
IBM z/VSE
4.3

Preparing a Product for VSE

IBM

SC33-8424-02

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xi.

Edition Notice

This edition applies to Version 4 Release 3 of IBM® z/Virtual Storage Extended (z/VSE®), Program Number 5609-ZV4, and
to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC33-8424-01.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not
stocked at the addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your
comments to:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

You may also send your comments by FAX or via the Internet:

Internet: s390id@de.ibm.com
FAX (Germany): 07031-16-3456
FAX (other countries): (+49)+7031-16-3456

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.
© Copyright International Business Machines Corporation 1991, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

Notices...xi
Accessibility...xi

Using Assistive Technologies...xi
Documentation Format..xi

About This Book..xiii
Who Should Use This Book..xiii
How to Use This Book..xiii
Where to Find More Information...xiv

Summary of Changes... xv

Part 1. IBM Contact Points... 1

Chapter 1. IBM Communication Channels for Software Vendors...3
The IBM PartnerWorld..3
Early Test Program (ETP)..3
National Solution Center Database..4

Example...4

Part 2. Programming Interfaces... 7

Chapter 2. Overview...9
IBM Programming Interfaces...9
Other Attachments... 9
Support of Multiple VSE Releases..9
Vendor Support.. 10

Chapter 3. Macros and Vendor Exits... 11
PRODID Macro - Accessing VSE Services..11

PRODID DEFINE Service...11
PRODID DSECT Service.. 13
PRODID AUTH Service..14
PRODID CHECK Service..16
PRODID DELETE Service...17
Example of PRODID.. 18

PRODEXIT Macro - Handling Vendor Exits.. 20
Exit Specification.. 20
Classes and Subclasses..20
Exit Process...20
Exit Scopes..21
Exit Types.. 21
Register Conventions..22
Deleting an Exit... 22
Recovering from Errors... 23

 iii

PRODEXIT Services.. 23
PRODEXIT DEFINE Service...23
PRODEXIT ENABLE Service..26
Dynamic PRODEXIT ENABLE..27
PRODEXIT RETURN Service... 28
PRODEXIT DISABLE Service...29
Dynamic PRODEXIT DISABLE.. 30
PRODEXIT DELETE Service...30
PRODEXIT DSECT Service.. 31
Macro Interface to VTAPE Command...32
Vendor Exits.. 34

Part 3. Documentation and Multicultural Support... 61

Chapter 4. VSE Customer Documentation.. 63
Task-Oriented Approach.. 63

Chapter 5. Providing Multicultural Support...65
Common User Access (CUA).. 65
Concepts of Multicultural Support... 65
Language Subsets.. 65
National Language Standards and Laws..66
Implementation Considerations.. 66
Multicultural Support for z/VSE Version 4... 66

Part 4. Creating Installation Tapes and Servicing Your Product............................. 69

Chapter 6. VSE Product Numbering Conventions... 71
MSHP Product Identification..71
Component Identifier...72
Product Identifier... 72
Using the Component and Product Identifier..73
Rules for Product Structuring...73
Convention for Vendor Product Identification...74

Chapter 7. Creating Installation Tapes..77
Creating a Product Distribution Tape on VSE...77
Creating a Feature Tape... 83
Creating a Tape for Selective Installation of a Product or Feature... 83
Shipping VM Code with a VSE Product...85
Shipping PC Code with a VSE Product... 85
Tape Stacking... 85

Product Stacking Requirements...87
Creating a Stacked Tape... 87

Chapter 8. Installing and Customizing Your Product.. 89
Installation... 89
Customizing.. 91

Chapter 9. Providing Service... 95
Corrective Service.. 95
Preventive Service..102

Part 5. Packaging and Service Samples.. 105

Chapter 10. Packaging of Products...107
Library Creation..107

iv

Creating the Header... 108
Creating or Changing VSE/Advanced Functions History Information...109

Adding, Changing and Restoring History Information...114
Backup of a Product or Feature... 116
Installing a Product or Feature.. 117

Chapter 11. Library Member Types...119

Chapter 12. APAR Fix (ZAP)...121

Chapter 13. Programming Temporary Fix (PTF)... 123
PTF for Phases..123
PTF for Modules... 124
PTF for Macros... 124
PTF for Synchronizing Service... 125
Superseding PTF and Associated Requires-Groups... 126
REQUIRES-Groups if Several Products Affected.. 127
Sample for a Complex PTF Structure.. 128

Chapter 14. Shipping PC Code with VSE... 131
Shipping Workstation Code with z/VSE... 131
Packaging Workstation Code into a Product Library... 131
The Download Procedure...132

Chapter 15. Job for Customizing...133
Glossary.. 139

Index.. 175

 v

vi

Figures

1. Requesting a PRODID Token...18

2. Coding a PRODID Control Block..19

3. Using PRODID AUTH... 19

4. Deleting the PRODID Token.. 19

5. JCLIF Sample Program..34

6. Creating a History File... 80

7. MSHP BACKUP Job... 81

8. Installing from a Tape with One Product.. 90

9. Installing a Tape with One Product with Three Parts Selected..90

10. Installing Products from a Stacked Tape..91

11. Example of a Serviced Product...97

12. PTF Format.. 99

13. Creating a Library on a Sequential Disk Extent.. 107

14. Defining a Library in VSAM Managed Space...108

15. Header for Product Containing "Restricted Material"..108

16. Header for Product not Containing "Restricted Material"..109

17. Header for an OCO Product with More than One Copyright Information..109

18. Extent Information for the History File Using MSHP... 110

19. Extent Information for the History File Using Job Control.. 110

20. Creating History Information for a Feature of a Product... 111

21. History Information for a Product with Multiple Components Installed Together (Part 1 of 2)...........112

22. History Information for a Product Consisting of Multiple Components Installed Selectively..............114

23. Adding Information to an Existing History File.. 115

 vii

24. Removing Product and Component Identifiers..115

25. Changing Entries in an Existing Product History.. 115

26. Restoring the History File... 116

27. Backing Up a Product or Feature..116

28. Backing Up the Production Part of a Product...116

29. Backing Up a Product or Feature for Selective Installation...117

30. Installing a Product with a Production Part... 117

31. Installing a Product with a Production and Generation Part... 117

32. Installing a Product with Selected Parts.. 118

33. Installing from a Stacked Tape...118

34. APAR Fix (ZAP) for a Phase...121

35. APAR Fix (ZAP) for a Module...121

36. APAR Fix (ZAP) for a Macro...121

37. APAR Fix (ZAP) Expanding a Phase.. 122

38. PTF for Phases.. 123

39. PTF for Modules.. 124

40. PTF for Macros.. 125

41. PTF for a Base Part of a Component.. 129

42. PTF for a Generation Part of a Component.. 130

43. Job for Customizing (Part 1 of 5)..133

viii

Tables

1. PRODID Parameter List...13

2. JCLIF IFAREA LAYOUT.. 33

3. LNG Exit - Communication Area for File Processing.. 53

4. Format of IJBVVEXU Communication Area.. 58

5. Product Identification Convention Example...72

6. Changed Product ID through New Version and Release Level.. 73

7. Layout of a Distribution Tape.. 82

8. Coding Convention Example for a Base Product and a Feature...83

9. Tape File Content for Selective Installation... 84

10. Stacked Tape and Cartridge Format... 85

11. Layout of the 80 Byte Record for START OF STACKED TAPE Indicator... 86

12. Layout of the 80 Byte Record for END OF STACKED TAPE Indicator...86

13. Layout of PTF Tape..99

14. Truth Table for Finding the Correct REQUIRES Group...128

 ix

x

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, U.S.A.

Any pointers in this publication to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement. IBM accepts no responsibility for the content or use of non-IBM
websites specifically mentioned in this publication or accessed through an IBM website that is mentioned
in this publication.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Deutschland GmbH
Dept. M358
IBM-Allee 1
71139 Ehningen
Germany

Such information may be available, subject to appropriate terms and conditions, including in some cases
payment of a fee.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted mobility or limited
vision, to use software products successfully. The major accessibility features in z/VSE enable users to:

• Use assistive technologies such as screen readers and screen magnifier software
• Operate specific or equivalent features using only the keyboard
• Customize display attributes such as color, contrast, and font size

Using Assistive Technologies
Assistive technology products, such as screen readers, function with the user interfaces found in z/VSE.
Consult the assistive technology documentation for specific information when using such products to
access z/VSE interfaces.

Documentation Format
The publications for this product are in Adobe Portable Document Format (PDF) and should be compliant
with accessibility standards. If you experience difficulties when you use the PDF files and want to request
a web-based format for a publication, you can either write an email to s390id@de.ibm.com, or use the
Reader Comment Form in the back of this publication or direct your mail to the following address:

IBM Deutschland Research & Development GmbH
Department 3282
Schoenaicher Strasse 220

© Copyright IBM Corp. 1991, 2010 xi

D-71032 Boeblingen
Federal Republic of Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

xii IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

About This Book

The purpose of this book is to further improve the satisfaction of VSE customers by facilitating a
homogeneous, convenient and easy to install/easy-to-use program environment.

VSE is a package product with a particular structure and requirements customers are used to. Software
vendors and IBM product developers who intend to provide programs to be installed and run under VSE
should be familiar with the VSE environment. This will let their programs fit into the VSE environment and
help meet customers' expectations.

Although almost all information provided herein is available from various other IBM sources (manuals and
licensed materials), such sources are not always at hand and do not focus necessarily on those areas that
may be of particular interest from a vendor's perspective. Therefore, this book shall serve as a selective,
comprehensive and handy compilation of such relevant information. However, it is not intended to modify
or replace the primary source referenced herein in any respect. In case of any doubt or ambiguity the
primary source shall be used.

It remains solely vendors' business decision and responsibility if and to what extent their product
implementation follows the structures described in this book. Of course, IBM must reserve the right
to make changes according to its business judgement and needs.

IBM is interested in further improving this book. Readers who want to provide comments or suggestions
are kindly asked to use the Reader's Comments Form enclosed.

VSE versions considered
The book takes into account all current versions of VSE.

Who Should Use This Book
This manual is intended for software vendors and IBM product developers who provide programs to be
installed and run under z/VSE.

How to Use This Book
The following list tells where you find information on the various topics in this book:
Part 1. IBM Contact Points

Chapter 1, “IBM Communication Channels for Software Vendors,” on page 3
describes the various channels through which IBM offers support to vendors.

Part 2. Programming Interfaces
Chapter 2, “Overview,” on page 9

tells which programming interfaces IBM recommends for use.
Chapter 3, “Macros and Vendor Exits,” on page 11

describes the programming interfaces that IBM offers to vendors and how to use them.
Part 3. Documentation and Multicultural Support

Chapter 4, “VSE Customer Documentation,” on page 63
describes how to design user-friendly software publications.

Chapter 5, “Providing Multicultural Support,” on page 65
describes what to consider when designing software for users speaking many different languages
and conforming to different cultural conventions.

Part 4. Creating Installation Tapes and Servicing Your Product
Chapter 6, “VSE Product Numbering Conventions,” on page 71

explains the IBM VSE product numbering conventions to avoid numbering conflicts at customer
installations.

© Copyright IBM Corp. 1991, 2010 xiii

Chapter 7, “Creating Installation Tapes,” on page 77
describes how to prepare a product distribution tape.

Chapter 8, “Installing and Customizing Your Product,” on page 89
tells how to install a product from the distribution tape and customize it thereafter.

Chapter 9, “Providing Service,” on page 95
describes how a product is serviced.

Part 5. Packaging and Service Samples
Chapter 10, “Packaging of Products,” on page 107

presents sample job streams for packaging products.
Chapter 11, “Library Member Types,” on page 119

lists the member types allocated for specific use.
Chapter 12, “APAR Fix (ZAP),” on page 121

gives an example of a ZAP.
Chapter 13, “Programming Temporary Fix (PTF),” on page 123

gives Program Temporary Fix (PTF) examples.
Chapter 14, “Shipping PC Code with VSE,” on page 131

gives a sample of how to ship PC code with VSE.
Chapter 15, “Job for Customizing,” on page 133

gives a sample of a customizing job.
Additional help is provided at the end of the book:

The glossary
explains technical terms used in the book.

The index
helps you to locate information.

Where to Find More Information

z/VSE IBM Documentation
IBM Documentation is the new home for IBM's technical information. The z/VSE IBM Documentation can
be found here:

https://www.ibm.com/docs/en/zvse/6.2

You can also find VSE user examples (in zipped format) at

https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

xiv IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

https://www.ibm.com/docs/en/zvse/6.2
https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zVSE_Samples.pdf

Summary of Changes

This manual has been updated to reflect enhancements and changes that are implemented with z/VSE
Version 4 Release 3:

• New communication channels for software vendors. Please refer to Chapter 1, “IBM Communication
Channels for Software Vendors,” on page 3.

© Copyright IBM Corp. 1991, 2010 xv

xvi IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Part 1. IBM Contact Points

© Copyright IBM Corp. 1991, 2010 1

2 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 1. IBM Communication Channels for
Software Vendors

This chapter describes the channels through which IBM currently works with vendors:

• The IBM Partner World
• The Early Test Program established especially for vendors to test and verify their applications at an early

stage with the most current version of IBM software
• The National Solution Center Database, which describes literally thousands of software programs from

IBM and from vendors to IBM sales personnel

z/VSE Information for Partners

Independent Software Vendors and Business Partners information:
https://www.ibm.com/docs/en/zvse/6.2

Information about service and support, and also useful information for IBM Business Partners is provided
at:
https://www.ibm.com/docs/en/zvse/6.2?topic=pdf-library

General z/VSE contact:
https://www.ibm.com/docs/en/zvse/6.2

General IBM contact:
http://www.ibm.com/contact/us/

The IBM PartnerWorld
The IBM PartnerWorld® program is available for the companies who develop commercially marketed
software, like Independent Software Vendors (ISV), either on z/VSE, z/VM®, z/OS® or across the System z®

platforms. The program benefits its members by assisting them in obtaining the resources necessary to
develop and support diverse customer solutions across IBM’s System z platforms. The offerings available
through the PartnerWorld help you build and market solutions to meet your customers’ needs. IBM’s
experts provide members of the PartnerWorld with support at every step of software creation cycle – from
the first encounter with the customer to post-sales support.

