers used for the
BASSM linkage.

Notes on Using AMODESW SET
1. AMODESW SET switches a program's addressing mode without requiring a branch to a subroutine. For

example, to switch the current addressing mode to 31-bit addressing, a program might use:

AMODESW SET,AMODE=31

2. To switch to a new mode from an unknown addressing mode and save the unknown mode, use the
SAVE parameter. For example, the macro instruction

AMODESW SET,AMODE=31,SAVE=(2)

switches a program to 31-bit addressing mode and saves the current addressing mode as bit 0 of
register 2. Only bit 0 of the SAVE register is altered. You can then use the value set by the SAVE
parameter to restore the original addressing mode:

AMODESW SET,AMODE=(2)

Storage Management Macros

GETVIS Macro
In order to access the partition GETVIS area above 16 MB or the system GETVIS area (31-Bit), a new
GETVIS parameter has been introduced: LOC. It specifies the location of the virtual storage obtained by a
GETVIS request. For LOC you can specify BELOW, ANY, or RES where RES means that the virtual storage is
to be allocated depending on the callers location.

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 129

FREEVIS Macro
The FREEVIS macro is used to release virtual storage that was obtained by the GETVIS macro.

Page Management Macros
The macros FCEPGOUT, PAGEIN, PFIX, PFREE and RELPAG support 31-bit addresses. The address of the
provided parameter list and the addresses in this list are treated as 3-byte addresses if the service is
invoked in 24-bit mode and as 4-byte addresses if invoked in 31-bit mode. The end of the parameter list
is indicated in 24-bit mode by any non-zero value and in 31-bit mode by bit 0 on in the byte following the
last entry. Page management macros assembled by releases prior to VSE/ESA 1.3.0 or with SPLEVEL=1
must be executed in AMODE=24 and RMODE=24, otherwise the issuer is canceled.

By applying the SPLEVEL macro it is possible to generate downward compatible macro expansions.

PFIX Macro
The macro PFIX has been extended with the parameter RLOC to support PFIX of pages in real storage
above 16 MB.

Program Load and Retrieval Macros

CDDELETE Macro
The CDDELETE macro deletes a phase previously loaded by a CDLOAD request into the partition GETVIS
area.

Delete means that the phase load count is decreased by one. If the load count is zero the GETVIS storage
occupied by the phase will be freed.

CDLOAD Macro
The CDLOAD Macro loads a phase into the partition GETVIS area. CDLOAD places the phase in virtual
storage either below 16 MB or anywhere as indicated by the phase's RMODE. It gives control back to the
caller. A loaded phase may cross the 16 MB line.

Note: The CDLOAD macro is recommended for loading phases, especially for loading phases above the 16
MB line. Together with the CDDELETE macro it provides enhanced GETVIS storage management.

FETCH Macro
The macro loads and gives control to the phase specified in the first operand (not back to the caller).
FETCH can only be called below the 16 MB line (both expanded code and parameter lists must be below
16 MB).

GENL Macro
The macro generates a local directory list within the partition. It is required that both the local directory
list and the macro expansion are located below 16 MB.

LOAD Macro
The LOAD macro loads a phase at the load point provided and returns control to the calling program. In
case no load-point is provided by the user, the load-point specified at link-edit time (relocated) is used.
Since the control is passed to the caller, the addressing mode is not changed by the load processing.

Note: The LOAD macro can only be used below 16 MB.

Macro Support for 31-Bit Addressing

130 IBM z/VSE: z/VSE V5R1 Extended Addressability

Task Communication Macros

ATTACH Macro
A subtask can be initiated by any other task of the partition with the ATTACH (attach a task) macro.
ATTACH supports the 31-bit as well as the data space environment. It can attach a subtask in 24-bit or
31-bit addressing mode (AMODE ANY) physically resident above or below 16 MB (RMODE ANY).

ATTACH issued in AMODE 24
The passed parameters are treated as 3-byte addresses.

ATTACH issued in AMODE 31
The passed parameters are treated as 4-byte addresses.

Table 8. ATTACH Macro and Its AMODE/RMODE Characteristics

Macro Parameter AMODE RMODE Comment

ATTACH 31 ANY

entrypoint 31 ANY Entry point receives control in AMODE
31

ABSAVE - ANY

ECB - ANY

MFG - ANY

NAME - ANY

SAVE - 24 The subtask save area has to be
allocated in RMODE 24

The attached task will get control in the same addressing mode the ATTACH issuer has. For example, if a
main task issues the ATTACH macro in AMODE 31, the subtask will also receive control in AMODE 31.

The user supplied save area specified with the ABSAVE parameter of the ATTACH macro may reside
below or above the 16 MB line. The old exit save area layout can only be used in a 24-bit environment.
The new layout is extended by the saved access registers and the actual PSW.

DETACH Macro
The DETACH (detach task) macro terminates the execution of a task. A subtask is normally terminated by
issuing a DETACH macro in the main task or in the subtask itself.

Note: The task's save area is always located below 16 MB (RMODE 24).

ENQ/DEQ Macro
A task protects or releases a resource by issuing an ENQ or DEQ macro. The ECB address in the RCB is
treated as a 31-bit address.

ENQ/DEQ issued in AMODE 24
The RCB address is treated as a 24-bit address.

ENQ/DEQ issued in AMODE 31
The RCB address is treated as a 31-bit address.

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 131

POST Macro
The POST (post event) macro provides communication between two tasks in the same partition by posting
an event control block (ECB). POST processing can post an ECB in 24-bit or 31-bit addressing mode
(AMODE ANY) physically resident above or below 16 MB (RMODE ANY).

POST issued in AMODE 24
The passed parameters are treated as 24-bit addresses. All addresses (ECB, save area) are 24-bit
addresses.

POST issued in AMODE 31
The passed parameters are treated as 31-bit addresses. All addresses (ECB, save area) are 31-bit
addresses.

Table 9. POST Macro and Its AMODE/RMODE Characteristics

Macro Parameter AMODE RMODE Comment

POST 31 ANY

ECB - ANY

SAVE - 24 The task save area has to be allocated
in RMODE 24

WAIT Macro
With the WAIT (wait for event) macro, a task sets itself into the wait state until the event control block
(ECB) specified in the macro is posted.

WAIT processing can wait for an ECB in 24-bit or 31-bit addressing mode (AMODE ANY) physically
resident above or below 16 MB (RMODE ANY).

WAIT issued in AMODE 24
The ECB address is treated as a 24-bit address.

WAIT issued in AMODE 31
The ECB address is treated as a 31-bit address.

WAITM Macro
The WAITM macro works basically in the same way and has the same requirements as the WAIT macro
except that it can handle multiple events.

WAITM issued in AMODE 24
The ECB addresses and the list address are treated as 24-bit addresses. The first byte following the last
address in the list must be non-zero to indicate the end of the list.

WAITM issued in AMODE 31
The ECB addresses and the list address are treated as 31-bit addresses. The first bit of the last address in
the list must be non-zero to indicate the end of the list.

I/O Processing Support for 31-Bit Addressing

Macro Support for 31-Bit Addressing

132 IBM z/VSE: z/VSE V5R1 Extended Addressability

CCB Macro
The CCB (channel control block definition) macro includes the keyword CCW to allow requests for the
format-1 CCW (channel command word) as well as for the format-0 CCW.

• When I/O buffers are located above 16 MB, format-1 CCWs must be used to address these areas.
• VSE/VSAM uses format-1 CCWs and can therefore access I/O areas above 16 MB.

The following figures show the layout of the two formats:

CCW Formats

Figure 33. Format-0 CCW

Figure 34. Format-1 CCW

Note: Use format-1 CCWs only if necessary. When running under VM, the format-1 CCW translation
affects the VM guest performance.

Restrictions
• CCBs and CCWs must be located below 16 MB.
• Appendage routines must be below the 16 MB line.
• LIOCS (logical input output control system) uses only format-0 CCWs and data areas are located below

the 16 MB line.
• VSE/POWER supports format-0 CCWs only.
• EXCP REAL is supported for format-0 CCWs only.
• A format-1 CCW console I/O is supported but if you use VSE/OCCF console requests they are restricted

to format-0 CCWs.

Other Macros

SPLEVEL Macro
The SPLEVEL (set and test macro level) macro sets or tests the global symbol that indicates the level of a
macro. The macro is activated at compile time and important for users who want to run their programs on
back-level releases.

Specific macros supplied in the macro library are identified as downward incompatible (to VSE/ESA 1.1,
1.2, or 1.3). Unless you take specific action, these macros generate downward incompatible statements.

It is possible to generate downward compatible expansions for some of these macros by using the
SPLEVEL macro. Downward incompatible macros interrogate a global symbol (set by SPLEVEL with the
SET parameter) during assembly to determine the type of expansion to be generated. For example, the
following macros check the setting of the global symbol:

• FCEPGOUT
• PAGEIN

Macro Support for 31-Bit Addressing

Appendix B. Macro and Command Support 133

• PFIX
• PFREE
• RELPAG
• WTO
• WTOR

The High Level Assembler reference manuals give information about global set symbols.

The following SET values apply:

• VSE/ESA 1.1 and 1.2 macro expansion if SET=1
• VSE/ESA 1.3 macro expansion if SET=2
• VSE/ESA 1.3 macro expansion if SET=3 (for MVS™ compatibility reasons)
• VSE/ESA 2.1 and later macro expansion if SET=4 (default value)

Refer to “Using the SPLEVEL Macro” on page 13 for an example of how to use the SPLEVEL macro.

STXIT Macro
The STXIT (set exit) macro can enable an exit (AB, IT, OC, PC) and defines a save area where the interrupt
information will be stored before exit activation. The STXIT macro supports two kinds of save areas, an
old format and an extended format. The old save area is 72 bytes in length. The first 8 bytes contain the
interrupt status in the form of a BC mode PSW and the remaining bytes include general registers 0-15.

The BC mode PSW cannot be used in 31-bit addressing mode, because the first byte of the instruction
address is required for the instruction length and condition code. Furthermore, user programs can operate
in access register mode (AR mode).

The access registers (ARs) may also be of interest for the exit routine. Therefore the exit save area is
extended by a field that contains the EC mode PSW and 16 fullwords containing the ARs if the interrupted
program operates in AR mode. The extended save area is also required for STXIT OC with MSGDATA=YES
and MSGPARM=YES. When using the extended format the instruction address of the BC mode PSW is
cleared to zero.

The user-supplied save area specified in the STXIT macro may reside below or above 16 MB. The new
AMODE parameter specifies whether the old or extended save area is to be used and where the save area
is located.

Note:

1. The exit routine gets control in the mode specified in the AMODE parameter of the STXIT macro; that is
in AMODE 24 for STXIT ...,AMODE=24 and in AMODE 31 for STXIT ...,AMODE=ANY.

2. The old save area layout can be used in 24-bit addressing mode only.

Macro Support for 64-bit Addressing
If a calling program wishes to use 64-bit I/O buffers, it must use a Format-2 IDAW to pass the 64-bit
virtual address of the I/O buffer within the Channel Command Word (CCW).

Since the Format-2 IDAW is a 64-bit field that is indicated via the CCB macro, the calling program can also
use the Format-2 IDAW to pass a virtual 24-bit or 31-bit address.

