
IBM z/VSE
6.1

System Macros User's Guide

IBM

SC34-2709-01

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 223.

This edition applies to Version 4 Release 3 of IBM z/Virtual Storage Extended (z/VSE), Program Number 5609-ZV4, and
to all subsequent releases and modifications until otherwise indicated in new editions

This edition replaces SC34-2709-00.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1990, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xiii

About This Publication... xv
Who Should Use This Publication.. xv
Where to Find More Information..xv

Summary of Changes... xvii

Chapter 1. Introduction... 1
Using a Macro in a Program... 1
Types of Macros... 1
Register Usage... 2
Macro Format... 2

Chapter 2. Data Management Concepts.. 5
I/O-Related Hardware Characteristics..6

I/O Devices... 6
Disk Volume.. 7
Tape Volume... 10

File, Extent, and Volume Relationship...11
Record, Block, and Control Interval.. 12

The Records of a File.. 12
Control Interval.. 15
Blocking and Deblocking of Logical Records... 16
Device-Dependent Record Formats...16
Organization of Records in a File..20

Choosing the Right Access Method... 21
Sequential Versus Direct Processing... 22
Level of Support..22
Sequential Access Method (SAM).. 23
VSE/VSAM...23
Direct Access Method (DAM)... 23
Indexed Sequential Access Method (ISAM).. 24
Support of Access Methods by Programming Languages... 24

Volume and File Labels..25
Volume Labels.. 26
File Labels...26

Volume Organization..26
Disk Volume..27
Tape Volume... 32

The Input/Output Control System (IOCS)... 34
DTFxx Macro... 34
Logic Module Generation (xxMOD) Macro... 37
Logical IOCS Versus Physical IOCS..39

Chapter 3. Defining and Processing a File with SAM..41
Defining the Characteristics of a File...41

 iii

File Type (TYPEFLE)... 42
Record Format (RECFORM)..42
Record Size (RECSIZE)... 42
I/O Area Definition (IOAREA)... 43
I/O Area Length (Block Size BLKSIZE)...43
I/O Register Specification (IOREG)..43
Work Area Specification (WORKA)...44
Error Handling (ERROPT, WLRERR, and ERREXT)... 44
End-of-File Exit (EOFADDR)... 45

Opening a File for Processing.. 45
Reading (GET) and Writing (PUT) of Data..47

Obtaining a Record for Processing (GET)...47
Storing a Record after Processing (PUT)... 48
Processing Blocked Records Selectively... 49

Processing a Work File...50
Opening the File... 50
Processing the File Sequentially.. 51
Processing the Records of the File Selectively..52
Retaining or Deleting a Work File...54

Requesting a Non-Data Device Operation...55
Closing the File for Processing.. 55
IOCS Request Macros Used with Declarative Macros.. 55

Chapter 4. Processing a Disk File with SAM.. 57
Opening the File...57
Processing of Labels.. 58

Processing for OPEN.. 58
Processing on End of Volume...59
Processing on End of File... 59
User-Standard Labels...59
Returning Control to SAM...60

Processing an Update File... 60
Coding an Error-Processing Routine... 61

Wrong-Length Error..62
Other Errors.. 63

Closing a File and Processing for End of Volume.. 63
Process a File Residing on an FBA Disk...64

Chapter 5. Processing a Tape File with SAM..65
Processing of Labels.. 65

Output File.. 65
Input File.. 67
Unlabeled File...68
American National Standard Labels.. 70
Return Control to SAM..70

End of Volume for a Multi-Volume File..71
Tape File Extension..71

Processing for IBM Standard Labels..72
Processing for User-Standard Labels.. 72

Coding an Error-Processing Routine... 72
Wrong-Length Error Processing Considerations... 74
Other Error-Processing Considerations... 74

Non-Data Operations...74
Rewind and Tape-Movement Functions.. 75
Spacing Over a Logical Record...75
Synchronizing the Hardware Buffer...76

User Interface for Tape OPEN, CLOSE, and End-of-Volume...76

iv

Access-Protection for an ASCII Tape.. 77

Chapter 6. Processing a Unit Record File with SAM... 79
Processing a Punched Card File.. 79

Programming for Associated Files... 79
Updating a Record.. 81
Optical-Mark-Read and Read-Column-Eliminate Modes..81
End-of-File Handling.. 84
Error Handling.. 84
Hints for Programming... 84
Non-Data Device Operations... 85

Processing a Printer File.. 88
Associated File on an IBM 3525.. 88
Printer Overflow... 88
Printer Controls.. 88
Programming for Output to an IBM 4248..91
Error Handling.. 92

Processing a Console File.. 93

Chapter 7. Processing a Device-Independent System File with SAM..................... 95
Restrictions for DTFDI Processing...95
Record Size...95
Error Handling.. 96

Wrong-Length Record Errors..96
Irrecoverable I/O Error...96

End-of-File Handling..97

Chapter 8. Requesting Control Functions..99
Program Loading.. 99

The Load Request...99
Load Request for a Phase in the SVA...100
Fast Loading of Frequently Used Phases...100

Virtual Storage Control.. 100
Fixing and Freeing a Page in Processor Storage..101
Determining the Run Mode of a Program.. 102
Extracting Partition-Related Information..102
Reducing the Number of Page Faults.. 102
Allocating Virtual Storage Dynamically... 103

Program Communication...103
Assigning and Releasing an I/O Unit... 105

Explanation of Function Codes in Detail..106
Timer Services... 108

Time-of-Day Clock... 108
Interval Timer...109

Linkage to User Exit Routines..110
Interval-Timer User Exit...110
Abnormal-End User Exit...112
Program-Check User Exit...112
Operator-Communication User Exit.. 113

Ending a Job Step.. 113
Program Linkage.. 113

Linkage Macros...115
Loading a Forms-Control Buffer.. 117
Multitasking Functions.. 118

Subtasking and I/O Requests.. 118
Starting (Attaching) a Subtask... 118
Ending (Detaching) a Subtask..120

 v

Task-to-Task Communication within Partition.. 120
Resource Protection...122
Resource-Share Control...125
DASD Record Protection (Track Hold)... 126
Shared Modules and Files..128
Multitasking Sample Program..129

Requesting Storage Dumps... 132
The DUMP Macro..132
The JDUMP Macro.. 132
The PDUMP Macro..132
The SDUMP and SDUMPX Macros... 132

Requesting Volume and Device Characteristics... 133
Retrieving Volume and Device Characteristics..133
Obtaining the Track Balance of a Device... 133
Obtaining the Track Capacity of a Device.. 134

Requesting System Information... 134
Writing and Deleting Messages (WTO, WTOR, and DOM Macros)..135

Routing the Message..135
Altering Message Text.. 135
Writing a Multiple-Line Message..136
Deleting Messages Already Written...136
WTO, WTOR, DOM Usage Examples.. 136

Example of an LBSERV MOUNT Request.. 138
Library Access for Application Programs.. 139

Storage Requirements... 139
Record I/O.. 140
Librarian Control Block...140
Accessing or Updating Librarian Member Data... 140
Library Access Functions... 141
Return Code Conventions.. 142
Record Formats.. 143
Processing Sequence of Sublibrary Chains... 143
Register Usage... 144
Librarian Exits...144
Library Access Request Sequence...147

Cross-Partition Communication.. 148
Identification of Communication User.. 149
Defining a Communication Path.. 150
Defining a Specific Connection.. 150
Defining an Open-Ended Connection.. 152
Data Transmission..152
Sending and Receiving Data.. 152
Receiving Data..158
The REPLY Function... 160
Clearing a Pending SEND/SENDR Request on the Sender's Side... 161
Clearing a Pending SEND/SENDR Request on the Receiver's Side...162
Disconnecting from a Communication Path.. 163
Terminating XPCC Usage..164
Abnormal End Processing..165

Compressing and Expanding Data.. 165
Compression and Expansion Dictionaries...166
Compression Processing... 167
Expansion Processing..167
Dictionary Entries.. 168

Compression Dictionary Entries.. 168
Expansion Dictionary Entries... 170
Dictionary Restrictions...171
Other Considerations... 171

vi

Compression Dictionary Examples..172
Expansion Dictionary Example.. 175

Building the CSRYCMPS Area.. 176
Determining if the CSRCMPSC Macro Can Be Issued on a System.. 178
Compression/Expansion Examples...178

Example 1...178
Example 2...179
Example 3...179

Appendix A. Assemble and Link-Edit Programs Using IOCS.................................181
Cataloging Assembled DTFxx and xxMOD Macros... 181
Assembling and Cataloging IOCS Modules...181
IOCS Sample Program...182

Assemble the DTFs and Logic Modules Separately...184
Comparison of the Three Possible Methods... 186

Appendix B. Direct Access Method (DAM)... 189
Defining the File...189
Processing the File...191

Opening the File... 192
Creating a File and Adding of Records to a File...192
Locating a Record...193
Locating a Free Space.. 197
Reading and Writing a Record..197
Non-Data Device Operation... 207
Error Handling.. 207
Closing the File...210

Appendix C. Processing a File with Physical IOCS (PIOCS).................................. 211
Opening the File...211

Disk Volumes – Output.. 212
Disk Volumes – Input...213

Processing of User Labels and Extent Information.. 213
Reading and Writing of Records.. 214

The Command Control (I/O-Request) Block... 215
The Execute Channel Program (EXCP) Macro... 215
The WAIT Macro...215
Additional Macros.. 216

Forcing an End-of-Volume Condition.. 216
Closing the File.. 217
Hints for Programming.. 217

Appendix D. Using System Control Macros in Reenterable Programs....................221

Notices..223
Programming Interface Information...224
Trademarks.. 224
Terms and Conditions for Product Documentation.. 224

Accessibility.. 227
Using Assistive Technologies.. 227
Documentation Format..227

Glossary.. 229

Index.. 265

 vii

viii

Figures

1. Schematic Example of the Processing of a Macro..1

2. Relation of Data Management to Devices and Application Program... 5

3. Cylinders and Tracks on a Volume of a CKD or ECKD Disk Device... 8

4. Track and Record Formats for CKD and ECKD Devices.. 9

5. Blocks as Stored on a Volume of an FBA Device.. 10

6. File, Extent, and Volume Relationships.. 12

7. Logical Record... 13

8. Stored Record of Variable Length... 13

9. Format of a Spanned Record...14

10. Block and Blocking Factor.. 15

11. Layout of a Control Interval.. 16

12. Hardware-Dependent Format of a CKD or ECKD Recordl..17

13. Records of Fixed and Variable Length (Without Key Area) on a CKD Disk...18

14. Spanned Records on CKD or ECKD Devices... 19

15. The Records of a File with Keys.. 21

16. Locating a Record Via an Index.. 21

17. Disk Volume Organization – Concepts..27

18. General VTOC Format for a Disk Volume..28

19. Format-1 Label Overview..28

20. Disk Volume Layout: One File plus VTOC... 29

21. Disk Volume Layout: Files with User-Standard Labels - Part 1... 30

22. Disk Volume Layout: Files with User-Standard Labels - Part 2... 31

23. Disk Volume Layout with VSAM Data Spaces...32

 ix

24. Tape Volumes with IBM and User-Standard Labels...33

25. Tape Volumes with Nonstandard Labels.. 33

26. Tape Volume with Unlabeled Files... 34

27. Relationship Between IOCS Macros and Logic Modules... 34

28. Sample DTFMT Macro... 35

29. Relationship Between Request Macro, DTF Table, and I/O Device Assignment.....................................37

30. Example of a Subset/Superset Naming Chart..39

31. Coding Example for the Use of a Work Area...44

32. Coding Example for Opening and Accessing a File.. 46

33. Example for Defining a Work File on Disk...50

34. Example of POINTS Macro with Work File Processing...53

35. Coding Example for Processing an Update File..61

36. Example of a Combined File... 81

37. OMR Data and Format-Descriptor Example... 83

38. Print Channel to Card Row Correspondence on an IBM 3525...87

39. Example for Using the LOAD Macro with a Local Directory List...100

40. PFIX and PFREE Example...102

41. Parameter List Generated by the ASPL Macro... 106

42. Example for a Device Assignment.. 108

43. Example of Using the Interval Timer Exit...111

44. Example of Multi-Task Linkage to a Common Exit Routine... 111

45. Example of an Exit Routine Processing a Program Check... 112

46. Example for Using the Macros CALL, SAVE, and RETURN... 116

47. Example for Loading an Alternate FCB...117

48. Waiting for Preferred and Secondary Events... 121

x

49. Use of the POST Macro... 122

50. Sharing a Resource in a Common Subroutine..123

51. Sharing a Routine Which Is Part of One Task... 124

52. Sharing a Resource in Different Subroutines... 124

53. Example of the UNLOCK Macro.. 125

54. Using the Track Hold Facility.. 128

55. Multitasking Sample Program.. 129

56. Example of Single-Line WTO.. 136

57. Example of Multiple-Line WTO... 137

58. Example of a Backward-Compatible WTO... 137

59. Example of WTO for Command Responses... 137

60. Example of WTOR... 137

61. Example of Application Control of Message Deletion (DOM).. 137

62. Library Access Request Sequence... 147

63. Job Stream for Assembling and Cataloging IOCS Modules...182

64. IOCS Sample Program - Source Code for Common Assembly.. 183

65. Program, DTF Tables, and Logic Modules in Storage... 184

66. Source Code Modifications for a Separate Assembly.. 185

67. Contents of Record 0 with Capacity-Record.. 193

68. Track Reference Fields – Physical Track Addressing...195

69. Track Reference Fields – Relative Track Addressing... 196

70. Prime Data Record and Related Overflow Records... 200

71. Relationship Between Source Program and Job Control I/O Assignment.. 211

72. Relationship Between the PIOCS Macros (No DTFPH Used)...216

73. Relationship Between DTFPH and Other PIOCS Macros...217

 xi

74. Example of Channel Programming a File-Protected CDK DASD File...219

75. Dynamically Acquiring Storage and Addressing this Storage..222

xii

Tables

1. Available Access Methods and their Scope of Support..22

2. Access Methods.. 24

3. Volume and File Labels as Supported by a VSE System.. 25

4. SAM DTFxx and xxMOD Macros by Supported Device Classes..41

5. IOCS Request Macros Used with SAM Declarative Macros..55

6. Sequence of GET/CNTRL/PUT Macros for Associated Files...80

7. XPCCB control block input ... 149

8. XPCCB control block output... 149

9. CONNECT request XPCCB input fields... 150

10. CONNECT request XPCCB output fields...151

11. SEND request - Input fields in the XPCCB used on the sender's side. ...154

12. SEND request - Output fields in the XPCCB used on the sender's side. .. 154

13. SEND request - Output fields in the XPCCB used on the receiver's side.. 155

14. IJBXADR 8-byte fields.. 155

15. REPLY request - Input fields in the XPCCB used on the sender's side. ..156

16. REPLY request - Output fields in the XPCCB used on the sender's side. ... 156

17. REPLY request - Output fields in the XPCCB used on the receiver's side... 156

18. SENDI request - Input fields in the XPCCB used on the sender's side. ... 157

19. SENDI request - Output fields in the XPCCB used on the sender's side. ...157

20. SENDI request - Output fields in the XPCCB used on the receiver's side...158

21. RECEIVE request - Input fields in the XPCCB used on the receiver's side. ... 158

22. RECEIVE request - Output fields in the XPCCB used on the receiver's side. 159

23. RECEIVE request - Output fields in the XPCCB used on the sender's side...159

 xiii

24. REPLY request - Input fields in the XPCCB used on the replier's side. .. 160

25. REPLY request - Output fields in the XPCCB used on the replier's side. ..160

26. REPLY request - Output fields in the XPCCB used on the sender's side... 160

27. CLEAR request - Input fields in the XPCCB used on the sender's side. ... 161

28. CLEAR request - Output fields in the XPCCB used on the sender's side. ...161

29. CLEAR request - Output fields in the XPCCB used on the receiver's side...161

30. PURGE request - Input fields in the XPCCB used on the receiver's side. .. 162

31. PURGE request - Output fields in the XPCCB used on the receiver's side. .. 162

32. PURGE request - Output fields in the XPCCB used on the sender's side..162

33. DISCONNECT request - Input fields in the XPCCB ... 163

34. DISCONNECT request - Output fields in the XPCCB ...163

35. DISCONNECT request - Output fields in the XPCCB used on the partner's side.................................. 163

36. TERMINATE request - Input fields in the XPCCB used by the system.. 164

37. TERMINATE request - Output fields in the XPCCB used by the system..164

38. TERMQSCE request - Output fields in the XPCCB, which have CONNECTs for terminating
applications pending (TERMQSCE only)..165

xiv

About This Publication

This publication is intended as a guide for programmers using the macro support available with IBM
z/VSE. These macros can be used in application programs (or routines of such programs) written in
assembler language.

The publication describes the two types of macros that z/VSE offers: data management or input/output
(IOCS) macros and control program macros.

Who Should Use This Publication
This publication is mainly intended for programmers writing application programs in assembler language.

Where to Find More Information
The macros mentioned in this book are described in detail in:

• z/VSE System Macros Reference

To efficiently use this publication, you should be familiar with other IBM publications that provide
information that you might need:

• High Level Assembler for z/OS & z/VM & z/VSE Programmer's Guide
• High Level Assembler for z/OS & z/VM & z/VSE Language Reference
• Principles of Operation publication for your processor.
• z/VSE Guide to System Functions

z/VSE IBM Documentation
IBM Documentation is the new home for IBM's technical information. The z/VSE IBM Documentation can
be found here:

https://www.ibm.com/docs/en/zvse/6.2

You can also find VSE user examples (in zipped format) at

https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

© Copyright IBM Corp. 1990, 2015 xv

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
https://www.ibm.com/docs/en/zvse/6.2
https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

xvi IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Summary of Changes

This publication has been updated to reflect terminology, maintenance, and editorial changes.

© Copyright IBM Corp. 1990, 2015 xvii

xviii IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 1. Introduction

To write the source code of a program, you would normally use a high-level programming language
supported by z/VSE. However, performance considerations may require you to code one or more of your
program's paths in assembler language. The macros described in z/VSE System Macros Reference provide
the necessary means to communicate with z/VSE on this level.

You can use these macros repeatedly in any of your programs. Their use reduces the possibility of
programming errors.

Note: The publication also uses the short form VSE to mean z/VSE or its predecessor, VSE/ESA.

Using a Macro in a Program
A macro, a single statement, causes the assembler to generate a sequence of instructions. This sequence
is determined by a macro definition stored in a sublibrary under the name of the macro's operation code.
The sublibrary must be accessible by the assembler.

Note: Starting with VSE/ESA 2.1. the DOS/VSE Assembler is no longer part of VSE. It has been replaced
by the High Level Assembler (full name: IBM High Level Assembler for MVS & VM & VSE) which must be
called with a // EXEC ASMA90.... JCL statement.

For related planning and migration information, refer to z/VSE Planning.

The High Level Assembler itself is described in the following publications:

• High Level Assembler for z/OS & z/VM & z/VSE Programmer's Guide
• High Level Assembler for z/OS & z/VM & z/VSE Language Reference

Figure 1 on page 1 shows how a macro is used in a source program, how the assembler generates
the desired sequence of code (also called a macro expansion), and how it inserts this sequence into your
source program.

 Source Program Source Program
 (Before) Assembler Operations (After)

 1 ... 1 ...
 2 ... 2 ...
 3 ... |1. Locate the macro defi- | 3 ...
 4 ... | nition. | 4 ...
 5 MACRO ===> |2. Perform selections and |===> 5 MACRO
 6 ... | substitutions as indic-| + ... |
 7 ... | ated by the macro. | + ... |
 ... |3. Insert the generated | + ... | Macro
 | instruction sequence | + ... | Expansion
 | (macro expansion) into | + ... |
 | the source program. | + ... |
 + ... |
 6 ...
 7 ...
 ...

Figure 1. Schematic Example of the Processing of a Macro

Types of Macros
Functionally, the available macros fall into two categories: control program macros and data management
or IOCS (input/output control system) macros.

• Control program macros

They enable you to make use of certain system services provided by VSE. Examples of these services
are the timer services or the multitasking functions. These macros are discussed in Chapter 8,
“Requesting Control Functions,” on page 99.

© Copyright IBM Corp. 1990, 2015 1

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf

• IOCS macros

They are a bit more complex. To use them, you should be familiar with the concepts of data
management as described in Chapter 2, “Data Management Concepts,” on page 5. The topic gives
you an overview of hardware-related input/output considerations; it tells how the IOCS macros relate to
these hardware-related considerations.

For a full description of these two categories of macros available from IBM, refer to z/VSE System Macros
Reference.

Before you go deeper into the subject of using macros in your program, familiarize yourself with a few
coding conventions.

Register Usage
Registers 2 through 12 are available for general use. However, the PUTR (PUT with Reply) macro makes
use of register 2. General registers 0, 1, 13, 14, and 15 are available to your program only under certain
conditions.

The following paragraphs describe the general uses of these registers by IOCS, but the description is not
meant to be all inclusive. For more information on subroutine linkage through registers, refer to “Linkage
Registers” on page 113. Certain applications might require different registers.

• Registers 0, 1, and 15

IBM-supplied macros use these registers to pass parameters and return codes. Therefore, the registers
may be used without restriction only for immediate computations.

• Register 13

System routines, and also IOCS routines, use this register as a pointer to a 72-byte save area. When
using the CALL, SAVE, or RETURN macro, you can set the address of the save area at the beginning of
each phase of your program, and leave it unchanged thereafter. However, if reentrant, read-only code is
shared among tasks, register 13 must contain the address of another save area to be used by that code
each time the code is used by another task.

• Registers 14 and 15

IOCS uses these registers for linkage without saving their contents. If you use the registers, either save
their contents (and reload them later) or finish with these registers before IOCS uses them.

Not all logic modules use standard save area conventions. Therefore, if you use a read-only logic
module (supplying a module save area) in a subroutine, the save area back-chain pointer can get lost.

• Floating Point Registers

If your program uses floating-point registers in a subroutine, ensure that this subroutine:

1. Saves their contents when it receives control.
2. Restores their contents when it returns control.

Macro Format
Following is an example of a macro showing the various fields (refer also to the documentation of the High
Level Assembler).

 ┌───── Name Field
 │
 │ ┌─────── Operation Field
 │ │
 │ │ ┌────── Operand Field
 │ │ │
 ↓ ↓ ↓
 ───── ───── ─────────────────────────────────────
 PROUT DTFPR OAREA=BUF1,BLKSIZE=121,DEVADDR=SYSLST

2 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Comments can be included just as in assembler instructions. However, a macro without an operand
requires a comma preceding the comment. Example:

 CANCEL , NO USE TO CONTINUE PROCESSING

The name field in a macro may contain a symbolic name. Some macros, CCB or TECB for example, require
a name.

The operation field must contain the mnemonic operation code of the macro.

The operands in the operand field are of positional format, of keyword format, or they are mixed.

Positional Format
If a macro has this format, its operands must be coded in a given order. Each operand, except the last,
must be followed by a comma; no embedded blanks are allowed. If an operand is to be omitted and
subsequent operands are to be included, a comma must be inserted to indicate the omission. No such
commas need be included after the operand coded last. For example, the macro GET (for a read-data
operation) uses the positional format. To read from a file named CDFILE, requesting the retrieved data to
be moved to a work area named WORK, you would code:

 GET CDFILE,WORK

Keyword Format
An operand written in keyword format has the form as shown by the example below:

 LABADDR=MYLABELS

where LABADDR is the keyword and MYLABELS is the specification (or value).

The keyword operands of a macro may appear in any order, and any operands not required may be
omitted. Different keyword operands may be written on the same line, each followed by a comma except
for the last operand of the macro. They may be written on separate lines as shown in Figure 28 on page
35.

Mixed Format
The operand list contains both positional and keyword operands. The keyword operands can be written in
any order, but they must be written to the right of any positional operand in the macro.

Continuation on the Next Line
Column 72 must contain a continuation character (any non-blank character) if the operands fill the
operand field and overflow onto another line.

Chapter 1. Introduction 3

4 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 2. Data Management Concepts

If you are already familiar with the data management functions of an operating system, you might want to
skip some of the sections. To familiarize yourself with the hardware-related aspects of programming for
I/O under VSE, read:

• “File, Extent, and Volume Relationship” on page 11.
• “Record, Block, and Control Interval” on page 12.

The term data management collectively describes those operating system functions that control the flow
of data from an input/output (I/O) device to the processing program's data buffer and vice versa. It
describes the functions that enforce data storage conventions.

You as a programmer are primarily concerned with the input and output requirements of your application.
Some of these requirements are:

• Does the program update the input file and will the updated file become the input file for future
processing?

• Is the data subject to inquiries?
• Is it faster to process the records of the file one after the other or by direct access?

The answers to these and many other questions determine, which of the available methods of file access
to choose. They determine how to organize your data or which storage device (disk or tape, for example)
is best suited for the application.

Before going into the actual data-management discussion, have a look at Figure 2 on page 5.

Legend: ===> = Flow of data

Figure 2. Relation of Data Management to Devices and Application Program

Figure 2 on page 5 shows that data management, a set of operating system routines called IOCS, is
primarily concerned with:

• Reading data

This involves the transfer of data from a device to an area in virtual storage. It involves locating logical
records, one after the other, if the unit of data transfer comprises two or more logical records.

• Writing data

This involves the transfer of data from virtual storage to an output device. It may involve the grouping
logical records into blocks if the unit of data transfer comprises two or more logical records.

© Copyright IBM Corp. 1990, 2015 5

This section discusses the data management concepts of VSE by major topics as follows:

• I/O-related hardware characteristics of interest to an application programmer – Section “I/O-Related
Hardware Characteristics” on page 6.

• The general organization of data stored on disk – Section “File, Extent, and Volume Relationship” on
page 11.

• A summary of criteria for selecting the best suited access method – Section “Choosing the Right Access
Method” on page 21.

• How the system identifies data stored on volumes of auxiliary storage – Section “Volume and File
Labels” on page 25.

• An overview of the IBM provided I/O macros and their use in an application program – Section “The
Input/Output Control System (IOCS)” on page 34.

I/O-Related Hardware Characteristics
This section gives an overview of those hardware characteristics that are of interest to an application
programmer. It discusses the characteristics of volumes for auxiliary storage – disk volumes and tape
volumes.

I/O Devices
Following is a list of I/O device classes supported by VSE:

• Serial only devices:

• Card readers and card punches
• Printers
• Magnetic tape drives
• Optical and magnetic character readers
• Consoles

• Direct access (disk) devices

The characteristics of the available devices may well influence your choice of I/O media for your
application. These characteristics therefore deserve a closer look.

Characteristics of Serial Devices
They all have one application-related characteristic in common. Your program can either read from the
device (for data input) or write to the device (for data output). It can either read from or write to the device
only one record after the other. Nearly all of the above mentioned device classes can be used for both
input and output, but not at the same time. Exceptions are:

• Card readers (input only)
• Card punches (output only)
• Printers (output only)
• Optical and magnetic character readers (input only)

Other characteristics that might influence your choice of the I/O media apply also to disk devices; they are
discussed in the next section.

General Device Characteristics
Characteristics you may want to consider are:

• Data transfer rate

6 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The number of bytes transferred within a second between external and processor storage. This rate is
considerably larger for a tape or a disk compared with a card reader, for example.

• External storage capacity

This is the amount of data that can be stored on the device; a characteristic that applies primarily to
magnetic tape and disk I/O devices. In case of a disk device, part of this capacity can be used by the
device itself for error checking and for synchronizing the transfer.

A volume on a disk I/O device has to accommodate some non-data areas. Therefore, the net data
capacity varies with the number and length of the records stored on the volume.

• Type of access

Serial-only devices permit sequential read or write operations and no more. Disk devices, on the other
hand, permit both sequential and direct read and write operations.

Sequential access means reading the data one record after the other as they are stored or writing one
record after the other as they are processed. Sequential access is possible on any device.

Direct access means to find a certain record for processing it alone. On serial-only devices, this is slow
because the desired record must be searched for from the beginning of the file that contains the record.
On disk devices, direct access is fast because the read head of the device goes directly to the address of
the desired record.

• Access time

This applies primarily to disk devices. It is the time it takes to place the read-write head on a certain
track plus the time for the desired record to rotate into the read position under the head.

• Device Addressing

Normally, devices are attached to the system with a channel, which means that they are continually
under the control of the system. Devices may also be connected over a link such as a telephone
connection. However, from a device addressing point of view, there is no difference.

When an I/O device is installed, it is attached to a channel via a separate or an integrated control unit.
One or more control units may be attached to one channel; one or more I/O devices may be attached to
one control unit. Each device has a hexadecimal three-digit address. This address represents hardware
relationship as shown by the example below:
 Channel number ────┐ ┌─── Control unit number
 │ │
 │ │ ┌─── Unit (device) number
 │ │ │
 ↓ ↓ ↓
 Device Address: 1 6 0

Disk Volume
A disk volume, also referred to as disk pack, consists of a number of disks, one above the other. Each disk,
except the top and bottom ones, has two surfaces for storing data; the top and bottom disks have only
one such surface.

Addressing a Disk Device
VSE supports two different addressing concepts for disk devices: the cylinder concept for CKD (count-key-
data) and ECKD* (extended count-key-data) disks and the relative-block concept for FBA (fixed block
architecture) disks. Whenever CKD devices are mentioned in this publication, this includes also ECKD
devices.)

The Cylinder Concept

Figure 3 on page 8 illustrates this concept, which applies to CKD and ECKD disk devices.

Chapter 2. Data Management Concepts 7

 Cylinder n ─────┐
 │
 Cylinder 200 ───┐ │
 │ Cylinder n ───┐ │ Cylinder 0 ───┐
 │ │ │ │
Cylinder 0 ───┐ │ │ ┌─┐ │ Cylinder 200 ───┐ │
 │ │ │ │ │ │ │ │
 ↓ ↓ ↓ │ │ ↓ ↓ ↓
 ===============================│ │================================
 Track 0 0 0 │ │ 0 0 0
 │ │
 Track 1 1 1 │ │ 1 1 1
 ===============================│ │================================
 Track 2 2 2 │ │ 2 2 2
 │ │
 Track 3 3 3 │ │ 3 3 3
 ===============================│ │================================
 Track 4 4 4 │ │ 4 4 4
 │ │

 Track n n n │ │ n n n
 ===============================│ │================================
 │ │
 │ │
 Spindle ───────────│ │
 │ │
 │ │

Figure 3. Cylinders and Tracks on a Volume of a CKD or ECKD Disk Device

Each disk of a volume on a CKD or ECKD disk device has a certain number of concentrically arranged
tracks, and each of these tracks has the same data capacity. Tracks on all surfaces located above
each other are looked at as a cylinder containing as many tracks as there are writing surfaces on the
volume.

Each surface is accessed either by one read-write head that can be moved from one cylinder to
another, or by a set of fixed read-write heads, one for each track.

The Relative-Block Concept

This concept applies to FBA devices. All data is stored in blocks of fixed length (corresponding to
the unit of data transfer implemented for the disk device). Each block, also called control interval, is
addressed by its number relative to the beginning of the volume.

Data Formats
The two addressing concepts described above require two different data formats: the count-key-data
format and the fixed-block-architecture format.

Count-Key-Data (CKD or ECKD) Format

Figure 4 on page 9 shows how records are stored on tracks 0, 1, and 2 of cylinder 3 of a volume.

8 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Figure 4. Track and Record Formats for CKD and ECKD Devices

Figure 4 on page 9 shows that each track has, at its beginning:

1. The track address, which is called the home address (HA). It contains:

• The address in the form cchh, where:

– cc = Cylinder number
– hh = Head number

• A flag byte indicating the condition of the track (such as alternate or defective).

The home address of a track always begins immediately behind the hardware-index marker
(hardware positioning) on the track.

2. A descriptor record, also referred to as record zero (R0). This record, which is always the first one
on a track, is used for alternate and defective track handling. The record contains two areas:

Count area
Data area

The descriptor record is followed by data records. Each data record on a track contains:

A count area (to find the data area within the record)
A key area (optional, may be used to identify the record)
A data area (containing the actual data stored in the record)

Fixed-Block-Architecture (FBA) Format

For an FBA disk device, tracks and records are formatted at the time of manufacture. There is no track
home address as on a CKD or ECKD device.

As Figure 5 on page 10 shows, each track contains a certain number of blocks, and each block
contains:

• An ID area (containing the address of the block itself or of an alternate block if the block is
defective).

• A data area (a fixed number of bytes).

Chapter 2. Data Management Concepts 9

Figure 5. Blocks as Stored on a Volume of an FBA Device

Alternate Tracks or Blocks
Not all CKD tracks or FBA blocks are available for primary use; some are reserved as alternate tracks or
blocks to contain data in place of a defective primary track or block.

Disk Extents
An extent is a certain area on a disk volume defined as a number of tracks or blocks and beginning at a
certain track or block relative to the beginning of the volume.

A special case is a split-cylinder extent. It occupies, for example, only tracks 0 through 6 out of 10 tracks
on each of the cylinders of a certain range. Split-cylinder extents can save access time if two or more
related files are placed in the same range of cylinders. To retrieve related records from different files
on the same cylinder, for instance, requires little or no movement of the disk drive's access mechanism.
Changing tracks – switching from one read/write head to another – occurs at electronic switching speed.

You can define a split-cylinder by a job control EXTENT statement. Refer to z/VSE System Control
Statements for details.

Volume Initialization
A disk volume must be initialized to contain an IBM standard volume label:

• On cylinder 0, track 0, record 3 for a CKD device.
• In block 1 for an FBA device.

To do this, use the IBM program Device Support Facilities. For more details, see the Device Support
Facilities publication.

The volume label includes, besides the label identifier, control information as follows:

1. The volume serial number
2. The address of the volume table of contents (VTOC)

The VTOC is an area reserved on every disk volume. The area contains file labels, that is, certain
information about all files residing on the volume. On a CKD disk volume, this area must be contained
within one cylinder.

Tape Volume
Records stored on tape are separated by spaces called gaps. These gaps are needed to let the tape
accelerate to read or write speed before reading or writing takes place. They are needed to let the tape
come to a halt after reading or writing a record is finished.

10 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

On some IBM tape devices, it is possible to read or to write without any stops between records. This kind
of operation is called streaming mode.

A tape can have 7 or 9 tracks. This has little effect on the use of a tape device. However, the system needs
to be informed about it before the tape is being accessed. A 9-track tape volume can always be read
forward or backward. Not so a 7-track volume.

Tape volumes are initialized with an IBM supplied utility program called INTTP. For information about
using this program, see z/VSE System Utilities.

You can initialize a tape volume with an IBM or an ANSI-standard volume label written as the first record
on the tape. If user-standard labels are to be written, this first record is required. Label handling routines
check the volume label and, if no standard volume label is present on an output tape, prompt the operator
so that he can supply a volume serial number. This then enables the label handling routines to write a
volume label onto the tape. A standard volume label for tape contains:

• The label identifier (any from VOL1 through VOL8)
• The volume serial number
• User defined control information

A tape volume may be left unlabeled or it may have nonstandard labels.

This ends the discussion on hardware related device characteristics. The next section discusses how data
stored on disk relates to these characteristics.

File, Extent, and Volume Relationship
Skip this section, if you are not concerned with data on disk.

A file is a set of related records. A typical example of a file is the collection of a company's pay data – one
record per employee.

The records of a file normally have a uniform structure for use in one or more applications. Finding the
most suitable structure for the records of a file is, in fact, an important tasks of developing an application
program.

How a file relates to the extents on one or more volumes depends on the size of the file and the available
disk space. Possible relationships are shown in Figure 6 on page 12.

Chapter 2. Data Management Concepts 11

http://publibfp.dhe.ibm.com/epubs/pdf/iesste61.pdf

Single File/Single Volume
┌─────────────┐ Only one file resides on the volume; it may occupy
│ Volume │ part or all of the available disk space.
└─────────────┘
<─── File ────>

Multi-Volume File
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ Volume 1 │ │ Volume 2 │ │ Volume 3 │
└─────────────┘ └─────────────┘ └─────────────┘
<──────────────────── File ─────────────────────>

 The file is written over two or more volumes.

 For sequential processing, these volumes may be
 mounted and processed, one after the other.

 For direct-access processing, all of these volumes
 must be mounted concurrently.

Multi-File Volume
┌─── Two or more files
│ Volume reside on one volume.
└───
|<─ File 1 ─>|<─ File 2 ─>|<─ File 3 ─>|

Multi-Extent File One Volume
┌──
│ Volume
└──
 <─ File 1 ─> <── File 2 ──> <─── File 1 ────> <─ File 2 ─>
|////////////| |/////////////////| File 1 ext.
 |//////////////| |////////////| File 2 ext.

 The extents for a file can be on one or more
 volumes. You define the place on disk and the
 length of an extent by an EXTENT job control
 statement. For a multiextent file, the system
 needs one EXTENT statement per extent.

Figure 6. File, Extent, and Volume Relationships

Record, Block, and Control Interval
A file is composed of records. These records may be stored in blocks of two or more records (to save
space and to reduce the number of I/O requests, for example). Each such block is, in fact, a physical
record consisting of two or more logical records.

A control interval (CI), the unit of transfer for an FBA disk, may contain one or more unblocked logical
records. It may contain one or more blocks of logical records; it may contain only part of a logical record.

This section describes the record formats that you can use for the various device types. It discusses
control information that you may have to supply in your program.

The Records of a File
A record of a file – also referred to as a logical record – is a collection of related fields of information. For
each field, you define in your program:

• The data type (binary or character, for example).
• The length to hold the largest item of data that may occur.

The sum of all field lengths in a record is the length of the record. Figure 7 on page 13 gives an example
of the layout of a logical record.

12 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Figure 7. Logical Record

Frequently, the length of a file's logical records is always the same. If this length is the same as the length
of the unit of data transfer, this file is said to have fixed-length unblocked records.

A list of names, for example, can be defined as a fixed-length record file, one record per name. Most likely,
the names do not have the same length. This means that names shorter than the specified length are
padded with blanks and longer names are truncated to make them fit into the name field of the record.

The various record formats that you may choose for a file are discussed in this section:

Variable-Length Records
An insurance company's file of holders is a typical application that works with records of variable length.
The more claims there were against a holder the longer is that holder's record in the file. Figure 8 on page
13 shows the format of a stored record in such a file of policy holders.

Figure 8. Stored Record of Variable Length

where:
BL =

Block length: A four-byte field called block descriptor. Needed also for variable-length unblocked
records because they are considered as blocks with a blocking factor of 1. The value in BL includes the
length of both BL and RL.

RL =
Record length: A four-byte field called record descriptor. The value in RL includes the length of field
RL.

The block and record lengths are to be stored in fields BL and RL as follows:
Bytes

Contents
0-1

Length in binary format
2-3

Reserved.

Spanned Records
This is the record format when the records of a file are too long to fit into the given block size. One part of
the record is in one block and the remainder in another. The two parts have to be reassembled again for
processing. The system does this automatically for EBCDIC records.

Figure 9 on page 14 shows how records are divided into variable length segments.

Chapter 2. Data Management Concepts 13

BL =
Block-Length field

RL =
Record-Length field

For BL, the format description given in Figure 8 on page 13 applies.

For RL, the format is as follows:

 X'LLLL0f00'
where
f=0: only segment
f=1: first segment
f=2: last segment
f=3: middle segment.

Figure 9. Format of a Spanned Record

Spanned records may be useful when a file is to be moved between device types allowing different block
sizes. The maximum block size of the receiving device may be smaller than one record. In this case every
record has to be cut into segments which is done by IOCS. Another example when spanned records may
be useful is in text processing applications where very long strings of text must be written. You need
not be concerned about the maximum data capacity of the I/O areas. IOCS divides your records into
segments that never exceed the size of the output area in your program.

Undefined Records
Any record format that does not conform to the rules for fixed- or variable-length records is considered an
undefined record. IOCS allows a program to process such records but does not support this processing.
Therefore, if you want to block or deblock such records, your program must provide for these functions.

Programs that write undefined records must communicate the size of each record to IOCS. Programs that
read such records are informed of their length by IOCS routines.

Block of Records
To save time and space in processing, records can be grouped into blocks. This results in larger transfer
units. For example, data stored on tape by one write operation is separated from the data stored by the
next write operation by an inter-record gap. The smaller your records are, the more gaps (unused space)
occur within a file of data. Gaps allow the tape device to accelerate before it starts to read or write the
data. They allow the tape to come to a halt after having read or written a record of data.

The time needed to start and stop a tape is significant for the overall speed with which your program can
read from or write to a tape. Fewer gaps therefore result in faster processing.

To reduce the number of gaps, you can group two or more records into a block, a technique called
blocking. The number of records in one block is called blocking factor. Figure 10 on page 15 illustrates
the blocking of records.

14 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Figure 10. Block and Blocking Factor

Control Interval
The unit of transfer for an FBA disk is the control interval (CI). Its smallest size is 512 bytes, the size of an
FBA block; but you can choose to define a CI size of two or more FBA blocks, if this is desirable. However,
since a CI on an FBA disk is always addressed by its relative FBA-block number, the CI size must be a
multiple of 512. Normally, one FBA block is also one CI.

A CI can hold one or more logical records. It can include free space.

CI format is used also by VSE/VSAM, an access method which is part of z/VSE and discussed in separate
publications. Control-interval format in this context therefore refers to sequentially organized files stored
on an FBA disk.

Figure 11 on page 16 shows one control interval comprised of two FBA blocks. It contains:

• Two data blocks
• Free space
• Control information for each of the data blocks (RDFs)
• Control information for the CI (CIDF)

You can optimize space utilization on an FBA disk by choosing a blocking factor that leaves little or no free
space in a CI.

Chapter 2. Data Management Concepts 15

Figure 11. Layout of a Control Interval

Blocking and Deblocking of Logical Records
Once you have defined your blocking factor in your program, the IOCS routines automatically handle
blocking and deblocking of logical records. An I/O request (such as a GET or a PUT macro) in your
program causes the next record of a block to be made available to your program on input or to be added
to the current block on output. This applies also to I/O from and to an FBA disk. Your program does not
become aware that the unit of transfer is a CI rather than a block. The IOCS routines handle the data
transfer between the device and the I/O areas in your program.

Device-Dependent Record Formats
Although the IOCS routines ensure that all hardware requirements are met, these formats are briefly
discussed. You may need to know about these formats if you have to design or implement a complex
application system.

Records on a CKD or ECKD Disk
A physical record on a CKD or ECKD disk consists of three distinct areas:

• Count area
• Key area (optional)
• Data area

Figure 12 on page 17 shows the format of a record with and without key area.

16 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Figure 12. Hardware-Dependent Format of a CKD or ECKD Recordl

Areas of interest are briefly discussed below:

• Count area

This area is recorded automatically and maintained by the system. The address field contains the
address of the data, where:
cc =

Cylinder number
hh =

Head (track) number
r =

Record number

The record number is the sequential position of the record on the track.
• Optional key area

The key field of this area contains an identifier of the record, such as a part number. If the data is
comprised of a block of logical records, this identifier is the highest or lowest key of these records in the
block. The field can have a length of up to 255 bytes.

• Data area

The area contains the data, which may be just one logical record, a number of records, or only a part
(segment) of a logical record if this is longer than the unit of transfer. A record of that length, a spanned
record, must have its key in the first segment if the key area is not used. A record on disk cannot span
volumes.

• Check bytes

They are maintained by the system.

Figure 13 on page 18 shows the format of the data area for records of fixed and variable length format,
unblocked and blocked. Figure 14 on page 19 shows an example of spanned records on a CKD or ECKD
device.

Chapter 2. Data Management Concepts 17

Figure 13. Records of Fixed and Variable Length (Without Key Area) on a CKD Disk

18 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

BL =
Block Length Field

SL =
Segment Descriptor Field: Gives the length of the segment and tells whether the segment is the first,
only, last, or middle one of the record.

Figure 14. Spanned Records on CKD or ECKD Devices

Records on a FBA Disk
Figure 11 on page 16 shows how data may be stored in a CI. It shows where in a CI the control
information (one or more RDFs and a CDIF) is stored.

A record or block of records can be shorter or longer than an FBA block. In other words, a record or block
may span CI boundaries. If you define this to your system's IOCS routines, IOCS automatically:

• Assembles the complete record in your program's input area on input.
• Writes the complete record to disk as segments that fit the CIs as defined in your program on output.

Records on Magnetic Tape
All standard record formats, including ASCII-coded records, are acceptable for magnetic tape. Spanned
records (EBCDIC only) may span volumes.

The records or blocks of an ASCII coded file may be preceded by a block prefix which can be up to 99
bytes long. However, ASCII records are processed in EBCDIC, and the system takes care of the conversion
and translation.

Chapter 2. Data Management Concepts 19

Records for a Printer
Printed output is always unblocked. The length of a record depends on the maximum length of a print line.

Carriage control for a printer can be specified to a certain extent by a control character in the data
records.

For an IBM 3800, you can select a character arrangement table by specifying a reference number
preceding the control character for carriage control.

Most printers have control buffers to control operations such as spacing over more than three lines (also
referred to as skips of forms), page eject, or the character set to be used. These buffers have to be loaded
with buffer images that meet the needs of your program. The buffers are:

• Forms-control buffer (FCB)

The buffer describes the layout of the printed page. It determines, for example, where the first print line
is placed on the page, how many lines per inch have to be printed, and where the last line on the page is
to be.

• Universal character-set buffer (UCB)

The buffer describes the character set of the mounted print band (or train).

The loading of a control buffer cannot be triggered by control information included in a print record.
However, since the contents of these buffers affect the format of your output page, loading the buffers is
briefly discussed below.

A print-control buffer can be loaded:

• Automatically by IPL during system startup.
• By the operator when issuing the LFCB or LUCB command.
• From within your program by coding the LFCB macro.
• As a separate job step by executing the SYSBUFLD program. For information about the operator

commands and about using the SYSBUFLD program, see z/VSE System Control Statements.
• Under VSE/POWER via the $$ LST statement. The statement is described in VSE/POWER Administration

and Operation.

Records on a Card Device
Card records for input are always unblocked and have a length of up to 80 or 96 characters, depending on
the characteristics of the card reader.

Card output may be any unblocked format. When variable-length records are punched, the length fields
for the records (BL and RL) are not punched.

You can specify the stacker that has to be used for output by a control character in the data records.

Records on the Console
Records may be entered or displayed in fixed-length or undefined format. The length of a record may not
exceed 256 characters.

Organization of Records in a File
The records in a file are sequenced, either as they were entered or sorted by one of their fields (containing
a key) or by a key external to their data content. Following is a discussion of the most commonly used
ways of organizing the records of a file:

Without Keys for Sequential Access
The records of the file are read (on input) or written (on output) as they are presented. A typical example
of such a file is the lines of data written to a printer.

20 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

To find a certain record of the file, your program must request successive read operations until this record
is retrieved from the file.

With Keys for Sequential and Direct Access
This applies only to a file on disk. IBM's VSE/VSAM is the access method that fully supports this way of
organizing the records of a file.

The records of the file can be sorted in ascending order of their keys. A number for each record, for
example, or any other data of significance. The file might look as shown in Figure 15 on page 21.

Sorted by Personnel Number

0015 John Jones 5A 23400 650102
0059 Ken Baker 88B 12000 870302
0073 Stan Kowalski 3C 16200 800601
0369 Jacob Ferrari 2D 24600 710301
0572 Peter Smith 5A 21000 700901
0573 Jerry Tames 65D 30000 601001
0773 Jim Brown 3C 18000 751115
0928 Mike Rose 4B 18000 851115
1457 Tom Hatfield 50B 26400 650102

Sorted by Department Number

0369 Jacob Ferrari 2D 24600 710301
0073 Stan Kowalski 3C 16200 800601
0773 Jim Brown 3C 18000 751115
0928 Mike Rose 4B 18000 851115
0015 John Jones 5A 23400 650102
0572 Peter Smith 5A 21000 700901
1457 Tom Hatfield 50B 26400 650102
0573 Jerry Tames 65D 30000 601001
0059 Ken Baker 88B 12000 870302

Figure 15. The Records of a File with Keys

If the keys are not unique (if there were persons with the same name, for instance), a secondary key field
can help. This method of using such a key organization is comparable to the use of a telephone directory.
It allows for one or more indexes to be built for the file to speed up direct access. Such an index would
include the key of every record in the file together with the record's address.

As “Organization of Records in a File” on page 20 shows, the records of a file with an index need not be
ordered in key sequence. Only the index must be ordered in that sequence. By locating the key of the
desired record, the access method can retrieve the record directly.

Figure 16. Locating a Record Via an Index

Choosing the Right Access Method
For you as an application programmer, an access method is a set of macros that:

1. Define the characteristics of the data that your program is to process.
2. Request an I/O service at those points in your program where this service is required.

Chapter 2. Data Management Concepts 21

An access method provides you with the functions needed to store and to retrieve your data. Based on
your definitions, the access method links your program with the selected I/O device.

Following are some of the major criteria for choosing the right access method:

• The mode of processing (sequential or direct access)
• Scope of support by the access method
• Available programming language support

Sequential Versus Direct Processing
The efficiency of sequential processing depends on the percentage of records handled in one run and
on the size of your data blocks. If a file is used frequently or if the transactions for single records can
be saved up for some time, a high percentage of the records can be handled in one run. Sequential
processing is indicated in this case. For sparse activity, or if immediate processing is required, direct
processing is the preferred method.

The following rule of thumb may help you in making the right decision: if the number of blocks is smaller
than the number of affected records multiplied by 1.7, sequential processing is faster.

Level of Support
Quite frequently, the level of IOCS service offered by an access method is a significant selection criterion.

Table 1 on page 22 might help you in making an initial selection. A more detailed summary of the
support by the available access methods follows Table 1 on page 22.

Table 1. Available Access Methods and their Scope of Support

Access Method Scope of Support Supported Device Classes

Sequential Access Method
(SAM)

Simple, sequential applications. No
automatic extensions of the file. No space
management.

All

SAM for a file in VSAM-
managed space

Same as above, but automatic extensions
of the file are possible.

Disk

VSE/VSAM (see Note) Applications that require sequential access,
direct access by key, or both. Automatic
extension of a file is possible. Includes
routines for managing the available disk
space.

Disk

Direct Access Method (DAM) Inquiry type applications. Access is by key
or by record address as determined by a
randomizing algorithm in your program.

CKD or ECKD disks only

Indexed-Sequential Access
Method (ISAM)

An access method for which IBM
has discontinued further development.
Applications that require sequential access
or direct access by key or both. Automatic
extension of a file is not possible. Does not
include routines for space management.

Only CKD disks of earlier
design: 2311 2314/2319
3330/3333 3340/3344

Note: This is the recommended access method if the records of a file are to be processed both
sequentially and direct. For more information about VSE/VSAM, see the publications:

• VSE/VSAM Commands
• VSE/VSAM User's Guide and Application Programming

22 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesvoe70.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesvge70.pdf

Sequential Access Method (SAM)
You can use SAM for the processing of files on all supported I/O devices. It stores and retrieves the
records of a file, one record after the other. It can process these records blocked or unblocked.

If the accessed file resides on disk, SAM can update a file in place.

SAM is efficient if most or all records are to be processed in sequential order. The access method is
discussed in more detail in the subsequent topics of this publication.

VSE/VSAM
An access method available as an IBM licensed program. It is one of the base programs of z/VSE.

This access method offers automatic space allocation and supports alternate indexes. This makes your
operation less dependent on device characteristics. The access method manages the available disk space
and the files stored in this space. It uses for that purpose a master catalog and, optionally, one or more
user catalogs. VSE/VSAM includes a service program, Access Method Services, which can:

• Define and maintain a VSAM file
• Load records into a VSAM file
• Build one or more alternate indexes for a VSAM file
• Copy and print a file
• Create a backup copy of a VSAM file and restore this copy
• Recover from damage to data
• Convert a SAM or ISAM file to the VSAM format

VSE/VSAM allows you to choose from four different file (data set) organizations:

• Key-sequenced data set (KSDS)
• Entry-sequenced data set (ESDS)
• Relative-record data set (RRDS)
• Variable-length relative-record data set (VRDS)

All of which offer additional processing options. VSE/VSAM supports, in addition, SAM ESDS files to
be accessed with SAM macros. For details about this support, see the VSE/VSAM User's Guide and
Application Programming.

Using VSE/VSAM is not discussed in this publication. For more information about the access method, see:

• VSE/VSAM Commands
• VSE/VSAM User's Guide and Application Programming.

Direct Access Method (DAM)
DAM handles direct-access processing of a file on CKD disk devices only. It supports all unblocked record
formats.

The records of the file can have fixed-length keys but need not be sorted by those keys. Your program,
however, must include an algorithm that converts a key to a valid disk address. If the records of a file do
not have keys, they are identified by their track addresses.

DAM does not support any of the following functions; your program must provide for them:

• Handle overflow records
• Locate synonym records
• Delete records
• Process a file that is not entirely online

Chapter 2. Data Management Concepts 23

http://publibfp.dhe.ibm.com/epubs/pdf/iesvge70.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesvge70.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesvoe70.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesvge70.pdf

A DAM file must be online (that is, all of its volumes must be mounted) whenever it is processed. To
reorganize the file, either disk space of twice the size of the file must be online or you must use a tape as
intermediate storage.

For more information about this access method, turn to Appendix B, “Direct Access Method (DAM),” on
page 189.

Indexed Sequential Access Method (ISAM)
ISAM is an access method that supports sequential and also direct processing of data on CKD disk
devices of earlier design.

To process a file, ISAM requires that the file's records have keys of a fixed length. ISAM maintains a two-
or three-level index of the highest record keys on the tracks used by a file.

ISAM can handle a file overflow within the limits of available extents.

ISAM does not:

• Handle records of variable length
• Handle a file that is not entirely online

For performance reasons, a file accessed by ISAM needs to be reorganized from time to time. This
requires that twice the size of the file is kept online or that a tape is used as intermediate storage.

IBM has discontinued further development effort for this access method. Consider using VSE/VSAM
instead of ISAM if certain data on disk is to be accessed both sequentially and direct.

The access method is not discussed any further in this publication. The macros in support of this
access method are documented in z/VSE System Macros Reference.

Support of Access Methods by Programming Languages
An overview of the access methods supported in the various programming languages is given in Table 2
on page 24.

Table 2. Access Methods

Programming
Language

Supported Access Method

SAM VSAM DAM ISAM

COBOL YES YES YES YES

C/370 YES YES YES YES

VS FORTRAN YES YES* YES** NO

RPG II* YES YES YES YES

PL/I YES YES YES*** YES

Assembler YES YES YES YES

*
Only ESDS and RRDS.

**
The user specifies the relative record numbers in the file.

With keys or with user-specified relative record numbers.

This ends the introduction to IOCS under VSE. The next topic discusses the kinds of labels that are stored
on disk or tape volumes.

24 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Volume and File Labels
Volume and file labels are records stored on a storage medium such as a disk or a tape volume. Their main
purpose is to electronically identify the volume on which they are stored and the file with which they are
associated. VSE can process labels that follow the formats summarized below:

• IBM Standard Labels

Records of a fixed length. IBM standard labels are required for disk volumes and for files on these
volumes. They are optional for tape volumes.

• User-Standard Labels

Records of a fixed length. They apply to files on disk or on tape, and they are meaningful for files whose
records are processed sequentially.

• Nonstandard Labels

These labels do not conform to the specifications for IBM or user-standard labels. They may have any
length and may contain any information that you desire. Programming for the processing of nonstandard
labels can be quite cumbersome, however.

VSE supports these labels as follows:

• For a volume

The IBM standard volume label – A volume that has standard labels must have a volume label. The label
has the identifier VOL1 in its first four character positions.

• For a file

IBM standard labels – If a volume has a standard label, every file residing on the volume must have at
least one file label. An IBM standard file label on disk contains the name of the associated file. An IBM
standard file label on tape contains the following in its first four character positions:

– HDRn = For header label n
– EOFn = For end-of-file label n
– EOVn = For end-of-volume label n

User-standard labels – If a volume has IBM standard labels, a file may also have user-standard labels. A
user-standard file label has the following identifier in its first four character positions:

– UHLn = For user-header label n
– UTLn = For user-trailer label n

“Volume and File Labels” on page 25 shows which labels are mandatory (M) for the various types of
devices and which labels are optional (O).

Table 3. Volume and File Labels as Supported by a VSE System

Label Identifier

Volume Label Standard File Label

IBM User

Disk

 Sequential (DTFSD)
 and Direct (DTFDA)
only

VOL 1 M File Identifier M UHLn O

UTLn O

Tape
 EBCDIC and ASCI

VOL 1 O HDR1, HDR2 O
EOF1, EOF2
EOV1, EOV2

UHLn O

UTLn O

Chapter 2. Data Management Concepts 25

For tape volumes and files, VSE allows you to use nonstandard labels or no labels.

IOCS writes the required labels for an output file, based on information that you supply in one of the
following ways:

• In the DTFxx macro that defines the file.
• By job control label information (DLBL, EXTENT, or TLBL statements)
• By both.

For a description of the DLBL, EXTENT and TLBL statements, see z/VSE System Control Statements. How
to use these statements is discussed in z/VSE Guide to System Functions.

IOCS checks the existing labels for an input file to verify that the correct volume and file is being
accessed.

Volume Labels
A volume label (VOL1) is written onto a disk or tape volume when the volume is initialized.

The initialization programs write the VOL1 label at a fixed location on the volume.

Initializing a Disk Volume
A new disk volume must be identified (labeled) on the system that will use the volume. To do this, you use
the Device Support Facilities program of your VSE system.

You can have the program write up to seven additional volume labels (VOL2 through VOL8). However, only
a VOL1 label is supported by VSE.

The Device Support Facilities program also writes the file label for the volume table of contents (VTOC)
and formats the VTOC. The VTOC is an area pointed to by the VOL1 label. This area contains the file labels
of all files on the volume.

Initializing a Tape Volume
A new tape volume, if it is to be labeled, must be initialized by an Initialize Tape (INTTP) utility run. The
utility writes, onto the volume, a VOL1 label and, optionally, up to seven additional volume labels (VOL2
through VOL8). However, only a VOL1 label is supported by VSE. How to use the utility is described in
z/VSE System Utilities.

File Labels
Files must have labels when they are stored on disk. They can be without labels if they are stored on an
unlabeled tape.

Disk File Labels
A file on disk must have at least one file label. The labels of a file identify each extent of this file on its
volume. As mentioned earlier, disk file labels are stored in the volume's VTOC.

Tape File Labels
For a file on a labeled tape volume, IOCS writes a HDR1 label as the first record of the file and a HDR2
label as the second record. It writes an EOF1 and an EOF2 label at the end of the file and an EOV1 and an
EOV2 label at the end of the volume.

Volume Organization
This section describes how the various types of data volumes are organized.

26 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesste61.pdf

Disk Volume
Figure 17 on page 27 shows how the volume label and the VTOC relate to each other. It shows how IOCS
uses the labels stored in the VTOC to locate the extents of the associated file.

Figure 17. Disk Volume Organization – Concepts

Placement of IBM Standard Labels
On the volume of a CKD disk, the volume label always starts at record location 3 of track 0 on cylinder 0
(the first two records on this track are reserved).

On the volume of an FBA disk, the volume label is the first record in the second FBA block.

Layout of the VTOC
Figure 18 on page 28 shows the general layout of a disk VTOC with a VTOC label. Following is a summary
of the purpose of the various types of labels that may be stored in a VTOC:
Format-1:

Defines up to three extents of a file or a VSAM data space.
Format-2:

Used by ISAM.
Format-3:

Needed when a file (or a VSAM data space) occupies more than 3 extents on the volume.
Format-4:

Defines the VTOC itself.
Format-5:

Not used on a VSE system.

Chapter 2. Data Management Concepts 27

For details about the contents of the various types of disk file labels, see z/VSE System Macros Reference.

Figure 18. General VTOC Format for a Disk Volume

The Format-1 Label
Figure 19 on page 28 expands on Figure 18 on page 28 by showing the most significant fields of the
format-1 label. Up to three data extents of a file are identified and located with the format-1 label of a file.
One or more format-3 labels are written by IOCS if a file has more than 3 extents.

Figure 19. Format-1 Label Overview

Placement and Capacity of the VTOC
You define the location of the VTOC and its length to the system when you initialize the volume. This
location cannot be within an area that is reserved for alternate use.

For an FBA disk, the VTOC can begin at any block location, except blocks 0 and 1 on a non-SYSRES
volume. It can start at any block location behind the system area on a SYSRES volume.

Each label in the VTOC requires a three-byte record definition field. In addition, a one-byte definition field
is required per control interval (CI). Therefore, to find out how many labels (L) fit into a control interval,
use the formula:

 L = (CCI-size - 4) / 143 x NNo. of CIs

The VTOC can contain up to 999 file labels.

For a CKD disk, the VTOC can begin on any track except track 0 on cylinder 0 on a non-SYSRES volume. It
can begin at any track behind the system area on a SYSRES volume.

Note: If the prime data area of an ISAM file spans several volumes, the VTOC for the first volume must
precede the prime data area. On the remaining volumes except the last, the VTOC must be on cylinder 0.
On the last volume, the VTOC may be on cylinder 0 or it may follow the prime data area.

The capacity of a VTOC depends on the cylinder capacity of the disk device that is being used. If you have
many small files on a volume and you can foresee VTOC capacity problems, consider placing your files
under control of a VSAM catalog.

Placement of User-Standard File Labels
IOCS writes user-standard file labels on the first track of the first extent of the file on a CKD disk or in the
first CI of the file on an FBA disk. Therefore, if user-standard labels are used on a CKD disk, the first extent

28 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

on the disk volume must be at least two tracks long. Your data records then start with the second track of
the extent.

Disk Volume Layout Examples
The examples show in what arrangement IOCS writes labels on volumes, cylinders, and tracks on output.
IOCS expects labels to be so arranged on input. Each of the examples shows:

• How the space on the volume is used (cylinder distribution).
• The layout of the track with volume labels and VTOC.

Some of the examples give the contents of extent fields of the first format-1 label and the format-4 label
in the VTOC.

The examples are:

• A CKD volume of 410 cylinders with the VTOC beginning on track 1 of cylinder 100 – Figure 20 on page
29.

• A CKD volume of 202 cylinders with disk files that have user-standard labels – Figure 21 on page 30.
• A multivolume VSAM layout showing the relationship between the labels, the catalog, the data space,

and the files – Figure 23 on page 32.

Figure 20. Disk Volume Layout: One File plus VTOC

Chapter 2. Data Management Concepts 29

Figure 21. Disk Volume Layout: Files with User-Standard Labels - Part 1

30 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Figure 22. Disk Volume Layout: Files with User-Standard Labels - Part 2

Chapter 2. Data Management Concepts 31

Volume Layout
 Volume 1
 ┌──────┬──────────────┬──────────────┬──────────────┬──────────────┐
 │ VTOC │ Data Space 1 │ VSAM Catalog │ Data Space 1 │ Data Space 2 │
 └──────┴──────────────┴──────────────┴──────────────┴──────────────┘
 File A File B Free Space File C *

 Volume 2
 ┌──────┬──────────────┬──────────┬──────────┬──────────────┐
 │ VTOC │ Data Space 3 │ SAM File │ DAM File │ Data Space 3 │
 └──────┴──────────────┴──────────┴──────────┴──────────────┘
 File D File E

VTOC Layout
 Volume 1
 ┌───────┬──────────┬───────────────────────────────────────┐
 │ │ │ IBM Standard File Labels for: │
 │ VTOC │ Format-5 ├─────────┬──────────────┬──────────────┤
 │ Label │ Label ** │ Catalog │ Data Space 1 │ Data Space 2 │
 └───────┴──────────┴─────────┴──────────────┴──────────────┘

 Volume 2
 ┌───────┬──────────┬───────────────────────────────────────┐
 │ │ │ IBM Standard File Labels for: │
 │ VTOC │ Format-5 ├───────────────┬───────────┬───────────┤
 │ Label │ Label ** │ Data Space 3 │ DAM File │ SAM File │
 └───────┴──────────┴───────────────┴───────────┴───────────┘

*
A unique file.

**
Not used by VSE.

Figure 23. Disk Volume Layout with VSAM Data Spaces

Tape Volume
On a labeled tape, the first record must be a volume label (VOL1).

IBM standard tape file labels are located immediately before and after the file. A header label precedes
each file and a trailer label follows each file. User-standard labels, if present, always follow the IBM
standard header and trailer labels. No user-standard label can be written on a volume without IBM
standard labels.

Each label is followed by an interblock gap; a tapemark separates a set of labels from the data records.
Two tapemarks follow the end of the last file on a volume; one tapemark follows the last (or only) trailer
label of a file.

Logical IOCS writes these tapemarks automatically, except when you request LIOCS not to write them.
You can do this by defining certain options in the DTFMT macro for your tape file.

Figure 24 on page 33 shows the layout of a tape volume with IBM and user-standard labels. Figure 25
on page 33 shows the layout of a volume with nonstandard labels. These layouts assume that IOCS is
instructed not to suppress the writing of tapemarks.

Figure 26 on page 34 shows the layout of a tape volume without labels, again with IOCS instructed not
to suppress the writing of tapemarks.

32 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Legend: TM = Tapemark

Single-Volume File
 Minimum Label Set
┌────────┬───────┬───────┬───┬──────────────┬───┬───────┬───────┬───┬───┐
│ VOL1 │ HDR1 │ HDR2 │ │ │ │ EOF1 │ EOF2 │ │ │
│ Label │ Label │ Label │TM │ Data Records │TM │ Label │ Label │TM │TM │
└────────┴───────┴───────┴───┴──────────────┴───┴───────┴───────┴───┴───┘

 Maximum Label Set
┌──────┬──────┬──────┬──────┬──┬───────┬──┬──────┬───────┬───────┬──┬──┐
│VOL1 │HDR1 │HDR2 │UHLn │ │Data │ │EOF1 │EOF2 │UTLn │ │ │
│Label │Label │Label │Labels│TM│Records│TM│Label │Label │Labels │TM│TM│
└──────┴──────┴──────┴──────┴──┴───────┴──┴──────┴───────┴───────┴──┴──┘

Multi-Volume File
 First and Following Volumes
┌───────┬─────────┬───┬─────────┬───┬─────────┬───┬
│VOL1 │Header │ │ Data │ │Trailer │ │
│Label │Labels │TM │ Records │TM │Labels │TM │
└───────┴─────────┴───┴─────────┴───┴─────────┴───┴

 Last Volume
┌───────┬─────────┬───┬─────────┬───┬─────────┬───┬───┐
│VOL1 │Header │ │ Data │ │Trailer │ │ │
│Label │Labels │TM │ Records │TM │Labels │TM │TM │
└───────┴─────────┴───┴─────────┴───┴─────────┴───┴───┘

Multi-File Volume
┌──────┬────────┬───┬───────┬───┬─────────┬───┬────────┬───┬───────┬─
│VOL1 │Header │ │File-A │ │Trailer │ │Header │ │File-B │
│Label │Labels │TM │Data │TM │Labels │TM │Labels │TM │Data │
└──────┴────────┴───┴───────┴───┴─────────┴───┴────────┴───┴───────┴──

──┬───┬────────┬───┬────────┬───┬───────┬───┬────────┬───┬───┐
 │ │Trailer │ │Header │ │File-C │ │Trailer │ │ │
 │TM │Labels │TM │Labels │TM │Data │TM │Labels │TM │TM │
 ─┴───┴────────┴───┴────────┴───┴───────┴───┴────────┴───┴───┘

Figure 24. Tape Volumes with IBM and User-Standard Labels

Legend: TM = Tapemark; N-St = Nonstandard

Single-File Volume
 ┌───────────┬───┬────────┬───┬────────────┬───┬───┐
 │N-St Header│ │ File A │ │N-St Trailer│ │ │
 │Label(s) │TM │ Data │TM │Label(s) │TM │TM │
 └───────────┴───┴────────┴───┴────────────┴───┴───┘

Multi-File Volume
 ┌───────────┬───┬────────┬───┬────────────┬───┬───────────┬───┬───
 │N-St Header│ │ File A │ │N-St Trailer│ │N-St Header│ │
 │Label(s) │TM │ Data │TM │Label(s) │TM │Label(s) │TM │
 └───────────┴───┴────────┴───┴────────────┴───┴───────────┴───┴──

 ──┬────────┬───┬────────────┬───┬───┐
 │ File B │ │N-St Trailer│ │ │
 │ Data │TM │Label(s) │TM │TM │
 ───┴────────┴───┴────────────┴───┴───┘

Figure 25. Tape Volumes with Nonstandard Labels

Chapter 2. Data Management Concepts 33

Legend: TM = Tapemark

Single-File Volume
 ┌────┬─────────────┬────┬────┐
 │ TM │ File-A Data │ TM │ TM │
 └────┴─────────────┴────┴────┘

Multi-File Volume
 ┌────┬─────────────┬────┬────┬─────────────┬────┬────┐
 │ TM │ File-A Data │ TM │ TM │ File-B Data │ TM │ TM │
 └────┴─────────────┴────┴────┴─────────────┴────┴────┘

Figure 26. Tape Volume with Unlabeled Files

The Input/Output Control System (IOCS)
For you as an application programmer, IOCS is a set of macros that you can use to declare the
characteristics of data and request an I/O operation. IOCS macros are divided into IOCS declarative
and IOCS request macros.

• Declarative macros

There are two related types: DTFxx (Define the file) and xxMOD (module generation).

A DTFxx macro defines a file for a certain access method and the type of the I/O device that is to be
used.

An xxMOD macro defines the logic module that controls the execution of the I/O operation requested by
a request macro.

• IOCS request macros

An IOCS request macro identifies the I/O operation that is to be performed. Request macros are
discussed throughout the publication. The GET macro for example, indicates that your program needs a
record to be read into its input area.

An IOCS request macro normally initiates the action to be performed by branching to a logic module.
Linkage between your program and a logic module is established as follows:

1. By the assembler when it assembles a DTF (table), based on your DTFxx macro and, if necessary, an
xxMOD macro.

2. By the linkage editor when it processes the assembled module(s).

Figure 27 on page 34 shows the relationship between a program, the assembled DTF, and the related
logic module. The file which is processed in this example is named CARD, the name of the related logic
module is IJCFAOZ0.
 Request Macro DTF Table Logic Module

 PUT CARD

 L 1,=A(CARD) ─────→ CARD DTFCD

 DC V(IJCFAOZ0) ─────→ IJCFAOZ0

Figure 27. Relationship Between IOCS Macros and Logic Modules

DTFxx Macro
A DTFxx macro must be coded for each logical file that your program wants to refer to by means of a
request macro such as GET or PUT, READ or WRITE, or CNTRL. The macro:

• Determines the access method that is to be used by the system.
• Describes the characteristics of the file.

34 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

• Indicates the type of processing for the file.
• Specifies the virtual storage areas and routines to be used in processing the file.

If a GET macro is issued, for example, the related DTFxx macro supplies information such as:

• Record type and length.
• Logical unit name of the device from which the record is to be read.
• Address of the area in storage where the record is to be made available for processing by your program.

Figure 28 on page 35 shows an example of a DTFMT macro; it defines a file on magnetic tape.

 Column 72
 OLDMSTR DTFMT BLKSIZE=400, X
 DEVADDR=SYS001, X
 EOFADDR=EOFMSTR, X
 FILABL=STD, X
 IOAREA1=AREAONE, X
 ERROPT=CKOLDBLK, X
 IOAREA2=AREATWO, X
 IOREG=(3), X
 LABADDR=CKOLDBLK, X
 RECFORM=FIXBLK, X
 RECSIZE=80, X
 REWIND=UNLOAD, X
 TYPEFLE=INPUT, X
 WLRERR=REG6

Figure 28. Sample DTFMT Macro

As the example in Figure 28 on page 35 shows, a name is specified in the name field of the definition
macro. A DTFxx macro must always have a name in its name field; the I/O request macros for the defined
file (such as OPEN, CLOSE, GET, and PUT) must specify this name as an operand.