IBM PartnerWorld membership is at no cost. To join the program, you must sign the PartnerWorld
Agreement.

IBM PartnerWorld and Independent Software Vendors

The IBM PartnerWorld page:
http://www.ibm.com/partnerworld/pwhome.nsf/weblook/index_us.html

Independent Software Vendors (ISV) page
:https://www-01.ibm.com/support/docview.wss?uid=nas8N1022046

Early Test Program (ETP)
The Early Test Program provides software vendors with selected pre-General Availability (pre-GA) IBM
products.

These Early Test Programs are open to all software vendors who wish to test their software for the
purpose of porting, migrating, or regression testing their software in the new pre-GA environment. This
provides software vendors with the opportunity to offer their products with a general availability that
coincides with IBM products.

© Copyright IBM Corp. 1991, 2010 3

https://www.ibm.com/docs/en/zvse/6.2
https://www.ibm.com/docs/en/zvse/6.2?topic=pdf-library
https://www.ibm.com/docs/en/zvse/6.2
http://www.ibm.com/contact/us/
http://www.ibm.com/partnerworld/pwhome.nsf/weblook/index_us.html
https://www-01.ibm.com/support/docview.wss?uid=nas8N1022046

Further Information
Selected programs will be made available as new product releases are announced, along with the
currently available programs. The Early Test Program is conducted by the IBM Laboratory in Boeblingen,
Germany.

Contact

vse@de.ibm.com

National Solution Center Database
IBM's National Solution Center Database is a constantly updated list of many applications, solutions,
customer references, as well as IBM and non-IBM information representing over 15,000 solutions from
IBM and vendors.

The database is available on IBM networks for IBM SEs and Marketing Representatives world-wide.

To get a listing of the software products and other information about any company that is currently listed
on IBM's National Solution Center Database, or to get application forms to become part of the database,
contact your local IBM Office or use:

National Solution Center Database

http://www.ibm.com/systems/z/solutions/index.html

https://www.ibm.com/products/software

Example
Following is an example of an application description entered into the database and thus made available
to IBM sales personnel:
DOCID

X73321
TITLE

Accounts Receivable
SYSTYPE

9370, 43XX, 30XX, ES/9000
SYSREQ

z/VSE, z/OS with COBOL, CICS®

VENDTYPE
IAS Authorized Industry Application Specialist

VENDOR

John Smith
100 E 100 St
New York, NY 100001
CONTACT : Sue Smith
PHONE : 212-555-5555

DESCRIPT
John Smith's Accounts Receivable System is an online, real-time, credit management system. The
standard system provides the functions and features needed to support cash application for trade
receivables and maintain real-time customer account information. A credit data base allows for
extensive online inquiry of customer information, detail open item and mass open item payment
selection. Credit management is optimized through online, real-time access to account data for
maximum control of receivables. Combining John Smith's Accounts Receivable and Customer Order
Processing Systems provides the greatest possible control of your company's receivables and credit
exposure, while utilizing a common customer file and credit data.

4 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

http://www.ibm.com/systems/z/solutions/index.html
https://www.ibm.com/products/software

Available options include automatic cash application, online help, extended credit checking,
multi currency, automated credit agency interchange, capabilities for special order pricing, order
consolidation, production and assembly orders, deals and promotional pricing, vendor-direct
shipments, customer-entered orders, and Electronic Data Interchange (EDI) compatibility.

END USER DEFINITION:

 Growth Accounts
 Departmental Systems
 Enterprise End User Systems
 Large Data Center System

REVDATE
09/04/90

INSTCUST
10 - 24

REFER
Contact vendor for references

IBMOFFIC
xxx xxxx xxxx

IBMPHONE
xxx xxxx xxxx

SUPPORT
At John Smith's, planning and installation of the applications system is a joint effort between
John Smith's and the client. Implementation Assistance services provided include project planning
and management, organization and detailing of project tasks, interface design and programming,
data conversion assistance, specialized training programs, and onsite technical support. The
Custom Package Modification services include design and specification preparation, programming,
documentation preparation, and implementation. Once Implementation is complete, John Smith's
Telephone Support Center provides 24-hour, year-round assistance. These services are provided
at no additional charge as part of the standard six-month warranty; thereafter, with John Smith's
Maintenance Agreement. Additionally, John Smith's provides separate training for user and system
personnel. The instruction format is a combination of lecture and hands-on student interaction
with the system(s). John Smith's consulting staff provides services beyond the data processing
environment. Typical services might include assistance in defining a customer's needs, testing with
customer data to provide insight into a system's potential, pre-installation planning and ongoing
consulting to improve the utilization or effectiveness of the installed systems. Finally, John Smith's
Services Division can help you extend the capabilities of our standard software to address your
special requirements, whether they include extensive implementation support, project management,
or customized enhancements.

 COMMENTS
 Software available for cross-license N
 Code available outside the United States Y
 Marketing brochures available Y
 Demo available Y
 Response line available Y
 Education available Y
 Defect correction available Y
 Modification/enhancement support Y
 Multi-licensing agreement Y
 Application copy protected N

CUSTRESP

* This description is based upon information obtained from the *
* vendor, and is provided without independent evaluation or *
* validation by IBM. IBM, therefore, cannot ensure the accuracy *
* of statements as to the functions, quality, or performance of the *
* vendor's offering and makes no warranties, expressed or implied, *
* concerning the offering. *
* You should contact the vendor for current information, including *

Chapter 1. IBM Communication Channels for Software Vendors 5

* prices, terms, and conditions. *

HARDWARE
John Smith application software products operate on all zSeries processors. The exact configuration
of processor, DASD, and terminals depends on the volume of business transactions to be processed.
Please contact John Smith for more information.

This offering is supported on the 9371 processor.

SOFTWARE
John Smith application software products are supported in the following system software
environments:
Operating Systems

z/VSE, z/OS
TP Monitor

CICS
Data Storage

VSAM, IMS/DB, DL/1, DB2®, SQL/DS
Compiler

COBOL
Utilities

Sort/Merge
SAA

Uses SAA elements
YES

APPLICATION STRUCTURE
Stand-alone, Host with Non-programmable Workstation (NWS), Cooperative, Host with
Programmable Workstation

COMMON USER ACCESS (CUA)
CUA 1989, Advanced Interface Design Guide, Graphical

ENVIRONMENT
OS/2 EE, z/OS, CICS

COMMON PROGRAMMING INTERFACE (CPI)
Communications, Database, Presentation

COMMON COMMUNICATIONS SUPPORT (CCS)
3270 DS, SNA Network Management, LU 6.2, Token Ring, X.25

Note: This product has been selected for inclusion in IBM's SAA catalog. For current information
regarding SAA compliance, contact the vendor.

PRICE
Contact vendor for prices.

TERMS
A 99-year lease is standard for all John Smith products. Further, John Smith, Inc. grants a
nontransferable and nonexclusive license to use the System to process the data of the division
described in the Agreement. Upon the effective date of this Agreement, customers are invoiced 90%
of the license fee, with payment due within 10 days. Included in the license fee is a six-month
warranty that includes confirmation and correction of errors, and provisions for updates that are
necessary for the System to continue to accomplish its principal functions. Additionally, John Soft,
Inc. owns the rights to the software and guarantees that the software performs in accordance with the
specification contained in the user and system documentation.

CURDESC
Document has been reviewed by the vendor within the last year.

6 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Part 2. Programming Interfaces

© Copyright IBM Corp. 1991, 2010 7

8 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 2. Overview

This chapter describes the different classes of interfaces to be considered when attaching a program to
VSE and the problems arising from using attachments that are not IBM programming interfaces.

IBM Programming Interfaces
Only IBM Programming Interfaces are designed and officially released by IBM for the purpose of
attachment. They are identified explicitly within the respective program manual belonging to the VSE
System Reference Library.

In general, reasonable business considerations are taken to avoid changes that could affect user
programs.

Other Attachments
Some vendors have attached their programs by using VSE source code or information from the IBM
Diagnosis Reference manuals. These are not IBM programming interfaces designed and released for
attachment. In addition, IBM advises against this attachment practice due to the following technical
reasons:

• Source code is subject to constant change in the course of technical development. Thus, even a simple
fix may render the attached program inoperative, not to mention the effect of numerous changes in new
releases.

• In contrast to the programming interfaces described in the VSE Reference Library, the information given
in the Diagnosis Reference library is intended for diagnosis purposes only, that is to assist users in
identifying and solving certain technical problems that may be encountered in the VSE environment;
they are n o t intended for attachment.

The macros documented in the Diagnosis Reference Manuals, for example macros developed for VSE/
Advanced Functions, are:

– Not documented as intended programming interfaces for customer use.
– Not checked by VSE for interface use at the time of invocation. VSE assumes that the calling program

comes in at the correct point in time providing the correct parameters.
– Sometimes restricted in use in order to provide specific functions. If used otherwise, results are

unpredictable.

Specifically, IBM discourages using a certain code sequence within the supervisor for attachment. Such
use is even more critical when compared to the use of VSE/Advanced Functions' internal macros; those
are intended to remain upward compatible whenever possible.

It must be clearly understood that problems resulting from such kinds of attachment are not within IBM's
responsibility and are not solved by IBM.

Support of Multiple VSE Releases
Assume that you have an application that is running on different releases of VSE and it is accessing VSE
control blocks directly. Assume also that a new release of VSE provides a programming interface that
enables you to replace the old one. If this applies to your environment, then the application can make
use of the new interface for the new VSE release and later ones, and still continue to run on the previous
releases of VSE.

To allow for both kind of interfaces to coexist in your application, follow these steps:

1. Use the macro SUBSID INQUIRY to determine the level of VSE the program is running on. For a
description of this macro, please see z/VSE System Macros Reference.

© Copyright IBM Corp. 1991, 2010 9

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

2. If the program runs on an older release of VSE that does not yet supply this interface, branch to the old
code.

3. If the program is on the level of VSE providing this new interface, use the new interface at the highest
possible level.

Vendor Support
IBM suggests that you make use of the following options for help regarding programming interfaces:

1. Use the normal channels to submit your requirement for a programming interface to IBM: the user
groups at GUIDE, COMMON, or your local IBM representative. IBM will evaluate if those interfaces can
be made available.

2. Make use of the Early Test Program to check out your program early. There you also have access to the
supervisor lists and can acquaint yourself with changes. See “Early Test Program (ETP)” on page 3 for
detailed information on the Early Test Program.

10 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 3. Macros and Vendor Exits

Vendors can attach their applications to VSE using the officially supported interfaces, for example,
the macros and the vendor exits. Using these interfaces, the vendor applications and z/VSE can
communicate well, and this results in less work for testing vendor applications, and less effort for problem
determination.

The official interfaces also increase the flexibility of IBM software development: IBM can improve things
"below" these interfaces without having to be concerned about an impact on a vendor application.

Note: This chapter contains Programming Interface Information and is an extract from the z/VSE V6R2
Supervisor Diagnosis Reference. There is no guarantee for the accuracy of this extract and APARs
concerning it are not acceptable. For details please refer to the named manual.

PRODID Macro - Accessing VSE Services
The PRODID macro allows software vendor programs to identify themselves to a VSE system and access
authorized VSE services. Moreover, the macro allows to check which programs are already initialized in
the system. Thus, one can check, for example, if an incompatible program is initialized.

An 8-byte token communicates the authorization. A job receives the token at DEFINE. The token becomes
invalid at the deletion time, which is either through issuing PRODID DELETE or through the system
shutdown.

The PRODID macro consists of the following five services:

• PRODID DEFINE to define your program to the system
• PRODID DSECT to get a description of the input and output of PRODID DEFINE and PRODID CHECK
• PRODID AUTH to obtain rights to use VSE services
• PRODID CHECK to search for products
• PRODID DELETE to cancel service access

For an example of how to use the PRODID macro in your program, see “Example of PRODID” on page
18.

PRODID DEFINE Service
The service is contained in the initialization routine of your program and notifies the system. PRODID
DEFINE sends the program's "visiting card" to the system, which then honors the card with a token. The
information on the visiting card, later on called notification entry, is kept by the system until it is removed
by the program. The notification entries in the dump of the SVA help Service organizations to analyze a
memory dump and identify those programs that might be involved in a certain problem.

The token given to the program functions as a key that enables the program to use a list of services. As a
key to a room may be lent to other people, this token may be passed from a program to routines executing
under a different program but supported by the token owner. For example, consider a program that
supplies a particular access method to other programs. The access method is initialized in its partition,
obtains the token, and deposits it in an area shared with the supported programs. Then the token is used
whenever the routines of the access method (working for a supported program) need to be enabled for
use of a service, or disabled again if no longer needed.