The format of the CCB macro is shown in the syntax diagram below.

Macro Support for 64-Bit Addressing

134 IBM z/VSE: z/VSE V5R1 Extended Addressability

name CCB SYSnnn,  command_list_name

,X'nnnn' , senseaddress

,CCW=FORMAT0

,CCW=FORMAT1 ,IDAW=FORMAT2

IDAW=FORMAT2
Indicates that a Format-2 IDAW is to be used.

Note: Format-1 IDAWs are not supported by z/VSE.

When Format-2 IDAW is indicated in the corresponding CCB and the IDA (Indirect Data Addressing)-bit
in the CCW is set, the CCW data address portion points to a single Format-2 IDAW containing the 64-bit
virtual address. This is shown in Figure 35 on page 135.

Figure 35. Performing an I/O Request When Using 64-Bit I/O Buffers

For a description of the other CCB macro parameters shown in the above syntax diagram, refer to the
topic "CCB (Command Control Block Definition) Macro" in the z/VSE System Macros Reference.

Macro and Command Support for Data Spaces
This section introduces selected macros and commands that are new or that have been enhanced for
the support of data spaces. For the syntax and a detailed keyword and parameter description, refer
to z/VSE System Macros Reference for the macros and to z/VSE System Control Statements for the
commands.

ALESERV Macro
This macro supports a subset of the z/OS macro of the same name and is described in detail in z/VSE
System Macros Reference under "ALESERV Macro".

The ALESERV macro controls the entries in the access list. An access list is a table in which each entry
identifies an address space or data space to which a program (or programs) has access.

Note: The ALESERV macro cannot be used to control access list entries for address spaces.

Access list entry tokens (ALETs) index the entries in the access list.

On the ALESERV macro, data spaces are identified through STOKENs, an identifier similar to a partition ID.
Use the ALESERV macro to:

• Add an entry to the DU-AL or PASN-AL for a SCOPE=SINGLE or a SCOPE=ALL data space (ADD
parameter).

• Add an entry to all PASN-ALs for a SCOPE=COMMON data space (ADD parameter).

Macro and Command Support for Data Spaces

Appendix B. Macro and Command Support 135

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

• Delete an entry from the DU-AL or PASN-AL (DELETE parameter).
• Delete an entry from all PASN-ALs for a SCOPE=COMMON data space (DELETE parameter).
• Obtain a STOKEN for a specified ALET (EXTRACT parameter).
• Locate an ALET for a specified STOKEN (SEARCH parameter).

Restrictions when Using the ALESERV Macro
1. To compile the ALESERV macro, you need the High Level Assembler.
2. VSE/ICCF interactive partitions, system tasks and EXEC ...,REAL applications are not allowed to call

ALESERV services.

An access list entry (ALE) added to the PASN-AL stays in the access list until the partition is deallocated.

Calling Requirements for ALESERV Macro
Authorization:

To request the following ALESERV services, the issuer must have PSW key 0:

• Make ADD and DELETE requests for PASN-AL
• Make ADD and DELETE requests for SCOPE=ALL and SCOPE=COMMON data spaces

All other services can be requested with any PSW key.

ATTACH ALCOPY Macro
The ATTACH ALCOPY macro allows a program to pass a copy of the DU-AL, that belongs to the attaching
task, to the subtask to be attached. Refer to “Attaching a Subtask and Sharing Data Spaces with It” on
page 96 for an example.

DSPSERV Macro
This macro supports a subset of the z/OS macro of the same name and is described in detail in z/VSE
System Macros Reference under "DSPSERV Macro".

The DSPSERV macro creates, deletes and controls data spaces. There are three kinds of data spaces:

• SCOPE=SINGLE
• SCOPE=ALL
• SCOPE=COMMON

A SCOPE=SINGLE data space is used in ways similar to the use of the partition GETVIS area. A
SCOPE=ALL or SCOPE=COMMON data space is used in ways similar to the use of the shared virtual
area (SVA) of an address space. A program with a non-zero PSW key cannot create or delete a SCOPE=ALL
or SCOPE=COMMON data space. However, it can use these spaces, providing a program with PSW key 0
created the data space and established addressability.

Use the DSPSERV macro to:

• Create a data space (CREATE parameter)
• Delete a data space (DELETE parameter)
• Release an area of a data space (RELEASE parameter)
• Increase the current size of a data space (EXTEND parameter)

On the DSPSERV macro, data spaces are identified through STOKENs. A STOKEN is a unique identifier of
data spaces.

Macro and Command Support for Data Spaces

136 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Restrictions when Using the DSPSERV Macro
1. To compile the DSPSERV macro, you need the High Level Assembler.
2. VSE/ICCF interactive partitions, system tasks, and EXEC ...,REAL applications are not allowed to

call DSPSERV services.

The end of task process deletes all data spaces owned by the terminating task.

Calling Requirements for DSPSERV Macro
Authorization:

To request the following DSPSERV services, the issuer must have PSW key 0:

• Create and delete a SCOPE=ALL and SCOPE=COMMON data space
• Extend the current size of a data space it does not own

All other services can be requested with any PSW key.

SDUMPX Macro
The SDUMPX macro dumps address ranges in any data spaces to which addressability via an ALET or via
an STOKEN exists. The dump is directed to a dump library or to SYSLST.

SETPFA Macro
The SETPFA macro either sets up or removes linkage to a user-written page-fault appendage routine. With
the DSPACE parameter it is possible to specify whether the appendage routine is to process page faults
for both address and data spaces or for address spaces only.

SYSSTATE Macro
The SYSSTATE macro is used to set and test a global symbol.

Certain macros that support callers in both access register (AR) and primary address space control (ASC)
mode need to know which ASC mode your program is running in.

• The macros that support callers in AR mode generate the code and addresses that are appropriate for
callers in AR mode; macros that support callers in primary mode generate the code and addresses that
are appropriate for callers in primary mode.

• These macros use the SYSSTATE TEST macro to test a global symbol that is set through the SYSSTATE
ASCENV macro.

• The name of the global symbol is &SYSASCE.

It is recommended to issue the SYSSTATE ASCENV=AR macro at the time your program changes ASC
mode to AR mode. Then, when your program returns to primary mode, issue SYSSTATE ASCENV=P.

The following is a list of the macros that check the setting of the global symbol:

• ALESERV
• DSPSERV
• SDUMP/SDUMPX

Example for SYSSTATE Macro
To change the ASC mode to AR mode and set the global symbol, issue:

SAC 512
SYSSTATE ASCENV=AR

Macro and Command Support for Data Spaces

Appendix B. Macro and Command Support 137

SYSDEF Command
The AR/JCL command SYSDEF defines limits and defaults for data spaces such as:

• The total amount of virtual storage that can be allocated to data spaces (the allocated storage is taken
from the IPL VSIZE).

• The maximum number of data spaces that can be allocated within the system at one time.
• The maximum number of data spaces that can be allocated per partition at one time.
• The maximum number of data spaces with SCOPE=COMMON that can be allocated at one time.
• The default size of a data space.

QUERY Command
The AR/JCL command QUERY can be used to display data space limits and defaults and further details
such as data space names and sizes.

MAP Command
The MAP command can be used to display the amount of virtual storage allocated for data spaces.

Macro and Command Support for Data Spaces

138 IBM z/VSE: z/VSE V5R1 Extended Addressability

Appendix C. Channel Program Support for Virtual
Disks

Note: This appendix is intended for such users only who write their own channel programs for virtual
disks and must, therefore, know the details provided in the following topics.

In z/VSE, a virtual disk emulates a real FBA disk device. As with a real FBA device, you can use the CCB
macro and channel command words (CCWs) to write a channel program for accessing a virtual disk. In
general, such a channel program accesses data by using a:

1. DEFINE EXTENT command to pass information about the extent of the area (or space) on the virtual
disk for which subsequent commands are valid.

2. LOCATE command to specify a specific address and the amount of data to be transferred.
3. READ or WRITE command for data transfer.

Both Format-0 and Format-1 CCWs are valid in a channel program. You specify the type used in the CCB
macro. Note, however, that:

• The channel program must reside below the 16 MB line, whether you use Format-0 or Format-1 CCWs.
• If the data area of your channel program is above 16 MB, then you must use Format-1 CCWs.

“I/O Processing Support for 31-Bit Addressing” on page 132 provides details about the two CCW formats.

Channel Commands
Channel commands that can be used with virtual disks are described in the following paragraphs. All
other channel commands are rejected with Unit Check status and Command Reject indicated in the sense
data. In particular, these valid FBA commands are not supported for virtual disks:

• Read Initial Program Load (X'02')
• Read and Reset Buffered Log (X'A4')
• Diagnostic Control (X'F3')
• Diagnostic Sense/Read (X'C4')
• Device Reserve (X'B4')
• Device Release (X'94')
• Unconditional Reserve (X'14')

DEFINE EXTENT (X'63')
As shown in Table 10 on page 140, the Define Extent command operates on 16 bytes of information
which define an addressing range on a virtual disk. Subsequent chained commands may operate only
within that addressing range. Also included is an operation inhibit mask (byte 0, bits 0-1).

If less than 16 bytes are specified, the command is rejected with Unit Check (Command Reject), Channel
End, and Device End. If the CCW count is greater than 16 bytes, only 16 bytes of information are used.

If another Define Extent command was previously issued in the same chain, the command is rejected with
Unit Check (Command Reject), Channel End, and Device End.

If parameters of the extent are incorrect, the command is terminated with Unit Check (Command Reject),
Channel End and Device End status.

If the addressable block size is incorrect, the command is terminated with Unit Check (Block Size
Exception), Channel End and Device End status.

© Copyright IBM Corp. 1993, 2013 139

If the parameters are valid and command chaining is not indicated, Channel End and Device End status
are presented.

If the parameters are correct and command chaining is indicated, the next CCW is executed. This is
normally a Locate command.

Before continuing, two terms must be defined. The first term is storage space. Storage space is the
usable storage contained in a virtual disk. Storage space is addressed in blocks from 0 to N-1.

The second term is disk data space. This is not the same as a z/VSE data space, which is used to create
a virtual disk. Instead, disk data space refers to space on a virtual disk that contains addressable blocks
of user data. These blocks are numbered from 0 to M-1. An Extent Locator specified in a Define Extent
command references a disk data space to its storage space. An example follows:

In this example, points A (bytes 8-11) and B (bytes 12-15) represent the limits of the extent in the data
space. EL is the Extent Locator (bytes 4-7). EL and Z represent the limits of the extent in storage space. All
points (A, B, EL, and Z) must be valid block numbers.

For example, EL = 500, A = 150, B = 400.

The location in the storage space of A is 500 and of B it is 750.

The following 16 bytes are the parameters of the Define Extent command.

Table 10. Parameters of the Define Extent command

Bytes Bits Mask Byte Description

0 0-1 00 01 10 11 Non-formatting write permitted All write
operations inhibited Reserved - not allowed All
write operations permitted

 2-7 Unused - must be zero

1 Reserved - must be zero

2-3 Addressable block size in bytes (512,or 0). 0
defaults to 512.

4-7 Extent Locator. This is a block number which
identifies the location on the storage space of the
first block of an extent.

8-11 Addressable block number of the first block of this
extent in the data space

12-15 Addressable block number of the last block of this
extent in the data space

The following describes the bytes used by the Define Extent command.