The Access Methods of IOCS
The DTFxx macro you use in your program depends on the type of device to be used and on how your data
is to be accessed:

• Processing with the sequential access method (SAM):

SAM processing applies when records are to be processed one after the other. Processing files on the
various types of devices by using SAM is described in topics as follows:

– Chapter 3, “Defining and Processing a File with SAM,” on page 41
– Chapter 4, “Processing a Disk File with SAM,” on page 57
– Chapter 5, “Processing a Tape File with SAM,” on page 65
– Chapter 6, “Processing a Unit Record File with SAM,” on page 79
– Chapter 7, “ Processing a Device-Independent System File with SAM,” on page 95
– Chapter 7, “ Processing a Device-Independent System File with SAM,” on page 95

Chapters 4 through 8 expand on Chapter 3.
• Processing with the direct access method (DAM):

The use of DAM is indicated if the record locations of a file on disk are to be accessed directly. In
your program, you must define the file by coding a DTFDA macro. Processing with DAM is described in
Appendix B, “Direct Access Method (DAM),” on page 189.

• Processing with the indexed sequential access method (ISAM):

ISAM does not support the full range of VSE-supported disk devices. Therefore, consider using the
licensed IBM program VSE/VSAM instead of ISAM.

Programs written for processing ISAM files can be used in a VSAM environment through the ISAM
Interface Program. For reference purposes, the DTFIS macro is still described in z/VSE System Macros
Reference.

Chapter 2. Data Management Concepts 35

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

The access methods referred to above comprise the logical IOCS.

The DTF Table
A DTFxx macro generates a DTF table. This table contains descriptive information about the related file.

Generally, there is no need for an application program to access fields within a DTF table. However, should
you need to reference a field within a DTF table in your program (for example to test error information in
the CCB or a certain field of the DTF table), you can reference this table by using the symbol

 filenamex

where x is a letter used to access a field of interest.

When you reference the DTF table, ensure addressability through the use of a base register.

Logical Units
The technique of using symbolic rather than actual device-addresses allows you to write your program as
if all devices were available. Instead of defining the device address in the program, you supply a logical
unit name as a symbolic address. When the program is running, the logical unit can be assigned to a free
device of the required type. In a DTFxx macro, you specify the name of a logical unit in the DEVADDR
operand.

A logical unit name has the form SYSxxx, and you must choose this name from a fixed set of names as
follows:
SYSRDR

Applies to: card reader, magnetic tape unit, or disk extent; used primarily as input unit for job control
statements.

SYSIPT
Applies to: card reader, magnetic tape unit, or disk extent; used as the primary input unit for
programs.

SYSPCH
Applies to: card punch, magnetic tape unit, or disk extent; used as the primary unit for punched
output.

SYSLST
Applies to: printer, magnetic tape unit, or disk extent; used as the primary unit for printed output.

SYSLOG
Applies to the operator console used for communication between the operator and the system. Can
also be assigned to a printer.

SYSnnn
Represents all the other (programmer) logical units that can be used under VSE. These units range
from SYS000 to SYS254. Figure 29 on page 37 shows how the logical unit you supply in your
program relates the program to an I/O device of your system.

Each of these programmer logical units can be assigned to any partition without a prescribed
sequence, except when using DAM, where EXTENT job control statements must be supplied and
the logical unit names for multivolume files must be assigned in consecutive order.

36 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Source Program DTF Table Job Control Physical Device

 ...
 GET FILE1 ──┐
 ... │
 ... │
 <<<──>FILE1 DTFMT
 ...
 DEVADDR=SYS015 ─────┐
 ... │
 ↓
 ASSGN SYS015,180 ────> Tape unit
 at 180

Figure 29. Relationship Between Request Macro, DTF Table, and I/O Device Assignment

For extents on different volumes, different logical units must be assigned for a file. For files processed by
SAM or DAM, only one logical unit can be assigned to all extents of a file on one volume.

For a file on disk, you can supply the logical unit name in the job control EXTENT statement. The system
uses this logical unit name, if you supply such a name also in the DEVADDR of the DTFxx macro.

A logical unit is assigned to a device by way of the job control ASSGN statement or command. A program
that processes tape records, for example, can call the tape device SYS015. When the program is about to
be executed, the operator can assign (by an ASSGN command) any available tape drive to SYS015.

It is possible to assign several logical units to the same device. Disk devices, for example, can be used
at the same time by several programs. For more details about sharing devices, refer to z/VSE Guide to
System Functions.

Logic Module Generation (xxMOD) Macro
Each DTF table, except DTFCN and DTFPH, must link to an IOCS logic module. More than one DTF table
can link to the same logic module. Figure 27 on page 34 shows how linkage is established between a
request macro for a file and the associated logic module.

A logic module contains the code needed to perform the I/O functions required by your program. For
example, it reads or writes data, tests for unusual input/output conditions, blocks or deblocks records if
necessary. Most IOCS request macros use a logic module to perform the requested function.

Providing Logic Modules
You need not code logic modules for:

• DTFSD and DTFDA files.
• DTFDI files on disk or for output to an IBM 3800 printer or a printer of the class PRT1.
• DTFMT files.
• DTFPR files for output to an IBM 3800 printer or a printer of type PRT1.

Your VSE system includes preassembled logic modules for those files. These modules are automatically
loaded during IPL and linked to your program during OPEN processing for the file.

For any other file, IOCS requires you to code the logic module generation macro (xxMOD) that
corresponds the DTFxx macro for the file. You can assemble the macro in-line with your program or
separately. If you assemble the macro separately, you must submit the assembled module as input when
you link-edit your program. This is further discussed in Appendix A, “Assemble and Link-Edit Programs
Using IOCS,” on page 181.

If the required standard logic modules are cataloged in a sublibrary accessible by the linkage editor, you
need not code the generation macros in your program. Instead, you can autolink the required modules
from this sublibrary when you link-edit your program.

Some of the module functions are included selectively in accordance with the operands you specified
in the xxMOD macro. If you code the macro yourself, you can select or omit certain functions such that

Chapter 2. Data Management Concepts 37

http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

the generated module meets the requirements of your program. If you do not code the xxMOD macro
yourself, IOCS automatically selects or omits the appropriate functions.

Note: If you issue a request macro (such as WRITE or CNTRL) for a file, and the associated module does
not include the desired function, then the system cancels your job with an illegal-supervisor-call message.

Subsetting/Supersetting of Logic Modules
The type of logic module to be used is determined by the functions that are to be supported.
Theoretically, this means that a specific logic module may have to be generated for each DTFxx macro.
Most likely, a number of these modules would be a subset module to a superset module. A superset
module is one that performs all the functions of its subset (or component) modules. Using a superset
module thus avoids duplication and saves storage space.

The functions required for several similar files (several DTFPRs, for example) are thus provided by a single
xxMOD macro, although the DTFxx macros have different operands. An example of the functions which
are included in a superset module replacing two subset modules is shown below for a PRMOD macro:

Functions of Superset Module Functions of Subset Module 1 Functions of Subset Module 2

• Optional use of CNTRL macro.
• Work area and I/O area

processing.
• Support of printer overflow.
• Support of specified error

actions.

• CNTRL macro cannot be used.
• Work area and I/O area

processing.
• No printer overflow support.
• Support of specified error

actions.

• Optional use of CNTRL macro.
• I/O area processing only.
• Support of printer overflow.
• Support of specified error

actions.

Supersetting and subsetting as described above does not apply to logic modules that are shipped with the
system. Any logic-module generation requests for such modules in your program are ignored.

The subsequent paragraphs discuss the superset/subset technique in more detail.

Note: No subsetting/supersetting takes place if you code an xxMOD macro for each DTF of a given device
type.

If you do not code the logic modules yourself, IOCS (together with the linkage editor) automatically
performs all subsetting and supersetting that is possible.

If you code the logic modules yourself, subsetting/supersetting can be achieved by coding a single xxMOD
macro containing all of the functions needed by all of the DTFs which use that macro. Proceed in either of
the following ways:

Do Not Name the Module
This means that you specify neither a name for the xxMOD macro nor a MODNAME operand in your DTFxx
macro. IOCS will name the module for you.

IOCS generates a standard module name based on the functions required by the related DTFxx macro.
Likewise, if you code your own logic module and omit the name from the name field, IOCS generates a
standard module name according to the operands defined in the xxMOD macro.

IOCS performs subsetting/supersetting of modules with standard module names for a program's DTFxx
macros for the same type of file. IOCS simply includes the required services in one single module. How
IOCS forms subset/superset names is shown by charts under "Subset/Superset xxMOD Names" following
the discussion in z/VSE System Macros Reference. The figure gives an example of these charts.

38 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

 a b c d e

 * + + + *
 I J x F B C W Y
 U Z Y Z Z
 V + +
 W E N
 Z S
 Z

 + Subsetting/supersetting permitted.

 * No subsetting/supersetting permitted.
 x DTF-dependent character.

Figure 30. Example of a Subset/Superset Naming Chart

The letters represent functions which can be performed by the logic module. z/VSE System Macros
Reference relates these functions to the corresponding letters.

If a module name is composed of letters from the top row exclusively, it can be only a superset name. A
module containing a W in column d, for example, is a superset of a module with a name containing a Z in
this column. This superset module therefore performs also the functions of the Z type module.

Other examples of subsetting and supersetting: module IJxWESZZ is a subset module to the superset
module IJxWENZZ; IJxWEZZZ is another subset module to superset module IJxWENZZ; it is also a subset
module to superset module IJxWESZZ.

An asterisk (*) indicates that for the letters beneath no subsetting or supersetting is permitted, while a
plus (+) sign in a column indicates that subsetting/supersetting is permitted. Two plus signs in a single
column divide that column into mutually exclusive sets. In the example shown in Figure 30 on page 39, C
is only the superset of Y. C is not a superset of N, S, or Z. Conversely, N, S, or Z is not a subset of C.

The vertical arrangement of letters within a column is always in alphabetical order. If a column is divided
by plus or asterisk signs into sets, then the vertical arrangement of letters within each set of a column is in
alphabetical order.

Name the Module
This means that you specify a name for the xxMOD macro. In addition, you must specify this name also in
the MODNAME operands of all the DTF macros that refer to that module.

Subsetting/supersetting occurs if one module contains all of the functions needed by all of the DTF tables
that are to use the module.

Nothing is gained by giving your modules standard IOCS names. Should you decide to name your modules
yourself, use names that are meaningful in the context of your program.

Logical IOCS Versus Physical IOCS
As mentioned under “The Access Methods of IOCS” on page 35, the following access methods comprise
the logical IOCS (LIOCS):

• Sequential access method (SAM)
• Direct access method (DAM)
• The indexed sequential access method (ISAM) also belongs to LIOCS but should no longer be used. Use

VSE/VSAM instead.

As opposed to LIOCS, physical IOCS (PIOCS) allows you to control the transfer of data by channel
programs that you have coded into your program.

To control data transfer on a PIOCS level, VSE requires that you define your file using the DTFPH macro if
either standard labels are to be checked or written or if the file resides on a direct access device.

Chapter 2. Data Management Concepts 39

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Processing with PIOCS is described in Appendix C, “Processing a File with Physical IOCS (PIOCS),” on
page 211.

40 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 3. Defining and Processing a File with SAM

You use the sequential access method (SAM) if you want to retrieve the records of a file as they are
stored, one record after the other. You use SAM to write records into a file as they are built by your
program, again one record after the other.

To process a file, SAM requires that you

1. Define the file's characteristics using the proper DTFxx macro.
2. Create the required IOCS logic module, if necessary.
3. Open (activate) the file. You use the OPEN macro for this purpose.
4. Issue suitable I/O request macros (GET or PUT, for example) at those points in your program where

the requested function is to be performed.
5. Close (deactivate) the file after all records of the file have been processed. You use the CLOSE macro

for this purpose.

Defining the Characteristics of a File
You define a SAM file with the appropriate DTFxx macro. In this macro, you describe the characteristics of
your file. These characteristics are, for example:

• The length and format of its records
• The device type on which it is stored
• The operations that you want to be performed besides reading or writing records. These are operations

such as writing a tape mark or reading or writing a short block, space a line before printing.
• The handling of errors detected by SAM.

Table 4 on page 41 lists the DTFxx macros used for SAM processing. It includes the related xxMOD
macros you can use to define an IOCS logic module. The macros are listed by supported device classes in
alphabetical order.

Table 4. SAM DTFxx and xxMOD Macros by Supported Device Classes

File to be processed Declarative Macro I/O Module

Card I/O device DTFCD CDMOD

Console display DTFCN -

Device independent DTFDI DIMOD (see Note 1)

Disk, sequential I/O DTFSD -

Magnetic tape DTFMT -

Printer DTFPR PRMOD (see Note 2)

Note:

1. Not needed for a disk device, a PRT1 printer, or an IBM 3800.
2. Not needed for a PRT1 printer, an IBM 3800, an IBM 4248 in native mode, or a 6262 printer.

The following sections describe the most commonly used DTFxx macro operands. However, not all of
these operands apply to all file types. For more details about the operands you can specify, see the topic
on the device type you are using, or consult z/VSE System Macros Reference.

© Copyright IBM Corp. 1990, 2015 41

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

File Type (TYPEFLE)
You define the processed file type with the TYPEFLE specification. Specify one of the following:
TYPEFLE=INPUT

The file is used for input via the GET macro.

If the file resides on disk, you can update this file by specifying also UPDATE=YES. In this case,
records are read, processed, and then written back into the same record location from which they
were read. For more details, see “Processing an Update File” on page 60.

TYPEFLE=OUTPUT
The file is used for output via the PUT macro.

TYPEFLE=WORK
Specifies a tape or disk file that can be used as a work file. A work file can be used for both input and
output. Thus it is suitable for passing on intermediate results from one phase to another or from one
job step to another. The file may be used by just one phase to read data from or write data into it. For
more details, see Chapter 3, “Defining and Processing a File with SAM,” on page 41.

Record Format (RECFORM)
SAM needs to know the format of your records. You define this format with the RECFORM=format
operand. For format, you can specify one of the following:
FIXUNB

For fixed-length unblocked records.
FIXBLK

For fixed-length blocked records.
VARUNB

For variable-length unblocked records.
VARBLK

For variable-length blocked records.
SPNUNB

For spanned variable-length unblocked records.
SPNBLK

For spanned variable-length blocked records.
UNDEF

For undefined records.

For fixed-length blocked, spanned or undefined output records, you must also specify the RECSIZE
operand.

The record formats that you can use are discussed under “Record, Block, and Control Interval” on page
12.

Record Size (RECSIZE)
How you define the size of the records of a file depends on the record format. For example, if the record
format is defined with:
RECFORM=FIXBLK

Then specify the number of bytes (characters) of each record in RECSIZE=n.
RECFORM=UNDEF or RECFORM=SPNxxx

Then specify RECSIZE=(r), where r is a register that contains the length of each record.

Before you issue a PUT macro for an output file of undefined or spanned records, load the length
of the record into the register specified by r. For input files, SAM places the length of the record
transferred to virtual storage into the specified register.

42 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

RECSIZE is invalid for work files. You specify the length of the record in the READ or WRITE macro.

I/O Area Definition (IOAREA)
When reading or writing a file, SAM transfers data between an I/O device and an area in virtual storage.
You specify the name of this area with the operand IOAREA1=name. For name, specify the symbolic
address that you used in your program to reserve this area of storage.

You use the BLKSIZE operand to define the length of this area. This operand is discussed separately in the
next section.

Following is an example of an I/O-area definition.

 FILEA DTFSD IOAREA1=BUF,BLKSIZE=200
 ...
 BUF DC CL200' '

To improve device performance, you can use a second I/O area, which you define with the operand
IOAREA2=name. If you do this, SAM transfers records alternately to or from each area.

If you do not define an I/O area for a SAM file in the DTFSD, the system sets up this area in the partition
GETVIS space. Note, however, that IOAREA1 is required for other types of files (for example, DTFMT).

I/O Area Length (Block Size BLKSIZE)
You define the I/O area length with the BLKSIZE operand. The length you specify depends on a number of
factors such as the record format, the blocking factor, and the device on which the file is stored.

Specify the length of your largest block of records, including the block and record descriptors, if the record
format is variable. Specify the length of your largest record if the record format is undefined. For the
smallest and largest values that you can specify for BLKSIZE, refer to the description of the applicable
DTFxx macro in z/VSE System Macros Reference.

For optimum use of the storage capacity of a disk, you can specify BLKSIZE=MAX. This causes SAM to set
the I/O area to a length as follows:

• If your file resides on a CKD disk, to a full track of the device on which the file resides.
• If your file resides on an FBA device, the operand specifies the logical block size. For an FBA disk, the

maximum value is 32 761 (the maximum CISIZE value minus 7). In that case, SAM sets the length of
the I/O area to the highest even multiple of RECSIZE that is smaller than 32 761 bytes.

I/O Register Specification (IOREG)
You must specify this operand if one of the following is true:

• Two I/O areas without a work area are used.
• No I/O area has been specified (not for DTFMT files).
• Blocked records are processed in the I/O area.
• Undefined or variable-length magnetic tape records are read backwards.

SAM puts into this register the address of the logical record that is available for processing. This is the
address of the next available input record or of the area where you can build the next output record.

If you omit the IOAREA operand (to let OPEN obtain an I/O area of the required length), OPEN returns the
address of the acquired I/O area in the IOREG register. Note, however, that IOAREA1 is required for other
types of files, for example, DTFMT.

For an output file with variable-length blocked records, an additional register must be specified in the
VARBLD operand if the records are built in the I/O area(s). This register contains the length of the
available space remaining in the output area each time SAM has processed a PUT macro for the file.

If you use a work area instead of an I/O area, specify WORKA=YES and do not specify IOREG.

Chapter 3. Defining and Processing a File with SAM 43

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Work Area Specification (WORKA)
You may wish to process your records in a work area separate from the I/O area(s), especially if you are
using blocked records. You accomplish this by:

1. Including the operand WORKA=YES.
2. Setting up the work area in virtual storage (with a DS instruction, for example). For variable-length

records, the work area must be large enough to hold the longest logical record.
3. Specifying the (symbolic) address of the work area in the I/O request macro.

SAM moves the record from the specified I/O area to the specified work area, and vice versa.

The WORKA operand is required for spanned records; the work area must be long enough to hold the
longest spanned record.

When you use a work area, do not specify the IOREG operand.

The example in Figure 31 on page 44 shows how to define I/O- and work areas. The GET macro causes
SAM to read blocks of 500 bytes alternately into areas A1 and A2. Once a block has been read into an I/O
area, SAM moves a logical record of 100 bytes into the work area A3.
 Column 72
 FNAME DTFMT X
 IOAREA1=A1, X
 IOAREA2=A2, X
 WORKA=YES, X
 BLKSIZE=500, x
 RECSIZE=100, X

 A1 DS 500C
 A2 DS 500C

 GET FNAME,A3 ───┐
 │
 ┌──────────────────────────────┘
 │
 ↓
 A3 DS 100C

Figure 31. Coding Example for the Use of a Work Area

Error Handling (ERROPT, WLRERR, and ERREXT)
The operands that you may use for processing I/O and record-length errors are ERROPT, WLRERR,
and ERREXT. Not all of these operands apply to all SAM files. For complete information, refer to the
subsequent topics or to z/VSE System Macros Reference

The ERROPT Operand
This operand specifies how SAM is to handle read or write errors. The operand has three specifications:
ERROPT=IGNORE

For an input file, the error condition is ignored and the error record is made available for processing.
When reading from a file of spanned records, SAM passes to your program the complete record (or a
block of spanned records) rather than just the one physical record in which the error occurred.

For an output file, the error is ignored and the physical record containing the error is treated as a valid
record. If the file consists of spanned records, SAM writes any remaining record segments, if this is
possible.

ERROPT=SKIP
For an input file, no records in the error block are made available for processing. The next block is read
and processing continues with the first record of that block.

44 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

When reading from a file of spanned records, SAM skips the complete spanned record (or block of
spanned records) and not only the physical record in which the error occurred.

On output, the error is ignored and the physical record containing the error is written as a valid record.
If the file consists of spanned records, SAM writes any remaining spanned record segments, if this is
possible.

ERROPT=name
SAM gives control to the routine whose (symbolic) address you specified for name. In this routine,
you can process (or make note of) the error condition as desired. For more information about user-
written error routines refer to the sections discussing error handling in the topics that deal with the
processing of the various types of files.

The WLRERR Operand
This operand specifies the name of your routine that is to receive control when a wrong-length record is
read. The operand applies to input files only.

If you omit this operand, and SAM detects a wrong-length record, one of the following occurs:

• If the ERROPT operand is also omitted, the wrong-length error condition is ignored.
• If the ERROPT operand is included for this file, the wrong-length record is treated as an error block and

is handled according to your specification for an error. The operand is discussed under “The ERROPT
Operand” on page 44.

The ERET Macro
You can use the macro to return control from your ERROPT or WLRERR exit routine. In this macro, specify
the action to be taken: SKIP, IGNORE, or RETRY.

For a tape file, you must include ERREXT=YES in the DTFxx macro to return control to SAM. As an
alternative, you can return control by a branch to the address contained in register 14.

End-of-File Exit (EOFADDR)
This operand specifies the name of your end-of-file routine. SAM automatically branches to this routine on
an end-of-file condition. In this routine, you can perform any operations required at end of file. Generally,
you issue a CLOSE macro.

Opening a File for Processing
To open a file (or make a file ready) for processing, you use the initialization macro OPEN. As an operand
of the macro, specify the name of the file that is to be opened or the register that points to this name in
storage. Figure 32 on page 46 shows a skeleton source program which includes an OPEN macro for a
tape file named FNAME.

Chapter 3. Defining and Processing a File with SAM 45

 Column 72
 FNAME DTFMT ... X
 IOAREA1=A1, X
 IOAREA2=A2, X
 WORKA=YES, X
 BLKSIZE=500, x
 RECSIZE=100, X
 ...
 ...
 A1 DS 500C
 A2 DS 500C
 ...
 OPEN FNAME
 ...
 GETNXT GET FNAME,A3
 ...
 B GETNXT
 A3 DS 100C
 ...

The OPEN for a file must precede the first request macro for the file.

Figure 32. Coding Example for Opening and Accessing a File

Before you open a file, ensure that it is not already open.

In your program, you can open up to 16 files with one OPEN macro. These files can use any combination
of access methods. You specify the name of the file to be opened either symbolically or by using register
notation.

The OPEN macro, together with the ASSGN job control statement, associates the logical file defined in
your program with the actual data file on the assigned I/O device. The link established between your
logical file and the data file is retained until your program issues a completion macro, which is discussed
under “Opening a File for Processing” on page 45.

If your program closes a file but needs it again for additional processing, then the program can issue
another OPEN for the file.

If OPEN attempts to open a file whose device is unassigned the job is canceled.

OPEN checks or writes standard IBM disk and tape labels. However, if you open a file to process user
standard labels (UHL or UTL) on disk or on tape, or non-standard labels on tape, your program must
provide the information for checking or building the labels. If this information is obtained from another
input file, open that input file before you open the labeled file. Either specify the name of this input file
ahead of the name of the labeled file in the same OPEN or issue a separate OPEN macro for the input file.

To ensure that SAM properly processes labels on disk or tape, you must supply job control label-
information statements:

• For a file on disk:

– One DLBL statement
– One or more EXTENT statements

• For a file on tape – A TLBL statement.

Processing of labels is discussed separately for the processing of files on the various devices:

• For a file on disk in the section “Processing of Labels” on page 58.
• For a file on tape in the section “Processing of Labels” on page 65.

Refer to z/VSE System Macros Reference how to code a label processing routine.

Self-relocating programs must use OPENR to open a file. OPEN and OPENR perform essentially the same
functions. When OPENR is used, the generated addresses are self-relocating. Throughout the publication,
the term OPEN refers also to OPENR, unless stated otherwise.

46 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Reading (GET) and Writing (PUT) of Data
SAM allows you to store and retrieve data without coding your own blocking and deblocking routines. In
your program, you can use one or two I/O areas; you can process the records in a work area or in the I/O
area(s).

When a file on an FBA disk is to be processed, SAM uses a single control interval (CI) buffer to transfer
data between virtual storage and the device. If a work area is specified, read requests for a logical block
cause data to be moved from the CI buffer directly to the work area; an I/O area, if specified, is ignored.
When no work area is used, data is transferred from the CI buffer to the I/O area(s).

Obtaining a Record for Processing (GET)
The GET macro makes the first (or next) logical record from an input file available for processing.

In your program, you can use GET for any input file defined by a SAM DTFxx macro, and for any
type of record. If GET is used for a file that includes checkpoint records, SAM bypasses these records
automatically.

A GET macro issued after the last record of an input file has been accessed results in an end-of-file
condition.

When a file occupies more than one area on a disk volume, GET automatically switches from one extent to
the next. GET checks for an end-of-volume condition and starts automatic volume switching if an input file
spans two or more volumes.

If WORKA=YES is specified in the DTFxx macro for your file, all GET macros for this file must specify a
work area name or a register that points to a work area. This causes GET to move each individual record to
that work area.

You can use several work areas for one file. You can have all records of your file processed in the same
work area, or different records of the file in different work areas. In the first case, each GET for the file
specifies the same work area. In the second case, different GET macros specify different work areas. It
may be of advantage to use two work areas with alternate areas specified in alternate GET macros. To use
a work area, specify WORKA=YES in your DTFxx macro, but do not specify the IOREG operand.

The function of SAM for a GET macro differs to a certain extent for the various types of records as
discussed below.

• For unblocked records

If only one input area is used, each GET transfers a single record from the associated I/O device to the
input area. The record is then transferred to the work area, if one is used.

• For blocked records

The first GET macro transfers a block of records from the associated device into virtual storage. In
addition, this GET either sets the IOREG register (if one is specified) to point to the first logical record or
moves that record to a work area.

Subsequent GET requests either step up the register, or move the next sequential record to the
specified work area, until all records of the block are processed. Another GET makes a new block
of records available to your program and either initializes the register or moves the first record.

• For spanned records Your DTFxx macro must include operands as follows:

– RECFORM=SPNUNB or RECFORM=SPNBLK
– RECSIZE=(r)
– WORKA=YES.

GET assembles spanned record segments into logical records in your work area. The length of the
logical record is passed to you in the register specified in the RECSIZE operand. A logical record may
span disk extents, but it cannot span disk volumes.

• For undefined records Your DTFxx macro must include the operands:

Chapter 3. Defining and Processing a File with SAM 47

– RECFORM=UNDEF
– RECSIZE=(r)

GET treats the records as unblocked. Your program must locate (deblock) individual logical records if
two or more logical records make up one undefined record.

In the specified RECSIZE register, SAM stores the length of the record it has read. Other than that,
no characteristics of the record are known or assumed by SAM. Your program must determine these
characteristics.

Storing a Record after Processing (PUT)
The PUT macro writes a logical record to the associated output device. In your program, you can use the
PUT macro for any output file defined by a SAM DTFxx macro, and for any record type. PUT operates very
much like a GET, but in reverse. You issue a PUT after a record has been built.

PUT checks for an end-of-volume condition and starts automatic volume switching if an output file spans
two or more volumes.

If you build the records of a file in a work area, PUT moves each record from the work area to the output
(I/O) area or, for output to an FBA disk, to the CI buffer. All PUT macros for the file must specify a work
area.

When a PUT macro processes a logical record, this record remains in the output (or work) area until it is
cleared or replaced by other data. SAM does not clear the area. Therefore, if you plan to build another
record whose data does not use every position of the area, ensure that you clear this area before you build
the record. If you use a work area in your program, make it a point to build your records only in that area
and never change the contents of the I/O area.

The function of SAM for a PUT macro differs to a certain extent for the various types of records as
discussed below.

• For unblocked records

Each PUT transfers a single record from the output area to the output device. If a work area is specified
in the PUT macro, the record is first moved from the work area to the output area and then to the device.

• For blocked records

The individually built records must be formed into a block in the output area before the block can be
transferred to the output device.

Fixed-length blocked records can be built directly in an output area or in a work area. Each PUT macro
for these records either steps up the IOREG register or moves the completed record from the specified
work area to the next free record location in the output area or CI buffer. When an output block of
records is complete, the next PUT macro causes the block (or CI) to be transferred to the output device.
This PUT resets the IOREG register, if one is used.

• For variable-length records

You can build records of this type in an output area or in a work area. Your program must (1) determine
the length of the record that is being built and (2) insert this length in the first two bytes of the four-byte
record descriptor.

If your records are to be blocked and you build them in a work area, PUT checks the length of each
output record to ensure that the record fits into the remaining portion of the output area or CI buffer. If
the record fits, PUT immediately moves the record. If the record does not fit, PUT causes the completed
block to be written and then moves the record from the work area to the output area.

If you build the records in the output area, the DTFxx VARBLD operand, the TRUNC macro, and
additional programming are required. Before it starts processing for the next record, your program must
find out whether that record will fit into the remaining portion of the output area. The amount of space
available in the output area is supplied to your program in the register specified in the VARBLD operand.
Each time a PUT request is complete, SAM passes in this register the number of bytes remaining in the
output area. Your program can compare the length of your next record with the number of free bytes.

48 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If the record does not fit, you program must issue a TRUNC macro to transfer the completed block of
records to the output device. The entire output area is available for building the next block after SAM
has finished processing the TRUNC macro.

• For spanned records

PUT divides the records built in the work area into record segments according to the length specified in
the BLKSIZE operand. For disk output, spanned records must not span volumes. If there is not enough
space on the current volume to contain a spanned record, SAM attempts to write the entire spanned
record on the next volume.

• For undefined records PUT treats records of this type as unblocked. Your program must provide for
blocking of logical records, if this is desired. It must also determine the length of each record and
load this length into a register before issuing the PUT macro for that record. The register used for this
purpose must be specified by the RECSIZE operand of the DTFxx macro for the file.

For an update file (applies to data on disk), SAM repositions the device to the first logical record of the
block. This allows a record of the file to be read, modified, and written back to the same location from
which it was read. For more details, see “Processing an Update File” on page 60.

Processing Blocked Records Selectively
Frequently, a program processes a file, record after record, starting with the first logical record. Consider
blocked records in this case, especially since:

• Blocking or deblocking is done automatically by the GET and PUT macros.
• Blocking of records results in a more effective use of the involved I/O device.

The use of blocked records offers possibilities that do not exist when records are unblocked. When
processing a logical record of a block, your program can, for example, request SAM to ignore the
remaining records of that block and obtain the first logical record of the next block. For output, your
program can request SAM to skip the remainder of the current block and use the next logical record as
the first one of the next block. For a file with blocked spanned records, your program can bypass all
subsequent records of the block being processed and obtain the first segment of the next logical record in
the new block.

An application could benefit from these possibilities, for example, if it must process a file that consists of
several major groups of logical records. If each category starts with a new block, it is easy to locate any of
the categories for selective processing. Only the first record of each block would have to be checked.

To achieve this, you would use the RELSE (release) macro with input, and the TRUNC (truncate) macro
with output:

• The RELSE (release a block) macro

The macro is used with blocked records on disk or on tape. It causes the next GET to ignore any logical
records remaining in the current block and to get the first logical record of the next block. This applies
also to blocks of spanned records.

• The TRUNC macro

The macro is used with blocked records to be written to disk or to tape. It allows your program to write a
short (truncated) block of records. A truncated block does not include padding.

TRUNC causes the next PUT macro to regard the output area as full and, subsequently, the next logical
record to be placed into the next block. Thus, the TRUNC macro can be used for output in a way similar
to the RELSE macro for input. When the end of a category of records is reached, the current block can be
written, and the new category can be started at the beginning of a new block.

If the TRUNC macro is issued for fixed-length blocked records of a file on disk, your DTFSD macro must
include TRUNCS=YES. If your file resides on an FBA disk, TRUNC causes an immediate write to the FBA
disk only if also PWRITE=YES is specified.

The last record written in a short block is the record that was built and included in the output block by
the last PUT preceding the TRUNC macro. Therefore, if your program builds the output records in a work

Chapter 3. Defining and Processing a File with SAM 49

area and finds that a record belongs into a new block, it must first issue a TRUNC to have the current
block written to the I/O device. The subsequent PUT for the record in the work area then moves this
record into the new block. If your program builds the output records in the output area, the program
must determine whether a record belongs in the block before it builds the record.

The TRUNC macro must be used to write a complete block of records if variable-length blocked records
are built in the output area. Your program must check the VARBLD register to determine whether
the next variable-length record fits into the current block. If the record does not fit, your program
must issue the TRUNC macro to have the current block transferred. This makes the entire output area
available to build the next record.

Processing a Work File
Normally, a work file is used to pass intermediate results between successive phases or job steps. A work
file can be written, read, and rewritten by just one phase, and the file need not be closed and reopened.

The READ and WRITE work-file macros provide for overlapped processing. While a record is being
transferred, your program can perform other operations that do not depend on the presence of the record.
To ensure that the READ or WRITE has been completed, you must code the CHECK macro in your program
preceding the instructions that use the I/O (or work) area.

The NOTE, POINTR, POINTS, and POINTW work-file macros allow you to do a certain amount of direct
processing. You can position the file to a certain point and continue sequential processing from that point.

There are certain restrictions for the use of a work file:

• It can be specified only as having unblocked records of fixed lengths or of undefined format. To use
blocked records with a work file, do either or both of the following:

– Code your own blocking and deblocking routines.
– Place the file on an FBA device, if one is available, to have SAM use a CI buffer.

• It must be contained on a single volume, but not on a tape written in ASCII mode.
• On an IBM 9346 tape device you cannot process a work file that requires previously stored data to be

overwritten. A unit check with command reject indicated in the sense byte occurs.
• It cannot be extended.
• Automatic I/O area switching is not possible; your program must supply the address of your I/O area

each time it issues a READ or WRITE macro.
• Only data-area extents (type 1 and also type 8, split extents) are supported.
• If you use the CI format, the number of logical blocks per control interval is limited to 255.

Figure 33 on page 50 shows an example for defining a work file on disk.

 Column 72
FILEW DTFSD BLKSIZE=150, X
 TYPEFLE=WORK, X
 ...
 EOFADDR=ENDFRTN, X
 RECFORM=UNDEF, X
 UPDATE=YES

Figure 33. Example for Defining a Work File on Disk

Opening the File
SAM opens a work file for output.

Work File on Disk
Like any other file, it must have standard file labels. This implies that you must supply the required label
information either with the job or stored permanently in the label-information area of your system.

50 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Since a work file is opened for output, reopening the file within a job (for example to pass information to
a subsequent job step) causes an overlapping-extent message to be issued to the operator. The operator
may then delete the format-1 label, after which the open routines create a new label for the file, and the
job continues.

Work File on Tape
If the work file is defined as a standard labeled file (DTFMT FILABL=STD), you must supply the TLBL
job control statement. SAM reads or writes the standard header and trailer labels as for any other file
with standard labels. However if the file's expiration date has been reached, SAM creates a new label
consisting of HDR1 followed by 76 blanks. This marks the file as a work file. However, if the HDR1
file-id and the TLBL file-id are equal, SAM checks the expiration date and, if the file is expired, message
EXPIRED FILE appears. With response IGNORE, the old HDR1 label will be updated; with response
BYPASS, the old HDR1 label will be kept or, if the file is unexpired, the old HDR1 label will also be kept.
If the HDR1 file-id is not equal to the TLBL file-id and if the file is expired, the old HDR1 label will be
overwritten or, if the file is unexpired, message UNEXPIRED FILE appears; with response IGNORE, the old
HDR1 label will also be overwritten.

Trailer labels are not processed.

If the work file is defined as an unlabeled file (DTFMT FILABL=NO or no FILABL operand), you need not
supply any label information.

If the tape does not have standard labels, SAM does not create labels for the file.

If the tape is not positioned at a tape mark when your program issues an OPEN for the work file, SAM
writes a tape mark at the current tape position. If this is not desirable, have your program issue a CLOSE
for the work file at the end of the job step that uses the file. This ensures that no data is lost when SAM
writes the tape mark. In the next job step, your program can use a CNTRL or POINT request to position
the tape to the first record to be read. However, the preferred approach is to correctly position the tape
before your program of the next job step opens the work file.

Processing the File Sequentially
You use READ and WRITE macros to read a record from or write a record to a work file. Before your
program can process a retrieved work-file record, the READ operation for this record must be complete.
Before the program can build a new work-file record, the WRITE operation for the preceding work-file
output record must be complete. In you program, you use the CHECK macro to halt processing until this
transfer of data is finished.

Figure 34 on page 53 shows how you can use the various work file macros that are discussed below.

The READ Macro
The macro causes a record to be transferred from the defined work file to an area in virtual storage.

Specify the length operand of the macro if the records of your work file are undefined. This operand
defines the number of bytes to be transferred. Specify 'S' if the entire record is to be read.

If your work file has unblocked records of fixed length, the number of bytes to be transferred is specified
in the BLKSIZE operand of your DTFxx macro.

READ can be used also to read backwards from magnetic tape.

The WRITE Macro
The macro requests that a block of data be transferred from an area in virtual storage to an output file.
The macro operates in the same way as READ, but in reverse order.

For fixed-length unblocked records, the number of characters to be written is specified in the BLKSIZE
operand of your DTFxx macro.

Chapter 3. Defining and Processing a File with SAM 51

Specify the length operand of the macro if the records of your work file are undefined. This operand
defines the number of bytes to be transferred.

The CHECK Macro
The macro avoids that data requested by a READ macro is processed before the transfer of this data is
complete. The macro avoids that data being written to a device by a WRITE is overwritten by your program
while it builds a new output record. In addition, the macro tests for errors and exceptional conditions that
may have occurred during the data transfer.

Use the CHECK macro after each READ or WRITE before you issue any other macro for the same file, or
before the contents of the input or output area in virtual storage are changed.

If the data transfer is completed without any error condition, SAM returns control to the next instruction
of your program. If the operation results in a read error, SAM processes the option specified in the
ERROPT operand. If an end-of-file condition occurs, SAM passes control to the routine specified in the
EOFADDR operand.

Note: An end-of-file record is written only if the last operation before the CLOSE macro was a WRITE SQ;
a CLOSE macro following a WRITE UPDATE protects the updated file by not writing an end-of-file record.

Processing the Records of the File Selectively
Both READ and WRITE operate strictly sequential, starting either at the beginning of a work file or at a
given point to which the file can be positioned. To position a work file to a certain block, use the NOTE and
the POINTx macros.

Figure 34 on page 53 shows how you can use the NOTE and POINTS (one of the POINTx macros) in an
application program. The subsequent paragraphs discuss the macros in more detail.

52 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 Column 72
 FILEW DTFSD BLKSIZE=150, X
 TYPEFLE=WORK, X
 ...
 EOFADDR=ENDFRTN, X
 RECFORM=UNDEF, X
 UPDATE=YES
 (1) L 12,LENGTH
 (2) WRREQ WRITE FILEW,SQ,OUT,(12)
 ... | Processing is not related
 ... | to the data stored in the
 ... | area OUT.
 (3) CHECK FILEW
 ...
 BNZ WRREQ
 (4) POINTS FILEW
 (5) RDREQ READ FILEW,SQ,IN,S
 ...
 (6) CHECK FILEW
 ...
 BNZ RDREQ
 EOJ

(1)
Loads the length of the record.

(2)
Causes a record to be written.

(3)
Waits until the record is written into the file WRKFLE.

(4)
Repositions the file to the address of the first record.

(5)
Causes a record to be read.

(6)
Waits until the record has been read into virtual storage.

Figure 34. Example of POINTS Macro with Work File Processing

The NOTE Macro
Your program can issue a NOTE after a READ or a WRITE macro or after the I/O operation was checked for
completion by a CHECK macro.

NOTE returns to your program, in register 1, the position of the block just read or written. Store this
position in a four-byte field for later use by a POINTR or POINTW macro in your program.

For a work file on a CKD disk, NOTE identifies a record by the record number relative to the beginning of
the track. It identifies a record on an FBA disk by the record number relative to the beginning of the file.
NOTE returns additional information in register 0:

• For a work file on a CKD disk – the unused space remaining on the track following the end of the
identified record.

• For a work file on an FBA disk – the length of the longest logical record that fits into the CI following the
identified logical record.

Store this remaining space in a two-byte field for later use by a POINTR or POINTW macro if the macro
is to be followed by a WRITE SQ or another NOTE while the file is still positioned on the same CI or track
that was pointed to.

For a work file on tape, NOTE identifies a record by its record number relative to the load point.

Chapter 3. Defining and Processing a File with SAM 53

The POINTS Macro
The macro causes a file to be repositioned to its beginning.

For a tape file, POINTS causes the tape to be rewound to the load point and then to be positioned to the
first data block. Labels, if any, are bypassed.

For a disk file, POINTS positions the file to the lower limit of the first extent. A POINTS followed by a
WRITE SQ, for example, causes the new record to be written and the remainder of the track or control
interval to be erased.

Note: Do not code a WRITE UPDATE following a POINTS.

The POINTR Macro
The macro positions the file to a specific record. Your program can then read this record by issuing a READ
macro.

A series of READ macros following a POINTR macro read records sequentially, starting with the record
specified in the POINTR macro. Your program can get the address to be specified in the POINTR from the
result of a previously issued NOTE macro.

Note: For a work file on tape, do not code a WRITE following a POINTR.

For a work file on disk, if a WRITE UPDATE follows the POINTR macro, the record located by the POINTR
is overwritten. If a WRITE SQ follows the POINTR macro, the record after the one located by the POINTR
is written, and the remainder of the track (or CI) is erased. On an FBA disk, an SEOF is written immediately
after the current CI.

The POINTW Macro
The macro positions the file to a record location as follows:

• For a work file on tape – to read or write a record after the one previously identified by NOTE.
• For a work file on disk – to the location of the record that was read or written immediately before the

NOTE macro was issued. If your program issues a:
WRITE UPDATE

The record identified by the NOTE is overwritten.

WRITE SQ
The record after the one identified by the NOTE is written and the remainder of the track or CI is
erased. On an FBA disk, an SEOF is written immediately after the current CI.

If a POINTW (or a POINTR) macro is issued and the work file records are in undefined format, it may
happen that a replacement record longer than the original record cannot be written into the space
available on the track (or in the CI). In this case, when the next WRITE is performed, the original record
remains as the last record on the track, and the replacement record is written as the first record on the
next track (in the next CI) of the file.

A series of WRITE macros following a POINTW write records sequentially, starting at the location
following the record specified in the POINTW macro. Your program can get the address to be specified
from the result of a previously issued NOTE.

A READ macro may follow a POINTW macro. In this case, SAM reads the record identified by the NOTE
macro.

Retaining or Deleting a Work File
If you want to retain a work file on disk for later use, do the following:

1. Specify DELETFL=NO in your DTFSD macro.
2. Ensure that the file's expiration date has not yet been reached.

54 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

This causes SAM to retain the file until the expiration date is reached.

To have SAM delete a work file after use, simply omit the DELETFL=NO operand. Another job requiring a
work file can then use the same extents and the same file name.

Requesting a Non-Data Device Operation
The CNTRL (control) macro allows you to specify commands for serial I/O devices. However, if you issue
the macro for a sequential file on disk, SAM ignores the macro.

In the macro you can specify such functions as tape rewinding for a tape drive and line spacing or page
ejects for a printer.

The CNTRL macro does not wait for completion of the command before returning control to you. The
permitted mnemonic codes are device-dependent. For a list of these codes, refer to z/VSE System Macros
Reference.

Closing the File for Processing
The CLOSE macro ends the association of the logical file defined in your program with a file of data on an
I/O device. Issue a CLOSE macro to close a file that was opened by an OPEN macro, except for a console
(DTFCN) file. Up to 16 files can be closed with one CLOSE.

Once SAM has processed a CLOSE for a file, your program can issue no further requests for the file until
this file is opened again.

A CLOSE normally closes an output file by writing an EOF record and output trailer labels, if any.

If your program issues a CLOSE for an unopened tape-input file, SAM performs the option specified in the
REWIND operand of the DTFMT. For an unopened tape-output file, a CLOSE does not cause a tapemark or
any labels to be written. Also, no REWIND option is performed.

As with an OPENR macro, you must use the CLOSER macro if your program is to be self-relocating. The
CLOSE and the CLOSER macros are essentially the same, except that when CLOSER is specified, the
addresses generated from the parameter list are self-relocating. Throughout the publication the term
CLOSE refers also to CLOSER, except where stated otherwise.

IOCS Request Macros Used with Declarative Macros
Table 5 on page 55 concludes the discussion of defining a file for SAM processing. It shows which
imperative macros you can use to process the records of a SAM file.

Table 5. IOCS Request Macros Used with SAM Declarative Macros

Request
Macro

D T F ...

CD CN DI DR DU MR MT OR PR SD

CHECK X X * X *

CLOSE(R) X X X X X X X X X

CNTRL X X X X X X

DISEN X

DSPLY X

ERET X X X

FEOV X +

FEOVD X

FREE X *

Chapter 3. Defining and Processing a File with SAM 55

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Table 5. IOCS Request Macros Used with SAM Declarative Macros (continued)

Request
Macro

D T F ...

CD CN DI DR DU MR MT OR PR SD

GET X X X X X X + X X X +

LBRET X X

LITE X

NOTE X * X *

OPEN(R) X X X X X X X X X

POINTx X * X *

PRTOV X

PUT X X X X X + X X +

PUTR X

RDLNE X

READ X X X * X *

RELSE X X

RESCN X

SEOV X

SETDEV X

TRUNC X X

WAITF X X X

WRITE X X X * X *

*
Work files only

+
Data files only

56 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 4. Processing a Disk File with SAM

This topic expands on information given in Chapter 3, “Defining and Processing a File with SAM,” on page
41. It discusses how to open and close a disk file with SAM. It summarizes the requirements for coding an
exit routine that processes disk-labels or an error condition. It includes a section on the processing of a
file on an FBA disk.

Defining the File
For your application, it might be desirable to do certain processing if an end-of extent condition occurs.
You can code a routine to do this kind of processing.

The operand EOXPTR=name of the DTFSD macro specifies the name of the pointer to your end-of-extent
routine. SAM gives control to this routine if the end of the last (or only) extent is reached while writing to
an output or a work file.

Opening the File
To make a file available for processing, your program must issue an OPEN macro. How SAM processes the
macro is discussed separately for input and output.

For Input
If you have a multivolume file, SAM processes only one extent at a time. Therefore, only one volume
need be mounted at any point in time. When all processing for this volume is complete, SAM issues the
message

 4n55A WRONG PACK, MOUNT nnnnnn

Your operator can then mount the next volume.

When opening a file, SAM checks the extents specified in the EXTENT statements against the extents
stored in the labels of the file in the VTOC. This ensures that the extents exist.

If you specified LABADDR in the DTFSD macro for the file, SAM makes the user standard-header labels
(UHL) available to your program for checking, one label at a time. When all labels are checked, the first
extent of the file is ready to be processed.

SAM makes the extents of a file available in the order of the sequence number in the EXTENT statements.
For an input file, you normally use the same EXTENT statements that were used to build the file.

Note: If EXTENT statements with specified limits are included in the job stream and if an extent was
created by a response to message

 4450A NO MORE AVAILABLE EXTENTS

when the file was built, you must supply an additional EXTENT statement on input to have SAM process
that extent. If no EXTENT statements are submitted, this additional extent is processed normally.

After having processed the last extent of the volume, SAM makes the user standard-trailer labels
available for checking, one at a time. SAM then opens the next volume.

When a new volume of a data-secured multivolume file is opened, SAM makes the first extent of the new
volume available. At the same time, the extent(s) on the previous volume become unavailable.

© Copyright IBM Corp. 1990, 2015 57

For Output
If your program creates a multivolume file, SAM processes one extent after the other, one at a time.
Therefore, only one volume need be mounted at a time. When all processing of a volume is complete, SAM
issues the message

 4n55A WRONG PACK, MOUNT nnnnnn

Your operator can then mount the next volume.

When a file is opened, SAM checks the standard VOL1 label and the specified extents for the following:

1. That none of the file's extents overlaps another file's extent.
2. If the file is being built on CKD disks and user-standard labels are to be written, the first extent is at

least two tracks long.
3. All extents of the file are of type 1 (prime data) or, for a CKD disk, of type 8 (split-cylinder).

When a file on an FBA disk is opened, SAM stores the CI size in the VTOC (for use when the file is
re-opened as an input file).

After having checked the label information against the labels in the VTOC, SAM builds the standard
label(s) for the file and writes these label(s) into the VTOC.

If you wish to write your own user-standard labels (UHL or UTL) for the file, define the address of your
label routine in the LABADDR operand. SAM reserves the first track of the first extent (or a sufficient
number of FBA blocks) for these labels and gives control to your label routine.

When SAM has built the header label(s), the first extent of the file is ready for use. Additional extents,
if any, are made available one at a time and in the order of the sequence numbers in the EXTENT
statements. When the file's last extent on the mounted volume is filled, your LABADDR routine gets
control to build user-standard trailer labels. Then, the next volume specified in the EXTENT statements is
mounted and opened.

When a new volume of a data-secured multivolume file is opened, SAM makes the first extent of the
new volume available. At the same time, the extent(s) on the previous volume become unavailable. When
the last extent on the last volume of the file is processed and an end-of-extent routine is available, SAM
passes control to that routine. Else, SAM issues an operator message, and the operator may then either
cancel the job or type in an extent at the console and have the system continue processing the job.

Processing of Labels
SAM requires IBM-standard labels for files on disk. Therefore, corresponding DLBL and EXTENT
statements must be available to the system when SAM is to open a disk file. For more information
about these statements, refer to z/VSE System Control Statements. z/VSE System Macros Reference gives
detailed instructions for coding a label-exit routine.

Processing for OPEN
SAM uses the information supplied with the DLBL and EXTENT statements for the file to check the
following:

• For an input file

That its extent(s) coincide with or are within the existing extent(s) as stored in the VTOC.
• For an output file

That it does not overwrite another, unexpired file stored on the disk volume to which your file is to be
written. If your file would overlay an unexpired file, SAM prompts the operator to make a choice of either
of the following:

– Delete the unexpired file.
– Cancel the job.

58 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

If the operator does not cancel the job, SAM deletes the labels of the unexpired file. This, in effect,
removes the file (or just part of it) from the volume.

Processing on End of Volume
SAM recognizes an end-of-volume condition when the last (or only) extent on one volume has been
processed and an extent on another volume is defined for the file. When this occurs, SAM passes control
to your LABADDR routine (if one exists) to build and pass user-standard trailer labels. When all of these
trailer labels are processed, SAM processes the labels on the next volume. When all labels on the
new volume are processed, SAM continues to do I/O processing for your program. The processing of
standard-user labels is discussed under “User-Standard Labels” on page 59.

Processing on End of File
This is different for output and input files.

Output File
When all records of an output file are written, your program must issue a CLOSE macro for the file. SAM
then passes control to your LABADDR routine (if one exists) to build and pass user-standard trailer labels.
When all of these labels are processed, SAM closes the file. The processing of standard-user labels is
discussed under “User-Standard Labels” on page 59.

SAM signals an end-of-extent condition if the end of the file's last extent is reached before your program
has issued a CLOSE.

Input File
An end-of-file condition exists when SAM either:

• Reached the end address of the file's last extent (as defined by an EXTENT statement for the file), or
• Found an end-of-file record.

SAM passes control to your end-of-file routine, whose name you must define in the EOFADDR operand of
the DTFSD macro for the file.

User-Standard Labels
SAM assists you in the processing of user-standard labels.

A file may have up to eight user-header labels (UHL1, UHL2, and so on) and up to eight user-trailer labels
(UTL1, UTL2, and so on). To process these labels, SAM requires you to:

• Code your own routine to build and write or to check these user-standard labels.

In this routine, you cannot issue any macros that use the system's transient area. Typical examples of
such macros are: OPEN, CLOSE, and CHKPT.

To build and write a label, your routine must:

1. Build the 80-byte label (leaving the first four bytes free – SAM inserts the correct UHLn or UTLn label
identification).

2. Pass this label to SAM when your routine returns control to SAM (by way of a LBRET macro).

SAM writes your user-standard file labels onto the first track of the first (or only) extent of your file.

To check a label, your routine must:

1. Establish addressability of the label passed by SAM.
2. Perform processing on the passed label as required.

Chapter 4. Processing a Disk File with SAM 59

If the labels of the file are to be checked against input from another file, that other file must be
opened first.

Your program can update the label passed by SAM or can leave it unmodified. If the label is to be
updated, your routine must:

a. Move the passed label to another location within your program.
b. Do the necessary processing on the label.
c. Pass the updated label to SAM when your routine returns control to SAM.

3. Return control to SAM by way of a LBRET macro.

• Define the name of the routine to SAM by specifying the LABADDR=name operand of the DTFSD macro.

Your routine receives control as follows:

• For checking user-standard labels

SAM passes the labels to the routine, one at a time, until either of the following occurs:

– The maximum number of labels has been read (and updated).
– The routine indicates that it wants no more labels to be passed for checking.

• For writing user-standard labels

To build the first (or only) user-standard label or, after such a label has already been written for a file, to
build the next label.

Returning Control to SAM
The LBRET macro is issued in your subroutine when you have completed processing labels and wish to
return control to IOCS. LBRET applies to subroutines that write or check standard disk labels. This macro
has only one operand: one of the numerals 1, 2, or 3. Use one of these to specify which function you want
SAM to perform. Specify:
LBRET 1

If, for the checking of labels, you do not want any of the remaining labels to be passed to your routine.

If, for the writing of labels, you want to stop further writing of labels before the maximum number of
labels has been written.

LBRET 2
If, for the checking of labels, you want SAM to read and pass the next label (see also "Note" below).

If, for the writing of labels, you want SAM to return control to your routine after a previously built label
has been written. However, if the maximum number of labels has already been written, SAM ends the
processing of labels.

LBRET 3
This operand applies only to label checking. Specify 3 if you want SAM to update (rewrite) the
previously read label and to pass to your routine the next label.

Note: If SAM finds an end-of-file record, the checking or updating of labels is stopped automatically.

Processing an Update File
Normally, a file processed by SAM is an input or an output file. However, with disk devices it is possible
to use the same file for both input and output. Your program reads a logical record from the file and,
after processing, writes the updated record back into the original location of the file. To do this, specify
UPDATE=YES in the DTFSD macro for the file.

GET obtains records from the file in the usual way. After a record has been processed, the next PUT
causes this record to be returned to its original location in the file.

60 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

A PUT for an update file must always be followed by a GET before another PUT is issued. The first PUT for
the file must be preceded by a GET, of course, but if a record does not require updating, a subsequent PUT
may be omitted. GET macros can be issued as many times in succession as desired.

In the (skeleton) update file example of Figure 35 on page 61, information is read, processed, and then
written back into the same location on disk. Processing is done in the input area.

In your program, you issue a PUT when processing of a record is complete. The next GET (or CLOSE) then
causes the actual data transfer to take place. Therefore, the input area must not be modified between a
PUT and the next GET. If a work area is used for the file, PUT returns the records from the work area to
the input area (or CI buffer) and then from this area to the file. For spanned records, you must have a work
area, and this area must be sufficiently large to hold the entire spanned record.

 Column 72
FILED DTFSD BLKSIZE=MAX, X
 RECSIZE=100, X
 IOREG=(6) X
 ...
 RECFORM=FIXBLK, X
 UPDATE=YES
 ...
 OPEN FILED
 ...
 GET FILED
 ...
 PUT FILED
 ...

Figure 35. Coding Example for Processing an Update File

Coding an Error-Processing Routine
As explained under “Error Handling (ERROPT, WLRERR, and ERREXT)” on page 44, there are two kinds of
error-processing routines, identified by ERROPT and WLRERR in the DTFSD macro. ERROPT specifies how
SAM is to handle read or write errors, WLRERR handles wrong-length errors.

In your error routine, you can code any kind of processing as long as you observe the following rules and
restrictions:

• An IOCS macro other than ERET is not permitted.
• When an error condition occurs, register 1 contains the address of a two-word parameter list, which

your routine can use as indicated:

– First word – the address of the DTF table

Your program can use this address to examine certain indicators in the CCB (the first 16 bytes of the
DTF table). For a discussion of the CCB, see z/VSE System Macros Reference.

– Second word – the address of the error block

Your program can use this address to access the record for error processing (the content of the
IOREG register, or of the work area if one is used, is unpredictable). If spanned records are
processed, the address is that of the whole blocked or unblocked spanned record.

• In your routine, test the data transfer bit (bit 2 of CCB byte 2) to find out whether a non-recoverable I/O
error has occurred. If the bit is:
1

The block in error has not been read or written.
0

The data was transferred, and your routine must access the error block to determine the action to
be taken.

• At the end of error processing, your routine must return control to SAM in either of the following ways:

– By the ERET macro

Chapter 4. Processing a Disk File with SAM 61

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

For an input file, this causes SAM to

- Skip the error block and to read the next block if you coded ERET SKIP.
- Ignore the error if you coded ERET IGNORE.
- Make another attempt to read the error block if you coded ERET RETRY.

For an output file, this causes SAM to

- Ignore the error condition if you coded ERET IGNORE or ERET SKIP.
- Make another attempt to write the block if you coded ERET RETRY.

– By branching to the address in register 14 when the error routine was entered.

For a read error, SAM skips the error block and makes the first logical record of the next block
available for processing in your program. For a write error, SAM ignores the error and continues
processing.

The two tables below summarize (1) the DTFSD error options and (2) the macro requests for various
possible actions by SAM.

Desired Action Your DTF Specification

Terminate the job: Nothing

Skip the error record: ERROPT=SKIP

Ignore the error record: ERROPT=IGNORE

Process the error record in a user routine: ERROPT=name

To process a wrong-length record error in a user routine: WLRERR=name.

Desired Action Your Macro Specification

After processing the record, return control to SAM and

Skip the record (input only): ERET SKIP request

Ignore the record: ERET IGNORE request

Retry the record: ERET RETRY request

Note: You cannot use the ERET RETRY option in your error routine when processing record length errors.
For this condition, ERET RETRY causes the job to be canceled.

Wrong-Length Error
If a block read by SAM is shorter than the length specified in the BLKSIZE operand, the first halfword
of the DTF table (CCB) gives the number of bytes left to be read (residual count). The size of the actual
block is equal to the specified block size minus the residual count. A short block does not result in a
wrong-length error condition for a file of variable-length or spanned records. If the block read by SAM is
longer than the length specified in the BLKSIZE operand, the residual count is zero. The number of bytes
read by SAM is equal to the length specified in the BLKSIZE operand. There is no way to compute the
actual size of the block, and the remainder of the block is lost (truncated).

Undefined records are not checked for incorrect length. An undefined record is truncated if its length
exceeds the length specified in the BLKSIZE operand.

Issue an ERET macro in your error routine (WLRERR=name) to skip or ignore a wrong-length error as
described in the topic Coding an Error-Processing Routine. However, ERET RETRY is invalid for a WLRERR
routine of a DTFSD file; it causes the job to be canceled.

For ERET IGNORE and WORKA=YES specified in DTFSD, do not destroy R0 in your error routine
(WLRERR=name), as R0 may contain the work area address.

62 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Other Errors
When a parity error occurs, the system tries to reread or rewrite the error block a certain number of times.
If the attempts are unsuccessful, the job is canceled, except if the ERROPT operand in the DTFSD macro
was specified.

If an error occurs when SAM rereads a block while updating a spanned record and neither WLRERR
nor ERROPT were specified, the entire logical record is skipped. Likewise, if an error occurs when SAM
rereads a block that contains the last segment of a blocked spanned record, the next entire logical record
is skipped. If the DTFSD macro includes the operand WLRERR or ERROPT (or both), the error recovery
procedure is the same as for non-spanned records.

A sequence error may occur if SAM searches for the first segment of a logical spanned record and fails to
find it. If you specified WLRERR=name or ERROPT=name, the error recovery procedure is the same as for
wrong-length record errors. If you specified neither of the two, SAM ignores the error and searches for the
next first segment. Write errors are ignored.

Closing a File and Processing for End of Volume
This section discusses disk-file specific aspects of the closing of a file; it tells when a request for forcing
end of volume is indicated and how you would code this request.

End of File
After a CLOSE for a file, no further requests can be issued for this file until it is reopened. A file defined by
a DTFSD can be reopened successfully if your program:

1. Saved the DTFSD table before the file was first opened.
2. Restored the table between closing the file and reopening it again.

A CLOSE for an output file normally causes SAM to:

1. Write any outstanding data, for example the last block.
2. Write an EOF record and output trailer labels, if any.
3. Set a last-volume indication in the format-1 label of the file.

End of Volume for a Multi-Volume File
Both GET and PUT check for an end-of-volume condition. When such a condition occurs, SAM
automatically performs volume switching.

You would force an end-of-volume condition for a multivolume file when your program has finished
processing records for one volume and more records of the same logical file are to be processed for
another volume. The FEOVD macro allows you to force end of volume before it actually occurs. If no
extents are available on the new volume, or if the format-1 label is posted as the last volume of the file,
control is passed to the EOF address specified in the DTFSD macro for the file. The remaining functions of
SAM for an FEOVD macro differ for the various types of files:

• Input File

SAM bypasses any remaining extents of the file on the current volume when your program issues the
next GET for the file. SAM then opens the first extent on the next volume, and normal processing
continues with the new volume.

• Output File on a CKD Disk

SAM writes a short last block, with an end-of-volume indicator (end-of-file record containing a data
length of 0) if necessary. In addition, SAM sets an end-of-extent indication in the DTF table. When your
program issues the next PUT for the file, SAM:

1. Bypasses all remaining extents on the current volume.

Chapter 4. Processing a Disk File with SAM 63

2. Opens the first extent on the next volume, after which normal processing continues with the new
volume.

If the FEOVD macro is followed immediately by a CLOSE, then SAM:

1. Rewrites the end-of-volume marker as an end-of-file marker.
2. Closes the file in the usual way.

• Output File on an FBA Disk The processing is the same as for an output file on a CKD disk, except that
SAM writes:

1. The last data CI rather than a block.
2. An FBA specific end-of-volume indicator (a CI of all zeros, referred to as SEOF), if there is room

for it. If there is no room in the last CI to hold an SEOF, SAM considers the file to be delimited by
end-of-last-extent.

Process a File Residing on an FBA Disk
Skip this section if your computer system does not include FBA disk devices.

Programs that use SAM to access data on a CKD disk can normally run unchanged with the data stored
on an FBA disk. Exceptions are programs that are sensitive to I/O synchronization (such as error exits and
logging). These programs have to be re-evaluated; they may have to be changed.

As we know, FBA disks use control intervals (CIs) as the unit of data transfer rather than blocks of data.
In addition, the size of a CI may be different from the size of a logical block of a file. Therefore, issuing
a macro that usually causes a block to be transferred need not cause an actual transfer of a CI. For
instance, a WRITE macro to a file on an FBA disk causes a logical record to be moved from the output area
to the CI buffer. When the CI buffer is filled, SAM transfers this buffer to the disk, asynchronously with the
WRITE. SAM automatically reformats CIs into logical blocks and vice versa, as it automatically blocks and
deblocks the records of a file.

If your program requires physical writes to be done when a formatted WRITE or a PUT is issued, your
DTFSD macro must include the force-write (PWRITE=YES) operand. However, writing the content of a
whole CI buffer for each record can slow down your system considerably.

A suitable size of a CI can affect overall throughput. For example, if this size is such that only one logical
block (including control information) fits into the CI, the number of physical I/O operations needed to
access a file is increased. If the size of the CI is large enough to contain two or more logical blocks,
throughput is improved. Fewer physical I/O operations are necessary to access the same file.

64 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 5. Processing a Tape File with SAM

This topic expands on the information contained in Chapter 3, “Defining and Processing a File with SAM,”
on page 41; it gives tape specific hints for the use of SAM.

Defining a File
The following specifications in your DTFMT macro deserve some discussion: the block size, reading a tape
backward, and the rewind option.

Block Size
The BLKSIZE operand of the DTFMT macro specifies the number of bytes to be transferred between the
I/O area and the tape drive.

A block cannot be shorter than 12 bytes; a record of eleven bytes or less is treated as noise. A block
cannot be longer than 32,767 bytes.

For output processing, the minimum block length is 18 bytes. If you define a block length of less than 18
bytes (but not less than 12), SAM:

• Writes the records padded up to a length of 18 bytes for fixed and variable-length records.
• Assumes BLKSIZE=18 for spanned records.

If a READ or WRITE macro for a work file specifies a length greater than the BLKSIZE value, the block to
be read or written is truncated to fit into the I/O area.

For ASCII tapes, your specification for BLKSIZE must include the length of any existing block prefix or
padding characters. Also, the defined length must be within the limits specified by American National
Standards Institute, Inc. Therefore, if your specification for BLKSIZE is less than 18 bytes (for fixed-length
records only) or greater than 2␠048 bytes, the assembler generates an MNOTE.

Processing of Labels
To have SAM process labels, the DTFMT macro for the file must define the type of labels to be processed.
This definition is one of the following:
FILABL=STD

For a file with IBM or user-standard labels. For a file with IBM standard labels and no user-standard
labels, this is the only label-related operand that you must specify.

FILABL=NSTD
For a file with nonstandard labels.

FILABL=NO
For a file without labels.

If your file includes user-standard labels or has nonstandard labels, your program must include a label-
processing routine. You define this routine to SAM in the DTFMT macro for your file by the operand
LABADDR=name.

A tape file with standard labels must be defined to the system by way of a TLBL statement before SAM
can open the file. For more information about this statement, see z/VSE System Control Statements.

User-standard labels (if any) always follow the IBM standard labels.

How SAM processes standard labels is presented separately for the various types of files.

Output File

© Copyright IBM Corp. 1990, 2015 65

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Writing of IBM Standard Labels
An OPEN macro for the file when the tape is at its load point causes SAM to check the volume (VOL1)
label.

For both EBCDIC and ASCII files, SAM supports HDR1, EOF1, and EOV1 labels, as well as HDR2, EOF2,
and EOV2 labels. IOCS writes a HDR2 label behind the HDR1 label, an EOF2 label behind the EOF1 label,
and an EOV2 label behind the EOV1 label.

If SAM finds that the first (or only) file on the tape has expired, SAM writes a new file header (HDR1 and
HDR2) label for your output file.

If your program issues an OPEN for a file in the middle of a tape reel, it is your responsibility to position
the tape past the tapemark at the end of the preceding file. You can use the MTC command to do this.
SAM issues a message to the console if the tape is at a wrong position.

A CLOSE macro for the file causes SAM to write:

1. Any records of the file not yet written.
2. One tapemark.
3. An EOF1 and EOF2 label followed by two tapemarks.

SAM then performs the specified or defaulted rewind action.

End of volume may occur before your program has issued a CLOSE macro for the file. If the next I/O
request for the file is a PUT, SAM starts end of volume processing. SAM then writes:

1. An unfilled (short) block of logical records followed by a tapemark.
2. An EOV1 and EOV2 label followed by a tapemark (two tapemarks for an ASCII file).

Writing of User-Standard Labels
For a non-ASCII file, up to eight user-standard labels may be written behind an IBM standard label:

UHL1 through UHL8 behind the HDR1 and HDR2 labels.
UTL1 through UTL8 behind the EOF1 and EOF2 labels.
UTL1 through UTL8 behind the EOV1 and EOV2 labels.

For an ASCII file, any number of user-standard labels may be written behind an IBM standard label.

To write user-standard labels, SAM requires you to:

• Code your own routine to build these labels.

In your routine, you cannot issue any macros that use the system's Logical Transient Area. Typical
examples of these macros are: OPEN, CLOSE, and CHKPT.

The routine receives control when SAM has completed writing the required IBM standard label(s).

Your routine must:

1. Build the 80-byte label, including the label type identification (UHLn or UTLn) in the first four bytes.
2. Pass the address of the label to SAM when the routine returns control to SAM.
3. Return control to SAM by way of a LBRET macro.

For details about coding the routine, refer to z/VSE System Macros Reference.

After the last user-standard trailer label has been written, SAM does the required processing for end of
file or end of volume.

• Define the name of the routine to SAM by specifying the LABADDR=name operand of the DTFMT macro.

Writing of Nonstandard Labels
An ASCII file cannot have nonstandard labels. To write nonstandard labels for a file, you must:

66 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

• Ensure that the tape is at the first label that is to be written. You can use the job control MTC command
for this purpose.

• Write your own label build routine. In the routine, you have to write your own channel program and use
physical IOCS macros to write the labels onto tape. In summary, this requires you to:

1. Set up a command control block by issuing a CCB macro.
2. Define a label input or output area.
3. Write a channel program consisting of CCWs as required to transfer a label from this area.
4. Issue an EXCP macro that refers to this CCB and the channel program.
5. Return control to SAM by issuing the LBRET macro.

The restrictions given above for a routine to build user-standard labels apply also to a routine for
building nonstandard labels. For details about coding the routine, refer to z/VSE System Macros
Reference.

• Define your routine to SAM by the LABADDR=name operand of the DTFMT macro for your file.

Input File

Checking of IBM Standard Labels
SAM expects the tape to be positioned at the load point when your file is opened. The first labels after
the VOL1 label are the HDR1 and HDR2 labels. SAM locates the file to be accessed by the file sequence
number in the TLBL job control statement.

Checking of Standard-User Labels
To have standard-user labels checked, you must:

• Code your own routine to do the actual checking.

The routine receives control when SAM has completed checking the IBM standard label(s) as required.

Your routine must:

1. Establish addressability of the label passed by SAM.
2. Perform processing on the passed label as required.

If the labels of the file are to be checked against input from another file, that other file must be
opened first.

Your program can update the label passed by SAM or can leave it unmodified. If the label is to be
updated, your routine must:

a. Move the passed label to another location within your program.
b. Do the necessary processing on the label.
c. Pass the updated label to SAM when your routine returns control to SAM.

3. Return control to SAM by way of a LBRET macro.

For details about coding the routine, refer to z/VSE System Macros Reference.
• Define your routine to SAM by the LABADDR=name operand of the DTFMT macro for your file.

Checking of Nonstandard Labels
Usually, nonstandard header labels are written at the beginning of a file, and a tapemark follows the last
one of these labels.

When a file with nonstandard labels is opened, the tape must be positioned at the first label that is to be
processed. You can use the job control MTC statement to position the tape. To have nonstandard labels
checked, SAM requires you to:

Chapter 5. Processing a Tape File with SAM 67

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

• Include, in your program, a routine that does the actual checking of the labels.

SAM requires such a routine also if the nonstandard labels of a file need not be checked but were
written without a tapemark at the end of the last (or only) header label. Your routine must indicate to
SAM (by LBRET 2) the end of the file's label set.

When the routine gets control during OPEN, SAM passes:

– A label-identification code (the character O in register 0).
– The representation of the logical unit being used, which is in the same format as bytes 6 and 7 of the

CCB.

When SAM finds a tapemark (which indicates end-of-file), SAM gives control to your routine. The routine
then must:

1. Find out whether an end-of-file or an end-of volume condition exists.
2. Pass to SAM (in register 0) a code that indicates the finding of your routine.

In your routine, you must write your own channel program and use physical IOCS macros to read the
labels from (or write updated labels to) tape. In summary, this requires you to:

1. Set up a command control block by issuing a CCB macro.
2. Define a label input or output area.
3. Write a channel program consisting of CCWs as required to transfer a label to or from this area.
4. Issue an EXCP macro that refers to this CCB and the channel program.
5. Return control to SAM by issuing the LBRET macro.

• Define the address of this routine in the LABADDR=name operand of the DTFMT macro for your file.