Prerequisites
In order to start a program that issues the DEFINE instruction, the following points should be considered:

• Users must have update right for the IJBVEND phase residing in IJSYSRS.SYSLIB. The phase IJBVEND
is the part of the supervisor processing the PRODID request. Thus, the system administrator must have

© Copyright IBM Corp. 1991, 2010 11

https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse62/VSEAF94DRM.pdf
https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse62/VSEAF94DRM.pdf

defined the user ID and the right in DTSECTAB. For information on how to update the DTSECTAB, see
"Protecting Data" in the manual z/VSE Guide to System Functions.

• The PRODID DEFINE service must be issued while the program is running in its own partition.

The token is deleted as the result of an explicit PRODID DELETE request or system shutdown, not with
any end-of-task or end-of-job processing.

Requirements for the caller
• Authorization: controlled by Access Control Facility
• AMODE: 24 or 31
• RMODE: 24 or ANY
• ASC-mode: Primary

label

PRODID DEFINE

, AREA = (1)

, AREA = (register)

, AREA = name

, RUN = ONE

Input Parameter Description
AREA

points to an area where the input information is available. The area can be specified in register
notation (the default is 1) or as the name of the input area.

The area must be in an address range valid for this job.

The input for PRODID DEFINE, the text of the "visiting card" is a string described by the PRODID
DSECT service. This input should be in character format so that no conversion are needed for printing
the string. The input is accepted as passed along, except it must not be empty; that is, none of the
three fields IJBCOMPN, IJBPRODN, IJBVRM can be binary zero. In such a case the request would be
rejected and a return code issued.

The fields for identifying the company, the product, and the release level should contain the following
information:
IJBCOMPN

The name of the company owning the product and issuing the DEFINE request. Only one
meaningful abbreviation should be used for all products of a company.

IJBPRODN
The name of the product. Only one meaningful abbreviation should be used for all different
releases of a product.

IJBVRM
The version, release, and modification level of the program.

The information in these fields may have a different length than the one specified by the DSECT.
It may, however, not use more than the combined length of the fields IJBCOMPN to IJBVRM. For
example: say you would want to indicate a release level that requires more than the 6 bytes allotted to
IJBVRM. In this case, the release level must start somewhere in IJBPRODN so its end coincides with
the end of IJBVRM.

Note: The CHECK function does not support such overflowing information, but treats, for example, the
field IJBCOMPN as containing the company name and nothing else.

RUN=ONE
The program runs only once per system as, for example, VSE/POWER.

12 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf

Output
is an 8 byte token returned in the input area at label IJBTOKEN. Note that the token is associated with the
input string, not with a task or partition.

On return, the contents of register 0 is destroyed.

Return Codes
returned in register 15
0

The system accepted the input and returned a token.
4

The same string is already defined for the system or partition, the same token was returned as
previously.

8
Maximum of 256 products already defined.

12
Control block format error. At least one of the fields identifying company, product, or release level is
binary zero, or IJBVIDL is incorrect.

16
IJBVEND not loaded.

20
GETVIS error, return code from GETVIS in register 0.

Cancel Conditions
X'0B'

Security check failed
X'21'

An unknown function code is passed to PRODID (corrupted macro expansion).
X'25'

Invalid address of parameter list or parameter

PRODID DSECT Service
This service generates a DSECT describing:

• Input expected by PRODID DEFINE
• Output returned by PRODID DEFINE
• Input expected by PRODID CHECK.
• Output returned by PRODID CHECK.

For information of the value of these fields, see page “AREA” on page 12 and “PRODID CHECK Service” on
page 16.

The layout is:

Table 1. PRODID Parameter List

Field
Name

Description Field
Type
Length

IJBVIDL LENGTH OF INPUT AREA AL2(IJBFINST)

IJBVIFL1 FLAGBYTE, RESERVED CL1

IJBVIFL2 FLAGBYTE, RESERVED CL1

Chapter 3. Macros and Vendor Exits 13

Table 1. PRODID Parameter List (continued)

Field
Name

Description Field
Type
Length

IJBCOMPN NAME OF COMPANY, PROGRAM OWNER CL14

IJBPRODN NAME OF PROGRAM CL16

IJBVRM VERSION AND RELEASE OF PROGRAM CL6

IJBTOKEN TOKEN RETURNED BY DEFINE CL8

IJBCKLEN LENGTH OF OUTPUT AREA FOR CHECK CL2

IJBFINST IJBVIDL *

IJBCKARE BEGIN OF OUTPUT AREA FOR CHECK *

IJBCOMPO NAME OF COMPANY, PROGRAM OWNER CL14

IJBPRODO NAME OF PROGRAM CL16

IJBVRMO VERSION AND RELEASE OF PROGRAM CL6

IJBTIDO TASK ID RETURNED BY CHECK CL2

IJBPIKO PARTITION ID RETURNED BY CHECK CL2

Input Parameter Description
None.

Output
None.

Return Codes
None

PRODID AUTH Service
The PRODID AUTH service enables a program with a valid token to obtain the right to use the services or
to give up this right. The following services are available through PRODID AUTH:

• EXTRACT ID=PART
• EXTRACT ID=SVA
• GETFLD FIELD=ALET (add to DUAL of current task)
• MODFLD FIELD=PASCOPE1
• MODESET
• PRODEXIT
• TREADY COND=ICCF
• TREADY COND=NO
• SYSDEF
• XMOVE
• MODESET

The system uses a fast path to process this request. The right is granted to the task issuing the request,
and is removed at end-of task if not already revoked. This need not be the same task that notified the
system with PRODID DEFINE and obtained the token.

14 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

PRODID AUTH gives non-IBM software - and even an IBM program not included in SUBSID support - a
status comparable to an IBM subsystem as, for example, CICS. This also means the programs must use
utmost care when using the services listed below. The checking in these services is not as extensive as
required for a user interface.

WARNING: ANY ERROR IN CALLING THE SERVICES, FOR INSTANCE WITH INCORRECT PARAMETERS OR
AT ANY WRONG POINT IN TIME, MAY DAMAGE THE SYSTEM.

Note: Each AUTH=YES request increases a one byte counter attached to the issuing task, each AUTH=NO
request decreases it by one.

Requirements For The Caller
• Authorization: valid token
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary or AR

label

PRODID AUTH = YES

NO

Input Parameter Description
Registers 1 and 2

must contain the token previously obtained by PRODID DEFINE
AUTH

YES requests the right to use special services. If the token passed in registers 1 and 2 is valid, this
right is granted.

NO gives up the right.

Output
None.

On return, register 0 is destroyed.

Return Codes
passed back in register 15

0
Right granted for AUTH=YES. Right set off for AUTH=NO.

4
Right revoked for AUTH=NO, but was already revoked or never requested.

8
Right not granted, more than 255 consecutive AUTH=YES requests for this product within this task.

16
IJBVEND not loaded.

Cancel Conditions
X'21'

Invalid token or an unknown function code is passed to PRODID (corrupted macro expansion).

Chapter 3. Macros and Vendor Exits 15

PRODID CHECK Service
PRODID CHECK searches the accumulated notifications entries for either a certain known product, or
all releases of such a product, or all products of a certain company, and returns any notification entries
found. Also, notification entries of all programs may be retrieved; this is useful when determining the
cause of a problem.

With this service the program checks for a known string.

All occurrences found are moved to the user's area starting at IJBCKARE if the length of this area is
sufficient. If the length is not sufficient, a return code indicates this fact and the total number of matching
entries is returned in register 0. Then the request may be repeated with a larger area.

Requirements for the caller
• Authorization: none
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary

Invocation

label

PRODID CHECK

, AREA = (1)

, AREA = (register)

, AREA = name

Input Parameter Description
AREA

points to the area that holds the search information. The area can be specified in register notation (the
default is 1) or as the name of the input area.

The area must be in an address range valid for this job.

The layout of this string is described by PRODID DSECT. The following values may be passed as input:
IJBCOMPN

contains the name of the company owning the product that is looked for.

If this field contains binary zeros, all notification entries are returned.

IJBPRODN
contains the name of the product looked for. If this field is set to binary zeros, all notification
entries with the same company name are returned.

IJBVRMN
contains the version, release, modification level of the program checked for. If this field is set to
binary zeros, all notification entries with the same company name and product name are returned.

IJBCKARE
is the begin of the output area, it is supplied in the input pointed to by AREA. In this area the
matching notification entries are moved provided they fit.

IJBCKLEN
specifies the length of the output area. The output area must be in an address range valid for this
job.

16 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Output
The part from IJBCOMPN to IJBVRM of the found notification entry or entries - including the TIK and PIK
of the partition where PRODID DEFINE was issued first - is moved to the area starting at field IJBCKARE in
the length specified in IJBCKLEN. If the defining task terminated in the meantime, the fields for TIK/PIK
are set to binary zeros. See also “PRODID DSECT Service” on page 13 for the layout of one returned
notification entry.

On return, register 0 contains the number of entries found.

Return Codes
codes passed back in register 15
0

Entries matching the search criteria were moved to user area.
4

Entries matching the search criteria were moved to user area. But there are more matching entries
that could not be moved because the output area was full. Register 0 contains the number of all
matching entries, so repeat request with larger area.

8
No match found or no entry existing.

12
Control block format error (for example, incorrect IJBVIDL).

16
IJBVEND not loaded.

Cancel Conditions
X'21'

Passed token was invalid. This could be caused by a second DELETE request. Or an unknown function
code is passed to PRODID (corrupted macro expansion).

X'25'
Invalid address of parameter list or parameter.

PRODID DELETE Service
With this service the program requests to delete its notification entry and invalidate its associated token.
This should be used in the program's termination routine.

Requirements for the caller
• Authorization: valid token
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary

label

PRODID DELETE

, TOKEN = (1)

, TOKEN = (register)

, TOKEN = name

Input Parameter Description
TOKEN

points to the area that holds the token that was previously obtained by PRODID DEFINE. The area can
be specified in register notation (the default is 1) or as the name of the input area.

Chapter 3. Macros and Vendor Exits 17

The area must be in an address range valid for this job.

Output
None

On return, register 0 is destroyed.

Return Codes
passed back in register 15

0
Entry deleted. Authority was already reset before DELETE request was issued.

4
Entry deleted, but authority was still granted. Authority is removed.

8
Entry deleted. Authority was already reset before DELETE request was issued. At least one
PROEDEXIT DEFINE was removed.

12
Entry deleted, but authority was still granted. Authority is removed. At least one PRODEXIT DEFINE
was removed.

16
IJBVEND not loaded.

Cancel Conditions
X'21'

Passed token was invalid. This could be caused by a second DELETE request. Or an unknown function
code is passed to PRODID (corrupted macro expansion).

X'25'
Invalid address of parameter list or parameter.

Example of PRODID
Assume an application that needs to use one of the VSE services. The following example illustrates how
you might use PRODID in your program.

Defining your Program to VSE and Requesting a Token
In the initialization routine define your application to the system with the PRODID control block
MYPROGID and the following code sequence:

 ...
* define your program to VSE and ask for a token
 LA R1,MYPROGID point to your program's PRODID
* control block
 PRODID DEFINE,(1) pass its address to VSE with your
* DEFINE request
 LTR RF,RF check for return code
 BNZ CHECKRC1 go analyze return code
* VSE put a token into your PRODID control block
 ...

Figure 1. Requesting a PRODID Token

18 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

MYPROGID DC AL2(IJBFINST) length of control block defined
* by VSE
 DC X'0000' flag bytes
 DC C'ANY S/W CORP.' Company Name used with all products
 DC C'ANY PROGRAM NAME' Name of this program
 DC C'020100' version, rel., mod.level of above
* program
 DC CL8' ' token passed back by VSE for my
* program
 DC X'0000' no area for check needed
MYPROG PRODID DSECT

Figure 2. Coding a PRODID Control Block

Using a VSE Service
Using a VSE service includes the following three steps:

1. Obtain the authority to use the service
2. Use the service
3. Return authority no longer needed.

Note: It is safer to run with the lowest possible level of authority.

 ...
* obtain right to use a service restricted to special users
 LA R1,MYPROGID point to your program's PRODID
* control block
 USING MYPROG,R1
 LM R1,R2,IJBTOKEN and load your token into r1/r2
 DROP R1
 PRODID AUTH=YES pass it to VSE asking for authority
 LTR RF,RF check for return code
 BNZ CHECKRC2 go analyze return code
 ...
* execute the service needed
 ...
* return authority
 LA R1,MYPROGID point to your program's PRODID
* control block
 USING MYPROG,R1
 LM R1,R2,IJBTOKEN and load your token into r1/r2
 DROP R1
 PRODID AUTH=NO return authority
 LTR RF,RF check for return code
 BNZ CHECKRC3 analyze return code
 ...

Figure 3. Using PRODID AUTH

In your termination routine delete your program's entry to leave a clean system.

 ...
* remove your program's PRODID information from VSE
 LA R1,MYPROGID point to your program's PRODID
* control block
 USING MYPROG,R1
 LM R1,R2,IJBTOKEN and load your token into r1/r2
 DROP R1
 PRODID DELETE ask VSE to invalidate the token and
* to remove your PRODID information
 LTR RF,RF check for return code
 BNZ CHECKRC4 analyze return code
 ... continue with your clean up
 ...

Figure 4. Deleting the PRODID Token

Chapter 3. Macros and Vendor Exits 19

PRODEXIT Macro - Handling Vendor Exits
This section describes the handling of the PRODEXIT services and the vendor exits. The services are
described in detail starting with “PRODEXIT DEFINE Service” on page 23, the exits in “Vendor Exits” on
page 34.

Exit Specification
A set of vendor interfaces are provided via exit points that must adhere to the following specifications:

1. To use the vendor exits, the application must be authorized. The valid token is obtained from the
PRODID macro, the user must be authorized (DTSECTAB) to access IJBVEND and the products exit
routine.