Byte 0: If any of byte 0 bits 2-7 is not zero or bits 0-1 are B'10', then Unit Check (Command Reject),
Channel End, and Device End are set.

Bytes 2-3: The addressable block size specification in bytes 2-3 must be 512 or 0. A block size of 0 is
interpreted as a default value of 512.

140 IBM z/VSE: z/VSE V5R1 Extended Addressability

Bytes 4-7: Bytes 4-7 contain the extent locator. The extent locator is the block number specifying the
location on the virtual disk of the first block of an extent.

Bytes 8-11: Bytes 8-11 contain the addressable block number of the first block of data for this extent.

Bytes 12-15: Bytes 12-15 contain the addressable block number of the last block of data for this extent.
This value must obey the following rules or the command is rejected:

• A less than or equal to B, and
• D less than or equal to the maximum data block number that is valid for the device.

Where:

A = Value in bytes 8-11 (number of first block of extent)
B = Value in bytes 12-15 (number of last block of extent)
C = Value in bytes 4-7 (extent locator)
D = C+(B-A).

LOCATE (X'43')
The Locate command specifies the addressable block number of the first block of the data space to be
processed and the number of sequential blocks to be processed. The specification consists of eight bytes.

If the Locate command is not preceded by a Define Extent command in the same chain, the command is
rejected with Unit Check (Command Reject), Channel End, and Device End status.

If less than 8 bytes are specified, the command is rejected with Unit Check (Command Reject), Channel
End, and Device End status.

If more than 8 bytes are specified, only 8 bytes are used.

If chaining is not indicated, Channel End and Device End status is presented after a valid 8-byte
parameter list is received. The following 8 bytes are the parameters of the Locate command:

Bytes Bits Description

0 Operation byte

0-3 Reserved - must be zero

4-7 Operation Code:

• 0001 Write Data
• 0101 Write and Check Data
• 0010 Read Replicated Data
• 0110 Read Data

1 Replication count

2-3 Block count. This is the number of addressable blocks to be
processed.

4-7 Addressable block number of the first block to be processed
in the data space

The following describes the 8 bytes used by the Locate command.

Byte 0: Byte 0 predefines the operation to be performed. Bits 4-7 define the specific operation code. Data
transfer associated with an operation code does not occur during the execution of the Locate command,
but is initiated by the Read or Write CCW that follows the Locate command. Operation codes or modifiers
that are not assigned are incorrect and cause the Locate command to be terminated with Unit Check
(Command Reject), Channel End, and Device End status.

The following is a description of the operation codes.

Appendix C. Channel Program Support for Virtual Disks 141

• Write Data: This operation code prepares to write one or more addressable blocks of data. The number
of blocks to be written is determined from the block count (bytes 2-3). If the define extent mask inhibits
all write operations, the Locate command is rejected with Unit Check (Command Reject), Channel End,
and Device End status. A write data operation code establishes write state for the virtual disk.

If the parameters are valid and command chaining is active, the next CCW is executed.
• Write and Check Data: Same as Write Data. No checking is done on a virtual disk.
• Read Replicate: This operation code prepares to read one or more addressable blocks of data from a

range of replicated data. The number of blocks to be read is determined from the block count (bytes
2-3). Read Replicated Data establishes read state for the virtual disk.

If the parameters are valid and command chaining is active, the next CCW is executed.
• Read Data: This operation code prepares to read one or more addressable blocks of data. The number

of blocks to be read is determined from the block count (bytes 2-3). The Read Data operation code
establishes read state for the virtual disk.

If the parameters are valid and command chaining is active, the next CCW is executed.

Byte 1: Byte 1 is the replication count. Byte 1 must be zero if byte 0 specifies Read, Write, or Write and
Check Data. When byte 0 specifies Read Replication Data, byte 1 specifies a range of addressable blocks
containing replicated data. The first block of the range is specified by the relative block number in bytes
4-7.

The block count (bytes 2-3) specifies the number of addressable blocks in a unit of replicated data. For
example, if the block count is two and if this two-block unit is replicated five times, then the replication
count is ten.

If the replication count is less than the block count or if the replication count is not an integral multiple
of the block count, then the Locate command is terminated with Unit Check (Command Reject), Channel
End, and Device End status.

If the replication count is equal to the block count, read replicate is treated as a normal read.

Bytes 2-3: Bytes 2 and 3 contain the block count parameter. This parameter specifies the number
of sequential addressable blocks to be processed by the command immediately following the Locate
command. A count of zero is rejected with Unit Check (Command Rejected), Channel End, and Device End.

Bytes 4-7: Bytes 4 through 7 specify the data space addressable block of the first block to be processed.

The addressable block numbers of the blocks to be processed are compared against the extent limits
established by the preceding Define Extent parameters.

All blocks to be processed must be within the valid extent range. If these conditions are not satisfied, the
Locate command is terminated with Unit Check (File Protected), Channel End, and Device End status.

READ (X'42')
The Read command causes the actual data transfer from the virtual disk to main storage. A prior Locate
command determines the location from which data is to be transferred.

The Read command must be command-chained from a Locate command. If not, this command is rejected
with Unit Check (Command Reject), Channel End, and Device End status.

The Locate command from which the Read command is command-chained must have established read
orientation. If not, the Read command is rejected with Unit Check (Command Reject), Channel End, and
Device End status.

If command-chaining is not indicated, Channel End and Device End are both presented after the data is
successfully read.

For Read commands, a CCW count less than the byte count derived from the block count of the Locate
command terminates the data transfer when the CCW count reaches zero. If the CCW count is larger
than the block count in the Locate command, the Locate block count terminates the data transfer when it
reaches zero.

142 IBM z/VSE: z/VSE V5R1 Extended Addressability

WRITE (X'41')
The Write command causes data from main storage to be transferred to the virtual disk. A prior Locate
command determines the location to which this data is to be written.

The Write command must be command-chained from a prior Locate command. If not, this command is
rejected with Unit Check (Command Reject), Channel End, and Device End status.

The Locate command from which the Write command is chained must specify write-orientation. If not, the
Write command is rejected with Unit Check (Command Reject), Channel End, and Device End status.

If the CCW count is less than the byte count derived from the block count of the Locate command, data
transfer is terminated when the CCW count reaches zero. However, zeros are padded until the Locate
block count reaches zero. If the CCW count is greater than the block count, the block count terminates the
operation.

If command chaining is not indicated, Channel End and Device End status are both presented after the
data is successfully written on the file.

If Write and Check Data was specified in the operation byte of the Locate command, the same as for
"Write Data" is performed.

NO-OPERATION (X'03')
The No-Operation command causes no action to be performed.

SENSE (X'04')
The Sense command causes up to 32 bytes of sense data to be transferred to main storage. These bytes
identify the specific nature of an error or unusual condition that caused the last Unit Check status to be
presented.

If command chaining is not indicated at the completion of the data transfer, Channel End and Device End
status are both presented and the sense data is reset to zero.

Note:

1. “Sense Information” on page 145 has details about the information in the sense bytes.
2. When a Unit check occurs, z/VSE normally issues a SENSE CCW automatically to retrieve the sense

information. You can specify an address in the CCB macro where z/VSE should pass the sense
information to your program. This is recommended, because after a SENSE CCW or after execution
of any CCW command, the sense information for that virtual disk is cleared (reset to zero).

TRANSFER IN CHANNEL
CCW Format-0 = X'X8'. CCW Format-1 = X'08'.

The Transfer In Channel (TIC) command provides the main storage address of the next CCW in the chain.
The operation is terminated with Program Check status when:

• The address of the next CCW is not located on a doubleword boundary.
• There are two consecutive TICs in a chain.

SENSE ID (X'E4')
The Sense ID command causes the transfer of a maximum of 7 bytes of I/O identification data to main
storage. If the CCW count specifies more than 7 bytes, only 7 bytes are transferred to the system. If the
CCW count is less than 7 bytes, only the number of bytes specified is transferred to the system.

The bytes contain the information shown in the following tables.

Appendix C. Channel Program Support for Virtual Disks 143

Bytes Contents Description

0 X'FF'

1-2 X'FBA0' Control Unit Type

3 X'00' Control Unit Model

4-5 X'FBA0' Device Type

6 X'00' Device emulated

READ DEVICE CHARACTERISTICS (X'64')
The Read Device Characteristics command transfers up to 32 bytes of device specific data to the system.
If the CCW count specifies more than 32 bytes, only 32 bytes are transferred. If the CCW count is less
than 32 bytes, only the number of bytes specified is transferred.

The following parameters are passed to the requestor.

Byte 0 X'60' Operation modes

Byte 1 X'28' Features

Byte 2 X'21' Device Class

Byte 3 X'00' Unit type

Bytes 4-5 X'200' Physical record size in bytes

Bytes 6-9 X'40' Number of addressable blocks
per cyclical group

Bytes 10-13 X'3C0' Number of addressable blocks
per access position

Bytes 14-17 X'nn' Number of addressable blocks

Bytes 18-23 X'00' Reserved, set to zero

Bytes 24-25 X'00' Number of addressable blocks in
CE area

Bytes 26-31 X'00' Reserved, set to zero

If command chaining is not indicated at the completion of the data transfer, Channel End and Device End
status are presented.

Note: Instead of writing a channel program to retrieve the device characteristics of a virtual disk, you also
can use the GETVCE macro, as described in the topic “GETVCE Macro” on page 102.

Flags
Table 11 on page 145 shows which flags are supported, as described in the z/Architecture Principles of
Operation manual. In the table, the following meaning applies:
CC =

Chain Command flag
CD =

Chain Data flag
IDA =

Indirect Data flag

144 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/dz9zr009.pdf

SK =
Skip flag

SLI =
Suppress Length Indication flag

PCI =
Program Controlled Interruption flag

S =
Suspend flag

Table 11. Supported CCW Command Flags

CCW Command CC CD IDA SK SLI PCI S

Define Extent yes yes yes ignored yes ignored ignored

Locate yes yes yes ignored yes ignored ignored

Read yes yes yes yes yes ignored ignored

Write yes yes yes ignored yes ignored ignored

No-Operation yes ignored ignored ignored ignored ignored ignored

Sense yes yes yes yes yes ignored ignored

Transfer in Channel ignored ignored ignored ignored ignored ignored ignored

Sense ID yes yes yes yes yes ignored ignored

Read Device Char. yes yes yes yes yes ignored ignored

Note:

1. In z/VSE, the IDA flag is generally not supported for virtual channel programs. If the data area of a
channel program is above 16 MB, then Format-1 CCWs have to be used. You can specify the IDA flag in
any CCW only if you specify the REAL parameter in your EXCP macro.

2. The PCI and S flags are not supported and thus ignored.

Sense Information
In case of Unit Check, a virtual disk might return sense information containing a fault symptom code.
This sense information can be retrieved by a program if sense is specified in the CCB macro. Sense
information also is displayed by some messages on the z/VSE system console.