For details about coding the routine, refer to z/VSE System Macros Reference.

Unlabeled File
To understand this section, you may want to familiarize yourself with the volume layout of an unlabeled
tape as shown by Figure 26 on page 34.

To process a file on an unlabeled tape, either specify FILABL=NO in the DTFMT macro for the file or omit
the FILABL operand. SAM then assumes that the tape has no labels, regardless of what is stored on the
tape. SAM merely reads tapemarks or data on input and writes tapemarks or data on output.

Input
An unlabeled file on a nine-track tape can be read backward. Unlabeled ASCII tapes without any leading
tapemark can also be read backward.

Position the Tape
You must provide for the tape to be positioned. Else, the first GET for the file cannot make the first block
of the file available for processing. You can position the tape to the correct location as described below:

• The first file on the tape is to be read:

Specify REWIND=UNLOAD in the DTFMT macro for the file or omit the operand. This causes the tape to
be rewound to the load point on OPEN.

Alternatively, you can code a CNTRL REW macro or supply a job control MTC REW statement. You may,
if this is practical, have your operator position the tape by way of an MTC command. The MTC statement
(or command) is described in z/VSE System Control Statements.

• The file to be read is not the first one on the tape:

Issue the required number of CNTRL macros with the FSF command. The macro causes the tape to be
forward spaced to the next tapemark. The required number depends on:

68 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

1. The number of files on the tape preceding the file to be accessed.
2. The number of tapemarks between the files.

Another alternative is an MTC job control statement, as mentioned above for REWIND.

End of File
SAM assumes the end of the file when it reads the tapemark that follows the last data record. SAM passes
control to the end-of-file routine whose address you specified in the EOFADDR=name operand of the
DTFMT macro for the file. This routine should check whether an end-of-file or an end-of-volume condition
exists. Consider requesting a reply from the operator on an end-of-volume inquiry.

• End of file:

Your routine should handle this according to your end-of-data requirements.
• End of volume:

Your program must issue an FEOV macro. This causes SAM to switch to the alternate drive for the file if
ALT was specified on the applicable ASSGN statement in your job stream. If ALT was not specified, SAM
issues a message to the operator.

Multiple Files on One Volume
If multiple files on the same volume are to be read in sequence, specify REWIND=NORWD in the DTFMT
macro for each file. In that case, the tape is positioned correctly for the next file to be opened each time
the input from one file is complete.

Output
When your program opens the file and the tape is positioned at its load point, SAM verifies that the first
record on the tape is not a VOL1 label. If it finds a VOL1 label, SAM does not open an output file; it writes a
message to the console instead. SAM waits for an operator decision to either ignore the label or to wait for
a new tape reel to be mounted.

SAM writes tapemarks as follows:

1. At the beginning of the file if TPMARK=YES:

One tapemark, starting at the location where the tape is positioned when your program issues the
OPEN for the file.

2. At the end of the file:

Two tapemarks behind the last block of data when your program issues a CLOSE macro after having
processed all records of your file. However, SAM writes only one tapemark if either of the following
occurs:

• SAM finds the reflective marker at the end of the tape before the end of the output file.
• Your program issued an FEOV macro for the file.

No tapemarks are written by SAM if you specify TPMARK=NO for the file.

Multi-File Volume
You may want two or more files to be written on the same tape without repositioning the tape. To do this,
specify REWIND=NORWD in the DTFMT macro for each of the files. This causes the tape to stop after one
of the tapemarks written behind the file, unless there are no tapemarks (TPMARK=NO), in which case it
stops directly after the last block in the file.

Multi-Volume File
If the next I/O macro after the reflective marker at the end of the tape is a CLOSE, an end-of-file condition
exists. If the next I/O macro is a PUT or an FEOV (forced end of volume), an end-of-volume condition

Chapter 5. Processing a Tape File with SAM 69

exists. In that case, SAM writes a tapemark and switches to the alternate drive. If no alternate drive has
been specified, SAM requests the operator to mount a new volume. SAM positions the new tape at the
load point and writes a tapemark if TPMARK=YES was specified in the DTFMT macro.

American National Standard Labels
SAM can process tape files that consist of ASCII records. These files may be unlabeled or labeled with
American National Standard standard or user-standard labels; they may not have nonstandard labels.
Following are some differences in label handling of which you should be aware:

• Additional volume labels (UVL1-UVL9), if present are ignored by SAM on input. They are not built by
SAM on output.

• The default for the version number in the American National Standard file label is 00; the EBCDIC label
version number defaults to 0.

• EOV labels on an EBCDIC tape file are followed by one tapemark; on an ASCII tape file these labels are
followed by two tapemarks.

Return Control to SAM
In your routine for processing labels, issue a LBRET macro when the routine has completed processing a
label and you wish to return control to SAM. LBRET is used in routines that write or check user-standard
or nonstandard labels. The operand you use, the numeral 1 or 2, depends on the function to be
performed:

• For the checking of user-standard labels

SAM reads and passes the labels to your program, one at a time, until a tapemark is read or until you
indicate that you do not want any more labels.

Use:
LBRET 2

If you want to process the next label. If SAM encounters a tapemark, it automatically ends label
processing.

LBRET 1
If you want to bypass any remaining labels.

• For the writing of user-standard labels

In your routine, you build the labels one at a time and return to SAM. Use:
LBRET 2

If you want SAM to:

1. Write the label that your routine has built.
2. Return control to your label routine (at the address specified in LABADDR).

LBRET 1
If you want SAM to:

1. Write the label that your routine has built.
2. Do not return control to your label routine.

• For the checking or writing of nonstandard labels You must process all your nonstandard labels
together. Use LBRET 2 after all label processing is complete and you want control to be returned to
SAM.

70 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

End of Volume for a Multi-Volume File
Both GET and PUT check for an end-of-volume condition. When such a condition occurs, SAM
automatically performs volume switching.

You can stop reading from or writing to a file on a volume before the normal end of volume occurs. You do
this by coding the FEOV (force end of volume) macro in your program. The macro forces an end-of-volume
condition before SAM encounters a tapemark or a reflective marker. It indicates that the processing of
records with the current volume is finished and that more records for the same logical file are to be
processed with another volume.

The FEOV macro performs the same functions that occur on a normal end-of-volume condition, except for
the checking of trailer labels. If the file is:

• An input file

SAM immediately rewinds the tape (as specified by REWIND) and provides for a volume change (as
specified by ASSGN statements). SAM checks the standard header label on the new volume. It allows
your program to check any user-standard header labels if LABADDR is specified.

For a tape with nonstandard labels (FILABL=NSTD is specified), FEOV allows your program to check
these labels, too.

• An output file

SAM writes, onto the tape:

1. A tapemark (two tapemarks for ASCII files).
2. A standard trailer label and user-standard labels (if any).
3. A tapemark.

For a file with spanned records, a record may begin on a volume and the space left on the tape may be
too small to contain the entire record. In this case, SAM forces an end-of-volume condition at the end of
the last completed spanned record. The spanned record for which SAM could not find enough space is
then written onto a new volume.

Restriction: You cannot process a multivolume file with spanned records on an IBM 9346 tape device. A
unit check with command reject indicated in the sense byte will occur.

On the new volume, SAM writes the header label(s) in accordance with the DTFMT operands FILABL and
LABADDR and the ASSGN statements.

For a tape with nonstandard labels, SAM allows your program to write trailer labels on the completed
volume and header labels on the new volume, if this is desired.

Tape File Extension
You can add additional data records to an already existing standard-labeled file if you:

1. Defined the file with the operands FILABL=STD and TYPEFLE=OUTPUT in the DTFMT macro.
2. Supply a TLBL job control statement for the file with the DISP operand as shown below:

 // TLBL MYTPEFL ...,DISP=OLD

Instead of DISP=OLD, you may specify DISP=MOD. If the file exists, SAM sets up the tape for an
extension of the file.

For more details about the TLBL statement, refer to z/VSE System Control Statements.

For SAM, a file exists and can be extended if either of the following sets of requirements are fulfilled in
addition:

• The TLBL statement includes a file sequence number and

1. A file with this sequence number is on the volume.

Chapter 5. Processing a Tape File with SAM 71

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

2. The stored file identifier of this file matches the file identifier specified in the TLBL statement.

• The TLBL statement does not include a file sequence number and either of the following is true:

– The tape is at its load point and the file identifier of the first file on this volume matches the file
identifier specified in the TLBL statement.

– The tape is not at its load point and the file identifier specified in the TLBL statement matches the
file identifier of the succeeding file.

If the file to be extended does not exist, SAM issues a message and cancels the job.

SAM positions the tape to the end of the last data record in the file before extension starts.

A file to be extended may span more than one volume. Normally, you would want to extend such a file on
its last volume. To start extension with a volume other than the first, supply the correct label information
(such as file serial number and volume sequence number) in the TLBL statement. If there is a mismatch,
SAM issues a message. SAM also issues a message if the file to be extended is expired. In that case, you
must copy the entire file to get a new expiration date.

To avoid time-consuming tape skip operations for a file extension, always mount the last volume of a file's
set of volumes.

Restriction: Tape file extension is not possible on an IBM 9346 tape device. SAM issues a message during
Open and cancels the job.

Processing for IBM Standard Labels

For the File to be Extended
SAM compares all fields in the standard header label with the corresponding specifications in the // TLBL
statement. SAM issues error messages if there are any discrepancies.

The standard header label (HDR1 and HDR2) of the file to be extended remains unchanged. However:

• Before the extension, the creation date in the standard header (HDR1 and HDR2) label as well as in the
standard trailer (EOF1 or EOF2) label reflects the date when the file was created.

• After the extension, the creation date in the EOF1 (or EOF2) label reflects the date when the file was
extended. The expiration date in the EOF1 (or EOF2) label remains unchanged.

For the File Behind the One to be Extended
SAM checks the expiration date of the file. SAM issues the FILE UNEXPIRED ... message if the file has not
expired. On a reply of IGNORE, SAM overwrites the file.

Processing for User-Standard Labels
The user trailer labels on the existing file are not saved. Since SAM positions the tape to the end of the
data, these labels will be overwritten when new data is written onto tape.

When the file is closed, your program's label routine (if present) receives control to build standard user
trailer labels as required.

Coding an Error-Processing Routine
SAM can handle I/O errors and wrong-length record errors. Your program may include just one error-
handling exit routine or one such routine for either of these types of error. The table below lists the
possible error-processing actions and indicates (1) the DTFMT options and (2) the macro requests that
must be specified to get these actions.

72 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Desired Action Your DTFMT Specification

Terminate the job: Nothing

Skip the error record: ERROPT=SKIP

Ignore the error record: ERROPT=IGNORE

Process the error record: ERROPT=name

Process a wrong-length record error: WLRERR=name.

Desired Action Your Macro Specification

After processing the record, return control to SAM
and Skip the record (input only):

Either of the following

• Execute BR 14.
• ERET SKIP request.

Ignore the record: ERET IGNORE request

The routine that you define in the ERROPT=name operand receives control when SAM encounters:

• An irrecoverable tape I/O error (ERREXT=YES is specified in the DTFMT macro for the file).

ERREXT=YES must be specified for output files (TYPEFLE=OUTPUT).
• A tape read data check that the system was unable to correct (ERREXT=YES is not specified in the

DTFMT macro for the file).

Your routine may perform any kind of error processing if it adheres to the following rules and restrictions:

• It may not issue a GET for the file.
• If it issues any other IOCS macro (except ERET when you have specified ERREXT=YES), the routine

must save the contents of register 13 (with RDONLY) and register 14 before the macro is used. The
routine must restore these contents again after having used the macro.

• If it issues IOCS macros which use the same read-only module that caused control to be passed to the
error routine, the routine must provide another save area. One save area is used for the normal I/O, the
second one for I/O operations in the error routine itself.

Before your routine returns control to the module that entered the error routine, it must set register 13
to point to the save area originally specified for the task.

• If you specified ERREXT=YES, register 1 contains the address of a two-word parameter list when an
error condition occurs. The contents of this two-word list are:

– First word

The address of the DTF table. Your error routine can use the address to test the data transfer bit (bit 2
of byte 2 of the table).

If the bit is on, the block in error has not been read or written. If the bit is off, data was transferred
and your routine must access the error block to determine what action is to be taken.

– Second word

The address of the block in error. Your error routine can use this address to access the data block for
error processing. The content of the IOREG register or work area, if either is specified, is unusable.
When spanned records are processed, the word contains the address of the whole spanned record,
blocked or unblocked.

If you did not specify ERREXT=YES and an error occurs, then register 1 contains the address of the
block in error. Your routine should use this address to access the error block for error processing.

Chapter 5. Processing a Tape File with SAM 73

Note: For ASCII tapes, the address in register 1 points to the first logical record following the block
prefix.

• At the end of error processing, your routine must return control to SAM. Code either a branch to the
address in register 14 or, for an input file, the ERET macro with the IGNORE or SKIP option (if you have
specified ERREXT=YES). The RETRY option of the ERET macro is not valid for tape files; if used, the
RETRY option causes your job to be canceled.

Wrong-Length Error Processing Considerations
A block read by SAM may be shorter than the length specified in the BLKSIZE operand. If so, the first two
bytes of the DTF table contain the residual count, the number of bytes left to be read. The actual size of
the block therefore is equal to the value specified for BLKSIZE, minus the residual count.

A block read by SAM may be longer than the length specified in the BLKSIZE operand. In that case, the
residual count is zero, and there is no way to compute the actual size of the block. The number of bytes
transferred is equal to the value specified for BLKSIZE, and the remainder of the block is lost.

For fixed-length unblocked records, a wrong-length record error condition exists when the length of the
record read is not the same as the value specified for BLKSIZE.

For EBCDIC fixed-length blocked records, the record length is considered incorrect if the block being read
is not a multiple of the logical record length as specified in the RECIZE operand. This permits reading of
short blocks of logical records without a wrong-length record indication.

For EBCDIC variable-length records, blocked and unblocked, the record length is considered incorrect if
the length of the block on tape is not the same as the block length specified in the four-byte block length
field. The residual count can be obtained by addressing the halfword in the DTF table at filename+98.

For ASCII variable-length records, blocked and unblocked, SAM checks the length of each block if
LENCHK=YES is specified. The length of a block is considered incorrect if the tape record is not the
same as the block length specified in the four-byte block prefix. In this case, the WLR bit in the DTF table
(bit 1 of byte 5) is set off.

For undefined records, a wrong-length record is indicated if the record read is longer than the value
specified for BLKSIZE.

Other Error-Processing Considerations
While reading a block of records, SAM may detect a parity error. SAM then backspaces and rereads the
block a certain number of times before it considers this block as an error block.

An output parity error is considered to be an error block if the error exists after SAM has attempted a
certain number of times to forward erase and to write the block. Your error processing routine should
treat the device as inoperative; it should not attempt further output to this device. Any subsequent
attempt to return to SAM causes the job to be canceled.

A sequence error may occur while SAM is searching for a first segment of a logical spanned record and
fails to find it. If you specified WLRERR=name or ERROPT=name, the error recovery procedure is the
same as for wrong-length record errors. If you specified neither, SAM ignores the sequence error and
searches for the next first segment.

Non-Data Operations
Note: If your program issues a CLOSE for an unopened tape-input file, SAM performs the option specified
in the REWIND operand of the DTFMT. For an unopened tape-output file, a CLOSE does not cause a
tapemark or any labels to be written; also, no REWIND option is performed.

By way of the CNTRL macro, your program can control a number of tape-handling operations that are
not concerned with reading or writing data. As an operand of the macro, you specify a function code,
a mnemonic operation request. You can select the desired operation from a set of codes for function
categories as follows:

74 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

• Rewinding a tape to the load point
• Moving a tape to a certain position.
• Spacing forward or backward by one logical record.
• Writing a tapemark.
• Erasing a portion of the tape.
• Synchronizing the hardware buffer (if you have a buffered tape unit) with your program.

For a list of all possible function codes, see the description of the CNTRL macro in z/VSE System Macros
Reference. Some of the function categories are further discussed below.

Rewind and Tape-Movement Functions
Your program can use the function codes of these categories before a tape file is opened. This allows your
program to position the tape at the desired location for opening a file. In other words, your program can
cause the tape:

• To be positioned to a file located in the middle of a multifile reel.
• To be rewound even if NORWD was specified in the REWIND operand of the DTFMT macro for the file.

Note: If your program is self-relocating, you must open the file before issuing any commands for it.

The tape movement functions apply only to input files. They always start at an inter-block gap. For the use
of these functions, consider the following:

• The FSF (forward space file) or BSF (backward space file) function permits you to skip to the end of the
file (identified by a tapemark).

• The FSR (forward space record) or BSR (backward space record) function permits you to skip over a
block of data, from one inter-block gap to the next.

• If you have blocked input records and you do not want to process the remaining records of a block, nor
any of the succeeding blocks, issue a RELSE macro before the CNTRL macro. The next GET then makes
the first record of the new block available for processing. If the CNTRL macro (with FSR, for example) is
issued without a preceding RELSE, the tape is advanced; the next GET makes the next record in the old
block available for processing.

• For any I/O area combination, except one I/O area and no work area, SAM always reads one tape block
ahead of the one that is being processed. Thus, the next block after the current one is in storage ready
for processing.

If a CNTRL FSR is given, the second block beyond the present one is skipped without being read into
storage.

• If FSR or BSR is used, SAM does not update the block count. Moreover, SAM cannot sense tapemarks.
Therefore, SAM does not perform the usual end-of-file or end-of-volume functions if such an end
condition occurs.

Spacing Over a Logical Record
The tape spacing functions FSL (forward space logical) or BSL (backward space logical) apply only to input
files with spanned records. Consider the following when you plan to use FSL or BSL:

• Logical record spacing is ignored if it immediately follows a RELSE macro.
• Forward and backward spacing refer to the actual direction of the spacing. For example, if BSL is
specified for an input file that is being read backwards, SAM skips one logical record.

• If an end-of-file, end-of-volume, or an error condition occurs while an FSL or BSL spacing function is
being executed, the condition is handled as if it occurred during a normal GET operation.

Chapter 5. Processing a Tape File with SAM 75

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Synchronizing the Hardware Buffer
The function code in this category (SYN) applies to output to a buffered tape unit that operates in buffered
mode. For example, the macro

 CNTRL TAPEOUT,SYN

causes SAM to write to the file TAPEOUT any of your program's output that is still in the buffer of the
involved tape unit. Your program receives control again when this write operation is complete.

User Interface for Tape OPEN, CLOSE, and End-of-Volume
Note: This interface was implemented primarily for IBM supplied tape-managing systems; if you want to
use it, you must provide your own tape managing routine.

With this interface, a user program (normally a tape management system) can get control:

1. Before OPEN.
2. Before switching to an alternate volume.
3. Before CLOSE.
4. After CLOSE.

If the tape management system is to get control at these points, it must provide an exit routine as phase
$IJJTXIT and load this phase into the SVA. If the phase $IJJTXIT does not exist, processing continues
without any error indication.

If the SVA includes a routine of your own as phase $IJJTXIT, this routine can do any processing, except
issuing an IOCS macro for the file. If the routine does, SAM cancels the job. Return to SAM by a branch to
the address in register 14.

SAM passes control to the routine with registers set as follows:
Register 0

A function code indicating the point of processing:
00 =

Before OPEN
04 =

Before CLOSE
08 =

After CLOSE
0C =

On end of volume, before alternate-tape processing

Register 1
A pointer to the DTF table (DTFMT or DTFPH)

Register 13
Address of a save area

Register 14
Return address

Register 15
Entry point of $IJJTXIT

On return from $IJJTXIT, registers 0 through 14 are restored; register 15 has to contain one of the
following return codes:
0 =

Always, except for certain end-of-volume (EOV) processing.

76 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

4 =
Applies to EOV processing – Normal alternate tape assignment processing is to be skipped. The tape
management system has made the alternate assignment and has ensured that the correct volume is
mounted.

Access-Protection for an ASCII Tape
In accordance with the ANSI Standard, Level 3, the system denies access to an ASCII file that is access-
protected.

The VSE system as shipped includes two phases named $IJJTSEC and $$BOMTAC. These phases check
the accessibility byte in the VOL1 and HDR1, HDR2 labels. If this byte is set to X'40', X'00', or C'0', SAM
cancels the job. You can replace these phases by one of your own that meets the requirements at your
location. To do this, change the A-type macro IJJT$SEC or BOMTAC accordingly and reassemble and link
the macro. You may use the sample job stream below:

 // JOB IJJTSEC
 // OPTION CATAL,NODECK
 // EXEC ASMA90....
 COPY IJJT$SEC|BOMTAC
 END
 /*
 // EXEC LNKEDT,PARM='MSHP'
 /&

The statement //EXEC ASMA90.... calls the High Level Assembler. Refer to the topic Using a Macro in a
Program for further details.

Chapter 5. Processing a Tape File with SAM 77

78 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 6. Processing a Unit Record File with SAM

A unit record file can use a wide variety of I/O devices. These range from punched card through printer to
the console. For some of these, each record is complete on one unit of information storage. For other files,
such as printer or console, a unit is the line of print or display.

Because of this variety, unit record programming is quite device dependent. Different DTFxx macros are
needed to define files for different types of unit record I/O devices. This topic discusses unit record files
on device types as follows:

• Punched Card I/O
• Printer
• Console

Processing a Punched Card File
To process a punched card file, your program must define the file by a DTFCD macro and a CDMOD (logic
module generation) macro.

Punched card equipment normally performs only one function, for example reading cards or punching
cards. Certain types of punched card equipment, so called card read punch machines, can perform both
of these functions in a single path.

The IBM 3525 can also print on the cards of a file. Logically, however, data to be printed is a separate
file; you must define this file in your program by a DTFPR macro and must also code a PRMOD macro.
The section “Programming for Associated Files” on page 79 provides hints for using the IBM 3525 to
perform multiple functions on a file in one pass.

A card file on the IBM 3525 can be both read and punched in one run. To accomplish this, your program
must define the file as combined. Coding considerations for a combined file are given under “Updating a
Record” on page 81.

The IBM 3505 offers support for an additional kind of application: this card reader can be equipped with
the optical mark reader feature. The feature allows up to 40 columns of marked data to be read. Hints for
dealing with this data are given under “Optical-Mark-Read and Read-Column-Eliminate Modes” on page
81.

Programming for Associated Files
This section applies to a card file on an IBM 3525.

If only one function is to be performed, specify one of the following DTFxx macros as listed below:
FUNC=R

For reading – in the DTFCD macro
FUNC=P

For punching – in the DTFCD macro
FUNC=W

For printing – in the DTFPR macro
FUNC=I

For punching and interpreting – in the DTFCD macro.

If two or more card functions are to be performed on the cards of a file, define this file as a set of
associated files. All combinations of the three card functions (read, punch, and print) are possible; you
need to define each of the desired functions by a separate DTFxx macro: DTFCD for the read and punch
functions and DTFPR for the print function. Your file definitions are associated by your specifications in
the ASOCFLE operands.

© Copyright IBM Corp. 1990, 2015 79

For an associated file, you can define only one output area (with or without a work area). You can define
the same output area for both files or a separate output area for each of the files. For example, if the same
information is to be punched and printed, it is of advantage to use only one output area for both files.

Note: If you use associated files and ASSGN ...,IGN, the logical units for both files must be assigned IGN.

Read-Punch Associated Files
Specify FUNC=RP in the DTFCD macros for the two files.

For each card, SAM requires a GET for the read file and a PUT for the punch file. If no punch operation is
desired for a card, your program must fill the output area with blanks before it issues the PUT macro.

If you specified CTLCHR=YES or CTLCHR=ASA for the punch file, the control character must always be
present in the first byte of the output (or work) area. The data area following the control character may be
filled with blanks. If you use the CNTRL macro instead, issue this macro before the PUT for the punch file.
By issuing this CNTRL as soon as possible after the GET for a card, you can improve card throughput.

Read-Print Associated Files
Specify FUNC=RW in the DTFCD macros for the two files.

For each card, SAM requires a GET for the read file. A PUT for the print file needs to be issued only when a
line is to be printed. However, this PUT causes a new card to be fed. Therefore, consider to fill the output
(work) area with blanks and then issue the PUT macro.

If you do not issue a PUT for the print file, overlapped processing cannot take place. This may slow down
card throughput.

Read-Punch-Print Associated Files
Specify FUNC=RPW in the DTFxx macros for the files.

For each card, SAM requires a GET for the read file and a PUT for the punch file. Regarding PUT macros
for the print file, see “Read-Print Associated Files” on page 80, above. Refer to “Read-Punch-Print
Associated Files” on page 80 for the effect of the CTLCHR operand in the DTFCD macro and a CNTRL for
the punch file.

For associated files, GET, CNTRL, and PUT macros must be used in the sequence as shown in Table 6 on
page 80. For example, to process a card of a read-punch associated file requires this sequence:

1. A GET macro for the file defined in the read DTFCD.
2. A CNTRL macro (if desired) for the file defined by the punch DTFCD.
3. A PUT macro for the file defined by the punch DTFCD.

A sequence of GET and PUT macros other than as shown cause an abnormal end with an ILLEGAL
SUPERVISOR CALL message. The use of CNTRL in a sequence other than as shown causes unpredictable
results.

Table 6. Sequence of GET/CNTRL/PUT Macros for Associated Files

Each macro sequence processes one card of the involved file of cards.

Function Sequence of macros For the file defined by: FUNC=

Read/Punch GET CNTRL * PUT DTFCD (read file)DTFCD
(punch file)DTFCD
(punch file)

RP

Read/Punch/Print GET CNTRL * PUT PUT ** DTFCD (read file)DTFCD
(punch file)DTFCD
(punch file)DTFPR

RPW

80 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Table 6. Sequence of GET/CNTRL/PUT Macros for Associated Files (continued)

Each macro sequence processes one card of the involved file of cards.

Function Sequence of macros For the file defined by: FUNC=

Read/Print GET CNTRL * PUT ** DTFCDDTFCDDTFPR RW

Punch/Print CNTRL * PUT PUT ** DTFCDDTFCDDTFPR PW

*
Optional. If used, however, the sequence is as shown.

**
Optional if you do not want to print on the card; if used, however, the sequence is as shown.

Updating a Record
Some IBM card devices, the IBM 3525 for example, can read a card and allow additional information to be
punched back into that card. A card file to be processed in this way is called a combined file.

In the DTFCD for a combined file, you must specify TYPEFLE=CMBND. For an IBM 2540 with the punch-
feed-read feature, the file to be updated must be in the punch feed.

An example of a combined card file is given in Figure 36 on page 81.

 Column 72
FILEC DTFCD IOAREA1=AREA, X
 IOAREA2=AREA2, X
 DEVADDR=SYS005, X
 RECFORM=FIXUNB, X
 TYPEFLE=CMBND
 ...
 GET FILEC
 ...
 PUT FILEC
 ...

Figure 36. Example of a Combined File

In the combined card file example of Figure 36 on page 81, data is punched into the same card which was
read. Information from each card is read and processed. The result of this processing is then punched into
the same card to produce an updated record.

In your program, you can specify just one I/O area (by the IOAREA1 operand) for both the input and
output of a card record. You can specify a second I/O area (with the IOAREA2 operand), if this is
desirable.

A PUT for a combined file must always be followed by a GET before another PUT is issued. The first PUT
must, of course, also be preceded by a GET. GET macros can be issued as many times in succession
as desired, except when you use an IBM 2540. For a file on the IBM 2540 (with the punch-feed-read
feature), your program must issue a PUT macro for each card.

The operator must run out the 2540 punch following a punch-feed-read job.

Optical-Mark-Read and Read-Column-Eliminate Modes
This section deals with input files to be processed in either of the following modes:

• Optical-mark-read (OMR) mode on an IBM 3505.
• Read-column-eliminate (RCE) mode on an IBM 3505 or 3525.

Either mode requires a format-descriptor card; OMR mode requires additional considerations regarding
the data records.

Chapter 6. Processing a Unit Record File with SAM 81

In the DTFCD macro for the file, specify MODE=O for OMR mode and MODE=R for RCE mode.

Format Descriptor Card
The card defines the columns to be read or eliminated. When it finds this card, SAM builds an 80-byte
record which relates to the specified format. If no format descriptor card is present, SAM issues a
message to the operator and cancels the job.

The format descriptor card is to be coded as follows:

 FORMAT (n1,n2)

or

 FORMAT (n1,n2),(n3,n4),...

Rules for coding:

• The operation, FORMAT, is to be punched into columns 2 through 7.
• Operands begin in column 9 and may continue through column 71; they must be separated by commas

as shown.
• Continuation cards can be specified by punching an X in column 72; coding on the continuation card

must begin in column 16.
• The values for n1, n2, and n3 must be as follows:

 1 =< n1 =< n2 < n3 =< n4 ... =< 80

• For OMR, the value of n3 minus n2 must be greater than or equal to 2.
• For MODE=O, n1 indicates the first column, and n2 indicates the last column to be read in OMR mode.

Only every other column between n1 and n2 can be read in OMR mode; therefore, n1 and n2 must both
have either odd or even values.

For example, if you want to read columns 1, 3, 5, 7, 9, 70, 72, 74, 76, 78, and 80 in OMR mode, you
would use the following format descriptor card:

 FORMAT (1,9),(70,80)

• For MODE=R, n1 indicates the first column not to be read, and n2 indicates the last column not to be
read. Assume that all card columns except 20 through 30 and 52 through 76 are to be read. You would
have to code a format descriptor card as follows:

 FORMAT (20,30),(52,76)

OMR Data Card
The following rules apply to the coding of an input card to be read in OMR mode:

• A mark character (character to be read optically) must be separated from another mark character or a
punched character by at least one column that contains neither marks nor punches.

• A mark character in an odd column must be separated from mark characters in adjacent even columns
by at least two columns that contain neither marks nor punches. In the example below M indicates a
marked column, and b indicates a blank column:
 ┌──────────── Column 0 (even)
 │
 │ ┌──────────── Column 1 (odd)
 │ │
 │ │ ┌──────────── Column 2 (even)
 ↓ ↓ ↓
 M b M b b M b M . . .

82 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

• A mark character must be separated from any columns containing punched holes (in the example
indicated by 'H') by at least one column that contains neither marks nor punches:

 H b M b H H H

Although OMR data is contained in alternating card columns, this data is compressed into contiguous
bytes in the I/O area. The relationship of the data on card columns to the location of the data in storage is
as follows:

1. If column n does not contain OMR data, the data content of column n+1 represents the contiguous
byte in virtual storage which follows the column n data byte.

2. If column n does contain OMR data, the data content of column n+2 represents the contiguous byte in
virtual storage which follows the column n data byte. The data content of column n+1 is not read into
virtual storage.

3. The data content of column 1 always represents the first data byte in virtual storage.

Figure 37 on page 83 shows how these rules apply to the data card and its format descriptor card; it
shows the record that results from reading the data card.
┌───┐
│ │
│ Format Descriptor Card: │
│ │
│ FORMAT (4,6),(9,11) │
│ │
│ │
├─────────────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┤
│Card Columns │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ 10 │
├─────────────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│Card Data │ P1 │ P2 │ b │ M4 │ b │ M6 │ b │ b │ M9 │ b │
│ │ │ │ │ │ │ │ │ │ │ │
│Format Data │ b │ b │ b │ F4 │ - │ F6 │ - │ b │ F9 │ - │
├─────────────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┤
│ │
│ Switch from Switch from │
│ punch to mark even marks to odd │
│ │
├─────────────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┤
│Channel Data │ P1 │ P2 │ b │ M4 │ M6 │ b │ M9 │ M11│ P13│ P14│
├─────────────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┤
│ │
├─────────────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┤
│Card Columns │ 11 │ 12 │ 13 │ 14 │ 15 │ 16 │ 17 │ 18 │ 19 │ 20 │
├─────────────┼────┼────┼────┼────┼────┼────┼────┼────┼────┼────┤
│Card Data │ M11│ b │ P13│ P14│ P15│ P16│ P17│ P18│ P19│ P20│
│ │ │ │ │ │ │ │ │ │ │ │
│Format Data │ F11│ - │ b │ b │ b │ b │ b │ b │ b │ b │
├─────────────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┤
│ │
│ Switch from │
│ mark to punch │
│ │
├─────────────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┤
│Channel Data │ P1 │ P2 │ b │ M4 │ M6 │ b │ M9 │ M11│ P13│ P14│
└─────────────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

 b = Must have neither hole nor mark data; is X'40'
 - = May be character or blank
 Px = Punched data in column x
 Mx = Mark data in column x
 Fx = Format data for column x

Figure 37. OMR Data and Format-Descriptor Example

Weak Mark
When SAM finds a weak mark or a poor erasure in a column, the column's data is replaced with:
X'3F'

When SAM reads in EBCDIC mode.

Chapter 6. Processing a Unit Record File with SAM 83

X'3F3F'
When SAM reads in column binary mode.

If X'3F' is placed in the data, an X'3F' is also placed in byte 80 of the I/O area when reading in EBCDIC
mode, or in byte 160 when reading in column binary mode. This indicates an OMR reading error. By
checking this byte, your program can determine whether an OMR-read error occurred on the card.

However, if the I/O area length is less than 80 for EBCDIC mode, or less than 160 for column binary mode,
the X'3F' is not placed in virtual storage. To determine whether a reading error occurred, your program
must check each OMR byte for an X'3F'.

End-of-File Handling
On end of file, SAM automatically transfers control to your end-of-file routine, which you define by way of
the EOFADDR operand. This operand is required for input and combined files. In the end-of-file routine
your program can perform any operations required for the end of the file. Generally, the routine issues a
CLOSE instruction for the file.

SAM detects an end-of-file condition in the card reader by recognizing the characters /* punched in card
columns 1 and 2 (column 3 must be blank).

If the system input is together with the job input and two I/O areas are used on the DTFCD, an extra blank
card is required after end of file.

When MODE=O or MODE=R was specified in the DTFCD macro, a blank card must follow the card which
causes your program to close the file.

If you have associated files on your IBM 3525, your program must issue a CLOSE for the two associated
files without an intervening I/O operation. Reopening one associated file requires reopening also the
other(s). The card movement caused by issuing CLOSE for a file on the IBM 3525 is as follows:

File Type Feed Caused by CLOSE for:

Read Read (see 1 below)

Punch Punch

Print Print

Read/Print Print (see 1 below)

Read/Punch/Print Print (see 2 below)

Read/Punch Punch (see 2 below)

Punch/Print Print

Punch/Interpret Punch

Note:

1. A card feed is executed only if R has been specified in the DTFCD MODE operand. Programs using
read-column- eliminate mode must detect an end-of-file condition themselves.

2. Delimiter cards cannot be punched or printed in these files. CLOSE always issues a feed command.

Error Handling
The ERROPT operand of the DTFCD macro specifies the error option used for an input or output file.

Hints for Programming

84 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Card Feeding on an IBM 2540
When the machine is used for a card input, each GET macro normally reads the record from a card in
the read feed. However, if (1) your machine has the punch-feed-read feature and (2) TYPEFLE=CMBND is
specified in the DTFCD macro, each GET reads the record from the card at the punch-feed-read station.
Your program can update this record with additional data. Such data is punched back into the same card
when the card passes the punch station and a PUT macro was issued.

Printing on the IBM 3525
If your program opens a print-only file, SAM causes the first card to be fed to ensure that a card is at the
print station.

If associated files are opened for a file of cards, all of the associated files must be opened before a GET or
a PUT is issued for any of them.

For a machine with a 2-line print feature, output is automatically printed on lines 1 and 3. When automatic
line positioning is used for a print-only file on a 2-line printer, then one PUT macro causes line 3 to be
printed and the other PUT causes a new card to be fed and printing on line 1 to be started.

On a machine with a multiline print feature, card feeding is caused by the PUT macro that follows the PUT
for printing on line 25. This PUT also starts the printing on line 1 of the next card.

If you want to control line positioning, specify the CONTROL operand or the CTLCHR operand in the
DTFPR macro Neither of these operands is valid for card feeding when it is specified for a printer file
associated with a punch file. In your program, you must provide for line spacing and skipping during
printing. If you specify CTLCHR=YES, your program must also control card feeding.

The following restrictions apply to user-controlled line positioning:

• Any attempt to print on lines other than lines 1 or 3 with a 2-line print feature results in a command
reject. Otherwise, 2-line print support is identical to the multiline print support.

• A space-after-printing command for line 25 results in positioning on line 1 of the next card.
• Any attempt to print and suppress spacing results in a command reject.
• Any skip command to a channel number less than or equal to the present channel position results in line

positioning at that channel position on the next card.
• If CONTROL or CTLCHR is specified, FUNC is ignored for a 2-line print support.

Additional hints for programming the printing of cards on an IBM 3525 are included in the sections
“Non-Data Device Operations” on page 85 and Chapter 6, “Processing a Unit Record File with SAM,” on
page 79.

Non-Data Device Operations
Some device functions, such as output stacker selection or line spacing and skipping, if card printing is
used, can be controlled either by specified control characters in the data records or by the CNTRL macro.
Either method, but not both, may be used for a file.

Stacker selection can, in addition, be controlled by way of the SSELECT operand of the DTFCD macro for
your file. If you omit this operand and use neither control characters nor the CNTRL macro, all cards go
into the normal read or punch stacker. In your program, you can use the CNTRL macro to temporarily
override the stacker selected by an SSELECT specification.

The CNTRL Macro
You cannot use the macro for:

• An input file with two I/O areas (the IOAREA2 operand is specified).
• A printer or punch file if the records of the file include control characters and you specified the operand

CTLCHR in the DTFxx macro.

Chapter 6. Processing a Unit Record File with SAM 85

If you use the CNTRL macro in your program, include the operand CONTROL in your DTFCD or DTFPR
macro and omit the operand CTLCHR. If your records include control characters although CONTROL is
specified, SAM treats the control characters as data.

Do not specify the CONTROL operand in the DTFCD macro for an input file that is associated with a punch
file on the IBM 3525 (FUNC=RP or FUNC=RPW is specified in the DTFCD macro). However, you may, if this
is desirable, specify CONTROL in the DTFCD macro for the associated punch file.

The CNTRL macro usually requires two or three operands:

• The name of the file specified in the DTFxx macro; it can be specified as a symbol or in register notation.
• The mnemonic code for the command to be performed. This must be one of a set of codes applicable to

the device.
• A stacker-select or a print-control value.

For a list of applicable command codes and stacker-select or print-control values, see the CNTRL macro in
z/VSE System Macros Reference.

2540 Card Read Punch Codes
You can use the CNTRL macro with code PS to select a card into a different stacker pocket. Specify this
pocket as the third operand, n1. The possible selections are shown below; they are the codes that you can
specify also in the SSELECT operand.

Feed Stacker Value of n1

Read R1 1

Read R2 2

Read RP3 3

Punch P1 1

Punch P2 2

Punch RP3 3

To have a certain card stacked into a certain pocket, issue the CNTRL macro as follows:

• For an input file – After the GET macro for this card.

If your program:

1. Requires operator intervention – to correct a card out of sequence, for example, and
2. Has specified CONTROL=YES in the CDMOD macro, then

code a CNTRL macro before the operator intervention is requested. This assures that any command
issued to your IBM 2540 after the operator intervention is not rejected as invalid.

• For an output file – Before the PUT for this card. However, CNTRL does not have to precede every PUT.

3505 Card Reader and 3525 Card Punch Codes
Cards read on the IBM 3505 or punched on the IBM 3525 are directed to the stacker specified in the
SSELECT operand of the DTFCD macro. If SSELECT is omitted and no CNTRL is issued in the program,
SAM directs the cards to stacker 1. However, if you code a CNTRL macro to have certain cards stacked
into stacker 2 or 3, then stacker 1 must be selected explicitly. The CNTRL macro overrides the stacker
selection specified in the SSELECT operand explicitly or by default.

86 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

3525 Card Print Codes
The CNTRL macro can control spacing and skipping to a specific line on a card on the IBM 3525 with the
card print feature. The command code SP requests the IBM 3525 to space one, two, or three lines on a
card; SK requests a skip to a channel (1 through 12) on a card.

The print channels correspond to specific rows on a card as shown in Figure 38 on page 87.

 Line Number Corresponding Channel

 1 1
 2
 3 2
 4
 5 3
 6
 7 4
 8
 9 5
 10
 11 6
 12
 13 7
 14
 15 8
 16
 17 9 (overflow)
 18
 19 10
 20
 21 11
 22
 23 12 (overflow)
 24
 25

Figure 38. Print Channel to Card Row Correspondence on an IBM 3525

Control Characters
When control characters are used in the records of your file, specify the CTLCHR operand in the DTFxx
macro. Every record of the file must have a control character in its first character position if the file
has fixed-length or undefined records. This control character must be the first character following the
record-length field in a variable-length record. The BLKSIZE specification for the output area must include
the byte for the control character. If undefined records are specified, the RECSIZE specification must
include this byte.

In case of a PUT request, the control character in the data record determines the command code (byte) of
the CCW that is built by SAM. The control character is used as follows:
If CTLCHR=YES

SAM uses the control character as the command code. Therefore, the supplied code must be valid for
the device.

If CTLCHR=ASA
SAM translates the control character into the corresponding command code for the device.

To effect a space or a skip without printing, your program must supply the corresponding control
character in the first character position of the output area for the file. The remainder of the area must
be all blanks (X'40').

If RECFORM=UNDEF, the length of the record must be at least 2; if RECFORM=VARUNB, it must be at
least 6.

To print on cards on the IBM 3525, you must use a space-1 control character (a blank) to print on the
first line of a card.

The first character after the control character in the output data becomes the first character punched
or printed.

Chapter 6. Processing a Unit Record File with SAM 87

For a complete list of all control characters, see z/VSE System Macros Reference.

Processing a Printer File
A printer file must be defined with the DTFPR macro and, possibly, the PRMOD macro. A PRMOD macro is
not required for an IBM PRT1, 3800, 4248, or 6262 printer.

Associated File on an IBM 3525
For a discussion of associated files, see “Programming for Associated Files” on page 79.

To define an associated file for the IBM 3525, use the ASOCFLE operand together with the FUNC operand:
ASOCFLE Operand

It specifies the name of an associated read or punch file; it causes SAM to check the macro sequence
in your program for each of the associated files. One name must be specified per DTFxx macro for an
associated file.

FUNC Operand
It specifies the type of file to be processed on the IBM 3525. You can specify one of the following
(followed by T if your IBM 3525 has a 2-line print feature):

RW To indicate "read and print."

RPW To indicate "read, punch and print."

PW To indicate "punch and print."

A code specified for an associated printer file must be specified also for the associated card file(s). Do
not use T (two-line) for the associated card file(s), it is valid only for your printer file.

T is ignored if your DTFPR includes CONTROL or CTLCHR.

Printer Overflow
The PRTOV (printer overflow) macro is used to specify the operation to be performed when a page
overflow occurs. An overflow is caused by spacing into or beyond channel 9 or 12 in the forms control
buffer (FCB). To use the PRTOV macro, include the PRINTOV=YES operand in your DTFPR macro.

SAM performs the action requested by the PRTOV macro when an overflow condition (channel 9 or 12)
occurs. This is either a skip to channel 1 or a branch to the specified routine. However, SAM cannot detect
an overflow condition during a skip operation.

Issue a PRTOV macro after any macro that causes carriage movement (PUT or immediate CNTRL) and
before you issue the next CNTRL or PUT. This ensures that your overflow option is performed at the
correct time.

If your program includes an overflow routine, return control from this routine by a branch to the address in
register 14.

For output to an IBM 3525 with the two-line print feature, SAM ignores a PRTOV macro.

On an IBM 3525 with the multiline print feature, an overflow condition from channel 9 or 12 causes either
of the following:

• A transfer of control to the overflow routine specified in the PRTOV macro.

Note: PRTOV without a routine name is invalid for an associated file on the IBM 3525.
• A skip to channel 1 to begin printing on the next card for a print-only file.

Printer Controls
Line spacing or skipping for a printer can be controlled by either of these methods:

88 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

• Specify the CTLCHR operand in the DTFPR macro for the file and include a control character in each of
your data records.

• Specify the CONTROL operand in the DTFPR macro for the file and use the CNTRL macro.

You can use either method, but not both, for the same file.

If your DTFPR does not include the CTLCHR operand, a PUT macro for the printer file causes the printer to
space automatically by one line. If this meets your requirements, there is no need to issue a CNTRL macro
or to specify a control character in each record.

How to use of the CNTRL macro is described under “CNTRL Macro” on page 89.

Control Characters
To use control characters, specify CTLCHR=YES or CTLCHR=ASA in your DTFPR. Every record of your
file must have a control character either in the first character position of each fixed-length or undefined
record, or in the first character position after the record-length field of a variable-length record. The value
you specify for BLKSIZE must include the byte for the control character. If your file has undefined records,
your value for RECSIZE must include this byte too. For maximum and default output area sizes for the
various types of printers, see the description of the DTFPR macro in z/VSE System Macros Reference.

Note: Printing without spacing can be done only with the CTLCHR operand.

In case of a print (PUT) request, the control character in the data record determines the command code
(byte) of the CCW that is built by SAM. The control character sent to the printer is used as follows:
If CTLCHR=YES

SAM uses the control character as the command code. Therefore, the supplied code must be valid for
the printer.

If CTLCHR=ASA
SAM translates the control character into the corresponding command code for the printer.

To effect a space or a skip without printing, your program must supply the corresponding control
character in the first character position of the output area for the file. The remainder of the area must
be all blanks (X'40').

If RECFORM=UNDEF, the length of the record must be at least 2; if RECFORM=VARUNB, it must be at
least 6.

For a complete list of all control characters, see z/VSE System Macros Reference.

CNTRL Macro
The macro can be used for forms control on any printer. For output directed to an IBM 4248 printer, the
macro can be used to control 4248-specific functions.

The macro normally requires two or three of four possible operands:

• Name of the DTFPR macro

The name you use when you code the macro to define the printer file. You can specify this name as a
symbol or in register notation.

• Mnemonic code for the operation

One of a set of predetermined codes. For a list of these codes, see the description of the CNTRL macro
in https://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf.

• Operand n1

Normally, a number for stacker selection or for immediate printer carriage control. For an IBM 4248
printer, it may be a code that defines the device operation which is to be performed (EHC for enable
horizontal copy, for example).

• Operand n2

This operand applies to delayed spacing or skipping.

Chapter 6. Processing a Unit Record File with SAM 89

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
https://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

If the DTFPR macro for your print file includes the CTLCHR operand, your program can issue a CNTRL for
this file only to request an immediate printer operation. Examples of such an operation are:

Space or skip immediate.
Enable or disable horizontal copying on an IBM 4248.

If you use the CNTRL macro to control line spacing or or skipping for a file, your DTFPR for the file must
include the CONTROL operand, and it may not include the CTLCHR operand. If control characters are used
although CONTROL is specified, SAM treats these characters as data.

Space and Skip Operations
The codes for spacing over a certain number of lines or skipping to a certain line position on the form are
SP and SK, respectively. The third operand, n1, controls immediate spacing and skipping (before printing);
the fourth operand, n2, controls delayed spacing or skipping (after printing).

The SP and SK operations can be used in any sequence. However:

• Two or more consecutive immediate skips to the same printer result in a single skip-immediate
operation.

• Two or more consecutive delayed spaces or skips to the same printer causes SAM to perform only the
space or skip operation requested last.

Any other combination of consecutive controls (SP and SK), such as immediate space followed by a
delayed skip or immediate space followed by another immediate space, causes both specified operations
to be performed.

Printer with a UCS Buffer
You can use the CNTRL UCS=... macro before a PUT for a file to define how data checks are to be handled.
With this form of the macro, you can request SAM either to process a data check with an indication given
to the operator or to ignore it with a blank printed for the unprintable character. SAM ignores this form of
the CNTRL macro if the macro is used for a printer without a UCS buffer (or other than an IBM 3800).

A data check occurs when a character (except X'00 for null or (X'40' for blank) sent to the printer does not
match any of the characters in the UCS buffer. On an IBM 3800, a data check occurs when an unprintable
character is transferred or when an attempt is made to merge a character with another character different
from itself in the same print position.

You can control the handling of data checks by the UCS operand of the DTFPR macro for your file. Specify
UCS=ON if you want the console operator to be informed when a data check occurs. Specify UCS=OFF (or
nothing) if an unprintable character is to be represented by a blank. If several DTFPRs are assigned to the
same physical unit, the UCS specification of the DTFPR opened last determines how a data check is to be
handled.

If your program writes to an IBM 3800, the DCHK operand of the SETPRT macro has an effect similar to
that of a UCS specification in a DTFPR macro.

You can control the handling of printer data checks (and override your UCS specification in the DTFPR of a
file) also as follows:

• By the BLOCK operand of the UCS job control command if your program writes to an IBM 1403U.
• By the NOCHK option of UCB control statement of the SYSBUFLD program.
• By the DCHK operand of the job control statement SETPRT if your program writes to an IBM 3800.

Note: Opening a DTFDI for a UCS printer has the effect of a NOCHK option. This change is effected on the
printer and is valid for all DTFPRs assigned to the printer.

FOLD and UNFOLD Codes
Skip this section if your program writes to an IBM 1403, 3203, or 3800.

90 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

By way of the CNTRL macro, you can control the printing of lowercase letters. They can be printed as
they are or they can be replaced by uppercase equivalents. In your program, issue a CNTRL macro for this
purpose before the PUT macro for the lowercase output.

Until your program issues the CNTRL macro, the printing of lower case letters is controlled by the UCB
FOLD (or UNFOLD) operand of SYSBUFLD. If FOLD is specified, SAM prints the uppercase equivalent of
bits 2 to 7 (for a character other than A through Z, there may not be an uppercase equivalent). If UNFOLD
is specified, SAM prints the character equivalent of the EBCDIC byte.

Selective Tape Listing
To use the selective tape listing feature on the IBM 1403, specify the operand STLIST=YES in the DTFPR
for your file.

The (optional) operand STLSP of the PUT macro specifies a byte that controls spacing while using the
feature. Spacing for up to eight paper tapes may be controlled.

The control byte is set up in virtual storage like any other data byte. You determine the spacing
(which occurs after printing) by setting on the bits corresponding to the tapes you want to space. The
correspondence between the bits of the control byte and the tapes is as shown below.

Tape Position Bit No

8 (rightmost) 0

7 1

6 2

5 3

4 4

3 5

2 6

1 (leftmost) 7

Note: Double-width tapes are controlled by the corresponding adjacent bits.

Programming for Output to an IBM 4248
Skip this section, if you use your IBM 4248 like a PRT1 printer.

For your output to make use of the printer's horizontal-copy function, ensure that:

1. The correct FCB image is loaded into the printer's FCB.
2. Horizontal copying is turned on.

You accomplish this by having the required FCB image loaded in response to an LFCB macro. The macro
not only causes the requested image to be loaded, it also turns on the horizontal-copy function.

As an alternative to the above method, you can use the following approach:

1. Either:

• Have your program precede a SYSBUFLD run that loads the correct FCB image into the printer's FCB,
or

• Have your operator load the FCB by issuing an LFCB command.
2. Turn on the horizontal-copy function by a CNTRL macro after the file has been opened. The format of

the CNTRL macro for this purpose is:

 CNTRL filename,ORDER,EHC

Chapter 6. Processing a Unit Record File with SAM 91

This alternative is of advantage, for example, if you need a copy of only a certain part of your program's
printed output. You can turn off the horizontal-copy function for that part of the output of which you do
not need a copy. You do this in your program by coding:

 CNTRL filename,ORDER,DHC

In the CNTRL macro, you can use register notation to specify the name of your print file, of course.

If your program does not turn off horizontal copying explicitly, the system turns it off automatically when
one of the following occurs:

• Your program issues a CLOSE for the printer file.
• End of job step.
• SYSLST is assigned to the printer.

Other IBM 4248-specific functions that you can control by way of CNTRL macros in your program:

• Printing buffered data

If, at a certain point, your program requires that all data directed to the printer has indeed been printed,
code:

 CNTRL filename,ORDER,CLRPRT

• Purging buffered data To purge all data still in the printer's data buffer, code:

 CNTRL filename,ORDER,PURDAT

Error Handling
The ERROPT operand of the DTFPR specifies the action to be taken if an equipment error occurs. You can
specify one of the following:
ERROPT=RETRY

Applies only to a file for printing on a PRT1 printer. It specifies that, if an equipment check with
command retry is encountered, the command is retried once. SAM cancels the job if the retry is
unsuccessful.

ERROPT=IGNORE
Applies only to a card-print file on the IBM 3525. It causes SAM to ignore the error and to place the
address of the error record into register 1. The record is thus available for processing. Bit 3 of CCB
byte 3 is also set on. You can check this bit and take the suitable action to recover from the error.
IGNORE must not be specified for files with two I/O areas or a work area.

ERROPT=name
Applies only to a file for output to a PRT1 printer. If an equipment check with command retry occurs,
the command is retried once. SAM cancels the job if the retry is unsuccessful.

For other types of errors, SAM:

1. Issues an error message.
2. Places error information into the CCB part of the DTF table.
3. Gives control to the routine whose name you specified.

In your routine, do not issue any imperative macro instruction for the file that caused the error exit.
Your routine can examine the error information (in the two CCB communication bytes) by referring to
filename+2. To continue processing at the end of the routine, return to SAM by branching to the address in
register 14.

92 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Processing a Console File
The DTFCN macro defines a file that is to be processed for input from or output to the system console. You
need not code a separate logic module macro for the file.

To communicate with the operator, your program must use macros with file definitions as follows:
Request Macro

Operand of DTFCN
GET

TYPEFLE=INPUT
PUT

TYPEFLE=OUTPUT
PUTR

TYPEFLE=CMBND

Use the PUTR (PUT with reply) macro to issue a message that requires a response from the operator. The
system holds the message on the display screen until the operator has given the required reply. Use PUTR
also for messages of fixed-unblocked record format. Issue the macro after your program has built the
record.

If you use the PUTR macro, you cannot use register 2 as base register.

In the DTFCN macro, the IOAREA1 operand specifies the name of the I/O area used by the file. The
BLKSIZE operand specifies the length of the I/O area. This length may not exceed 256 characters. If your
file uses the undefined record format, make sure your longest record fits into the I/O area.

For a PUTR macro, the first part of the I/O area is used for output, and the second part is used for input.
The lengths of these parts are specified by the BLKSIZE and INPSIZE operands, respectively.

SAM does not clear the I/O area before or after a message is written to the console. It does not clear the
area when a message is canceled and reentered at the console.

Chapter 6. Processing a Unit Record File with SAM 93

94 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 7. Processing a Device-Independent System
File with SAM

Device independence allows you to program as if a certain device were always available. When the
program is actually run and the device happens not to be available, the symbolic device name can be
assigned easily to some other device. In some cases, the other device may even be of a different type.

The DTFDI macro provides device independence for a file that uses a system logical unit. If several DTFDI
macros are assembled within one program and all of them were defined as read only, then just one logic
module (DIMOD) is required.

You need not specify DIMOD if the device being used is one of the following:

• A disk device
• A printer of type PRT1, IBM 4248, or IBM 3800,

The support for these types of devices includes pre-assembled logic modules that are automatically
loaded during system startup. When a device independent file on a device of these types is opened, the
required module is linked to your program. However, consider to include a DIMOD specification in your
program if you are not certain which device will be assigned to the logical unit for processing. When the
file is opened, the OPEN routines for disk (PRT1 or IBM 3800) override the DIMOD linkage if the logical
unit is assigned to such a device.

Use the DTFDI macro to read SYSIPT data if your program might be invoked by a cataloged procedure. In
that case, the input data may be part of the procedure.

Restrictions for DTFDI Processing
• Only unblocked records of fixed length are supported.
• For a file on tape:

– Only forward reading is allowed.
– No repositioning is done when the file is opened or closed.

• Reading, writing, or checking of standard or user-standard labels for tape or on disk is not supported.
• If ASA control character codes are used in a multitasking environment and more than one DTF uses the

same read-only module, overprinting can occur.
• The DLBL statement for a DTFDI file can specify only system files (IJSYSxx); the file name of the DTFDI

macro is ignored.
• Combined file processing is not supported for reader-punches.
• Reading of cards is restricted to the first 80 bytes per card.
• The CNTRL and PRTOV macros cannot be used.
• For printers and punches, SAM checks for an ASA control character first and then for an S/370-type

control character. Therefore, a valid ASA control character is used as such even if it may also be a valid
S/370-type control character. For a list of control characters, refer to z/VSE System Macros Reference.

Record Size
For an input file (SYSIPT and SYSRDR), specify the maximum allowable size of 81 bytes and an I/O area,
also of 81 bytes. This ensures proper handling of control characters; in this case, the first byte of the I/O
area always contains the first byte of data, even if the input consists of 80 data bytes plus one control
character.

© Copyright IBM Corp. 1990, 2015 95

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

For an output file, each record must include one byte for a control character. The maximum record size
for SYSLST is 121 bytes; it is 81 bytes for SYSPCH.

The length of the records is specified by the RECSIZE operand. If you do not define the length of the
records, SAM assumes:

 80 bytes for SYSIPT
 80 bytes for SYSRDR
 81 bytes for SYSPCH
 121 bytes for SYSLST

Error Handling
The DTFDI operands WLRERR and ERROPT control the processing of record-length and I/O errors.

Wrong-Length Record Errors
The WLRERR operand applies only to input files on devices. It specifies the name of your routine to which
SAM passes control when a record of wrong length has occurred.

A wrong-length record error exists, if the length of a record is not the same as that specified in the
RECSIZE operand:

• If the record is too short, the first two bytes of the DTF control block contain the residual count, the
number of bytes that were not read.

• If the record is too long, SAM sets the residual count to zero, and there is no way to compute the
actual size of the record. The number of bytes transferred is equal to the value that you specified in the
RECSIZE operand; the remainder of the record is truncated.

When your routine receives control, register 1 contains the address of the record in error. In your routine,
you can perform any operation, except one of the following:

• Issue another GET for the file.
• If the file is assigned to a disk, issue any LIOCS macro other than ERET – this would cause your program

(or task) to be canceled.

If you specified RDONLY=YES in the DTFDI macro for your file, you must save also the contents of register
13.

At the end of the routine, return control to SAM by a branch to the address in register 14 or by issuing the
ERET macro. If you use the ERET macro, you must save the address stored in register 14. When control
returns to your program, the next record is available. If you omit the WLRERR operand and a wrong-length
record occurs, the action of SAM depends on whether the ERROPT operand is included:

• If the ERROPT operand is included, the record is handled in accordance with your specification in the
ERROPT operand.

• If the ERROPT operand is omitted, SAM ignores the wrong-length error and makes the error record
available to your program.

Irrecoverable I/O Error
The ERROPT operand applies only to input files. For an output file on most devices, SAM cancels the job
after having tried to rewrite the record.

ERROPT specifies the function to be performed for an error block. If an error is detected while reading
from tape or disk, SAM attempts to recover from the error. If SAM cannot recover and you did not specify
ERROPT, SAM cancels the job.

With the ERROPT operand you can specify the action SAM is to take instead of canceling the job. The three
possible specifications are:

96 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

ERROPT=IGNORE
Indicates that the error is to be ignored. The address of the error record is made available to your
program for processing.

ERROPT=SKIP
Indicates that the error block is not to be made available for processing. SAM reads the next record
and processing continues.

ERROPT=name
Indicates that SAM is to pass control to the named routine when an error occurs.

When the routine receives control, register 1 contains the address of the record in error. Do not use
the IOREG register to access an error record because the contents of that register may very.

In your routine, you may perform any operation (or simply note the error condition), except any of the
following:

• Issue another GET for the file.
• If the file is assigned to a disk, issue any LIOCS macro other than ERET – this would cause your

program (or task) to be canceled.

If you specified RDONLY=YES in the DTFDI macro for your file, you must save also the contents of
register 13.

At the end of the routine, return control to SAM by a branch to the address in register 14 or by issuing
the ERET macro. If you use the ERET macro, you must save the address stored in register 14. When
control returns to your program, the next record is available.

End-of-File Handling
The EOFADDR operand specifies the name of your end-of-file routine. The routine is required if SYSIPT or
SYSRDR is specified as device address.

SAM passes control to this routine when end of file occurs. In this routine, you can perform any operations
necessary for the end-of-file condition (you generally issue the CLOSE macro). An end-of-file condition
exists when the following occurs for SYSIPT or SYSRDR on a device as indicated:

• A card reader: a /* in positions 1 and 2 of the record.
• A tape: a /* in positions 1 and 2 of the record or a tapemark.
• A disk: a /* in positions 1 and 2 of the record or an end-of-file record.

Chapter 7. Processing a Device-Independent System File with SAM 97

98 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Chapter 8. Requesting Control Functions

This topic discusses how to use the control-function macros by major functions such as the loading of a
program, control of virtual storage, and multitasking.

Program Loading
A program (or the first phase of a program) is normally loaded by the system in response to the job control
EXEC statement. However, by way of a FETCH, LOAD, or CDLOAD macro, a phase in control can request
another phase to be loaded. The phase to be loaded may be stored either:

• In a sublibrary that is accessible from the partition in which the requesting phase resides, or
• In the shared virtual area (SVA).

For information on 31-bit addressing, see z/VSE Extended Addressability.

The Load Request

The FETCH Macro
The macro gives control to the phase just loaded.

The load point and the entry point of the requested phase are the addresses determined when the phase
was link-edited. You may specify a different entry point in the FETCH macro. However, this entry point
must be in the same partition as the requesting phase.

The macro cannot request a self-relocating phase to be loaded.

The LOAD Macro
Control remains with the phase that issued the macro.

The load and entry points of the requested phase are the addresses determined when that phase was
link-edited. After having loaded the phase, the system loads the address of the entry point of that phase
into register 1. Your program must decide at which point the newly loaded phase is to receive control.

The macro allows you to override the link-edited load point of the requested phase. If you do this, the
system relocates the address of the entry point. For a relocatable phase, the system relocates also all
addresses to reflect the current load point of the phase. For a non-relocatable or self-relocatable phase,
the system relocates only the entry point address.

The CDLOAD Macro
Control remains with the phase that issued the macro.

The macro requests a phase to be loaded into the GETVIS area of the partition in which your program
runs. For more information about the partition GETVIS area, see z/VSE Guide to System Functions.

The macro causes the system to:

1. Allocate the required amount of virtual storage in the partition GETVIS area.
2. Load the phase.
3. Load the address of the entry point of the phase into register 1.

Your program must decide at which point the newly loaded phase is to receive control. The entry point of
the phase is at the same relative distance from the actual load point as it was from the link-edited load
point.

© Copyright IBM Corp. 1990, 2015 99

http://publibfp.dhe.ibm.com/epubs/pdf/iesete22.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

The CDDELETE Macro
The macro deletes a phase previously loaded by the CDLOAD macro into the partition GETVIS area.
Deletion means that the phase load count is decreased by one. If the load count is zero, the GETVIS
storage occupied by the phase will be freed.

Load Request for a Phase in the SVA
A requested phase may reside in the shared virtual area (SVA). In this case, no actual load operation takes
place.

For a FETCH macro, the system transfers control to the entry point of the requested phase in the SVA and
processing continues.

For the LOAD or CDLOAD macro, the entry-point address of the requested phase is returned in register 1.
If the CDLOAD macro is issued by a program running in real mode, the system loads a copy of the phase
into the partition GETVIS area.

Fast Loading of Frequently Used Phases
The system directory list (SDL), located in the SVA, contains directory entries for frequently used phases.
Operands of the FETCH and LOAD macros cause the SDL to be searched before a search of any private
sublibrary directory is performed. This helps reduce the time needed for locating the requested phase.

For a phase which is being loaded frequently during execution of only one program, consider using the
GENL macro rather than including the directory entry of the phase in the SDL. The GENL macro generates
a "local" directory list within the partition. On the first LOAD or FETCH for the phase, the system supplies
its entry with information that helps reduce access time on any subsequent LOAD or FETCH for the phase.

Figure 39 on page 100 shows how to use the LOAD macro together with a local directory list. The first
LOAD macro locates a certain entry (PHASEX) of the directory list but does not cause the phase to be
loaded into storage (TXT=NO is specified).

 ...
 LOAD PHASEX,LIST=GENLIST,TXT=NO
 LR 2,0 GET PTR TO DIRECTORY ENTRY
 TM 16(2),X'06' PHASE FOUND?
 BO NOTFOUND NO
 TM 16(2),X'12' PHASE IN SVA?
 BO NOLOAD YES, BRANCH AROUND LOAD
 LA 0,LOADPT
 LOAD (2),(0),DE=YES
NOLOAD EQU * RFG.1 POINTS TO ENTRY POINT
 ...
GENLIST GENL PHASEX,...
 ...
LOADPT DS 0D LOAD POINT OF OVERLAY PHASE

Figure 39. Example for Using the LOAD Macro with a Local Directory List

Virtual Storage Control
The macros that are discussed in this section perform the following services:

• Fix a page in processor storage and later free that page for normal paging.
• Determine the mode of execution of a program.
• Request partition-related information, such as partition boundaries.
• Reduce the number of page faults.
• Allocate and release virtual storage dynamically.

This section assumes that you are familiar with the virtual storage concept as implemented for VSE and
described in z/VSE Guide to System Functions. For information on 31-bit addressing, see z/VSE Extended
Addressability.

100 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesete22.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesete22.pdf

Fixing and Freeing a Page in Processor Storage
VSE ensures that instructions and related data are in processor storage (sometimes also called real
storage) when they are being used. However, data areas could be paged out during an I/O operation if
nothing were done to keep them in processor storage during the entire operation. The system fixes I/O
areas in processor storage for the duration of the I/O operation.

A program may have sections which cannot tolerate paging, and these sections are not necessarily kept
in processor storage by the system. For instance, programs that control time-dependent I/O operations
cannot tolerate paging. To avoid a page fault in such a program, you must fix the affected pages in
processor storage. You do this in your program by issuing the PFIX macro.

You can use the PFIX macro if a certain number of page frames are reserved for fixing pages in your
program's partition. Normally, this is taken care of during system start-up by a SETPFIX or ALLOC R job
control statement.

The macro fixes one or more pages in processor storage, and these pages need not be contained in
contiguous page frames. The system keeps a count of the number of times a PFIX was issued for a certain
page without this page having been freed. A page that is fixed more than once without having been freed
(via the PFREE macro) is not brought in repeatedly and given additional page frames. Instead, the system
increments the page-fix counter for that page by 1, and the page remains in the same page frame. The
counter must not exceed 32,767.

The location of the real storage to be fixed can be indicated by the RLOC operand: RLOC=BELOW indicates
that the virtual address range has to be fixed in real storage frames which are below the 16MB boundary,
RLOC=ANY indicates that it can be fixed in any frame.

The PFREE macro does not necessarily free a page for paging out. Each time a PFREE is issued, the
system decrements the count of fix requests by 1. Not until the counter for a page reaches zero can the
page be paged out. At the end of a job step, all pages that have been fixed during the job step are freed by
the system.

Use the PFREE macro as soon as possible after a PFIX to make the originally fixed page frames available
to all programs running in virtual mode.

When your program receives control again, register 15 contains a return code. This code indicates
successful or unsuccessful completion of the request. For more information about these codes, see z/VSE
System Macros Reference.

Figure 40 on page 102 is an example for using the PFIX and PFREE macros. It shows how your program
can use the return code to set up a branch to parts of the program that handle the various conditions.

Chapter 8. Requesting Control Functions 101

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

 ...
FIXER PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE
 B *+4(15) BRANCH ACCORDING TO RETURN CODE
 B HERE CONTINUE IF OK
 B NOPAGES BRANCH IF PARTITION TOO SMALL
 B WAIT BRANCH TO WAIT UNTIL PAGES ARE
* FREE
 B CANCL BRANCH IF PFIX ADDRESSES ARE
* INVALID
HERE BAL 14,ARTN
 PFREE ARTN,ARTNEND+2
* FREE ROUTINE - GETS CONTROL
* AFTER EXECUTION
ARTN ... Time dependent processing
 ... which cannot tolerate its
 ... code to be paged out during
 ... program execution.
ARTNEND BR R14 RETURN
NOPAGES LA R1,OPCCB
 EXCP (1) WRITE MESSAGE TO OPERATOR
 WAIT (1) WAIT FOR COMPLETION
CANCL CANCEL ALL
WAIT (routine to free other pages)
END EOJ
OPCCB CCB SYSLOG,OPCCW
OPCCW CCW X'09',MSG,X'20',61
MSG DC CL32'AM CANCELING. ENLARGE REAL'
 DC CL29'STORAGE AND RESTART THE JOB'
 ...

Figure 40. PFIX and PFREE Example

Determining the Run Mode of a Program
Your program may do different processing for virtual and for real mode. In that program, you can issue the
RUNMODE macro to find out which mode of operation is being used. The system returns this information
in register 1.

Extracting Partition-Related Information
You may have a program for which you want to manage the storage available to the partition in which the
program runs. A typical example is a program that does a lot of I/O. The program should have as many
buffers available as the size of the partition permits. To do such storage management, the program needs
to know what the partition's boundaries are. Use the EXTRACT ID=BDY macro to retrieve this information.

To interpret the retrieved information, use the DSECT generated by the MAPEXTR ID=BDY (or MAPBDY/
MAPBDYVR) macro.

Reducing the Number of Page Faults
The macros discussed here are provided primarily for optimizing performance beyond the level of
optimization by the system. The support allows you to control the amount of paging in your system.

Releasing a Page
The RELPAG macro informs the system that your program no longer needs the contents of one or more
pages, and that these contents need not be saved on the page data set. Page frames occupied by these
pages can be claimed for use by other pages immediately. This can reduce page-I/O activity.

Forcing a Page-Out
The FCEPGOUT macro informs the system that one or more pages are not needed until a later stage of
processing. The pages are given the highest page-out priority. As a result, other pages which are still
needed for immediate reference remain in processor storage.

102 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

All program pages paged out because of a FCEPGOUT request are saved by writing them onto the page
data set (as opposed to a RELPAG request).

Requesting a Page-In
The PAGEIN macro allows you to request that one or more program pages are paged-in in advance to
avoid page faults when the requested pages are needed. Unlike the PFIX macro, the PAGEIN macro does
not fix the requested pages. Therefore, issuing the macro does not ensure that the paged-in pages are in
processor storage when they are needed. If the requested pages are already in processor storage when
the macro is issued, they are given the lowest priority for page-out.

Allocating Virtual Storage Dynamically
With the GETVIS and FREEVIS macros, a program can dynamically acquire and release blocks of virtual
storage. The system allocates such storage either from the GETVIS area of your partition or of the SVA, or
from the dynamic space GETVIS area.

You can access the partition GETVIS area above 16MB or the 31-bit SVA by using the LOC operand of the
GETVIS macro. For details refer to z/VSE Extended Addressability.

A minimum GETVIS area is always reserved in a partition as long as a job in that partition runs in virtual
mode. This minimum can be enlarged by the SIZE command, for example. For more information about
defining a GETVIS area, see z/VSE Guide to System Functions.

Program Communication
This section discusses the support available for communication between job steps or jobs within one
partition. You can do this in either or both of the following ways:

• Communication via the partition communication region

A convenient way if no more than 11 bytes of information are to be communicated from one step of a
job to another.

• Communication via a communication area

A convenient way if information up to a length of 256 bytes is to be communicated.

The section includes examples for the use of the available communication macros.

Communication via the Partition Communication Region
The system maintains this area for each of its batch partitions. The macros COMRG and MVCOM are
available to access this area:
The COMREG macro

The macro places the address of the partition communication region into register 1. By using that
register as base register, your program can read any of the fields listed and discussed below.

The MVCOM macro
The macro modifies the contents of field COMUSCR (bytes 12 through 22) and UPSI (byte 23) of the
partition communication region.