2. Exits can be specified for update (for example, DTFs, or JCL statements) or monitoring (no update).
Monitoring exits receive control after exits defined for update. Several exits can be specified for a class
or subclass, however only one exit per valid PRODID token. Exception: Monitoring and update exits
for the same class or subclasses can coexist for the same TOKEN. The exits are activated in FIFO or
priority order (depending on PRODEXIT DEFINE specification).

3. Addressability to the work area has to exist for every possible task under which an exit can be invoked.
The exit routine itself has to be within the SVA (high or low). AMODE must be 31, and reentrancy has to
be considered.

4. An exit can be enabled/disabled without affecting other exits for the same event type.
5. The different exit specifications are stacked per event and invoked as needed for the specific exit.
6. Vendor exits that are elegible for the dynamic ENABLE/DISABLE service can temporarily be enabled/

disabled from the vendor in his vendor dispatcher exit routine.
7. Vendor exits have to consider that SVCs in ICCF pseudo partitions are intercepted by ICCF, which may

change the input to a specific device.

Classes and Subclasses
The exits can be defined for given exit points in z/VSE components. A z/VSE component is called a class,
the exit point subclass.

Classes are SUP, PSUP, SVC, FSVC, BAM, AIT, DOC, LNG, DOCP.

Subclasses can be defined for every class, for example, a subclass for class SUP is the POSTFCH exit, for
class BAM the PRE-OPEN exit. If no subclass is specified, all existing subclasses of the specified class are
defined automatically.

Exit Process

The activation service PRODEXIT ACTIVATE can be used by z/VSE components at given points and
transfers control to defined vendor exits. Depending on the environment, PRODEXIT ACTIVATE expands:

• In supervisor state to a BASSM call to the ACTIVATE processing (if no exit is enabled, control is returned
immediately).

• In problem program state to a normal SVC.

Vendor Exit PSW Key
The vendor exit will be activated with the same PSW key as the issuing subclass of the exit PRODEXIT
ACTIVATE.

PRODEXIT Communication Area Location At Exit Entry
The location and storage key of the PRODEXIT communication area, which is input for the exit entry, is
described in the corresponding class/subclass paragraph.

20 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

An eight byte user area (IJBVUSW) may be given as input to the PRODEXIT DEFINE service for each exit.
This field can hold, for example, an anchor for a work area and is given to the exit during activation.

• The PRODEXIT ACTIVATE service returns after all vendor exits of same class/subclass are processed.

Note: Exceptions are described in the corresponding chapter of the vendor exit definition.

If more than one vendor exit is established for a subclass, the priority defined (during PRODEXIT DEFINE
in the PRODEXIT area) is used to determine the activation order. Exits defined with the same priority will
be activated in the sequence the PRODEXIT DEFINE was issued (FIFO).

Vendor exits defined for update (via PRODEXIT DEFINE) are activated prior to the monitoring exits.
Within the 'update' and 'monitoring' exits the priority is used to determine the activation sequence.
'Update' exits are processed before 'monitoring' exits. 'Monitoring' exits are, per convention, not allowed
to change any system information, a check however is not possible.

If more than one exit is to be activated, the next exit will get the output (if any) of the former exits within
the same type. Exceptions are described in the class/subclass.

Note: If there are more exits defined for update, the one with the highest priority will be invoked first. The
one with the lowest priority will be invoked last and therefore this one has the final chance to change the
output before the control will be given back to the 'ACTIVATE' component.

The DEFINE, DELETE, and CHECK services expand to normal SVCs, the ENABLE and DISABLE services
to fast path SVCs. The ACTIVATE and RETURN for PSTATE services also expand to normal SVCs, but the
ACTIVATE and RETURN for SSTATE services result in BSM or BASSM.

Exit Scopes
Every exit has a scope. When the class or subclass is enabled for:
system scope

the exit is activated for all tasks.
partition scope

the exit is activated for all tasks within the partition, including system tasks that execute services for
this partition.

task scope
the exit is activated for the current task only.

Note: Whether an exit is activated or not can be overruled dynamically by the new ENABLE/DISABLE
services.

Whenever a new task is attached, it is automatically ENABLEd for:

• An exit of system scope if one was enabled.
• An exit of partition scope if the new task belongs to the partition for which an exit was enabled.

Note: An attach will fail if the necessary control blocks for vendor exit activation cannot be GETVISed.
This can happen if there are vendor exits defined in the system that are 'flagged' to be critical ones (see
PRODEXIT DEFINE). In the case of dynamic partitions, the allocation is done anyway, but a message is
issued to the console.

Exit Types
There are two types of exits, SSTATE and PSTATE.

Supervisor State (SSTATE) Exits
The exits receive control with the RID (the RID identifies the environment in which the task is running,
for example, the usage of save areas) as described in the corresponding class/subclass paragraph (RID
¬= USERTID) and are disabled for interrupts. Register 1 points to a parameter list holding exit-related
information (described by “PRODEXIT DSECT Service” on page 31). Register 15 holds the exit routine
address at exit entry and may be used by the exit routine. The exit has to return with PRODEXIT RETURN.

Chapter 3. Macros and Vendor Exits 21

The exit will receive control in primary mode and AMODE 31. The high order bit of the exit address
(defined by PRODEXIT DEFINE) has to be set. General purpose and access registers are saved before
activation of the exit and restored after PRODEXIT RETURN. All areas as well as the exit routine itself
have to be fixed for RID = SYSTEMID and may be pageable for environments, that allow page faults
(RID=REENTRID).

Note: The space-switching program call (PC-ss) is supported. Therefore, when a program gets control
after an interupt, the primary space is not necessarily the allocating space.

Problem Program State (PSTATE) Exits (RID = USERTID)
The PRODEXIT ACTIVATE service provides a save area and saves the status of the service issuer (PSW,
general purpose register and access register). The vendor exit receives control in primary mode, problem
program state (RID = USERTID) and AMODE 31. High order bit of the exit address (DEFINE service) has
to be set to 1 if running in ESA environment. Register 1 points to a parameter list holding exit-related
information (described by PRODEXIT DSECT). Register 15 holds the entry point address. The exit has to
return via the PRODEXIT RETURN service, which may schedule another exit or restore the saved registers
and return to the calling component.

Notes:

1. PSTATE exits are interruptible, however, external interrupts that drive IT, TT, and OC exits are delayed.
2. Per task one PSTATE exit, one SSTATE exit with RID=REENTRID, one SSTATE exit with RID=SYSTEMID

(excluding FSVC CLASS), and one SSTATE exit with RID=SYSTEMID CLASS = FSVC can be active the
same time.

3. A program check in the vendor exit or an abnormal termination causes skipping of normal program
check exits or abend exit routines.

4. Any STXIT macro invocation of a vendor exit leads to ERR21 ==> 'illegal SVC'.

Register Conventions

On Exit Entry:
register 1

address of the area as defined by PRODEXIT DSECT
register 14

exit return address
register 15

exit entry point address

There is no need to save and restore registers for the user of the PRODEXIT ACTIVATE service. However,
in case of SSTATE ACTIVATE out of the SVA, the ACTIVATE issuer has to provide a save area via R13.

On PRODEXIT Service Return
On return from any PRODEXIT service, the standard register convention applies, that is, the original
contents of R0, R1, and R15 might be destroyed, R14 must have the same value as on entry to the exit.

Deleting an Exit
It is recommended to delete an exit (PRODEXIT DELETE), when the exit is no longer needed. If no
deletion occurs, the enable time depends on the scope of an enabled exit:

system scope
enabled until next IPL.

partition scope
enabled until de-allocation of partition. (1.)

22 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

task scope
enabled until completion of end-of-task process. (1.)

Notes:

1. If several partitions/tasks are enabled, only the ending partition/task is DISABLEd; any exit remains
being DEFINEd until the next IPL if not explicitly deleted via the PRODEXIT DELETE service.

2. An exit eligible for dynamic services remains enabled for dynamic services until IPL or until it is
explicitely deleted.

Recovering from Errors

In case of abnormal termination of an exit, the dump routine might issue a cancel message and the
corresponding failing address indicates that a vendor exit caused the problem. Other exits of the same
subclass are skipped.

An abnormal termination of vendor exits running with RID=SYSTEMID leads to a hardwait.

PRODEXIT Services
The PRODEXIT macro provides the following services:

• “PRODEXIT DEFINE Service” on page 23.
• “PRODEXIT ENABLE Service” on page 26.
• “Dynamic PRODEXIT ENABLE” on page 27.
• PRODEXIT ACTIVATE activates an exit in the corresponding components (vendor exit hooks). This

service runs automatically for enabled exits, and is described in PLM documentation (SY33-9164).
• “PRODEXIT RETURN Service” on page 28.
• “PRODEXIT DISABLE Service” on page 29.
• “Dynamic PRODEXIT DISABLE” on page 30.
• “PRODEXIT DELETE Service” on page 30.
• “PRODEXIT DSECT Service” on page 31 shows the contents of the input/output areas of the PRODEXIT

services. These areas are called PRODEXIT area and PRODEXIT Extension area.

The New Dynamic Enable/Disable Services
The z/VSE dynamic PRODEXIT ENABLE/DISABLE services allow vendors to improve the performance of
vendor exits especially in a z/VSE multiprocessor environment. This can be achieved by exploiting the
z/VSE Vendor Dispatcher Exits. These exits are running as dispatcher extensions in supervisor mode and
are parallel code in terms of the turbo dispatcher terminology. Within the Vendor Dispatcher Exit, the
vendors can decide whether they want to have the normal vendor exit, as defined via PRODEXIT DEFINE,
being invoked for that instance or not. This adds some extra code, but it is parallel code and can be
executed on multiple processors at the same time. The normal vendor exits are non-parallel code, and by
avoiding unnecessary invocations of them, the ratio of parallel code to non-parallel code improves, and so
does the overall performance in a multiprocessor environment.

PRODEXIT DEFINE Service
PRODEXIT DEFINE defines a vendor exit of a given class and subclass. If the subclass is omitted, the
exit is defined for all subclasses. The DEFINE service returns a PRODEXIT token that allows to use
PRODEXIT ENABLE, DISABLE and DELETE services. Before an exit can be activated, it has to be enabled
using PRODEXIT ENABLE; initially, the exit is disabled if it is not defined as being eligible for dynamic
ENABLE/DISABLE services.

Vendor exits must not issue PRODEXIT DEFINE.

Chapter 3. Macros and Vendor Exits 23

Requirements For The Caller
• Authorization: valid PRODID token (as returned by PRODID DEFINE)
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: SVC

label

PRODEXIT DEFINE

, AREA = (1)

, AREA = (register)

, AREA = name

Input Parameter Description
AREA=

points to the PRODEXIT area where the input information is available. It may be specified in register
notation or as the name of the input PRODEXIT area. The PRODEXIT area must be in an address range
valid for this partition. The following fields of the PRODEXIT DSECT are used as input parameters:
IJBVCLS

class of exit. The content is described by PRODEXIT DSECT. Only one exit class can be specified.
Class is required.

IJBVSCL
subclass of exit. The content is described by PRODEXIT DSECT. Some classes of exits have several
subclasses. If in that case IJBVSCL indication is omitted, the exit is defined for all subclasses.
Several subclasses can be specified also. If an exit has only one subclass, it is recommended to
set the corresponding subclass indication because of future extensions. Subclass is optional for
those Classes that allow the subclass specifications.

Note: Classes SVC and FSVC currently do not support single subclasses, therefore any subclass
specification is invalid for them and causes Return Code 12.

IJBVTOK
the PRODID token previously obtained by PRODID DEFINE. Token is required.

IJBVEXT
the exit routine address, the high order bit defines the AMODE on entry of the exit (=0 -> AMODE
24, =1 -> AMODE 31). The exit address is required. AMODE 31 is required if running in ESA mode.
If high order bit is not on in VSE, DEFINE issues RC 12. The exit routine has to be within the SVA!

IJBVSCP
the scope of the exit. Scope is required.

IJBVUSW
The 8 byte user word is available for the vendor product, for example, IJBVUSW may hold the
pointer to a work area. The contents of IJBVUSW is transferred to the exit. This field is optional
and should be cleared to X'00' if no input is available.

IJBVPRIO
This one byte field defines the priority of the exit. The priority can be in the range from 0 to 99
(decimal), where 99 is the highest priority and 0 the lowest. The exits are activated in the priority
order (high to low), exits with the same priority are activated in FIFO order dependent on the
PRODEXIT DEFINE sequence. Exceptions for exit invocations are described in the corresponding
exit definition chapters.

24 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

IJBVFUPD
(in flag IJBVFLAG). Exits defined for update (IJBVFUPD set) are processed prior to all other
(monitoring) exits. Within the two groups (update or monitoring) the exits are activated in priority
(IJBVPRIO) order.

Note: Proper usage of UPDATE or MONITOR is the vendor's responsibility, VSE does not perform
any checks.

IJBVCRIT
(in flag IJBVFLAG). An exit defined as critical (IJBVCRIT set) indicates to the system that after
the successful processing of that DEFINE service, the system does not ATTACH tasks or ALLOC
partitions for which the internal control blocks for the exit activation cannot be obtained. This
indication remains valid until all exit are DELETEd that have that flag on. In case of dynamic
partitions, allocation is done anyway, but a message is written to the console. In addition, the flag
triggers what happens when a second PSTATE exit for the same task is invoked: if the critical bit
is set for the second PSTATE exit, the program is cancelled with error 47 (reason code 3 'second
vendor exit invocation invalid'), in the other case the invocation is ignored.