Information Returned to a Sense Command
A Unit Check is raised if the virtual disk detects an unusual situation. The following information is returned
to a Sense command:

Bytes Bit Definition

0 0 = Command Reject (CR)

1-2 = not set

3 = Equipment Check

4-7 = not set

Appendix C. Channel Program Support for Virtual Disks 145

Bytes Bit Definition

1 0 = Permanent Error (PE)

1 = Block Size Exception (BE)

2-4 = not set

5 = File Protected (FP)

6-7 = not set

2-21 not set

22-23 Fault symptom code (in hexadecimal)

24-31 not set

Note: For any type of I/O error on a page data set where the data space used for a virtual disk resides,
"permanent error" and "equipment check" are set in sense bytes 0 and 1.

Fault Symptom Code (Bytes 22-23) of Sense Information
One of the codes below might be passed if the appropriate situation occurs.

Table 12. General Fault Symptom Codes

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0061

Hex.
X'003D'

CR (X'8000') CCW command code rejected (not supported for a virtual disk)

Table 13. Fault Symptom Codes for DEFINE EXTENT

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0101

Hex.
X'0065'

CR (X'8000') DEFINE EXTENT was already issued in the CCW chain.

0102 X'0066' CR CCW byte count is less than 16.

0103 X'0067' BE (X'0040') Block size is neither 0 nor 512.

0104 X'0068' CR Parameter byte 0: bits 2, 3, 4, 5, 6, 7 are not all zero.

0105 X'0069' CR Parameter byte 0: bits 0-1 are B'10', which is not allowed.

0106 X'006A' CR Parameter byte 1: not zero.

0107 X'006B' CR Parameter bytes 4-7: first block of storage space is larger than
last block of storage space.

0108 X'006C' CR First block of data space (parameter bytes 8-11) is larger than
last block of data space (parameter bytes 12-15).

0109 X'006D' CR First block of storage space (parameter bytes 4-7) plus size of
data space (parameter bytes 12-15 minus bytes 8-11) is larger
than last block of storage space.

146 IBM z/VSE: z/VSE V5R1 Extended Addressability

Table 14. Fault Symptom Codes for LOCATE

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0151

Hex.
X'0097'

CR (X'8000') No DEFINE EXTENT was previously issued.

0152 X'0098' CR CCW byte count is less than 8.

0153 X'0099' CR Parameter byte 0: bits 0, 1, 2, 3 not all zero

0154 X'009A' CR Parameter byte 0: bits 4-7 are not B'0001', B'0010', B'0101', or
B'0110'.

0155 X'009B' CR Parameter byte 0: bits 4-7 do not specify either B'0010' (read
replicate data) or B'0110' (read). This causes LOCATE to be write-
oriented. However, parameter byte 0 (bits 0-1 of the previous
DEFINE EXTENT) are set to B'01', which means "inhibit all write
operations".

0156 X'009C' CR Parameter bytes 2-3: (block count) are zero.

0157 X'009D' CR The read replicate function was not specified (parameter byte 0,
bits 4-7), but the replication count (parameter byte 1) is not zero.

0158 X'009E' CR The read replicate function was specified (parameter byte 0, bits
4-7), and the replication count (parameter byte 1) is less than the
block count (parameter bytes 2-3)

0159 X'009F' CR The replication count is not an integral multiple of the block
count.

0160 X'00A0' FP (X'0004') The first block of the data space to be processed (parameter
bytes 4-7) is less than the first block of the data space specified
in the DEFINE EXTENT parameter (bytes 8-11).

0161 X'00A1' FP The first block of the data space to be processed (parameter
bytes 4-7) is larger than the last block of the data space specified
in the DEFINE EXTENT parameter (bytes 12-15).

0162 X'00A2' FP The last block of the data space to be processed (first block to
be processed plus block count) is larger than the last block of
the data space specified in the DEFINE EXTENT parameter (bytes
12-15).

Table 15. Fault Symptom Codes for READ

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0201

Hex.
X'00C9'

CR (X'8000') Not chained from LOCATE.

0202 X'00CA' CR Previous LOCATE command was not read-oriented.

0685 X'02AD' PE (X'1080') Unrecoverable I/O error on page data set in data space.

0686 X'02AE' PE Unrecoverable I/O error on page data set in data space.

0687 X'02AF' PE Unrecoverable I/O error on page data set in data space.

Appendix C. Channel Program Support for Virtual Disks 147

Table 16. Fault Symptom Codes for WRITE

Sense Bytes 22-23 Sense Bytes 0-1 Explanation

Decimal
0221

Hex.
X'00DD'

CR (X'8000') Not chained from LOCATE.

0222 X'00DE' CR Previous LOCATE command was not write-oriented.

0665 X'0299' PE (X'1080') Unrecoverable I/O error on page data set in data space.

0666 X'029A' PE Unrecoverable I/O error on page data set in data space.

0667 X'029B' PE Unrecoverable I/O error on page data set in data space.

148 IBM z/VSE: z/VSE V5R1 Extended Addressability

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1993, 2013 149

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain services of z/VSE.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

150 IBM z/VSE: z/VSE V5R1 Extended Addressability

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above
instructions are not being properly followed. You may not download, export or re-export this information
except in full compliance with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 151

152 IBM z/VSE: z/VSE V5R1 Extended Addressability

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/VSE enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/VSE.
Consult the assistive technology documentation for specific information when using such products to
access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF) and should be compliant
with accessibility standards. If you experience difficulties when you use the PDF files and want to request
a web-based format for a publication, you can either write an email to s390id@de.ibm.com, or use the
Reader Comment Form in the back of this publication or direct your mail to the following address:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2013 153

154 IBM z/VSE: z/VSE V5R1 Extended Addressability

Glossary

If you do not find the term you are looking for, refer to the index of this book or to the IBM Dictionary of
Computing New York: McGraw Hill, 1994.

The glossary includes definitions with:

• Symbol * where there is a one-to-one copy from the IBM Dictionary of Computing.
• Symbol (A) from the American National Dictionary for Information Processing Systems , copyright

1982 by the Computer and Business Equipment Manufacturers Association (CBEMA). Copies may be
purchased from the American National Standards Institute, 1430 Broadway, New York, New York
10018. Definitions are identified by the symbol (A) after the definition.

• Symbols (I) or (T) from the ISO Vocabulary - Information Processing and the ISO Vocabulary - Office
Machines, developed by the International Organization for Standardization, Technical Committee 97,
Subcommittee 1. Definitions of published segments of the vocabularies are identified by the symbol (I)
after the definition; definitions from draft international standards, draft proposals, and working papers
in development by the ISO/TC97/SC1 vocabulary subcommittee are identified by the symbol (T) after
the definition, indicating final agreement has not yet been reached among participating members.

The following cross-references are used:

• Contrast with. This refers to a term that has an opposed or substantively different meaning.
• Synonym for. This indicates that the term has the same meaning as a preferred term, which is defined in

its proper place in the dictionary.
• Synonymous with. This is a backward reference from a defined term to all other terms that have the

same meaning.
• See. This refers the reader to multiple-word terms that have the same last word.
• See also. This refers the reader to related terms that have a related, but not synonymous, meaning.

When an entry is an abbreviation, the explanation consists of the spelled-out meaning of the abbreviation,
for example:

 AFP. Advanced Function Printing.

The spelled-out form is provided as a separate entry in the glossary. In that entry, the abbreviation is
shown in parentheses after the spelled-out form. The definition that appears with the spelled-out entry
provides the full meaning of both the abbreviation and the spelled-out form:

 Advanced Function Printing (AFP). A group of...

access list
A table in which each entry specifies an address space or data space that a program can reference.

access method
A program, that is, a set of commands (macros), to define files or addresses and to move data to and
from them; for example VSE/VSAM or VTAM®.

access register (AR)
A hardware register that a program can use to identify an address space or a data space. Each
processor has 16 ARs, numbered 0 through 15, which are paired one-to-one with the 16 general-
purpose registers (GPRs).

addressing mode (AMODE)
A program attribute that refers to the address length that a program is prepared to handle on entry.
Addresses may be either 24 bits or 31 bits in length. In 24-bit addressing mode, the processor treats
all virtual addresses as 24-bit values; in 31-bit addressing mode, the processor treats all virtual
addresses as 31-bit values. Programs with an addressing mode of ANY can receive control in either
24-bit or 31-bit addressing mode.

© Copyright IBM Corp. 1993, 2013 155

address space
A range of up to two gigabytes of contiguous virtual storage addresses that the system creates for a
user. Unlike a data space, an address space contains user data and programs, as well as system data
and programs, some of which are common to all address spaces. Instructions execute in an address
space (not a data space). Contrast with data space.

address space control (ASC) mode
The mode (determined by the PSW) that tells the system where to find referenced data. It determines
how the processor resolves address references for the executing programs. z/VSE supports two types
of ASC modes:

1. In primary ASC mode, the data that a program can access resides in the program's own (primary)
address space. In this mode, the system uses the contents of general-purpose registers to resolve
an address in the address space; it does not use the contents of the access registers (ARs).

2. In access register (AR) ASC mode, the data that a program can access may reside in an address
space other than the primary or in a data space. In this mode, the system uses both a general-
purpose register (GPR) and the corresponding access register together to resolve an address in
another address space or in a data space. Specifically, the AR contains a value, called an ALET, that
identifies the address space or data space that contains the data, and the GPR contains a base
address that points to the data within the address space or data space.

ALET (access list entry token)
A token that points to an entry in an access list. When a program is in AR mode and the ALET is
in an access register (with the corresponding general-purpose register being used as base register),
the ALET identifies the address space or data space that the system is to reference (while the GPR
indicates the offset within the space).

AR/GPR
Access register and general-purpose register pair.

AR (access register) mode
If a program runs in AR mode, the system uses the access register/general-purpose register pair to
resolve an address in an address space or data space. Contrast with primary mode. See also address
space control (ASC) mode.

ASC mode
Address space control mode.

* assembler
A computer program that converts assembly language instructions into object code.

assembler language
A programming language whose instructions are usually in one-to-one correspondence with machine
instructions and allows to write macros.

attention routine
A routine of the system that receives control when the operator presses the Attention key. The routine
sets up the console for the input of a command, reads the command, and initiates the system service
requested by the command.

* auxiliary storage
All addressable storage, other than main storage, that can be accessed by means of an input/ouput
channel; for example storage on magnetic tape or direct access devices. Synonymous with external
storage.

block
Usually, a block consists of several records of a file that are transmitted as a unit. But if records are
very large, a block can also be part of a record only. With FBA disk devices, a block is a string of 512
bytes of data.

* catalog
1. A directory of files and libraries, with reference to their locations. A catalog may contain other
information such as the types of devices in which the files are stored, passwords, blocking factors. (I)
(A) 2. To store a library member such as a phase, module, or book in a sublibrary.

156 IBM z/VSE: z/VSE V5R1 Extended Addressability

* cataloged procedure
A set of control statements placed in a library and retrievable by name.

cell pool
An area of virtual storage obtained by an application program and managed by the callable cell pool
services. A cell pool is located in an address space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

* chaining
A logical connection of sublibraries to be searched by the system for members of the same type; for
example, phase or object modules.

* channel command word (CCW)
A doubleword at the location in main storage specified by the channel address word. One or more
CCWs make up the channel program that directs data channel operations.

* channel program
One or more channel command words that control a sequence of data channel operations. Execution
of this sequence is initiated by a single start I/O (SIO) instruction.