The user-oriented fields of the communication region are (offsets in hexadecimal and field lengths in
decimal notation):

Chapter 8. Requesting Control Functions 103

http://publibfp.dhe.ibm.com/epubs/pdf/iesete22.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

Field Name Offset Length
(Bytes)

Information

JOBDATE 00 8 Calendar date.
Supplied by the system whenever
a JOB statement is encountered. The
format of the date is either mm/dd/yy
or dd/mm/yy, where:

dd = day
mm = month
yy = year

This date can be temporarily
overridden by a DATE statement.

 08 4 Reserved.

COMUSCR 0C 11 User area. Available for communication within a
job step or between job steps. All bytes of the
field are set to zero whenever a JOB or end-of-job
statement for a job is encountered.

UPSI 17 1 UPSI (user program switch indicators). Set to
binary zero when a JOB or end-of-job statement
for the job is encountered. Initialized by the UPSI
job control statement.

COMNAME 18 8 Job name as found in the JOB statement for the
job.

PPEND 20 4 Address of the partition's uppermost byte available
to your problem program.

HIPHAS 24 4 Address of the uppermost byte of the phase loaded
into the partition by the last FETCH or LOAD
request in the job.

HIPROG 28 4 Highest ending virtual storage address of the
longest phase, starting with the same four
characters as the root phase (operand on the EXEC
statement) and residing in the same sublibrary as
the root phase. If the root phase is in the SVA, the
partition start address plus 2K is used.

LABLEN 2C 2 Length of program label area.

IJBHPHLA 244 4 Highest end address of any phase loaded up to
now in this job step.

Communication via a Communication Area
The JOBCOM macro provides for communication between job steps or jobs of a partition. For dynamic
partitions, this applies only to VSE jobs and job steps within one VSE/POWER job, because a dynamic
partition and its control blocks are only existent during the execution of a VSE/POWER job.

Information to be communicated is stored in a 256-byte area. The system provides such an area for each
partition.

The JOBCOM macro either moves information to that area or retrieves information previously stored there
by another program. The area remains unchanged from one job (or job step) to the next. Unless it is

104 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

modified (by way of a JOBCOM macro), the content of the area remains unchanged over any number of
jobs.

Before your program issues the JOBCOM macro, it must:

1. Provide an 18-word register save area. For more information about this area, see “Register Save Area”
on page 114.

2. Load the address of this area into register 13.

Program-Communication Examples
The following example shows how to move three bytes from the symbolic location DATA into bytes 16
through 18 of the communication region:

 MVCOM 16,3,DATA

The following example shows how eight bytes of information are stored in the first eight bytes of the
system-supplied area. The remaining 248 bytes of that area remain unchanged.

 ...
 LA 13,JCOMSAVE
 JOBCOM FUNCT=PUTCOM, X
 AREA=JCOMINFO,LENGTH=8
 ...
 JCOMSAVE DS 18F
 JCOMINFO DC C'ABCDEFGH'
 ...

Assigning and Releasing an I/O Unit
Dynamic assignment and release of an I/O unit can be useful in long-running and complex applications
that require a unit only for a short time (to store intermediate processing results, for instance). The
section “Logical Units” on page 36 briefly discusses the concept of logical unit assignment.

Your program can use the ASSIGN macro to dynamically assign an I/O device not currently owned by one
of your system's partitions. It can use the macro also to dynamically release the unit when your program
has no further use for it.

If an assignment made with the ASSIGN macro is not released (again with the ASSIGN macro), this
assignment is reset along with all other temporary assignments when the next EOJ statement (/&) is
encountered. If you use the ASSIGN macro to release a tape drive, ensure that the logical unit number of
the unit to be released is still stored in the parameter list used by the macro. Your program can interpret
the list with the help of the mapping DSECT generated by the ASPL macro.

Figure 41 on page 106 shows the layout of the parameter list. The list is generated by the ASPL macro
if you specify DSECT=YES. If you specify DSECT=NO (the default), the parameter list starts with the
following statements:

 name DS 0XL5
 ASGFUNCT DC XL1'00'

Chapter 8. Requesting Control Functions 105

Field Name Explanation

ASGLIST DS 0XL5 ASSIGN parameter list
ASGFUNCT DS XL1 ASSIGN function code, see below
ASGDPT EQU X'80' Temporary programmer logical unit-specific disk
ASGDST EQU X'84' Temporary system logical unit-specific disk
ASGDSP EQU X'8C' Permanent system logical unit-specific disk
ASGTPT EQU X'40' Temporary programmer logical unit-tape
 (no mode defined)
ASGTPTM EQU X'60' ASGTPT with mode specification
*
ASGTPD EQU X'42' Temporary programmer logical unit-specific
 tape (no mode defined)
ASGTPDM EQU X'62' ASGTPD with mode specification
*
ASGTPS EQU X'43' Temporary programmer logical unit-specific
 tape (no mode). Log. unit must be unassigned.
ASGTPSM EQU X'63' ASGTPS with mode specification
*
ASGUAP EQU X'28' Unassign programmer logical unit
ASGUAS EQU X'2C' Unassign system logical unit
ASGCHG EQU X'10' Change temporary to permanent assignment
ASGURT EQU X'02' Specific device other than temporary disk/tape
* programmer logical unit
ASGUEX EQU X'03' ASGURT plus additional information
ASGLUNO DS 0XL2 Logical unit number
ASGCLASS DS XL1 Logical unit class
ASGPROG EQU X'01' Programmer class
ASGSYST EQU X'00' System class
ASGLUNDX DS XL1 Logical unit index
ASGCUU DS XL2 Physical unit number
ASGLNG EQU *-ASGFUNCT Length of ASPL without additional information
ASGCODE DS XL1 Additional information
ASGEXCLU EQU X'01' Exclusive I/O assignment
ASGMODE DS XL1 Mode for tape units
ASGLNGE EQU *-ASGFUNCT Length of ASPL with additional information
*

Figure 41. Parameter List Generated by the ASPL Macro

Explanation of Function Codes in Detail
ASGDPT

Temporary assignment of a disk unit to a programmer logical unit. ASGCUU must contain a valid disk
cuu number. ASGLUNO will contain a programmer logical unit number after successful execution.

ASGDST
Temporary assignment of a disk unit to a system logical unit (normally used for system functions).
ASGCUU must contain a valid disk cuu number. ASGLUNO will contain a system logical unit number
after successful execution.

ASGDSP
Permanent assignment of a disk unit to a system logical unit (normally used for system functions).
Note that the assignment will not be released at end-of-job. ASGCUU must contain a valid disk cuu
number. ASGLUNO will contain a system logical unit number after successful execution.

ASGTPT
Temporary assignment of any tape unit to any programmer logical unit. ASGCUU will contain a tape
cuu number and ASGLUNO will contain a system logical unit number after successful execution.

ASGTPTM
This is the same function as ASGTPT, except that a mode character is to be specified in ASGMODE.
This is the same mode that can be given with the ASSGN job control statement. An assignment is only
done if a free tape unit with that mode is found. During assignment the mode is set.

ASGTPD
Temporary assignment of a tape unit to a programmer logical unit. ASGCUU must contain a valid tape
cuu number. ASGLUNO will contain a programmer logical unit number after successful execution.

106 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

ASGTPDM
This is the same function as ASGTPD except that a mode character is to be specified in ASGMODE.
This is the same mode that can be given with the ASSGN job control statement. An assignment is only
done if the specified tape unit can handle the mode. During assignment the mode is set.

ASGTPS
Temporary assignment of a tape unit to a specified programmer logical unit. ASGCUU must contain a
valid tape cuu number. ASGLUNO must contain a Dprogrammer logical unit number.

ASGTPSM
This is the same function as ASGTPS except that a mode character is to be specified in ASGMODE.
This is the same mode as the one that can be given with the ASSGN job control statement. An
assignment is only done if the specified tape unit can handle the mode. During assignment the mode
is set.

ASGUAP
Unassign a programmer logical unit. ASGLUNO must contain a programmer logical unit number that is
assigned to a device.

ASGUAS
Unassign a system logical unit. ASGLUNO must contain a system logical unit number that is assigned
to a device.

ASGCHG
Change temporary assignment to permanent. (Note that the assignment is not reset at end-of-job.)
ASGLUNO must contain a logical unit number that is temporarily assigned to a device.

ASGURT
Temporary assignment to a programmer logical unit of a device that is neither disk nor tape. ASGCUU
must contain a valid cuu number (not disk or tape). ASGLUNO will contain a programmer logical unit
number after successful execution.

ASGUEX
This is the same function as ASGURT, except that additional information must be specified in
ASGCODE. The only information so far is ASGEXCLU which specifies that the assignment will be done
exclusively and will be rejected if this is not possible.

Figure 42 on page 108 is a skeleton coding example. It shows how a tape drive can be assigned and
released dynamically.

Chapter 8. Requesting Control Functions 107

ASSIGN ASPL DSECT=YES GENERATE MAPPING DSECT FOR
RX EQU 10 PARAMETER LIST
 ...
 XC ASPLX,ASPLX CLEAR PARAMETER LIST
 LA RX,ASPLX ESTABLISH ADDRESSING
* AND MAPPING TO THE
 USING ASSIGN,RX PARAMETER LIST
 MVI ASGFUNCT,ASGTPT INDICATE ASSIGN:
* TAPE PROG. LOGICAL UNIT - TEMP.
 ASSIGN ASPL=(RX),SAVE=SAVEAREA
* TEMPORARILY ASSIGN ANY AVAIL.
* PROGRAMMER LOGICAL UNIT TO ANY
* AVAILABLE TAPE DRIVE
 MVC MT06IN+7(1),ASGLUNDX PUT LOGICAL UNIT INTO TAPE
* DTFMT (MT06IN)
 OPEN MT06IN PERFORM DESIRED I/O
GET00 GET MT06IN,INAREA FUNCTIONS
 B GET00
ENTAPE CLOSE MT06IN
 LA RX,ASPLX ENSURE ADDRESSABILITY
 MVI ASGFUNCT,ASGUAP INDICATE UNASSIGN
 ASSIGN ASPL=(RX),SAVE=SAVEAREA
* FREE TAPE AND LOGICAL UNIT
* (ASGLUNO STILL INTACT)
 EOJ
ASPLX DS CL(ASGLNG) DEFINE PARAMETER LIST
* IN LENGTH OF ASPL
SAVEAREA DS 18F DEFINE SAVE AREA
MT06IN DTFMT BLKSIZE=800, X
 DEVADDR=SYS001, X
 EOFADDR=ENDTAPE, X
 FILABL=STD, X
 IOAREA1=INAREA, X
 RECFORM=FIXBLK, X
 RECSIZE=80, X
 WORKA=YES, X
 TYPEFLE=INPUT, X
 REWIND=UNLOAD
INAREA DC CL80' '

Figure 42. Example for a Device Assignment

A programmer logical unit can also be released from within a program by the RELEASE macro. You can
use the macro for a unit that is assigned to the partition in which your program runs.

The macro unassigns the specified programmer logical unit(s), unless they are assigned permanently. If
you use the macro, your program should inform the system operator by a message that the assignment
was released.

Timer Services
VSE provides the following timing facilities:

• Time-of-day clock
• Interval timer

Time-of-Day Clock
The time-of-day (TOD) clock is a standard hardware feature. By issuing the GETIME macro, your
program can obtain the time of the day. The system returns the requested time in accordance with your
specification in the macro in one of the following formats:

• As a packed decimal number in the form hhmmss, where:

 hh = hours

 mm = minutes

108 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 ss = seconds

• As a binary number in seconds.
• As a binary number in 1/300 seconds.
• As a binary number in microseconds.

Interval Timer
This support is independent of the time-of-day clock; the use of the interval timer and of GETIME have no
effect on one another.

Your program (or one of its tasks) can set a real time interval, in seconds, or 1/300 of a second, by using
the SETIME macro. The maximum valid interval is either of the following:

55924 (equivalent to 15 hours, 32 minutes, 4 seconds), if expressed in full seconds.
8388607 (equivalent to 7 hours, 46 minutes, 2 seconds, approximately), if expressed in 1/300 of a
second.

Expiration of the specified interval causes an external interrupt.

When the interrupt occurs and your program has set up linkage to a timer exit routine via an STXIT IT
macro, your program's timer exit routine receives control. At the end of the timer exit routine (statement
EXIT IT), control is returned to the point of interruption.

Waiting for a Time Interval to Elapse
When processing depends on the expiration of a time interval, your program can issue a WAIT macro to
suspend processing until this interval has elapsed.

The SETIME macro, which you use to define the interval, passes to the system the name of the timer
event control block (defined by a TECB macro) to be posted when the interval has elapsed. The WAIT
macro specifies the same TECB and passes control to your system's supervisor. This allows another task
in your system to gain control over the CPU. When the interrupt occurs, the event bit in the TECB is turned
on, and the task that issued the SETIME and WAIT macros is made ready to proceed.

Following is a skeleton sample program that waits for a time interval to expire:

 ...
 START 0
 ...
 STIMER SETIME 30,TECB1 START 30 SECOND INTERVAL
 ...
 ... Normal processing, not time-dependent
 ...
 WAIT TECB1 WAIT FOR TIMER END
 ...
 ... Time-dependent processing
 ...
 TECB1 TECB
 ...
 END

Getting the Unexpired Time
The task that issued the SETIME macro can find out how much of the interval is yet unexpired. The
TTIMER macro is available for this purpose. The macro returns the unexpired time in hundredths of
seconds in register 0 without disturbing the interval timer function.

If the TTIMER macro includes the operand CANCEL, a previously issued SETIME macro is canceled and
the remaining time is not returned.

Chapter 8. Requesting Control Functions 109

Linkage to User Exit Routines
You use the STXIT macro to set up linkage to a user-written exit routine.

The macro specifies the condition, a two-character code, for which control is to be transferred to the
related exit routine. These conditions are:
IT

Interval timer external interrupt
AB

Abnormal end of the program
PC

Program-check interrupt
OC

Operator communication interrupt

The related exit routines are discussed separately in subsequent sections.

Before passing control to a user-exit routine, the system sets up registers 0, 1, and 15. For the contents of
these registers, see the description of the STXIT macro in z/VSE System Macros Reference.

At different points in time, different processing routines such as various levels of user routines, or data
management routines, might be active. Therefore, the contents of registers 2 to 14 are unpredictable, and
addressability must be established within the exit routine.

To return from a user exit routine, use the EXIT macro.

Interval-Timer User Exit
In your program, you may want to do certain processing when a certain amount of time has elapsed.
For this purpose, you use the STXIT IT macro to set up linkage to an interval-timer exit routine. When
this routine has completed processing, an EXIT IT macro returns control to your program at the next
instruction that is to be executed.

Note: If your program uses VTAM, the exit routine does not receive control as long as VTAM is processing
any request on behalf of your program. The exit routine will receive control when VTAM has completed the
request.

Figure 43 on page 111 shows how to code the STXIT IT macro for a user-exit routine to receive control
every half hour during processing.

110 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

TIMECHK START X'78'
 BALR R9,0
BASEADDR EQU *
 USING BASEADDR,R9 ESTABLISH ADDRESSABILITY
 STXIT IT,TIMINTR,TIMSA SET UP LINK TO TIMER
* ROUTINE
 SETIME 1800 TIMER INTERRUPT EVERY 30 MINUTES
 ...
PROCESS EQU *
 ...
(perform normal processing)
 ...
 B PROCESS
*
* TIMER INTERRUPT ROUTINE
*
TIMINTR EQU *
 BALR R9,0
 L R9,ABASE-*(R9) ESTABLISH ADDRESSABILITY
 ...
(perform IT exit processing)
 ...
 SETIME 1800 SET UP NEXT INTERVAL
 EXIT IT RETURN TO POINT OF INTERRUPTION
*
*
* CONSTANTS
*
ABASE DC A(BASEADDR)
TIMSA DC 9D'0' IT-EXIT ROUTINE SAVE AREA
 MAPSAVAR MAPPING OF EXIT SAVE AREA
R9 EQU 9
 END

Figure 43. Example of Using the Interval Timer Exit

Following are some multitasking considerations. The main task or any subtask in a partition or both may
issue a SETIME macro. Each may also issue an STXIT macro to set up linkage to a common user-exit
routine, if this routine is reenterable and each task has its unique register-save area. For a discussion of
this area, see “Register Save Area” on page 114.

Figure 44 on page 111 illustrates this approach.

MAINTASK START 0
 ...
 STXIT IT,STRTER,MTSKSA
 SETIME 300 SETS MAIN TASK TIMER
* TO 5 MINUTES
 ATTACH SUBTASK1,SAVE=SAV1
 ATTACH SUBTASK2,SAVE=SAV2
 ...
* IT USER EXIT ROUTINE
STRTER ... Reenterable routine
 ... Set up addressability
 ...
 EXIT IT
SUBTASK1 STXIT IT,STRTER,STSK1SA USE SAME EXIT ROUTINE
 SETIME 400 SET TIME INTERVAL
 ...
 DETACH
SUBTASK2 STXIT IT,STRTER,STSK2SA USE SAME EXIT ROUTINE
 SETIME 500 SET TIME INTERVAL
 ...
 TTIMER CANCEL CANCEL INTERVAL THIS
* TASK ONLY
 ...
 DETACH
MTSKSA DS 9D
STSK1SA DS 9D
STSK2SA DS 9D
SAV1 DS 16D
SAV2 DS 16D
 MAPSAVAR MAPPING OF EXIT SAVE AREA

Figure 44. Example of Multi-Task Linkage to a Common Exit Routine

Chapter 8. Requesting Control Functions 111

Abnormal-End User Exit
The STXIT AB macro sets up or removes linkage to a user-written routine that gets control if the issuing
program should end abnormally for a reason other than a self-requested termination. In this routine, you
can do any necessary housekeeping such as closing files and writing messages before the program ends.

However, in the exit routine, do not use any of the macros STXIT, SETIME, and SETT. Also, do not use the
macros LOCK or ENQ for a resource that is held by the main task; this might result in a deadlock.

After your abnormal-end routine has performed the necessary action, the routine may do either of the
following:

• End the task with one of these macros: CANCEL, DETACH, DUMP, JDUMP, EOJ. The macros DUMP and
JDUMP are discussed under “Requesting Storage Dumps” on page 132.

• Resume processing by way of the EXIT AB macro if the routine is owned by your program's main task.

After EXIT AB, the routine continues with the next instruction.

For a main task, the whole job is canceled if OPTION=DUMP has been specified explicitly or by default.
Only the current job step is canceled if OPTION=NODUMP is effective and the termination macro used
was either DUMP or EOJ.

If OPTION=EARLY is specified in the STXIT AB macro, your exit routine will be invoked for any type of
cancellation (normal or abnormal) and, for a main task, before its subtasks are canceled.

Program-Check User Exit
The STXIT PC macro sets up linkage for an exit routine to receive control when a program check other
than a page fault occurs. The routine can analyze the interrupt-status information and the contents of the
general registers stored in the user's save area of the routine.

If an error condition caused the interrupt, your exit routine can correct the error or decide to ignore
it, depending on the severity of the error. Your routine can return control to the interrupted program
or request your program to be canceled. After the failing instruction, EXIT PC returns control to the
interrupted program. Figure 45 on page 112 shows an exit routine that recovers from a program check
caused by an attempt to divide by zero. In this example, any other errors causing a program check result
in the user save area being dumped before the job ends.

DIVTEST CSECT
 ... Set up addressability
 ...
 STXIT PC,PCRTN,PCSAV SET UP PROGRAM CHECK LINK
 ...
 LM R2,R3,DIVIDEND LOAD FOR DIVIDING
 D R2,DIVISOR DIVIDE
 ...
* USER'S PROGRAM CHECK ROUTINE
PCRTN ... Set up addressability
 ...
 SR R5,R5 CLEAR REGISTER 5
 CL R5,DIVISOR CHECK FOR ZERO DIVISOR
 BNE CANCELR IF NOT CLEAR FILES & CNCL
 ...
 ... Special recovery routine
 ...
 EXIT PC RETURN TO NORMAL PROC
CANCELR PDUMP PCSAV,PCSAV+71 DUMP SAVE AREA
 ...
 ... Close files and do other
 ... housekeeping
 ...
 ... Equates and storage definitions
 ...
 CANCEL ALL

Figure 45. Example of an Exit Routine Processing a Program Check

112 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Operator-Communication User Exit
You can provide for direct communication between the operator and your program by issuing an STXIT OC
macro. You can use the macro only in the main task of your program.

To initiate communication, the operator enters MSG followed by the partition identifier (such as BG or F2).
This sets up the linkage to your program's operator-communication (OC) exit routine, which may perform
any processing.

In the MSG command the operator can specify data to be passed to the OC exit routine. When you define
the OC exit in the STXIT macro, you must code the MSGDATA operand to indicate that the exit is prepared
to retrieve data from the MSG command. You must code the MSGPARM operand to pass routing and
correlation parameters associated with the MSG command to the OC exit in the user save area.

An operator communication exit routine is performed asynchronously with the main routine of your
program. Therefore, be careful when using the same resources (such as data and instructions) in both
routines. To be on the safe side, use the data management routines (DTFCN), as described under
“Processing a Console File” on page 93.

EXIT OC returns control to the interrupted program.

Note: If your program uses VTAM, your exit routine does not get control as long as VTAM is processing
a request for your program. Your exit routine receives control when VTAM has completed the program's
request.

Ending a Job Step

Normal End of the Main Task
The normal way of ending the main (or only) task of your program is to issue the EOJ macro. An EOJ
macro in the main task of the last step of a job ends the job.

Through the EOJ macro, your program informs the system that processing for the current job step is
finished. At this time, subtasks should no longer be attached. If nevertheless one is, the system considers
the EOJ from the main task as an abnormal-end condition for the subtask. If the subtask provides an
STXIT AB routine, that routine receives control.

Program-Requested Abnormal End
To end a task abnormally, you may use one of the macros discussed under “Requesting Storage Dumps”
on page 132. A CANCEL macro in the main task cancels all tasks currently active in the partition.

Program Linkage
A program may consist of several phases or routines produced by language translators and combined by
the linkage editor.

The CALL, SAVE, and RETURN macros are used for linkage between routines in storage and within the
same or different phases. These macros set up linkage with conventional register and save area usage.
They allow control to be passed from one routine to another or from one phase to another. They also allow
parameters to be passed.

Linkage can be set up through as many levels as necessary, and each routine may be called from any
level. The routine given control during a job step is initially a called program. During execution of that
program, the services of another routine may be required, at which time the current program becomes a
calling program.

Linkage Registers
To standardize branching and linking, certain registers are assigned specific roles:

Chapter 8. Requesting Control Functions 113

Register 0 – Parameter register
Contains a parameter value to be passed to the called program.

Register 1 ─ Parameter (-list) register
Contains either of the following:

• A parameter value to be passed to the called program.
• The address of a parameter list to be passed to the called program.

Register 13 ─ Save area address register
Contains the address of the register save area to be used by the called program.

Register 14 ─ Return register
Contains the address of the location in the calling program to which control is to be returned when
processing by the called program is finished.

Register 15 ─ Entry-point register
Contains the address of the entry point into the called program.

Registers 0, 1, and 13 through 15 are known as the linkage registers. Before a branch to another routine,
the calling program is responsible for the following:

1. Loading the address of a register save area into register 13.
2. Loading, into register 14, the address to which the called program is to return control.
3. Loading, into register 15, the address of the called program's entry point.
4. Loading parameters into register 0 or register 1 or both, or loading the address of a parameter list into

register 1.

Register Save Area
A called program should save and restore the contents of the linkage registers as well as any register that
it uses. Certain conventions exist for the saving of register:

1. The calling program provides a save area and places the address of this area into register 13 before
issuing the call.

2. When having received control, the called program stores (saves) the registers in the save area provided
by the calling program.

A save area occupies nine doublewords and is aligned on a doubleword boundary. For programs to save
registers in a uniform manner, the save area has a standard format as shown and described below.

Word Displ. (hex)
Contents

1 0
An indicator byte followed by three bytes that contain the length of allocated storage. Use of these
fields is optional, except in programs written in PL/I.

2 4
The address of the save area provided by the higher-level calling program (or routine). The address is
passed to the called program in register 13. The calling program must store the address into this field
before it loads the address into register 13.

Strict adherence to this convention allows this field of the save area to be used as a program-call
trace.

3 8
The address of the save area of the next lower level program (or routine), unless this called program
is at the lowest level and does not have a save area. The called program requires a save area only if it
is also a calling program; thus, the called program, if it contains a save area, stores the address of that
area in this word.

114 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

4 0C
The contents of register 14 – The address to which the called program (routine) returns control. The
called program may save the return address in this word.

5 10
The contents of register 15 – The address of the entry point of the called program. Register 15
contains this address when control is given to the called program. The called program may store the
entry-point address in this word.

6-18 14
The contents of registers 0 through 12 – The called program should store the contents of these
registers: register 0 into word 6, register 1 into word 7, and so on. The program must store the
contents of those registers which it modifies. However, the called program should not save and
restore a register that it uses to pass the result of certain processing (see also the coding example in
Figure 46 on page 116).

Linkage Macros
The macros CALL, SAVE, and RETURN help you code direct linkage. Before you issue the CALL macro, you
need to code only one other instruction: an instruction to load the address of the calling program's save
area into register 13.

Figure 46 on page 116 is an example for the use of the three macros.

The CALL Macro
The CALL macro correctly loads registers 14 and 15 and, if parameters are passed, register 1. It then
passes control to a specified entry point in the called program.

In the following example, EX1 gives control to an entry point named ENT:

 EX1 CALL ENT

In the example below, EX2 gives control to an entry point whose address is contained in register 15:

 EX2 CALL (15),(ABC,DEF)

Two parameters, ABC and DEF, can be accessed by the called program. When the macro has been
processed, register 1 points to a list of fullwords that contain the addresses of ABC and DEF.

The called program must be in virtual storage when the CALL macro is processed. That program may be
loaded into virtual storage in one of two ways:

• As part of the program issuing the CALL macro.

The macro must specify an entry point by a symbolic name. The linkage editor includes the module
with that entry point in the phase that issues the CALL macro. As a result, the called program resides in
storage together with and as long as the calling program.

• As the phase specified by a LOAD macro.

The CALL macro specifies register 15 (the entry-point register) into which the entry-point address of the
program to be called was loaded. The LOAD macro must precede the CALL for that program.

Specifying register 15 preceded by a LOAD macro is useful when the same program is called several
times while the calling program is running, but is not needed in storage during all of that time.

The SAVE Macro
The macro stores the contents of specified registers in the save area provided by the calling program.
Code this macro in the called program before any registers can be modified by this program, preferably at
the entry point.

Chapter 8. Requesting Control Functions 115

The RETURN Macro
The macro restores the registers whose contents were saved and returns control to the calling program.
You can also specify a return code in the macro. Before your program issues the macro, register 13 must
contain the address of the save area of the program to which control is to be returned.

Code within the calling routine:

 (1) LA 13,SAVAREA1
 ...
 (2) CALL SUBROUT,(PAR1,PAR2)
 (11) C 12,ZERO
 ...
 SAVAREA1 DS 9D
 ...
 PAR1 DC C'ABCDEF'
 PAR2 DS F
 ZERO DC F'0'

Code within the called routine:

 (3) SUBROUT SAVE (14,11)
 (4) BALR ...
 (4) USING ...
 (5) ST 13,SAVAREA2+4
 (6) LA 13,SAVAREA2
 ...
 ... Processing
 ...
 (7) L 12,RESULT
 (8) L 13,SAVAREA2+4
 (9) RETURN (14,11)
 ...
 (10) SAVAREA2 DS 9D
 ...

(1)
Points to the save area in the calling program.

(2)
Passes the parameters PAR1 and PAR2.

(3)
Saves the contents of the registers for the calling program.

(4)
Establishes addressability.

(5)
Provides a back pointer to the calling program's save area.

(6)
Points to the new save area (for tracing purposes).

(7)
Stores the processing results by loading it into register 12.

(8)
Restores the calling program's register from the save area.

(9)
Restores the specified registers and returns control to the instruction at (11).

(10)
The area may be smaller if no other program is called.

(11)
Compares, with 0, the processing result passed by the called program.

Figure 46. Example for Using the Macros CALL, SAVE, and RETURN

116 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Loading a Forms-Control Buffer
Your application might require a change of forms one or more times while it runs. The LFCB macro helps
you control a change of forms.

The macro retrieves a control-buffer image stored in an accessible sublibrary as a phase. It loads this
image into the printer's forms-control buffer (FCB).

This image corresponds to the layout of the desired output form; it controls the skipping of lines. For
information about the contents and format of an FCB image, see z/VSE System Control Statements.

An FCB whose contents has been changed by this macro retains its new contents until one of the
following occurs:

• Another LFCB macro is issued for the printer.
• An LFCB command is issued for the printer.
• The SYSBUFLD program is run to reload the printer's FCB.
• A new startup of the system takes place.

It might happen, for example, that you do not know which of the available printers is used when your
program runs. The coding example in Figure 47 on page 117 provides for an FCB image to be loaded for a
non-PRT1-type printer or a PRT1-type printer.

(1) LFCB SYSLST,FCBSTD,LPI=8
 LTR 15,15
 BZ CONTINUE
 CH 15,=H'4'
 BE TRYAGAIN
 PDUMP INAREA,OUTAREA
 B CONTINUE
(2) TRYAGAIN LFCB SYSLST,FCBPRT1
 LTR 15,15
 BZ CONTINUE
 B CANCL
 CONTINUE ...
 EOJ
 CANCL CANCEL ALL
 ...

(1)

If a non-PRT1 printer is being used, the system requests the
operator to set the hardware switch for eight lines per inch.
If a PRT1 printer is being used, the value 8 in LPI=8 does
not match the expected lines-per-inch setting of the image in
the first byte. The load request fails with a return code of
X'04' in register 15.

(2)

Causes an FCB image for a PRT1-type printer to be loaded if
a printer of that type is being used.

Figure 47. Example for Loading an Alternate FCB

The LFCB macro can be useful also in an abnormal-end routine that you specify in an STXIT macro. If,
for example, the routine requests a dump of storage to be printed on an IBM 3211 on which indexing
is being used, a certain number of characters may be lost on every line of the printed dump. To avoid
losing characters, your abnormal-end routine must, before it requests the dump, issue an LFCB macro
that specifies an image without an indexing byte.

The LFCB macro generates messages to request operator action (such as changing forms), if manual
action is required, and to inform the operator that the FCB of the specified printer has been reloaded.

Chapter 8. Requesting Control Functions 117

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

If the loading of the FCB fails, the system informs your program by a return code in register 15. In your
program, examine the return code and take appropriate action. For a list of the return codes, see z/VSE
System Macros Reference.

Loading of a printer's FCB by way of the LFCB macro is of advantage, if this printer is an IBM 4248
operating in native mode. If you want to make use of the printer's horizontal-copy function, this function is
enabled by an LFCB macro loading a suitable FCB image. Your program need not issue a CNTRL macro to
explicitly enable the horizontal copy function.

Multitasking Functions
This section discusses multitasking aspects such as I/O considerations, starting and ending a subtask,
sharing and protecting a resource. You find some of the macros that are used for these multitasking
functions in the sample program shown in Figure 55 on page 129.

Subtasking and I/O Requests
If several subtasks access the same tape or unit record device, or the same file on a DASD device, the
following restrictions have to be observed:

• For tapes:

Only one OPEN is allowed per device. Therefore, all subtasks must use the same file declarative (DTFxx)
macro. In addition, you must ensure that:

– Only one subtask issues an I/O request at a time.
– Only one I/O area is specified in the DTFxx macro.
– No I/O is attempted when a subroutine passes control to an asynchronous user exit such as an IT or

OC routine.
• For other devices several subtasks (including user-exit routines) can issue I/O requests at the same

time, if each subtask:

– Uses its own DTFxx macro.
– Uses its I/O and work areas.
– Does not share a non-reentrant logic module.

Note: If the extended buffering support for IBM 3800/3200 printers is used, do not attempt an I/O
request out of an asynchronous user exit. This may cause an abnormal end of the task.

Starting (Attaching) a Subtask
Depending on the NPARTS specification of the IPL SYS command, up to 512 subtasks may be active in the
system at any one time, up to 31 within a partition.

The program page with the entry address of the subtask must be in virtual storage for the attach-subtask
request to be successful. The set of program instructions that make up the subtask can be part of one
large control section (CSECT) which, possibly, includes also the main task. A subtask can also be a
separate phase. In that case, the phase must be read into storage with the LOAD or CDLOAD macro before
the ATTACH macro is issued.

Figure 55 on page 129 includes an example of attaching a subtask.

Required Save Areas
The system provides a save area for the main task. For discussion of this area, see “Register Save Area”
on page 114.

The attaching task must provide a save area for the subtask it attaches. The address of this area is
specified in the SAVE=save area operand of the ATTACH macro. When, later on during processing, the

118 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

subtask is interrupted, the system saves in that area the subtask's interrupt status information, the
contents of the general registers, and the floating-point registers.

The first eight bytes are reserved for the name of the subtask that is to be attached. The attaching task
should insert this name in those eight bytes. The system uses this name to identify the subtask in an
abnormal-end message, should one occur.

A second save area (ABSAVE=absave area) is needed if the attached task uses the attaching task's
abnormal-end routine. The save area of the attaching task is then reserved for the abnormal-end of only
the attaching task.

Testing for Successful Attachment
The request to attach a subtask may not be successful. The maximum number of attachable subtasks
may already have been activated, for example. The attaching task must keep control of this.

Register 1 (of the main task) contains the address of an ECB that the system posts when another subtask
can be attached again. This register will have the high order bit set to 1 if the attach request was
unsuccessful.

Specifying an Event Control Block
In the ATTACH macro, you can specify the name of an event control block (ECB). Provide an ECB (by
specifying ECB=ecbname) if other tasks can be affected by an abnormal end of the subtask or if resources
are to be controlled by ENQ and DEQ macros within the subtask.

An ECB is a fullword whose format is shown below. Other control blocks can be used as ECBs: CCB and
TECB. The format of an ECB is:
Byte

Contents/Meaning
0-1

Reserved.
2

As follows:
Bits

Meaning if Set to 1
0

(X'80') – A program-requested end of the subtask.
0-1

(X'C0') – An abnormal end of the subtask.
2-7

Reserved.
3

Reserved.

Posting is done in bit 0 of byte 2 of these blocks. However, do not post (with the POST macro) the ECB
specified by the ATTACH macro. It causes a task waiting on this ECB to be set ready-to-run, although the
posting subtask has not yet ended. For task synchronization use a second ECB which can then be used by
the POST macro.

A task may wait for a subtask to end by issuing a WAIT or WAITM macro with the ECB as an operand.
Use a WAIT macro if your task is to wait for a single event to occur; use a WAITM macro if your task
can continue processing when just one out of a number of events occurred. When the subtask ends, the
system posts the ECB.

The end of a task is considered to be abnormal if it does not result from one of the following macros
issued by the program itself: CANCEL, DETACH, DUMP, JDUMP, and EOJ.

Chapter 8. Requesting Control Functions 119

The type of termination is determined by the condition encountered last. If an AB exit routine was set up
for the subtask, it normally ends with one of the above macros, and the abnormal-end bit is not set by the
system. In this case, your program can communicate the abnormal condition by setting the bit itself or by
any other means.

Changing the Processing Priority
If an attach request is successful, the attached subtask gets higher priority than the main task. Among all
the subtasks in a partition, a subtask can give itself the lowest processing priority of all subtasks attached
in the partition by issuing the CHAP macro.

Ending (Detaching) a Subtask
A subtask is normally ended by a DETACH macro issued by the main task or by the subtask itself. A
subtask can detach itself also by:

• One of the macros CANCEL, EOJ, DUMP, and JDUMP.

A CANCEL issued in a subtask detaches only the subtask, except if ALL was specified in the macro.
CANCEL ALL in a subtask causes all processing in the partition to be canceled. For a discussion of the
macros DUMP and JDUMP, see the section “Requesting Storage Dumps” on page 132.

The EOJ macro issued by a subtask ends only this subtask. All other tasks in the same partition continue
processing.

When a subtask is detached, the system ensures that all pending I/O operations are completed and any
tracks held by this subtask are freed. If the subtask has an ECB, that ECB is posted, and any tasks waiting
on the ECB are removed from the wait state. The task with the highest priority then gets control.

Figure 55 on page 129 includes an example of detaching subtasks. The main task attaches two subtasks:
SUBTASK1 and SUBTASK2. When SUBTASK1 completes processing, it sets on indicator ESUB1 in the
main task. The main task then detaches SUBTASK2 by issuing a DETACH macro and specifying the save
area of SUBTASK2. When SUBTASK1 completes its processing, it detaches itself.

Task-to-Task Communication within Partition
Tasks can communicate with each other through event control blocks (ECBs) as described under
“Specifying an Event Control Block” on page 119. A task sets itself into the wait state by issuing a WAIT
macro that specifies an ECB. To release that task from the wait state, another task must issue a POST
macro that specifies the same ECB.

The task that issues the WAIT macro remains in the wait state until the specified ECB is posted.

Note:

1. A task never regains control if it is waiting for a CCB to be posted by another task's I/O completion.
2. Do not use a telecommunication ECB or an RCB to wait on because bit 0 of byte 2 of these blocks

never gets posted.

When control returns to a task that was waiting for one of a number of events to occur (WAITM), register 1
points to the posted ECB. This allows the task to find out which event removed it from the wait state.

If WAITM was issued in 31-bit mode, register 1 holds the entry of the ECB list; if register 1 holds the last
entry, the high-order bit is set (only for user-defined ECB lists).

A task that issues the WAITM macro should include code for an escape if an event might not occur. Such a
condition could arise if, for example, the task that is to post an event ends abnormally.

In Figure 48 on page 121, the WAITM macro specifies a preferred event (ECBPREF) as the first operand
and a secondary event (ECBSEC) as the second operand. The preferred event is the successful completion
of SUBTASK1, which is indicated by

 POST ECBPREF.

120 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If the subtask is terminated before it can finish its processing, the supervisor posts the ECB defined as the
secondary event by:

 ATTACH...,ECB=ECBSEC

For either event, the address of the posted ECB is in register 1 after the WAITM macro has been issued.
This address allows you, for example, to select a certain routine in your program. In the example of Figure
48 on page 121, a branch instruction points to a list of ECBs. For each ECB, the list provides a branch
instruction to the routine that is to receive control when that ECB is posted. The list may include up to 16
ECBs.

 MAINTASK BALR 12,0
 USING *,12
 ...
 ATTACH SUBTASK1,SAVE=SAVE1,ECB=ECBSEC
 ...
 LA 4,ECBSEC
 WAITM ECBPREF,ECBSEC WAIT FOR PREFERRED OR SECONDARY
 * EVENT
 B 4(1) BRANCH INTO A VECTOR TABLE
 ...
 PREVENT EQU * CONTINUE AFTER PREFERRED EVENT
 ...
 SEVENT EQU * CONTINUE AFTER SECONDARY EVENT
 ...
 EOJ MAIN TASK END OF JOB
 ...
 SUBTASK1 EQU *
 ...
 POST ECBPREF POST COMPLETION OF PREFERRED EVENT
 ...
 ECBSEC DC F'0' ECB FOR SECONDARY EVENT
 B SEVENT VECTOR BRANCH FOR SECONDARY EVENT
 ECBPREF DC F'0' ECB FOR PREFERRED EVENT
 B PREVENT VECTOR BRANCH FOR PREFERRED EVENT

Figure 48. Waiting for Preferred and Secondary Events

When a task posts an ECB, any task waiting on this ECB to be posted is removed from the wait state.

You can code your program to have just one task or all tasks waiting on a certain event removed from the
wait state. To have all tasks removed, simply issue a POST macro with the ECB name specified as the only
operand. Example:

 POST ST1ECB

To have only one task removed, specify also the name of that task's save area. Example:

 POST ST1ECB,SAVE=ST1SAVE

Specifying the SAVE operand saves time. The operand ensures that only the subtask owning the specified
save area is taken out of the wait state.

Note: Do not use this technique if the ECB to be posted is the one specified in the ATTACH macro and
the macros ENQ and DEQ are used. The DEQ macro removes from the wait state all tasks waiting for the
protected resource. Instead, use two different ECBs. However, your program is responsible for resetting
the traffic bit (bit 0 of byte 2) in the second ECB. To do this, use the instruction

 MVI ecbname+2,X'00'

Figure 49 on page 122 shows how to use the POST macro. In the example, the subtask SUBTASK1
depends on input from either of the subtasks SUBTASK2 and SUBTASK3. Therefore:

1. SUBTASK1 issues a WAITM macro on the ECBs for those subtasks.
2. The WAITM macro places SUBTASK1 into the wait state.
3. Control passes to SUBTASK2 and then to SUBTASK3.

Chapter 8. Requesting Control Functions 121

4. When either of the two subtasks has the input for SUBTASK1, it posts its ECB. This removes SUBTASK1
from the wait state.

When SUBTASK1 finishes processing, it posts its ECB, thus causing the main task to be taken out of the
wait state. The main task can then detach SUBTASK1.

 MAINTASK BALR 12,0
 USING *,12
 ...
 ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=ST1ECBS
 ...
 ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECBS
 ...
 ATTACH SUBTASK3,SAVE=ST3SAVE,ECB=ST3ECBS
 ...
 WAIT ST1ECB WAIT FOR COMPLETION OF SUBTASK 1
 DETACH SAVE=ST1SAVE DETACH SUBTASK 1
 ...
 EOJ
 SUBTASK1 ST 1,MTSVADR1 STORE THE ADDRESS OF THE MAIN TASK
 * SAVE AREA
 ...
 WAITM ST2ECB,ST3ECB WAIT FOR SUBTASK 2 OR SUBTASK 3
 ...
 ST1EOJ L 0,MTSVADR1 GET THE ADDRESS OF THE MAIN TASK
 * SAVE AREA
 POST ST1ECB,SAVE=(0) POST THE ECB FOR THE MAIN TASK
 WAIT ECB1A WAIT TO BE DETACHED FROM THE MAIN
 * TASK
 ...
 SUBTASK2 EQU *
 ...
 ST2A EQU *
 ...
 POST ST2ECB POST ECB FOR SUBTASK 1
 ...
 B ST2A
 ...
 SUBTASK3 EQU *
 ...
 ST3A EQU *
 ...
 POST ST3ECB POST ECB FOR SUBTASK 1
 ...
 B ST3A
 ...
 MTSVADR1 DC F'0' SAVE AREA ADDRESS FOR THE MAIN TASK
 ECB1A DC F'0' DUMMY ECB FOR SUBTASK 1
 ST1ECB DC F'0' ECB FOR SUBTASK 1
 ST2ECB DC F'0' ECB FOR SUBTASK 2
 ST3ECB DC F'0' ECB FOR SUBTASK 3
 ST1ECBS DC F'0' ATTACH ECB FOR SUBTASK 1
 ST2ECBS DC F'0' ATTACH ECB FOR SUBTASK 2
 ST3ECBS DC F'0' ATTACH ECB FOR SUBTASK 3

Figure 49. Use of the POST Macro

Resource Protection
When two or more tasks in the same partition access the same resource (certain data for updating, for
example), protection is required to avoid that the resource is used concurrently by these tasks. Such
protection is possible if every task in the partition uses the RCB, ENQ, and DEQ macros. It is not possible,
however, for system units such as the SYSLST device.

A task protects a resource by issuing an ENQ (enqueue) macro that refers to the resource by the name of
an eight-byte resource control block (RCB). The format and content of an RCB is as follows:
Bytes

Contents/Meaning
0

All bits are set to 1 to indicate that the resource has been placed in a priority queue by the ENQ macro.
1-3

Reserved

122 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

4-7
ECB address of current resource owner (4-byte address). Bit 0 of byte 4 will be set to 1 when another
task is waiting to use the resource.

A subtask that enqueues a resource must have an ECB specified in its ATTACH macro. Do not use this ECB
for any purpose other than resource protection as long as the resource is enqueued. The address of the
ECB is stored in the RCB as shown above.

A task requesting the use of a resource is enqueued and receives control if the resource is free. The task
is put into the wait state if the resource has already been enqueued by another task. If an ENQ macro is
issued for an already enqueued resource, the system indicates this in the RCB and stores the address of
the current resource owner's ECB in register 1 of the task that is placed into the wait state.

Once a resource has been enqueued by a task, only this task can dequeue the resource. The task does
this by issuing the DEQ macro.

If other tasks are enqueued on the same RCB, the DEQ macro frees, from their wait condition, all other
tasks that were waiting for that resource. The task with the highest priority then gets control. If no other
tasks are waiting for the RCB, control returns to the dequeuing task.

Figure 50 on page 123 shows a main task with two subtasks that use the same file and protect this file
from simultaneous access. The subtasks access the file in a common subroutine. This subroutine is not
reentrant, and therefore, the file cannot be accessed with track hold. Each subtask must enqueue the RCB
associated with the file and dequeue it when the file can be released.

 MAINTASK BALR 12,0
 USING *,12
 ...
 SUBTASK1 EQU *
 ...
 SBTASK1A ENQ RCB1 PROTECT THE RESOURCE
 BAL 4,WRITEDTA WRITE A RECORD
 DEQ RCB1 RELEASE THE RESOURCE
 ...
 B SBTASK1A
 ...
 SUBTASK2 EQU *
 ...
 SBTASK2A ENQ RCB1 PROTECT THE RESOURCE
 BAL 4,WRITEDTA WRITE A RECORD
 DEQ RCB1 RELEASE THE RESOURCE
 ...
 B SBTASK2A
 ...
 WRITEDTDA EQU *
 ...
 RCB1 RCB RESOURCE CONTROL BLOCK
 * FOR THE ROUTINE WRITEDTA

Figure 50. Sharing a Resource in a Common Subroutine

In Figure 51 on page 124, two subtasks share a routine named TOTAL. This routine, which is part of
the first subtask (SUBTASK1) is protected by the RCB named RCBA. This protection works only if every
segment of code within the partition does the following when it uses TOTAL:

1. Issues an ENQ macro for RCBA before the branch to the routine.
2. Issues a DEQ macro for RCBA when having finished using the routine.

This is accomplished by branching to the same code in subtask 1.

The common code need not be reentrant. Ensure, however, that the values for constants associated with
the subroutine do not have to be retained from one use of the common routine to the next. If any values
must be retained, save them in the using subtask and restore them when required.

Chapter 8. Requesting Control Functions 123

 MAINTASK START 0
 ...
 ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=ST1ECB
 ...
 ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECB
 SUBTASK1 ...
 ENQRSRCE ENQ RCBA PROTECT RESOURCE TOTAL
 TOTAL EQU * USED BY BOTH SUBTASK 1 AND
 * SUBTASK 2
 ...
 DEQ RCBA RELEASE RESOURCE TOTAL
 ...
 SUBTASK2 EQU *
 ...
 B ENQRSRCE PROCESS TOTAL
 ...
 RCBA RCB RCB FOR RESOURCE TOTAL
 ...

Figure 51. Sharing a Routine Which Is Part of One Task

In Figure 52 on page 124, the subtasks again use the same resource, but they access the resource from
code of their own. The resource, called RESRCA, may be a data area for example or a file defined by a
DTFxx macro. Whatever the resource is, RESRCA is protected from being used by subtask 2 while it is
used by subtask 1, and vice versa. Thus, if all tasks enqueue and dequeue each access to RESRCA, the
resource is protected against access from any other task while it is being used by one task.

This protection works if the resource as a whole is in storage. However, if the resource is a file, only the
data being operated upon is protected while in storage; the file itself on on an external storage device
is not necessarily protected. If the file is on disk, use the track hold function, which is discussed under
“DASD Record Protection (Track Hold)” on page 126.

MAINTASK START 0
 ...
 ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=ST1ECB
 ...
 ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECB
 ...
SUBTASK1 EQU *
 ...
 ENQ RCBA PROTECT RESOURCE RESRCA
 GET RESRCA,WKAREA
 ...
 DEQ RCBA RELEASE RESOURCE RESRCA
 ...
SUBTASK2 EQU *
 ...
 ENQ RCBA PROTECT RESOURCE RESRCA
 PUT RESRCA,WKAREA
 ...
 DEQ RCBA RELEASE RESOURCE RESRCA
 ...
RCBA RCB RCB FOR RESOURCE RESRCA
RESRCA DTFSD ... SHARED RESOURCE

Figure 52. Sharing a Resource in Different Subroutines

In your program design, be careful to avoid conditions that might result in a deadlock situation. Consider
the following two segments of code being executed concurrently by two tasks:

 Task1 Executes Task2 Executes

 A ENQ RCBA B ENQ RCBB

 C ENQ RCBB D ENQ RCBA

 DEQ RCBA DEQ RCBB

If the macros happen to be processed in the sequence A, B, C, then both tasks end at statements C and D
without a chance of ever regaining control.

124 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Resource-Share Control
Another set of macros protects a resource against concurrent use by different tasks in the same or in
other partitions, on the same or on a different system. This set of macros provides for controlled sharing
of the resource. The macros:

• Define a protected resource: the macros DTL, GENDTL, MODDTL
• Control access to the resource: the macros LOCK, UNLOCK.

Protection is possible only if all programs accessing the protected resource use the protection service
in a consistent manner. These programs must use the macros and adhere to the naming conventions
established for the shared resource.

Defining a Sharable Resource
A resource to be protected by this share-control service must be defined in a lock control block called DTL
(define the lock). The DTL macro is used to assemble a DTL in your program; the GENDTL macro is used to
dynamically build a DTL while your program is running.

The DTL indicates the locally defined name of the protected resource and how access to the resource may
be shared with other programs. In the macro that defines the DTL, you can specify:

• The type of control: either E (exclusive) or S (sharable).
• To what extent the resource may be shared.
• The scope of share control, namely whether a locked resource:

– Is released automatically at the end of program execution.
– Remains locked for the next job step (the resource is always released at the end of a job).
– May be unlocked only by the same task or also by another task.

Controlling a Sharable Resource
Figure 53 on page 125 illustrates how the resource share control macros might be used.

 ...
 LOCK MYDTL
 ...
 MODDTL ADDR=MYDTL,CONTROL=S,CHANGE=ON
(1) UNLOCK MYDTL
 ...
 MODDTL ADDR=MYDTL,CHANGE=OFF
(2) UNLOCK MYDTL
 ...
(3) MYDTL DTL NAME=RESOURCE,CONTROL=E,LOCKOPT=1

(1)

The resource is not unlocked. It remains locked, but may now
be shared with other tasks.

(2)

Because CHANGE=OFF is specified in the preceding MODDTL macro,
the resource is actually unlocked.

(3)

CONTROL=E with LOCKOPT=1 indicates that no other task can
gain access to the resource RESOURCE as long as access is con-
trolled by this DTL.

Figure 53. Example of the UNLOCK Macro

Chapter 8. Requesting Control Functions 125

Once the DTL for a resource exists, a task can request control over this resource with the LOCK macro
and give up control over the resource with the UNLOCK macro. The system maintains a lock-request count
which reflects the number of lock requests issued for the resource.

When a LOCK request is issued and the resource is already locked by another task, further system action
depends on your specification in the FAIL operand of the LOCK macro. For example, you can specify that
control is to return to the requesting task or that the requesting task be set into the wait state until a
locked resource is unlocked. If control is to be returned, your program must test the return code set by
the system to determine the action to be taken next.

A task or partition may issue one or more lock requests for a resource. To yield control over a resource
completely, a task or partition must, for this resource, issue as many unlock requests as it has issued lock
requests.

The MODDTL macro modifies a lock control block while the program is running. This is the normal function
of the macro. In addition, the macro can be used to lower the level of lock control over a locked resource.

If the MODDTL macro specifies CHANGE=ON, the the macro causes the next UNLOCK macro for the
resource to keep the resource locked, but with a lower locking level. Another task waiting for this resource
can be dispatched again. This method of reducing the lock level can be employed if the lock level is
defined with the most stringent values: CONTROL=E (exclusive) and LOCKOPT=1.

DASD Record Protection (Track Hold)
While a record is being modified by one task, it must be prevented from being accessed by another task.
VSE includes the DASD record protection support (also called "track-hold function") to ensure this kind of
data integrity. This support is available for both CKD disks and FBA disks.

For a CKD disk, the unit of data transfer is one block (or a physical record); for an FBA device, this unit is a
control interval. For ease of reading, the data transfer unit is referred to in this section as "track".

Prerequisites
The track-hold support is available if:

1. The supervisor of your system was generated with the TRKHLD operand specified in the FOPT macro.
2. Any task that accesses data on disk refers to a DTFxx macro with HOLD=YES.
3. Your program makes a separate register save area available. Your program must load the address of

this area into register 13 before it issues any READ or WRITE macro.

If these requirements are met, the function provides DASD record protection for your programs.

Scope of the Support
The track-hold function can be used for updating a DTFSD file and for processing a DTFSD work file or a
DTFDA file.

Updating a DTFSD File
The track being held is freed automatically by the system. More specifically, the next GET issued to a new
track for the file frees the previous hold. Your program need not issue the FREE macro.

Processing a DTFSD Work File or a DTFDA File
Your program must issue the FREE macro for each hold that is placed on the track. The system places a
hold on a track each time the track is accessed with a READ or WRITE macro, and each hold is released by
issuing the FREE macro.

126 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Hints for Programming
A pending hold is released automatically when your program issues a CLOSE macro for the file or a
DETACH macro for the accessing task.

The maximum number of different tracks that may be held at a time is specified for supervisor
generation. If a task attempts to exceed the generated limit, this task is placed into the wait state until
one of the tracks currently held is freed. If one task holds as many tracks as can be held and attempts to
issue a hold for an additional track, this task is canceled by the system.

The same track can be held more than once without an intervening FREE if the hold requests are from
the same task. However, the same number of FREE macros must be issued before the track is completely
freed. A task is canceled if it issues more than 16 hold requests without an intervening FREE or if it issues
a FREE for a file that does not have a hold request for a track.

If a task requests a hold for a track that is being held by another task, the requesting task is placed into
the wait state at the requesting (GET or WAITF) macro. The request is fulfilled after the track is freed and
when control returns to the requesting task.

If it holds more than one track, your program may inadvertently put the entire system into the wait state.
This occurs if each task is waiting for a track that is already held by another task. You can avoid this by a
FREE for each track held by a task before this task places (or attempts to place) a hold on another track.

Coding Example
Figure 54 on page 128 shows an example of the use of the track hold function in a multitasking program.

Although track hold works across partitions, the example shows only two subtasks sharing the same
(DTFDA defined) file of data. A similar set of routines could be executing in another partition and share the
file with this partition.

HOLD=YES must be specified in both DTFDAs. If register 13 is not altered between I/O operations
performed by a given task, it needs to be initialized only once. If other reentrant access methods were
used by the subtask in addition, register 13 would have to be initialized for each I/O request.

Chapter 8. Requesting Control Functions 127

MAINTASK START 0
 ...
 ATTACH SUBTASK1,SAVE=ST1SAVE,ECB=ST1ECB
 ...
 ATTACH SUBTASK2,SAVE=ST2SAVE,ECB=ST2ECB
 ...
SUBTASK1 OPEN DAFILE1 Open the file DAFILE1
 ...
 LA 13,DASAVE1 Load the address of the
 ... save area DASAVE1 into
 ... register 13
 READ DAFILE1,KEY Read the record and hold
 ... the track of the record
 WAITF DAFILE1
 ...
 WRITE DAFILE1,KEY Write the updated
 WAITF DAFILE1 record
 FREE DAFILE1 Release the track
 ...
SUBTASK2 OPEN DAFILE2 Open the file DAFILE2
 ...
 LA 13,DASAVE2 Load the address of the
 ... save area DASAVE2 into
 ... register 13
 READ DAFILE2,KEY Read the record and hold
 WAITF DAFILE2 the track of the record
 ...
 WRITE DAFILE2,KEY Write the updated record
 WAITF DAFILE2
 ...
 FREE DAFILE2 Release the track
 ...
DAFILE1 DTFDA HOLD=YES,...
 ...
DAFILE2 DTFDA HOLD=YES,...
 ...
DASAVE1 DC 8D'0' Save areas used for
DASAVE2 DC 8D'0' shared and reentrant
 modules

Figure 54. Using the Track Hold Facility

Shared Modules and Files
The DTFxx and xxMOD macros for the various file types include the operand RDONLY=YES. This operand
indicates that a sharable read-only module is to be generated.

Each time a read-only module is entered, register 13 must contain the address of a 72-byte, doubleword-
aligned save area. A separate save area is needed in addition if an exit to a user routine (AB, IT, OC, PC)
exists and the exit routine issues I/O request(s) requiring the same logic module as the main routine. Each
task using a read-only module requires its own unique save area in addition to the save areas that might
be needed for multitasking and program linkage.

If an ERROPT or a WLRERR routine issues I/O macros, using the same read-only module that passed
control to the routine, your program must provide yet another save area: one save area for the initial I/O
and the other for each I/O request from the ERROPT or WLRERR routine. Before control returns to the
module that entered the ERROPT routine, register 13 must contain the address of the save area originally
specified for the task.

If several tasks are to share one data file, use a reentrant module. In addition, provide a DTF table for the
file in each task, unless you use the ENQ and DEQ macros. Each task can either open its own DTF, or the
main task in the partition can open all files for the subtasks.

There are two methods that can be used for a shared file:

1. Supply a separate set of label statements (DLBL and EXTENT, etc.) for each corresponding DTFxx-
defined file,

2. Assemble each DTFxx macro and program (subtask) separately with the same file name and provide
one set of label statements.

128 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

In case “2” on page 128, each separately assembled program must open its DTFxx file.

Multitasking Sample Program

Figure 55. Multitasking Sample Program

******************* MAIN PROGRAM *********************************
* REGISTER USAGE: R12 = BASE REGISTER *
* R5 = MESSAGE ADDRESS *
* R10 = BRANCH AND LINK REGISTER *
* DO NOT USE REGISTER 2 AS BASE REGISTER IF YOU ISSUE A -PUTR- MACRO *
**
MAINTASK START X'78'
 PRINT NOGEN
 BALR R12,0
BASEADDR EQU *
 USING BASEADDR,R12
 OPEN CONSIOA OPEN CONSOLE INPUT/OUTPUT FILE
 BAL R10,ABXITM ESTABLISH ABNORMAL END EXIT FOR MAIN TASK
 BAL R10,ATTST1 ATTACH SUBTASK1
 BAL R10,ATTST2 ATTACH SUBTASK2
MPOST1 POST ST1ECBM GIVE CONTROL TO SUBTASK1
 WAIT ST1ECB WAIT FOR POSTING FROM SUBTASK1 (SEE *1)
*1 THIS WAIT ECB (ST1ECB) WILL BE RELEASED BY THE DETACH MACRO
*1 ISSUED IN SUBTASK1.
************ STATEMENTS OF YOUR PROGRAM ****************
MT40 EQU *
 WAIT MTECB2 WAIT FOR POSTING FROM SUBTASK2
 DETACH SAVE=ST2SAVE DETACH SUBTASK2 (SAVE= IS MANDATORY)
 LA R5,MSGEND ADDRESS OF END MESSAGE ==> R5
 BAL R10,PUTCONS OUTPUT OF END MESSAGE ON CONSOLE
 LA R15,0 SET RETURN CODE FOR EOJ
CLOSEALL CLOSE CONSIOA CLOSE ALL FILES STILL OPEN
 EOJ RC=(15) EOJ - RETURN CODE IN R15

ABMAIN EQU * ENTERED IF ABNORMAL END OF MAIN TASK
 LA R5,MSGABM ADDRESS OF ABNORMAL END MESSAGE
 BAL R10,PUTCONS OUTPUT OF ABNORMAL END MESSAGE
 LA R15,8 SET RETURN CODE FOR EOJ
 B CLOSEALL
 SPACE 2
ST1ABEND EQU *
 L R1,SUB2ECB
 POST (1) POST ECB OF SUBTASK2
 JDUMP
 SPACE 2
ST2ABEND EQU *
 L R1,SUB1ECB
 POST (1) POST ECB OF SUBTASK1
 POST MTECB2 POST THE MAIN TASK'S ECB
 JDUMP
****** DEFINITION AREA FOR MAIN TASK **********************************
MSGEND DC CL80'MAIN NORMAL ENDED'
MSGABM DC CL80'MAIN ABNORMAL ENDED'
 DS 0D
MTABSV DC 9D'0' MAIN-TASK ABNORMAL END SAVE AREA
MTECB2 DC F'0' MAIN-TASK ECB FOR POST FROM SUBTASK2
ST1ECBM DC F'0' SUBTASK1 ECB FOR POST FROM MAIN TASK
 EJECT

****** OUTPUT ON CONSOLE - ALPHANUMERIC *******************************
PUTCONS EQU *
 ENQ CONSRCB PROTECT RESOURCE FOR CONSOLE OUTPUT
 PUT CONSIOA,(R5)
 DEQ CONSRCB RELEASE RESOURCE FOR CONSOLE OUTPUT
 BR R10
****** FILE DEFINITION AREA ***
CONSIOA DTFCN X
 DEVADDR=SYSLOG, X
 IOAREA1=CONINOUT, X
 BLKSIZE=80, X
 INPSIZE=80, X
 TYPEFLE=CMBND, X
 RECFORM=FIXUNB, X
 WORKA=YES
CONINOUT DC CL80' '
 SPACE 2

Chapter 8. Requesting Control Functions 129

* ATTACH SUBTASK 1 *

ATTST1 EQU *
 MVC ST1SAVE(8),ST1NAME SUBTASK1 NAME => ST-SAVEAREA (SEE *2)
*2
*2 THE SUBTASK NAME IS USED FOR IDENTIFICATION IN MESSAGES WRITTEN ON
*2 SYSLOG.
*2
 ATTACH SUBTASK1,ECB=ST1ECB,SAVE=ST1SAVE,ABSAVE=ST1ABSV (SEE*3)
*3
*3 SUBTASK1 = ENTRY POINT OF THE SUBTASK
*3 ST1ECB = NAME OF SUBTASK'S EVENT CONTROL BLOCK
*3 ST1SAVE = NAME OF SUBTASK'S SAVE AREA
*3 ST1ABSV = NAME OF SUBTASK'S ABNORMAL END SAVE AREA
*3
 LTR R1,R1 TEST IF ATTACH IS SUCCESSFUL (SEE *4)
*4
*4 IF THE ATTACH WAS SUCCESSFUL, THE MAIN TASK STORES THE ENDING
*4 ADDRESS OF SUBTASK'S SAVE AREA IN REGISTER 0 FOR LATER REFERENCE
*4 AND THE ADDRESS OF THE ATTACHING TASK'S SAVE AREA IN REGISTER 1.
*4
 BNM ATTST10 BRANCH IF SUCCESSFUL
 WAIT (1) WAIT TO RETRY ATTACH
 B ATTST1 BRANCH TO RETRY
ATTST10 BCTR R0,R0 GET END OF SAVE AREA SUBTASK1 AND
 ST R0,ST1SVEND STORE THE END ADDRESS
 BR R10 BRANCH AND LINK RETURN VIA REGISTER 10
ST1SAVE DC 16D'0' SAVE AREA SUBTASK1 WITH FLOAT REGS
ST1ABSV DC 9D'0' AB SAVE AREA SUBTASK1
ST1ECB DC F'0' ECB SUBTASK1
ST1SVEND DC F'0' END ADDRESS SUBTASK1 SAVE AREA
ST1NAME DC CL8'SUBTASK1' NAME OF SUBTASK1
 EJECT

* ATTACH SUBTASK 2 (SEE NOTES *2 THROUGH *4 IN PART 3) *

ATTST2 EQU *
 MVC ST2SAVE(8),ST2NAME PROVIDE SUBTASK NAME IN ST-SAVE AREA
 ATTACH SUBTASK2,ECB=ST2ECB,SAVE=ST2SAVE,ABSAVE=ST2ABSV
 LTR R1,R1 TEST IF ATTACH IS SUCCESSFUL
 BNM ATTST20 BRANCH IF SUCCESSFUL
 WAIT (1) WAIT TO RETRY ATTACH
 B ATTST2 BRANCH TO RETRY
ATTST20 BCTR R0,R0 GET END OF SAVE AREA SUBTASK2 AND
 ST R0,ST2SVEND STORE THE END ADDRESS
 BR R10 BRANCH AND LINK RETURN VIA REGISTER 10
ST2SAVE DC 16D'0' SAVE AREA SUBTASK2 WITH FLOAT REGS
ST2ABSV DC 9D'0' AB SAVE AREA SUBTASK2
ST2ECB DC F'0' ECB SUBTASK2
ST2SVEND DC F'0' END ADDRESS SUBTASK2 SAVE AREA
ST2NAME DC CL8'SUBTASK2' NAME OF SUBTASK2
 EJECT
* ESTABLISH ABNORMAL END EXIT
ABXITM EQU *
 STXIT AB,ABEXIT,MTABSV,OPTION=NODUMP
 BR R10
* ABNORMAL EXIT ROUTINE REFERENCED BY STXIT MACRO
ABEXIT EQU *
 BALR R12,0
 USING *,R12 ESTABLISH ADDRESSABILITY TO ABASE PTR
 L R12,ABASE
 USING BASEADDR,R12 ESTABLISH ADDRESSABILITY TO BASE ADDR
* SAVE CANCEL CODE LOCATED IN REGISTER 0, IF NECESSARY
 LR R6,R1 SAVE AB EXIT SAVE AREA ADDRESS
* R0, R1 WILL BE DESTROYED BY DEQ
 DEQ CONSRCB RELEASE RESOURCE FOR CONSOLE OUTPUT (SEE *5)
*5
*5 DEQ WILL BE IGNORED, IF RESOURCE CONSRCB IS NOT PROTECTED.
*5 WHEN AN ABNORMAL TERMINATION CONDITION OCCURS DURING THE PUT
*5 PROCESS, RESOURCE CONSRCB WILL BE RELEASED.
*5
 C R6,=A(ST1ABSV) SUBTASK1 ABNORMALLY ENDED?
 BE ST1ABEND IF YES GO TO ST1ABEND
 C R6,=A(ST2ABSV) SUBTASK2 ABNORMALLY ENDED?
 BE ST2ABEND IF YES GO TO ST2ABEND
 EXIT AB MUST BE MAIN TASK
 B ABMAIN CONTINUE MAIN-TASK PROCESSING

130 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

ABASE DC A(BASEADDR) MAIN TASK BASE ADDRESS
SUB1ECB DC A(ST1ECB20) ECB ADDRESS WITHIN SUBTASK1
SUB2ECB DC A(ST2ECB10) ECB ADDRESS WITHIN SUBTASK2
CONSRCB RCB RESOURCE CONTROL BLOCK FOR CONSOLE OUTPUT
 EJECT

****** REGISTER EQUIVALENTS ***
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 SPACE 2
**
* S U B T A S K 1 *
**
 CNOP 0,4
SUBTASK1 EQU * SUBTASK1 = ENTRY POINT GIVEN BY ATTACH MACRO
 BALR R3,0 (SEE *6)
 USING *,R3 (SEE *6)
*6
*6 THE MAINTASK AND THE SUBTASK MAY USE DIFFERENT BASE REGISTERS.
*6 THIS IS NOT NECESSARY IF ADDRESSABILITY IS ENSURED BY
*6 THE MAINTASK'S BASE REGISTER (R12 IN THIS EXAMPLE).
*6
 LA R5,MSG101 ADDRESS OF ATTACH MESSAGE ==> R5
 BAL R10,PUTCONS OUTPUT OF MESSAGE TO CONSOLE
 WAIT ST1ECBM WAIT TO BE POSTED FROM MAIN TASK
 MVI ST1ECBM+2,X'00' RESET ST1ECBM IN WAIT STATE
 POST ST2ECB10 RELEASE WAIT STATE OF SUBTASK2 ECB10
*
* STATEMENTS OF YOUR PROGRAM
*
 WAIT ST1ECB20 WAIT TO BE POSTED FROM SUBTASK2
 LA R5,MSG102 ADDRESS OF SUBTASK1 END MESSAGE ==> R5
 BAL R10,PUTCONS OUTPUT OF END MESSAGE ON CONSOLE
 DETACH SUBTASK1 DETACHES ITSELF
* AND POSTS ST1ECB
 SPACE
 DS 0F SET FULLWORD BOUNDARY
ST1ECB20 DC F'0' ECB TO BE POSTED IN SUBTASK2
MSG101 DC CL80'SUBTASK1 ATTACHED'
MSG102 DC CL80'END OF SUBTASK1 REACHED'
 EJECT

**
* S U B T A S K 2 *
**
 CNOP 0,4
SUBTASK2 EQU * ENTRY POINT GIVEN BY ATTACH MACRO
 BALR R4,0 (SEE *6 ABOVE)
 USING *,R4
 ST R1,MTSVADR2 STORE ADDR. OF MAIN TASK SAVE AREA (SEE*7)
*7
*7 THE ADDRESS OF THE MAIN TASK'S SAVE AREA IS ONLY NECESSARY FOR THE
*7 POST OPERAND SAVE=(R8) (SEE THE EXAMPLE BELOW).
*7
 LA R5,MSG201 ADDRESS OF ATTACH MESSAGE ==> R5
 BAL R10,PUTCONS OUTPUT OF MESSAGE TO CONSOLE
WAIT2 WAIT ST2ECB10 WAIT TO BE POSTED FROM SUBTASK1
 MVI ST2ECB10+2,X'00' RESET ST2ECB10 IN WAIT STATE
*
* STATEMENTS OF YOUR PROGRAM
*
 LA R5,MSG202 ADDRESS OF END MESSAGE ==> R5

Chapter 8. Requesting Control Functions 131

 BAL R10,PUTCONS OUTPUT OF MESSAGE TO CONSOLE
 POST ST1ECB20 RELEASE WAIT STATE OF SUBTASK1 ECB20
 L R8,MTSVADR2 LOAD ADDRESS OF MAIN TASK'S SAVE AREA
 POST MTECB2,SAVE=(R8) RELEASE WAIT STATE OF MAIN TASK
 B WAIT2
ST2ECB10 DC F'0' ECB TO BE POSTED IN SUBTASK1
MSG201 DC CL80'SUBTASK2 ATTACHED'
MSG202 DC CL80'SUBTASK2 WAITING FOR DETACH FROM MAIN'
MTSVADR2 DC F'0' ADDRESS OF MAIN TASK SAVE AREA
 EJECT
****** DSECT OF ABNORMAL-END SAVE AREA ********************************
 MAPSAVAR MAPPING OF EXIT SAVE AREA
 END

Requesting Storage Dumps
When a program ends abnormally, a dump of the virtual storage areas used by the program at that point
in time can help you find the cause. Obtain a printout of this dump or have the dump displayed on a
terminal. For a full discussion of storage dumps, z/VSE Diagnosis Tools.

VSE provides several macros to request a dump of storage. In your program, you can use these macros,
for example, at the end of an exit routine for handling an abnormal-end condition. Following is a summary
of the functions of the macros that request storage dumps:

The DUMP Macro
The macro dumps, in hexadecimal format, the contents of:

• The supervisor area or only some supervisor control blocks, depending on the dump option in use when
your program runs. For details about the dump options, refer to z/VSE System Control Statements.

• The partition in which your program runs.
• All general registers.

The generated dump is directed to the dump sublibrary for the partition if the job control option SYSDUMP
is active. If the NOSYSDUMP option is active, the generated dump is printed on your SYSLST printer.

The job step (your program) is canceled if the macro is issued by the program's main (or only) task. If the
macro is issued by a subtask, only this subtask is detached.

The JDUMP Macro
The functions of this macro are the same as those of the DUMP macro. However, the entire job is canceled
if the program's main (or only) task issues the macro. If the macro is issued by a subtask, only this
subtask is detached.

The PDUMP Macro
This macro provides, on SYSLST, a hexadecimal dump of:

• The general registers.
• The storage area between the addresses specified as two operands.