IJBVDYN
(in flag IJBVFLAG). Defines an exit as being eligible for ENABLE/DISABLE,DYN=YES,ID=xxx
services to the system. If this bit is on, it triggers an automatic enabling of that exit for
SCOPE=SYSTEM. If the scope is not SYSTEM, the exit is only enabled for the dynamic services. The
exit stays being enabled for dynamic services until it gets deleted via PRODEXIT DELETE.

Note: This support is currently restricted to exits of the CLASS SVC (ID=SVC) only. RC=12 is
returned if the CLASS is not supported.

Note: Any CLASS-specific or SUBCLASS-specific restriction for an exit definition is described in the
corresponding exit chapter.

Output
An 8 byte PRODEXIT token passed back in the input PRODEXIT area at label IJBVETK.

Return Codes
passed back in register 15.
0

Request accepted.
8

Authorization problem.
=>

PRODID TOKEN index part out of range (>256).
=>

Vendor Product Table not defined.
=>

Vendor Product Table Entry deleted.
=>

Vendor Product TOKEN doesn't match.
12

Control block format error.
=>

No CLASS specified.
=>

Several CLASSes specified.
=>

Specified CLASS not supported.

Chapter 3. Macros and Vendor Exits 25

=>
Specified SUBCLASS not supported.

=>
PRODEXIT AREA length invalid (<84).

=>
SCOPE definition invalid.

=>
Priority definition invalid (>99).

=>
No EXIT routine address specified.

=>
EXIT not in SVA.

=>
EXIT routine not AMODE=31.

=>
SUBCLASS specification invalid for current CLASS.

=>
SCOPE not SYSTEM for CLASS SUP, and SUBCLASS=EXT.

=>
SCOPE not SYSTEM for CLASS AIT.

=>
IJBVDYN bit on in IJBVFLAG, and CLASS not SVC.

16
System phase $IJBVEND not loaded.

20
GETVIS error, return code from GETVIS in register 0.

24
Request rejected, an exit is already defined for at least one subclass or of the class for the specified
TOKEN. The corresponding TOKEN has been returned in the input PRODEXIT area at label IJBVETK.

28
Initial system setup for PRODEXIT services failed due to GETVIS problems.

Cancel Conditions
X'21'

Illegal SVC - unknown function code, invalid invocation of PRODEXIT DEFINE, ASC-mode not
PRIMARY or no exits for fast path SVC in CLASS SVC are allowed (for example, SVC 107 and 124).

X'25'
Parameter list address is invalid. Results in an addressing exception.

PRODEXIT ENABLE Service
This service enables the exit defined by PRODEXIT DEFINE for exit activation:
System wide

if the IJBVSYS flag was set
For current partition

if the IJBVPAR flag was set
For current task

if the IJBVTSK flag was set

Note: Several ENABLE requests for the same exit are possible.

26 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Requirements For The Caller
• Authorization: valid PRODEXIT token
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: fast path SVC

label

PRODEXIT ENABLE

Input Parameter Description
Register 1 and 2

must contain the PRODEXIT token returned by the PRODEXIT DEFINE service.

Output
Return codes are passed back in register 15.

0
Request accepted.

4
Exit already enabled.

8
Task disabled for PRODEXIT services (GETVIS problem).

16
System phase $IJBVEND not loaded, or no vendor defined in system.

Cancel Conditions
X'21'

Illegal SVC - invalid PRODEXIT token.

Dynamic PRODEXIT ENABLE
This service enables the exit defined by the coresponding PRODEXIT DEFINE to get activated once for
the current task. However, if the current task has also been enabled via the normal PRODEXIT ENABLE
service, it stays enabled according to the rules. This service is supposed to be used in a vendor dispatcher
exit only.

Note: Several dynamic ENABLE requests for the same exit are possible and can be processed in parallel
on different processors in a multiprocessing environment.

Requirements For The Caller
• Authorization: valid PRODEXIT token and SUPERVISOR STATE
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: BASSM

label

PRODEXIT ENABLE,DYN=YES,ID=SVC

Chapter 3. Macros and Vendor Exits 27

Input Parameter Description
Register 1 and 2

must contain the PRODEXIT token returned by the PRODEXIT DEFINE service.

Output
Return codes are passed back in register 15.

0
Request accepted.

4
Exit not enabled (this should not occur).

8
Task disabled for PRODEXIT services (GETVIS problem).
Dynamic PRODEXIT services not supported for specified ID.

12
Token invalid.

16
System phase $IJBVEND not loaded, or no vendor defined in system.

Cancel Conditions
X'02'

Priviledged operation exception - if not supervisor state.

PRODEXIT RETURN Service
The vendor exit has to return with PRODEXIT RETURN. RETURN uses the same PRODEXIT area given to
the exit as input, therefore the area must not be changed (except IJBVRC). However, IJBVRC may not be
changed if it is a vendor exit without output. Any information returned from the vendor exit is input for the
next exit to be called. For example, the vendor exit return code IJBVRC may be analyzed or changed by a
following exit. After the return of the last vendor exit (of the subclass) IJBVRC is given to the caller.

Requirements For The Caller
• Authorization: none
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: SSTATE = BSM, PSTATE = SVC

Note: Make sure that R14 is not changed during exit processing, it contains the link/return address from
the preceding ACTIVATE exit invocation.

label

PRODEXIT RETURN

Input Parameter Description
none

Output
None.

28 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Cancel Conditions (PSTATE Only)
X'21'

==> Illegal SVC - exit is not active, invalid function code.
ERR2E

==> Deadlock situation during re-occupation of the LTA.

Note: For SSTATE callers that condition leads to unpredictable results.

PRODEXIT DISABLE Service
This service disables the exit defined by PRODEXIT DEFINE.
System wide

If the IJBVSYS flag was set
For current partition

if the IJBVPAR flag was set
For current task

if the IJBVTSK flag was set

Note: Several DISABLE requests for the same exit are possible.

Requirements For The Caller
• Authorization: valid PRODEXIT token
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: fast path SVC

label

PRODEXIT DISABLE

Input Parameter Description
Register 1 and 2

must contain the PRODEXIT token returned by the PRODEXIT DEFINE service.

Output
Return codes are passed back in register 15.

0
Request accepted.

4
Exit already disabled.

8
Task disabled for PRODEXIT services (GETVIS problem).

16
System phase $IJBVEND not loaded, or no vendor defined in system.

Cancel Conditions
X'21'

Illegal SVC - invalid PRODEXIT token.

Chapter 3. Macros and Vendor Exits 29

Dynamic PRODEXIT DISABLE
This service disables the exit defined by the corresponding PRODEXIT DEFINE once for the current task.
However, if the current task has not been enabled via the normal PRODEXIT ENABLE service, it stays
disabled according to the rules. This service is supposed to be used in a vendor dispatcher exit only.

Note: Several dynamic DISABLE requests for the same exit are possible and can be processed in parallel
on different processors in a multiprocessing environment.

Requirements For The Caller
• Authorization: valid PRODEXIT token and SUPERVISOR STATE
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: BASSM

label

PRODEXIT ENABLE,DYN=YES,ID=SVC

Input Parameter Description
Register 1 and 2

must contain the PRODEXIT token returned by the PRODEXIT DEFINE service.

Output
Return codes are passed back in register 15.

0
Request accepted.

4
Exit not enabled (this should not occur).

8
Task disabled for PRODEXIT services (GETVIS problem).
Dynamic PRODEXIT services not supported for specified ID.

12
Token is invalid.

16
System phase $IJBVEND not loaded, or no vendor defined in system.

Cancel Conditions
X'02'

Priviledged operation exception - if not supervisor state.

PRODEXIT DELETE Service
The exit is disabled (if not yet done) and the exit definition is deleted. PRODEXIT DELETE waits for
PRODEXIT RETURN, if the exit is active.

Vendor exits must not issue PRODEXIT DELETE.

Note: When a vendor product is deleted (using PRODID DELETE) from the system, all associated vendor
exits (defined by PRODEXIT DEFINE) are deleted, too. If one of these exits is active, PRODID DELETE
waits for the PRODEXIT RETURN from these exits.

30 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Vendor exits that were defined using one DEFINE can only be deleted together.

Requirements For The Caller
• Authorization: valid PRODEXIT token
• AMODE: ANY
• RMODE: ANY
• ASC-mode: Primary
• Invocation: SVC

label

PRODEXIT DELETE

Input Parameter Description
Register 1 and 2

must contain the PRODEXIT token returned by the PRODEXIT DEFINE service.

Output
Return codes are passed back in register 15.

0
Request accepted.

16
System phase $IJBVEND not loaded.

Cancel Conditions
X'21'

Illegal SVC - invalid PRODEXIT token, may be exit already deleted, or invalid invocation of PRODEXIT
DELETE.

PRODEXIT DSECT Service
This service generates one DSECT that describes the in/output for the following services:

• The input and output expected by PRODEXIT DEFINE.
• The input and output expected by PRODEXIT ACTIVATE.
• The input and output expected by PRODEXIT CHECK.
• The output expected by PRODEXIT RETURN.

PRODEXIT DSECT describes the common part, which is input for the PRODEXIT services and the vendor
exits, as well as the output area for information returned to the PRODEXIT issuer. The PRODEXIT DSECT
holds an address (at label IJBVINF) that points to the PRODEXIT extension of the corresponding subclass
at exit entry. This extension is used to communicate between the exit and the VSE component that
activated the exit. The unique subclass extension part labels start with IJBVx, where x is defined as
B

Class = BAM
C

Class = SVC
F

Class = FSVC (fast SVC)

Chapter 3. Macros and Vendor Exits 31

L
Class = LNG (languages)

P
Class = PSUP (supervisor PSTATE)

S
Class = SUP

The input/output for the classes AIT, DOC, and DOCP is not described by the PRODEXIT DSECT but by the
following macros:
MAPARCMD

for class = AIT (see “Vendor Exit - VSE/AF Attention Routine” on page 51)
IJBCSMX

for class = DOC (see “Message Processing Exit” on page 48)
IJBCNMEX

for class = DOCP
The first eight bytes of the extension are common to all exits.

Area Location
• RMODE: ANY, in private or shared area dependent on PRODEXIT service.
• ASC-mode: Primary

label

PRODEXIT DSECT

, CLASS = BAM

SVC

FSVC

LNG

PSUP

SUP

ALL

CLASS=ALL generates the labels for all CLASSES and suppresses double definitions if more than one
CLASS is defined in the same assembly.

Macro Interface to VTAPE Command
Vendor software (especially tape management systems) requires an interface to start and stop z/VSE's
Virtual Tape Support from a program rather than invoking the JCL VTAPE command.

Invocation
The interface to the VTAPE command processor phase is provided by the new JCLIF macro.

Requirements for the caller:
AMODE:

24 or 31
RMODE:

24 or ANY
ASC Mode

Primary
Register 13 must point to a user-supplied 18F save area.

32 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

name
JCLIF

CMD=VTAPE,

IFAREA= name

(Rx)

CMD=VTAPE
In z/VSE 3.1 the one (and only) supported value for the CMD keyword is VTAPE. It is also the default
value.

IFAREA=name|(Rx)
IFAREA denotes a user supplied parameter string with the following layout:

Table 2. JCLIF IFAREA LAYOUT

Offset Type Description

0 AL4 Pointer to a CL72 message output area, which is filled
with an error message, if a syntax error is detected.

4 AL4 Pointer to the command input area. This area must have
a length less than 400 characters. The first blank (X'40')
character not enclosed in quotes will stop the scan.

8 XL2'0' Reserved for future use.

Registers 2 to 12 may be used for register notation.

Return Codes in Register 15
0

Job control command provided in CMD keyword completed successfully.
2

Job control command provided in CMD keyword failed. The corresponding error message is contained
in the user-supplied CL72 message output area.

4
Invalid input in the user-supplied command input area: either unmatched quotes or no blank
character to indicate end of input.

8
Not enough partition GETVIS available to allocate storage for variables and control blocks.

With respect to virtual tape processing the sample program in Figure 5 on page 34 is equivalent to the
following job control command:

VTAPE START,UNIT=480,LOC=9.164.190.108, C
 FILE='D:\Frank''s\Virtual Tapes\test.dat',SCRATCH

Chapter 3. Macros and Vendor Exits 33

 BALR R8,0 ESTABLISH ADDRESSABILITY
 USING *,R8
 ST R14,SAVER14 REMEMBER RETURN ADDRESS
 LA R13,SAVEAREA PROVIDE SAVE AREA
 JCLIF IFAREA=VTAPIF INTERFACE TO JCL CMD PROCESSOR
 ST R15,SAVER15 REMEMBER RETURN CODE
 LTR R15,R15 VTAPE RETURNED SUCCESSFULLY?
 BZ EOJ ...YES, GOTO END-OF-JOB
 CHI R15,2 RETURN CODE 2?
 BNE EOJ ...NO HANDLING FOR RC 4 OR 8
 WTO TEXT=VTAPMSG0 ...YES, ISSUE ERROR MESSAGE
EOJ LM R14,R15,SAVER14 RESTORE RETURN CODE AND ADDRESS
 BR R14 BACK TO OPERATING SYSTEM
VTAPIF DS 0H INTERFACE AREA TO VTAPE SUPPORT
 DC AL4(VTAPMSG) ADDRESS OF MESSAGE OUTPUT AREA
 DC AL4(VTAPCMD) ADDRESS OF COMMAND INPUT AREA
 DC XL2'0' RESERVED FOR FUTURE USE
VTAPCMD DC C'START,UNIT=480,LOC=9.164.190.108,'
 DC C'FILE=''D:\Frank''''s\Virtual Tapes\test.dat'','
 DC C'SCRATCH ' MUST HAVE TRAILING BLANK
VTAPMSG0 DC AL2(L'VTAPMSG)
VTAPMSG DS CL72 CONTAINS ERROR MSG IF RC=2
SAVER14 DS F
SAVER15 DS F
SAVEAREA DS 18F

Figure 5. JCLIF Sample Program

Notes:

1. A quote within the Win/NT folder name must be coded as two single quotes in the job control VTAPE
command. Hence it must be coded as four single quotes in the character declaration (DC) for the
command input.