* compile
To translate a source program into an executable program (an object program). See also assembler.

compiler
A program used to compile.

component
1. Hardware or software that is part of a computer system. 2. A functional part of a product, identified
by a component identifier. 3. In VSE/VSAM, a named, cataloged group of stored records, such as the
data component or index component of a key-sequenced file or alternate index.

* configuration
The devices and programs that make up a system, subsystem, or network.

control block
An area within a program or a routine defined for the purpose of storing and maintaining control
information.

* data management
A major function of the operating system. It involves organizing, storing, locating, and retrieving data.

data set
See file.

data space
A range of up to two gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike an address space, a data space can hold only
user data; it does not contain shared areas, system data or programs. Instructions do not execute in
a data space, although a program can reside in a data space as non-executable code. Contrast with
address space.

default value
A value assumed by the program when no value has been specified by the user.

* device address
1. The identification of an input/output device by its channel and unit number. 2. In data
communication, the identification of any device to which data can be sent or from which data can
be received.

* device class
The generic name for a group of device types; for example, all display stations belong to the same
device class.

* device type code
The four- or five-digit code to be used for defining an I/O device to a computer system.

Glossary 157

* dialog
1. In an interactive system, a series of related inquiries and responses similar to a conversation
between two people. 2. For z/VSE, a set of panels that can be used to complete a specific task; for
example, defining a file.

directory
1. A table of identifiers and references to the corresponding items of data. (I) (A) 2. In VSE,
specifically, the index for the program libraries. See also library directory and sublibrary directory.

DU-AL (dispatchable unit - access list)
The access list that is associated with a z/VSE main task or subtask. A program uses the DU-AL
associated with its task and the PASN-AL associated with its partition. See also PASN-AL.

dynamic partition
A partition created and activated on an 'as needed' basis that does not use fixed static allocations.
After processing, the occupied space is released. Contrast with static partition.

emulation
The use of programming techniques and special machine features that permit a computer system to
execute programs written for another system or for the use of I/O devices different from those that
are available.

extended addressability
1. See 31-bit addressing. 2. The ability of a program to use virtual storage that is outside the address
space in which the program is running. Generally, instructions and data reside in a single address
space - the primary address space. However, a program can have data in address spaces other than
the primary or in data spaces. (The instructions remain in the primary address space, whilst the data
can reside in another address space or in a data space.) To access data in other address spaces, a
program must use access registers (ARs) and execute in access register mode (AR mode).

extent
Continuous space on a disk or diskette occupied by or reserved for a particular file or VSAM data
space.

external storage
Storage that is not part of the processor.

FBA disk device
Fixed-block architecture disk device. A block contains 512 bytes of data.

* file
A named set of records stored or processed as a unit. (T) Synonymous with data set.

* generate
To produce a computer program by selecting subsets of skeletal code under the control of
parameters. (A)

High Level Assembler for VSE
A programming language providing enhanced assembler programming support. It is a base program of
z/VSE.

* initial program load (IPL)
The process of loading system programs and preparing the system to run jobs.

* input/output control system (IOCS)
A group of routines provided by IBM for handling transfer of data between main storage and auxiliary
storage devices.

interactive
A characteristic of a program or system that alternately accepts input and then responds. An
interactive system is conversational, that is, a continuous dialog exists between user and system.
Contrast with batch.

interface
A shared boundary between two hardware or software units, defined by common functional or
physical characteristics. It might be a hardware component or a portion of storage or registers
accessed by several computer programs.

158 IBM z/VSE: z/VSE V5R1 Extended Addressability

job step
One of a group of related programs complete with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an EXEC statement under one JOB statement for the
whole job.

* librarian
The set of programs that maintains, services, and organizes the system and private libraries.

library
See VSE library and VSE/ICCF library.

* library directory
The index that enables the system to locate a certain sublibrary of the accessed library.

* library member
The smallest unit of data that can be stored in and retrieved from a sublibrary.

* linkage editor
A program used to create a phase (executable code) from one or more independently translated
object modules, from one or more existing phases, or from both. In creating the phase, the linkage
editor resolves cross references among the modules and phases available as input. The program can
catalog the newly built phases.

linkage stack
An area of protected storage that the system gives to a program to save status information in case of a
branch or a program call.

link-edit
To create a loadable computer program by having the linkage editor process compiled (assembled)
source programs.

* lock file
In a shared disk environment under VSE, a system file on disk used by the sharing systems to control
their access to shared data.

logical record
A user record, normally pertaining to a single subject and processed by data management as a unit.
Contrast with physical record which may be larger or smaller.

* main task
The main program within a partition in a multiprogramming environment.

* megabyte (MB)
1 024 KB or 1 048 576 bytes.

* member
The smallest unit of data that can be stored in and retrieved from a sublibrary. See also library
member.

message
1. In VSE, a communication sent from a program to the operator or user. It can appear on a console, a
display terminal or on a printout. 2. In telecommunication, a logical set of data being transmitted from
one node to another.

* module
A program unit that is discrete and identifiable with respect to compiling, combining with other units,
and loading; for example, the input to, or output from an assembler, compiler, linkage editor, or
executive routine. (A)

MVS/ESA (Multiple Virtual Storage/Enterprise Systems Architecture)
An IBM program providing operating system support.

object module (program)
A program unit that is the output of an assembler or compiler and is input to a linkage editor.

page data set (PDS)
One or more extents of disk storage in which pages are stored when they are not needed in processor
storage.

Glossary 159

page frame
An area of processor storage that can contain a page.

partition
A division of the virtual address area available for running programs. See also dynamic partition, static
partition.

PASN-AL (primary address space number - access list)
The access list that is associated with a partition. A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work unit). See also DU-AL.

Each partition has its own unique PASN-AL. All programs running in this partition can access data
spaces through the PASN-AL. Thus a program can create a data space, add an entry for it in the
PASN-AL, and obtain the ALET that indexes the entry. By passing the ALET to other programs in the
partition, the program can share the data space with other programs running in the same partition.

* physical record
The amount of data transferred to or from auxiliary storage. Synonymous with block.

primary address space
In z/VSE, the address space where a partition is currently executed. A program in primary mode
fetches data from the primary address space.

primary mode
If a program runs in primary mode, the system resolves all addresses within the current (primary)
address space. Contrast with AR (access register) mode. See also address space control (ASC) mode.

priority
A rank assigned to a partition or a task that determines its precedence in receiving system resources.

private area
The part of an address space that is available for the allocation of private partitions. Its maximum size
can be defined during IPL. Contrast with shared area.

procedure
See cataloged procedure.

* processing
The performance of logical operations and calculations on data, including the temporary retention of
data in processor storage while this data is being operated upon.

* processor
In a computer, a functional unit that interprets and executes instructions. A processor consists of at
least an instruction control unit and an arithmetic and logic unit. (T)

processor storage
The storage contained in one or more processors and available for running machine instructions.
Synonymous with real storage.

real address
The address of a location in processor storage.

real storage
See processor storage.

record
A set of related data or words, treated as a unit. See logical record, physical record.

residency mode (RMODE)
A program attribute that refers to the location where a program is expected to reside in virtual
storage. RMODE 24 indicates that the program must reside in the 24-bit addressable area (below
16 megabytes), RMODE ANY indicates that the program can reside anywhere in 31-bit addressable
storage (above or below 16 megabytes).

* restore
To write back onto disk data that was previously written from disk onto an intermediate storage
medium such as tape.

160 IBM z/VSE: z/VSE V5R1 Extended Addressability

* routine
A program, or part of a program, that may have some general or frequent use. (T)

shared area
An area of storage that is common to all address spaces in the system. z/VSE has two shared areas:

1. The shared area (24 bit) is allocated at the start of the address space and contains the supervisor,
the SVA (for system programs and the system GETVIS area), and the shared partitions.

2. The shared area (31 bit) is allocated at the end of the address space and contains the SVA (31 bit)
for system programs and the system GETVIS area.

* shared virtual area (SVA)
A high address area that contains a system directory list (SDL) of frequently used phases, resident
programs that can be shared between partitions, and an area for system support.

static partition
A partition, defined at IPL time and occupying a defined amount of virtual storage that remains
constant. Contrast with dynamic partition.

STOKEN (space token)
An eight-byte identifier of a data space. It is generated by the system when you create a data space.

sublibrary
A subdivision of a library. Members can only be accessed in a sublibrary.

sublibrary directory
An index for the system to locate a member in the accessed sublibrary.

* subsystem
A secondary or subordinate system, usually capable of operating independently of, or asynchronously
with, a controlling system. (T)

subtask
A task that is initiated by the main task or by another subtask.

* supervisor
The part of a control program that coordinates the use of resources and maintains the flow of
processor operations.

supervisor mode
See ESA mode.

* system console
A console, usually equipped with a keyboard and display screen for control and communication with
the system.

system directory list (SDL)
A list containing directory entries of frequently-used phases and of all phases resident in the SVA. The
list resides in the SVA.

* throughput
1. A measure of the amount of work performed by a computer system over a given period of time, for
example, number of jobs per day. (I) (A) 2. In data communication, the total traffic between stations
per unit of time.

* user exit
A programming service provided by an IBM software product that may be requested during the
execution of an application program for the service of transferring control back to the application
program upon the later occurrence of a user-specified event.

virtual address
An address that refers to a location in virtual storage. It is translated by the system to a processor
storage address when the information stored at the virtual address is to be used.

virtual disk
A range of up to two gigabytes of contiguous virtual storage addresses that a program can use as
workspace. Although the virtual disk exists in storage, it appears as a real FBA disk device to the user

Glossary 161

program. All I/O operations directed to a virtual disk are intercepted and the data to be written to, or
read from, the disk is moved to or from a data space.

Like a data space, a virtual disk can hold only user data; it does not contain shared areas, system data
or programs. Unlike an address space or a data space, data is not directly addressable on a virtual
disk. To manipulate data on a virtual disk, the program has to perform I/O operations.

virtual storage
Addressable space image for the user from which instructions and data are mapped into processor
(real) storage locations.

volume
A data carrier that is mounted and demounted as a unit, for example, a reel of tape or a disk pack.
(I) Some disk units have no demountable packs. In that case, a volume is the portion available to one
read/write mechanism.

volume ID
The volume serial number, which is a number in a volume label assigned when a volume is prepared
for use by the system.

VSE (Virtual Storage Extended)
A system that consists of a basic operating system and any IBM supplied and user-written programs
required to meet the data processing needs of a user. Its current version is called z/VSE.

VSE/ESA (VSE/Enterprise Systems Architecture)
The most advanced VSE system currently available.

VSE/ICCF library
A file composed of smaller files (libraries) including system and user data which can be accessed
under the control of VSE/ICCF.

VSE library
A collection of programs in various forms and storage dumps stored on disk. The form of a program is
indicated by its member type such as source code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary which can contain any type of member.

VSE/VSAM (VSE/Virtual Storage Access Method)
An IBM access method for direct or sequential processing of fixed and variable length records on disk
devices.

z/Architecture
An IBM architecture for mainframe computers and peripherals. The zSeries family of servers uses the
z/Architecture. It is the successor to the S/390® and 9672 family of servers.

z/OS®
An IBM mainframe operating system that uses 64-bit real storage.

31-bit addressing
Provides addressability for address spaces of up to 2 gigabytes (GB). The maximum amount of
addressable storage in previous systems was 16 megabytes (MB).