After having finished processing the macro, the system returns control to your program at the next
instruction after the macro. Therefore, a PDUMP macro may be issued several times in a program to get
dumps of selected storage areas at different stages of program execution.

The SDUMP and SDUMPX Macros
The SDUMP and SDUMPX macros provide support for data spaces and 31-bit addressing. The High Level
Assembler is required to compile the macros.

The SDUMP and SDUMPX macros provide a fast dump of virtual storage which contains user data and
system data. The output is written either into a dump library or onto SYSLST. The dump includes address

132 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesdte63.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

ranges in the primary address space as well as storage ranges in data spaces to which addressability via
an ALET or via an STOKEN exists.

If the program is running in primary ASC (address space control) mode, either SDUMP or SDUMPX can be
used. Otherwise, when the program runs in access register (AR) mode, the SDUMPX macro must be used.
SDUMPX provides all of the functions of SDUMP, but generates code and addresses that are appropriate
for AR mode.

If you are in access register (AR) mode, issue the SYSSTATE ASCENV=AR macro before you issue the
SDUMPX macro to tell SDUMPX to generate code appropriate for access register mode.

The SDUMP macro cannot dump data space storage. To dump data space storage, SDUMPX is to be used
instead by including either the LISTD or SUMLSTL operand.

Note: A certain number of characters on every line of the printed dump may get lost if (1) your dump is
directed to SYSLST assigned to a 3211 printer and (2) indexing is being used. To avoid this, load an FCB
(forms-control buffer) image without an indexing byte before you issue the dump request macro. You can
use the LFCB macro for this purpose.

Requesting Volume and Device Characteristics
You can request the system to return device and volume characteristics of a specific device by using the
GETVCE macro. The macro also returns information about the track capacity and track balance of the
specified device.

Retrieving Volume and Device Characteristics
The example shows how to retrieve device information.

name
GETVCE AREA = (R8) , LENGTH = AVRLEN

, LOGUNIT = (R9)

AREA=(8)
Points to an area where the volume characteristics are to be stored.

LENGTH=AVRLEN
Specifies the length of the data to be placed into the AREA field. In this example the length is
specified by field AVRLEN generated by the macro AVRLIST. This is also the default if the LENGTH
operand is omitted.

LOGUNIT=(9)
Points to a halfword that contains the logical unit name of the device.

The area pointed to by AREA is cleared in the specified length. The output moved into the specified area is
described by a DSECT generated by the AVRLIST macro.

Obtaining the Track Balance of a Device
The example queries how many data bytes are left on the track after the specified record is written.

name
GETVCE REQUEST = TRKBAL , DEVICE = SYS005

, DATALEN = (S , DTL) , RECNO = (R15) ,

MFG = (S , WORKA)

Chapter 8. Requesting Control Functions 133

REQUEST=TRKBAL
TRKBAL indicates that the track balance is to be retrieved, that is the number of remaining data bytes
on a track of the specified DASD.

DEVICE=SYS005
Specifies the logical unit number of the device.

DATALEN=(S,DTL)
Points to a two-byte field containing the length of one fixed-length data record. This field is processed
as an unsigned binary value.

RECNO=(R15)
Points to a one-byte field containing the number of the record about to be written.

MFG=(S,WORKA)
Specifies the address of a dynamic storage area that is to be used if the program is to be reenterable.

On return, register 0 contains the updated track balance if the new record fits. If the (whole) new record
would not fit, register 0 is set to zero.

Obtaining the Track Capacity of a Device
The example queries how many records of a given size fit onto the remainder of the track.

name
GETVCE REQUEST = TRKCAP , LOGUNIT = (S

, CCB1) , DATALEN = (S , DTL) , MFG = (

S , WORKA)

REQUEST=TRKCAP
Indicates that the capacity of the track is to be retrieved, that is the number of whole records that fit
into the given or calculated track balance (remainder of the track) of this DASD.

LOGUNIT=(S,CCB1)
Points to a halfword containing the logical unit number specified in CCB1.

DATALEN=(S,DTL)
Points to a two-byte field containing the length of one fixed-length data record. This field is processed
as an unsigned binary value.

MFG=(S,WORKA)
Specifies the address of a dynamic storage area that is to be used if the program is to be reenterable.

On return, register 0 contains the updated track capacity, that is the number of whole records that will fit
onto the remainder of the track. Since RECNO is not specified in this example, the default is zero, which
means that the number of whole records fitting on a complete track will be returned in register 0.

Requesting System Information
Macros are available to inquire about certain system information:

• SUBSID macro

You can use the macro to inquire about the supervisor that controls your system. The macro retrieves a
string of data that your program can interpret by using the mapping DSECT generated by the MAPSSID
macro. You can, for example, check the mode in which your current supervisor has been generated, or
whether it includes DASD sharing support.

• EXTRACT macro

This macro, together with the DSECT generating macro MAPEXTR (or MAPBDY and MAPBDYVR) allows
your program to get information about the boundaries of the partition in which the program runs.

134 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Together with the mapping macro MAPEXTR MODE=SYSP (or MAPSYSP), the EXTRACT macro allows
you to retrieve information about the system layout, such as begin and end address of supervisor area,
SVA or GETVIS area.

In addition, your program can use the EXTRACT macro to inquire about the assignment status of a
logical unit name.

Writing and Deleting Messages (WTO, WTOR, and DOM Macros)
The WTO and WTOR macros allow you to write a message to a display device, to a program that receives
WTO and WTOR messages, or just to the hardcopy file. Besides writing a message, WTOR allows you to
request a reply from the operator who receives the message. The DOM macro allows you to delete a
message that is already written to the operator.

Routing the Message
You can route a WTO or WTOR message to a console by specifying one or more of the following
parameters:

• ROUTCDE to route messages by routing code
• CONSID to route messages by console ID
• CONSNAME to route messages by console name

The ROUTCDE parameter allows you to specify the routing code or codes for a WTO and WTOR message.
The routing codes determine which console or consoles receive the message. Each code represents a
predetermined subset of the consoles that are attached to the system, and that are capable of displaying
the message. WTO and WTOR allow routing codes from 1 to 128. Consoles provided by z/VSE are
designed to receive all routing codes for master consoles, or none for user consoles.

You can also use either the CONSID or CONSNAME parameter to route messages. These mutually
exclusive parameters let you specify the ID or the name of the console that is to receive the message.
When you issue a WTO or WTOR macro that uses either the CONSID or CONSNAME parameter with
the ROUTCDE parameter, the message or messages will go to all of the consoles specified by both
parameters.

The MCSFLAG parameter is used to specify whether the message is a command response or for the
hardcopy file only. Specifying MCSFLAG=BUSYEXIT will terminate the WTO if no console buffers are
available. Control is returned to the issuer with a return code of X'20'. If you do not specify BUSYEXIT,
WTO processing may place the WTO invocation in a wait state until WTO buffers are again available.

Altering Message Text
The TEXT parameter on the WTO macro enables you to alter repeatedly the same message or numerous
messages. You can alter the message or messages in one of two ways:

• If you issued 3 different messages, all with identical parameters other than TEXT, you created a list form
of the macro, moved the text into the list form, then execute the macro. Using the TEXT parameter you
can use the standard form of the macro, and specify the address of the message text. By reducing the
number of list and execute forms of the WTO macro in your code, you reduce the storage requirements
for your program.

• If you need to modify a parameter in message text, using the TEXT parameter enables you to modify
the parameter in the storage that you define in your program to contain the message text, rather than
modify the WTO parameter list.

Using the TEXT parameter on WTO can reduce your program's storage requirements because of fewer
lines of code or fewer list forms of the WTO macro.

Chapter 8. Requesting Control Functions 135

Writing a Multiple-Line Message
To write a multiple-line message to one or more operator consoles, either issue WTO with all lines of text,
or issue each line of text separately using the CONNECT parameter on the WTO macro.

The CONNECT parameter connects a subsequent message to a previous message. For example, if your
program develops a large, multiple-line message of unknown length, it can issue several WTOs or the
different parts of the message at different times. The CONNECT parameter forces all these WTOs to use
the same message ID. These messages are combined into blocks of up to 12 lines, and delivered as a
single message. CONNECT is mutually exclusive with CONSID, and it is not available with WTOR.

You can create with one WTO macro request a message that consists of up to 10 lines. For more than
10 lines, issue more than one WTO macro. The additional lines appear at the end of the message and
continue until you specify an "END" line by specifying "DE" or "E" as the line type for the last line of data.

After processing the first request, the system places a message identifier in register 1. For each additional
request, you must pass this identifier to the subsequent lines through the CONNECT parameter of WTO.

Deleting Messages Already Written
The DOM macro deletes the messages that were created using the WTO or WTOR macros. Depending
on the timing of a DOM macro relative to the WTO or WTOR, the message may or may not have already
appeared on the operator's console.

• When a message already exists on the operator screen it is highlighted to alert the operator that some
action must be taken. When the operator responds to a message, highlighting is removed to indicate
that a response was already given. When DOM deletes a message, it does not actually erase the
message. It only resets the highlighting attribute, displaying it like a non-action message.

• If the message is not yet on the screen, DOM resets the highlighting before it appears. The DOM
processing does not affect the logging action. That is, if the message is supposed to be logged, it will
be, regardless of when or if a DOM is issued. The message is logged in the format of a message that is
waiting for operator action.

The program that generates an action message is responsible for deleting that message.

To delete a message, identify the message by using the MSG parameter on the DOM macro.

When you issued WTO or WTOR to write the message, the system returned a message ID in general
purpose register 1. Use the ID as input on the MSG parameter.

WTO, WTOR, DOM Usage Examples
 WTO TEXT=MSG, x
 ROUTCDE=(2,11) * Route to master and user
 ...
 ST R1,MSGID * Save message ID
 ...
MSG DC AL2(L'MSGT) * Response heading
MSGT DC C'...' * Up to 125 characters
MSGID DS F

Figure 56. Example of Single-Line WTO

136 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 LA R2,LINE
 WTO TEXT=((TITL,C),((R2),D),(LAST,DE)) X
 ROUTCDE=2,DESC=2 * Route to master, system status
 ...
TITL DC AL2(L'TITLT) * Message title
TITLT DC C'...' * Up to 34 characters
 ...
LINE DC AL2(L'LINET) * Message data line
LINET DC C'...' * Up to 70 characters
 ...
LAST DC AL2(L'LASTT) * Message data line
LASTT DC C'...' * Up to 70 characters

Figure 57. Example of Multiple-Line WTO

 SPLEVEL SET=3 * Request a VSE/ESA 1.3 expansion
 WTO '...',ROUTCDE=11
 ...
 (no message ID is returned)

Figure 58. Example of a Backward-Compatible WTO

 (receive command from INCONS with INCART)
 ...
 WTO TEXT=((HEAD,L)), X
 CONSID=INCONS,CART=INCART, X
 MCSFLAG=RESP * Indicate command response
 ...
 ST R1,MSGID * Save message ID
 ...
 WTO TEXT=((LINE,D)), X
 CONNECT=MSGID * Connect to previous message
 ...
 WTO TEXT=(,E),
 CONNECT=MSGID * Ending line
 ...
MSGID DS F
HEAD DC AL2(L'HEADT) * Response heading
HEADT DC C'...' * Up to 70 characters
LINE DC AL2(L'LINET)
LINET DC C'...' * Data line, up to 70 characters
INCONS DS F * Target console
INCART DS CL8 * Command/response correlation token

Figure 59. Example of WTO for Command Responses

 WTOR TEXT=(PROMPT,REPLY,L'REPLY,ECB), X
 RPLYISUR=INCONS * Identify the reply origin
 ...
PROMPT DC AL2(L'PROMPTT) * Response heading
PROMPTT DC C'...' * Up to 122 characters
REPLY DC CL120' ' * May receive up to 119 characters
ECB DC F'0'
INCONS DS F * ID of replying console
INNAME DS CL8 * Name of replying console

Figure 60. Example of WTOR

 WTO TEXT=AMSG, X
 DESC=2 * Immediate action message
 ST R1,MSGID * Save message ID
 ...
 (wait for action to take place)
 ...
 DOM MSG=MSGID * Delete message
 ...
AMSG DC AL2(L'AMSGT)
AMSGT DC C'... ' * Up to 125 characters
MSGID DS F

Figure 61. Example of Application Control of Message Deletion (DOM)

Chapter 8. Requesting Control Functions 137

Example of an LBSERV MOUNT Request
This is an example of how to mount and release a tape via the LBSERV macro:

 SPACE 2
 IJJLBSER DSECT=YES
TESTCASE START X'78'
 BALR R11,0 SET UP
 USING *,R11 ADDRESSABILITY
TLIB1 LA R4,MYCUU
 LA R5,VOLSER
 LA R6,MYECB
 LA R7,LIBNAME
 LA R8,SERVL
 LA R9,WRITEFL
 LA R10,TCATEG
 LA R13,SAVEAREA
 USING IJJLBSER,R8
 MVI IJJLTLEN+1,IJJLTLN

* LBSERV MOUNT

 LBSERV FUNC=MOUNT,VOLSER=(R5),ECB=(R6),LIBNAME=(R7), X
 SERVL=(R8),WRITE=(R9),CUU=(R4),TGTCAT=(R10)
*

 LTR R15,R15
 BNZ EOJ

 LA R1,MYECB
 WAIT (1)

* LBSERV RECEIVE

 LBSERV FUNC=RECEIVE,SERVL=(R8)
 CLC IJJLTRET,RETCODE
 BNE EOJ

* WRITE TO TAPE

 OPEN FILE
 LA R9,10
LOOP1 AP NUMBER,CONST
 UNPK RECNUMB,NUMBER
 OI RECNUMB+9,X'F0'
 PUT FILE,RECORD
 BCT R9,LOOP1
 CLOSE FILE

* LBSERV RELEASE

 LBSERV FUNC=RELEASE,ECB=MYECB,SERVL=(R8),CUU=MYCUU
*
*

 LTR R15,R15
 BNZ EOJ

*
 LA R1,MYECB
 WAIT (1)

* LBSERV RECEIVE

* REGISTER NOTATION
 LBSERV FUNC=RECEIVE,SERVL=(R8)
*
 CLC IJJLTRET,RETCODE
 BNE EOJ
*
EOJ DS 0H
 EOJ
IOAREA1 DC 800CL1' '
RECORD DC C' RECORD NUMBER'
RECNUMB DC C'0000000000'
CONST DC X'00001C'
NUMBER DC X'00000C'
FILE DTFMT BLKSIZE=800, *

138 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 RECSIZE=80, *
 RECFORM=FIXBLK, *
 TYPEFLE=OUTPUT, *
 DEVADDR=SYS005, *
 WORKA=YES, *
 IOAREA1=IOAREA1, *
 HDRINFO=YES, *
 FILABL=STD, *
 EOFADDR=EOJ
*

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
* WORK AREAS AND CONSTANTS:
*
 DS 0D
*
SERVL DC (IJJLTLN)X'00'
MYECB DC F'00'
MYCUU DC CL4'0061'
WRITEFL DC CL1'W'
VOLSER DC CL6'099275'
RETCODE DC CL4'0000'

LIBNAME DC CL8'MYLIB001'
TCATEG DC CL10'SCRATCH01 '

SAVEAREA DC 18F'0'
 END

Library Access for Application Programs
The Library Access Service enables application programs to access library objects in a way similar to
other data access methods.

The access service uses two assembler macros, LIBRM and LIBRDCB, as described in z/VSE System
Macros Reference.

Storage Requirements
The access service dynamically allocates partition GETVIS storage for internal buffers, control blocks, and
data areas. Some of these areas are fixed, others are variable in size.

The size of the variable part depends on the

• Specific LIBRM request
• Track capacity of the DASD where the library resides
• Size of the library member accessed
• Size of the DIRINF area specified in the LIBRM request

Therefore, for good performance with a minimum of SIO, things like DASD capacity and member size must
be considered.

The size of the DIRINF area automatically enlarges internally used tables, even if these tables are not
filled by directory information (for example, generic requests).

Chapter 8. Requesting Control Functions 139

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

The fixed part of GETVIS storage is about 24K, whereas the dynamic part can vary from 2K up to 100K.
A normal application should consider a GETVIS area in the range from 30K up to 60K to be used by the
access service.

Record I/O
Record I/O offers a convenient way to access and retrieve library member data in pieces, either as records
or substrings. The access service is designed to process single records or bytes with GET/PUT requests.

The member to be worked on can be specified in two different ways:

• It can be fully qualified as 'lib.sublib.member.type' with the requested service, for example, OPEN
member.

• It can be partially qualified as 'member.type'. The 'lib.sublib' specification is then taken from a sequence
(chain) of sublibraries addressed by a name (chain ID) and defined either by the LIBRM LIBDEF macro
or by the external LIBDEF job control statement.

If the sublibrary is explicitly specified (by 'lib.sublib'), the function is performed as for a chain of
sublibraries with that sublibrary being the only element in the chain.

Librarian Control Block
Before working on a library object (library, sublibrary, member or chain), its characteristics and processing
requirements have to be specified in the Librarian Data Control Block (LDCB). An LDCB is required for
each LIBRM request and is created in your processing program by a LIBRDCB macro instruction.

Information placed in the LDCB is either taken from the LIBRDCB or LIBRM macro instructions, or
retrieved by a previously installed sublibrary chain or existing library object (sublibrary or member). If
more than one source specifies information for a particular field of the LDCB, only one source is used.

Accessing or Updating Librarian Member Data
To get access to member data, a member must first be opened. There are three types of OPEN: OPEN for
input (INPUT), OPEN for output (OUTPUT), and OPEN for input/output (INOUT).

• OPEN(INPUT) provides read-only access to an existing member. After OPEN, the following requests are
possible: GET, NOTE, and POINT. If a sublibrary search chain is specified, the member is opened in the
sublibrary where it is found first.

• OPEN(OUTPUT) provides write-only access to a new member (sequential file). The replacement of an
existing member with the same member and type name is controlled by the REPLACE/NOREPLACE
option. After OPEN, only PUT and NOTE requests for member data are accepted. An OPEN(OUTPUT)
works only on the first sublibrary of a chain.

• OPEN(INOUT) provides read/write access to a member. If the member does not exist, a new member
is created. If the member exists, an output copy of the member is generated that is initially empty. PUT
requests to the member write the data to this copy of the member, and the copy replaces the original
member at CLOSE time. If a sublibrary chain is specified, the member is opened and replaced in the
sublibrary where it is found first. If the member does not exist, it is created in the first sublibrary of the
chain.

To modify the member, combine the sequential copying of the existing data (by LIBRM GET and LIBRM
PUT) with appropriate PUT calls to alter the data as necessary. For example::

– To simply overlay records or bytes, modify the data in the buffer after calling GET and before calling
PUT.

– To insert data within the member, copy using GET/PUT up to the point of insertion, PUT the new data,
and continue the copy process.

– To append data to the member, copy the entire member using GET/PUT and then issue the PUT call
for the new data. It is not possible to append data to a member without first copying the existing
member to the output copy of the member.

140 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

– To insert records or bytes at the beginning of the member, PUT this data before copying the existing
data.

– To delete data, omit the corresponding PUT call.

With the LIBRM NOTE macro it is possible to extract the current (read or write) position within a member
and use this information later for repositioning with the LIBRM POINT macro. Like GET, POINT works on
input members only (opened for INPUT and INOUT). The information returned by NOTE contains both the
Logical Relative Byte Address (LRBA) and the Physical Relative Byte Address (PRBA) within the member,
so that locating can be done without re-reading the first part of the member. The NOTE information must
be passed to the POINT function without change.

If the member is opened for INOUT, POINT can be used only to position within the original member, not
within the output copy of the member. For example, you cannot simply position to the end of the member
using POINT and then append the desired data. The existing data must first be copied as described above.

The NOTE information can be handled in two different ways:

1. It is managed by the system in a last-in first-out manner by a stack with a nesting depth of 20 entries.
2. The user has control over the NOTE information.

It is possible to do NOTE/POINT processing not only within a member, but also over different members
in a sublibrary chain. Repositioning over member boundaries is only supported for members opened for
INPUT in a specific chain in the following sequence:

• OPEN INPUT member1 CHAINID=xx
• GET records of member1
• NOTE the current read position of member1 (only NOTECTL=NO possible)
• OPEN member2 (the chain of the first OPEN will be considered)
• GET records of member2
• POINT back to member1
• GET next record of member1
• CLOSE complete processing

With the LIBRM CLOSE macro you can stop all access to a library member and cause all resources
(GETVIS space, locks, for example) to be given up. For a newly created member (OPEN for OUTPUT),
the library directory entry is cataloged or updated, unless the update of the directory is prevented (with
LIBRM CLOSE COMMIT=NO).

Library Access Functions
The library access service supports the following functions:

• LIBDEF chainid,chain

– where a sequence chain of sublibraries with a given name chainid is established which can be
searched for individual sublibrary members.

• LIBDROP chainid

– where a chain of sublibraries with the given name chainid is dropped.

• STATE member or STATE member,chainid

– which checks whether the specified member exists in a certain sublibrary or chain of sublibraries.
If it exists, the access service returns member attributes like number of records, record format, and
record length. If the member is searched for in a chain of sublibraries, the system also returns the
name of the first library and sublibrary in which the member resides.

• STATE sublib

Chapter 8. Requesting Control Functions 141

– which checks whether the sublibrary sublib exists in a certain library. If it exists, the access service
returns sublibrary attributes like number of members, used space, and space re-usage options.

• STATE lib

– which checks whether the library lib exists. If it exists, the access service returns library attributes
like number of sublibraries, library size, used and free space.

• STATE chain

– which checks whether a sublibrary chain identified with chainid exists. If it exists, the sublibrary
names are returned to the caller.

• LOCK member

– which locks a member for any write or update access.

• UNLOCK member

– which frees a member from a previously given LOCK request.

• DELETE member or DELETE member,chainid

– which deletes member member (within sublibrary chain chainid).

• RENAME oldname,newname

– which renames a member with oldname to newname.

• OPEN member or OPEN member,chainid

– which opens a member (within the chain chainid) for reading/writing of records.

• GET bufferaddr,bufferlen

– which reads one or more records or bytes from a member into the buffer described by bufferaddr
and bufferlen.

• PUT ldcbname,bufferaddr,bufferlen

– which writes one or more records or bytes to a member from the buffer described by bufferaddr and
bufferlen.

• NOTE

– which notes the position within a member to be able to point at it later.

• POINT

– which points to a position within a member noted earlier.

• CLOSE

– which closes a member and denies further (read/write) access to it. For a newly created member you
can specify whether you want to commit or decommit its cataloging into the library directory.

Return Code Conventions
Each library access service macro passes back return information to inform the invoking program about
the completion of the requested function. This return information consists of two parts,

• A return code (severity code), passed in register 15, which gives a global statement about the success
or failure of the requested service, and

• A reason code, returned in register 0, which informs the caller in detail about any failing condition.

The codes are used uniformly throughout the library access service macros.

142 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The meaning of the return codes is as follows:

• RC=0 indicates successful completion. The service worked as requested.
• RC=4 indicates that either the requested function was performed, but an exceptional condition exists,

or that the function was not performed because the requested result already exists.
• RC=8 means that some functions are not or only partially executed, but processing was continued.
• RC=12 is returned if the requested service could not be performed at all, because the addressed library

resource was not available.
• RC=16 indicates that there is an externally controllable condition (for example, lack of resources such

as storage space) which resulted in the failure. This return code is accompanied by a Librarian message.
• RC=20 indicates an error condition as a result of internal Librarian processing. This result is

accompanied by a Librarian message.
• RC=32 is given for unauthorized access to a library object. This return code is given together with

message L163I.

If a message is generated by the Librarian as a result of return code 16 or higher, it is passed back in
a buffer within the LDCB (label IALCMSG); it is not written onto SYSLST/SYSLOG. The reason codes are
defined individually for each service.

Apart from the return code in register 15 and the reason code in register 0, the library access service
provides exits to handle the different levels of error situations. An exit can be specified for an 'Object Not
Found', for an 'End of Member', and for an 'Unexpected Error' condition, respectively.

An additional processing option exists for unexpected errors (that is, return code 16 and higher) to decide
whether processing should be canceled, transferred to an exit, or returned to the user invocation.

See “Librarian Exits” on page 144 for a detailed description of the exits.

Record Formats
The supported record formats are: FIXED and STRING.

FIXED denotes logical records of fixed length. The size of fixed-length records is the same for all records
in a member. An access request refers to the record number and the number of records to be processed.
FIXED records are 80 bytes long.

STRING means a format where the whole member is considered as a byte string. An access request refers
to a substring thereof, described by the LRBA (logical relative byte address) of the first byte and the length
of the substring. This format allows to interpret the data in any other way by a program.

Processing Sequence of Sublibrary Chains
The following search sequence applies when sublibrary chains are processed by OPEN, STATE(MEMBER),
DELETE, and RENAME requests with the CHAINID=chainid operand:

1. Task-related chain with the specified 'chainid'.
2. Job-related search chain (only for CHAINID=PHASE, OBJ, PROC, and SOURCE).
3. Partition-related search chain (only for CHAINID=PHASE, OBJ, PROC, and SOURCE).
4. System-related sublibrary IJSYSRS.SYSLIB (only for CHAINID=PHASE, OBJ, PROC, and SOURCE).

The described chains are concatenated when performing a search for a member. For OPEN(OUTPUT) only
the first sublibrary will be selected.

Note: The chain specified with the job control statement

 // LIBDEF PHASE,SEARCH=(...,SDL,..),TEMP

cannot be processed by the library access service (return code 16 with the corresponding reason code is
returned).

Chapter 8. Requesting Control Functions 143

Register Usage
Register

Usage
0

Reason code
1

Address of LDCB
2-12

Not used
13

Address of caller-provided save area (72 bytes)
14

Return address to macro invocation
15

Return code

For the register notation used with the librarian exits refer to “Librarian Exits” on page 144.

Librarian Exits

ERRAD: Librarian Error Exit
With the ERRAD=label operand in the LIBRDCB macro you can specify a label to which the Librarian will
branch if an unexpected processing error (return code > 12) occurs. All necessary clean-up processing
is automatically done before the exit gets control. The ERRAD exit is not a subroutine, but rather a
continuation of the requester routine.

When the caller receives control to the specified label, the register values are as follows:
Register

Value
0

Librarian feedback code
1

Address of failing LDCB
2-12

As before the macro invocation
13

Address of the user-provided save area (72 bytes)
14

Address of ERRAD label (branch address)
15

Return code

Following are the committed values in the LDCB, which can be used for error analysis:
IALCCMD

Failing LDCB command (macro request)
IALCLIB

Address of requested library name (if specified), otherwise 0
IALCSLIB

Address of requested sublibrary name (if specified), otherwise 0

144 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

IALCMEMB
Address of requested member name (if specified), otherwise 0

IALCTYPE
Address of requested member type (if specified), otherwise 0

IALCNMBR
Address of requested new member name (if specified), otherwise 0

IALCNTYP
Address of requested new member type (if specified), otherwise 0

IALCCHID
Address of requested chainid (if specified), otherwise 0

IALCLKID
Address of requested lockid (if specified), otherwise 0.

IALCRETC
Return code

IALCFDBC
Feedback code

IALCMSGA
Address of the librarian message area (120 bytes), always filled with the failing Lxxx message.

IALCNRET
Address of the instruction after the failing request (normal return address).

EODAD: Librarian 'End-of-Member Data' Exit
The EODAD=label operand of the LIBRDCB macro defines a label to which the Librarian will branch if
there is no more member data available for any subsequent LIBRM GET requests. The member remains
opened as for a normal return. A LIBRM CLOSE can be issued to finish processing.

Like ERRAD, the EODAD exit is also not a subroutine, but rather a continuation of the requester routine.

When the user receives control to the specified label, the register values are as follows:
Register

Value
0

Reason code (which is zero)
1

Address of active LDCB
2-12

As before the macro invocation
13

Address of the user-provided save area (72 bytes)
14

Address of EODAD label (branch address)
15

Return code (which is 8)

NOTFND: Librarian 'Not Found' Exit
The NOTFND exit will be taken if a specified library object does not exit. A library object is also treated
as not existing if one of the related 'higher' objects does not exist or is not accessible (return code 12).
For example, the NOTFND condition is also true for a member request if the specified sublibrary or library
does not exist.

For the DELETE MEMBER request the NOTFND exit will not be taken at all.

Chapter 8. Requesting Control Functions 145

When the caller receives control to the specified label, the register values are as follows:
Register

Value
0

Reason code
1

Address of active LDCB
2-12

As before the macro invocation
13

Address of the user-provided save area (72 bytes)
14

Address of NOTFND label (branch address)
15

Return code

Processing of Executable Programs (Phases)
The Library Access Service does not support the modification or creation of members of type PHASE
(executable programs). It is recommended to use the standard utilities, such as the MSHP CORRECT
function or the Linkage Editor to do this.

146 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Library Access Request Sequence
The table shows the allowed sequence of access service requests belonging to one LDCB. It is possible to
have more than one LDCB active in a user program.
 │ n+1'th request
n'th │
request │ OPEN GET PUT NOTE POINT CLOSE any
 │ INPUT OUTPUT INOUT other
────────────┼───
OPEN-INPUT │ x x x x
OPEN-OUTPUT │ x x x
OPEN-INOUT │ x x x x x
 │
GET │ (5) x (1) x (3) x
PUT │ (1) x x (1) x
NOTE │ (2) (3) (4) x (3) x
POINT │ (2) x (1) x x x
CLOSE │ x x x (6) x
 │
any other │ x x x (6) x
 │

x
There is no restrictions using this sequence.

(1)
Member must be opened for INOUT.

(2)
Only possible for NOTECTL=NO and member opened for INPUT.

(3)
Member must be opened for INPUT or INOUT.

(4)
Member must be opened for OUTPUT or INOUT.

(5)

A new OPEN after the GET is only possible after a previous
NOTE with NOTECTL=NO (stacked source inclusion).

(6)
This CLOSE results in a NOOP.

Figure 62. Library Access Request Sequence

Example of an Access Service Request Sequence

The request sequence describes what a stacked read access might look like. The same LDCB is always
used.
 │
 ↓
 OPEN MEMBER=A
 CHAINID=X

 GET RECORD
 GET RECORD
 GET RECORD
 NOTE RECORD POSITION
 │
 <──────────────>OPEN MEMBER=B
 (CHAINID taken from first OPEN)
 GET RECORD
 GET RECORD
 GET RECORD
 NOTE RECORD POSITION
 │
 <───────────────>OPEN MEMBER=C
 GET RECORD
 ..
 POINT to NOTEd
 record (LIFO)

Chapter 8. Requesting Control Functions 147

 ┌──────────────────────
 ↓
 GET RECORD
 ..
 GET RECORD
 POINT to NOTEd record (LIFO)
 ┌──────────────────────
 ↓
 GET RECORD
 ..
 GET RECORD
 CLOSE

Cross-Partition Communication
The cross-partition communication service (XPCC) allows communication between two application
programs (two different VSE tasks). It is invoked via the XPCC macro. For an example of the use
of this macro in an application program requesting VSE/POWER services, see VSE/POWER Application
Programming. The main XPCC functions are:

• An identify function (IDENT) allows application programs to make themselves known (to 'log on')
to XPCC. XPCC recognizes the names of the applications and uses those names later to set up a
communication path between the applications.

• Before data can actually be transmitted between two XPCC users, a communication path has to be
established. The applications have to build this path via the CONNECT function. In order to have a
complete link, both applications have to request the connection. After that they can start exchanging
data via this path. The link is always a two-way-only communication path, that is, a data transmission
request is always directed to only one other application.

Before a program can issue a request, it must ensure that the preceding request (if any) is complete. For
this purpose a WAIT capability is provided.

• Once the data transmission link is completed, the two applications can start exchanging data. XPCC will
make sure that the sender of the data does not overwrite any user data in case data is sent faster than
the receiver can process the data. Whenever a request is issued, return information about the other side
of the communication path is provided.

Sending and receiving data is done asynchronously with a WAIT and POST capability.
• Special commands are provided for clearing a connection from a data transmission request.
• Applications disconnect a communication path with the DISCONN or DISCPRG function and finally

terminate their communication with the TERMINATE function. After that they are no longer known to
XPCC.

• In case of normal or abnormal task termination, XPCC automatically disconnects any outstanding
communication paths and, in addition, does a 'logoff' (TERMINATE) for the corresponding application.

All XPCC requests are associated with a program-defined control block, the XPCCB (cross-partition
communication control block), which is set up with the XPCCB macro. The XPCCB is used to

• Define request options
• Set up pointers to buffer areas and ECBs
• Receive system return information.

The XPCCB may be generated statically at assembly time or it may be set up and/or modified at execution
time. The individual fields of the XPCCB can be referenced via the mapping macro MAPXPCCB.

A communication path is always represented by a unique XPCCB. This specific XPCCB must be used for all
requests given between CONNECT and DISCONNECT of this path. Control block identifier IJBXSTRT and
control block length IJBXLEN are checked with each XPCC request.

After each request, the system supplies return information in register 15 and in field IJBXRETC of the
XPCCB. Whenever an ECB is posted, status (reason code) information is provided in field IJBXREAS. You
should test this information along with testing the posting of any ECB in the XPCCB. For the mnemonics

148 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

that you can use to test the return and reason codes supplied by the system, see the MAPXPCCB macro in
z/VSE System Macros Reference.

Register 15 indicates whether an XPCC request was successful:
0 (X'00')

Request was started successfully.
4 (X'04')

Same as X'00', but additional return information is stored in IJBXRETC.
8 (X'08')

Request was rejected. IJBXRETC defines the reason for the failure.
12 (X'0C')

Request was rejected. The XPCCB address is invalid or length of XPCCB is invalid.

Identification of Communication User
To set up a connection between two applications, the applications must be known by the system.

Therefore, before requesting any XPCC services, the application has to identify itself to XPCC. This is done
via the IDENTIFY function of the XPCC macro.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= IDENT

(reg) , FDSCR = UNIQUE

NO

(reg)

The fields used by the request in the XPCCB control block are:

Table 7. XPCCB control block input

Name Description

IJBXFCT Function byte (IJBXID).

IJBXFDSC Function descriptor byte.

IJBXAPPL Application name of the requesting application. It can be up to 8 bytes long and
must not contain blanks (X'40') or all binary zeros.

Table 8. XPCCB control block output

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXITID TID (task ID) of IDENT requester.

IJBXIDK Identify token provided by the system after the IDENT request is completed.

IJBXLGID ID of partition using the application name that was requested unique.

XPCC associates the application with a unique identify token, which the VSE system returns in field
IJBXIDK. All subsequent CONNECT requests issued by the application must copy this identify token into
their own XPCCB.

Chapter 8. Requesting Control Functions 149

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

One program can issue several IDENT requests with different application names. This means that the
program is known under two (or more) different names, each representing a different application.

Application names starting with 'SYS' are reserved for programs written by IBM.

If the IDENT request is issued by the VSE maintask, also the subtasks in the partition can use the identify
token. If the IDENT request is issued under control of a VSE subtask, only this subtask can use the
identify token.

If a task terminates, the identify tokens owned by the task are invalidated.

Defining a Communication Path
Before starting with the actual data transmission, you have to establish a unique communication path via
the CONNECT request.

A communication path is always built between two applications. In order to get completed, the
connection has to be requested by both applications.

Two types of connections are possible:

• A connection directed to a specific application.
• An 'open-ended' connection, to which any other application can link up.

Defining a Specific Connection

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= CONNECT

(reg) , BUFFER = addr

(reg)

(S , addr)

, MECB = addr

(reg)

(S , addr)

, MXPCCB = addr

(reg)

(S , addr)

, TIMEOUT = n

(reg)

The CONNECT request uses the following fields in the XPCCB.

Table 9. CONNECT request XPCCB input fields

Name Description

IJBXFCT Function byte (IJBXCON).

150 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Table 9. CONNECT request XPCCB input fields (continued)

Name Description

IJBXFDSC Set by TIMEOUT operand.

IJBXTOAP Name of application (up to eight bytes) to which the connection is to be
established. This is the name used by the other application at IDENTify time. If
an 'open-ended' connection is to be set up, you have to initialize this field to binary
0. (TOAPPL=ANY if defined in the XPCCB macro.)

IJBXIDK Identify token provided by the system after IDENT of requesting application. If
MXPCCB is specified in the XPCC macro, the identify token of the specified XPCCB
is copied into the current XPCCB before the CONNECT request is started.

IJBXSUSR Eight bytes of user data to be moved into receiver's IJBXRUSR field after
connection has been completed.

IJBXBUF Consists of IJBXIND, IJBXAD31, and IJBXBLN. If only one buffer is specified
(IJBXIND=B'1xxx xxxx'), the buffer is validated and saved (if found correct) for
later use within SENDI protocol.

IJBXMECB The ECB is validated and the address is saved, if found correct. Later on, the
specified fullword is used as a main ECB, posted together with any XPCC ECB.

IJBXTIME Specified WAIT time.

Table 10. CONNECT request XPCCB output fields

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXREAS Reason code.

IJBXCTID TID (task ID) of CONNECT requester.

IJBXPID Communication path ID provided by the system when the connection is completed.
It uniquely identifies the connection.

IJBXTOAP Is updated in case of a CONNECT-ANY request with the application name of the
partner.

IJBXCECB
and
IJBXSECB

Set to F'00'.
They are posted whenever the connection is complete
(data transmission can start).

IJBXRECB Set to F'00'.

IJBXCNTL Set to 4F'00'.

IJBXRUSR User data from IJBXSUSR of the other side is filled in at connection completion
time.

IJBXSILN Length of partner's receive area for SENDI protocol.

CONNECT tries to establish a communication path to the application requested in IJBXTOAP.

If the other side has already issued the corresponding CONNECT, the connection is established right away
and IJBXCECB and IJBXSECB are both posted.

If the other application has not yet issued CONNECT or is even not yet active, the request sets a return
code in field IJBXRETC, but the connection request is accepted. IJBXCECB and IJBXSECB will be posted

Chapter 8. Requesting Control Functions 151

and the task will be taken out of the wait state as soon as the other side issues the corresponding
CONNECT, which completes the connection.

When IJBXBUF specifies only one buffer, the buffer is validated. Address and length are saved by XPCC
and the length is stored into IJBXSILN of the partner's XPCCB (which must be a VERSION=2 XPCCB).

Connections are owned by the task that issued the CONNECT request. Any data transmission or
DISCONNECT request can only be issued by the task that issued the CONNECT request. All requests
issued between CONNECT and DISCONNECT must use the same XPCCB.

When the TIMEOUT parameter has been specified and the time interval has been exhausted, IJBXCECB,
IJBXSECB, and IJBXRECB are posted and the task is taken out of the wait state.

Defining an Open-Ended Connection
When the application trying to establish a connection works as a server for the target application, it
normally does not know the application name of the target. In such a case, the application would provide
a connection to which any target application could connect - by specifying TOAPPL=ANY in the XPCCB
macro.

For a CONNECT ANY request, the format of the XPCC request and the usage of the different XPCCB fields
is the same as for a CONNECT-specific request.

Data Transmission
Once a connection has been established, the two applications can start exchanging data via this link.

The sender of the data builds up a list of data areas (and their length) and - via the SEND request - passes
them to XPCC. At the other end of the connection, XPCC moves the corresponding control information
(message length) into the IJBXCNTL field and posts the RECEIVE ECB (IJBXRECB). The other application
would then realize that there is a pending SEND request. It would first inspect the control buffer for the
length of the message (obtain optionally buffer space), and would then ask for the data transfer via the
RECEIVE request, indicating where the data is to be stored.

The system transfers the data into the corresponding buffer space. At the same time it posts the SEND
ECB associated with the SEND request at the sender's side (IJBXSECB), to indicate that the SEND request
is successfully completed. At the receiver's side, the IJBXRECB is reset in order to be ready for the next
SEND request.

As soon as a SEND or SENDR request is started on an available link, the connection is considered to be
'busy'. In case of a SEND, the connection is busy until the receiver issues the RECEIVE (this is also valid for
a SEND with zero data length). In case of a SENDR, the connection is busy until the receiver accepts the
data via RECEIVE and sends a reply back via REPLY. The receiver may also 'free' the connection by purging
the data via the PURGE function.

As long as a connection is busy, no new data transmission request can be started (it will be rejected with a
return code).

The sender of the data may revoke the SEND request with a CLEAR request; however, the connection is
still regarded as 'busy' until the receiver acknowledges the CLEAR by a RECEIVE, REPLY or PURGE.

Sending and Receiving Data
Two data transmission methods are possible:

1. Transmission of data such that one data record on the sender's side is received as the same data
record on the receiver's side:

152 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The SEND request will post to the receiver's side the length of the data area to be sent (in the
IJBXCNTL field). The receiver obtains the needed storage and issues RECEIVE.

2. Transmission of data such that the sender provides a list of data areas to be sent, and the receiver
collects the concatenated data into one data area (the length being the sum of the sender's data area
lengths):

The concatenated data length is posted at SEND time to the receiver's side. The receiver dynamically
obtains the needed storage and issues RECEIVE.

The programs may choose at SEND time whether to use method 1 or method 2.

Three protocols are available for data exchange:

1. A SEND - RECEIVE protocol:

If this protocol is used, the sender is posted when the receiver has accepted the sent data via the
RECEIVE request. At this time, the connection is available for the next data transmission request.

2. A SENDR - RECEIVE - REPLY protocol:

When using this protocol, the sender requests a reply from the receiver. The sender is posted when the
receiver sends a reply back upon receiving the data. XPCC transfers the reply data into a reply area,
which has to be provided by the sender at SEND time (with the XPCCB REPAREA operand).

3. A SENDI - SENDI protocol:

When using this protocol, SENDI must be issued alternately from both partners, where the first SENDI
starts the communication. This protocol requires that both partners have defined buffers at CONNECT
time. These buffers are used as receive buffers when SENDI is executed.

Chapter 8. Requesting Control Functions 153

If the predefined receive buffer is too small, XPCC switches to the normal SEND-RECEIVE protocol.
The receiver is notified by the switch in IJBXREAS. After the RECEIVE has been executed, return to the
SENDI protocol is recommended. If an error situation forces one of the partners to break the SENDI
sequence, switching to the SEND-RECEIVE protocol is possible.

The SENDI protocol with a data length of zero can be used as a simple WAIT/POST mechanism
between tasks in different partitions.

Note: It is strongly recommended not to switch between the different protocols, because fields in the
XPCCB might be overwritten by succeeding XPCC requests before the partner has a chance to inspect the
original content.

Data Transmission without Reply Request

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= SEND

(reg) , BUFFER = addr

(reg)

(S , addr)

Table 11. SEND request - Input fields in the XPCCB used on the sender's side.

Name Description

IJBXFCT Function byte (IJBXCON).

IJBXDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXBUF Consists of IJBXIND, IJBXAD31, and IJBXBLN.

IJBXIND B'1xxx xxxx' If only one data area is to be transmitted. B'0xxx xxxx' If a list of data
area addresses is provided.

IJBXAD31 Address of data area to be transmitted or address of list of data area addresses.

IJBXBLN Length of data area to be transmitted. Not used in case of data area list
(IJBXIND=B'0').

IJBXSUSR Eight bytes of user data to be moved into receiver's IJBXRUSR field.

Table 12. SEND request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXDSC Set to X'00'.

IJBXRETC Return code.

IJBXCECB Reset wait bit.

IJBXRECB Reset wait bit.

IJBXSECB Reset wait bit (posted if other side issues RECEIVE or PURGE).

154 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Table 13. SEND request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXREAS Reason codes.

IJBXRECB Posted by system.

IJBXRUSR 8 bytes of data from the sender's IJBXSUSR field.

IJBXSLN Length of data to arrive or (in case of an address list) the sum of the length of the
sender's data areas.

IJBXFLG X'01' For a 'normal' SEND request.

Additional Information
If a list of data areas is provided, the IJBXADR field points to a list of 8-byte fields where each entry has
the following format:

Table 14. IJBXADR 8-byte fields

Bytes Description

0 B'0' If this is not the last entry.
B'1' If this is the last entry in the list.

0 - 3 Address of data area to be sent.

4 - 7 Length of data area to be sent.

The list can have up to 256 entries.

The addresses of the data areas to be transmitted and their lengths are passed to XPCC which will
do an address validation. If the XPCC BUFFER operand is not used, the XPCCB information stored in
the IJBXBUF field is used for data transmission. If the BUFFER operand is specified, it overwrites the
information stored in the IJBXBUF field.

XPCC calculates the length of the data to be transmitted and moves this information into field IJBXSLN at
the receiver's side. The data provided in field IJBXSUSR (send user data) of the sender will be moved into
field IJBXRUSR (receive user data) at the receiver's side.

If the connection is 'busy', the SEND request is rejected. This might occur if the other side has not yet
issued a RECEIVE for a previous SEND request, or the other side has issued SEND. In the first case the
SEND request could be retried when the IJBXSECB associated with the previous SEND request is posted,
in the second case a RECEIVE or PURGE request must first be issued.

The SEND function might be issued with the IJBXBLN field (length of data area) initialized to zero and
IJBXIND initialized to B'1'. In such a case, only user data is transmitted from the sender's IJBXSURS
to the receiver's IJBXRUSR. The receiver can recognize such a condition by getting posted (IJBXRECB)
and finding a zero data length value in the IJBXSLN field. Note, however, that the connection would still
remain busy, also in this case, until the other side acknowledges via a RECEIVE or PURGE.

For performance reasons, the buffers should not cross page boundaries (if they are smaller than a page),
and start on a page boundary (if they are larger than a page).

Data Transmission with Reply Request
Usually the sender posts a data transmission request to the receiver via SENDR.

The receiver accepts the data via RECEIVE, processes it, and sends a reply back to the sender via the
REPLY request. The connection is now free to handle the next data transmission request.

Chapter 8. Requesting Control Functions 155

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= SENDR

(reg) , BUFFER = addr

(reg)

(S , addr)

Table 15. REPLY request - Input fields in the XPCCB used on the sender's side.

Name Description

IJBXFCT Function byte (IJBXSNDR).

IJBXFDSC If IJBXPOST is on, IJBXCECB will be posted when the other side receives the data.
The buffers are free for usage from now.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXBUF Buffer area for data transmission. The fields are used in the same way as described
under SEND.

IJBXSUSR Eight bytes of user data to be moved into receiver's IJBXRUSR field.

IJBXRADR Address of area into which the system transfers the reply data from the receiver.

IJBXRLNG Length of reply area.

Table 16. REPLY request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXFDSC Return codes set by system.

IJBXRETC Return codes set by system.

IJBXSECB Reset wait bit. Posted when the other side issues REPLY or PURGE.

IJBXCECB Reset wait bit. Posted when the other side issues RECEIVE and if IJBXPOST was
set.

IJBXRECB Reset wait bit.

IJBXREAS Set to IJBXRECX if IJBXPOST was set.

Table 17. REPLY request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXREAS Reason codes.

IJBXRECB The IJBXRECB is posted.

IJBXRUSR 8 bytes of data from the sender's IJBXSUSR field.

IJBXSLN Length of data being sent. It is the sum of the length of all data areas.

IJBXSLNR Length of reply data on sender's side.

IJBXFLG Flag bytes. X'02' For a SENDR request, which means that a REPLY is requested.

Fields in the XPCCB used on the receiver's side:

156 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The SENDR function is equivalent to the SEND function, except that in addition XPCC validates the area
which will receive the reply (IJBXREPA) and moves the length of the REPLY area to IJBXSLNR at the
receiver's side.

IJBXCECB at the sender's side is posted and the task is taken out of the wait state when the receiver
issues RECEIVE (and IJBXREAS is set to IJBXRECX), if IJBXPOST was set on at SENDR time. (The sender
may reuse the buffers from now on.)

IJBXSECB is posted and the task is taken out of the wait state when the receiver issues REPLY.

The SENDR function might be issued with the IJBXBLN field (length of data) initialized to zero and
IJBXIND initialized to B'1xxx xxxx'. In such a case, only validation of the REPLY area is done and the user
data is transmitted from the sender's IJBXSURS to the receiver's IJBXRUSR. The receiver can recognize
such a condition by getting posted (IJBXRECB) and finding a zero data length value in the IJBXSLN field.
He can immediately execute the REPLY (without being forced to execute a RECEIVE before REPLY).

Data Transmission into a Predefined Area
Via SENDI the sender moves data into the receive area defined at the receiver's side with the CONNECT
request.

The length of the receive area can be retrieved from IJBXSILN of the sender's XPCCB after the CONNECT
request was issued. When the SENDI is completed, the receiver is in SENDI state, which means that the
current sender has to wait on a SENDI of his partner.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= SENDI

(reg) , BUFFER = addr

(reg)

(S , addr)

Table 18. SENDI request - Input fields in the XPCCB used on the sender's side.

Name Description

IJBXFCT Function byte (IJBXSNDI).

IJBXFDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXBUF Buffer area for data transmission. The fields are used in the same way as described
under SEND.

IJBXSUSR Eight bytes of user data to be moved into receiver's IJBXRUSR field.

Table 19. SENDI request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXSECB Reset wait bit.

IJBXCECB Reset wait bit.

IJBXRECB Reset wait bit. Posted when other side issues SENDI.

Chapter 8. Requesting Control Functions 157

Table 19. SENDI request - Output fields in the XPCCB used on the sender's side. (continued)

Name Description

IIJBXSLN Length of data being sent.

Fields in the XPCCB used on the receiver's side:

Table 20. SENDI request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXREAS IJBXSWSR is set if the receive area is too small.

IJBXRECB The IJBXRECB is posted.

IJBXRUSR 8 bytes of data from the sender's IJBXSUSR field.

IJBXSLN Length of data being sent. It is the sum of the length of all data areas.

IJBXFLG Flag bytes. X'40' For a SENDI request, which means that a SENDI protocol is
ongoing.

If the BUFFER operand is specified in the XPCC macro, it overwrites the IJBXBUF field in the XPCCB.
The areas defined through IJBXBUF are validated and the length is checked against of the length of
the partner's receive buffer specified with the CONNECT. Then the length is saved into IJBXSLN of the
partner's XPCCB.

If the receive buffer is too small, XPCC switches to the SEND-RECEIVE protocol, that is, the receiver is
posted with IJBXSWSR in IJBXREAS. He now has to issue a RECEIVE request to retrieve the data. The
sender is notified by the protocol switch with return code 4 in register 15 and IJBXSSWI in IJBXRETC.

After execution of the SENDI request, the connection is free for another SENDI, but now from the current
receiver.

Receiving Data
The target application recognizes a SEND request at the other side in the following way:

• IJBXRECB of the connection is posted.
• The IJBXCNTL field contains control information defining the SEND request.
• The IJBXFLG flag area contains a flag indicating whether this is a SEND or a SENDR request, or a SENDI

request where the predefined receive area was too small.

With the RECEIVE request the application prompts the system for the actual data transfer.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= RECEIVE

(reg) , BUFFER = addr

(reg)

(S , addr)

Table 21. RECEIVE request - Input fields in the XPCCB used on the receiver's side.

Name Description

IJBXFCT Function byte (IJBXRCV).

158 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Table 21. RECEIVE request - Input fields in the XPCCB used on the receiver's side. (continued)

Name Description

IJBXFDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXBUF Buffer area where the data is to be moved (only one area allowed: IJBXIND=B'1xxx
xxxx').

IJBXSUSR Eight bytes of user data to be moved into sender's IJBXRUSR field.

Table 22. RECEIVE request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXSECB Reset wait bit.

IJBXCECB Reset wait bit.

IJBXRECB System resets the wait bit in case of a SEND. In case of a SENDR, the wait bit is
reset at REPLY time.

Table 23. RECEIVE request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXRUSR 8 bytes of data from the receiver's IJBXSUSR field.

IJBXRSECB Posted if this is a SEND-RECEIVE protocol.

IJBXCECB Posted if this is a SENDR and IJBXPOST is on.

IJBXREAS Set if this is a SENDR and IJBXPOST is on.

IJBXFLG X'08' indicates RECEIVE was last XPCC function executed by other side.

A RECEIVE is requested when an application is posted by a SEND (SENDR) request.

If the XPCC FUNC=RECEIVE macro is used with the BUFFER operand, it overwrites the IJBXBUF field
information stored in the XPCCB.

The program requests the data transfer via the RECEIVE request and XPCC moves the data into the input
area.

If the RECEIVE is executed after a SEND request, IJBXRECB at the receiver's side is reset and the
IJBXSECB at the sender's side is posted. The sender is also taken out of the wait state. The connection
is now ready to handle the next SEND (or SENDR) request. Such a RECEIVE (or PURGE) is also needed in
case of SEND with zero data in order to free the connection.

If the RECEIVE is executed after a SENDR request, the connection remains 'busy' until the receiver
responds back to the sender via the REPLY request.

If the RECEIVE is due to SENDR (and IJBXPOST is on) or SEND, user data from the receiver's IJBXSUSR is
transferred to IJBXRUSR of the sender's XPCCB; for SENDR, IJBXCECB is posted in addition.

The RECEIVE request performs an address validation of the receiver's data area. No padding is
performed, if the data to be moved is shorter than the input area.

If the data to be moved is longer than the input area, the RECEIVE request is rejected with a return code.
The program can then either obtain a longer input area and retry the RECEIVE request, or it can decide

Chapter 8. Requesting Control Functions 159

that the incoming data block is too long to be handled and purge the connection from the sent data (refer
to the PURGE function).

The REPLY Function
The REPLY function is used by the receiver when receiving data which was sent via a SENDR request.

It allows to send response data back to the sender into a predefined data area.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= REPLY

(reg) , BUFFER = addr

(reg)

(S , addr)

Table 24. REPLY request - Input fields in the XPCCB used on the replier's side.

Name Description

IJBXFCT Function byte (IJBXREP).

IJBXFDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXBUF Buffer area from where the data is transmitted. Only one buffer area allowed:
IJBXIND=B'1'

IJBXSUSR Eight bytes of user data to be moved into sender's IJBXRUSR field.

Table 25. REPLY request - Output fields in the XPCCB used on the replier's side.

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXRECB Reset wait bit.

Table 26. REPLY request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXRUSR 8 bytes of data from the replier's IJBXSUSR field.

IJBXRSECB Posted.

IJBXREAS Reason code.

IJBXFLG X'20' indicates last XPCC function executed by other side was REPLY.

IJBXSLN Length of data being replied.

If the BUFFER operand is specified in the XPCC macro, it overwrites the IJBXBUF field in the XPCCB.
The areas defined through IJBXBUF are validated and the length is checked against of the length of
the partner's receive buffer specified with the CONNECT. Then the length is saved into IJBXSLN of the
partner's XPCCB.

160 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If the reply area length is 0, only the sender's IJBXSECB is posted and user data is transmitted from
IJBXSUSR at the replier's side to IJBXRUSR at the sender's side. If the reply area on the sender's side is
too long, the remaining bytes are not padded. If it is too short, the REPLY request is rejected.

IJBXRECB at the receiver's side is reset and IJBXSECB at the sender's side is posted. The sender is also
taken out of the wait state.

Clearing a Pending SEND/SENDR Request on the Sender's Side
The sender of the data can revoke an outstanding SEND/SENDR request. For this purpose he can use the
CLEAR function.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= CLEAR

(reg)

Table 27. CLEAR request - Input fields in the XPCCB used on the sender's side.

Name Description

IJBXFCT Function byte (IJBXCLR).

IJBXFDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXSUSR Eight bytes of user data to be moved into receiver's IJBXRUSR field.

IJBXCECB Reset wait bit.

IJBXRECB Reset wait bit.

IJBXSECB Reset wait bit.

Table 28. CLEAR request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

XPCCB fields used on the receiver's side:

Table 29. CLEAR request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXRUSR 8 bytes of data from the sender's IJBXSUSR field.

IJBXRSECB The RECEIVE ECB is posted.

IJBXREAS IJBXCLEA is posted to the reason code field.

IJBXFLG X'04' indicates last XPCC function executed by the other side was CLEAR.

XPCC sets a 'SEND cleared' flag for the connection in the XPCCB, post IJBXRECB, and store reason code
IJBXCLEA into IJBXREAS on the receiver's side in the following cases:

Chapter 8. Requesting Control Functions 161

• If there is a SEND request pending for the connection, for which the other side has not yet issued a
RECEIVE or PURGE.

• If there is a SENDR request pending for this connection, for which the other side has not yet issued the
requested REPLY or PURGE.

To free the connection for the next SEND request, the receiver must issue an acknowledgment through
RECEIVE or PURGE. RECEIVE/PURGE will complete with a return code indicating a cleared connection.
The connection is then ready for the next SEND (SENDR) request.

Clearing a Pending SEND/SENDR Request on the Receiver's Side
The receiver might receive messages which he is unable to handle. For example, because the message
length exceeds the available buffer storage. He can reject those messages via the PURGE request.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= PURGE

(reg)

XPCCB fields used at the receiver's side:

Table 30. PURGE request - Input fields in the XPCCB used on the receiver's side.

Name Description

IJBXFCT Function byte (IJBXPRG).

IJBXFDSC Should be set to zero.

IJBXPID Path ID, provided by the system after CONNECT.

IJBXSUSR Eight bytes of user data to be moved into sender's IJBXRUSR field.

Table 31. PURGE request - Output fields in the XPCCB used on the receiver's side.

Name Description

IJBXFDSC Set to X'00'.

IJBXRETC Return code.

IJBXSECB Reset wait bit.

IJBXCECB Reset wait bit.

IJBXRECB Reset wait bit.

Table 32. PURGE request - Output fields in the XPCCB used on the sender's side.

Name Description

IJBXRUSR 8 bytes of data from the receiver's IJBXSUSR field.

IJBXRSECB Posted.

IJBXCECB Posted after SENDR and if IJBXPOST is on.

IJBXREAS Appropriate reason code is set.

IJBXFLG X'10' Indicates that last XPCC function executed by the other side was PURGE.

162 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

XPCC clears the connection from the pending SEND/SENDR request. The receiver's IJBXRECB is reset. At
the sender's side the IJBXSECB is posted with reason code IJBXCPRG indicating the PURGE request, and
the sender is taken out of the wait state. Additionally, IJBXCECB is posted when a SENDR was pending
and IJBXPOST was on.

With PURGE, the receiver can also acknowledge a CLEAR request from the sender. In this case no reason
code is posted back.

Disconnecting from a Communication Path
If a data communication path is not needed any more, an application can break it via the DISCONNECT
function. When the other side disconnects from this path, a DISCONNECT is also required from this
application.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= DISCONN

DISCPRG

DISCALL

(reg)

, FDSCR = ABNORM

NO

(reg)

Table 33. DISCONNECT request - Input fields in the XPCCB

Name Description

IJBXFCT Function byte (IJBXDSC|IJBXDSCP|IJBXDSCA).

IJBXFDSC If FDSCR=ABNORM is specified in the XPCC request, the other side gets reason
code IJBXABDC indicating an abnormal-end condition.

IJBXIDK Identify token provided by the system after IDENT of requesting application. This
field is only used with DISCALL.

IJBXPID Path ID, provided by the system after CONNECT. This field is not used for a
DISCALL request.

IJBXSUSR Eight bytes of user data to be moved into field IJBXRUSR of the other side. Not
used with DISCALL.

Table 34. DISCONNECT request - Output fields in the XPCCB

Name Description

IJBXRETC Return code.

Table 35. DISCONNECT request - Output fields in the XPCCB used on the partner's side.

Name Description

IJBXRUSR 8 bytes of data from IJBXSUSR of the other side. Only used for the first
DISCONNECT,because with the second DISCONNECT the other side is already
gone.

IJBXCECB Posted.

IJBXSECB Posted.

IJBXRECB Posted.

Chapter 8. Requesting Control Functions 163

Table 35. DISCONNECT request - Output fields in the XPCCB used on the partner's side. (continued)

Name Description

IJBXREAS Appropriate reason code is set.

DISCONN
Checks whether the link is still busy. If so, rejects the request with a return code. If not, disconnects
the link on the requester's side.

DISCPRG
Disconnects the link unconditionally, regardless of whether the link is still busy or not. If the other
side has an outstanding SEND or SENDR request on this link, the request is purged and IJBXSECB is
posted, together with a reason code. If an own SEND is pending, this send request is cleared.

DISCALL
Unconditionally disconnects all connections set up by the corresponding application. It can only be
issued by the task that issued the corresponding IDENT request. The DISCALL function implies a
CLEAR or PURGE, if necessary.

If the other side is in the wait state at the time the request is issued, it will be posted (IJBXCECB,
IJBXSECB, and IJBXRECB), and a reason code will be set.

FDSCR=ABNORM
This option can be specified with DISCONN and DISCPRG. In this case XPCC posts an abnormal-end
condition to the partner (IJBXABDC in IJBXREAS).

Terminating XPCC Usage
If an application does not need the XPCC service any longer, it can 'log off' from XPCC by issuing a
TERMINATE request.

label

XPCC XPCCB = addr

(1)

(S , addr)

, FUNC

= TERMIN

TERMQSCE

TERMPRG

(reg)

XPCCB fields used by the system:

Table 36. TERMINATE request - Input fields in the XPCCB used by the system

Name Description

IJBXFCT Function byte (IJBXTRM|IJBXTRMP|IJBXTRMQ).

IJBXFDSC Should be set to zero.

IJBXPIDK Identify token provided by the system after IDENT of requesting application.

Table 37. TERMINATE request - Output fields in the XPCCB used by the system

Name Description

IJBXRETC Return code.

XPCCB fields used in XPCCBs :

164 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Table 38. TERMQSCE request - Output fields in the XPCCB, which have CONNECTs for terminating
applications pending (TERMQSCE only).

Name Description

IJBXCECB Posted.

IJBXSECB Posted.

IJBXRECB Posted.

IJBXREAS Return codes.

TERMIN
Checks if any connections still exist for this application. If yes, the request is rejected with a return
code. If not, XPCC purges all information about this application.

TERMPRG
Unconditionally executes the terminate request. All available links are unconditionally disconnected
and all pending data requests terminated (via DISCALL).

TERMQSCE
The application indicates that it is shortly going to perform a shut-down operation. Existing
connections can still be used for data transmission. However, XPCC will no longer grant any new
CONNECT request to/from this application.

All still 'open-ended' connections from this application are disconnected.

All open CONNECT requests for this application are set ready, all three ECBs are posted, and
IJBXREAS is set to IJBXDISC.

Abnormal End Processing
For clean-up purposes, the system associates IDENT and CONNECT requests with certain 'work units',
which it knows:

1. An IDENT request can be issued either by a VSE maintask or under control of a subtask. In the first
case, the IDENT is regarded as being owned by the VSE partition. If this partition terminates, the
system issues a TERMPRG for this IDENT request (if not already terminated).

In the second case, the IDENT is regarded as being owned by the VSE subtask. If this subtask
terminates, the system will issue a TERMPRG for this IDENT request.

2. Each CONNECT request is associated with a VSE task, under whose control the CONNECT was
requested.

If the task terminates, the system will disconnect all connections that were set up by this task.

If subsystems are using smaller work units for their applications, they have to do the DISCONNECT and
TERMINATE requests for the ABENDed application ('private' subtasking).

Compressing and Expanding Data
This section contains information on the z/VSE support for compression services. The compression
services allow you to compress data and expand data that was previously compressed. The interface
to the compression services is the CSRCMPSC macro. The CSRCMPSC macro uses the CMPSC hardware
instruction, if available; otherwise, the CSRCMPSC macro simulates the CMPSC instruction.

You can save data in a compressed format, for example to conserve DASD resources. The CSRCMPSC
macro provides a pair of services that compress and expand data. These services are available when bit
CVTCMPSC in the communication vector table (CVT) is on.

Compression takes an input string of data and, using a data area called a dictionary, produces an output
string of compression symbols. Each symbol represents a string of one or more characters from the input.

Chapter 8. Requesting Control Functions 165

Expansion takes an input string of compression symbols and, using a dictionary, produces an output string
of the characters represented by those compression symbols.

Parameters for the CSRCMPSC macro are in an area mapped by DSECT CMPSC of the CSRYCMPS macro
and specified by the CBLOCK parameter of the CSRCMPSC macro. This area contains such information as:

• The address, ALET, and length of a source area. The source area contains the data to be compressed for
a compression operation, or to be expanded for an expansion operation.

• The address, ALET, and length of a target area. After the macro runs, the target area contains the
compressed data for a compression operation, or the expanded data for an expansion operation.

• An indication of whether to perform compression or expansion.
• The address and format of a dictionary to be used to perform the compression or expansion. The

dictionary must be in the same address space as the source area.

Compressing and expanding data is described in the following topics:

• “Compression and Expansion Dictionaries” on page 166
• “Compression Processing” on page 167
• “Expansion Processing” on page 167
• “Dictionary Entries” on page 168
• “Building the CSRYCMPS Area” on page 176
• “Determining if the CSRCMPSC Macro Can Be Issued on a System” on page 178

If you are a z/OS (MVS) user, to help you use the compression services, the SYS1.SAMPLIB system library
contains the following REXX execs:

• CSRBDICT for building example dictionaries
• CSRCMPEX for measuring the degree of compression that the dictionaries provide

The prologs of the execs tell how to use them. For additional information about compression and using
the execs, see Enterprise Systems Architecture/390 Data Compression and the Principles of Operation
publication for your processor.

Compression and Expansion Dictionaries
To accomplish compression and expansion, the macro uses two dictionaries: the compression dictionary
and the expansion dictionary. These dictionaries are related logically and physically. When you expand
data that has been compressed, you want the result to match the original data. Thus the dictionaries
are complementary. When compression is done, the expansion dictionary must immediately follow the
compression dictionary, because the compression algorithm examines entries in the expansion dictionary.

Each dictionary consists of 512, 1024, 2048, 4096, or 8192 8-byte entries and begins on a page
boundary. When the system determines or uses a compression symbol, the symbol is 9, 10, 11, 12,
or 13 bits long, with the length corresponding to the number of entries in the dictionary. Specify the size
of the dictionary in the CMPSC_SYMSIZE field of the CSRYCMPS mapping macro:
SYMSIZE

Meaning
1

Symbol size 9 bits, dictionary has 512 entries
2

Symbol size 10 bits, dictionary has 1024 entries
3

Symbol size 11 bits, dictionary has 2048 entries
4

Symbol size 12 bits, dictionary has 4096 entries

166 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

5
Symbol size 13 bits, dictionary has 8192 entries

The value of CMPSC_SYMSIZE represents the size of the compression and expansion dictionaries. For
example, if CMPSC_SYMSIZE is 512, then the size of the compression dictionary is 512 and the size of the
expansion dictionary is 512.

Compression Processing
The compression dictionary consists of a specified number of 8-byte entries. The first 256 dictionary
entries correspond to the 256 possible values of a byte and are referred to as alphabet entries. The
remaining entries are arranged in a downward tree, with the alphabet entries being the topmost entries in
the tree. That is, an alphabet entry may be a parent entry and contain the index of the first of one or more
contiguous child entries. A child entry may, in turn, be a parent and point to its own children. Each entry
may be identified by its index, meaning the positional number of the entry in the dictionary; the first entry
has an index of 0.

An alphabet entry represents one character. A nonalphabet entry represents all of the characters
represented by its ancestors and also one or more additional characters called extension characters. For
compression, the system uses the first character of an input string as an index to locate the corresponding
alphabet entry. Then the system compares the next character or characters of the string against the
extension character or characters represented by each child of the alphabet entry until a match is found.
The system repeats this process using the children of the last matched entry, until the last possible match
is found, which might be a match on only the alphabet entry. The system uses the index of the last
matched entry as the compression symbol.

The first extension character represented by a child entry exists as either a child character in the parent
or as a sibling character. A parent can contain up to four or five child characters. If the parent has more
children than the number of child characters that can be in the parent, a dictionary entry named a sibling
descriptor follows the entry for the last child character in the parent. The sibling descriptor can contain
up to six additional child characters, and a dictionary entry named a sibling descriptor extension can
contain eight more child characters for a total of fourteen. These characters are called sibling characters.
The corresponding additional child entries follow the sibling descriptor. If necessary, another sibling
descriptor follows the additional child entries, and so forth. The dictionary entries that are not sibling
descriptors or sibling descriptor extensions are called character entries.

If a nonalphabet character entry represents more than one extension character, the extension characters
after the first are in the entry; they are called additional extension characters. The first extension
character exists as a child character in the parent or as a sibling character in a sibling descriptor or
sibling descriptor extension. The nonalphabet character entries represent either:

• If the entry has no children or one child, from one to five extension characters.
• If the entry has more than one child, one or two extension characters. If the entry represents one

extension character, it can contain five child characters. If it represents two extension characters, it can
contain four child characters.

Expansion Processing
The dictionary used for expansion also consists of a specified number of 8-byte entries. The two types of
entries used for expansion are:

• Unpreceded entries
• Preceded entries

The compression symbol, which is an index into the dictionary, locates that index's dictionary entry. The
symbol represents a character string of up to 260 characters. If the entry is an unpreceded entry, the
expansion process places at offset 0 from the current processing point the characters designated by
that entry. Note that the first 256 correspond to the 256 possible values of a byte and are assumed to
designate only the single character with that byte value.

Chapter 8. Requesting Control Functions 167

If the entry is a preceded entry, the expansion process places the designated characters at the specified
offset from the current processing point. It then uses the information in that entry to locate the preceding
entry, which may be either an unpreceded or a preceded entry, and continues as described previously.

The sibling descriptor extension entries described earlier are also physically located within the expansion
dictionary.

Dictionary Entries
The following notation is used in the diagrams of dictionary entries:
{cc}

Character may be present
...

The preceding field may be repeated

Compression Dictionary Entries
Compression entries are mapped by DSECTs in macro CSRYCMPD.

The first four entries that follow give the possible values for bits 0-2, which are designated CCT.

Character Entry Generic Form (DSECT CMPSCDICT_CE)
 ┌───┬────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 │CCT│ │ │ │ │ │ │ │ │
 └───┴────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 8 16 24 32 40 48 56 63

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. The total number of
children plus additional extension characters is limited to 5. If this field plus the number of additional
characters is 6, it indicates that, in addition to the maximum number of children for this entry, there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.
The value of CMPSCDICT_CE_CHILDCT plus the number of additional extension characters must not
exceed 6.

Character Entry CCT=0 (DSECT CMPSCDICT_CE)
 ┌───┬─────┬───┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 │000│ │ACT│ │ {EC} │ ... │ ... │ ... │ │
 └───┴─────┴───┴──────────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 8 11 24 32 40 48 56 63

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters in the
entry. Its value must not exceed 4. This field must be 0 in an alphabet entry.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

Character Entry CCT=1 (DSECT CMPSCDICT_CE)
 ┌───┬─────┬───┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 │001│XXXXX│ACT│ CINDEX │ {EC} │ ... │ CC │ │ │
 └───┴─────┴───┴──────────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 8 11 24 n 63

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with the first bit indicating whether it is necessary to examine
the character entry for the child character (looking either for additional extension characters or more
children). The other bits are ignored when CCT=1.

168 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

ACT
A 3-bit field (CMPSCDICT_CE_AECCT) indicating the number of additional extension characters. Its
value must not exceed 4. This field must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is then CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to
hold the additional extension characters followed by the child characters.

CC
Child character, at bit n = 24 + (ACT * 8). The 5-character field CMPSCDICT_CE_CHILDCHAR is
provided to hold the additional extension characters followed by the child characters.