2. The blank in folder name Virtual Tapes does not stop the input scan, because it is part of the FILE
operand, which is enclosed in quotes. The blank character behind SCRATCH stops the input scan.

3. For Win/NT file names with more than 100 characters in length, the FILE='filename' operand may be
specified twice or even three times. The following character declaration is equivalent to the one in
Figure 5 on page 34:

VTAPCMD DC C'START,UNIT=480,LOC=9.164.190.108,'
 DC C'FILE=''D:'',' DRIVE
 DC C'FILE=''\Frank''''s\Virtual Tapes\'',' DIRECTORY
 DC C'FILE=''test.dat'',' NAME
 DC C'SCRATCH ' MUST HAVE TRAILING BLANK

Restrictions
• Job control exit routines ($JOBEXIT, $JOBEX0n) do not get control, when a job control command

processor is invoked by means of the JCLIF macro.
• It is up to the user program to substitute symbolic parameters with the GETSYMB macro.
• Continuation lines are not supported. JCLIF expects command input to be stored sequentially in the

user-supplied command input area, followed by a trailing blank to indicate end of input.

Input
Same as VTAPE command.

Vendor Exits
The vendor exits must adhere to the following specifications:

• To use the vendor exits, the application must be authorized. The valid token is obtained using the
PRODID macro, and the user must be authorized (DTSECTAB) to access IJBVEND and the product's exit
routine.

34 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

• An exit can be dynamically enabled or disabled without affecting other exits for the same event type.
• The various exit specifications are stacked per event and are invoked as needed for one specific exit.

The following vendor exits are available:

“Vendor Exit - VSE/AF Supervisor (SUP)” on page 35.
“Vendor Exit - VSE/AF Supervisor (PSUP)” on page 40.
“Vendor Exit - VSE/AF Supervisor Call” on page 41.
“Vendor Exit - VSE/AF Fast Path Supervisor Call” on page 42.
“Vendor Exit - VSE/AF Basic Access Method” on page 43.
“Vendor Exit - VSE/AF Console Support” on page 48.
“Vendor Exit - VSE/AF Attention Routine” on page 51.
“Vendor Exit - z/VSE Language Environment” on page 52.
“Vendor Exit - VSE/VSAM Extent Exit” on page 57

Vendor Exit - VSE/AF Supervisor (SUP)
The following command generates the product extension area (also called DSECT) for this class:

name PRODEXIT DSECT, CLASS=SUP

The following exits are supported:

• Post SIO/SSCH
• I/O interrupt
• Program check interrupt
• External interrupt
• Exchange phase
• Program retrieval (pre and post fetch)

Post SIO/SSCH
Class

SUP
Subclass

POSTSIO
Purpose

Monitoring
Location

Before current SGVSEPT probe points in SGSCHED
Exit Type

SSTATE
RID

SYSTEMID (=0, no page faults allowed)
Communication area

SVA, RMODE=ANY, shared area
Input

IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• The CUU that the I/O was issued to
• The CCB address

Output
None

Chapter 3. Macros and Vendor Exits 35

I/O Interrupt
Class

SUP
Subclass

IOINT
Purpose

Monitoring
Location

Before current SGVSEPT probe point
Exit Type

SSTATE
RID

SYSTEMID (=0, no page faults allowed)
Communication area

SVA, RMODE=ANY, shared area
Input

IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• CSW
• CUU of device causing the interrupt

Output
None

Program Check
Class

SUP
Subclass

PCK
Purpose

• Monitoring
• Error recovery

Note: PCK exits are not invoked during processing of SVC exits.

Location
Before current SGVSEPT probe point in SGPCK

Exit Type
SSTATE

RID
SYSTEMID (=0, no page faults allowed)

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Program check old PSW
• Program interruption code (loc X'8C'-X'8F')
• RID at interruption time
• TID and PIK of interrupted task

36 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

• Page fault address (location X'90') if page fault
• Exception access identification (location X'A0') if page fault due to access to data space
• General purpose registers and access registers

Output
A return code is set up in IJBVRC:
00

Continue normal program check handling
04

Only for update exits (IJBVUPD). Continue with PSW, general purpose/access registers as
specified in communication area.

Note: The first update exit that returns a RC=4 causes a skip of all following update exit
invocations. Only monitor type exits will then get control prior to the execution of the RC=4
processing. If another update exit follows, a bit (IJBVSUPD in byte IJBVFLAG) is set in the
PRODEXIT area indicating that an exit was skipped.

08
Only for update exits (IJBVUPD). Ignore program check and return to interrupted task.

External Interrupt

Note: The only predictable exit invocation for SUBCLASS=EXT is provided for SCOPE=SYSTEM. Therefore
any other SCOPE is rejected during PRODEXIT DEFINE processing (RC=12).

Class
SUP

Subclass
EXT

Purpose

• Control APPC/IUCV/VMCF
• Monitoring

Location
Before current SGVSEPT probe point in SGNUC (after ENTEXT)

Exit Type
SSTATE

RID
SYSTEMID (=0, no page faults allowed)

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• External old PSW
• External interruption code (loc X'84'-X'87')
• TID and PIK of interrupted task
• TID of task whose timer expired (if any)
• RID of interrupted task
• Service signal interrupt parameter word (EXTPARWD)

Output
A return code is set up in IJBVRC:

Chapter 3. Macros and Vendor Exits 37

00
Continue external interrupt processing.

08
Only for update exits (IJBVUPD). Ignore external interrupt.

Program Retrieval - Exchange Phase
Class

SUP
Subclass

EXPHASE
Purpose

• Security
• Monitoring
• Gaining a probe point

Location
The exit is called for:

• SVC 1 (FETCH), SVC 2, SVC 4 (LOAD), SVC 23, SVC 51, SVC 65 (CDLOAD)

Note, that the phase name in the user area is never exchanged.

• CDLOAD/CDDELETE Processing: The exit is placed at the beginning of the CDLOAD/CDDELETE
processing, before the CDLOAD anchor table is searched for the requested phase. This allows an
exchange of the phase name. If the phase name is exchanged, the follow-on processing is done with
this exchanged phase name. The user-provided phase name is no longer of interest. The entry in the
anchor table contains the exchanged phase name.

• SVC 2 Move Mode Processing The exit is called before the SVA is searched for the requested phase.
In case the phase is not found in the SVA, the common processing is called (with the original phase
name). Note, that during this processing the exit is called again.

• Common Processing (called by SVC 1, SVC 4, SVC 23, SVC 51, SVC 65, and SVC 2 if phase is not
in the SVA). The exit is placed at the beginning of the common processing to allow an exchange
of the phase name. From now on all processing is done with the changed phase name. The user
provided-phase name is no longer of interest. In case the user has provided a directory entry, both
the directory entry and the shadow entry are filled with phase information of the exchanged phase
name. The phase name in the user-provided directory is not exchanged.
 directory entry shadow entry
 ┌────────────────────────┐ ┌───────────────────────┐
 │ phase X │ │ phase Y │
 │ │ │ │
 ├────────────────────────┤ ├───────────────────────┤
 │ directory information │ │ shadow entry with │
 │ of phase y │ │ phase y information │
 └────────────────────────┘ └───────────────────────┘

The directory entry contains a pointer to the shadow entry. If the DE is used for follow-on requests,
it is checked whether the directory entry and the shadow entry describe the same phase. To avoid
problems with the different phase names, the exit is called and must exchange the phase name.
Otherwise the information in the directory entry is not considered and the original phase x is loaded.

Exit Type
SSTATE

RID
REENTRID (reentrant programming required)

Communication area
SVA, RMODE=ANY, shared area

38 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• PIK of the current task (2 bytes)
• task-id (TID) of the current task (2 bytes)
• SVC code that generated the request (1 byte)
• name of program to be fetched (8 bytes)

Output
The output (if any) is returned in the input area (pointer to area in field IJBVINF).

A return code is set up in IJBVRC:
0

Continue processing.
4

Only for update exits (IJBVUPD). Change of phase name requested. The phase name is changed
to the phase name supplied in the input area. The new phase name is in IJBVSFEP (8 bytes - if
IJBVRC = 4).

8
IGNORE Skip FETCH / LOAD / CDLOAD / CDDELETE processing.

Note: When a vendor exit requests to exchange the phase name, it is in the responsibility of the vendor
product to guarantee the availability of the exchanged phase. If the phase cannot be loaded, results may
be unpredictable.

Program Retrieval - Pre Fetch
Class

SUP
Subclass

PREFCH
Purpose

• Security
• Monitoring
• Gaining a probe point

Location
The exit is called after directory task process (directory search) and runs as service owner (user task).
It is only called if the directory search ended with return code 0. It is not called if the phase is in the
SVA.

Exit Type
SSTATE

RID
REENTRID (reentrant programming required).

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• PIK of the current task (2 bytes)
• Task ID (TID) of the current task (2 bytes)
• SVC code that generated the request (1 byte)
• Name of program to be fetched (8 bytes)

Chapter 3. Macros and Vendor Exits 39

• Library name of program (7 bytes)
• Sublibrary name of program (8 bytes)
• Directory entry (DE=VSE format - 40 bytes)

Output
A return code is set up in IJBVRC:
0

Continue processing.
4

Only for update exits (IJBVUPD). Reject load request (security violation is posted to the user).

Program Retrieval - Post Fetch
Class

SUP
Subclass

POSTFCH
Purpose

• Security
• Monitoring

Location
The exit is placed:

• After the program fetch task processing (loading the phase) and runs as service owner (user task). It
is called even if an error occurred.

• After moving a move mode phase to the LTA during SVC 2 processing.

Exit Type
SSTATE

RID
REENTRID (reentrant programming required).

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• PIK of the current task (2 bytes)
• Task ID (TID) of the current task (2 bytes)
• SVC code that generated the request (1 byte)
• Name of program to be fetched (8 bytes)
• Library name of program (7 bytes)
• Sublibrary name of program (8 bytes)
• Return code
• Directory entry (DE=VSE format - 40 bytes)

Output
None.

Vendor Exit - VSE/AF Supervisor (PSUP)
The following command generates the product extension area (also called DSECT) for this class:

40 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

name PRODEXIT DSECT, CLASS=PSUP

The following exit is supported:

• End-of-task ($IJBSEOT)

End-Of-Task - $IJBSEOT Phase
Class

PSUP
Subclass

EOT
Purpose

The exit is implemented to allow task clean-up.
Location

The exit is placed prior to FREEVIS ALL into the $IJBSEOT routine and is called for main- and subtasks
in the AMODE defined by the exit address.

Exit Type
PSTATE

RID
USERTID

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• PIK of current task (2 byte)
• Task ID (TID) of current task (2 byte)
• First cancel code (TIBCNCL) (1 byte)
• Second cancel code (TIBCNCL2) (1 byte)
• Flag byte to indicate main- or subtask termination (1 byte)

Output
None.

Vendor Exit - VSE/AF Supervisor Call
The vendor exit gets control whenever a SVC with exception of SVC 107 (fast path SVC) or SVC 124
(Vendor SVC) is issued.

The following command generates the product extension area (also called DSECT) for this class:

name PRODEXIT DSECT, CLASS=SVC

Note: Subclass SVC code is subject for future extension. Any subclass specification during PRODEXIT
DEFINE is rejected with RC=12!

Class
SVC

Subclass
none

Purpose

• SVC screening
• Monitoring

Chapter 3. Macros and Vendor Exits 41

• Adding vendor SVC numbers
• Ignoring SVCs
• Expansion on IBM SVC processing
• Security

Location
Before current SGVSEPT probe point in SGNUC (after ENTSVC).

Exit Type
SSTATE

RID
REENTRID

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• SVC old PSW
• SVC interruption code
• TID and PIK of interrupted task
• Register and access register at time of interruption

Output
A return code is set up in IJBVRC:
00

Continue normal SVC handling.
04

Only for update exits (IJBVUPD).Replace SVC OLDPSW by IJBVCPSW. Substitute SVC number and
continue with general purpose/access registers as specified in the communication area.

08
Only for update exits (IJBVUPD). Ignore SVC and go to routine where modified SVC old PSW
address is pointing to (IJBVCPSW) using general purpose/access registers as specified in the
communication area.

Note: The first update exit that returns a RC=8 causes a skip of all following update exit
invocations. Only monitor type exits will then get control prior to the execution of the RC=8
processing. If another update exit follows, a bit (IJBVSUPD in byte IJBVFLAG) is set in the
PRODEXIT area indicating that an exit was skipped.

12
Only for update exits (IJBVUPD). Cancel user due to security violation. Only allowed when SVC
issuer (user) had RID=USERTID. In case of security violation, the vendor exit can pass additional
information in the PRODEXIT extension area, field IJBVCVIN. This information appears in the
cancel message.

Vendor Exit - VSE/AF Fast Path Supervisor Call
The vendor exit gets control whenever a SVC 107 (fast path SVC) is issued.

The following command generates the product extension area (also called DSECT) for this class:

name PRODEXIT DSECT, CLASS=FSVC

Note: Subclass FSV code is subject for future extension. Any subclass specification during PRODEXIT
DEFINE is rejected with RC=12!