162 IBM z/VSE: z/VSE V5R1 Extended Addressability

Index

Numerics
24-bit addressing 3
31-bit addressing

31-bit programs for a mixed z/VSE environment 13
AMODE and RMODE combinations at program-run time
4
capping, linkage by using a prologue and epilogue 31
changing the AMODE 5
converting a program to use 31-bit addresses 9
determining the modes of a phase 16
establishing program linkage 21
example of changing the AMODE 19
example of I/O processing 33
example of using a linkage assist routines 27
EXCP macro 33
High Level Assembler support of AMODE and RMODE 16
I/O processing 33
librarian support 121
linkage assist routines 12, 26
linkage editor support 117
moving a program above 16 MB 10
new programs above 16 MB 13
new programs below 16 MB 12
obtaining storage above 16 MB 12
planning for 31-bit programs 9
pointer-defined linkage 25
program attributes AMODE and RMODE 3
program where to reside in virtual storage 4
programs that must reside below 16 MB 5
PSW AMODE bit 5
real storage considerations 35
rules and conventions 5
SET SDL processing 122
specifying AMODE and RMODE 4
STXIT routines 12
system services and 31-bit addressing 7
techniques for passing control 10
using the BASSM and BSM instructions to establish
linkage 23
writing new programs that use 31-bit addresses 12

64-bit address space
overview 40
using assembler instructions

binary operations 53
64-bit addressing

CCB macro 134
I/O processing
53

64-bit addressing mode 54
64-bit addressing mode (AMODE)

modal instructions
AMODE 24 55
AMODE 31 55
AMODE 64 55

non-modal instructions 55
64-bit buffers

64-bit buffers (continued)
I/O processing
53

64-bit instructions
pitfalls to avoid 56

A
access list

adding an entry 73
adding entry for data space 73
definition of 63
description of 69
illustration of 81
relationship with z/VSE task 69
size of 69
types of 69, 81

access list entry
adding 69, 73
deleting 78
limits on 97

access register (AR) ASC mode 62
accessibility 153
accessing data in a data space

example of rules 83
rules for 82, 84

ADD parameter on ALESERV 72
ADD statements for virtual disks 99
adding an entry to an access list

description of 73
example of 73, 75

adding an entry to the DU-
AL

rules for data spaces 84
adding entry to an access list

rules for data spaces 84
adding entry to the DU-AL

example of 75, 93
illustration of 75

adding entry to the PASN-
AL

example of 75
illustration of 75
rules for data spaces 84

ADDPASN parameter on ALESERV 72
address space

establishing access through ARs 69
address space control (ASC) mode

description of 63
address/data spaces

definition of 63
adjusting VSIZE parameter for virtual disks 99
AL parameter on ALESERV 73
ALCOPY parameter on ATTACH macro 96
ALESERV

ADD request
process for SCOPE=COMMON data spaces 94

Index 163

ALESERV macro
ADD request

example of 73, 75, 93, 96
use of 72–74

ADDPASN request
use of 72

DELETE request
example of 78, 93
use of 72

EXTRACT request
use of 72, 74

SEARCH request
use of 72, 73

summary of functions 72
ALET

definition of 63
example of loading a zero into an AR 71
example of loading into AR 68
illustration of 63, 81
obtaining 74
passing 74
passing across address spaces 75
reuse of 79, 95
rules for passing 74
special 69

ALET parameter on ALESERV 73
ALET-qualified addresses

definition of 65
AMODE (addressing mode)

assigned by the linkage editor 117
changing it 5
compared to ASC mode 63
example of changing 19
example of changing AMODE with AMODESW macro 19
general considerations 3
high-order byte in address 4
introducing 3
programming aspects 4
PSW AMODE bit 5
specifying it 4
types of 3
valid combinations with RMODE 15
values 3
virtual address interpretation 4

AMODE/RMODE
combinations at program-run time 4
combinations from ESD 119
combinations in MODE control statement 119
combinations in PARM field 119
determining the modes of a phase 16
linkage editor support of 17
specifying in ESD entries 17
specifying in MODE control statement 17
specifying in PARM field of EXEC LNKEDT statement 17
valid combinations 15
valid combinations at execution time 16
valid combinations for linkage editor 17

AMODESW macro
example of changing AMODE 19

anchor of a cell pool 109
AR instructions

summary of 68
AR mode

coding instructions in 67

AR mode (continued)
compared to primary mode 63, 65
definition of 63
description of 62, 63
importance of comma 67
importance of the contents of ARs 71
rules for coding in 67
switching to 63

ARs
advantage of 63
contents of 63
description of 63
example of loading ALET into 68
example of loading an ALET of zero into 71
rules for coding in 67
using for data reference 63
why a program would use 63

ASC mode
access register (AR) ASC mode 62
compared to addressing mode 63
description of 62
primary ASC mode 62
switching 63

assembler instructions
modifying ARs 68

assigning
ownership of data space 82

ATTACH ALCOPY macro 136
ATTACH macro

example of passing DU-AL to subtask
96
used to pass DU-AL to subtask 96

attaching a subtask and passing a DU-AL 96
authority

to set up addressability to data spaces 73

B
BAKR instruction (linkage stack) 106
BAL instruction 6
BALR instruction 6
BAS instruction 6
basic concepts

of extended addressability 62
BASR instruction 6
BASSM instruction 6
bimodal operation 4
BLOCKS parameter on DSPSERV 97
BSM instruction 6

C
CALL macro 7, 111
callable cell pool services 109
capping, linkage by using a prologue and epilogue 31
CCB macro

Format-2 IDAW 134
CCW codes for virtual disks 102
CCW formats 133
CDDELETE macro 130
CDLOAD macro

obtaining a pointer defined value 26
cell pool services

164 IBM z/VSE: z/VSE V5R1 Extended Addressability

cell pool services (continued)
anchor 109
CALL macro 111
coding example 114
CSRPxxx service 111
extent 109
link-editing programs 110
storage considerations 110

changing
AMODE 5
AMODE via AMODESW macro 19

channel program support for virtual disks
DEFINE EXTENT command 139
fault symptom codes for SENSE information 146
flags supported 144
information returned to a SENSE command 145
LOCATE command 141
NO-OPERATION command 143
overview 139
READ command 142
READ DEVICE CHARACTERISTICS command 144
restrictions 139, 144
SENSE command 143
SENSE ID command 143
supported commands 139
TRANSFER IN CHANNEL command 143
valid CCW formats 139
WRITE command 143

channel programs for virtual disks 139
characteristics of access lists 69
choosing the name of a data space 86
coding instructions in AR mode 67
comma

careful use of in AR mode 67
commands

ADD 99
MAP 138
QUERY 138
QUERY DSPACE 101
SYSDEF 99, 138
VDISK 99
VOLUME 101

comparison of a PASN-AL and a DU-AL 70
contents of an AR 63
conventions for 31-bit addressing 5
CPYA instruction

description of 68
creating

cell pool 112
data spaces 81, 86
virtual disks 99

creating data spaces
example of 73, 88
requesting amount of storage 88
requesting size of 88
rules for 82, 84

CSRPxxx cell pool service 111
current size of data space 86

D
data in memory, use of virtual disks 99
data reference

using ARs 63

data space storage
extending 84
managing 88
releasing 84, 97
rules for releasing 97
serializing use of 89

data spaces
ALESERV macro, overview 135
application design 61
AR mode and data spaces 62
ATTACH ALCOPY macro 136
choosing the name for 86
compared to address spaces 61
creating 81, 86
default size of 89
deleting 82, 93
description of 62
DSPSERV macro, overview 136
dumps of storage 97
efficient use of 97
establishing access through ARs 69
example of creating 73
example of creating, using, deleting data spaces 93
example of moving data into and out of 90
example of using 62
extending current size of 82, 92
introducing 61
managing storage 88
MAP command 138
ownership of 82
QUERY command 138
referencing data in 81
releasing storage in 97
rules for creating, deleting, and using 82
SDUMPX macro 137
SETPFA macro 137
shared between two address spaces 75
solutions to programming problems 61
storage available for 89
summary of rules 84
SYSDEF command, overview 138
SYSSTATE macro, overview 137

default
number of data spaces 89
size of data spaces 89
storage for data spaces 89

DEFINE EXTENT command for virtual disks 139
defining

cell pool 112
data spaces 81
virtual disks 100
virtual disks via the Interactive Interface 101

DELETE parameter on ALESERV 72
deleting

access list entry
example of 78, 93

data space
description of 93
example of 78, 93
rules for 82, 84

deleting virtual disks 101
DETACH AFFINTY=SYSTEM

shared memory object (SMO) 50
DETACH macro 131

Index 165

DETACH processing, and user tokens 51
determining AMODE and RMODE of a phase 16
disability 153
displaying information for virtual disks 101
DSPSERV macro

CREATE request
example of 73, 88, 93, 96
use of 96

DELETE request
example of 78, 93

EXTEND request
example of 92

RELEASE request
use of 97

DU-AL
characteristics of 69
compared to PASN-AL 69, 70
definition of 69, 81
description of 69
illustration of accessing data space through 83
illustration of PASN-AL and DU-AL 70

dual programs 13
DUMP command used to dump data space storage 97
dumping data space storage 97

E
EAR instruction

description of 68
ENQ/DEQ macros 131
EREG instruction (linkage stack) 106
ESD entries, AMODE/RMODE specification in 17
ESTA instruction (linkage stack) 106
establishing

access for ARs 69
establishing addressability

example of 75
to a data space

definition of 63, 69, 81
example of 88, 93
procedures for 88
rules for 82, 84

to an address space
definition of 63, 69

EXCP macro 33
EXIT macro (linkage stack restrictions) 107
EXTEND parameter on DSPSERV 92
extending current size of data space

example of 92
procedure for 92
rules for 82, 84

extent of a cell pool 109
EXTRACT parameter on ALESERV 72

F
fault symptom codes for SENSE information (virtual disks)
146
FBAV parameter of ADD statement 99
FBAV parameter of ASSGN and CLOSE statements 100
FCEPGOUT macro 130
FETCH macro 130
finding out the AMODE and RMODE of a phase 16

flags supported for virtual disks 144
FREEVIS macro 129

G
GENL macro 130
GETSHARED request 47
GETSTOR request 44
getting addressability through DU-

AL
example of 75
illustration of 75

getting addressability through PASN-
AL

example of 75
illustration of 75

GETVCE macro, getting information about virtual disks 102
GETVIS macro 129
GPR/AR

definition of 63
illustration of 63

H
High Level Assembler

AMODE 16
AMODE and RMODE assembler instructions 16
AMODE and RMODE defaults 16
support of AMODE and RMODE 16

high-order bit in address 4
high-order byte in address 4

I
I/O processing in 31-bit mode

CCB macro 133
CCW formats 133
example of I/O processing
33
EXCP appendage routines 33
EXCP macro 33

I/O processing in 64-bit
mode

CCB macro 134
I/O processing using 64-bit

buffers
EXCP appendage routines 53

IARV64 macro services
program rules for 42

IARV64 services
use 42

ICM instruction 12
IDAW (Format-2)