Character Entry CCT>1 (DSECT CMPSCDICT_CE)
 ┌───┬─────┬──┬─┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 │CCT│XXXXX│YY│D│ CINDEX │ {EC} │ CC │ CC │ ... │ ... │
 └───┴─────┴──┴─┴──────────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 8 1011 24 n n+8 63

CCT
A 3-bit field (CMPSCDICT_CE_CHILDCT) specifying the number of children. For this case, because
CCT>1, the range for CCT is 2 to 6 if D=0 or 2 to 5 if D=1. If this field plus the value of D is 6, it
indicates that, in addition to the maximum number of children for this entry (4 if D=1, 5 if D=0), there
is a sibling descriptor entry that describes additional children. The sibling descriptor entry is located
at dictionary entry CMPSCDICT_CE_FIRSTCHILDINDEX plus the value of CMPSCDICT_CE_CHILDCT.

XXXXX
A 5-bit field (CMPSCDICT_CE_EXCHILD) with a bit for each child in the entry. The field indicates
whether it is necessary to examine the character entry for the child character (looking either for
additional extension characters or more children). The bit is ignored if the child does not exist.

YY
A 2-bit field (CMPSCDICT_CE_EXSIB) providing examine-child bits for the 13th and 14th siblings
designated by the first sibling descriptor for children of this entry. The bit is ignored if the child does
not exist. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry.

D
A 1-bit field (CMPSCDICT_CE_ADDEXTCHAR) indicating whether there is an additional extension
character. Note that this is a subfield of CMPSCDICT_CE_AECCT. Do not set both this field and field
CMPSCDICT_CE_AECCT in a character entry. This bit must be 0 in an alphabet entry.

CINDEX
A 13-bit field (CMPSCDICT_CE_FIRSTCHILDINDEX) indicating the index of the first child. The index for
child n is CMPSCDICT_CE_FIRSTCHILDINDEX + n-1.

EC
An additional extension character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided
to hold the additional extension character followed by the child characters. There is no additional
extension character if D=0.

CC
Child character. The 5-character field CMPSCDICT_CE_CHILDCHAR is provided to hold the additional
extension characters followed by the child characters. The first child character is at bit n = 24 + (D *
8).

Alphabet Entries (DSECT CMPSCDICT_CE)
The alphabet entries have the same mappings as character entries but without the additional extension
characters. The character entries are “Compression Dictionary Entries” on page 168, “Character Entry

Chapter 8. Requesting Control Functions 169

CCT=0 (DSECT CMPSCDICT_CE)” on page 168, “Character Entry CCT=1 (DSECT CMPSCDICT_CE)” on page
168, and “Character Entry CCT>1 (DSECT CMPSCDICT_CE)” on page 169.

Format 1 Sibling Descriptor (DSECT CMPSCDICT_SD)
 ┌───┬─────────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 │SCT│YYYYYYYYYYYY │ SC │ {SC} │ ... │ ... │ ... │ ... │
 └───┴─────────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 4 16 24 32 40 48 56 63

SCT
A 4-bit field (CMPSCDICT_SD_SIBCT) specifying the number of sibling characters. The number of
sibling characters is limited to 14. If this field is 15, it indicates that there are 14 sibling characters
associated with this entry and that there is another sibling descriptor entry, which describes
additional children. That sibling descriptor entry is located at dictionary entry this-sibling-descriptor-
index + 15. If there are 1 to 6 sibling characters, they are contained in this entry, and the dictionary
entries for those characters are located at this-sibling-descriptor-index + n, where n is 1 to 6. If
there are 7 to 14 sibling characters, the first 6 are as described above, and characters 7 through
14 are located in the expansion dictionary entry. (See “Sibling Descriptor Extension Entry (DSECT
CMPSCDICT_SDE)” on page 171.) The index of the character entry is this-sibling-descriptor-index.
The number of sibling characters should not be 0.

YYYYYYYYYYYY
A 12-bit field (CMPSCDICT_SD_EXSIB), one for each sibling character, indicating whether to examine
the character entries for sibling characters 1 through 12. Recall that the examine-sibling indicator
for sibling characters 13 and 14 for the first sibling descriptor is in the character entry field
CMPSCDICT_CE_EXSIB. If this is not the first sibling descriptor for the child entry, then the character
entries for sibling characters 13 and 14 are examined irregardless. The bit is ignored if the sibling
does not exist.

SC
Sibling character. Sibling characters 8 through 14 are in the expansion dictionary. (See “Sibling
Descriptor Extension Entry (DSECT CMPSCDICT_SDE)” on page 171.) The 6-character field
(CMPSCDICT_SD_CHILDCHAR) is provided to contain the sibling characters. The index of the
character entry for sibling character n is this-sibling-descriptor-index + n-1.

Expansion Dictionary Entries
Expansion entries are mapped by DSECTs in macro CSRYCMPD.

Unpreceded Entry (DSECT CMPSCDICT_UE)
 ┌───┬────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 │000│ CSL│ EC │ {EC} │ ... │ ... │ ... │ ... │ ... │
 └───┴────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 5 8 16 24 32 40 48 56 63

CSL
A 3-bit field (CMPSCDICT_UE_COMPSYMLEN) indicating the number of characters contained in
CMPSCDICT_UE_CHARS. These characters will be placed at offset 0 in the expanded output. This
field should not have a value of 0.

EC
Expansion character. The 7-character field (CMPSCDICT_UE_CHARS) is provided to contain the
expansion characters.

Preceded Entry (DSECT CMPSCDICT_PE)
 ┌───┬─────────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 │PSL│ PrecIndex │ EC │ {EC} │ ... │ ... │ ... │ Offset │
 └───┴─────────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 16 24 32 40 48 56 63

170 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

PSL
A 3-bit field (CMPSCDICT_PE_PARTSYMLEN) indicating the number of characters contained
in CMPSCDICT_PE_CHARS. These characters will be placed at the offset indicated by
CMPSCDICT_PE_OFFSET in the expanded output. This field must not be 0, because 0 indicates an
unpreceded entry.

PrecIndex
A 13-bit field (CMPSCDICT_UE_PRECENTINDEX) indicating the index of the dictionary entry with
which processing is to continue.

EC
Expansion character. The 5-character field (CMPSCDICT_PE_CHARS) is provided to contain the
expansion characters.

Offset
A 1-byte field (CMPSCDICT_PE_OFFSET) indicating the offset in the expanded output for characters in
CMPSCDICT_PE_CHARS.

Sibling Descriptor Extension Entry (DSECT CMPSCDICT_SDE)
 ┌────────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 │ {SC} │ ... │ ... │ ... │ ... │ ... │ ... │ ... │
 └────────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 8 16 24 32 40 48 56 63

SC
Sibling character. The 8-character field (CMPSCDICT_SDE_CHARS) is provided to contain the sibling
characters. The nth sibling character in this entry is actually overall sibling character number 6 + n,
because the first 6 characters were contained in the corresponding sibling descriptor entry. The index
of the character entry for the nth character is this-sibling-descriptor-index + 6 + n-1.

Dictionary Restrictions
Set up the compression dictionary so that:

• The algorithm does not create a compression symbol that represents a string of more than 260
characters.

• No character entry has more than 260 total children, including all sibling descriptors for that character
entry.

• No character entry has a child count greater than 6.
• No character entry has more than 4 additional extension characters when there are 0 or 1 child

characters.
• No sibling descriptor indicates 0 sibling characters.

Set up the expansion dictionary so that:

• Expansion of a compression symbol does not use more than 127 dictionary entries.

Other Considerations
If the first child character matches, but its additional extension characters do not match and the next
child character is the same as the first, the system continues compression match processing to try to find
a compression symbol that contains that child character. If, however, the next child character is not the
same, compression processing uses the current compression symbol as the result. You can set up the
child characters for an entry to take advantage of this processing.

If a parent entry does not have the examine child bit (CMPSCDICT_CE_EXCHILD) on for a particular child
character, then the child character entry should not have any additional extension characters or children.
The system will not check the entry itself for additional extension characters or children.

If a parent or sibling descriptor entry does not have the examine sibling bit (CMPSCDICT_CE_EXSIB) on
for a particular sibling character, then the character entry for that sibling character should not to have

Chapter 8. Requesting Control Functions 171

any additional extension characters or children. The system will not check the entry itself for additional
extension characters or children.

Compression Dictionary Examples
In the following examples, most fields contain their hexadecimal values. However, for clarity, the
examine-child bit fields are displayed with their bit values.

Example 1
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C1

Alphabet entry for character A; 2 child characters B and C. The first child index is X'100'.
100

Entry for character B; no additional extension characters; no children.
101

Entry for character C; additional extension character 1; 2 child characters D and E. The first child index
is X'200'.

200
Entry for character D; 2 additional extension characters 1 and 2; no children.

201
Entry for character E; 4 additional extension characters 1, 2, 3, and 4; no children.

 Hexadecimal
 Entry
 ┌───┬─────┬──┬─┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 C1 │CCT│XXXXX│YY│D│ CINDEX │ CC │ CC │ │ │ │
 │ 2 │01000│00│0│ 100 │ 'B' │ 'C' │ │ │ │ ──┐
 └───┴─────┴──┴─┴──────────────┴────────┴────────┴────────┴────────┴────────┘ │
 0 3 8 1011 24 32 40 63 │
 │
 100 Child character B entry contents irrelevant; examine child bit is off. ─┘

 ┌───┬─────┬──┬─┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 101 │CCT│XXXXX│YY│D│ CINDEX │ EC │ CC │ CC │ │ │
 │ 2 │11000│00│1│ 200 │ '1' │ 'D' │ 'E' │ │ │ ──┐
 └───┴─────┴──┴─┴──────────────┴────────┴────────┴────────┴────────┴────────┘ │
 0 3 8 1011 24 32 40 63 │
 │
 ┌───┬─────┬────┬──────────────┬────────┬────────┬────────┬────────┬────────┐ ─┘
 200 │CCT│XXXXX│ACT │ │ EC │ EC │ │ │ │
 │ 0 │00000│ 2 │ │ '1' │ '2' │ ... │ ... │ │
 └───┴─────┴────┴──────────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 8 11 24 32 40 48 56 63

 ┌───┬─────┬────┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 201 │CCT│XXXXX│ACT │ │ EC │ EC │ EC │ EC │ │
 │ 0 │00000│ 4 │ │ '1' │ '2' │ '3' │ '4' │ │
 └───┴─────┴────┴──────────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 8 11 24 32 40 48 56 63

If the input string is AD, the output string will consist of 2 compression symbols: one for A and one
for D. When examining the dictionary entry for character A, the system determines that none of A's
children match the next input character, D, and returns the compression symbol for A. When examining
the dictionary entry for character D, the system determines that it has no children, and so returns the
compression symbol for D.

If the input string is AB, the output string will consist of 1 compression symbol for both input characters.
When examining the dictionary input for character A, the system determines that A's first child character
matches the next input character, B, and looks at entry X'100'. Because that entry has no additional
extension characters, a match is determined. Because there are no further input characters, the scan
concludes.

172 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If the input string is AC, the output string will consist of 2 compression symbols: one for A and one for
C. When examining the dictionary input for character A, the system determines that A's second child
character matches the next input character, C, and looks at entry X'101'. Because that entry has an
additional extension character, but the input string does not contain this character, no match is made, and
the output is the compression symbol for A. Processing character C results in the compression symbol for
C.

If the input string is AC1, the output string will consist of 1 compression symbol. When examining the
dictionary input for character A, the system determines that A's second child character matches the next
input character, C, and looks at entry X'101'. Because that entry has an additional extension character,
and the input string does contain this character, 1, a match is made, and the output is the compression
symbol for AC1.

Similarly, the set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
100

AB
101

AC1
200

AC1D12
201

AC1E1234

The compression symbol is the index of the dictionary entry. Based on this, you can see that the
expansion dictionary must result in the reverse processing; for example, if a compression symbol of
X'201' is found, the output must be the string AC1E1234. See “Expansion Dictionary Example” on page
175 for expansion dictionary processing.

Example 2 for More than 5 Children
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C2

Alphabet entry for character B; child count of 6 (indicating 5 children plus a sibling descriptor); first
child index is X'400', children are 1, 2, 3, 4, and 5.

400
Entry for character 1; no additional extension characters; no children.

401-404
Entries for characters 2 through 5; no additional extension characters; no children.

405
Sibling descriptor; child count of 15, which indicates 14 children plus another sibling descriptor;
sibling characters A, B, C, D, E, and F.

405
Sibling descriptor extension. In the expansion dictionary entry X'405', the sibling characters are G, H,
I, J, K, L, M, and N.

406
Entry for character A; no additional extension characters; no children.

407-413
Entries for characters B through N; no additional extension characters; no children.

414
Next sibling descriptor; child count of 2; child characters O and P.

Chapter 8. Requesting Control Functions 173

415
Entry for character O; no additional extension characters; no children.

416
Entry for character P; no additional extension characters; no children.

 Hexadecimal
 Entry
 ┌───┬─────┬──┬─┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 C2 │CCT│XXXXX│YY│D│ CINDEX │ CC │ CC │ CC │ CC │ CC │
 │ 6 │00000│00│0│ 400 │ '1' │ '2' │ '3' │ '4' │ '5' │ ──┐
 └───┴─────┴──┴─┴──────────────┴────────┴────────┴────────┴────────┴────────┘ │
 0 3 8 1011 24 32 40 63 │
 │
 400 Child character 1 entry contents irrelevant; examine child bit is off. ┘
 401 Child character 2 entry contents irrelevant; examine child bit is off.
 402 Child character 3 entry contents irrelevant; examine child bit is off.
 403 Child character 4 entry contents irrelevant; examine child bit is off.
 404 Child character 5 entry contents irrelevant; examine child bit is off.

 ┌────┬───────────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 405 │SCT │ YYYYYYYYYYYY │ SC │ SC │ SC │ SC │ SC │ SC │
 │ 15 │ 111111111111 │ 'A' │ 'B' │ 'C' │ 'D' │ 'E' │ 'F' │
 └────┴───────────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 4 16 24 32 40 48 56 63

 ┌─────────┬──────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 405E │ SC │ SC │ SC │ SC │ SC │ SC │ SC │ SC │
 │ 'G' │ 'H' │ 'I' │ 'J' │ 'K' │ 'L' │ 'M' │ 'N' │
 └─────────┴──────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 4 8 16 24 32 40 48 56 63

 406 Child character A entry contents irrelevant; examine child bit is off.
 407 Child character B entry contents irrelevant; examine child bit is off.
 408 Child character C entry contents irrelevant; examine child bit is off.
 409 Child character D entry contents irrelevant; examine child bit is off.
 40A Child character E entry contents irrelevant; examine child bit is off.
 40B Child character F entry contents irrelevant; examine child bit is off.
 40C Child character G entry contents irrelevant; examine child bit is off.
 40D Child character H entry contents irrelevant; examine child bit is off.
 40E Child character I entry contents irrelevant; examine child bit is off.
 40F Child character J entry contents irrelevant; examine child bit is off.
 410 Child character K entry contents irrelevant; examine child bit is off.
 411 Child character L entry contents irrelevant; examine child bit is off.
 412 Child character M entry contents irrelevant; examine child bit is off.
 413 Child character N entry contents irrelevant; examine child bit is off.

 ┌────┬───────────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 414 │SCT │ YYYYYYYYYYYY │ SC │ SC │ │ │ │ │
 │ 2 │ 000000000000 │ 'O' │ 'P' │ │ │ │ │
 └────┴───────────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 4 16 24 32 40 48 56 63

 415 Child character O entry contents irrelevant; examine child bit is off.
 416 Child character P entry contents irrelevant; examine child bit is off.

The set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
400-404

B1, B2, B3, B4, B5
406-40B

BA, BB, BC, BD, BE, BF
40C-413

BG, BH, BI, BJ, BK, BL, BM, BN
415-416

BO, BP

There are no compression symbols for 405 and 414. These are the sibling descriptor entries. Because
their sibling descriptor extensions are located at those indices in the expansion dictionary (not the
preceded or unpreceded entries required for expansion), it is important that no compression symbol have
that value.

174 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Example 3 for Children with the Same Value
Suppose the dictionary looks like the following:
Hexadecimal Entry

Description
C3

Alphabet entry for character C; child count of 4. The first child index is X'600' and the child characters
are 1, 1, 1, and 2.

600
Entry for character 1; 4 additional extension characters A, B, C, and D; no children.

601
Entry for character 1; 3 additional extension characters A, B, and C; no children.

602
Entry for character 1; 2 additional extension characters A and B; no children.

603
Entry for character 2; no additional extension characters; no children.

 Hexadecimal
 Entry
 ┌───┬─────┬──┬─┬──────────────┬────────┬────────┬────────┬────────┬────────┐
 C3 │CCT│XXXXX│YY│D│ CINDEX │ CC │ CC │ CC │ CC │ │
 │ 4 │00000│00│0│ 600 │ '1' │ '1' │ '1' │ '2' │ │ ──┐
 └───┴─────┴──┴─┴──────────────┴────────┴────────┴────────┴────────┴────────┘ │
 0 3 8 1011 24 32 40 63 │
 │
 600 Child character 1 entry contents irrelevant; examine child bit is off. ┘
 601 Second child character 1 entry contents irrelevant; examine child bit is off.
 602 Third child character 1 entry contents irrelevant; examine child bit is off.
 603 Child character 2 entry contents irrelevant; examine child bit is off.

The set of input strings longer than one character compressed by this dictionary are:
Hexadecimal Symbol

String
600

C1ABCD
601

C1ABC
602

C1AB
603

C2

By taking advantage of the special processing when the second and subsequent child characters match
the first, you can reduce the number of dictionary entries searched to determine the compression
symbols. For example, to find that X'601' is the compression symbol for the characters C1ABC, the
processing examines entry X'C3', then entry X'600' then entry X'601' Entry X'600' does not match
because the input string does not have all 4 extension characters. There are alternate ways of setting
up the dictionary to compress the same set of input strings handled by this dictionary.

Expansion Dictionary Example

Example
Suppose the expansion dictionary looks like the following:
Hexadecimal Entry

Description

Chapter 8. Requesting Control Functions 175

C1
Alphabet entry for character A. This by definition is an unpreceded entry.

101
A preceded entry, with characters C and 1; with preceding entry index of X'C1'; offset of 1.

201
A preceded entry, with characters E, 1, 2, 3, and 4; with preceding entry index of X'101'; offset of 3.

 Hexadecimal
 Entry
 ┌───┬────┬────────┬────────┬────────┬────────┬────────┬────────┬────────┐
 C1 │000│ CSL│ EC │ {EC} │ ... │ ... │ ... │ ... │ ... │
 │000│ 0 │ │ │ │ │ │ │ │
 └───┴────┴────────┴────────┴────────┴────────┴────────┴────────┴────────┘ ─┐
 0 5 8 16 24 32 40 48 56 63 │
 │
 ┌───┬─────────────┬────────┬────────┬────────┬────────┬────────┬────────┐ ──┘
 101 │PSL│ PrecIndex │ EC │ EC │ │ │ │ Offset │
 │ 2 │ C1 │ 'C' │ '1' │ │ │ │ 1 │
 └───┴─────────────┴────────┴────────┴────────┴────────┴────────┴────────┘ ─┐
 0 3 16 24 32 40 48 56 63 │
 │
 ┌───┬─────────────┬────────┬────────┬────────┬────────┬────────┬────────┐ ──┘
 201 │PSL│ PrecIndex │ EC │ EC │ EC │ EC │ EC │ Offset │
 │ 5 │ 101 │ 'E' │ '1' │ '2' │ '3' │ '4' │ 3 │
 └───┴─────────────┴────────┴────────┴────────┴────────┴────────┴────────┘
 0 3 16 24 32 40 48 56 63

When processing an input compression symbol of X'201':

• Characters E1234 are placed at offset 3, and processing continues with entry X'101'.
• Characters C1 are placed at offset 1, and processing continues with entry X'C1'.
• Character A is placed at offset 0.

The expansion results in the 8 characters A, C, 1, E, 1, 2, 3, and 4 placed in the output string.

Building the CSRYCMPS Area
The CSRYCMPS area is mapped by the CSRYCMPS mapping macro and is specified in the CBLOCK
parameter of the CSRCMPSC macro. The area consists of 7 words that should begin on a word boundary.
Unused bits in the first word must be set to 0.

• Set 4-bit field CMPSC_SYMSIZE in byte CMPSC_FLAGS_BYTE2 to a number from 1 to 5 to indicate both
the number of entries in the dictionary and the size of a compressed symbol.

• If expanding, turn on bit CMPSC_EXPAND in byte CMPSC_FLAGS_BYTE2. Otherwise, make sure that the
bit is off.

• Set field CMPSC_DICTADDR to the address of the necessary dictionary. If compressing, this should
be the compression dictionary, which must be immediately followed by the expansion dictionary. If
expanding, this should be the expansion dictionary. In either case, the dictionary must begin on a page
boundary, as the low order 12 bits of the address are assumed to be 0 when determining the address of
the dictionary.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the necessary dictionary. Note that
the input area is also accessed using this ALET. If not in AR mode, make sure that the field contains 0.

• In most cases, make sure that 3-bit field CMPSC_BITNUM in byte CMPSC_DICTADDR_BYTE3 is zero.
This field has the following meaning:

– If compressing, place the first compression symbol at this bit in the leftmost byte of the target
operand. Normally this field should be set to 0 for the start of compression.

– If expanding, expand beginning with the compression symbol that begins with this bit in the leftmost
byte of the source operand. Normally this field should be set to the value used for the start of
compression.

• Set word CMPSC_TARGETADDR to the address of the output area. For compression, the output area
contains the compressed data; for expansion, it contains the expanded data.

176 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If running in AR mode, set field CMPSC_TARGETALET to the ALET of the output area. If not in AR mode,
make sure that the field contains 0.

• Set word CMPSC_TARGETLEN to the length of the output area.
• Set word CMPSC_SOURCEADDR to the address of the input area. For compression, the input area

contains the data to be compressed; for expansion, it contains the compressed data.

If running in AR mode, set field CMPSC_SOURCEALET to the ALET of the input area. Note that the
dictionary will also be accessed using this ALET. If not in AR mode, make sure that the field contains 0.

• Set word CMPSC_SOURCELEN to the length of the input area. For expansion, the length should be
the difference between CMPSC_TARGETLEN at the completion of compression and CMPSC_TARGETLEN
at the start of compression, increased by 1 if field CMPSC_BITNUM was nonzero upon completion of
compression.

• Set word CMPSC_WORKAREAADDR to the address of a 192-byte work area for use by the CSRCMPSC
macro. The work area should begin on a doubleword boundary. This area does not need to be provided
and the field does not have to be set if your code has verified that the hardware CMPSC instruction is
present. The program can do the verification by checking that bit CVTCMPSH in mapping macro CVT is
on.

When the CSRCMPSC service returns, it has updated the input CSRYCMPS area as follows:

• CMPSC_FLAGS is unchanged.
• CMPSC_DICTADDR is unchanged, but bits CMPSC_BITNUM in field CMPSC_DICTADDR_BYTE3 are set

according to the last-processed compression symbol.
• CMPSC_TARGETADDR is increased by the number of output bytes processed.
• CMPSC_TARGETLEN is decreased by the number of output bytes processed.
• CMPSC_SOURCEADDR is increased by the number of input bytes processed.
• CMPSC_SOURCELEN is decreased by the number of input bytes processed.
• CMPSC_WORKAREA is unchanged.

The target/source address and length fields are updated analogously to the corresponding operands
of the MVCL instruction, so that you can tell upon completion of the operation how much data was
processed and where you might want to resume if you wanted to continue the operation.

Suppose that you had compressed a large area but wanted to expand it back into a small area of 80-byte
records. You might do the expansion as follows:

 LA 2,MYCBLOCK
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_1
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND
 L 3,EDICTADDR Address of expansion dictionary
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set work area address
MORE DS 0H Label to continue
*
* Your code to allocate an 80-byte output area would go here
*
 ST x,CMPSC_TARGETADDR Save target expansion area
 LA 3,80 Set its length
 ST 3,CMPSC_TARGETLEN Set expansion length
 CSRCMPSC CBLOCK=CMPSC Expand
 C 15,=AL4(CMPSC_RETCODE_TARGET) Not done, target used up
 BE MORE Continue with operation
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area

Chapter 8. Requesting Control Functions 177

EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS , Get mapping and equates

Note that this code loops while the operation is not complete, allocating a new 80-byte output record.
It does not have to update the CMPSC_BITNUM, CMPSC_SOURCEADDR, or CMPSC_SOURCELEN fields,
because the service sets them up for continuation of the original operation.

If running in AR mode, the example would also have set the CMPSC_TARGETALET and
CMPSC_SOURCEALET fields. The XC instruction zeroed those fields as needed when running in primary
ASC mode.

Determining if the CSRCMPSC Macro Can Be Issued on a System
Do the following to tell if the system contains the software or hardware to run a CSRCMPSC macro:

1. Determine if CSRCMPSC is available, by running the following:

 L 15,16 Get CVT address
 USING CVT,15 Set up addressability to the CVT
 TM CVTFLAG2,CVTCMPSC Is CSRCMPSC available?
 BZ NO_CSRCMPSC Branch if not available
* Compression feature is available
 .
 .
NO_CSRCMPSC DS 0H

2. Determine if the CMPSC hardware instruction is available, by running the following:

 L 15,16 Get CVT address
 USING CVT,15 Set up addressability to the CVT
 TM CVTFLAG2,CVTCMPSH Is CMPSC hardware available?
 BZ NO_CMPSC_HARDWARE Branch if not available
* CMPSC hardware is available
 .
 .
NO_CMPSC_HARDWARE DS 0H

Compression/Expansion Examples

Example 1

Operation
Compress a data area. Note that the expansion dictionary must immediately follow the compression
dictionary, and both must be aligned on page boundaries.

 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
* Symbol size is 5+8. Dictionary has
* 2**(5+8) entries
 L 3,DICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,COMPADDR
 ST 3,CMPSC_TARGETADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_TARGETLEN Set compression length
 L 3,EXPADDR
 ST 3,CMPSC_SOURCEADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_SOURCELEN Set expansion length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set work area address
 CSRCMPSC CBLOCK=CMPSC

178 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK parameter
COMPADDR DS A Output compression area
COMPLEN DS F Length of compression area
EXPADDR DS A Input expansion area
EXPLEN DS F Length of expansion area
DICTADDR DS A Address of compression dictionary
 DS 0D Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS ,

Example 2

Operation
Expand a data area. Note that the expansion dictionary must be aligned on a page boundary.

 LA 2,MYCBLOCK Get address of parm
 USING CMPSC,2
 XC CMPSC(CMPSC_LEN),CMPSC Clear block
 OI CMPSC_FLAGS_BYTE2,CMPSC_SYMSIZE_5 Set size
* Symbol size is 5+8. Dictionary has
* 2**(5+8) entries
 OI CMPSC_FLAGS_BYTE2,CMPSC_EXPAND Do expansion
 L 3,EDICTADDR
 ST 3,CMPSC_DICTADDR Set dictionary address
 L 3,EXPADDR
 ST 3,CMPSC_TARGETADDR Set expansion area
 L 3,EXPLEN
 ST 3,CMPSC_TARGETLEN Set expansion length
 L 3,COMPADDR
 ST 3,CMPSC_SOURCEADDR Set compression area
 L 3,COMPLEN
 ST 3,CMPSC_SOURCELEN Set compression length
 LA 3,WORKAREA
 ST 3,CMPSC_WORKAREAADDR Set work area address
 CSRCMPSC CBLOCK=CMPSC
 DROP 2
 .
 .
 DS 0F Align parameter on word boundary
MYCBLOCK DS (CMPSC_LEN)CL1 CBLOCK Parameter
EXPADDR DS A Output expansion area
EXPLEN DS F Length of expansion area
COMPADDR DS A Input compression area
COMPLEN DS F Length of compression area
EDICTADDR DS A Address of expansion dictionary
 DS 0D Doubleword align work area
WORKAREA DS CL192 Work area
 CSRYCMPS ,

Example 3

Operation.
When using register notation in the CBLOCK parameter, the program must place both the address and
ALET into a GPR/AR pair. This is true whether you are running in AR or primary ASC mode.

 .
 .
 LAE 2,MYCBLOCK Set address *and* ALET
 CSRCMPSC CBLOCK=(2) Issue operation
 .
 .

Chapter 8. Requesting Control Functions 179

180 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Appendix A. Assemble and Link-Edit Programs Using
IOCS

You may assemble your declarative (DTFxx) macros, and any logic modules which you code yourself, in
one of the ways as summarized below.

• With your main program.

If you assemble your DTFxx macros and logic modules with the main program, the linkage editor
searches the input stream and resolves the symbolic linkages between the DTF tables and modules.

• Separately for later link-editing with the main program.

This requires that you specify the operand SEPASMB=YES in the DTFxx macro or xxMOD macro which
is to be assembled separately. For the DTFxx macro, there are some symbolic linkages which you must
define in your program in the form of EXTRN and ENTRY symbols.

The SEPASMB=YES operand in a DTFxx macro causes:

1. A CATALOG command with the specified file name to be punched out ahead of the object deck.
2. This name to be defined as an ENTRY point in the assembled module.

In an xxMOD macro, this operand causes a similar action: a CATALOG command with the module name
to be punched out ahead of the object deck and this module name to be defined as an ENTRY point in
the module.

In either case, a START card must not be used.

This appendix discusses how you can make good use of separately assembled and cataloged DTFxx and
xxMOD macros. It shows and discusses an IOCS sample program.

Cataloging Assembled DTFxx and xxMOD Macros
Much coding effort is saved if reusable DTFxx and xxMOD macros are cataloged in a sublibrary after they
have been assembled. To use a cataloged DTFxx macro, use its name in all references your program
makes to that file definition. If you name an xxMOD yourself (instead of letting IOCS do it), make sure that
you refer to precisely that module in the related DTFxx macro. The linkage editor can perform an autolink
only if there is a match of the module name specified in the DTFxx macro and the name of the module
itself.

If a standard set of logic modules was generated when your VSE system was installed, auto-linking
suitable modules to assembled DTFxx macros presents no problem. This is particularly true if both the
modules and the DTF-block references use standard module names.

Assembling and Cataloging IOCS Modules
This requirement varies from installation to installation and depends on the kind of application programs
used. It may arise if your migration to a new release involves also the installation of a new I/O device
other than disk or tape.

Perform this step only if the release you get:

1. Includes the support of a new unit-record device (a printer or optical mark reader, for example).
2. Your system's configuration includes this new device.
3. Your system does not include a compatible I/O module.

IBM supplies IOCS (Input/Output Control System) modules needed by the z/VSE supported compilers.
Since these modules may be linked also to user-written programs, there may be no need for you to

IOCS Modules

© Copyright IBM Corp. 1990, 2015 181

catalog IOCS modules of your own. For a list of IOCS modules shipped with z/VSE, see the Program
Directory.

Figure 63 on page 182 shows a job stream example for assembling and cataloging IOCS modules for the
IBM 3525 punch device.

* $$ JOB JNM=IOMOD,DISP=D,PRI=8, C
* $$ NTFY=YES, C
* $$ LDEST=*, C
* $$ CLASS=0
// JOB IOMOD
* **********************
* *
* * THIS JOB CATALOGS I/O MOD TO IJSYSRS.SYSLIB
* *
* **********************
// LIBDEF *,SEARCH=(PRD1.MACLIB,PRD2.GEN1)
* $$ PUN MEM=IOMOD.CATAL,S=IJSYSRS.SYSLIB,PUN=FED,REPLACE=YES
// OPTION DECK
// EXEC ASMA90,PARM='SIZE(MAX,ABOVE)'
 PRINT NOGEN
 CDMOD CTLCHR=ASA,IOAREA2=YES,DEVICE=3525,TYPEFLE=OUTPUT, C
 SEPASMB=YES
 END
/*
* $$ PUN PUN=FED
// EXEC LIBR,PARM='MSHP'
AC S=IJSYSRS.SYSLIB
* $$ SLI MEM=IOMOD.CATAL,S=IJSYSRS.SYSLIB
/*
/&
* $$ EOJ

Figure 63. Job Stream for Assembling and Cataloging IOCS Modules

Note: The statement

// EXEC ASMA90,PARM='SIZE(MAX,ABOVE)'

calls the High Level Assembler. Refer to the topic that describes "Migrating From Earlier Releases" in
z/VSE Planning, for details about calling the High Level Assembler.

IOCS Sample Program
The program used as an example and described in this section performs a card-to-disk operation with the
following equipment and options:

• Card reader (SYS004).
• Disk (with user labels supplied).
• Record size: 80 bytes.
• Block size: 408 bytes – five logical records and an eight-byte count field per block.
• One I/O area and work area for the card reader.
• Two I/O areas for the disk.

The following methods can be used to provide the DTF blocks and logic modules for the program:

1. DTFxx macros, IOCS logic modules, and your program assembled together.
2. Logic modules assembled separately.
3. DTFxx macros and logic modules assembled separately.

You can do this with the I/O areas defined with the DTFxx macros or within your main program. You
can code your exit routines for the processing of labels or for error handling as part of the DTFxx
macros or as part of the main program.

Figure 64 on page 183, a skeleton sample program, shows how the source code is to be submitted for
separate assembly.

IOCS Modules

182 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf

After having assembled and link-edited the program, it relates to the DTF tables and logic modules as
shown in Figure 65 on page 184. The disk logic module is a phase supplied by IBM residing in the shared
virtual area.

The examples are followed by a comparison of the three methods mentioned above.

 Column 72
CDTODISK START 0
 BALR 12,0 INITIALIZE BASE REGISTER
 USING *,12 ESTABLISH ADDRESSABILITY
 LA 13,SAVEAREA USE REGISTER 13 AS A POINTER TO
* THE SAVE AREA
 OPEN CARDS,DISK OPEN BOTH FILES
NEXT GET CARDS,(2) READ ONE CARD AND HAVE IT MOVED
* TO THE DISK OUTPUT BUFFER
*
 PUT DISK INCREMENT REGISTER 2 TO NEXT RE-
* CORD LOCATION IN THE DISK BUFFER
 B NEXT RETURN FOR NEXT CARD
SAVEAREA DS 9D 72-BYTE SAVE AREA, DOUBLEWORD
* ALIGNED
EOFCD CLOSE CARDS,DISK ON EOF OF THE CARD FILE, CLOSE
 EOJ BOTH FILES AND EXIT TO JOB CONTROL
MYLABELS EQU * YOUR LABEL-PROCESSING ROUTINE
 ...
 ... The user-written label-processing routine
 ...
 LBRET 2 RETURN TO MAIN PROGRAM
* DEFINITION FOR THE CARD FILE
CARDS DTFCD DEVADDR=SYS004, X
 EOFADDR=EOFCD, X
 IOAREA1=A1, X
 WORKA=YES
DISK DTFSD BLKSIZE=408, X
 IOAREA1=A2, X
 IOAREA2=A3, X
 IOREG=(2), X
 LABADDR=MYLABELS, X
 RECFORM=FIXBLK, X
 RECSIZE=80, X
 TYPEFLE=OUTPUT
A1 DS 80C CARD-INPUT BUFFER
A2 DS 408C FIRST DISK BUFFER
A3 DS 408C SECOND DISK BUFFER
 CDMOD DEVICE=2540, CARD I/O LOGIC MODULE X
 TYPEFLE=INPUT, X
 WORKA=YES
 END CDTODISK PROGRAM-START ADDRESS

Figure 64. IOCS Sample Program - Source Code for Common Assembly

IOCS Modules

Appendix A. Assemble and Link-Edit Programs Using IOCS 183

┌────────────────────── Program Area of Partition ──────────────────────┐

 ┌───────→┌──────────────────────────┐
 │ │ CDMOD │
 │ │ Logic Module (for cards) │
 ... │ └──────────────────────────┘
 OPEN CARDS,DISK ──┐ │ ┌────→┌──────────────────────────┐
 ... ──┬── │ │ │ │ EOFCD │
 ┌───────────────┘ │ │ │ │ End-of-Cards Routine │
 ↓ ... │ ↑ │ │ (user-written) │
 CARDS DTFCD ↓ │ │ └──────────────────────────┘
 DEVADDR=SYS004 │ │ │ ┌─→┌──────────────────────────┐
 EOFADDR=EOFCD ─────│───│──┘ │ │ A1 │
 IOAREA=A1 ─────────│───┼─────┘ │ I/O Buffer Area │
 WORKA=YES │ │ └──────────────────────────┘
 │ │
 : Pointer :──────────│───┘ ┌────→┌──────────────────────────┐
 │ │ │ A2 │
 ┌──────────────────────────┘ │ │ I/O Buffer Area │
 ↓ ... │ └──────────────────────────┘
 DISK DTFSD │ ┌─→┌──────────────────────────┐
 BLKSIZE=408 │ │ │ A3 │
 IOAREA1=A2 ───────────────┘ │ │ I/O Buffer Area │
 IOAREA2=A3 ──────────────────┘ └──────────────────────────┘
 IOREG=(2)
 LABADDR=MYLABLES ──────────────→┌──────────────────────────┐
 │ MYLABELS │
 : Channel Program in : │ Label-Processing Routine │
 : DTF block (not used) : │ (user-written) │
 :......................: └──────────────────────────┘
 : Pointers :
 : To Channel Program ───┐
 : To Logic Module ──┐ : │
 │.. │
 ------------------- Start of Partition GETVIS Area ------------------
 │ │
 │ ↓
 │ ┌──────────────────────────────┐
 │ │ DTF Extension │
 │ │............................ │
 ↓ │ Pointer to Channel Program ──┼──┐
 │ └──────────────────────────────┘ │
 │ ┌────────────────────────────────┘
 │ ↓
 │ ┌──────────────────────────────┐
 │ │ Channel Program │
 │ └──────────────────────────────┘
└───────────────────────── End of Partition ────────────────────────────┘
 │
┌──────────────────────── Shared Virtual Area ──────────────────────────┐
 │
 └─→┌──────────────────────────────┐
 │ Logic Module for Sequential │
 │ Processing of a Disk File │
 │ (loaded on system startup) │
 └──────────────────────────────┘

Figure 65. Program, DTF Tables, and Logic Modules in Storage

Assemble the DTFs and Logic Modules Separately
Some minor modifications to the program are necessary as shown in Figure 66 on page 185.

IOCS Modules

184 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The Main Program

 CDTODISK START 0
 BALR 12,0
 USING *,12
 LA 13,SAVEAREA
 OPEN CARDS,DISK
 NEXT GET CARDS,(2)
 PUT DISK
 B NEXT
 SAVEAREA DS 9D
(1) EXTRN CARDS,DISK
 END CDTODISK

The Card-File-Definition Macro (DTFCD)

 Column 72
 CARDS DTFCD X
 DEVADDR=SYS004, X
 SEPASMB=YES, X
 EOFADDR=EOFCD, X
 IOAREA1=A1, X
 WORKA=YES
 USING *,14
 EOFCD CLOSE CARDS,DISK
 EOJ
(1) EXTRN DISK
 A1 DS 80C
 END

(1)

If the main program is assembled separately from the DTFxx
macros, the assembler cannot resolve the references to CARDS
and DISK. Therefore, these names must be defined as external
symbols.

The Disk File Definition Macro (DTFSD)

 Column 72
 DISK DTFSD BLKSIZE=408, X
 SEPASMB=YES, X
 IOAREA1=A2, X
 IOAREA2=A3, X
 IOREG=(2), X
 LABADDR=MYLABELS, X
 RECFORM=FIXBLK, X
 RECSIZE=80, X
 DEVICE=3350, X
 TYPEFLE=OUTPUT
 MYLABELS BALR 10,0
 USING *,10
 ...
 LBRET 2
 A2 DS 408C
 A3 DS 408C
 END

The Logic-Module Generation Macro (CDMOD)

 CDMOD DEVICE=2540, X
 TYPEFLE=INPUT, X
 WORKA=YES X
 SEPASMB=YES
 END

Figure 66. Source Code Modifications for a Separate Assembly

After the assembly of these source decks, each DTFxx macro and also the logic module for card I/O is
preceded by the CATALOG command. This command is needed to catalog the macros and the module as

IOCS Modules

Appendix A. Assemble and Link-Edit Programs Using IOCS 185

library members of type OBJ. To run the entire program, all modules must be processed by the linkage
editor. After the link-edit run, your program relates to the DTF tables and logic modules in the same way
as shown in Figure 65 on page 184.

As mentioned earlier, you must do some minor modifications to your source code. The kind of
modifications to be done is discussed with reference to Figure 66 on page 185.

1. In the assemblies of the DTFCD and DTFSD macros, a USING statement was added because certain
routines were separated from the main program and moved into the DTF assembly.

When a routine (such as error or label-processing) is separated from the main program, addressability
must be ensured for the routine. You can provide this addressability by assigning and initializing a base
register. Only for an end-of-file (EOF) routine is the addressability established by IOCS (by loading an
address into register 14).

2. Any reference to a name that is not included in the code submitted to the assembler must be defined
as an external symbol by way of an EXTRN assembler statement. In this example, the following names
must be defined as external:

• In the main program – The names of the separately assembled DTFxx macros: CARDS and DISK.
• In the DTFCD macro – The name of the separately assembled DTFSD macro: DISK.
• In the DTFSD macro – None.

The object decks can be cataloged into a sublibrary. The job shown below catalogs them into the
sublibrary that you defined as the TO sublibrary in a job control LIBDEF statement.

 // JOB CATLIB
 // EXEC LIBR
 ACCESS libname.sublibname
 ... (DTFCD Assembly)
 ... (DTFSD Assembly)
 ... (CDMOD Assembly)
 /*
 /&

For libname.sublibname, supply the name of the sublibrary (qualified by the name of its library) into
which the object decks are to be cataloged.

Alternatively, the object decks from these assemblies (DTF tables and logic modules) can be submitted to
the linkage editor along with the object deck of the main program. The job for this is:

 // JOB CATALOG
 // LIBDEF CATALOG=libname.sublibname
 // OPTION CATAL
 INCLUDE
 PHASE name,*
 ... (object deck, main program)
 ... (object deck, DTFCD assembly)
 ... (object deck, DTFSD assembly)
 ... (object deck, CDMOD assembly)
 /*
 // EXEC LNKEDT
 /&

For more information about the required control statements, see z/VSE System Control Statements.

Comparison of the Three Possible Methods

Assemble the Program, DTFxx Macros, and Logic Modules Together
It requires the most assembly time and the least link-edit time. Because the linkage editor is substantially
faster than the assembler, this method of frequent reassembly of a program takes more total time for
program preparation than the other methods.

IOCS Modules

186 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Assemble the Logic Modules Separately
This method separates the IOCS logic modules from the remainder of the program. Because these
modules are generalized, they can serve several different applications. They are normally retained in
a sublibrary for ease of access and program service. Consider the following to improve overall system
availability:

1. Identify the IOCS logic modules that your application programs may need.
2. Generate these modules and catalog them in a sublibrary that is accessible from all partitions. Each of

these modules requires an assembly and a catalog operation. However, the assemblies can be batched
together as can be the catalog jobs.

Object programs produced by COBOL, PL/I, and RPG require one or more IOCS logic modules in each
executable program. These modules are usually assembled (and linked into a sublibrary) during system
installation.

Assemble the DTFxx Macros and Logic Modules Separately
This method enables you to create a standardized IOCS package separated almost totally from a main
program. Only the imperative IOCS macros (such as OPEN, CLOSE, GET, and PUT) remain. All file
definitions, label processing and other IOCS exits, and possibly also the buffer areas are preassembled.

If there are few IOCS changes in an application, compared to other changes, this method significantly
reduces the time needed for program development and program service. The method also helps to
standardize file descriptions so that they can be shared among several different applications. It reduces
the chance of one program creating a file that is improperly accessed by subsequent programs.

When using this method, you need be concerned only with the record format and the general register
pointing to a record. You can virtually ignore operands such as BLKSIZE and LABADDR in your program,
although you must ultimately consider their effect on virtual storage, job control statements, and so on.

If you build output records in an I/O area, you might want to define this area in your main program
rather than with the associated DTFxx macro. Likewise, the label-processing and other exit functions can
be moved into the main program. If an exit function is to be standard across all of your applications,
assemble it together with the associated DTFxx macro. If each application requires a special exit function,
assemble it into the main program.

IOCS Modules

Appendix A. Assemble and Link-Edit Programs Using IOCS 187

IOCS Modules

188 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Appendix B. Direct Access Method (DAM)

DAM, a flexible access method, is available for use with CKD and ECKD disk devices.

With this access method, you can process the records of a file in random order. The records may be read,
written, updated or replaced.

DAM supports unblocked records of any format that is supported by VSE. When record spanning is used,
the segmentation of the logical records and their reassembly is performed by DAM routines whenever
necessary.

DAM uses one I/O area for a file. To determine the size of this area, take the following into account:

• The length of the data area
• Your program's use of the count and key areas
• The control information

To process records in random order, your program must make the address of the record available to DAM
and issue a READ or WRITE macro to have DAM transfer the record.

A file to be read or written must be defined with the DTFDA macro. A logic module for the file need
not be coded. To understand the purpose of some of the operands of the DTFDA macro, you may need
information about how DAM makes use of these operands.

Defining the File
This section discusses the things you should consider when you code the DTFDA macro defining your file.

Record Types
Records to be processed by DAM can be stored on disk in either of the formats shown below:

Format with key area:
 ┌──────────┬────────┬────────────┐
 │ Count │ Key │ Data │
 └──────────┴────────┴────────────┘

Format without key area:
 ┌──────────┬────────────┐
 │ Count │ Data │
 └──────────┴────────────┘

If your program processes spanned records, this format applies only to the first segment of each record.

If the records of a file have keys that are to be processed, every record must have a key and all keys must
have the same length. If you do not specify the KEYLEN operand in your DTFDA macro, then:

• DAM ignores keys, if present.
• You cannot use a formatting WRITE macro (WRITE AFTER) to extend the file.
• For a WRITE ID or a READ ID, DAM writes or reads only the data portion of the record.

DAM considers all records as unblocked. Provide for blocking and deblocking in your program, if blocking
of records on disk is desirable.

The records of your file can be of fixed or variable length, or they can be undefined. The type of records in
the file must be specified in the RECFORM operand of your DTFDA macro.

A spanned record format indicates blocks of variable length, where the size of each segment is a function
of the track size and record size. The record size is set by a WRITE AFTER macro. All the variable record
segments of a given spanned record are logically contiguous.

To write records that are specified as undefined, your program must, for each record:

© Copyright IBM Corp. 1990, 2015 189

1. Determine the length of the record.
2. Load this length into the register specified by the RECSIZE operand of the DTFDA macro.
3. Issue a WRITE macro to have DAM write the record.

I/O Area Specification
The DTFDA IOAREA1 operand defines an area of virtual storage into which records are read on input or in
which records are built on output. The length of this area is specified in the BLKSIZE operand.

The format of the I/O area depends on your specifications in the DTFDA macro. The section I/O Area for a
DAM File with Fixed Unblocked and Undefined Records shows:

• which operands of the DTFDA macro affect the format of the area when the records of your file are of
fixed length and unblocked

• which operands of the DTFDA macro affect the format of the area when the records of your file are of an
undefined format

• the format of the area for unblocked records of variable-length
• the format of the area for unblocked spanned records

Use these illustrations to determine the length of the I/O area for your file. The area must be large enough
to include an eight-byte count field, if necessary. The count itself is provided by DAM.

I/O Area for a DAM File with Fixed Unblocked and Undefined Records
E =

Either or both of the two operands so marked.
O =

Optionally with the operand.
X =

Specified to meet your requirements
┌───┐
│ ─────────────── Operand of DTFDA ─────────────── │
│ Format of │
│ AFTER KEYLEN READID WRITEID READKEY WRITEKY I/O Area │
│ ───── ────── ────── ─────── ─────── ─────── ───────── │
│ X X O O O O Format A │
│ │
│ X O O Format B │
│ │
│ X E E O O Format C │
│ │
│ X E E Format D │
│ │
│ E E Format D │
└───┘

Format A: ┌───────────┬────────────┬──────────────────────────┐
 │ Count │ Key │ Data │
 └───────────┴────────────┴──────────────────────────┘
 Length: ← 8 Bytes → ← KEYLEN=n → ← Largest Record →

 |←────────────────── BLKSIZE=n ────────────────────→|

Format B: ┌───────────┬──────────────────────────┐
 │ Count │ Data │
 └───────────┴──────────────────────────┘
 Length: ← 8 Bytes → ← Largest Record →

 |←──────────── BLKSIZE=n ─────────────→|

Format C: ┌───────────┬──────────────────────────┐
 │ Key │ Data │
 └───────────┴──────────────────────────┘
 Length: ←KEYLEN=n → ← Largest Record →

190 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 |←──────────── BLKSIZE=n ─────────────→|

Format D: ┌──────────────────────────┐
 │ Data │
 └──────────────────────────┘
 Length: ← Largest Record →

 |←─────── BLKSIZE=n ──────→|

 ┌─────────────┬──────────────────────┐
 │ Descriptor │ │
 │ Field │ Data │
 └─────────────┴──────────────────────┘
 ← 8 Bytes → ← Largest Record →

 |←─────────── BLKSIZE=n ────────────→|

When you build a record, you must supply, in the subareas as shown, all of the various information types,
except the count information. For example, if your DTFDA defines a file to which Format A applies, the
data of a record would be located to the right of the key area and the key area to the right of the count
area.

For variable-length and spanned unblocked records, the format of the I/O area is independent of the
DTFDA macro operands. If you specify the KEYLEN operand of the macro, DAM passes the key to or takes
it from the field you specified in the KEYARG operand. The count field, if desired, is taken from a field put
aside by DAM internally.

The descriptor field is built by DAM, except when you create your file or add records to it by using the
WRITE AFTER macro. In that case you must insert, into bytes 4 and 5 of this field, the sum of the data
length of the record plus 4. If you read a variable length or spanned unblocked record, these bytes
indicate the length of the record. If you update records, do not change any byte of the field.

Following are the maximum lengths for logical records on the various types of disk devices:
 ────────────── RECFORM= ────────────────

 Device FIXUNB, VARUNB, UNDEF SPNUNB
───────────── ───────────────────── ────────────────
 3350 19␠069 32␠767
 3375 32␠767 32␠767
 3380 32␠767 32␠767
 3390 32␠767 32␠767
 9345 32␠767 32␠767

Logic Modules
A VSE system includes preassembled and linked superset logic modules. The system loads these
modules into the SVA during system startup. DAM links a suitable module to your DTFDA table when
the file is opened. These logic modules are fully reentrant. Thus one copy of a logic module can be used
by all requesters having the type of file for which the logic module was generated.

Processing the File
Following is a list of imperative macros that you can use to process a file defined by a DTFDA macro:

• CLOSE(R)
• LBRET
• CNTRL
• OPEN(R)
• ERET
• READ
• FEOVD
• WAITF
• FREE

Appendix B. Direct Access Method (DAM) 191

• WRITE

After a DAM file has been defined (by a DTFDA macro), you use the imperative macros to operate on the
file. These macros are divided into three groups: to open the file, to process the file, and to close the file.

Opening the File
The OPEN macro must be used to activate a DAM file for processing. The macro associates the logical
file defined in your program with a file of data on disk. This association remains in effect until you issue a
CLOSE macro for the file.

When OPEN attempts to activate a file whose device is unassigned, DAM cancels the job. If the device is
assigned IGN, DAM opens but does not activate the file; instead, DAM returns control to your program. In
your program, do not request any I/O for this inactive file. DAM indicates an inactive, open file by setting
on bit 2 of the DTF byte 16.

If you plan the processing of standard user labels (UHL only), your program must provide the information
for checking or building the labels. If this information is obtained from another input file, that other file
must be opened first. Specify that other input file ahead of your DTFDA disk file in the same OPEN or issue
a separate OPEN for the input file preceding the OPEN for the DTFDA file.

If the XTNTXIT operand is specified, OPEN stores the address of a 14-byte extent-information area in
register 1 and gives control to your extent routine. You can save this information for use in specifying
record addresses. Then the next volume of the file is opened (on an input file, only after the user labels, if
any, have been processed). When all volumes are open, the file is ready for processing. If the disk device
is file-protected, all extents specified in EXTENT statements are available for use.

DAM requires that all volumes of a multivolume file are mounted and opened before processing can begin.

For each volume of an output file, DAM checks the standard VOL1 label and the extents specified; it
checks the EXTENT statements for the following:

• The extents are of type 1.
• The extents do not overlap.

Open checks all the labels in the VTOC to ensure that the new file does not write over an existing,
unexpired file. Open then builds the standard label(s) for the file and writes the label(s) into the VTOC.

• The first extent is at least two tracks long if user standard header labels are to be written.

OPEN reserves the first track of the first extent for these header labels and gives control to your label
routine. Use the LBRET macro in your routine to return control to DAM.

For each volume of an input file, Open checks the standard VOL1 label and the file label(s) in the VTOC.
Open also checks some of the information specified in the EXTENT statements for that volume.

If LABADDR is specified, OPEN makes the user standard labels available to your routine, one after the
other, one at a time for checking. Use the LBRET macro in your routine to return control to DAM.

Use OPENR instead of OPEN if your program is self-relocating. This causes DAM to relocate all address
constants within the DTF table of each file that is to be opened. However, a zero constant is relocated only
when it represents the module address.

Creating a File and Adding of Records to a File
Your program can preformat a file or an extension of a file in one of two ways. The method you choose
depends on the type of processing to be done:

• If you use only the WRITE AFTER macro in your program, the WRITE RZERO macro preformats the
tracks.

• If you use nonformatting functions of the WRITE macro in your program, preformat the tracks by
performing a Clear Disk utility run. This utility resets the capacity record to reflect an empty track. How
to use this utility is described in z/VSE System Utilities.

192 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesste61.pdf

When you create a file or write new records into a DAM file, each of your records is written with the count
area, the key area (if present), and the data area. DAM writes the new record behind the one written last
on the specified track. The remainder of the track is erased. You specify this method in a WRITE macro by
the operand AFTER.

DAM ensures that each record fits on the specified track before it writes the record. If a record does not
fit, DAM sets a no-room-found indication in your error/status byte specified by the ERRBYTE operand of
the DTFDA macro for your file. If WRITE AFTER is specified, DAM determines, from the capacity record,
the location where the record is to be written.

If the DTFDA macro for your file specifies the AFTER option, DAM uses the first record on each track (R0)
to maintain information about the data records on the track. The layout of this record (see Figure 67 on
page 193) may be of interest for analyzing the dump of a certain disk area.

Bytes
Contents

0-7
Count Area
Bytes

0

Used by DAM.
1-5

Identifier: cchhr of the data area.
6-7

Used by DAM.
8-15

Data Area
Bytes

8-12

Identifier (cchhr) of the last record on the track.
13-14

Unused-bytes count: the number of bytes remaining
 :

on the track.
15

Reserved.
Figure 67. Contents of Record 0 with Capacity-Record

Locating a Record
DAM requires two references for all read or write operations: the track reference and the record
reference:

• The track reference can be either of the following:

– The actual disk address, which specifies the location of the track.
– The relative track address, which specifies the position of the track relative to the beginning of the

file.
• The record reference can be either the record key (if the records contain key areas) or the record
identifier (ID).

DAM seeks the specified track, searches it for the desired record location, and reads or writes the record
as indicated by the macro. If it cannot find a record, DAM indicates this in the error/status bytes as
specified by the ERRBYTE operand of the DTFDA macro for your file (for more information about these two

Appendix B. Direct Access Method (DAM) 193

bytes, see the section “Error Handling” on page 207). Have your program test this indication and take a
suitable action.

Multiple tracks can be searched for a record specified by key (SRCHM). However, if it cannot find a record
after having searched an entire cylinder (or the remainder of a cylinder), DAM sets an end-of-cylinder
rather than a no-record-found indication.

When your program issues an I/O request, DAM returns control to your program immediately. Therefore,
when your program is ready to process the input record, or build the next output record for the same
file, your program must ensure that the previous transfer of data is complete. You ensure this by coding a
WAITF macro in your program.

After having completed a READ or WRITE request for a certain record, DAM can make the ID of the next
record available to your program. You must set up a field (in which to store the ID) if you request DAM
to supply the ID. Specify the symbolic address of this field in the IDLOC operand of the DTFDA macro for
your file. When the record reference is by key and multiple tracks are searched, DAM supplies the ID of
the specified record rather than the next record. This can be useful for a random update operation, or
for the processing of successive records. If your program processes records consecutively, based on the
next ID, and the file does not have an end-of-file record, the program can check the ID supplied by DAM
against the end-of-file limit.

Track Reference
To provide a track reference, do the following:

• Set up a track reference field in your program.
• Specify the name you assigned to this field in the SEEKADR operand of the DTFDA macro for your file.
• Determine, by specifying the applicable DTFDA operands, the type of addressing to to be used.

Before issuing any READ or WRITE macro for a record, store the identifier of the track that is to be
accessed in the track reference field. You do this in one of the following ways:

• In the first seven bytes – mbbcchh in hexadecimal format.
• In the first three bytes – ttt in hexadecimal format.
• In the first eight bytes – tttttttt in zoned decimal format.

The latter two (track) references, along with the operands DSKXTNT RELTYPE, indicate that relative
addressing is to be performed. Thus, instead of providing the exact physical track location (mbbcch), only
the track number relative to the starting track of the file need be provided. If these operands are omitted,
the physical track location is assumed. When it executes the READ or WRITE macro, DAM refers to the
track reference field to select the desired track.

Addressing for direct access of data on disk may be different if you use a high-level programming
language, such as COBOL or PL/I. For information about addressing data in a high-level programming
language, consult the applicable language reference publication.

Physical Track Addressing
This kind of addressing is used as a starting point for a search on record key (control field) or as the actual
address for a read or write operation. To request a search for a key, specify that this search is to be one of
the following:

• Only within the specified track (hh).
• From track to track starting at the given address until the end of the cylinder (cc) is reached.
• From track to track starting at the given address until the record is found.

For details about setting up a track-reference field for physical track addressing, see Figure 68 on page
195.

194 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 m b b c c h h r
 └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
 Bytes 0 1 2 3 4 5 6 7

Figure 68. Track Reference Fields – Physical Track Addressing

where:
m

Identifies the volume. If a single file extends over more than one
volume, the physical units must be assigned (by job control EXTENT
statements) to a sequential set of logical unit names. The value of
m is always 0 for the first volume, 1 for the second, 2 for the
third, and so on. For example: a file spread over three volumes
could be assigned to the logical units SYS002 through SYS004. In
this case:

• m = 0 refers to SYS002
• m = 1 refers to SYS003
• m = 2 refers to SYS004

bb
Reserved.

cc

A two-byte field that contains the number of the cylinder in which
the record can be located. This cannot be the number of a cylinder
reserved for alternate tracks. The two bytes, together with the
bytes hh, provide the track identification.

DAM does not allow you to use different data module sizes for a
multi-volume file on CKD devices.
(If mini-disks are defined for
the volumes, these mini-disks must have the same number of cylinders.)

The number is in binary format.

hh

Contains, in binary format, the head number in the second byte.
The first byte is reserved.

r

The record number within a track. This one-byte field can contain a
binary value of 0 - 255 to identify the location of a record on the
track. This field is not used when records are referenced by record key.

Relative Track Addressing
The required disk address may be given as a relative address (as shown in Figure 69 on page 196). This
address is then converted by DAM to an actual address. Relative track addressing is more convenient to
use than the physical address because:

• Your file is treated logically as if it were located in one continuous area, although it may occupy several
nonadjacent areas.

• You need to know only the relative position of the data within the file; the actual address of this data is
of no concern. This can be of advantage if you plan to move your file from one location to another. The
relative addressing scheme remains the same, but the actual addresses may change.

How to set up a track-reference field for relative track addressing is shown in Figure 69 on page 196.

Appendix B. Direct Access Method (DAM) 195

Decimal Identifier
 t t t t t t t t r r
 Bytes └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
 0 1 2 3 4 5 6 7 8 9

where:
tttttttt =

Track number relative to the beginning of the file.
rr =

Record number relative to the beginning of the track. If
your program refers to a record by key, rr should be zero.

Hexadecimal Identifier
 t t t r
 └─────┴─────┴─────┴─────┘
 Bytes 0 1 2 3

where:
ttt =

Track number relative to the beginning of the file.
r =

Record number relative to the beginning of the track.
If your program refers to a record key, r should be zero.

Figure 69. Track Reference Fields – Relative Track Addressing

Format of the Record ID
For certain types of operations, you can request DAM to return the actual record address (ID) of the block
read or written, or of the block following the one just read or written. Your program can use this returned
ID to read or to write a new record, or to update the one just read and write the updated record back to
the same location.

The format of the returned ID is the same as the format of the disk address used for locating the record,
that is, one of following:

• mbbcchhr (physical track addressing)
• ttttttttrr (relative track addressing, decimal identifier)
• tttr (relative track addressing, hexadecimal identifier)

Record Reference
DAM allows records to be specified either by record key or by record identifier.

Reference by Record Key
If the records of your file include keys, DAM can search them randomly by their keys. This allows you
to refer to records by their logical control information such as an employee number, a part number, a
customer number, and so on.

To refer to records by key, you must:

1. Set up a key field in your program.
2. Specify the name of that field in the KEYARG operand of the DTFDA macro for your file.
3. Store the key of a desired record in this field before you issue the request (READ or WRITE) macro.

196 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Reference by Identifier (ID)
The records on a track can be searched randomly by their position on the track rather than by control
information (key). To do this, use the record identifier.

• The physical record identifier

This is part of the count area of the disk record; it consists of five bytes: cchhr. The first four bytes
(cylinder and head) refer to the location of the track; the fifth byte (record) uniquely identifies the record
on the track.

• The relative track notation

To use this notation, DAM requires you to specify the operands DSKXTNT and RELTYPE in the DTFDA
macro for your file. DAM requires that the records are numbered in succession (without missing
numbers) on each track: 1 for the first record, 2 for the second record, and so on. The r-byte(s) of
the track-reference field (see Figure 69 on page 196) must contain the number of the desired record.
When processing a READ or WRITE macro that searches by ID, DAM refers to the track-reference field
to determine which record is requested by the program. DAM compares the number in this field with the
corresponding fields in the count areas of the disk records.

Locating a Free Space
DAM maintains a count of unused bytes in record zero on each track (as shown in Figure 67 on page 193).
When a record is to be written, DAM uses this count to find out whether this record fits on the track. If the
new record:

• Fits on the track, DAM writes the record as a new last record and updates the unused-bytes count.
• Does not fit on the track, DAM notifies your program. An overflow routine in your program may then

become active.

Have your conversion algorithm randomize to a track address. If then a synonym results from your
conversion algorithm, DAM writes the second and subsequent records with the same address behind the
first one as long as there is room on the track. Thus, more than one record may have the same track
address assigned.

The capacity record is not always used. The description of the WRITE macro in z/VSE System Macros
Reference explains when the record is used.

DAM updates the capacity record for each data record that fills empty space on a track. However, when
a record is deleted, the capacity record does not show it as empty space. Space that is freed because a
record has been deleted can be recognized as such only by your program. It may, for example, do this:

1. After having deleted a record from a file of records with keys:

a. Search on key to read the record and request DAM to return the record ID.
b. Use this ID to write blanks or zeros (or whatever unique identification is acceptable to mark the

deleted key and data area) to this location.
2. To re-use the deleted record for data:

a. Randomize the key of a new logical record to a starting location.
b. Make a search for a blank or zeroed key.
c. Use the returned ID to write the new record with the new key into the same location.

Reading and Writing a Record
Once a DAM file has been opened, your program can use the imperative macros for direct access:
READ, WRITE, WAITF, and CNTRL. This section discusses the macros together with the major processing
functions of DAM.

Appendix B. Direct Access Method (DAM) 197

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Load and Process a File
The only difference between loading (creating) a direct access file and processing it (updating or retrieving
records) is the file's initial status. In both cases, the same conversion algorithm is used for locating data
records.

Before creating a file, you must ensure that the disk storage area is cleared of any data that may have
been stored previously. IBM provides two programs that you can use to clear disk storage areas:

• Device Support Facilities

The program operates on complete volumes. You use it for initializing a new volume or reinitializing a
previously used volume.

The program writes a preformatted VTOC and clears the entire volume. Afterwards, each track contains
a home address and a record zero describing the entire track as free space. The preformatted VTOC
contains empty file labels.

• Clear Disk

This utility program operates on logical files. You use it to preformat a disk storage area with dummy
blocks of fixed-length format. Preformatting by a Clear Disk run is a must for files with records of fixed
length.

How your file is loaded and processed depends on whether your records have a key area.

Processing of Records with a Key Area
This processing varies for records of fixed length and records of variable length.

Fixed-Length Records with a Key
For the required clear-disk run, use the same fill character that you use to indicate a deleted record. That
way you can use the same code for creating and for updating the file.

You can distinguish a current data record from a dummy record by the key of the record. The keys of a
file's dummy records all have the same contents; current data records have unique keys, and each key
identifies a certain data record.

You have two options for writing a record:

• Randomizing to a cylinder address.

Specify the search-multiple-tracks option (SRCHM=YES in the DTFDA macro) and supply the address of
the cylinder as produced by the randomizing algorithm of your program. This allows you to search for
the first dummy record on a cylinder. The search starts at the beginning of that cylinder and continues
until either a dummy record is found or the end of the cylinder is reached.

When it finds a dummy record, DAM returns control to your program and passes the address of a record.
You can write the new record at the address passed by DAM.

If it does not find a dummy record, DAM indicates a no-record-found condition. Your overflow routine
must then become active.

The technique for locating a record slot in an independent overflow area is the same as that for the
prime data area.

Consider defining one or more cylinders as an independent overflow area. An overflow area of one or
more tracks on each cylinder is useful only if these tracks are excluded by your randomizing algorithm.

• Randomizing to a track address.

If you use the search-multiple-tracks (SRCHM=YES) option, the procedure is the same as above, except
that the search begins at a specified track and not at the beginning of a cylinder. If you do not specify
SRCHM=YES, the search for a dummy record ends at the end of the specified track.

When DAM returns control, it passes to your program either:

198 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

– The address of the record following the one that DAM identified as a dummy record, or
– A no-record-found indication; in this case, you would normally branch to your overflow routine.

Searching for a specific track may be more time consuming, but it gives you more direct control.

You can choose between cylinder overflow areas and independent overflow areas. However, it is hard
to say which method will be more efficient. If the prime data area and the independent overflow
area reside on the same volume, switching to and from the overflow cylinders requires the read/write
mechanism to move. You can avoid such movement by using cylinder overflow areas.

Variable-Length Records with a Key
Do not use the Clear Disk utility to preformat the required disk space. Use the Device Support Facilities
program to clear a complete volume; to clear a certain area on a volume, write erased tracks and update
the unused-bytes count in record 0 of each track (for a layout of a record 0, see Figure 67 on page 193).
However, this count gives only the number of free bytes at the end of the track. Space that is free because
a record has been deleted is not taken into account.

In your program, code a randomizing algorithm that returns a cylinder and a track address. DAM checks
the unused-bytes count. If the record fits, DAM writes it behind the current last record on the track. If the
record does not fit, DAM indicates this to your program. You can do a fit/no-fit inquiry in the overflow area
in exactly the same way, track by track, until DAM finds a track on which the new record fits.

It may be useful to have both a cylinder and an independent overflow area. When a prime data track
overflows, try first to store the record in the cylinder overflow area. If this is not possible, store the record
in the independent overflow area.

A record stored in the cylinder overflow area can later be retrieved automatically if the search-multiple-
tracks option is specified. To retrieve records that are stored in the independent overflow area, you must
set up a search in your program. A record cannot be stored in the space occupied by deleted records.
Therefore, a cylinder overflow area itself may overflow. To maintain processing efficiency, reorganization
of the entire file may then soon be necessary. To reorganize your DAM file, do the following:

1. Read the file track after track.
2. Clear each track separately.
3. Restore each current data record as if it were new.

Since DAM does not restore deleted records, free space will concentrate again at the end of the tracks.

After the prime data tracks have been reorganized, the overflow area may be processed. DAM attempts to
write overflow records to the prime data area. Overflow records that cannot be moved to the prime data
area are moved back onto the overflow tracks. Again, deleted records are omitted.

Retrieving Records with a Key
A record can be retrieved by a search on key. If the option for a search on multiple tracks is specified, DAM
can find a record on a cylinder if you specify the search to start at or before the address of the record. The
conversion algorithm that is applied for writing a record can be used also for retrieving the record.

Processing of Records without a Key Area
If records are written without a key, the location of a record can be determined only by the randomizing
algorithm. DAM can identify a desired record only by the disk address your program has supplied.

A practical method of randomizing is to code a conversion algorithm that computes a cylinder, track, and
record address. To use this method, your file:

1. Must have fixed-length records.
2. The disk area it is to use must have been preformatted by a Clear-Disk run before the file is loaded.

Coding a conversion algorithm for data without a key is somewhat critical because each synonymous
record becomes an overflow record.

Appendix B. Direct Access Method (DAM) 199

In the prime data area, each block has a pointer field. As long as no synonym is present for a certain
record in that area, this pointer is empty. If synonyms are present, this pointer points to the first synonym
of a possible chain of overflow records. All synonyms for a record in the prime data area are linked by
overflow chain pointers. This is shown in Figure 70 on page 200.

The chain of overflow pointers is used to trace a certain overflow record. It says nothing, however, about
the actual location of the records on the track. The location of an overflow record is, in fact, of no concern
to your program.
 ┌──────────── Prime Data Area ─────────────┐
 │ ... │
 │ ┌─────────────────────────┬─────────┐ │
 │ │ Record at Location xxx │ Pointer │───│────┐
 │ └─────────────────────────┴─────────┘ │ │
 │ ... │ │
 └──┘ │
 ┌────────────── Overflow Area ───────────────┐ │
 │
 ┌─→┌─────────────────────────┬─────────┐ │
 │ │ Synonym Record of the │ │ │
 │ │ Record at xxx, inserted │ Pointer │ │
 │ │ last but two │(cleared)│ │
 │ └─────────────────────────┴─────────┘ │
 │ │
 └────────────────────←────────────────────┐ ↓
 │ │
 ┌─→┌─────────────────────────┬─────────┐ │ │
 │ │ Synonym Record of the │ │ │ │
 │ │ Record at xxx, inserted │ Pointer │──┘ │
 │ │ last but one │ │ │
 │ └─────────────────────────┴─────────┘ │
 │ │
 └────────────────────←────────────────────┐ │
 │ │
 ┌─────────────────────────────────────│─────┘
 ↓ │
 ┌─────────────────────────┬─────────┐ │
 │ Synonym Record of the │ │ │
 │ Record at xxx, inserted │ Pointer │──┘
 │ last │ │
 └─────────────────────────┴─────────┘

 └──┘

Figure 70. Prime Data Record and Related Overflow Records

In principal, your program must do the following:

1. Compute a DASD record address, using its randomizing algorithm.
2. Check whether the block at the computed address contains current data. This requires an input

operation. If:

• The block contains no current data.

a. Clear the overflow pointer to make sure it indicates that no synonyms are present.
b. Write the new record.

• The block contains current data and the overflow pointer is empty.

a. Have DAM find the address of a free record location for the synonym. How this can be done is
described under “Getting the Address of a Free Record” on page 201.

b. Put this address into the overflow pointer.
c. Write the prime data block back to its original location on disk and write the new record as the

first overflow record.
• The block contains current data and the overflow pointer indicates the presence of synonyms.

a. Save the address in the overflow pointer. This is the address of the first synonym in the overflow
chain.

b. Have DAM find the address of a free record location for the new synonym. How this can be done is
described under “Getting the Address of a Free Record” on page 201.

200 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

c. Write this address into the overflow pointer.
d. Restore the prime data block to its original location on disk.
e. Put the former contents of the overflow pointer into the overflow chain pointer of the new

synonym.
f. Write the new synonym at the address in the overflow area supplied by DAM.

As a result, the newly inserted record becomes the first synonym in the overflow chain, and the
former first one becomes the second. The rest of the sequence remains unchanged.