42 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Class
FSVC

Subclass
none

Purpose

• SVC screening
• Monitoring
• Security

Location
New probe point in SGNUC, after SVC 107 path is entered.

Exit Type
SSTATE

RID
SYSTEMID (=0, no page faults allowed)

Communication area
SVA, RMODE=ANY, shared area

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• SVC old PSW
• SVC interruption code
• RID of interrupted task
• TID and PIK of interrupted task
• Register and access register at time of interruption

Output
A return code is set up in IJBVRC:
00

Continue normal SVC handling.
12

Only for update exits (IJBVUPD). Cancel user due to security violation. Only allowed when SVC
issuer (user) had RID=USERTID. Hard wait otherwise. In case of security violation, the vendor exit
can pass additional information in the PRODEXIT extension area, field IJBVFVIN. This information
appears in the cancel message.

Vendor Exit - VSE/AF Basic Access Method
The following command generates the product extension area (also called DSECT) for this class:

name PRODEXIT DSECT, CLASS=BAM

The following exits are supported:

• Pre-OPEN
• Pre-CLOSE
• EOX processing for sequential disk
• Common VTOC handler
• Post-OPEN
• Post-CLOSE

Chapter 3. Macros and Vendor Exits 43

Invocation

When exits are invoked in a B-transient phase (Post-OPEN, Post-CLOSE, Pre-OPEN, and Pre-CLOSE), the
logical transient area is freed before the exit is taken.

Pre OPEN

Class
BAM

Subclass
PREOPEN

Purpose

• Monitoring
• Ignoring OPEN
• Replacing DTFs and ACBs

Location
At the beginning of OPEN, just before the system does any action with the DTF/ACB ($$BOPEN1).

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Pointer to the DTF/ACB (4 bytes), IJBVBDTF
• Flag byte IJBVBFLG

– X'80', IJBVBJCT, indicates request is from JCL

Output
A return code is set up in IJBVRC:
00

Continue with normal OPEN processing for this DTF/ACB.
04

Ignore OPEN of this DTF/ACB. No system action is done with this DTF/ACB.
12

Change of DTF/ACB address requested. The DTF/ACB address in users parameter list is replaced
by the address returned by the exit in IJBVBDTF and OPEN continues with this DTF/ACB.

Note: If a vendor exit passes an invalid return code at return, the system continues normal processing.

Pre CLOSE

Class
BAM

Subclass
PRECLOSE

Purpose

• Monitoring
• Ignoring OPEN
• Replacing DTFs and ACBs

44 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Location
At the beginning of CLOSE, just before the system does any action with the DTF/ACB ($$BCLOSE).

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Pointer to the DTF/ACB (4 bytes), IJBVBDTF

Output
A return code is set up in IJBVRC:
00

Continue with normal CLOSE processing for this DTF/ACB.
04

Ignore CLOSE of this DTF/ACB.
08

Perform no rewind, only for DTFMT and DTFPH for tape.
12

Change of DTF/ACB address requested. The DTF/ACB address in users parameter list is replaced
by the address returned by the exit in IJBVBDTF and CLOSE continues with this DTF/ACB.

Note: If a vendor exit passes an invalid return code at return, the system continues normal processing.

EOX Processing

Class
BAM

Subclass
BAMEOX

Purpose
Monitoring

Location
After EOX is recognized for sequential disk and before the next EXTENT if any is obtained. The exit is
not invoked for end of extent during CLOSE.

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Pointer to the DTF (4 bytes), IJBVBDTF

Output
none

Chapter 3. Macros and Vendor Exits 45

CVH Processing

Class
BAM

Subclass
BAMCVH

Purpose

• Monitoring
• Ignoring OPEN

Location
At the very beginning of the common VTOC handler (IJJHCVH0).

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Address of CVH parameter list IJJHCPL (4 bytes), IJBVBCPL

Output
A return codes is set up in IJBVRC:
00

Continue with normal Common VTOC Handler processing.
04

Return immediately to caller. In this case it is the vendors responsibility to maintain the Common
VTOC Handler interface to the caller. Return code 4 is not allowed for OPEN and CLOSE VTOC
requests.

Note: If a vendor exit passes an invalid return code at return, the system continues normal processing.

Post OPEN

Class
BAM

Subclass
POSTOPEN

Purpose

• Monitoring
• Replacing DTFs and ACBs

Location
At the end of OPEN process, before the next DTF is handled or before return to user using SVC 11 if
the last or only DTF has been handled ($$BOPEN1).

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

46 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Pointer to the DTF/ACB (4 bytes), IJBVBDTF
• Flag byte IJBVBFLG

– X'80', IJBVBJCT, indicates request is from JCL

Output
A return codes is set up in IJBVRC:
00

Continue with normal OPEN processing.
12

Change of DTF/ACB address requested. The DTF/ACB address in users parameter list is replaced
by the address returned by the exit in IJBVBDTF and normal processing continues.

Notes:

1. If a vendor exit passes an invalid return code at return, the system continues normal processing.
2. Post OPEN exit invocation is only guaranteed for DTFMT, DTFPH for tape, and DTFs for disk. The

Invocation for other DTFs is unpredictable.

Post CLOSE

Class
BAM

Subclass
POSTCLOS

Purpose

• Monitoring
• Replacing DTFs and ACBs

Location
At the end of CLOSE process, before the next DTF is handled, or before return to user using SVC 11 if
the last or only DTF has been handled ($$BCLOSE).

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Pointer to the DTF/ACB (4 bytes), IJBVBDTF

Output
A return codes is set up in IJBVRC:
00

Continue with normal CLOSE processing.
12

Change of DTF/ACB address requested. The DTF/ACB address in users parameter list is replaced
by the address returned by the exit in IJBVBDTF and normal processing continues.

Notes:

Chapter 3. Macros and Vendor Exits 47

1. If a vendor exit passes an invalid return code at return, the system continues normal processing.
2. Post CLOSE exit invocation is only guaranteed for DTFMT, DTFPH for tape, and DTFs for disk. The

Invocation for other DTFs is unpredictable.

Vendor Exit - VSE/AF Console Support

Message Processing Exit
Class

DOC
Subclass

MSG
Purpose

• Monitoring every message (using WTO/WTOR or SVC 0/15)
• Updating control information and text
• Suppressing or automatically replying to messages

Location
The exit is invoked after converting the message to a common format, including the message prefix,
and before queueing the message for delivery. If OCCF message processing is active, it is also invoked
before the exit.

Exit Type
SSTATE

RID
SYSTEMID (no page faults allowed, emercency messages only) or REENTRID (page faults allowed)

Communication area
SVA, RMODE=ANY, partition GETVIS

Input
IJBVINF points to the communication area (input and output area). The area holds the following
information at exit entry:

• Message parameters that cannot be changed (like originating jobname).
• The adress of a message area, also described by IJBCSMX and containing data may be updated:

– Name of the target console
– Routing and descriptor codes
– Presentation attributes
– Message text lines (space for up to 12 lines is provided)

This area is initially filled with original message data.
• The address of an automatic reply area, consisting of a 2-byte length followed by up to 126 bytes

of reply text. This area is initially empty (length field is zero). An automatic reply must be prepared
in this area, as if it was entered from a console (but without the leading reply-id). An automatic
reply may be provided also when no READ was yet issued. In such a case, the reply is processed
automatically for a following stand-alone read , a following stand-alone WTOR (that is a WTOR with
a 'just-one-blank' text) or discarded otherwise.

• A flag byte for requesting one of the following processing options:

– Suppress the message.
– Reply to message automatically.
– Route message to a console with AUTO attribute
– Update message control information
– Update message text

48 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Output
None.

Note:

1. This exit is not intended for intercepting/redirecting messages through an alternate queueing
mechanism.

2. The exit is not invoked for DOM requests.
3. In some cases, for example, when no queue space is immediately available for an extended message,

the exit may be invoked several times for the same message, with identical message contents.

Command/Reply Processing Exit
This exit allows to monitor every input, entered via MGCRE or SVC 30, and to reject it or to update input
text.
Class

DOC
Subclass

CMDREP
Purpose

• Monitoring every input (entered using MGCRE or SVC 30)
• Rejecting input
• Updating input text

Location
The exit is invoked after converting console input to a common format, and before processing or
queueing it for delivery. If OCCF input processing is active, it is also invoked before the exit.

Exit Type
SSTATE

RID
REENTRID (page faults are allowed).

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input and output area), which is described by the
IJBCSMX mapping macro. The area holds the following information at exit entry:

• Input parameters that cannot be changed (like originating console name).
• The address of an input area, consisting of a 2-byte length followed by up to 126 bytes of input text.

This area is initialized with the original input.
• A flag byte for requesting one of the following processing options:

– Reject the input
– Update input text

Output
None

Notes:

1. This exit is neither invoked for automatic replies, generated by a message processing exit (see
“Message Processing Exit” on page 48), nor for EXPLAIN requests.

2. Any return code setting in IJBVRC is ignored.

Chapter 3. Macros and Vendor Exits 49

Full Scale input processing exit
This exit allows to monitor every console input [entered on the command line], every timer interrupt,
reconnect, message pending, action message received, alert posted, suspended, and unrecoverable error.

Class
DOCP

Subclass
FINPUT

Purpose

• Monitor command inputs.
• Update these inputs.
• Monitor timer interrupts.
• Monitor reconnect.
• Monitor message pending.
• Monitor action/decision message received.
• Monitor alert posted.
• Monitor console suspended.
• Monitor unrecoverable error.

Location
The exit is invoked for every user input in console mode and for other events, as indicated in field
CEXEVNT. The exit has the option to take over control of console output ('vendor mode'). In this mode,
the screen is fully managed by exit code, while input is still handled by standard code and passed to
the exit, as in console mode.

Exit Type
PSTATE

Input
IJBVINF points to the communication area(input and output area), which is described by the
IJBCNMEX mapping macro. The area holds the following information at exit entry:

• Addresses of screen and message definitions. Mappings defined in IJBDEF macro.

– address of panel data table
– address of PF-key data table
– address of message data table

• Terminal characteristics

– number of screen lines
– number of screen columns
– DBCS capability: 'Y' or 'N'
– ext data stream capability: 'Y' or 'N'
– number of supported colors
– supported color attributes
– number of supported highlites
– supported highlite attributes

• Event flags. Flags CEXEMSGP, CEXEALRT and CEXESUSP, once set, remain on until the exit routine
leaves vendor mode. These flags may therefore be set in combination with other flags, which are
mutually exclusive.

– user input
– timer interput

50 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

– action/decision message received
– reconnect (after PF3/PF4)
– message pending
– alert posted
– console suspended
– unrecoverable error

Output

• Processing flags, timer interval
• The options'use updated input' and 'enter vendor mode' are only processed for 'user input' events.
• Since the screen is controlled in vendor mode by the exit, the exit is also responsible for issuing a

write, that unlocks the keyboard, for every user input passed to it.
• when entering vendor mode, any pending timer interupt is cancelled.
• The option 'set timer' may only be specified in conjunction with 'enter vendor mode' or while vendor

mode is active. When specified in vendor mode, any already scheduled interrupt is cancelled. A new
interrupt is set only if the value passed in CEXPTIMS is > 0.

Vendor Exit - VSE/AF Attention Routine
The Attention Routine supports two exits that allow to customize existing system commands or to add
new commands. They are not intended for modifying command input (the CMDREP exit described in
“Command/Reply Processing Exit” on page 49 should be used for this purpose).

Note: The only predictable exit invocation for CLASS=AIT is provided for SCOPE=SYSTEM. Therefore
SCOPE=PARTITION/TASK is rejected during PRODEXIT DEFINE processing (RC=12).

Pre-Scan Exit

Class
AIT

Subclass
CMD1 (Pre-Scan)

Purpose
This exit allows to intercept all z/VSE system commands that are processed by or routed through the
Attention Routine, and to provide customized versions of such commands.

Location
The exit is invoked before AR parses the command.

Exit Type
PSTATE

RID
USERTID

Communication area
SVA, RMODE=ANY

Input
The pointer for this vendor exit is different from the others, as described in the following paragraph.

IJBVINF points to an area containing the command string, along with other command attributes like
its origin, and described by the mapping macro MAPARCMD.

Output
A return code is set up in IJBVRC:
0

Command was taken over by the exit.

Chapter 3. Macros and Vendor Exits 51

Note: The first update exit that returns a RC=0 causes a skip of all following update exit
invocations. Only monitor type exits will then get control prior to the AR CMD processing. If
another update exit follows, a bit (IJBVSUPD in byte IJBVFLAG) is set in the PRODEXIT area
indicating that an exit was skipped.

4
Command was not recognized.

Post-Scan Exit

Class
AIT

Subclass
CMD2 (Post-Scan)

Purpose
This exit allows to define and support new commands that are routed through the Attention Routine,
but are not recognized as known z/VSE system commands.

Location
The exit is invoked when the command is not recognized as an AR or active subsystem command.

Exit Type
PSTATE

RID
USERTID

Communication area
SVA, RMODE=ANY

Input
The pointer for this vendor exit is different from the others, as described in the following paragraph.

IJBVINF points to an area containing the command string, along with other command attributes like
its origin, and described by the mapping macro MAPARCMD.

Output
A return code is set up in IJBVRC:
0

Command was taken over by the exit.
4

Command not recognized.