CCB macro 134
information returned to a SENSE command for virtual disks
145
initial size of data space 86
installation limits

on amount of storage for data spaces 86, 89
on size of data spaces 86, 89

instructions
BAL 6
BALR 6

166 IBM z/VSE: z/VSE V5R1 Extended Addressability

instructions (continued)
BAS 6
BASR 6
BASSM 6, 24
BSM 6, 24
CPYA 68
EAR 68
ICM 12
LA 6
LAE 68
LAM 68
LRA 6
mode sensitive 5
SAR 68
SPM 10
SR 12
STAM 68

instructions used to manipulate ARs 68

L
LA instruction 6
LAE instruction

description of 68
LAM instruction

description of 68
example of 68, 73, 93

LF64ONLY
definition 41

LFAREA
definition 41

librarian
support for 31-bit addressing 121

limiting use of data space 89
linkage assist routines 12, 26
linkage conventions 56
linkage editor

AMODE/RMODE combinations from ESD 119
AMODE/RMODE combinations in MODE control
statement 119
AMODE/RMODE combinations in PARM field 119
AMODE/RMODE hierarchy 118
assigning the AMODE 117
assigning the RMODE 118
building overlay programs 18
ESD data 117
ESD entries, AMODE/RMODE specification in 17
handling of invalid AMODE/RMODE combinations 120
maximum size of a phase 117
MODE control statement 117
MODE control statement, AMODE/RMODE specification
in 17
PARM field of EXEC LNKEDT statement 117
PARM field of EXEC LNKEDT statement, AMODE/RMODE
specification in 17
RMODE processing 18
specifying AMODE/RMODE 17
support for 31-bit addressing 117
support of AMODE and RMODE 17
valid AMODE/RMODE combinations 17

linkage stack
BAKR instruction 106
entry 105
EREG instruction 106

linkage stack (continued)
ESTA instruction 106
EXIT macro (linkage stack restrictions) 107
MSTA instruction 106
PC instruction 106
PR instruction 106
STXIT macro (linkage stack restrictions) 107

linkage stack entry 105
load instruction in AR mode

example of 67
LOAD macro

obtaining a pointer defined value 26
LOCATE command for virtual disks 141
LRA instruction 6

M
macro expansion 13
macro library, downward level 13
macros

ALESERV 135
AMODESW 7, 128
ATTACH 131
ATTACH ALCOPY 136
CALL 7
CCB 133, 134
CDDELETE 130
CDLOAD 130
DEQ 131
DETACH 131
DSPSERV 136
ENQ 131
EXCP 33
FCEPGOUT 130
FETCH 130
FREEVIS 129
GENL 130
GETVCE 102
GETVIS 129
LOAD 130
mode dependencies 123
page management macros 130
PAGEIN 130
PFIX/PFREE 130
POST 132
RELPAG 130
SDUMPX 137
SETPFA 137
SPLEVEL 133
STXIT 134
SYSSTATE 137
WAIT 132
WAITM 132

macros and their mode dependencies 123
macros for data spaces

ALESERV 135
ATTACH ALCOPY 136
DSPSERV 136
SDUMPX 137
SETPFA 137
SYSSTATE 137

managing data space storage 88
manipulating data in a data space 93
MAP command 138

Index 167

mapping macros 13
maximum size of data space 86
MEMLIMIT

definition 41
memory object

dumping 51
protecting storage 51
using storage in 51

memory objects
above the bar 41
and IARV64 macro services 42
diagram of how used 41
I/O processing 53
overview 40
prerequisites for using 42
types of 41

mode
AR 63
ASC 63
primary 63

mode sensitive instructions 5
Moving a Program above 16 MB 10
MSTA instruction (linkage stack) 106
MVC instruction

example in AR mode 65
example in primary mode 65

N
NAME parameter on DSPSERV 86
naming a data space 86
NO-OPERATION command for virtual disks 143

O
obtaining and passing ALETs and STOKENs 74
owner of data space, definition of 82
ownership of data space

assigning to another task 82
definition of 82

P
page management macros 130
PAGEIN macro 130
PARM field of EXEC LNKEDT statement, AMODE/RMODE
specification in 17
PASN-AL

characteristics of 69
compared to DU-AL 69, 70
definition of 69, 81
description of 69
illustration of accessing data space through 83
illustration of PASN-AL and DU-AL 70

passing ALETs
across address spaces

illustration of 75
rules for 74

to other programs
rules for 74

passing DU-AL to subtask, example of 96
passing STOKENs to another program

illustration of 75

PC instruction (linkage stack) 106
PFIX/PFREE macro 130
phase, determining AMODE and RMODE 16
planning for

31-bit programs 9
converting a program to use 31-bit addresses 9
data spaces 59
virtual disks 59, 99
writing new programs that use 31-bit addresses 12

pointer-defined linkage 25
pointer-defined linkage, example 25
POST macro 132
PR instruction (linkage stack) 106
primary ASC mode 62
primary mode

compared to AR mode 65
compared with AR mode 63
definition of 63
description of 62, 63
switching to 63

private memory objects (PMOs)
creating

example 44
creating, using and freeing a

example 46
fixing pages

example 45
fixing/unfixing the pages of 45
freeing

example 46
GETSTOR request 44
ownership 44

program attributes AMODE and RMODE 3
program linkage in 31-bit environment

capping, linkage by using a prologue and epilogue 31
example of pointer-defined linkage 25
example of using a linkage assist routines 27
example of using the BASSM and BSM instructions 24
linkage assist routines 26
using an ADCON to obtain a pointer-defined value 25
using pointer-defined linkage 25
using the BASSM and BSM instructions 23

program status word (PSW) 63
programming considerations 31-bit addressing

31-bit programs for a mixed z/VSE environment 13
capping, linkage by using a prologue and epilogue 31
CCW formats 133
changing the AMODE 5
converting a program to use 31-bit addresses 9
example of I/O processing 33
example of using a linkage assist routines 27
High Level Assembler support of AMODE and RMODE 16
I/O processing 33
linkage assist routines 26
moving a program above 16 MB 10
new programs above 16 MB 13
new programs below 16 MB 12
obtaining storage above 16 MB 12
program linkage in 31-bit environment 21
programs that must reside below 16 MB 5
PSW AMODE bit 5
real storage considerations 35
rules and conventions for 31-bit addressing 5
system services and 31-bit addressing 7

168 IBM z/VSE: z/VSE V5R1 Extended Addressability

programming considerations 31-bit addressing (continued)
using pointer-defined linkage 25
using the BASSM and BSM instructions to establish
linkage 23
writing new programs that use 31-bit addresses 12

programming notes
for using SCOPE=COMMON data spaces 95

programs above 16 MB 13
programs below 16 MB 12
programs that must reside below 16 MB 5
PSW (program status word) 63
PSW AMODE bit 5

Q
QUERY command 138
QUERY DSPACE command 101

R
READ command for virtual disks 142
READ DEVICE CHARACTERISTICS command for virtual disks
144
real storage considerations (31-bit), programs above 16 MB
35
redefining virtual disks 101
relationship between data space and owner 82
releasing

data space storage
rules for 97

RELPAG macro 130
remove

entry from access list 78
RMODE (residency mode)

assigned by the linkage editor 118
general considerations 3
introducing 3
processing by the linkage editor 18
program where to reside in virtual storage 4
programming aspects 4
specifying it 4
types of 3
valid combinations with AMODE 15
values 3

rules for
passing ALETs

to other programs 74
rules for 31-bit addressing 5
rules for creating, deleting, and using data spaces 84

S
SAC instruction

example of 73
SAM24 instruction 5, 7, 19
SAM31 instruction 5, 7, 19
SAR instruction

description of 68
SCOPE parameter on DSPSERV 82, 86
SCOPE=ALL data space

definition of 82
illustration of accessing 83
use of 82

SCOPE=COMMON data space
compared with SVA 94
creating and using 94
definition of 82
illustration of using 94
setting limits on 95
use of 82, 94

SCOPE=SINGLE data space
definition of 82
illustration of accessing 83
use of 82

SDUMPX macro 137
SEARCH parameter on ALESERV 72
SENSE command for virtual disks 143
SENSE ID command for virtual disks 143
sense information for virtual disks 146
serialization of

shared memory objects (SMOs) 50
serializing use of

data space storage 89
set

ASC mode through SAC instruction 63
SET SDL processing 122
SET symbol 13
set up

addressability to a data space
example of 73

addressability to an address space 69
SETPFA macro 137
shared area data space 82
shared memory objects (SMOs)

accessing
example 49

creating/accessing 47
creating/using

example 48
DETACH AFFINTY=SYSTEM 50
freeing

example 49
GETSHARED request 47
overview 47
ownership 49
serialization of 50
SHAREMEMOBJ request 48
system affinity 49
system interest 49

SHAREMEMOBJ request 48
sharing data spaces

between two address spaces 75
between two problem state programs 96

SHRLIMIT
definition 41

size of data space, specifying 86
special ALETs

adding entry to the DU-AL
69

specifying AMODE and RMODE 4
SPLEVEL macro

example of using the macro 13
SET symbol 13

SPM instruction 10
SR instruction 12
STAM instruction

description of 68

Index 169

START parameter on DSPSERV 97
STOKEN

definition of 69, 81
illustration of passing to another program 75
obtaining from DSPSERV 74
obtaining from other programs 74
passing to another program 74, 75
returned by DSPSERV 81

STOKEN parameter on ALESERV 73
STOKEN parameter on DSPSERV 73, 86
storage available for data spaces 89
storing data in memory 99
STXIT macro 134
STXIT macro (linkage stack restrictions) 107
STXIT routines 12
supported CCW codes for virtual disks 102
SYSDEF command 138
SYSDEF command for allocating space for data spaces 99,
100
SYSDUMPX macro used to dump data space storage 97
SYSSTATE macro 137
system affinity, for an SMO 49
system interest, for an SMO 49

T
TRANSFER IN CHANNEL command for virtual disks 143
types of AMODEs 3
types of RMODEs 3

U
user tokens, DETACH processing 51
using a data space

example of 62
using an entry to an access list

example of 73
using data spaces efficiently 97
using the AMODE and RMODE attribute 15

V
values for AMODE 3
values for RMODE 3
VDISK command for defining virtual disks 99, 100
virtual disks

adjusting VSIZE parameter 99
allocating space for data spaces 99, 100
based on support for data spaces 99
channel program support for virtual disks 139
creating 99
defining via the Interactive Interface 101
deleting 101
FBA disk emulation 99
FBAV parameter 99, 100
getting information about 101, 102
planning for 99
redefining 101
supported CCW codes 102
uses 99
VDISK command 100

virtual storage
above the bar 51

VOLUME command, displaying information about virtual
disks 101
VSIZE, adjusting for virtual disks 99

W
WAIT macro 132
WAITM macro 132
work unit

definition of 69
WRITE command for virtual disks 143

Z
z/Architecture

setting and checking the addressing mode 56
z/Architecture instructions

using the 64-bit GPR 54
z/VSE task

relationship to access list 69

170 IBM z/VSE: z/VSE V5R1 Extended Addressability

IBM®

Product Number: 5686-VS6

SC34-2630-02

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Part 1. 31-Bit Addressing Support
	Chapter 1. Introducing 24-Bit / 31-Bit AMODE and RMODE
	General Considerations for AMODE and RMODE
	AMODE (Addressing Mode)
	RMODE (Residency Mode)
	Specifying AMODE and RMODE
	AMODE and RMODE Combinations at Program-Run Time