Getting the Address of a Free Record
The randomizing algorithm calculates only prime data addresses. However, most likely you want to find
the address of a free record location without having to search the overflow area block by block.

A good method is to use the first record of the area as an overflow-area descriptor. Have this record
contain, at all times, the address of the first free block in the overflow area. If a new record is to be added
to the overflow area, the descriptor gives the address of the block where the new record can be stored.
When a new record is stored, the address in the descriptor is to be updated to point to the next free
record.

The overflow-area descriptor record may contain any information you need in addition to a pointer to the
first free block.

When a record is deleted from the overflow area, store the address of that block in the overflow-area
descriptor record (this makes the space of the deleted record the first free record). In addition, store the
address that was in the overflow-area descriptor record in the block that just became free. This gives you
a pointer to the next free block.

The examples below illustrate the process as described above.
 ─────→ Existing pointers
 → Changed or new pointers

Sample Overflow Organization

Initial Status of the File
 ┌──── Prime Data Area ───┐ ┌────── Overflow Area ─────┐
 ┌───────────────────┐ ┌───────────────────┐
 │ Block 1 │ │ Block 1 │
 │ (contains data) │ │ Descriptor Record │
 │ │ │ │
 │ Pointer Field │ │ Points to Block 3 │──┐
 └───────────────────┘ └───────────────────┘ │
 │
 ┌───────────────────┐ ┌───────────────────┐←──────┐
 │ Block 2 │ │Block 2, synonym of│ │ │
 │ (contains data) │ │prime block 4 │ │ │
 │ │ │ │ │ │
 │ Pointer Field │ │ Pointer Field │ │ │
 └───────────────────┘ └───────────────────┘ │ │
 │ │
 ┌───────────────────┐ ┌───────────────────┐←─┘ │
 │ Block 3 │ │ │ │
 │ (contains data) │ │ Block 3 - free │ │
 │ │ │ │ │
 │ Pointer Field │ │ Points to Block 5 │──┐ │
 └───────────────────┘ └───────────────────┘ │ │
 │ │
 ┌───────────────────┐ ┌───────────────────┐←───┐ │
 │ Block 4 │ │Block 4, synonym of│ │ │ │
 │ (contains data) │ │prime block 4 │ │ │ │
 │ │ │ │ │ │ │
 │Points to O'block 6│─────┐ │ Points to Block 2 │────│──┘
 └───────────────────┘ │ └───────────────────┘ │ │
 │ │ │
 ┌───────────────────┐ │ ┌───────────────────┐←─┘ │
 │ │ │ │ │ │
 │ Block 5 - free │ │ │ Block 5 - free │ │
 │ │ │ │ │ │
 │ Pointer Field │ │ │ Points to Block 8 │──┐ │

Appendix B. Direct Access Method (DAM) 201

 └───────────────────┘ │ └───────────────────┘ │ │
 │ │ │
 ┌───────────────────┐ └──────────→┌───────────────────┐ │ │
 │ Block 6 │ │Block 6, synonym of│ │ │
 │ (contains data) │ │prime block 4 │ │ │
 │ │ │ │ │ │
 │ Pointer Field │ │ Points to Block 4 │────┘
 └───────────────────┘ └───────────────────┘ │
 │
 ┌───────────────────┐ ┌───────────────────┐ │
 │ Block 7 │ │ Block 7 │ │
 │ (contains data) │ │ (contains data) │ │
 ↓
 and so on

Status after Having Added a Synonym for Prime-Data Block 4
 ┌──── Prime Data Area ───┐ ┌─────── Overflow Area ─────┐
 ┌───────────────────┐ ┌───────────────────┐
 │ Block 1 │ │ Block 1 │
 │ (contains data) │ │ Descriptor Record │
 │ │ │ │
 │ Pointer Field │ │ Points to Block 5 │...
 └───────────────────┘ └───────────────────┘ :
 :
 ┌───────────────────┐ ┌───────────────────┐←─:────┐
 │ Block 2 │ │Block 2, synonym of│ : │
 │ (contains data) │ │prime block 4 │ : │
 │ │ │ │ : │
 │ Pointer Field │ │ Pointer Field │ : │
 └───────────────────┘ └───────────────────┘ ↓ │
 : │
 ┌───────────────────┐ →┌───────────────────┐ : │
 │ Block 3 │ : │Block 3, synonym of│ : │
 │ (contains data) │ : │prime block 4 │ : │
 │ │ : │ │ : │
 │ Pointer Field │ : │ Points to Block 6 │..........
 └───────────────────┘ : └───────────────────┘ : │ :
 : : │ :
 ┌───────────────────┐ : ┌───────────────────┐←─:─┐ │ :
 │ Block 4 │ : │Block 4, synonym of│ : │ │ :
 │ (contains data) │ : │prime block 4 │ : │ │ :
 │ │ : │ │ : │ │ :
 │Points to O'block 3│.....: │ Points to Block 2 │──:─│──┘ :
 └───────────────────┘ └───────────────────┘ : │ :
 : │ ↓
 ┌───────────────────┐ ┌───────────────────┐←.: │ :
 │ │ │ │ │ :
 │ Block 5 - free │ │ Block 5 - free │ │ :
 │ │ │ │ │ :
 │ Pointer Field │ │ Points to Block 8 │──┐ │ :
 └───────────────────┘ └───────────────────┘ │ │ :
 │ │ :
 ┌───────────────────┐ ┌───────────────────┐←........:
 │ Block 6 │ │Block 6, synonym of│ │ │
 │ (contains data) │ │prime block 4 │ │ │
 │ │ │ │ │ │
 │ Pointer Field │ │ Points to Block 4 │────┘
 └───────────────────┘ └───────────────────┘ │
 │
 ┌───────────────────┐ ┌───────────────────┐ │
 │ Block 7 │ │ Block 7 │ │
 │ (contains data) │ │ (contains data) │ │
 ↓
 ... and so on

Status after Having Deleted Overflow Block 6
 ┌──── Prime Data Area ───┐ ┌──────── Overflow Area ─────┐
 ┌───────────────────┐ ┌───────────────────┐
 │ Block 1 │ │ Block 1 │
 │ (contains data) │ │ Descriptor Record │
 │ │ │ │
 │ Pointer Field │ │ Points to Block 6 │...
 └───────────────────┘ └───────────────────┘ :
 :
 ┌───────────────────┐ ┌───────────────────┐←─:────┐
 │ Block 2 │ │Block 2, synonym of│ : │
 │ (contains data) │ │prime block 4 │ : │
 │ │ │ │ : │
 │ Pointer Field │ │ Pointer Field │ : │
 └───────────────────┘ └───────────────────┘ ↓ │

202 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

 : │
 ┌───────────────────┐ ┌──────────→┌───────────────────┐ : │
 │ Block 3 │ │ │Block 3, synonym of│ : │
 │ (contains data) │ │ │prime block 4 │ : │
 │ │ │ │ │ : │
 │ Pointer Field │ │ │ Points to Block 4 │...... │
 └───────────────────┘ │ └───────────────────┘ : : │
 │ ↓ : │
 ┌───────────────────┐ │ ┌───────────────────┐ : : │
 │ Block 4 │ │ │Block 4, synonym of│←....: │
 │ (contains data) │ │ │prime block 4 │ : │
 │ │ │ │ │ : │
 │Points to O'block 3│─────┘ │ Points to Block 2 │──:────┘
 └───────────────────┘ └───────────────────┘ :
 :
 ┌───────────────────┐ ┌───────────────────┐←.....
 │ │ │ │ : :
 │ Block 5 - free │ │ Block 5 - free │ : :
 │ │ │ │ : :
 │ Pointer Field │ │ Points to Block 8 │──:──:─┐
 └───────────────────┘ └───────────────────┘ : : │
 : : │
 ┌───────────────────┐ ┌───────────────────┐←.: : │
 │ Block 6 │ │ │ : │
 │ (contains data) │ │ Block 6 - free │ : │
 │ │ │ │ : │
 │ Pointer Field │ │ Points to Block 5 │.....: │
 └───────────────────┘ └───────────────────┘ │
 │
 ┌───────────────────┐ ┌───────────────────┐ │
 │ Block 7 │ │ Block 7 │ │
 │ (contains data) │ │ (contains data) │ │
 ↓
 and so on

Summary of Methods for Randomizing

Fixed-Length Records with a Key
• Loading:

1. Preformat the file by performing a clear disk run.
2. Randomize to a track or a cylinder address, whichever method is used for the file. A record becomes

an overflow record if the search for a dummy record is unsuccessful.

• Processing: randomize to the track or the cylinder address.

Variable-Length Records with a Key
• Loading:

1. Do not preformat the file.
2. Randomize to a track address. Record 0 indicates how much space is left on the track. A record

becomes an overflow record if the space left on the track is too small.

• Processing: randomize to the track address.

Records without a Key
• Loading:

1. Preformat the file by performing a clear disk run.
2. Randomize to a record address. Each synonym becomes an overflow record to be inserted logically

in an overflow chain.

• Processing:

1. Randomize to the record address.

Appendix B. Direct Access Method (DAM) 203

2. Read the record and check whether it is the one desired. If it is not, search the overflow chain.

Reading a Record
The READ macro transfers a record from Disk to the file's input area in virtual storage. You define this area
to DAM by the IOAREA1 operand of the DTFDA macro for the file.

The READ macro returns control to your program after having passed the request to DAM. Your program
can now perform any processing unrelated to the requested block of data. Before it performs processing
related to the requested block, your program must issue a WAITF macro to check for the completion of
the read operation.

The READ macro is written in either of two forms depending on the type of reference used to search for
the record. In your program, you can use both forms if the records of your file has keys. The two forms
are:

• If the record reference is by key

 READ filename,KEY

• If the record reference is by identifier.

 READ filename,ID

The first operand of the macro specifies the name of the file from which the record is to be read. This
name is the same that you used in the DTFDA macro for the file. You can specify this operand as a symbol
or in register notation. If the records of your file are undefined (RECFORM=UNDEF), DAM supplies the
data length of each record in the register that you specified in the RECSIZE operand.

Record Reference by Key
This type of reference is indicated if the required control information is contained in the key area of the
disk record. To retrieve records with reference by key, your DTFDA macro must include the READKEY
operand.

If your program uses this method of reference, DAM requires that your program:

1. Stores the key of the desired record in the field which you specified in the DTFDA KEYARG operand.
2. Subsequently issues the READ macro.

When processing the READ macro, DAM searches the previously specified track (stored in the 8-byte
track-reference field) for the desired key. If DAM finds a record with the specified key, it transfers the data
area of the record to the data portion of the input area in your program.

Only the specified track is searched, except when you request that multiple tracks be searched. You do
this by including the SRCHM operand in the DTFDA macro for your file. The operand causes the specified
track and all following tracks to be searched until the desired record is found or the end of the cylinder
is reached. The search of multiple tracks continues through the cylinder even if part of the cylinder is
assigned to a different file.

If, besides the SRCHM operand, the DTFDA macro for your file includes also the IDLOC=name operand,
DAM returns the ID of the record just read.

Record Reference by ID
The DTFDA macro for your file must include the READID operand.

If your program uses this method of reference, DAM requires the that your program supplies the record's
track address and record number. Before it issues the READ macro, your program must store this
information in the track-reference field.

When processing the READ macro, DAM searches the specified track for the desired record. When it finds
a record with the specified ID, DAM transfers both the key area (if present and specified in the KEYLEN

204 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

operand of the DTFDA macro) and the data area of the record to the key and data portions of the input
area in your program.

You can request DAM to return the ID of a record after a record has been read. DAM supplies this ID in the
field that you defined in the IDLOC=name operand of the DTFDA macro. It returns the ID of the record that
follows the record just read.

Writing a Record
A data block can be written as a new record or as an update (overwrite) of an existing record. When a new
record overwrites a dummy record, DAM treats this as an update.

To overwrite an existing record, DAM requires a reference by ID or by KEY. If the records of your file
are undefined (RECFORM=UNDEF is specified in the DTFDA macro), your program must do the following
before it issues the WRITE macro:

1. Determine the length of each record.
2. Load this length into a register for use by DAM. This register must be defined to DAM in the RECSIZE

operand of the DTFDA macro for the file.

To perform the various write operations, the WRITE macro is issued in different formats. In all cases, the
WRITE macro returns control to your program after having passed the request to DAM. Your program can
then perform processing unrelated to building a new block of data. Before it starts building a new block,
your program must issue a WAITF macro to check for the completion of the write operation.

Adding a new Record
You accomplish this by coding a WRITE AFTER request. DAM writes the record following the one
previously written on a track. (regardless of its key or ID). For DAM to do this, your program must:

1. Specify AFTER=YES in the DTFDA macro for your file.
2. Supply the track address in the field that you defined by the SEEKADR=name operand of that DTFDA

macro.

If the record to be added fits on the track, DAM writes the information in the output area of your program
to the track immediately following the last record on that track. For the record, DAM updates the count
area and the key area (if present and specified by DTFDA KEYLEN), and the data area.

If the record does not fit or the track is not followed by enough empty tracks in the case of a spanned
record, DAM does not write the record. Instead DAM sets an indication in your error/status byte specified
by the DTFDA ERRBYTE operand.

If records are to be added in a disk area that contains outdated records, your program must set up record
0 of each track to reflect an empty track. You accomplish this by issuing the WRITE RZERO macro.

If you specify EOF, which applies only if you specify AFTER, DAM writes an end-of-file record (a record
with a length of zero) after the last record on the track.

For a WRITE AFTER request, DAM cannot return a record ID.

If your program builds a variable-length or spanned unblocked record with a WRITE AFTER request, it
must put the sum of the data length of the record to be written plus 4 into bytes 4 and 5 of the control
fields preceding the data. If your program updates a record previously read from the same file by a READ
macro, then do not change the control fields. Any such change causes the wrong-length-record bit to be
set in the error information returned to your program.

Overwriting an Existing Record
If the reference is by ID (identifier in the count area of a record), the macro format is:

WRITE filename,ID

DAM requires, in addition, that your program:

Appendix B. Direct Access Method (DAM) 205

1. Specifies WRITEID=YES in the DTFDA macro for your file.
2. Supplies both the track information and the record number in the track-reference field (which you

define by the SEEKADR operand of the DTFDA macro) before the WRITE macro is issued.

DAM searches the specified track for the desired record location. When it finds the record with the
specified ID, DAM transfers the information in the output area of your program to the key area (if present
and specified in DTFDA KEYLEN) and the data area of the disk record. If an ID was requested, DAM
returns the ID of the next record in the file.

If FIXUNB or UNDEF is specified in the RECFORM operand, then either:

• The key must precede your data in the IOAREA1 area, or
• Your program must insert the key into the key field (specified by the KEYARG operand) before you issue

the WRITE macro.

This replaces the previously recorded key and data

DAM uses the count field of the original record to control the writing of the new record. A record longer
than the original record is written only to the extent of the area indicated in the count field on the track;
any excess bytes are lost. In that case, DAM turns on the wrong-length-record bit in the error/status field.
If an updated record is shorter than the original one, DAM pads the update record with binary zeros to the
length of the original record. In this case, DAM does not turn on the wrong-length-record bit.

If the reference is by key (control information is in the key area of the disk record), the macro format is:

WRITE filename,KEY

DAM requires, in addition, that your program:

1. Specifies WRITEKY=YES in the DTFDA macro for your file.
2. Supplies the key of the record to be located and the address of the track on which the record resides

before the WRITE macro is issued. The key must be stored in the field that you defined in the KEYARG
operand of the DTFDA macro; the track address must be stored in the track-reference field (defined in
the SEEKADR operand of the DTFDA macro).

DAM searches the referenced track or, if the search-multiple-tracks option is specified in the DTFDA
macro, all the remaining tracks of the same cylinder. When it finds the key, DAM writes the data without
the key. This replaces the information previously recorded in the data area.

The count field of the original record controls the writing of the new record. If a record is shorter than
the original one, it is padded with zeros. A record longer than the original record is written only to the
extent of the area indicated in the count field on the track; any excess bytes are lost. DAM turns on the
wrong-length-record bit in the error-status field if any short or long record occurs. Searching multiple
tracks is specified by including the SRCHM operand in the DTFDA for your file. The search of multiple
tracks continues up to the end of the cylinder even if part of the cylinder may be assigned to a different
file.

If an ID is to be returned, DAM passes to your program the ID of the record following the one just written.
If the search multiple-tracks option is specified, DAM returns the ID of the record just written.

Write Verification
If you specify VERIFY=YES in the DTFDA macro for your file, DAM performs a read operation after every
write operation with any of the options ID, KEY, or AFTER. DAM thus checks whether the recorded data is
valid.

Clearing a Track
You can erase the contents of a track by issuing a WRITE macro in the format:

WRITE filename,RZERO

Your program must supply the cylinder address and the track address. DAM expects this information in
the area defined by the SEEKADR operand of the DTFDA macro for your file. DAM then:

206 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

1. Locates this track.
2. Resets the unused-bytes count (in record zero) to reflect an empty track.
3. Erases the remainder of the track.

Use this form of the WRITE macro as an initialize-disk function when your program reuses only a certain
portion of a volume.

Completion of a Read or Write Operation
In your program, issue a WAITF macro to check whether a read or write operation is complete. The macro
tests for exceptional conditions. It passes error/status information to the two-byte field whose name you
specified in the ERRBYTE operand of the DTFDA macro for your file (the field itself must be defined in your
program).

The WAITF macro requires only one operand: the name of the file for which an I/O request was issued.
You can specify this operand as a symbol or in register notation.

Issue the macro before your program attempts to process an input record that has been read or starts
to build another output record for your file. The macro ensures that your program does not regain control
until the data transfer is complete.

Non-Data Device Operation
By a CNTRL macro with filename,SEEK specified, your program can cause access movement to begin for
the next read or write operation. While the arm is moving for a SEEK, your program can process data or
request I/O operations on other devices.

Note: Issuing a CNTRL macro to seek a track address may have no effect if two or more programs access
the same volume, not necessarily the same file. A seek requested by one program may be made useless
by another that issues an I/O request on the same volume.

DAM seeks the track that contains the next block for that file without a need to supply a track address.
If the CNTRL macro is not used, DAM performs the seek operation when your program issues a READ or
WRITE macro. The CNTRL macro with the SEEK operand returns control to your program as soon as the
operation is initiated.

Error Handling
DAM returns to your program I/O-error codes in the two-byte field whose name you specified with the
ERRBYTE operand of the DTFDA macro for your file. These codes can be tested by your program after the
attempted transfer of a record is complete. That is, after DAM has returned control following the WAITF
macro for the I/O request. After having examined the codes, your program can issue another I/O request
macro.

One or more of the error status indication bits can be set on by DAM.

The ERREXT operand enables DAM to indicate to your program (in the ERRBYTE field) irrecoverable I/O
errors (occurring before a data transfer takes place).

An explanation of the bits in the ERRBYTE field follows.

Byte 0 of ERRBYTE
Bits

Meaning / Conditions for Setting to 1
0

Reserved.
1

Wrong-length record. This bit is set on

• For fixed-length records when:

Appendix B. Direct Access Method (DAM) 207

– A READ KEY or WRITE KEY is issued and the length of the key differs from the length specified by
KEYLEN=n. No data is transferred.

– A READ KEY is issued and the data length differs from the specified length (BLKSIZE minus
KEYLEN, or BLKSIZE minus KEYLEN plus 8 if AFTER=YES was specified).

– A READ ID is issued, and the length of the record (including key if KEYLEN was specified) differs
from the specified length BLKSIZE minus KEYLEN plus 8 if AFTER=YES was specified).

– A WRITE KEY is issued, and the data length of the record is greater than specified in the count
field of the record on disk. The original record position is filled; the remainder of the updated
record is truncated and lost.

– A WRITE ID is issued, and the record length is greater than specified in the count field of the
record on disk. The original record positions are filled; the remainder of the updated record is
truncated and lost.

If an updated record is shorter than the original record, DAM pads this record with binary zeros to
the original length. The wrong-length-record bit is not set on.

• For undefined records when:

– A READ KEY or WRITE KEY is issued, and the length of the key differs from the length specified by
KEYLEN=n. No data is transferred.

– A READ KEY is issued and the data length is greater than the maximum data size (BLKSIZE minus
KEYLEN, or BLKSIZE minus KEYLEN plus 8 if AFTER=YES was specified). DAM supplies the actual
data length, of the record read, in the register specified by the RECSISE operand.

– A READ ID is issued and the length of the record (including key if KEYLEN was specified) is greater
than the maximum record length (BLKSIZE, or BLKSIZE minus 8 if AFTER=YES was specified).
DAM supplies the actual data length, of the record read, in the register specified by the RECSISE
operand.

– A WRITE (KEY,ID, or AFTER) is issued, and the data length (loaded into the RECSIZE register) of
the record is greater than the maximum data size (BLKSIZE minus KEYLEN, or BLKSIZE minus
KEYLEN plus 8 if AFTER=YES was specified). The length of the record written is equal to the
maximum data size.

– A WRITE KEY is issued and the data length (loaded into the RECSIZE register) is greater than
specified in the count field of the record on disk. The original record position is filled; the
remainder of the updated record is truncated and lost.

– A WRITE ID is issued, and the record length is greater than specified in the count field of the
record on disk. The original record positions are filled, and the remainder of the updated record is
truncated and lost.

If an updated record is shorter than the original record, DAM pads this record with binary zeros to
the original length. The wrong-length-record bit is not set on.

• For variable-length records when:

– A READ is issued and the block length in the block descriptor is greater than the maximum value
specified by the BLKSIZE operand.

– A nonformatting WRITE is issued and the record is larger than the record on disk. The record is
written with the low-order bytes truncated. The indicator is also set on if the record is shorter
than the record on disk, but the low-order bytes of the record on disk are padded with binary
zeros.

– A formatting WRITE is issued and the block length in the block descriptor is greater than the
maximum value specified by the BLKSIZE operand. The record is written with the low-order bytes
truncated.

• For spanned records when:

– A READ is issued and the logical record is larger than the value specified by BLKSIZE minus 8.
Only the specified number of bytes has been read.

208 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

– A nonformatting WRITE is issued and the record length is not the same as that of the record being
processed. If the specified length is longer than the record being processed, then the low-order
bytes are ignored. If the specified length is less than the record being processed, it is padded with
binary zeros.

– A formatting WRITE is issued and the size of the logical record is larger than the size specified
with BLKSIZE minus 8. The record is truncated to the specified size.

– The first record on disk found by DAM is not an only or first segment. The no-record-found
indicator is also set on.

– Another first segment is found by DAM after the first segment is read out and before a middle or
last segment.

2
Non-data-transfer error

The block in error was neither read nor written. If ERREXT is specified and this bit is off, transfer took
place. Your program should check for possible other errors in the ERRBYTE field.

3
Reserved.

4
No space available

Applies only when the WRITE AFTER form of the macro is used for a file. The bit is set on if DAM
determines that there is not enough space left on the track to write the record. The record is not
written.

For a spanned record the no-room-found condition is set if:

• At least one data byte does not fit on the specified track in addition to the key (if any) and the 8-byte
control field, or

• Any successive tracks needed transfer the record are not completely empty.

5-6
Reserved.

7
Reference outside extents

The relative address supplied by the program is outside the extent area of the file. No I/O activity has
been started, and the remaining bits should be off. If IDLOC is specified, DAM sets the field to all 9s
for a zoned decimal ID and to X'FFFF' for a hexadecimal ID.

Byte 1 of ERRBYTE
Bits

Meaning / Conditions for Setting to 1
0

Data check in count area

This is an irrecoverable I/O error.

1
Track overrun

The number of bytes for the track exceeds the theoretical capacity.

2
End of cylinder

Is set on when SRCHM is specified for READ KEY or WRITE KEY and end of cylinder is reached before
the desired record is found. This bit is turned on also if IDLOC=name has been specified and the

Appendix B. Direct Access Method (DAM) 209

record to be read or written is the last one of the cylinder. However, the address returned by DAM is
that of the first record of the next cylinder.

3
Data check when reading key or data

This is an irrecoverable I/O error.

4
No record found

A search for an ID or key is requested and DAM cannot find the requested record. Applies to both
READ and and WRITE requests. May be caused by these conditions:

• The record being searched for does not exist in the file.
• The record cannot be found because of a failing seek.

For a spanned record, this bit is set on if the first physical record found by DAM is not the first or only
segment.

5
End of file

Applies only if the record to be read has a data length of zero. If IDLOC is specified, DAM sets the field
to all 9s for a zoned decimal ID and to X'FFFF' for a hexadecimal ID. The bit is set on after all the
data records have been processed. For example, in a file of n data records, the bit is set on when your
program reads the record n+1, the end-of-file record. This bit is set on also when:

• DAM finds an end-of-volume marker. Your program must determine whether this bit means end of
file or end of volume.

• DAM has successfully processed a WRITE AFTER request that specified EOF.

6
End of volume

The bit is set on if the next record ID (n+1,0,1) that is returned on end of the cylinder is higher than
the volume address limit. If both the end-of-cylinder and end-of-volume indicators are set on and
IDLOC is specified, DAM sets the IDLOC field to all 9s for a zoned decimal ID and to X'FFFF' for a
hexadecimal ID.

7
Reserved.

Closing the File
This section concludes the discussion of programming with the macros available for direct processing of
the records of a file.

In your program, use the CLOSE macro after the processing of the file is complete. The macro ends the
association of the logical file defined in your program with your file of data on disk.

The CLOSE macro deactivates a file that was previously opened with an OPEN macro for the file. If trailer
labels are specified, DAM writes them on output and makes them available for checking by your program
on input.

A file may be closed at any time by issuing this macro. Once your program has issued a CLOSE macro for a
file, it cannot issue any further I/O request for the file until it is reopened.

Use CLOSER if the file was activated by an OPENR macro.

210 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Appendix C. Processing a File with Physical IOCS
(PIOCS)

Your program can access a file by using PIOCS macros such as EXCP and CCB. However, a file must first
be defined by the DTFPH macro, if this is a file on disk or on tape with standard labels. You must define a
file on disk by way of the DTFPH macro. For example, if checkpoint records are to be written into this file.
The information in this appendix is limited to the access of such files.

A logic module is not required. However, your program must include a channel program for the file that is
to be accessed. You define the address of this channel program in the CCB macro for the file.

In PIOCS, the logical unit name is specified in the CCB or IORB and also in the DTFPH macro. In addition,
it is specified in the EXTENT job control statement. If more than one of these specifications is used, then:

• The specification in the EXTENT statement overrides the specification in the DTFPH macro.
• The specification in the CCB or IORB macro overrides the specification in an EXTENT statement and in

the DTFPH macro.

Figure 71 on page 211 shows the relationship between the source program and the job control I/O
assignment.
 ┌──────── Source Program ────────┐ ┌─────── Job Control ──────┐

 ...
 EXCP ccbname ───┐
 ... │
 ┌───────────────────────────┘
 ↓ ...
 ccbname CCB SYS001,... ─────────→ ASSGN SYS001,181

Figure 71. Relationship Between Source Program and Job Control I/O Assignment

After a file has been defined by a DTFPH macro, the imperative macros can be used to operate on the file.
Imperative macros are available for opening, processing, and closing a file.

Opening the File
The OPEN macro activates a file that is defined by a DTFPH macro.

The macro associates the logical file as defined in your program with a certain file of data on a disk
volume, for example. The file remains active until your program issues a CLOSE macro for the file.

If OPEN attempts to activate a file whose device is unassigned, IOCS cancels the job. If the device is
assigned IGN, OPEN does not activate the file. Instead, OPEN sets on bit 2 of byte 16 of the DTF table to
indicate that the file is inactive. Do not attempt any I/O operations for an inactive file.

In your program, you can open up to 16 files with one OPEN macro. These files may use any combination
of access methods. You specify the name of the file to be opened either symbolically or by using register
notation.

If, for a file on disk or tape, you plan to process user-standard labels (UHLn or UTLn) or nonstandard tape
labels, you must provide the information for checking or building the labels. If this information is to be
retrieved from another input file, your program must open that file before it opens the disk or tape file. Do
this by either:

• Specifying the name of the input file ahead of the tape or disk file in the same OPEN, or
• Issuing a separate OPEN for the input file preceding the open for your tape or disk file.

If an output file on tape is specified to have standard labels and OPEN finds no volume label, PIOCS
writes a message to the console. Your operator can then supply a volume serial number for PIOCS to write
a volume label onto the tape.

© Copyright IBM Corp. 1990, 2015 211

The actions of PIOCS in response to an OPEN macro vary slightly for the types of files as described below.

Disk Volumes – Output

Single Volume Mounted
For the volume, OPEN checks the VOL1 label and the extents specified in the EXTENT job control
statements:

• The extents must not overlap each other.
• If user-standard header labels are written, the first extent must be at least two tracks long.
• Extents of type 1 and 8 are valid for a CKD disk; only extents of type 1 are valid for an FBA disk.

OPEN checks all the labels in the VTOC to ensure that the file to be created does not destroy a file whose
expiration date is still pending. After this check, OPEN creates the standard label(s) for the file and writes
the label(s) into the VTOC.

To create your own user-standard header labels (UHLn) for the file, you must include the LABADDR
operand in the DTFPH macro. OPEN reserves the first track of the first extent for these labels and gives
control to your label routine. When the processing of user-standard labels is complete, the first extent of
the file can be used.

When all processing for an extent is complete, your program must issue another OPEN for the file to make
the next extent available. When the last extent on the last volume of the file has been processed, the next
OPEN does one of the following:

• If an end-of-extent exit routine was defined to PIOCS (by the DTFPH operand EOXPTR=name), OPEN
passes control to this routine. In addition, OPEN stores the character F at filename+30. Your exit routine
can check this byte.

• If an end-of-extent routine is not defined, OPEN issues a message to the console. Your system operator
now can either:

– Cancel the job, or
– Supply an extent and have the system continue processing the job.

If the system provides DASD file protection, only the extents opened for the mounted volume are
available to your program.

All Volumes Mounted
Each volume of your file is opened before the file is processed.

For each volume, OPEN checks the standard VOL1 label and checks the extents specified in the EXTENT
job control statements for the following:

1. The extents must not overlap each other.
2. Only extents of type-1 can be used.
3. If user-standard header labels are created, the first extent must be at least two tracks long.
4. All volumes of a file must be of the same type and model.

OPEN checks all the labels in the VTOC to ensure that the file to be created will not write over a file that
has not yet expired. After this check, OPEN creates the standard label(s) for the file and writes the label(s)
in the VTOC.

If you wish to create your own user-standard header labels for the file, include the LABADDR operand
in the DTF. OPEN reserves the first track of the first extent for these labels and gives control to your
label routine. When your program has built the last label, return control to OPEN by issuing a LBRET 1
macro. OPEN then continues to open the next volume. After all volumes are opened, the file is ready for
processing.

212 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

If you specified the XTNTXIT operand in the DTFPH macro for the file, OPEN gives control to your
extent-exit routine. OPEN passes to this routine the address of a 14-byte extent information area in
register 1. Your program can save the contents of this area and use the information later on for specifying
record addresses. If your disk file is file protected, your program cannot write into any extents while your
XTNTXIT routine has control.

Disk Volumes – Input

Single Volume Mounted
OPEN is required only if it is desirable to have the standard labels for the file to be checked.

All Volumes Mounted
When all volumes containing the input file are online and ready at the same time, each volume is opened,
one at a time, before any processing is done. OPEN checks for each volume:

• The extents specified in the EXTENT job control statements
• The standard VOL1 label.
• The file label(s) in the VTOC.

If LABADDR is specified, OPEN makes the user-standard header labels (UHL) available to your program
for checking, one after the other, one at a time. When checking is complete, return control to OPEN by
issuing the LBRET 2 macro, which opens the next volume. After all volumes are opened, the file is ready
for processing.

If you specified the XTNTXIT operand in your DTFPH macro, OPEN gives control to your extent-exit
routine. OPEN passes to this routine the address of a 14-byte extent information area in register 1.
Your program can save the contents of this area and use the information later on for specifying record
addresses.

Processing of User Labels and Extent Information
This section applies to disk and tape devices for the processing of user labels; it applies to disk devices for
the processing of extent information.

To do this processing, your program must include a routine whose address you define in your DTFPH
macro by the operand
LABADDR=name

For the processing of labels.
XTNTXIT=name

For the processing of extent information.

Checking of User-Standard Labels on Disk
IOCS checks only header labels; it does not check trailer labels.

It passes labels to your program, one after the other and one at a time, until the maximum allowable
number is read and updated, or until your program indicates that it wants no more. In your label routine,
use:

• LBRET 3 if you want IOCS to update (rewrite) the label just read and pass the next label.
• LBRET 2 if you want IOCS to read and pass the next label.
• LBRET 1 if none of the remaining labels (if any) are to be checked.

If IOCS finds an end-of-file record while your program uses LBRET 2 or LBRET 3, IOCS ends the checking
of labels.

Appendix C. Processing a File with Physical IOCS (PIOCS) 213

Writing of User-Standard Labels on Disk
In your routine, build the labels, one at a time and one after the other. Each time you have finished
building a label, return control to IOCS to write the label. To return control, use:

• LBRET 2 if you wish to regain control after IOCS wrote the label.
• LBRET 1 to stop writing labels before the maximum number of labels is written.

If IOCS finds that the maximum number of labels has been written, IOCS ends further processing of
labels.

Checking of Extents
For an input file with all volumes mounted, your program can process your extent information. After an
extent is processed, use in your XTNTXIT routine:

• LBRET 2 to have IOCS pass to your routine the information for the next extent.
• LBRET 1 to return control to IOCS when extent processing is complete.

Checking of User-Standard Labels on Tape
Physical IOCS reads and passes the labels to your LABADDR routine, one after the other and one at a
time. IOCS stops passing labels when either:

• It finds a tapemark, or
• You indicate to IOCS that you want no more labels. To do this, return control to IOCS by using LBRET 1.

Use LBRET 2 if you want to process the next label.

Writing of User-Standard Labels on Tape
In your LABADDR routine, build the labels, one after the other and one at a time. Each time you have
completed building a label, return control to IOCS by a LBRET 2 macro. This causes IOCS to write the
label.

Note: Your program must accumulate the correct block count, if this is desired. Move this count (for
inclusion in the standard trailer label) to the four-byte field named filenameB. Provide this count in
binary form.

Use LBRET 1 to have PIOCS end the processing of labels.

Writing or Checking of Nonstandard Tape Labels
In your LABADDR routine, you must process all your nonstandard labels at once. Use LBRET 2 after all
label processing is completed and you want to return control to IOCS.

Reading and Writing of Records
An I/O request to PIOCS requires, in your program:

• A channel program of one or more CCWs
• An I/O control block (CCB or IORB) that points to the first (or only) CCW of your channel program
• An execute-channel-program (EXCP) macro referring to the I/O block.

Your program must wait for completion of the requested I/O before it can process the data read (on input)
or prepare new data for being written (on output).

214 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

The Command Control (I/O-Request) Block
For the I/O device to be accessed, PIOCS requires that your program includes a command control block
(CCB) or an I/O request block (IORB). PIOCS uses the block to communicate with your program about
such things as the status of the device and the operations to be performed.

The CCB macro generates a CCB of 16 or 24 bytes. Similarly, the IORB and GENIORB macros generate
an IORB. An IORB is the same as a CCB, except that bytes 6 through 12 and 16 through 23 are reserved
for use by IOCS. Using the IORB or GENIORB macros instead of the CCB macro allows you to specify
additional options such as areas to be page-fixed. This frees the system from having to find out which
areas are to be fixed.

A CCB (or IORB) macro cause the control block to be assembled into your program. The GENIORB macro
causes the control block to be set up while your program runs. See z/VSE System Macros Reference for
the format of the CCB, IORB, and GENIORB macros and for the layout and contents of a CCB or an IORB
macro. The publication describes in detail the transmission-information and user-option bits in bytes 2
and 3 of these blocks.

Only some of the user-option bits can be set on when you use the IORB or GENIORB macros; you do this
by specifying the IOFLAG operand. By way of the CCB macro you can set any or all of the option bits. If
more than one option bit must be set, use the sum of the values. For example, to set on user option bits 3,
5, and 6 of byte 2, use X'1600':

 X'1000' + X'0400' + X'0200' = X'1600'

For certain I/O devices, certain user option bits may have to be set on. Assume a CCB for a disk or a tape
device, and your program is to receive control on a read data check. In this case, option bit 6 of byte 2
(return) must be set on.

If command chaining is used in the channel programs for these devices, option bit 7 of CCB byte 3
(command chain retry) must also be set on.

If your program has its own error routine (bit 7 of CCB byte 2 is on, or X'nnnn' in the CCB macro is X'0100')
but has not specified a sense address in the CCB macro, the system clears the sense information to
prevent possible deadlocks in the control unit. If then your error processing routine issues an EXCP to do
a sense operation, the information about the unit check has already been cleared.

The Execute Channel Program (EXCP) Macro
The macro initiates an I/O request. The assembler translates the macro into an SVC instruction with a
reference to the CCB or IORB whose address is specified in the macro. In the macro, this address can be
given as a symbol or in register notation.

PIOCS determines the actual device from the CCB (or IORB). It causes the channel program to be
processed as soon as the channel and the device are available. Interruptions for I/O completion are used
to control Start I/O requests, if the channel or device was busy when PIOCS processed the EXCP macro.

The WAIT Macro
PIOCS does not wait for the completion of an I/O operation. Instead, it returns control to your program
after having started the operation. Your program must ensure that it does not start processing a block of
data that has not been completely read, or start overwriting an output area before the previous block has
been completely written. To accomplish this, code a WAIT macro in your program. The macro must refer
to the applicable CCB or IORB. This reference can be by the symbolic name of the control block or by
register notation. The WAIT macro causes the system to check the status of the pending I/O operation.

When your program issues a WAIT, the supervisor gives control to another program until the traffic bit (bit
0 of byte 2) of the related CCB or IORB is turned on.

Figure 72 on page 216 shows the relationship between the macros CCB, EXCP, and WAIT. It shows also
the assembler instruction (not macro) CCW, which is included to give you a complete picture. An IORB or
a GENIORB macro can be used instead of the CCB in some cases.

Appendix C. Processing a File with Physical IOCS (PIOCS) 215

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

 ...
 EXCP MYCCB
 ...
 WAIT MYCCB
 ...
 ... Other (non-I/O related) code
 ...
 MYCCB CCB SYS015,MYCHPRG,...
 ...
 MYCHPRG CCW cc,data-addr,flags,count
 CCW cc,data-addr,flags,count
 CCW cc,data-addr,flags,count
 ...

Figure 72. Relationship Between the PIOCS Macros (No DTFPH Used)

Additional Macros
EXTRACT ID=PUB

The macro retrieves partition-related device information. By using the macro, your program can
determine the type of the device to which a logical unit is assigned.

For a given logical unit the macro returns physical-unit-block (PUB) information. To interpret this
information, use the mapping DSECT generated by the IJBPUB macro in your program.

SECTVAL
The macro calculates the sector value of the address of the requested record on the track of a disk
device. The macro returns this value in register 0.

The system calculates this value from the information supplied by your program: data length, key
length, record number, and the device type.

You need the macro if your program makes use of rotational position sensing (RPS).

Forcing an End-of-Volume Condition
It might be desirable to stop the processing of records for a tape file before IOCS detects that the physical
end of the volume is near. To do this, issue:

• The FEOV (force end of volume) macro if the associated tape drive is assigned to a programmer logical
unit. The macro indicates to IOCS that:

1. No more records of your tape file are to be read from or written to the currently used volume.
2. More records of the same logical file are to be read from or written to another volume.

If also standard labels are to be processed, FEOV can be issued for output data files only. In this case,
FEOV:

1. Writes a tapemark.
2. Writes the standard trailer label.
3. If a label-exit routine is specified (by the LABADDR=name operand), writes any user-standard trailer

labels.

When the new volume is mounted and ready for output, PIOCS writes the standard header label and
user-standard header labels, if any.

• The SEOV (system end-of-volume) macro if the associated tape drive is assigned to SYSLST or SYSPCH.
The macro:

1. Writes a tapemark.
2. Rewinds and unloads the tape.
3. Checks for an alternate tape. If it cannot find an alternate tape, IOCS writes a message to the

console. The operator can now mount a new tape on the same drive and continue. If it finds an
alternate tape, IOCS opens the new tape and makes it ready for processing.

216 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

To use this macro, your program must check for the end-of-volume condition in the associated CCB.

Closing the File
The CLOSE macro is used to deactivate any file that was previously opened. Console files, however,
cannot be closed.

The macro ends the association of the logical file defined in your program with a file of data on an I/O
device.

No further I/O requests should be issued for a closed file until it is opened again.

Up to 16 files can be closed by one macro by supplying additional file names as operands. Instead of
coding the name of the file that is to be closed, you can use ordinary register notation. Your program must,
before it issues the macro, load the address of the stored name of the file into the specified register.

Hints for Programming
The following sections discuss some of the problems that you might encounter when you use physical
IOCS to code some of your program's input and output. Some restrictions are also mentioned.

LIOCS Functions for Processing with PIOCS
In general, your program must provide all of the logical functions that are normally provided by LIOCS.
However, your program must make use of LIOCS if:

• The file resides on disk.
• The file resides on tape and requires the processing of labels.

For such files, LIOCS performs label processing as usual in response to the OPEN and CLOSE macros. In
addition, your program can issue the FEOV macro for volume switching on magnetic tape output files.

If the DTFPH macro is used, a program might look slightly different from the example that is given in
Figure 72 on page 216. As mentioned earlier, the DTF table contains the CCB in the first 16 bytes, so that
the EXCP and WAIT macros can now refer to the name of the DTFPH macro. The DTFPH macro in turn
must include the operand CCWADDR=name so that the CCB has the proper reference to the first CCW of
the channel program that is to be used. This is shown in Figure 73 on page 217.

 PIOCSFL DTFPH CCWADDR=FRSTCCW,DEVADDR=SYS011,...
 ...
 OPEN PIOCSFL
 ...
 EXCP PIOCSFL
 ...
 WAIT PIOCSFL
 ...
 CLOSE PIOCSFL
 ...
 FRSTCCW CCW cc,data-addr,flags,count
 CCW cc,data-addr,flags,count
 ...

Figure 73. Relationship Between DTFPH and Other PIOCS Macros

Command-Chain Retry
For information about the CCW format and the concepts of data and command chaining, refer to your
Principles of Operations publication.

You can use the command-chain-retry option for your channel programs by setting on the command-
chain-retry bit in the CCB. If an error involving a retry occurs, the retry begins with the CCW executed last.
If the bit is off, the entire channel program is retried.

To make use the command-chain-retry option, your program must move the address of the first CCW of
the channel program to bytes 9 - 11 of the CCB before it issues an EXCP. This ensures that the CCB always

Appendix C. Processing a File with Physical IOCS (PIOCS) 217

contains the correct CCW address. Bytes 9 - 11 are modified by PIOCS for a retry after an error with the
address of the CCW to be retried. These bytes are not reset to their original contents.

A command chain might be broken by an exceptional condition that does not cause PIOCS to restart the
channel program (wrong-length record or unit exception, for example). In this case, you can determine
the address of the CCW executed last and, if necessary, restart the channel program at that point. To
obtain this address, subtract 8 from the address in bytes 13 - 15 of the CCB.

On a 1403 printer, a command chain is broken after sensing channel 9 or 12. When using command
chaining on such a printer, your program should therefore always check whether the entire CCW chain has
been executed.

Do not use the command-chain-retry bit for:

• Reading multiple blocks from SYSIPT or SYSRDR.
• Channel programs to read from or write to a disk.

Channel Indirect Data Addressing
This is specified by a bit in the CCW. When on, the bit indicates that the data address in the CCW points
to a list of words called indirect-data-address words (IDAWs). Each of these words contains an absolute
address designating a data area in storage.

When the indirect-data-addressing bit in the CCW is on, bits 8 - 31 of the CCW point to the first IDAW to
be used for data transfer. Additional IDAWs, if needed for completing the data transfer for the CCW, follow
the first IDAW, one after the other. The number of IDAWs needed for a CCW is determined by the count
field of the CCW and by the data address in the first IDAW.

Make use of channel-indirect-data addressing only if you use also EXCP REAL.

Data Chaining
If you use data chaining, all of the CCWs in your channel program should include the command code for
the operation that is to be performed. This ensures proper I/O error recovery.

When no error occurs, IOCS ignores the command code if a preceding CCW has the data chaining bit
on. In case of an error, however, recovery frequently depends on the command being executed, and the
command code in the last CCW is examined. In such a case, a 'dummy' command code prevents error
recovery.

Channel Program for a File on a CKD Disk
Always start your channel program with a full seek (command code X'07'). If the channel program
includes embedded seeks, they should be full seeks as well.

A program using embedded full seeks cannot run with DASD file protection, nor can it take full advantage
of the seek separation feature. With DASD file protection, an embedded full seek causes the program to
be canceled.

The seek separation feature initiates a seek and separates it from the channel program chain. Thus, the
channel is available for other input or output operations. However, the feature works only for the first
seek of a channel command chain. When executing a channel program, the system's supervisor sets up a
channel program with three commands (see also Figure 74 on page 219):

1. A Seek that is identical to the user's seek.
2. A Set File Mask that prevents other X'07' seeks from being executed.
3. A Transfer in Channel (TIC) command that transfers control to the command following the user's seek.

218 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

┌─────────────────── Supervisor ───────────────────────┐
│ ... │
│ ┌──→ SIO Channel program set up │
│ │ SEEK by the supervisor to pro- │
│ │ ... tect the disk device. │
│ │ TIC ─────────┐ │
│ │ ... │ │
└─┼─────────────────│──────────────────────────────────┘
 │ │
┌─│─────────────────│── Application Program ───────────┐
│ │ ... │ │
│ └─── CCB ←───┐ │ │
│ ... │ │ │
│ EXCP ───┘ │ │
│ ... │ │
│ ┌─────────────────┘ │
│ │ ... │
│ │ Seek CCW User-written channel program, │
│ └──→ Search-ID CCW which is part of the applica- │
│ TIC *-8 CCW tion program. │
│ Write CCW │
└──┘

Figure 74. Example of Channel Programming a File-Protected CDK DASD File

RPS (Rotational Position Sensing)
If a system has been generated to support RPS, the user can include the channel commands set sector
and read sector for DASDs supporting the feature. These commands can be used (1) to determine the
distance between the requested record and the read/write head and (2) to free the channel for other
operations until the requested record is under the read/write head.

The SECTVAL macro can be used to calculate a sector value for a specified record.

Channel Program for an FBA Device
Access to data on an FBA disk is accomplished by a channel program in three basic steps:

1. The execution of a DEFINE EXTENT command (command code X'63'). There is no SEEK CCW for FBA
devices.

The DEFINE EXTENT command defines the location and size of a data extent; thus it establishes the
bounds on disk within which subsequent chained commands are permitted to operate. The command
includes a file protect mask for controlling the execution of following commands.

2. The execution of a Locate command (command code X'43'). Iit specifies the location and number
of addressable blocks of the data space to be processed and the operation (read or write) to be
performed.

3. When the storage device is positioned for a data transfer, a READ or WRITE command causes the
transfer of data between the storage device and main storage. A Read or Write command must be
chained from a Locate command. If the chaining prerequisite is not satisfied, the command is rejected
with a unit check (command reject). Although Read (Write) commands may not be command chained
from another Read (Write), data chaining of Read (Write) CCWs is permitted. However, data chaining
within a block may cause overruns or chaining checks.

Console (Printer-Keyboard) Buffering
If a printer-keyboard is assigned to SYSLOG, you can increase throughput on output for records that
do not exceed 80 characters. Start the I/O command and return to your program before the output is
completed.

Blocks are always printed in a FIFO (first-in-first-out) order, regardless of whether or not the output
blocks are buffered (queued on an I/O completion basis).

Console buffering is performed on output only if:

• The block to be written is not longer than 80 characters.
• No data chaining or command chaining is performed.

Appendix C. Processing a File with Physical IOCS (PIOCS) 219

• The CCB is not set to:

– Accept irrecoverable I/O errors
– Post at device end
– Pass control to a user error routine
– Provide sense information.

Alternate Tape Switching
Alternate tape drives cannot be used on input from tape processed by PIOCS.

On output, automatic alternate tape drive switching can be done through the DTFPH and FEOV macros.
The FEOV macro writes the trailer labels and deactivates the currently accessed volume. IOCS expects
the next (new) volume to be mounted on the alternate drive. IOCS writes header labels as required on the
new volume.

Bypassing of Embedded Checkpoints on Tape
Checkpoint information is written as a set of records as follows:

• One 20-byte header record
• One status descriptor record containing system-status information.
• As many records as are needed to save the contents of the selected parts of virtual storage.
• One 20-byte trailer record.

Depending on whether the file is processed forward or backward, the header or trailer record can be used
to recognize and bypass checkpoint sets. The format of both the header and the trailer record is:
Bytes

Contents
00-11

///bCHKPTb// – Note the two blanks represented by the letter b, one before and one after the string
CHKPT.

12-13
The number (in binary) of checkpoint records containing program data.

14-15
The total number (in binary) of checkpoint records.

16-19
The serial number of the checkpoint taken.

Checkpoint information can always be identified by the first 12 bytes of the header or trailer record
(depending on whether the file is read forward or backward).

If the file is read forward, the checkpoint header record occupies the 20 high-order bytes of the I/O area.
If the file is read backward, the checkpoint trailer record occupies the 20 low-order bytes of the I/O area.

To bypass checkpoint information:

1. Go into a read loop, until a checkpoint trailer record (reading forward) or header record (reading
backward) is encountered.

2. Extract bytes 14 and 15 from the header or trailer record and space forward or backward that number
of records.

You can use read commands or forward-space commands, whichever is more convenient.

Restrictions for the IBM 3800 Printing Subsystem
Before using PIOCS on this device, consult the IBM 3800 Programmer's Guide about restrictions that
should be observed when you code your channel programs. This prevents errors during subsequent jobs.

220 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Appendix D. Using System Control Macros in
Reenterable Programs

A reenterable program, if properly coded, can be used concurrently by several tasks without sacrificing
the integrity of its instructions or data areas.

Data areas that may be modified by a reenterable program must be unique to each task using that
program. Examples of such areas are save areas, I/O areas, and control blocks. Consider the program
shown below:

 Column 72
 ATTACH SUBTASK,SAVE=LOCSAV, X
 ECB=LOCECB, X
 ABSAVE=LOCSAVAB
 ...
 WAIT LOCECB
 ...
LOCSAV DS 16D
LOCSAVAB DS CL(SVUOLDLN)
LOCECB DC F'0'
 ...
 MAPSAVAR Mapping of exit save area

A task that executes the above ATTACH macro initializes the save area (LOCSAV) for the subtask to be
attached. After that subtask has started processing, it can be interrupted. While the subtask remains in
the wait state, another task may be dispatched and execute the macro. Because only one subtask save
area exists, this other task, in initializing the save area, would destroy whatever was saved there when the
interrupt occurred.

As coded in the example, the ATTACH macro is not reenterable. The involved data areas are not unique to
the tasks running the macro.

A commonly used method of isolating data areas for individual tasks is to set up these areas outside the
program's boundaries. Through the GETVIS macro, a task can dynamically acquire storage, which it can
use as a data area. This data area can be kept unique to the task that uses it.

Dynamically acquired storage areas are addressable via registers. Figure 75 on page 222 shows how to
dynamically acquire and address storage and how to refer to the individual fields of that storage in the
ATTACH macro.

© Copyright IBM Corp. 1990, 2015 221

 Column 72
T06BMAIN CSECT
 ...
DYNSTOR DSECT , DYNAMIC STORAGE AREA
DYNPARM DS CL64 REENTERABLE MACRO PARM AREA
DYNSAV DS CL128 SUBTASK SAVE AREA
DYNSAVAB DS CL(SVUOLDLN) SUBTASK AB-EXIT SAVE AREA
DYNECB DS F SUBTASK ECB
DYNSTORL EQU *-DYNSTOR LENGTH OF DYN STORAGE
 MAPSAVAR MAPPING OF EXIT SAVE AREA
T06BMAIN CSECT
 ...
 LA 0,DYNSTORL LENGTH FOR GETVIS
 GETVIS ADDRESS=(10)
 ...
 USING DYNSTOR,10 MAKE DYNAMIC STORAGE
* ADDRESSABLE THRU BASE REG.10
 LA 7,DYNSAV
 LA 8,DYNECB
 LA 9,DYNSAVAB
 ATTACH SUBTASK,SAVE=(7),ECB=(8),ABSAVE=(9), X
 MFG=(10)
 ...

Note: MFG stands for "Macro Format Generate."

Figure 75. Dynamically Acquiring Storage and Addressing this Storage

The MFG operand in the macro causes VSE to dynamically build the parameter list outside the macro
expansion. The MFG operand points to this list, which is a 64-byte area that is provided by the program for
the execution of the macro.

For macros that allow the MFG operand to be specified, refer to z/VSE System Macros Reference.

Register notation as used in the preceding example can be costly and cumbersome to code. Each operand
uses a register and, in addition, each register has to be preloaded with the address of the corresponding
field.

Where indicated in the macro format (described in z/VSE System Macros Reference) , the operand can
be specified in the (S,address) notation rather than in register notation. The ATTACH macro is one of the
macros that allows you to do this:

 Column 72

 ATTACH SUBTASK, X
 SAVE=(S,DYNSAV), X
 ECB=(S,DYNECB), X
 ABSAVE=(S,DYNSAVAB), X
 MFG=(S,DYNPARM)

An operand that is written in (S,address) notation assembles like an S-type address constant: its object
code is an assembler instruction address in base register/displacement form. For example, for the above
ATTACH macro (assuming the example in Figure 75 on page 222), the reference:

• DYNSAV assembles into X'A040',
• DYNECB assembles into X'A0D0'.

Both addresses use the same base register: register 10.

With (S,address) notation, only one register is used, the one that serves as the base register for the
DSECT.

222 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1990, 2015 223

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the customer to write programs
to obtain services of z/VSE.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

IPv6/VSE is a registered trademark of Barnard Software, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and Conditions for Product Documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

224 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein. IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above
instructions are not being properly followed. You may not download, export or re-export this information
except in full compliance with all applicable laws and regulations, including all United States export laws
and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 225

226 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Accessibility

Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/VSE enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/VSE.
Consult the assistive technology documentation for specific information when using such products to
access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF) and should be compliant
with accessibility standards. If you experience difficulties when you use the PDF files and want to request
a web-based format for a publication, you can either write an email to s390id@de.ibm.com, or use the
Reader Comment Form in the back of this publication or direct your mail to the following address:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1990, 2015 227

228 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Glossary

This glossary includes terms and definitions for IBM z/VSE.

The following cross-references are used in this glossary:

1. See refers the reader from a term to a preferred synonym, or from an acronym or abbreviation to the
defined full form.

2. See also refers the reader to a related or contrasting term.

A

Access Control Logging and Reporting
An IBM licensed program to log all attempts of access to protected data and to print selected formatted
reports on such attempts.

access control table (DTSECTAB)
A table that is used by the system to verify a user's right to access a certain resource.

access list
A table in which each entry specifies an address space or data space that a program can reference.

access method
A program, that is, a set of commands (macros) to define files or addresses and to move data to and from
them; for example VSE/VSAM or VTAM.

account file
A disk file that is maintained by VSE/POWER containing accounting information that is generated by VSE/
POWER and the programs running under VSE/POWER.

addressing mode (AMODE)
A program attribute that refers to the address length that a program is prepared to handle on entry.
Addresses can be either 24 bits, 31 bits, or 64 bits in length. In 24 bit addressing mode, the processor
treats all virtual addresses as 24-bit values; in 31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values and in 64-bit addressing mode, the processor treats all virtual addresses as
64-bit values. Programs with an addressing mode of ANY can receive control in either 24 bit or 31 bit
addressing mode. 64 bit addressing mode cannot be used as program attribute.

administration console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed to
one particular console. Contrast this with the user console, which receives only those messages that are
directed to it, for example messages that are issued from a job that was submitted with the request to
echo its messages to that console. The operator of an administration console can reply to all outstanding
messages and enter all system commands.

alternate block
On an FBA disk, a block that is designated to contain data in place of a defective block.

© Copyright IBM Corp. 1990, 2015 229

alternate index
In systems with VSE/VSAM, the index entries of a given base cluster that is organized by an alternate
key, that is, a key other than the prime key of the base cluster. For example, a personnel file preliminary
ordered by names can be indexed also by department number.

alternate library
An interactively accessible library that can be accessed from a terminal when the user of that terminal
issues a connect or switch library request.

alternate track
A library, which becomes accessible from a terminal when the user of that terminal issues a connect or
switch (library) request.

AMODE
Addressing mode.

APA
All points addressable.

APAR
Authorized Program Analysis Report.

appendage routine
A piece of code that is physically located in a program or subsystem, but logically and extension of a
supervisor routine.

application profile
A control block in which the system stores the characteristics of one or more application programs.

application program
A program that is written for or by a user that applies directly to the user's work, such as a program that
does inventory control or payroll. See also batch program and online application program.

AR/GPR
Access register and general-purpose register pair.

ASC mode
Address space control mode.

ASI (automated system initialization) procedure
A set of control statements, which specifies values for an automatic system initialization.

attention routine (AR)
A routine of the system that receives control when the operator presses the Attention key. The routine
sets up the console for the input of a command, reads the command, and initiates the system service that
is requested by the command.

230 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

automated system initialization (ASI)
A function that allows control information for system startup to be cataloged for automatic retrieval during
system startup.

autostart
A facility that starts VSE/POWER with little or no operator involvement.

auxiliary storage
Addressable storage that is not part of the processor, for example storage on a disk unit. Synonymous
with external storage.

B

B-transient
A phase with a name beginning with $$B and running in the Logical Transient Area (LTA). Such a phase is
activated by special supervisor calls.

bar
2 GigyByte (GB) line

basic telecommunications access method (BTAM)
An access method that permits read and write communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD
A subtype of Large DASD that has a capacity of more than 64 K tracks and uses up to 10017 cylinders of
the disk.

block
Usually, a block consists of several records of a file that are transmitted as a unit. But if records are very
large, a block can also be part of a record only. On an FBA disk, a block is a string of 512 bytes of data. See
also a control block.

block group
In VSE/POWER, the basic organizational unit for fixed-block architecture (FBA) devices. Each block group
consists of a number of 'units of transfer' or blocks.

C

CA splitting
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R. In VSE/VSAM, to double a
control area dynamically and distribute its CIs evenly when the specified minimum of free space get used
up by more data.

Glossary 231

carriage control character
The fist character of an output record (line) that is to be printed; it determines how many lines should be
skipped before the next line is printed.

catalog
A directory of files and libraries, with reference to their locations. A catalog may contain other information
such as the types of devices in which the files are stored, passwords, blocking factors. To store a library
member such as a phase, module, or book in a sublibrary. See also VSE/VSAM catalog.

cell pool
An area of virtual storage that is obtained by an application program and managed by the callable cell
pool services. A cell pool is located in an address space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location
The place at which a computer system's control device, normally the systems console in the computer
room, is installed.

chained sublibraries
A facility that allows sublibraries to be chained by specifying the sequence in which they must be
searched for a certain library member.

chaining
A logical connection of sublibraries to be searched by the system for members of the same type (phases
or object modules, for example).

channel command word (CCW)
A doubleword at the location in main storage that is specified by the channel address word. One or more
CCWs make up the channel program that directs data channel operations.

channel program
One or more channel command words that control a sequence of data channel operations. Execution of
this sequence is initiated by a start subchannel instruction.

channel scheduler
The part of the supervisor that controls all input/output operations.

channel subsystem
A feature of z/Architecture that provides extensive additional channel (I/O) capabilities to IBM Z.

channel to channel attachment (CTCA)
A function that allows data to be exchanged

1. Under the control of VSE/POWER between two virtual VSE machines running under VM or
2. Under the control of VTAM between two processors.

character-coded request
A request that is encoded and transmitted as a character string. Contrast with field-formatted request.

232 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

checkpoint
1. A point at which information about the status of a job and the system can be recorded so that the job

step can be restarted later.
2. To record such information.

CICS (Customer Information Control System)
An IBM program that controls online communication between terminal users and a database.
Transactions that are entered at remote terminals are processed concurrently by user-written application
programs. The program includes facilities for building, using, and servicing databases.

CICS ECI
The CICS External Call Interface (ECI) is one possible requester type of the CICS business logic interface
that is provided by the CICS Transaction Server for z/VSE. It is part of the CICS client and allows
workstation programs to CICS function on the z/VSE host.

CICS EXCI
The EXternal CICS Interface (EXCI) is one possible requester type of the CICS business logic interface that
is provided by the CICS Transaction Server for z/VSE. It allows any BSE batch application to call CICS
functions.

CICS system definition data set (CSD)
A VSAM KSDS cluster that contains a resource definition record for every record defined to CICS using
resource definition online (RDO).

CICS Transaction Server for z/VSE
A z/VSE base program that controls online communication between terminal users and a database. This is
the successor system to CICS/VSE.

CICS TS
CICS Transaction Server

CICS/VSE
Customer Information Control System/VSE. No longer shipped on the Extended Base Tape and no longer
supported, cannot run on z/VSE 5.1 or later.

class
In VSE/POWER, a group of jobs that either come from the same input device or go to the same output
device.

CMS
Conversational monitor system running on z/VM.

common library
A library that can be interactively accessed by any user of the (sub)system that owns the library.

Glossary 233

communication adapter
A circuit card with associated software that enables a processor, controller, or other device to be
connected to a network.

communication region
An area of the supervisor that is set aside for transfer of information within and between programs.

component
1. Hardware or software that is part of a computer system.
2. A functional part of a product, which is identified by a component identifier.
3. In z/VSE, a component program such as VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored records, such as the data component or index

component of a key-sequenced file or alternate index.

component identifier
A 12-byte alphanumeric string, uniquely defining a component to MSHP.

conditional job control
The capability of the job control program to process or to skip one or more statements that are based on a
condition that is tested by the program.

connect
To authorize library access on the lowest level. A modifier such as "read" or "write" is required for the
specified use of a sublibrary.

connection pooling
Introduced with an z/VSE 5.1 update to manage (reuse) connections of the z/VSE database connector in
CICS TS.

connector
In the context of z/VSE, a connector provides the middleware to connect two platforms: Web Client and
z/VSE host, middle-tier and z/VSE host, or Web Client and middle-tier.

connector (e-business connector)
A piece of software that is provided to connect to heterogeneous environments. Most connectors
communicate to non-z/VSE Java-capable platforms.

container
Is part of the JVM of application servers such as the IBM WebSphere Application Server, and facilitates
the implementation of servlets, EJBs, and JSPs, by providing resource and transaction management
resources. For example, an EJB developer must not code against the JVM of the application server, but
instead against the interface that is provided by the container. The main role of a container is to act as
an intermediary between EJBs and clients, Is the host part of the VSE JavaBeans, and is started using
the job STARTVCS, which is placed in the reader queue during the installation of z/VSE. Runs by default
in dynamic class R. and also to manage multiple EJB instances. After EJBs have been written, they must
be stored in a container residing on an application server. The container then manages all threading and
client-interactions with the EJBs, and co-ordinate connection- and instance pooling.

234 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

control interval (CI)
A fixed-length area of disk storage where VSE/VSAM stores records and distributes free space. It is the
unit of information that VSE/VSAM transfers to or from disk storage. For FBA it must be an integral
multiple to be defined at cluster definition, of the block size.

control program
A program to schedule and supervise the running of programs in a system.

conversational monitor system (CMS)
A virtual machine operating system that provides general interactive time sharing, problem solving, and
program development capabilities and operates under the control of z/VM.

count-key-data (CKD) device
A disk device that store data in the record format: count field, key field, data field. The count field
contains, among others, the address of the record in the format: cylinder, head (track), record number,
and the length of the data field. The key field, if present, contains the record's key or search argument.
CKD disk space is allocated by tracks and cylinders. Contrast with FBA disk device. See also extended
count-key-data device.

cross-partition communication control
A facility that enables VSE subsystems and user programs to communicate with each other; for example,
with VSE/POWER.

cryptographic token
Usually referred to simply as a token, this is a device, which provides an interface for performing
cryptographic functions like generating digital signatures or encrypting data.

cryptography
1. A method for protecting information by transforming it (encrypting it) into an unreadable format, called

ciphertext. Only users who possess a secret key can decipher (or decrypt) the message into plaintext.
2. The transformation of data to conceal its information content and to prevent its unauthorized use or

undetected modification .

D

data block group
The smallest unit of space that can be allocated to a VSE/POWER job on the data file. This allocation is
independent of any device characteristics.

data conversion descriptor file (DCDF)
With a DCDF, you can convert individual fields within a record during data transfer between a PC and its
host. The DCDF defines the record fields of a particular file for both, the PC and the host environment.

data import
The process of reformatting data that was used under one operating system such that it can subsequently
be used under a different operating system.

Glossary 235

Data Interfile Transfer, Testing, and Operations (DITTO) utility
An IBM program that provides file-to-file services for card I/O, tape, and disk devices. The latest version is
called DITTO/ESA for VSE.

Data Language/I (DL/I)
A database access language that is used with CICS.

data link
In SNA, the combination of the link connection and the link stations joining network noes, for example, a
z/Architecture channel and its associated protocols. A link is both logical and physical.

data security
The protection of data against unauthorized disclosure, transfer, modification, or destruction, whether
accidental or intentional .

data set header record
In VSE/POWER abbreviated as DSHR, alias NDH or DSH. An NJE control record either preceding output
data or, in the middle of input data, indicating a change in the data format.

data space
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike an address space, a data space can hold only
user data; it does not contain shared areas, or programs. Instructions do not execute in a data space.
Contrast with address space.

data terminal equipment (DTE)
In SNA, the part of a data station that serves a data source, data sink, or both.

database connector
Is a function introduced with z/VSE 5.1.1, which consists of a client and server part. The client provides
an API (CBCLI) to be used by applications on z/VSE, the server on any Java capable platform connects a
JDBC driver that is provided by the database. Both client and server communicate via TCP/IP.

Database 2 (Db2)
An IBM rational database management system.

Db2-based connector
Is a feature introduced with VSE/ESA 2.5, which includes a customized Db2 version, together with VSAM
and DL/I functionality, to provide access to Db2, VSAM, and DL/I data, using Db2 Stored Procedures.

Db2 Runtime only Client edition
The Client Edition for z/VSE comes with some enhanced features and improved performance to integrate
z/VSE and Linux on z Systems.

Db2 Stored Procedure
In the context of z/VSE, a Db2 Stored Procedure is a Language Environment (LE) program that accesses
Db2 data. However, from VSE/ESA 2.5 onwards you can also access VSAM and DL/I data using a Db2
Stored Procedure. In this way, it is possible to exchange data between VSAM and Db2.

236 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

DBLK
Data block.

DCDF
Data conversion descriptor file.

deblocking
The process of making each record of a block available for processing.

dedicated (disk) device
A device that cannot be shared among users.

device address
1. The identification of an input/output device by its device number.
2. In data communication, the identification of any device to which data can be sent or from which data

can be received.

device driving system (DDS)
A software system external to VSE/POWER, such as a CICS spooler or PSF, that writes spooled output to a
destination device.

Device Support Facilities (DSF)
An IBM supplied system control program for performing operations on disk volumes so that they can
be accessed by IBM and user programs. Examples of these operations are initializing a disk volume and
assigning an alternative track.

device type code
The four- or five-digit code that is used for defining an I/O device to a computer system. See also ICKDSF

dialog
In an interactive system, a series of related inquiries and responses similar to a conversation between two
people. For z/VSE, a set of panels that can be used to complete a specific task; for example, defining a file.

dialog manager
The program component of z/VSE that provides for ease of communication between user and system.

digital signature
In computer security, encrypted data, which is appended to or part of a message, that enables a recipient
to prove the identity of the sender.

Digital Signature Algorithm (DSA)
The Digital Signature Algorithm is the US government-defined standard for digital signatures. The DSA
digital signature is a pair of large numbers, computed using a set of rules (that is, the DSA) and a set
of parameters such that the identity of the signatory and integrity of the data can be verified. The DSA
provides the capability to generate and verify signatures.

Glossary 237

directory
In z/VSE the index for the program libraries.

direct access
Accessing data on a storage device using their address and not their sequence. This is the typical access
on disk devices as opposed to magnetic tapes. Contrast with sequential access.

disk operating system residence volume (DOSRES)
The disk volume on which the system sublibrary IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing
An option that lets independent computer systems uses common data on shared disk devices.

disposition
A means of indicating to VSE/POWER how a job input or output entry is to be handled: according to its
local disposition in the RDR/LST/PUN queue or its transmission disposition when residing in the XMT
queue. A job might, for example, be deleted or kept after processing.

distribution tape
A magnetic tape that contains, for example, a preconfigured operating system like z/VSE. This tape is
shipped to the customer for program installation.

DITTO/ESA for VSE
Data Interfile Transfer, Testing, and Operations utility. An IBM program that provides file-to-file services
for disk, tape, and card devices.

DSF
Device Support Facilities.

DSH (R)
Data set header record.

dummy device
A device address with no real I/O device behind it. Input and output for that device address are spooled
on disk.

duplex
Pertaining to communication in which data can be sent and received at the same time.

DU-AL (dispatchable unit - access list)
The access list that is associated with a z/VSE main task or subtask. A program uses the DU-AL associated
with its task and the PASN-AL associated with its partition. See also “PASN-AL (primary address space
number - access list)” on page 250.

dynamic class table
Defines the characteristics of dynamic partitions.

238 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

dynamic partition
A partition that is created and activated on an 'as needed' basis that does not use fixed static allocations.
After processing, the occupied space is released. Dynamic partitions are grouped by class, and jobs are
scheduled by class. Contrast with static partition.

dynamic space reclamation
A librarian function that provides for space that is freed by the deletion of a library member to become
reusable automatically.

E

ECI
See “CICS ECI” on page 233.

emulation
The use of programming techniques and special machine features that permit a computer system to
execute programs that are written for another system or for the use of I/O devices different from those
that are available.

emulation program (EP)
An IBM control program that allows a channel-attached 3705 or 3725 communication controller to
emulate the functions of an IBM 2701 Data Adapter Unit, or an IBM 2703 Transmission Control.

end user
1. A person who makes use of an application program.
2. In SNA, the ultimate source or destination of user data flowing through an SNA network. Might be an

application program or a terminal operator.

Enterprise Java Bean
An EJB is a distributed bean. "Distributed" means, that one part of an EJB runs inside the JVM of a web
application server, while the other part runs inside the JVM of a web browser. An EJB either represents
one data row in a database (entity bean), or a connection to a remote database (session bean). Normally,
both types of an EJB work together. This allows to represent and access data in a standardized way in
heterogeneous environments with relational and non-relational data. See also JavaBean.

entry-sequenced file
A VSE/VSAM file whose records are loaded without respect to their contents and whose relative byte
addresses cannot change. Records are retrieved and stored by addressed access, and new records are
added to the end of the file.

Environmental Record Editing and Printing (EREP) program
A z/VSE base program that makes the data that is contained in the system record file available for further
analysis.

EPI
See CICS EPI.

Glossary 239

ESCON Channel (Enterprise Systems Connection Channel)
A serial channel, using fiber optic cabling, that provides a high-speed connection between host and
control units for I/O devices. It complies with the ESA/390 and IBM Z I/O Interface until z114. The zEC12
processors do not support ESCON channels.

exit routine
1. Either of two types of routines: installation exit routines or user exit routines. Synonymous with exit

program.
2. See user exit routine.

extended addressability
The ability of a program to use 31 bit or 64 bit virtual storage in its address space or outside the address
space.

extended recovery facility (XRF)
In z/VSE, a feature of CICS that provides for enhanced availability of CICS by offering one CICS system as
a backup of another.