	Programming Aspects
	AMODE
	RMODE
	Programs that Must Reside Below 16 MB
	Rules and Conventions for 31-Bit Addressing
	Changing the AMODE
	Mode Sensitive Instructions
	BAL and BALR
	LA
	LRA

	AMODE Processing Capabilities
	BASSM and BSM
	BAS and BASR
	SAM24 and SAM31
	AMODESW Macro
	Note on the CALL macro:

	z/VSE System Services and 31-Bit Addressing

	Chapter 2. Planning for 31-Bit Programs
	Converting Existing Programs
	Converting a Program to Use 31-Bit Addresses
	Moving a Program above 16 MB

	Writing New Programs that Use 31-Bit Addresses
	New Programs below 16 MB
	New Programs above 16 MB
	Writing 31-Bit Programs for a Mixed z/VSE Environment
	Dual Programs
	Using the SPLEVEL Macro

	Chapter 3. Using AMODE and RMODE to Specify 24-Bit / 31-Bit Addressing Modes
	AMODE and RMODE Combinations
	AMODE and RMODE Combinations at Execution Time
	Determining the AMODE and RMODE of a Phase

	High Level Assembler Support of AMODE and RMODE
	AMODE and RMODE in the Object Module
	AMODE and RMODE Assembler Instructions

	Linkage Editor Support of AMODE and RMODE
	Linkage Editor RMODE Processing

	How to Change the AMODE

	Chapter 4. Establishing Linkage in a 31-Bit Addressing Environment
	Using the BASSM and BSM Instructions
	Calling and Returning with BASSM and BSM

	Using Pointer-Defined Linkage
	Using an ADCON to Obtain a Pointer-Defined Value
	Using the CDLOAD/LOAD Macro to Obtain a Pointer-Defined Value

	Linkage Assist Routines
	Example of Using a Linkage Assist Routine

	Using Capping - Linkage Using a Prologue and Epilogue

	Chapter 5. I/O Processing in a 31-Bit Environment
	Performing I/O in 31-Bit Mode
	Using the EXCP Macro for I/O to Virtual Storage Above 16 MB
	Example of Performing I/O While Residing Above 16 MB

	Chapter 6. Real Storage Considerations for User Programs (31-Bit Addressing)

	Part 2. 64-Bit Addressing Support
	Chapter 7. Using the 64-Bit Address Space
	What is the 64-Bit Address Space?
	Why Would You use Virtual Storage Above the Bar?
	Virtual Storage Management Above the Bar
	Prerequisites for Using Memory Objects
	IARV64 Macro Services and Program Rules
	Using Private Memory Objects
	Creating Private Memory Objects
	GETSTOR Request
	Example of Creating a Private Memory Object

	Relationship Between a Private Memory Object and Its Owner
	Fixing and Unfixing the Pages of a Private Memory Object
	Example of Fixing Pages of a Private Memory Object

	Freeing a Private Memory Object
	Example of Freeing a Private Memory Object

	Example of Creating, Using, and Freeing a Private Memory Object

	Using Shared Memory Objects
	Creating/Obtaining Access to Shared Memory Objects
	GETSHARED Request
	SHAREMEMOBJ Request
	Example of Creating and Using a Shared Memory Object – GETSHARED
	Example of Accessing a Shared Memory Object – SHAREMEMOBJ

	Relationship Between a Shared Memory Object and Its Owner
	Freeing a Shared Memory Object
	AFFINITY=LOCAL
	AFFINITY=SYSTEM
	Proper Serialization of Shared Memory Objects

	User Tokens and Detach Processing
	Protecting Storage Above the Bar
	Dumping Memory Objects
	Using the Storage in a Memory Object
	Listing Information About Virtual Storage Above the Bar
	Using a 64-Bit Application in z/VSE
	Using 64-Bit Applications and 64-Bit Operations
	Using 64-Bit Virtual I/O Operations on Memory Objects
	Using Assembler 64-bit Binary Operations
	z/Architecture Instructions That Use the 64-Bit GPR

	Using the Assembler 64-bit Addressing Mode
	Non-Modal Instructions
	Modal Instructions
	Setting and Checking the Addressing Mode
	Linkage Conventions
	Pitfalls to Avoid

	Part 3. Data Spaces and Virtual Disks
	Chapter 8. Introducing Data Spaces
	Basic Concepts
	The ASC Modes
	AR Mode and Data Spaces
	An Example of Using a Data Space

	Chapter 9. Using Access Registers
	Using Access Registers for Data Reference
	A Comparison of Data Reference in Primary and AR Mode
	Coding Instructions in AR Mode

	Using z/Architecture Instructions to Manipulate the Contents of Access Registers
	Example of Loading an ALET into an AR
	Access Lists
	Types of Access Lists
	A Comparison of a PASN-AL and a DU-AL
	Loading the Value of Zero into an AR
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	The ALESERV Macro
	Setting Up Addressability to a Data Space
	Adding an Entry to an Access List
	Example of Adding an Access List Entry for a Data Space
	Obtaining and Passing ALETs and STOKENs
	Rules for Passing ALETs

	Examples of Establishing Addressability to Data Spaces

	Deleting an Entry from an Access List
	Example of Deleting a Data Space Entry from an Access List
	ALET Reuse by the System

	Chapter 10. Creating and Using Data Spaces
	Referencing Data in a Data Space
	Relationship Between the Data Space and Its Owner
	SCOPE=SINGLE, SCOPE=ALL, and SCOPE=COMMON Data Spaces

	Rules for Creating, Deleting, and Using Data Spaces
	Example of the Rules for Accessing Data Spaces

	Summary of Rules for Creating, Deleting, and Using Data Spaces
	Creating a Data Space
	Choosing the Name of a Data Space
	Specifying the Size of the Data Space
	Identifying the Origin of the Data Space
	Example of Creating a Data Space
	Establishing Addressability to a Data Space
	Example of Establishing Addressability to a Data Space

	Managing Data Space Storage
	Limiting Data Space Use
	Serializing Use of Data Space Storage
	Protecting Data Space Storage

	Examples of Moving Data Into and Out of a Data Space
	Programming Notes for Example 2

	Extending the Current Size of a Data Space
	Deleting a Data Space
	Example of Deleting a Data Space

	Example of Creating, Using, and Deleting a Data Space
	Creating and Using SCOPE=COMMON Data Spaces
	Programming Considerations

	Attaching a Subtask and Sharing Data Spaces with It
	Example of Attaching a Task and Passing a DU-AL

	Releasing Data Space Storage
	Using Data Spaces Efficiently
	Dumping and Displaying Data Space Storage

	Chapter 11. Creating and Using Virtual Disks
	Planning for Virtual Disks
	Creating Virtual Disks
	ADD Command
	SYSDEF Command
	VDISK Command
	Defining a Virtual Disk via the Interactive Interface

	Getting Information about Virtual Disks
	VOLUME Command
	QUERY DSPACE Command

	Deleting or Redefining Virtual Disks
	Programming Notes
	Supported CCW Codes for Virtual Disks
	GETVCE Macro

	Part 4. Programming Enhancements
	Chapter 12. Linkage Stack Functions
	Introduction
	Linkage Stack Characteristics
	Instructions for Adding or Removing a Linkage Stack Entry
	The Stacking PC (Program Call) Instruction
	The BAKR (Branch and Stack) Instruction
	The PR (Program Return) Instruction

	Instructions to Work with Linkage Stack Entries and their Contents
	Using the STXIT and EXIT Macro in Connection with Linkage Stack

	Chapter 13. Callable Cell Pool Services
	Characteristics of a Cell Pool
	Storage Considerations
	Link-Editing Programs Using Callable Cell Pool Services
	Using Callable Cell Pool Services
	The CALL Macro
	Available Cell Pool Services
	Creating a Cell Pool
	Adding an Extent and Connecting it to the Cell Storage
	Contracting a Cell Pool, Deactivating its Extents, and Disconnect its Storage
	Reusing a Deactivated and Disconnected Extent
	Allocating Cells and Deallocate Previously Allocated Cells
	Obtaining Status Information About a Cell Pool
	Invocation Requirements
	Register Usage
	Return Codes

	Cell Pool Services Coding Example

	Appendix A. Linkage Editor and Librarian Support
	Linkage Editor Support for 31-Bit Addressing
	Maximum Size of a Phase
	Assigning the AMODE
	Assigning the RMODE
	AMODE/RMODE Hierarchy
	AMODE/RMODE Combinations in the MODE Control Statement
	AMODE/RMODE Combinations in the PARM Field
	AMODE/RMODE Combinations from the ESD

	Handling of Invalid AMODE/RMODE Combinations
	Further Information
	Notes on the MODE Control Statement
	Notes on the EXEC LNKEDT Statement

	Librarian Support for 31-Bit Addressing
	Punching a Phase
	LISTDIR Output
	SET SDL Processing

	Appendix B. Macro and Command Support
	z/VSE Macros and Their Mode Dependencies
	Macro Support for 31-Bit Addressing
	AMODESW Macro
	Notes on Using the AMODESW Macro
	AMODESW Example

	Notes on Using AMODESW SET

	Storage Management Macros
	GETVIS Macro
	FREEVIS Macro

	Page Management Macros
	PFIX Macro

	Program Load and Retrieval Macros
	CDDELETE Macro
	CDLOAD Macro
	FETCH Macro
	GENL Macro
	LOAD Macro

	Task Communication Macros
	ATTACH Macro
	ATTACH issued in AMODE 24
	ATTACH issued in AMODE 31

	DETACH Macro
	ENQ/DEQ Macro
	ENQ/DEQ issued in AMODE 24
	ENQ/DEQ issued in AMODE 31

	POST Macro
	POST issued in AMODE 24
	POST issued in AMODE 31

	WAIT Macro
	WAIT issued in AMODE 24
	WAIT issued in AMODE 31

	WAITM Macro
	WAITM issued in AMODE 24
	WAITM issued in AMODE 31

	I/O Processing Support for 31-Bit Addressing
	CCB Macro
	CCW Formats
	Restrictions

	Other Macros
	SPLEVEL Macro
	STXIT Macro

	Macro Support for 64-bit Addressing
	Macro and Command Support for Data Spaces
	ALESERV Macro
	Restrictions when Using the ALESERV Macro
	Calling Requirements for ALESERV Macro

	ATTACH ALCOPY Macro
	DSPSERV Macro
	Restrictions when Using the DSPSERV Macro
	Calling Requirements for DSPSERV Macro
	SDUMPX Macro
	SETPFA Macro
	SYSSTATE Macro
	Example for SYSSTATE Macro

	SYSDEF Command
	QUERY Command
	MAP Command

	Appendix C. Channel Program Support for Virtual Disks
	Channel Commands
	DEFINE EXTENT (X'63')
	LOCATE (X'43')
	READ (X'42')
	WRITE (X'41')
	NO-OPERATION (X'03')
	SENSE (X'04')
	TRANSFER IN CHANNEL
	SENSE ID (X'E4')
	READ DEVICE CHARACTERISTICS (X'64')

	Flags
	Sense Information
	Information Returned to a Sense Command
	Fault Symptom Code (Bytes 22-23) of Sense Information

	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation

	Accessibility
	Using Assistive Technologies
	Documentation Format

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