External Security Manager (ESM)
A priced vendor product that can provide extended functionality and flexibility that is compared to that of
the Basic Security Manager (BSM), which is part of z/VSE.

F

FASTCOPY
See “VSE/Fast Copy” on page 261.

fast copy data set program (VSE/Fast Copy)
See “VSE/Fast Copy” on page 261.

fast service upgrade (FSU)
A service function of z/VSE for the installation of a refresh release without regenerating control
information such as library control tables.

FAT-DASD
A subtype of Large DASD, it supports a device with more than 4369 cylinders (64 K tracks) up to 64 K
cylinders.

FCOPY
See VSE/Fast Copy.

fence
A separation of one or more components or elements from the remainder of a processor complex. The
separation is by logical boundaries. It allows simultaneous user operations and maintenance procedures.

fetch
1. To locate and load a quantity of data from storage.

240 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

2. To bring a program phase into virtual storage from a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to accomplish 2. See also loader.

Fibre Channel Protocol (FCP)
A combination of hardware and software conforming to the Fibre Channel standards and allowing system
and peripheral connections via FICON and FICON Express feature cards on IBM zSeries processors. In
z/VSE, zSeries FCP is employed to access industry-standard SCSI disk devices.

fragmentation (of storage)
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

FSU
Fast service upgrade.

FULIST (FUnction LIST)
A type of selection panel that displays a set of files and/or functions for the choice of the user.

G

generation
See macro generation.

generation feature
An IBM licensed program order option that is used to tailer the object code of a program to user
requirements.

GETVIS space
Storage space within partition or the shared virtual area, available for dynamic allocation to programs.

guest system
A data processing system that runs under control of another (host) system. On the mainframe z/VSE can
run as a guest of z/VM.

H

hard wait
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup.

hash function
A hash function is a transformation that takes a variable-size input and returns a fixed-size string, which is
called the hash value. In cryptography, the hash functions should have some additional properties:

• The hash function should be easy to compute.
• The hash function is one way; that is, it is impossible to calculate the 'inverse' function.

Glossary 241

• The hash function is collision-free; that is, it is impossible that different input leads to the same hash
value.

hash value
The fixed-sized string resulting after applying a hash function to a text.

High-Level Assembler for VSE
A programming language providing enhanced assembler programming support. It is a base program of
z/VSE.

home interface
Provides the methods to instantiate a new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed because the deployment tool generates the
implementation class. Every Session bean's home interface must supply at least one create() method.

host mode
In this operating mode, a PC can access a VSE host. For programmable workstation (PWS) functions, the
Move Utilities of VSE can be used.

host system
The controlling or highest level system in a data communication configuration.

host transfer file (HTF)
Used by the Workstation File Transfer Support of z/VSE as an intermediate storage area for files that are
sent to and from IBM personal computers.

HTTP Session
In the context of z/VSE, identifies the web-browser client that calls a servlet (in other words, identifies the
connection between the client and the middle-tier platform).

I

ICCF
See VSE/ICCF.

ICKDSF (Device Support Facilities)
A z/VSE base program that supports the installation, use, and maintenance of IBM disk devices.

include function
Retrieves a library member for inclusion in program input.

index
1. A table that is used to locate records in an indexed sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of a key and a pointer, used by to sequence and

locate the records of a key-sequenced data set or file; it is organized in levels of index records. See
also alternate index.

242 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

input/output control system (IOCS)
A group of IBM supplied routines that handle the transfer of data between main storage and auxiliary
storage devices.

integrated communication adapter (ICA)
The part of a processor where multiple lines can be connected.

integrated console
In z/VSE, the service processor console available on IBM Z that operates as the z/VSE system console.
The integrated console is typically used during IPL and for recovery purposes when no other console is
available.

Interactive Computing and Control Facility (ICCF)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

interactive partition
An area of virtual storage for the purpose of processing a job that was submitted interactively via VSE/
ICCF.

Interactive User Communication Vehicle (IUCV)
Programming support available in a VSE supervisor for operation under z/VM. The support allows users to
communicate with other users or with CP in the same way they would with a non-preferred guest.

intermediate storage
Any storage device that is used to hold data temporarily before it is processed.

IOCS
Input/output control system.

IPL
Initial program load.

irrecoverable error
An error for which recovery is impossible without the use of recovery techniques external to the computer
program or run.

IUCV
Interactive User Communication Vehicle.

J

JAR
Is a platform-independent file format that aggregates many files into one. Multiple applets and their
requisite components (.class files, images, and sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP transaction (much improving the download speed).
The JAR format also supports compression, which reduces the files size (and further improves the

Glossary 243

download speed). The compression algorithm that is used is fully compatible with the ZIP algorithm. The
owner of an applet can also digitally sign individual entries in a JAR file to authenticate their origin.

Java application
A Java program that runs inside the JVM of your web browser. The program's code resides on a local
hard disk or on the LAN. Java applications might be large programs using graphical interfaces. Java
applications have unlimited access to all your local resources.

Java bytecode
Bytecode is created when a file containing Java source language statements is compiled. The compiled
Java code or "bytecode" is similar to any program module or file that is ready to be executed (run on a
computer so that instructions are performed one at a time). However, the instructions in the bytecode
are really instructions to the Java Virtual Machine. Instead of being interpreted one instruction at a time,
bytecode is instead recompiled for each operating-system platform using a just-in-time (JIT) compiler.
Usually, this enables the Java program to run faster. Bytecode is contained in binary files that have the
suffix.CLASS

Java servlet
See servlet.

JHR
Job header record.

job accounting interface
A function that accumulates accounting information for each job step, to be used for charging the users of
the system, for planning new applications, and for supervising system operation more efficiently.

job accounting table
An area in the supervisor where accounting information is accumulated for the user.

job catalog
A catalog made available for a job by means of the file name IJSYSUC in the respective DLBL statement.

job entry control language (JECL)
A control language that allows the programmer to specify how VSE/POWER should handle a job.

job step
In 1 of a group of related programs complete with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an EXEC statement under one JOB statement for the
whole job.

job trailer record (JTR)
As VSE/POWER parameter JTR, alias NJT. An NJE control record terminating a job entry in the input or
output queue and providing accounting information.

244 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

K

key
In VSE/VSAM, one or several characters that are taken from a certain field (key field) in data records for
identification and sequence of index entries or of the records themselves.

key sequence
The collating sequence either of records themselves or of their keys in the index or both. The key
sequence is alphanumeric.

key-sequenced file
A VSE/VSAM file whose records are loaded in key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access, and new records are inserted in the file in
key sequence.

KSDS
Key-sequenced data sets. See key-sequenced file.

L

label
1. An identification record for a tape, disk, or diskette volume or for a file on such a volume.
2. In assembly language programming, a named instruction that is generally used for branching.

label information area
An area on a disk to store label information that is read from job control statements or commands.
Synonymous with label area.

Language Environment for z/VSE
An IBM software product that is the implementation of Language Environment on the VSE platform.

language translator
A general term for any assembler, compiler, or other routine that accepts statements in one language and
produces equivalent statements in another language.

Large DASD
A DASD device that

1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to VSE/ESA 2.6 that is owned by a catalog.

LE/VSE
Short form of Language Environment for z/VSE.

librarian
The set of programs that maintains, services, and organizes the system and private libraries.

Glossary 245

library block
A block of data that is stored in a sublibrary.

library directory
The index that enables the system to locate a certain sublibrary of the accessed library.

library member
The smallest unit of a data that can be stored in and retrieved from a sublibrary.

line commands
In VSE/ICCF, special commands to change the declaration of individual lines on your screen. You can
copy, move, or delete a line declaration, for example.

linkage editor
A program that is used to create a phase (executable code) from one or more independently translated
object modules, from one or more existing phases, or from both. In creating the phase, the linkage editor
resolves cross-references among the modules and phases available as input. The program can catalog the
newly built phases.

linkage stack
An area of protected storage that the system gives to a program to save status information for a branch
and stack or a stacking program call.

link station
In SNA, the combination of hardware and software that allows a node to attach to and provide control for
a link.

loader
A routine, commonly a computer program, that reads data or a program into processor storage. See also
relocating loader.

local shared resources (LSR)
A VSE/VSAM option that is activated by three extra macros to share control blocks among files.

lock file
In a shared disk environment under VSE, a system file on disk that is used by the sharing systems to
control their access to shared data.

logical partition
In LPAR mode, a subset of the server unit hardware that is defined to support the operation of a system
control program.

logical record
A user record, normally pertaining to a single subject and processed by data management as a unit.
Contrast with physical record, which may be larger or smaller.

246 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

logical unit (LU)
1. A name that is used in programming to represent an I/O device address. physical unit (PU), system

services control point (SSCP), primary logical unit (PLU), and secondary logical unit (SLU).
2. In SNA, a port through which a user accesses the SNA network,

a. To communicate with another user and
b. To access the functions of the SSCP. An LU can support at least two sessions. One with an SSCP and

one with another LU and might be capable of supporting many sessions with other LUs.

logical unit name
In programming, a name that is used to represent the address of an input/output unit.

logical unit 6.2
A SNA/SDLC protocol for communication between programs in a distributed processing environment. LU
6.2 is characterized by

1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API) consisting of structured verbs that are mapped into

a product implementation.

logons interpret interpret routine
In VTAM, an installation exit routine, which is associated with an interpret table entry, that translates
logon information. It also verifies the logon.

LPAR mode
Logically partitioned mode. The CP mode that is available on the Configuration (CONFIG) frame when
the PR/SM feature is installed. LPAR mode allows the operator to allocate the hardware resources of the
processor unit among several logical partitions.

M

macro definition
A set of statements and instructions that defines the name of, format of, and conditions for generating a
sequence of assembler statements and machine instructions from a single source statement.

macro expansion
See macro generation

macro generation
An assembler operation by which a macro instruction gets replaced in the program by the statements of
its definition. It takes place before assembly. Synonymous with macro expansion.

macro (instruction)
1. In assembler programming, a user-invented assembler statement that causes the assembler to

process a set of statements that are defined previously in the macro definition.

Glossary 247

2. A sequence of VSE/ICCF commands that are defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP)
A program that is used for automating and controlling various installation, tailoring, and service activities
for a VSE system.

main task
The main program within a partition in a multiprogramming environment.

master console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed
to one particular console. Contrast this with the user console, which receives only those messages that
are specifically directed to it, for example messages that are issued from a job that was submitted with
the request to echo its messages to that console. The operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA
A unit of allocation equivalent to the maximum control area size on a count-key-data or fixed-block
device. On a CKD device, the max CA is equal to one cylinder.

memory object
Chunk of virtual storage that is allocated above the bar (2 GB) to be created with the IARV64 macro.

message
In VSE, a communication that is sent from a program to the operator or user. It can appear on a console, a
display terminal or on a printout.

MSHP
See maintain system history program.

multitasking
Concurrent running of one main task and one or several subtasks in the same partition.

MVS
Multiple Virtual Storage. Implies MVS/390, MVS/XA, MVS/ESA, and the MVS element of the z/OS (OS/390)
operating system.

N

NetView
A z/VSE optional program that is used to monitor a network, manage it, and diagnose its problems.

network address
In SNA, an address, consisting of subarea and element fields, that identifies a link, link station, or NAU.
Subarea nodes use network addresses; peripheral nodes use local addresses. The boundary function in
the subarea node to which a peripheral node is attached transforms local addresses to network addresses
and vice versa. See also network name.

248 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point. It is the origin or the destination
of information that is transmitted by the path control network. Each NAU has a network address that
represents it to the path control network. See also network name, network address.

Network Control Program (NCP)
An IBM licensed program that provides communication controller support for single-domain, multiple-
domain, and interconnected network capability. Its full name is ACF/NCP.

network definition table (NDT)
In VSE/POWER networking, the table where every node in the network is listed.

network name
1. In SNA, the symbolic identifier by which users refer to a NAU, link, or link station. See also network

address.
2. In a multiple-domain network, the name of the APPL statement defining a VTAM application program.

This is its network name, which must be unique across domains.

node
1. In SNA, an end point of a link or junction common to several links in a network. Nodes can be

distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities.

2. In VTAM, a point in a network that is defined by a symbolic name. Synonymous with network node. See
major node and minor node.

node type
In SNA, a designation of a node according to the protocols it supports and the network addressable units
(NAUs) it can contain.

O

object module (program)
A program unit that is the output of an assembler or compiler and is input to a linkage editor.

online application program
An interactive program that is used at display stations. When active, it waits for data. Once input arrives, it
processes it and send a response to the display station or to another device.

operator command
A statement to a control program, issued via a console or terminal. It causes the control program
to provide requested information, alter normal operations, initiate new operations, or end existing
operations.

optional licensed program
An IBM licensed program that a user can install on VSE by way of available installation-assist support.

Glossary 249

output parameter text block (OPTB)
in VSE/POWER's spool-access support, information that is contained in an output queue record if a * $$
LST or * $$ PUN statement includes any user-defined keywords that have been defined for autostart.

P

page data set (PDS)
One or more extents of disk storage in which pages are stored when they are not needed in processor
storage.

page fixing
Marking a page so that it is held in processor storage until explicitly released. Until then, it cannot be
paged out.

page I/O
Page-in and page-out operations.

page pool
The set of page frames available for paging virtual-mode programs.

panel
The complete set of information that is shown in a single display on terminal screen. Scrolling back and
forth through panels like turning manual pages. See also selection panel.

partition balancing
A z/VSE facility that allows the user to specify that two or more or all partitions of the system should
receive about the same amount of time on the processor.

PASN-AL (primary address space number - access list)
The access list that is associated with a partition. A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work unit). See also DU-AL.

Each partition has its own unique PASN-AL. All programs running in this partition can access data spaces
through the PASN-AL. Thus a program can create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing the ALET to other programs in the partition, the
program can share the data space with other programs running in the same partition.

PDS
Page data sets.

phase
The smallest complete unit of executable code that can be loaded into virtual storage.

physical record
The amount of data that is transferred to or from auxiliary storage. Synonymous with block.

250 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

PNET
Programming support available with VSE/POWER; it provides for the transmission of selected jobs,
operator commands, messages, and program output between the nodes of a network.

POWER
See VSE/POWER.

pregenerated operating system
An operating system such as z/VSE that is shipped by IBM mainly in object code. IBM defines such key
characteristics as the size of the main control program, the organization, and size of libraries, and required
system areas on disk. The customer does not have to generate an operating system.

preventive service
The installation of one or more PTFs on a VSE system to avoid the occurrence of anticipated problems.

primary address space
In z/VSE, the address space where a partition is executed. A program in primary mode fetches data from
the primary address space.

primary library
A VSE library owned and directly accessible by a certain terminal user.

printer/keyboard mode
Refers to 1050 or 3215 console mode (device dependent).

Print Services Facility (PSF)/VSE
An access method that provides support for the advanced function printers.

private area
The virtual space between the shared area (24 bit) and shared area (31 bit), where (private) partitions are
allocated. Its maximum size can be defined during IPL. See also shared area.

private memory object
Memory object (chunk of virtual storage) that is allocated above the 2 GB line (bar) only accessible by the
partition that created it.

private partition
Any of the system's partitions that are not defined as shared. See also shared partition.

production library
1. In a pre-generated operating system (or product), the program library that contains the object code for

this system (or product).
2. A library that contains data that is needed for normal processing. Contrast with test library.

programmer logical unit
A logical unit available primarily for user-written programs. See also logical unit name.

Glossary 251

program temporary fix (PTF)
A solution or by-pass of one or more problems that are documented in APARs. PTFs are distributed to IBM
customers for preventive service to a current release of a program.

PSF/VSE
Print Services Facility/VSE.

PTF
See Program temporary fix.

Q

Queue Control Area (QCA)
In VSE/POWER, an area of the data file, which might contain:

• Extended checkpoint information
• Control information for a shared environment.

queue file
A direct-access file that is maintained by VSE/POWER that holds control information for the spooling of
job input and job output.

R

random processing
The treatment of data without respect to its location on disk storage, and in an arbitrary sequence that is
governed by the input against which it is to be processed.

real address area
In z/VSE, processor storage to be accessed with dynamic address translation (DAT) off

real address space
The address space whose addresses map one-to-one to the addresses in processor storage.

real mode
In VSE, a processing mode in which a program might not be paged. Contrast with virtual mode.

recovery management support (RMS)
System routines that gather information about hardware failures and that initiate a retry of an operation
that failed because of processor, I/O device, or channel errors.

refresh release
An upgraded VSE system with the latest level of maintenance for a release.

relative-record file
A VSE/VSAM file whose records are loaded into fixed-length slots and accessed by the relative-record
numbers of these slots.

252 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

release upgrade
Use of the FSU functions to install a new release of z/VSE.

relocatable module
A library member of the type object. It consists of one or more control sections cataloged as one member.

relocating loader
A function that modifies addresses of a phase, if necessary, and loads the phase for running into the
partition that is selected by the user.

remote interface
In the context of z/VSE, the remote interface allows a client to make method calls to an EJB although the
EJB is on a remote z/VSE host. The container uses the remote interface to create client-side stubs and
server-side proxy objects to handle incoming method calls from a client to an EJB.

remote procedure call (RPC)
1. A facility that a client uses to request the execution of a procedure call from a server. This facility

includes a library of procedures and an external data representation.
2. A client request to service provider in another node.

residency mode (RMODE)
A program attribute that refers to the location where a program is expected to reside in virtual storage.
RMODE 24 indicates that the program must reside in the 24-bit addressable area (below 16 megabytes),
RMODE ANY indicates that the program can reside anywhere in 31-bit addressable storage (above or
below 16 megabytes).

REXX/VSE
A general-purpose programming language, which is particularly suitable for command procedures, rapid
batch program development, prototyping, and personal utilities.

RMS
Recovery management support.

RPG II
A commercially oriented programming language that is specifically designed for writing application
programs that are intended for business data processing.

S

SAM ESDS file
A SAM file that is managed in VSE/VSAM space, so it can be accessed by both SAM and VSE/VSAM
macros.

SCP
System control programming.

Glossary 253

SDL
System directory list.

search chain
The order in which chained sublibraries are searched for the retrieval of a certain library member of a
specified type.

second-level directory
A table in the SVA containing the highest phase names that are found on the directory tracks of the
system sublibrary.

Secure Sockets Layer (SSL)
A security protocol that allows the client to authenticate the server and all data and requests to be
encrypted. SSL was developed by Netscape Communications Corp. and RSA Data Security, Inc..

segmentation
In VSE/POWER, a facility that breaks list or punch output of a program into segments so that printing or
punching can start before this program has finished generating such output.

selection panel
A displayed list of items from which a user can make a selection. Synonymous with menu.

sense
Determine, on request or automatically, the status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM)
A data access method that writes to and reads from an I/O device record after record (or block after
block). On request, the support performs device control operations such as line spacing or page ejects on
a printer or skip some tape marks on a tape drive.

service node
Within the VSE unattended node support, a processor that is used to install and test a master VSE system,
which is copied for distribution to the unattended nodes. Also, program fixes are first applied at the
service node and then sent to the unattended nodes.

service program
A computer program that performs function in support of the system. See with utility program.

service refresh
A form of service containing the current version of all software. Also referred to as a system refresh.

service unit
One or more PTFs on disk or tape (cartridge).

254 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

shared area
In z/VSE, shared areas (24 bit) contain the Supervisor areas and SVA (24 bit) and shared areas (31 bit) the
SVA (31 bit). Shared areas (24 bit) are at the beginning of the address space (below 16 MB), shared area
(31 bit) at the end (below 2 GB).

shared disk option
An option that lets independent computer systems use common data on shared disk devices.

shared memory objects
Chunks of virtual storage allocated above the 2 GB line (bar), that can be shared among partitions.

shared partition
In z/VSE, a partition that is allocated for a program (VSE/POWER, for example) that provides services and
communicates with programs in other partitions of the system's virtual address spaces. In most cases
shared partitions are no longer required.

shared spooling
A function that permits the VSE/POWER account file, data file, and queue file to be shared among several
computer systems with VSE/POWER.

shared virtual area (SVA)
In z/VSE, a high address area that contains a list system directory list (SDL) of frequently used phases,
resident programs that are shared between partitions, and an area for system support.

SIT (System Initialization Table)
A table in CICS that contains data used the system initialization process. In particular, the SIT can
identify (by suffix characters) the version of CICS system control programs and CICS tables that you have
specified and that are to be loaded.

skeleton
A set of control statements, instructions, or both, that requires user-specific information to be inserted
before it can be submitted for processing.

socksified
See socks-enabled.

Socks-enabled
Pertaining to TCP/IP software, or to a specific TCP/IP application, that understands the socks protocol.
"Socksified" is a slang term for socks-enabled.

socks protocol
A protocol that enables an application in a secure network to communicate through a firewall via a socks
server.

socks server
A circuit-level gateway that provides a secure one-way connection through a firewall to server
applications in a nonsecure network.

Glossary 255

source member
A library member containing source statements in any of the programming languages that are supported
by VSE.

split
To double a specific unit of storage space (CI or CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling
The use of disk storage as buffer storage to reduce processing delays when transferring data between
peripheral equipment and the processor of a computer. In z/VSE, this is done under the control of VSE/
POWER.

Spool Access Protection
An optional feature of VSE/POWER that restricts individual spool file entry access to user IDs that have
been authenticated by having performed a security logon.

spool file
1. A file that contains output data that is saved for later processing.
2. One of three VSE/POWER files on disk: queue file, data file, and account file.

SSL
See Secure Sockets Layer.

stacked tape
An IBM supplied product-shipment tape containing the code of several licensed programs.

standard label
A fixed-format record that identifies a volume of data such as a tape reel or a file that is part of a volume
of data.

stand-alone program
A program that runs independently of (not controlled by) the VSE system.

startup
The process of performing IPL of the operating system and of getting all subsystems and applications
programs ready for operation.

start option
In VTAM, a user-specified or IBM specified option that determines conditions for the time a VTAM system
is operating. Start options can be predefined or specified when VTAM is started.

static partition
A partition, which is defined at IPL time and occupying a defined amount of virtual storage that remains
constant. See also dynamic partition.

256 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

storage director
An independent component of a storage control unit; it performs all of the functions of a storage control
unit and thus provides one access path to the disk devices that are attached to it. A storage control unit
has two storage directors.

storage fragmentation
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

suballocated file
A VSE/VSAM file that occupies a portion of an already defined data space. The data space might contain
other files. See also unique file.

sublibrary
In VSE, a subdivision of a library. Members can only be accessed in a sublibrary.

sublibrary directory
An index for the system to locate a member in the accessed sublibrary.

submit
A VSE/POWER function that passes a job to the system for processing.

SVA
See shared virtual area.

Synchronous DataLink Control (SDLC)
A discipline for managing synchronous, code-transparent, serial-by-bit information transfer over a link
connection. Transmission exchanges might be duplex or half-duplex over switched or non-switched links.
The configuration of the link connection might be point-to-point, multipoint, or loop.

SYSRES
See system residence volume.

system control programming (SCP)
IBM supplied, non-licensed program fundamental to the operation of a system or to its service or both.

system directory list (SDL)
A list containing directory entries of frequently used phases and of all phases resident in the SVA. The list
resides in the SVA.

system file
In z/VSE, a file that is used by the operating system, for example, the hardcopy file, the recorder file, the
page data set.

Glossary 257

System Initialization Table (SIT)
A table in CICS that contains data that is used by the system initialization process. In particular, the SIT
can identify (by suffix characters) the version of CICS system control programs and CICS tables that you
have specified and that are to be loaded.

system recorder file
The file that is used to record hardware reliability data. Synonymous with recorder file.

system refresh
See service refresh.

system refresh release
See refresh release.

system residence file (SYSRES)
The z/VSE system sublibrary IJSYSRS.SYSLIB that contains the operating system. It is stored on the
system residence volume DORSES.

system residence volume (SYSRES)
The disk volume on which the system sublibrary is stored and from which the hardware retrieves the
initial program load routine for system startup.

system sublibrary
The sublibrary that contains the operating system. It is stored on the system residence volume (SYSRES).

T

task management
The functions of a control program that control the use, by tasks, of the processor and other resources
(except for input/output devices).

time event scheduling support
In VSE/POWER, the time event scheduling support offers the possibility to schedule jobs for processing
in a partition at a predefined time once repetitively. The time event scheduling operands of the * $$ JOB
statement are used to specify the wanted scheduling time.

TLS
See Transport Layer Security.

track group
In VSE/POWER, the basic organizational unit of a file for CKD devices.

track hold
A function that protects a track that is being updated by one program from being accessed by another
program.

258 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

transaction
1. In a batch or remote batch entry, a job or job step. 2. In CICS TS, one or more application programs

that can be used by a display station operator. A given transaction can be used concurrently from one
or more display stations. The execution of a transaction for a certain operator is also referred to as a
task.

2. A given task can relate only to one operator.

transient area
An area within the control program that is used to provide high-priority system services on demand.

Transport Layer Security
The newest SSL cryptographic protocol. It provides additional strength to privacy and data integrity.

Turbo Dispatcher
A facility of z/VSE that allows to use multiprocessor systems (also called CEC: Central Electronic
Complexes). Each CPU within such a CEC has accesses to be shared virtual areas of z/VSE: supervisor,
shared areas (24 bit), and shared areas (31 bit). The CPUs have equal rights, which means that any CPU
might receive interrupts and work units are not dedicated to any specific CPU.

U

UCB
Universal character set buffer.

universal character set buffer (UCB)
A buffer to hold UCS information.

UCS
Universal character set.

user console
In z/VSE, a console that receives only those system messages that are specifically directed to it. These
are, for example, messages that are issued from a job that was submitted with the request to echo its
messages to that console. Contrast with master console.

user exit
A programming service that is provided by an IBM software product that can be requested during the
execution of an application program for the service of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS)
A relative-record data set with variable-length records. See also relative-record data set.

variable-length relative-record file
A VSE/VSAM relative-record file with variable-length records. See also relative-record file.

Glossary 259

VIO
See virtual I/O area.

virtual address
An address that refers to a location in virtual storage. It is translated by the system to a processor storage
address when the information stored at the virtual address is to be used.

virtual addressability extension (VAE)
A storage management support that allows to use multiple virtual address spaces.

virtual address space
A subdivision of the virtual address area (virtual storage) available to the user for the allocation of private,
nonshared partitions.

virtual disk
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can use as workspace.
Although the virtual disk exists in storage, it appears as a real FBA disk device to the user program. All I/O
operations that are directed to a virtual disk are intercepted and the data to be written to, or read from,
the disk is moved to or from a data space.

Like a data space, a virtual disk can hold only user data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space, data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must perform I/O operations.

Starting with z/VSE 5.2, a virtual disk may be defined in a shared memory object.

virtual I/O area (VIO)
An extension of the page data set; used by the system as intermediate storage, primarily for control data.

virtual mode
The operating mode of a program, where the virtual storage of the program can be paged, if not enough
processor (real) storage is available to back the virtual storage.

virtual partition
In VSE, a division of the dynamic area of virtual storage.

virtual storage
Addressable space image for the user from which instructions and data are mapped into processor
storage locations.

virtual tape
In z/VSE, a virtual tape is a file (or data set) containing a tape image. You can read from or write to a
virtual tape in the same way as if it were a physical tape. A virtual tape can be:

• A VSE/VSAM ESDS file on the z/VSE local system.
• A remote file on the server side; for example, a Linux, UNIX, or Windows file. To access such a remote

virtual tape, a TCP/IP connection is required between z/VSE and the remote system.

260 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

volume ID
The volume serial number, which is a number in a volume label that is assigned when a volume is
prepared for use by the system.

VRDS
Variable-length relative-record data sets. See variable-length relative record file.

VSAM
See VSE/VSAM.

VSE (Virtual Storage Extended)
A system that consists of a basic operating system and any IBM supplied and user-written programs that
are required to meet the data processing needs of a user. VSE and hardware it controls form a complete
computing system. Its current version is called z/VSE.

VSE/Advanced Functions
A program that provides basic system control and includes the supervisor and system programs such as
the Librarian and the Linkage Editor.

VSE Connector Server
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and Operations Utility)
An IBM licensed program that provides file-to-file services for disk, tape, and card devices.

VSE/ESA (Virtual Storage Extended/Enterprise Systems Architecture)
The predecessor system of z/VSE.

VSE/Fast Copy
A utility program for fast copy data operations from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program)
An IBM licensed program for fast copy data operations from disk to disk and dump/restore operations via
an intermediate dump file on magnetic tape or disk. There is also a stand-alone version: the FASTCOPY
utility.

VSE/ICCF (VSE/Interactive Computing and Control Facility)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

VSE/ICCF library
A file that is composed of smaller files (libraries) including system and user data, which can be accessed
under the control of VSE/ICCF.

Glossary 261

VSE JavaBeans
Are JavaBeans that allow access to all VSE-based file systems (VSE/VSAM, Librarian, and VSE/ICCF),
submit jobs, and access the z/VSE operator console. The class library is contained in the VSEConnector.jar
archive. See also JavaBeans.

VSE library
A collection of programs in various forms and storage dumps stored on disk. The form of a program is
indicated by its member type such as source code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain any type of member.

VSE/POWER
An IBM licensed program that is primarily used to spool input and output. The program's networking
functions enable a VSE system to exchange files with or run jobs on another remote processor.

VSE/VSAM (VSE/Virtual Storage Access Method)
An IBM access method for direct or sequential processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog
A file containing extensive file and volume information that VSE/VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or an operator to gain access to a
file, and to accumulate use statistics for files.

VSE/VSAM managed space
A user-defined space on disk that is placed under the control of VSE/VSAM.

W

wait for run subqueue
In VSE/POWER, a subqueue of the reader queue with dispatchable jobs ordered in execution start time
sequence.

wait state
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup. See hard wait.

Workstation File Transfer Support
Enables the exchange of data between IBM Personal Computers (PCs) linked to a z/VSE host system
where the data is kept in intermediate storage. PC users can retrieve that data and work with it
independently of z/VSE.

work file
A file that is used for temporary storage of data being processed.

262 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Numerics

24-bit addressing
Provides addressability for address spaces up to 16 megabytes.

31-bit addressing
Provides addressability for address spaces up to 2 gigabytes.

64-bit addressing
Provides addressability for address spaces up to 2 gigabytes and above.

Glossary 263

264 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

Index

Numerics
2540 punch/read codes 85
3505 card device

file, close the 84
optical-mark read 81
read column eliminate 81

3525 card device
associated files on 79
card-print control codes 85
card-print function 84
device control 85
device-control restriction 85
file, close the 84
print file, associated 88
read column eliminate 81

3800 table reference number 20
4248 printer

horizontal copy 91
output to 91
print buffer 91

A
abnormal-end

exit 112
job step 113
subtask 120

access control, ANSI tape 77
access method

criteria for choosing 21
direct 189
indexed sequential 24, 35
languages, supporting 24
support summary 22
virtual storage (VSE/VSAM) 23
VSE/VSAM 23

access time 6
access type 6
accessibility 227
accessing librarian member data 140
accessing library objects (members) 139
activate a subtask 118
add a record

coding for 205
programming requirements 192

address
home 7
I/O device 6
note a 52

address reference 194
advance page-in 102
AFTER operand 205
alternate

blocks/tracks 7
record transfer 43
tape switching

alternate (continued)
tape switching (continued)

control before 76
end of volume 68, 69
PIOCS file 217

area definition
combined file 81
I/O for SAM

address of 43
ASCII file

access to 77
block prefix 19
block size 65
file label for 25
label processing 70
spanned records 12
tape records 19

ASOCFLE operand
3525 print file 88
purpose 79

ASPL macro 105
assembly

examples of 182
modifications for separate 184
printed output, sample program 184
program using IOCS 181
separate vs. joint 186

assign logical unit
coding example 106
macro for 105
parameter list 105

ASSIGN macro 105
associated file

close a, on 3525 84
GET-CNTRL-PUT sequence 79
print, IBM 3525 88
read-print 79
read-punch 79
read-punch-print 79

attach a subtask 118
ATTACH macro 118

B
BLKSIZE operand 43
BLKSIZE=MAX specification 43
block

boundaries 12
descriptor 12
FBA 15
length of 43
of records 12
prefix, ASCII 19
tape 65

block size
indication 12
SAM file 43

Index 265

block size (continued)
tape file 65

blocked records
concept 12
DAM processing 189
SAM input 47
SAM output 48
selective processing by SAM 49

blocking factor 12
boundary

data block 12
partition 102

buffer
control interval 64
forms control (FCB) 117
print 91
universal character set (UCS) 89

C
CALL macro 115
called program 113
calling program 113
CANCEL macro 113, 120
capacity record

layout of 192
use of 197

capital letters output 89
card file

2540 card feeding 84
3525 print function 84
close 3505/3525 file 84
control codes 85
define a 79
end of 84
error handling 84

card punch control codes 85
card read control codes 85
card records 20
carriage control 20
catalog a program 184
CATALOG command 181
CCB (command control block) macro 215
CDDELETE macro 99
CDLOAD macro 99
CDMOD macro 79
chain of sublibraries

processing sequence of 143
searching for 141

channel program
CKD disk 217
command chaining in 215
command-chain retry in 217
contents of 214
data chaining in 217
example 217
execution of 215
FBA disk 217
indirect data addressing in 217
rotational position sensing 217
user-written 211

CHAP macro 118
character arrangement table 20
character set 20

CHECK macro
work file 51

checkpoint restart
on disk 211
on tape 217

CIDF (control interval definition field) 19
clear a track 205
clear disk utility 192
Clear Disk utility 198
clear print buffer 91
CLOSE/CLOSER macro

3505 file 84
3525 file 84
card I/O 84
direct processing 210
disk sequential 63
PIOCS file 217
sequential file 55

closing library members 140
CNTRL macro

card devices 85
direct processing 207
printer control 89
seek operation 207
sequential processing 55
tape

block skip 75
buffer synchronization 76
file skip 75
logical-record skip 75
rewind the 75
summary 74

combined file 81
command chaining

CKD disk 215
FBA disk 217
retry 217

command control block (CCB) macro 215
communication

area 103
job step to job step 103
job to job 103
region 103
task to task 120

communication path
defining a 150

compression
of data

description 167
symbols 166

COMRG macro 103
console buffering (PIOCS) 217
console file

define a 93
record length 20
write with reply 93

continuation character 2
control block

cross-partition communication (XPCCB) 148
control character

card output 87
printer 88

control codes
2540 punch/read 85

266 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

control codes (continued)
3505 card read 85
3525 card punch 85
3525 card-print 85
printer 89

control function macro
assign I/O unit 105
dump request 132
exit-routine linkage 110
forms-control buffer load 117
groups of 99
I/O unit, assign/release 105
in reenterable program 221
job end

abnormal 112
normal 113

linkage 115
multitasking 118
program communication 103
program linkage 113
program loading 99
release I/O unit 105
resource sharing 125
system information request 134
timer services 108
types of 99
virtual storage control 100

control information request macro 134
control interval

data transfer by 64
size of 15
spanned records 19

conversion algorithm 197
count area (CKD or ECKD disk) 16
count-key-data (CKD and ECKD)

count area 16
disk channel program 217
key area 16
record format 16

cross-partition communication
abnormal end processing 165
clearing a request 161
control block (XPCCB) 148
data transmission 152
defining a communication path 150
disconnecting from a communication link 163
identifying an application 149
macros 148
MAPXPCCB macro 148
receiving data 158
replying to a request 160
sending and receiving data 152
terminating XPCC usage 164
transferring data 152
XPCC macro 148
XPCCB macro 148

CSRCMPSC macro 165, 178, 179
cylinder concept 7

D
DAM processing

add a record 192
advantage of 189

DAM processing (continued)
clear a track 205
error handling 207
file creation 192
file reorganization 198
free space 201
imperative macros for 191
LBRET macro 192
load a file 198
locate

data 193
free space 197

logic module for 189
open file for 192
read a record

completion 207
reference by ID 204
reference by key 204
seek for 207

record with key
fixed length 198
read a 198
variable length 198

record without key
coding requirements 199
randomizing algorithm 199

request macros for 197
summary 23
track reference 194
versus sequential 22
WAITF macro 207
write a record

add to a DAM file 205
by overwrite 205
completion 207
end-of-file 205
reference by ID 205
reference by key 205
seek for 207
spanned 205
to a DAM file, overview 205
undefined 205
variable-length 205
with clear track function 205
with verification 205

write records 205
DASD record protection (track hold) 126
data

receiving of 158
sending and receiving of 152
transfer 152
transmission 152

data area (CKD or ECKD disk) 16
data card, OMR 82
data chaining (PIOCS) 217
data format

block of records 12
card I/O 20
CKD or ECKD disk 7, 16
console I/O 20
control interval 15
device-dependent 16
FBA disk 7, 19
spanned records 12

Index 267

data format (continued)
variable-length records 12

data management
access method 21
device characteristics 6
direct access method (DAM) 189
format of data 12
I/O control system (IOCS) 34
labels 25
overview 5
physical IOCS (PIOCS) 211
sequential access method (SAM) 57
storage of data 11
volume of data 7

data spaces
dumps of 132

data transfer rate 6
deadlock 122
declarative macro

assembly of 181
catalog 184
CDMOD 79
DIMOD 95
DTFCD 79
DTFCN 93
DTFDA 189
DTFDI 95
DTFMT 65
DTFPH 211
DTFPR 88
DTFSD 57
example 34
link-edit a 184
PRMOD 88
purpose of 34
request macro relation 34
request macros for 55
SAM processing 41
separate assembly 184
separate vs. joint assembly 186

define the lock (DTL) macro 125
deleting a phase (CDDELETE) 99
deleting library members 141
DEQ macro 118, 122
descriptor card 81
descriptor, block/record

spanned records 12
variable-length records 12

detach a subtask 120
DETACH macro 120
device address

CKD and ECKD disk 7
physical 6

device capacity 6
device characteristics

access time 6
access type 6
addressing 6
direct access 6
disk address 7
disk data formats 7
disk volume 7
requesting 133
serial access 6

device characteristics (continued)
storage capacity 6
tape volume 10
transfer rate 6
volume of data 7

device control
direct access 207
seek disk 207
sequential processing

3525 card print 85
card I/O control characters
87
card-stacker selection 85
print control characters 88
printed output 88
summary 55

tape file 74
device independent file

end of file 97
error handling 96
full-track support 43
process a 95
record size 95
restrictions 95

device sharing 36
Device Support Facilities 198
dictionary

compression 166
entries 168
expansion 166

direct access method (DAM) 189
directory list 100
disability 227
disk

addressing, CKD and ECKD 7
cylinder 7
data formats 7
direct access 189
extent 7
file label 26
home address 7
record zero 7
split cylinder extent 7
track 7
volume

initialization 7
label 7
layout 27

work file on 50
disk file

direct access 189
sequential access 57

disk file label
end-of-file processing 59
end-of-volume processing 59
OPEN processing 58
user standard 59

DOM macro 135
DTF table 36
DTF to module and program relation 182
DTFDA macro 189
DTL (define the lock) macro 125
DUMP macro 113, 120, 132
dump of storage 132

268 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

dynamic allocation of storage 103

E
ECB (event control block) 118
end a subtask 120
end of extent

PIOCS file 212
SAM file 57

end of file
card I/O 84
device-independent file 97
disk sequential 59
specification in DTFxx 45

end of volume
disk 59
forced, tape 69
multivolume file, tape 71
PIOCS file

SYSLST/SYSPCH on tape
216
user data 216

ENQ macro 118, 122
EODAD librarian exit 144
EOJ macro 113
EOXPTR operand 57, 212
ERET macro

device-independent file 96
in error routine 61
in WLRERR routine 62
purpose 44

ERRAD librarian exit
librarian 144

ERRBYTE operand 207
ERREXT support 72
ERROPT operand 44
error handling

sequential-disk file
exit for 61
I/O error 63
options 61
wrong-length record 62

tape file
exit for 72
options for 72
SAM functions 74
wrong-length record 74

error indicator
DAM file 207

error option (ERROPT)
action for 44
disk sequential 61
tape file 72
tape, summary 72

event control block (ECB) 118
EXCP (execute channel program) macro 215
execution mode 102
EXIT macro 110
exit routine

CLOSE interface 76
disk error, SAM 61
disk label, PIOCS 213
disk label, SAM 58
end of extent

exit routine (continued)
end of extent (continued)

PIOCS file 212
end of extent, SAM 57
end of file 45
end-of-volume interface 76
EODAD (librarian) 144
ERRAD (librarian) 144
error option, SAM 44
extent exit 192
extent processing

PIOCS file 212
linkage

abnormal end 112
conditions for 110
interval timer 110
operator communication 113
program check 112
register usage 110
set up a 110

NOTFND (librarian) 144
OPEN interface 76
PIOCS file, label 213
PIOCS, end of extent 212
print overflow 88
return from (SAM) 44
tape error 72
tape label 65
tape management 76

expansion
of data

description 167
extent

checking of by SAM
input 57
output 57

disk 7
end of, SAM processing 47
exit routine 192
file/volume relationship 11
PIOCS, check a 213
split cylinder 7

extent fields 29
EXTRACT macro 134, 216
extracting

partition information 134
system information 134

F
fast load (of a phase) 100
FCB (forms-control buffer) 117
FEOV macro 69, 71, 216
FEOVD macro 63
FETCH macro 99
file

checkpointed 211
close a

macro for 55
PIOCS file 217
SAM processing 55
tape 55

combined 81
define a

Index 269

file (continued)
define a (continued)

direct processing 189
PIOCS access 211
SAM processing 41

device independent 95
direct access 189
disk, sequential 57
end of, SAM processing 47
extent/volume relationship 11
name of 34
open a

disk sequential 57
SAM processing 45
tape file 45
unit record 45

optical mark read 81
organization 20
physical IOCS 211
punch card 79
read/write by SAM 47
records of 12
reopen, sequential disk 63
reorganization 198
tape 65
type of, SAM 42
unit record 79
unlabeled 68
update 60
work 50

file definition
end of extent 57
record format 42
SAM processing

logic module 189
record type 189

fix a program page 101
fixed block architecture

block on 15
disk channel program 217
record format 19
space optimization 15

fixed-length record
DAM processing

with key 198
without key 199

SAM processing
output 48
short block 49
TRUNC macro 49

unblocked 12
floating point registers 2
FOLD option 89
force

end of volume
disk sequential 63
PIOCS file 216
tape 68

page-in 102
format

descriptor card 81
generate 221
label 27
macro-operand, mixed 2

forms-control buffer (FCB) 20, 117
free a program page 101
FREE macro 126
free space

control interval 15
direct access file 197

FREEVIS macro 103
full-track support 43
FUNC operand

3525-print file 88
associated file

read-print 79
read-punch 79
read-punch-print 79
summary 79

purpose 79

G
gap, interblock 10
GENDTL macro 125
generate

command control block 215
I/O request block 215
local directory list 100
lock control block 125

generate format 221
GENIORB (generate IORB) macro 215
GENL macro 100
GET (get record) macro

associated file 79
at end of file 47
blocked records 47
combined file 81
selective read 49
spanned records 47
unblocked records 47
update file 60
work file 47

GET request for library member 140
GET/CNTRL/PUT sequence 79
GETIME macro 108
GETVCE macro 133
GETVIS area 99
GETVIS macro 103

H
hints for programming

2540 card feeding 84
3505 file, close a 84
3525 card-print function 84
3525 file, close a 84
PIOCS file

alternate tape switching 217
checkpoint on disk 211
checkpoint on tape 217
CKD disk channel program 217
command-chain retry 217
console buffering 217
data chaining 217
FBA disk channel program 217
indirect data addressing 217

270 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

hints for programming (continued)
PIOCS file (continued)

LIOCS functions 217
rotational position sensing 217

track-hold function 127
home address 7
homepage, z/VSE xv
horizontal-copy function 91

I
I/O (input/output)

register 43
request block (IORB) macro 215

I/O error
device-independent I/O
96
disk sequential 61
printed output 92
tape 72

ID reference
read record by 204
write record by 205

IDAW (indirect data addressing) 217
identification

of communication user 149
identifier (ID) reference 196
IDLOC operand 204
imperative (request) macros 34
indexed sequential access method

restrictions 35
summary 24

indirect data addressing 217
input file

define a 42
disk sequential

end of volume 63
open 57
process labels 58
update records of 60

disk sequential, open 57
optical mark read 81
PIOCS file

checkpoint bypass 217
disk open 213
disk-label processing 213
extent processing 213
read a record 214
tape-label processing 213

sequential 47
stacker selection 85
tape

CLOSE if unopened 74
end of volume 71
label processing 67
nonstandard labels 67
unlabeled 68

input/output control system
direct processing 189
logical versus physical 39
macros, overview 34
physical 211
primary functions 5
sequential processing (SAM) 41

interblock gap 10, 32
Internet address, z/VSE homepage xv
intertask communication 120
interval timer

example of use 109
exit 110
purpose 109
unexpired interval 109
wait on 109

IOAREA1 operand 43
IOAREA2 operand. 43
IOCS macros

declarative 34
module generation (xxMOD) 37
overview 34
request 34

IOCS modules, assembling and cataloging 181
IORB (I/O request block) macro 215
IOREG operand 43

J
JDUMP macro 113, 120, 132
job end

abnormal 112
normal 113

job step
cancel a 132
communication 103
end of 113

job-to-job communication 103
JOBCOM macro 103
joint vs. separate assembly 186

K
key area (CKD or ECKD disk) 16
key reference

read record by 204
write record by 205

keyword operand 2

L
label

disk file 26
formats on disk 27
tape file 26
types 25
volume 26

label processing
concepts 25
direct access file 192
disk sequential

CLOSE processing 59
end of volume 59
OPEN processing 58
requirements 58
return to SAM 60
user standard 59

PIOCS file
disk input, multivolume 213
disk output, multivolume 212

Index 271

label processing (continued)
PIOCS file (continued)

disk output, single volume 212
disk, check a 213
disk, write a 213
nonstandard 213
tape, check a 213
tape, write a 213
user labels, disk file 213

tape file
input 67
output 65
requirements 65
return to SAM 70

languages, programming 24
layout of system, extracting 134
LBRET macro

direct access 192
disk sequential file 60
PIOCS file

disk label, check a 213
disk, write a 213
extent, check a 213
nonstandard label 213
tape label, check a 213
tape, write a 213

tape file 70
LDCB (librarian data control block) 140
LFCB (load forms-control buffer) macro

coding example 117
librarian data control block (LDCB) 140
librarian exits

EODAD (end-of-member data) 144
ERRAD (error) 144
NOTFND (not found) 144

librarian member data, accessing 140
librarian member data, updating 140
library access

for application programs 139
Library Access Service

control block 140
exits 144
for accessing library objects 139
functions 141
LDCB 140
LIBRDCB macro 140
LIBRM macro 140
reason codes 142
record formats 143
record I/O 140
register usage 144
request sequence 147
return codes 142

library chain
dropping a 141
establishing a 141
processing sequence of 143
searching for 141

library members
accessing 139
closing 140, 141
deleting 141
locking 141
NOTE/POINT processing of 140, 141

library members (continued)
opening 140, 141
qualified 140
renaming 141
retrieving 140, 141
searching for 141
specifying 140
unlocking 141
writing 141

library objects 139
library, searching for 141
LIBRDCB (library control block) macro 139
LIBRM (library) macro 139
line skipping/spacing 88
link-edit 184
linkage macros 115
linkage register 113
LIOCS functions for PIOCS 217
LOAD macro 99
loading

forms-control buffer 117
program/phase 99

local directory list 100
locate data 193
lock control block 125
LOCK macro 125
lock request count 125
locking a library member 141
LOCKOPT (resource sharing) 125
logic module

assembly of 181
catalog 184
direct access 189
generation macros 34
generation of 37
link-edit a 184
preassembled 37
reentrant 128
relation of to DTF/program 182
separate assembly 184
separate vs. joint assembly 186
share a 128
standard name 38
subsetting/supersetting of 38
supply the name of 39

logical IOCS
access methods of 35
versus physical 39

logical unit name
assign a 36, 105
example of use 36
permitted 36
PIOCS file 211
purpose of 36
release a 105

lowercase control 89

M
macro

continuation of 2
control function 2, 99
control program 1
cross-partition communication 148

272 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

macro (continued)
declarative 34
format of 2
generate format (MFG) 221
IOCS overview 34
operands 2
PIOCS 217
purpose 1
registers for 2
request 34
types of 1

magnetic tape records 19
MAPBDY macro 102, 134
MAPBDYVR macro 102, 134
MAPEXTR macro 102, 134
mapping system layout (MAPEXTR macro) 134
MAPSSID macro 134
MAPSYSP macro 134
MAPXPCCB macro 148
MFG (macro format generate) 221
mixed format (macro operands) 2
MODDTL macro 125
mode, program run 102
multifile volume 11
multiple-track search

read, ID reference 204
read, key reference 204
write, ID reference 205
write, key reference 205

multitasking
common user-exit 110
communication, task to task 120
end subtask 120
event control block 118
I/O considerations 118
priority change 118
resource protection 122
resource sharing 125
Sample Program 129
save area for 118
start a subtask 118
task to task communication 120
test attachment of 118

multivolume file 11
multivolume processing

disk sequential
end of volume 63
open input 57
open output 57

PIOCS file open
input 213
output 212

tape 71
MVCOM macro 103

N
name of file 34
non-standard tape label

checking of 67, 70
writing of 65, 70

NOTE macro 52
NOTE macro for library access 140
NOTFND librarian exit 144

O
OMR (optical-mark read) mode 81
OMR coding example 82
open a file

for access by PIOCS
disk input 213
disk labels 211
disk output 212
inactive 211
tape labels 211

OPEN/OPENR macro
by self-relocating program 45
coding example 45
direct access 192
disk sequential

input 57
output 57

PIOCS file 211
SAM processing 45

opening a library member 140
operands, macro

keyword 2
mixed (keyword/positional) 2
positional 2

operator-communication exit 113
optical mark read (OMR)

close file 84
data card 82
descriptor card 81
mode of operation 81
process data 81
weak mark 82

output file
define a 42
direct access (DAM) 192
disk sequential

end of 63
end of volume 63
open 57
process labels 58

PIOCS access
disk open 212
disk-label processing 213
tape-label processing 213
write a record 214

tape
CLOSE if unopened 74
end of volume 71
extension of 71
label processing 65
unlabeled 69

overflow
area

access record in 199
cylinder vs. independent 198
descriptor record 201
organization 201

print 88
routine 197

overwriting a record 205

Index 273

P
padding (of data) 12
page

fault (interrupt) 102
print, layout 20

PAGEIN macro 102
parameter

for routing messages 135
list, ASSIGN macro 105
register 2, 113

parity error 63
partition

boundary 102
communication region 103
dump of 132

PDUMP macro 132
PFIX macro 101
PFREE macro 101
phase, load a 99
physical IOCS (PIOCS) 39, 211
PIOCS file

channel program for 217
check user-standard label

disk 213
tape 213

close a 217
end of volume 216
extent processing for 213
hints for programming 217
label processing for 213
macro relationship 217
open a 211
process a 214
programming for 211
transmission-information bits 215
user-option bits 215
write nonstandard label 213
write user-standard label

disk 213
tape 213

POINT macro for library access 140
POINTR macro (for work files) 52
POINTS macro 52
POINTW macro 52
positional operand 2
POST macro 120
preassembled logic module 37
prime data area 199
print buffer, IBM 4248 91
print-control buffer

LFCB macro 117
load a 20
purpose of 20

print-control code
card 85
printer 89

printer file
4248 printer 91
associated, IBM 3525 88
device control

CNTRL macro 89
control characters 88
methods 88

printer file (continued)
error handling 92
FOLD/UNFOLD option 89
forms-control buffer 117
horizontal copy 91
lowercase control 89
page (print) overflow 88
process a 88
records for 20
selective tape listing 89
universal character set (UCS) 89
uppercase control 89

priority change 118
PRMOD macro 88
process data

direct access file 197
disk, sequential 57
PIOCS file 214
sequential (by SAM) 41
tape file 65

processing-priority change 118
processor storage

fix/free a page 101
transfer rate 6

program
check user exit 112
communication 103
example, IOCS 182
link-edit a 184
linkage 113
load a 99
reenterable 221
run mode inquiry 102
to DTF/module relation 182

program page
fix a 101
free a 101
page in a 102
release a 102

programming languages 24
PRTOV macro 88
punch-read-feed feature 81
punched-card file 79
purge print buffer 91
PUT (a record) request 48
PUT request for library member 140
PUTR macro 93

Q
qualified library member 140

R
randomize

cylinder address 198
methods, summary 203
record address 197
track address 198

RCB (resource control block) macro 122
RCE (read-column-eliminate) mode 81
RDF (record definition field) 19
READ macro

274 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

READ macro (continued)
DAM file 204
work file 51

read-column-eliminate
close file 84
descriptor card 81
mode of operation 81
process data 81

read-only module 128
receiving of data 158
RECFORM operand 42
record

ASCII tape 19
block of 12
blocking 16
capacity 192
card I/O 20
CKD or ECKD disk 16
console 20
DAM file 189
DAM processing 189
deblocking 16
definition field (RDF) 19
descriptor 12
FBA disk 19
fields of 12
fixed length 12
free space for 201
identifier (ID) 194
length of 42
logical 12
overflow-area descriptor 201
overwrite a 205
padding of 12
physical 12
prime data to overflow relation 199
print output 20
read a

direct 204
PIOCS file 214
sequential 47

SAM formats 42
selective processing 49
spanned 12
synonym 197
tape 19
truncation of 12
undefined 12
variable length 12
with a key area 198
without a key area 199
write a

direct 205
PIOCS file 214
sequential 48

zero 192
record I/O

for accessing library members 140
record identifier (ID) 194
record key 193
record length

device independent file 95
SAM processing 42

record reference

record reference (continued)
by AFTER 205
by ID, read 204
by ID, write 205
by identifier (ID) 196
by key 196
by key, read 204
by key, write 205

record zero 7
RECSIZE operand 42
reenterable program

coding example 221
control-function macros in 221
register notation 221
S,address notation 221

reflective marker 69
register

conventions for use 2
floating point 2
I/O 43
linkage 2, 113
notation, example 221
save area 2, 113

relative track reference 194
release

block, short 49
I/O unit 105
page

FCEPGOUT macro 102
force out a 102
page-out 102

RELEASE macro 106
RELPAG macro 102
RELSE macro 49
renaming library members 141
reopen file

disk sequential 63
request macro

declarative macro relation 34
direct processing 191
I/O device relation 36
purpose 34
SAM processing 55

resource
control block (RCB) 122
dequeue a 122
enqueue a 122
protection 122
share a 122
share control 125

restrictions
VTOC size 7
work file 50

RETURN macro 115
rotational position sensing (RPS) 217
routine, linkage 113
routing codes 135
RPS (rotational position sensing) 217
run mode 102
RUNMODE macro 102
RZERO reference 205

Index 275

S
S,address notation 221
SAM processing

associated file 79
blocked records

input 47
output 48
selective 49

card device control 85
card I/O 79
combined file 81
console file 93
define file for 41
device control 55
device independent 95
disk file 57
end of extent 47, 57
end of file 45, 47
end of processing 55
end of volume

disk sequential 63
output 48
SAM processing 47

error handling 44
file close 55
file type 42
for FBA disk 64
general 47
GET macro 47
I/O area 43
I/O area length 43
I/O register 43
non-data device operation 55
open file 45
optical mark read data 81
optical-reader file 81
printer file 88
PUT macro 48
read-column-eliminate data 81
record format 42
record length 42
record-format definition 42
reopen file 63
selective 49
system file 95
tape 65
unblocked records

input 47
output 48

undefined records
input 47
output 48

update file 60
variable-length record

output 48
TRUNC macro 49

versus direct 22
work area 44
work area for 44
work file

open a 50
purpose of 50
selective processing 52

SAM processing (continued)
work file (continued)

sequential processing 51
save area

multitasking 118
register 113

SAVE macro 115
SDL (system directory list) 100
SDUMP macro 132
SDUMPX macro 132
SECTVAL macro 216
SEEK operand 207
seek operation

command for 217
seek separation feature 217
segment-sequence error 63
selective processing

records 49
work file 52

selective tape listing 89
self-relocating program

open a 45, 192
sending and receiving data 152
sense information 215
SEOF macro 63
SEOV macro 216
separate vs. joint assembly 186
sequential access method

define a file to 41
disk file 57
processing 41
summary 23
tape file 65
unit record file 79

SETIME macro 109
shared resource

across partitions 125
control of

coding example 122
macros for 125
resource control block 122

define a 125
I/O module 128
within a partition 122

shared virtual area (SVA)
load a phase from 100
system directory list 100

shared Virtual Area (SVA) 99
sharing a device 36
single volume, PIOCS open

input 213
output 212

skipping of lines 88
space one line 88
space optimization, FBA 15
space/skip control

CNTRL macro 89
control characters 88
methods 88

spanned record
CKD or ECKD Disk 16
DAM processing 189
FBA disk 19
layout of 12

276 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

spanned record (continued)
SAM, input 47
SAM, output 48
segment-sequence error 63
tape 19
tape file extension 71

split-cylinder extent 7
SRCHM operand

read, ID reference 204
read, key reference 204

stacker selection
card I/O 20, 85

standard labels
disk file 58
identification 25
location of 28
PIOCS file

disk, check a 213
disk, write a 213
nonstandard 213
tape, check a 213
tape, write a 213

SAM processing 45
tape file

ASCII file 77
extended 72
input 67
output 65

tape files 65
standard module names 38
start a subtask 118
status indicator

ERRBYTE field (DAM) 207
storage

allocation, dynamic 103
capacity 6
dump of 132

streaming mode 10
STXIT macro 110
sublibrary chain

processing sequence of 143
searching for 141

sublibrary, searching for 141
subsetting a logic module 38
SUBSID macro 134
subtask

attach a 118
communication 120
detach a 132
end a

abnormal 112
normal 120

event control block 118
priority change 118
resource protection 122
resource sharing 125
save area for 118
start a 118
terminate a 120
verify attachment of 118

supersetting a logic module 38
supervisor

dump of 132
SVA (shared virtual area) 99

synonym record 197
system

directory list (SDL) 100
information request macro 134
layout (MAPEXTR macro) 134
logical units 36

system-mapping (MAPEXTR) macro 134

T
table reference number 20
table, DTF 36
tape file

ASCII, access to 77
assign logical unit to 105
block size 65
end of volume 71
extension of 71
file label 26
initialization 10
labels for 65
non-data operation 74
nonstandard labels 10
process a 65
records of 19
release assigned logical unit 105
tape file label

ASCII file 70
checking of 67
writing of 65

unlabeled 10, 68
user interface 76
volume

characteristics 10
end of 71
label 10
layout 32

tape listing, selective 89
tape positioning

input 68
output 69

tape-management exit 76
tapemark

behind labels 213
for file positioning 68
forced end-of-volume 216
purpose of 32
system end-of-volume 216

TECB (timer event control block) macro 109
terminate a subtask 120
TIC command 217
timer event control block (TECB) 109
timer services

interval 109
time-of-day 108

TOD (time-of-day) clock 108
track balance, retrieving (GETVCE) 133
track capacity, retrieving (GETVCE) 134
track hold

coding example 127
hints for programming 127
prerequisites 126
scope of support 126

track reference (DAM)

Index 277

track reference (DAM) (continued)
actual address 194
format of 194
full address (mbbcchhr) 194
record-ID format 194
relative address 194

Transfer in Channel (TIC) command 217
transfer rate 6
transmission

of data 152
transmission information 215
TRUNC macro (SAM) 49
truncation (of data) 12
TTIMER macro 109
type (of file) specification 42
TYPEFLE operand 42

U
UCB (universal character-set buffer) 20
UCS feature 89
unblocked records

DAM file 189
SAM input 47
SAM output 48

undefined record
DAM file 189
SAM input processing 47
SAM output processing 48
structure of 12

unexpired time 109
UNFOLD option 89
unit of transfer 12
unit record file

card I/O 79
console I/O 93
devices for 79
printed output 88

universal character set 89
universal character-set buffer 20
unlabeled file

input 68
output 69
process a 68

UNLOCK macro 125
unlocking a library member 141
update file

coding example 60
define a 42
process a 60
punched cards 81

updating librarian member data 140
uppercase control 89
user-option bits 215

V
VARBLD operand 43
variable-length records

blocked 12
DAM processing

with key 198
without key 199

variable-length records (continued)
layout 12
SAM processing

I/O area 43
I/O register 43
output processing 48
TRUNC macro 49

virtual storage access method (VSE/VSAM) 23
virtual storage control

dynamic storage allocation 103
fix/free a page 101
page control 102
partition boundary 102
run mode inquiry 102
summary 100

virtual storage dump 132
VOL1 label 25
volume

disk
alternate blocks/tracks 7
cylinder concept (CKD and ECKD) 7
data format 7
extents 7
initialization 7
layout 27
relative-block concept (FBA) 7

end of 63, 71
file/extent relationship 11
forced end of 69
input, PIOCS open 213
label

disk 7
identification 25
placement of 26
store a 26
tape 10

output, PIOCS open 212
table of contents 26
tape 10

volume characteristics
requesting 133

volume initialization
disk 7
tape 10

volume layout
disk 27
examples 29
tape

multifile volume 32
multivolume file 32
nonstandard labels 32
single-volume file 32
unlabeled 32

volume table of contents (VTOC)
capacity of 28
contents of 27
ISAM consideration 28
location of 28
size of 7

W
WAIT macro 109, 118, 215
WAITF macro

278 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

WAITF macro (continued)
DAM processing 207

WAITM macro 118
weak mark 82
WLRERR operand 44
work area

define a (SAM) 44
example for using 44, 45

work file
CHECK macro 51
define a 42
delete after use 54
example

define 50
selective processing 52

labels for 50
NOTE macro 52
on tape

block size 65
tape mark in 50

open a 50
POINTR macro 52
POINTS macro 52
POINTW macro 52
position a

at a record 52
beginning of file 52
behind a record 52

purpose of 50
READ macro 51
retain after use 54
selective processing 52
sequential processing 51
WRITE macro 51

WORKA operand 44
WRITE macro

AFTER reference 205
clear a track 205
ID reference 205
key reference 205
RZERO reference 205
to a DAM file 205
work file 51

write verification 205
wrong-length error

device-independent file 96
disk sequential 62
tape 74

WTO macro 135
WTOR macro 135

X
XPCC macro 148
XPCCB (cross-partition communication control block) 148
XPCCB macro 148
XTNTXIT operand

DAM file 192
input file 213
output file 212

xxMOD macro 34

Index 279

280 IBM z/VSE: z/VSE V6R2 System Macros User's Guide

IBM®

Product Number: 5686-VS6

SC34-2709-01

	Contents
	Figures
	Tables
	About This Publication
	Who Should Use This Publication
	Where to Find More Information

	Summary of Changes
	Chapter 1. Introduction
	Using a Macro in a Program
	Types of Macros
	Register Usage
	Macro Format

	Chapter 2. Data Management Concepts
	I/O-Related Hardware Characteristics
	I/O Devices
	Disk Volume
	Tape Volume

	File, Extent, and Volume Relationship
	Record, Block, and Control Interval
	The Records of a File
	Control Interval
	Blocking and Deblocking of Logical Records
	Device-Dependent Record Formats
	Records on a CKD or ECKD Disk
	Records on a FBA Disk
	Records on Magnetic Tape
	Records for a Printer
	Records on a Card Device
	Records on the Console

	Organization of Records in a File

	Choosing the Right Access Method
	Sequential Versus Direct Processing
	Level of Support
	Sequential Access Method (SAM)
	VSE/VSAM
	Direct Access Method (DAM)
	Indexed Sequential Access Method (ISAM)
	Support of Access Methods by Programming Languages

	Volume and File Labels
	Volume Labels
	File Labels

	Volume Organization
	Disk Volume
	Layout of the VTOC
	Placement and Capacity of the VTOC
	Placement of User-Standard File Labels
	Disk Volume Layout Examples

	Tape Volume

	The Input/Output Control System (IOCS)
	DTFxx Macro
	The Access Methods of IOCS
	The DTF Table
	Logical Units

	Logic Module Generation (xxMOD) Macro
	Subsetting/Supersetting of Logic Modules
	Do Not Name the Module
	Name the Module

	Logical IOCS Versus Physical IOCS

	Chapter 3. Defining and Processing a File with SAM
	Defining the Characteristics of a File
	File Type (TYPEFLE)
	Record Format (RECFORM)
	Record Size (RECSIZE)
	I/O Area Definition (IOAREA)
	I/O Area Length (Block Size BLKSIZE)
	I/O Register Specification (IOREG)
	Work Area Specification (WORKA)
	Error Handling (ERROPT, WLRERR, and ERREXT)
	End-of-File Exit (EOFADDR)

	Opening a File for Processing
	Reading (GET) and Writing (PUT) of Data
	Obtaining a Record for Processing (GET)
	Storing a Record after Processing (PUT)
	Processing Blocked Records Selectively

	Processing a Work File
	Opening the File
	Processing the File Sequentially
	Processing the Records of the File Selectively
	Retaining or Deleting a Work File

	Requesting a Non-Data Device Operation
	Closing the File for Processing
	IOCS Request Macros Used with Declarative Macros

	Chapter 4. Processing a Disk File with SAM
	Opening the File
	Processing of Labels
	Processing for OPEN
	Processing on End of Volume
	Processing on End of File
	User-Standard Labels
	Returning Control to SAM

	Processing an Update File
	Coding an Error-Processing Routine
	Wrong-Length Error
	Other Errors

	Closing a File and Processing for End of Volume
	Process a File Residing on an FBA Disk

	Chapter 5. Processing a Tape File with SAM
	Processing of Labels
	Output File
	Writing of IBM Standard Labels

	Input File
	Unlabeled File
	Input
	Output

	American National Standard Labels
	Return Control to SAM

	End of Volume for a Multi-Volume File
	Tape File Extension
	Processing for IBM Standard Labels
	Processing for User-Standard Labels

	Coding an Error-Processing Routine
	Wrong-Length Error Processing Considerations
	Other Error-Processing Considerations

	Non-Data Operations
	Rewind and Tape-Movement Functions
	Spacing Over a Logical Record
	Synchronizing the Hardware Buffer

	User Interface for Tape OPEN, CLOSE, and End-of-Volume
	Access-Protection for an ASCII Tape

	Chapter 6. Processing a Unit Record File with SAM
	Processing a Punched Card File
	Programming for Associated Files
	Updating a Record
	Optical-Mark-Read and Read-Column-Eliminate Modes
	OMR Data Card

	End-of-File Handling
	Error Handling
	Hints for Programming
	Non-Data Device Operations
	The CNTRL Macro
	Control Characters

	Processing a Printer File
	Associated File on an IBM 3525
	Printer Overflow
	Printer Controls
	CNTRL Macro

	Programming for Output to an IBM 4248
	Error Handling

	Processing a Console File

	Chapter 7. Processing a Device-Independent System File with SAM
	Restrictions for DTFDI Processing
	Record Size
	Error Handling
	Wrong-Length Record Errors
	Irrecoverable I/O Error

	End-of-File Handling

	Chapter 8. Requesting Control Functions
	Program Loading
	The Load Request
	Load Request for a Phase in the SVA
	Fast Loading of Frequently Used Phases

	Virtual Storage Control
	Fixing and Freeing a Page in Processor Storage
	Determining the Run Mode of a Program
	Extracting Partition-Related Information
	Reducing the Number of Page Faults
	Allocating Virtual Storage Dynamically

	Program Communication
	Assigning and Releasing an I/O Unit
	Explanation of Function Codes in Detail

	Timer Services
	Time-of-Day Clock
	Interval Timer

	Linkage to User Exit Routines
	Interval-Timer User Exit
	Abnormal-End User Exit
	Program-Check User Exit
	Operator-Communication User Exit

	Ending a Job Step
	Program Linkage
	Linkage Macros

	Loading a Forms-Control Buffer
	Multitasking Functions
	Subtasking and I/O Requests
	Starting (Attaching) a Subtask
	Ending (Detaching) a Subtask
	Task-to-Task Communication within Partition
	Resource Protection
	Resource-Share Control
	DASD Record Protection (Track Hold)
	Scope of the Support
	Hints for Programming
	Coding Example

	Shared Modules and Files
	Multitasking Sample Program

	Requesting Storage Dumps
	The DUMP Macro
	The JDUMP Macro
	The PDUMP Macro
	The SDUMP and SDUMPX Macros

	Requesting Volume and Device Characteristics
	Retrieving Volume and Device Characteristics
	Obtaining the Track Balance of a Device
	Obtaining the Track Capacity of a Device

	Requesting System Information
	Writing and Deleting Messages (WTO, WTOR, and DOM Macros)
	Routing the Message
	Altering Message Text
	Writing a Multiple-Line Message
	Deleting Messages Already Written
	WTO, WTOR, DOM Usage Examples

	Example of an LBSERV MOUNT Request
	Library Access for Application Programs
	Storage Requirements
	Record I/O
	Librarian Control Block
	Accessing or Updating Librarian Member Data
	Library Access Functions
	Return Code Conventions
	Record Formats
	Processing Sequence of Sublibrary Chains
	Register Usage
	Librarian Exits
	Library Access Request Sequence

	Cross-Partition Communication
	Identification of Communication User
	Defining a Communication Path
	Defining a Specific Connection
	Defining an Open-Ended Connection
	Data Transmission
	Sending and Receiving Data
	Data Transmission without Reply Request
	Data Transmission with Reply Request
	Data Transmission into a Predefined Area

	Receiving Data
	The REPLY Function
	Clearing a Pending SEND/SENDR Request on the Sender's Side
	Clearing a Pending SEND/SENDR Request on the Receiver's Side
	Disconnecting from a Communication Path
	Terminating XPCC Usage
	Abnormal End Processing

	Compressing and Expanding Data
	Compression and Expansion Dictionaries
	Compression Processing
	Expansion Processing
	Dictionary Entries
	Compression Dictionary Entries
	Expansion Dictionary Entries
	Dictionary Restrictions
	Other Considerations
	Compression Dictionary Examples
	Expansion Dictionary Example

	Building the CSRYCMPS Area
	Determining if the CSRCMPSC Macro Can Be Issued on a System
	Compression/Expansion Examples
	Example 1
	Example 2
	Example 3

	Appendix A. Assemble and Link-Edit Programs Using IOCS
	Cataloging Assembled DTFxx and xxMOD Macros
	Assembling and Cataloging IOCS Modules
	IOCS Sample Program
	Assemble the DTFs and Logic Modules Separately

	Comparison of the Three Possible Methods

	Appendix B. Direct Access Method (DAM)
	Defining the File
	Processing the File
	Opening the File
	Creating a File and Adding of Records to a File
	Locating a Record
	Track Reference
	Record Reference

	Locating a Free Space
	Reading and Writing a Record
	Load and Process a File
	Processing of Records with a Key Area
	Processing of Records without a Key Area
	Getting the Address of a Free Record
	Summary of Methods for Randomizing
	Reading a Record
	Writing a Record
	Completion of a Read or Write Operation

	Non-Data Device Operation
	Error Handling
	Closing the File

	Appendix C. Processing a File with Physical IOCS (PIOCS)
	Opening the File
	Disk Volumes – Output
	Disk Volumes – Input

	Processing of User Labels and Extent Information
	Reading and Writing of Records
	The Command Control (I/O-Request) Block
	The Execute Channel Program (EXCP) Macro
	The WAIT Macro
	Additional Macros

	Forcing an End-of-Volume Condition
	Closing the File
	Hints for Programming

	Appendix D. Using System Control Macros in Reenterable Programs
	Notices
	Programming Interface Information
	Trademarks
	Terms and Conditions for Product Documentation

	Accessibility
	Using Assistive Technologies
	Documentation Format

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