Vendor Exit - z/VSE Language Environment
“How to Use this Exit” on page 56 describes the various approaches to using this exit.
Class

LNG
Subclass

LNGOPEN
Purpose

The exit allows a disk or tape manager to intercept file open processing for LE/VSE-enabled
languages, and allows it to provide some information or cause it to bypass some of the pre-open
checks. These languages perform some pre-open checking to enable them to return correct statuses
to the programs. When a disk or tape manager provides some information, such as logical unit, during
open, the language checks will fail, and the open is not issued. This exit allows this information to
be provided to the language, or to request the language to bypass these checks. If these checks are
bypassed, some of the statuses returned may be incorrect.

52 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Location
The exit is invoked by LE/VSE when the LE/VSE Message file is opened, or when an open is requested
in an LE/VSE-enabled language (COBOL/VSE, C/VSE or PL/I VSE). The exit is invoked before building
the DTFSD, DTFDA, DTFDU, DTFMT, DTFPR, or DTFCD, and prior to opening the file. It is also invoked
by the COBOL/VSE compiler prior to checking the logical unit for the compiler work files.

Notes:

1. If errors are detected after the exit is invoked, the OPEN is not issued.
2. The exit is not invoked for files that are accessed using an ACB.

Exit Type
PSTATE

RID
USERTID

Communication area
Partition GETVIS, RMODE=ANY

Input and Output
IJBVINF points to the communication area (input and output area). The area holds the information
shown in the following table at exit entry.

The Type column contains "Input" if it is provided by the language, "Output" if it is provided by the
exit, or "Input/Output" if it is provided by the language but may be modified by the exit.

Table 3. LNG Exit - Communication Area for File Processing

Field Size Type Description

IJBVLENV H Input Length of area

IJBVPIK H Updated by
supervisor

PIK of current task

IJBVTIK H Updated by
supervisor

TIK of current task

Reserved H Reserved

IJBVLLVL F Input Level number of the parameter list.

IJBVLANG CL8 Input The Language product that is invoking the exit, for example, COBOL, PL/I, LE.

IJBVLNAM CL8 Input The name from the COBOL ASSIGN statement, or PL/I File DECLARE
statement.

IJBVLLUN H Input The logical unit number from the COBOL ASSIGN statement, or PL/I File
DECLARE statement, or zero if not provided.

IJBVLOPM X Input Open mode with values as follows:

IJBVLIN X'01' - Input
IJBVLIO X'02' - I/O (for example, TYPEFLE=INPUT and UPDATE=YES)
IJBVLOUT X'03' - Output
IJBVLEXT X'04' - Extend (append)
IJBVLWRK X'05' - Work (for example, compiler work file)

Chapter 3. Macros and Vendor Exits 53

Table 3. LNG Exit - Communication Area for File Processing (continued)

Field Size Type Description

IJBVLDEV X Input/
Output

Device type for file with values as follows:

IJBVLDSD X'01' - SAM disk
IJBVLDDA X'02' - DAM disk
IJBVLDVS X'03' - VSAM disk
IJBVLDUT X'04' - Unlabeled tape
IJBVLDLT X'05' - Labeled tape
IJBVLDCD X'06' - Card
IJBVLDPR X'07' - Printer
IJBVLDUA X'08' - Unassigned (UA)
IJBVLDIG X'09' - Assigned to IGNORE

This field can be modified by the exit to change the device type of the file. For
instance, a labeled tape can be changed to an unlabeled tape or a disk file can
be changed to a tape file. This field should not be modified for DAM files or
files with an open mode (IJBVLOPM) of WORK (IJBVLWRK).

Note: The device type is set to SAM, DAM, or VSAM-managed SAM when a
DLBL is present. It is set to labeled tape when a TLBL is present. It is set
to one of the other device codes when neither a DLBL or TLBL is present,
according to the type of device to which the logical unit number (IJBVLLUN) is
assigned.

IJBVLLBA A Input/
Output

The address of the DLBL or TLBL retrieved by the language product. This is
present for Disk, or labeled tape files.

The fields within the DLBL or TLBL can be altered as required. The length
of the DLBL or TLBL (IJBVLLBL) can be increased up to length of the buffer
containing the DLBL or TLBL (IJBVLLBB). The address can be changed to the
address of an area acquired by the exit, and the length (IJBVLLBL) updated to
reflect the new length.

The fields that are currently used from the DLBL are as follows:

• File ID (if not provided in field IJBVLFID).
• Logical unit number (for SAM DLBL if not provided in field IJBVLLUO)
• Blocksize (for SAM DLBL if not provided in field IJBVLBSO)
• Catalog name (for VSAM DLBL)

The fields that are currently used from the TLBL are as follows:

• File sequence number (for multi-file tape).

IJBVLLBL F Input/
Output

The length of the DLBL or TLBL retrieved by the language product using the
LABEL FUNCT=GETLBL macro.

IJBVLLBB F Input The length of the buffer containing the DLBL or TLBL retrieved by the
language product using the LABEL FUNCT=GETLBL macro.

IJBVLOPT XL2 Input/
Output

Other open options.

IJBVLORV x'80' - OPEN REVERSED specified
IJBVLNRW x'40' - OPEN NO REWIND specified
IJBVLASC x'20' - ASCII tape file
IJBVLOPF x'10' - OPTIONAL file (COBOL only)
IJBVLCBM x'08' - MODE=C (column binary mode)
 (3505 and 3525 card devices only)
IJBVLOMR x'04' - MODE=O (Optical mark read)
 (3505 card devices only)
IJBVLRCE x'02' - MODE=R (Read Column Eliminate)
 (3505 and 3525 card devices only)

54 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Table 3. LNG Exit - Communication Area for File Processing (continued)

Field Size Type Description

IJBVLPUB X Input/
Output

Pub code

This field is provided by the language product for unlabeled tape, card and
printer devices, and may be modified by the exit. It is used to determine the
device type when a DTF is built.

IJBVLFEX X Output File exists flag set by exit to X'01' if file currently exists, or X'02' if file does
not exist.

If it is not set (left as X'00'), and the file is being opened for input or I/O, the
language attempts to determine if the file exists.

IJBVLLUO H Output The logical unit number determined by the exit. If it is provided, the
subsequent processing by the language uses this logical unit number.

If it is not provided for a SAM file, the language attempts to determine the
logical unit from the DLBL or COBOL ASSIGN statement or PL/I File DECLARE
statement.

IJBVLFID CL4
4

Output This is the file ID for the file, with any vendor-supplied tape or disk manager
control characters removed. If it is not provided, the language uses the file-id
from the DLBL or TLBL statement for a SAM file.

IJBVLLEX H Output Extent number of the last volume. This is applicable to SAM files only.

If it is not set (left as zero), the language attempts to determine the extent
number of the last volume from the DLBL/EXTENT statements. The extent
number is used by COBOL when the CLOSE REEL/UNIT statement is used.

Note: If the vendor-supplied tape or disk manager provides extents as
required, this field can be set to -1. This disables the CLOSE REEL/UNIT
statement for COBOL.

IJBVLRFI H Input Record format from program (zero if not provided) as follows:

IJBVLRFF x'80' - Fixed
IJBVLRFV x'40' - Variable
IJBVLRFU x'20' - Undefined
IJBVLRFB x'10' - Blocked
IJBVJRFS x'08' - Spanned
IJBVLRFA x'04' - ASA control characters
IJBVLRFM x'02' - Machine control characters

For example, x'90' for Fixed Blocked.

IJBVLRSI F Input Record length from program (zero if not provided)

IJBVLBSI F Input Block size from program (zero if not provided)

IJBVLRFO H Output The record format for the existing file if available, with the same flags as
IJBVLRFI.

If it is not set (left as zero), the file is being opened for input or I/O, and it is a
VSAM-managed SAM file, the language determines the record format from the
VSAM catalog.

For a file opened for Input, I/O, or Extend, the record format from the
program is checked to ensure it matches the record format for the input file.

Chapter 3. Macros and Vendor Exits 55

Table 3. LNG Exit - Communication Area for File Processing (continued)

Field Size Type Description

IJBVLRSO F Output The record length of the existing file if available.

If it is not set (left as zero), and the file is being opened for input, I/O, or
EXTEND, and it is a VSAM-managed SAM file, the language determines the
record length from the VSAM catalog.

For a file opened for Input, I/O, or Extend, the record length from the program
is checked to ensure it matches the record length for the input file.

If the record length is not specified in the program (for example, RECORD
CONTAINS 0 CHARACTERS for COBOL), the record length provided in this
field is used (if non-zero).

IJBVLBSO F Output The block size of the existing file or output file.

If it is not set (left as zero), the language attempts to determine the block
size. For a VSAM-managed SAM file, the VSAM catalog is checked. For a SAM
file, the block size from the DLBL is used if present.

This block size overrides the block size specified within the program for a disk
or tape file with the record format specified as blocked. If the record format is
fixed, the block size must be a several of the record size.

IJBVLLMA A Output The address of the LIOCS logic module to be placed in the DTF after open.
This may be used to replace the IBM-supplied logic module.

IJBVLLMS A Output The address of a fullword to return the address of the logic module in the DTF
prior to being overwritten by the logic module address supplied above.

A return code is set up in IJBVRC

00
Continue processing.

04
Continue processing, but bypass any pre-open checks. The open processing continues if the following
errors are detected.

• No EXTENT card has been provided for a SAM DLBL, and the logical unit number was not provided
on the COBOL ASSIGN statement or PL/I File DECLARE statement.

• The logical unit is not assigned.
• The file has been opened for Input or I/O, and the file does not exist.

Other
Don't continue processing, and fail the open.

How to Use this Exit

Depending on how much effort a Vendor may wish to expend, and the capabilities of the Vendor product,
the exit can do one of the following:
Approach 1 - Minimal Approach

The minimal approach would be for the Vendor Exit to set IJBVRC to 4. This causes the languages
to skip the checking of the device. This would allow the files to open, but the restrictions that are
currently present when the Vendor products are present would still apply.

Some of the known restrictions are as follows:

1. Support for OPTIONAL files in COBOL is not provided.
2. Some file statuses under COBOL are not returned correctly.

56 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

3. Support for CLOSE REEL/UNIT in COBOL is not provided.

Approach 2
The above restrictions are caused when the language product cannot determine whether the file
exists, or cannot determine the file attributes. The language product cannot perform these checks
because the file-id on the DLBL or TLBL might not be the actual file-id, or because the logical unit
number is not available.

The exit could perform the updating of the DLBL or TLBL statement including the assignment of the
logical unit during the exit processing instead of during the OPEN. If the file-id on the DLBL or TLBL
statement is not the actual file-id, the actual file-id should be returned.

This would involve setting the following fields:

• Logical unit number
• File-id (if the file-id on the DLBL or TLBL does not match the actual file-id)
• File exists flag (Input and I/O only)
• Number of volumes

Approach 3
In addition to the processing for the previous approach, if the vendor product has information about
the file such as record format, record length, and block size that is not available directly from the
z/VSE operating system, the record format, record length, and block size can also be returned.

COBOL has the ability to enable a program to read a file with fixed length records of any length
(RECORD CONTAINS 0 CHARACTERS), or with any block size (BLOCK CONTAINS 0 RECORDS). If this
information is returned by the exit, it enables a COBOL program to read these files. This information is
currently retrieved from the VSAM catalog by COBOL for VSAM-managed SAM files.

PL/I has the ability to enable a program to read a file with any record format, record length, and block
size. If this information can be returned by the exit, PL/I could then open the file without requiring the
program to specify this information.

This approach provides additional capabilities to the COBOL and PL/I languages when the vendor-
supplied tape or disk manager is operating and able to provide the additional information. This brings
the VSE versions of COBOL and PL/I closer to the capabilities provided by the z/OS operating system.

Vendor Exit - VSE/VSAM Extent Exit
The following command generates the product extension area (also called DSECT) for this class:

name PRODEXIT DSECT, CLASS=VSAM

Class
VSAM

Subclass
IJBVVEXU - EXTENT UPDATE

Scope
System

Purpose
The exit allows to monitor the allocation and de-allocation of VSAM data space extents as well as the
suballocation of VSAM cluster extents in VSAM data space.

Location
The exit is invoked by VSE/VSAM before VSAM completes allocation, suballocation, or deletion of an
extent by updating the catalog data space bitmap.

Exit Type
PSTATE

RID
USERTID

Chapter 3. Macros and Vendor Exits 57

Communication area
Partition GETVIS, RMODE=ANY

Input
IJBVINF points to the communication area (input area). The area holds the information shown in the
following table at exit entry.

Table 4. Format of IJBVVEXU Communication Area

Field Size Description

IJBVLENV H Length of area

IJBVPIK H Updated by supervisor. PIK of current task

IJBVTIK H Updated by supervisor. TIK of current task

H Reserved

IJBVVVER X Version of the vendor info block, currently x’00’

IJBVVFLG X Flags with values as follows:

IJBVVDEL X'80' – ON if extent is to be deleted, otherwise
extent is to be allocated or suballocated

IJBVVCYL X'40' – ON if extent is specified in cylinders,
otherwise allocation units are tracks

IJBVVFBA X'20' – ON if extent is on an FBA device

IJBVVSE X'10' – ON for anonymous data space extents,
otherwise extent is suballocated for a named cluster
component

IJBVVVOL CL6 Volume serial number

IJBVVVCT 0XL4 Device class and type as in the GETVCE macro

IJBVVVD1 X Device operational character (as DCTUFLG)

IJBVVVD2 X Device optional features (as DCTUOPT)

IJBVVVDC X Device class (as DCTUDCL), X’21’ for FBA devices

IJBVVVDT X Device type (as DCTUTYP)

IJBVVVCN F Number of cylinders on the volume

IJBVVVTN H Number of tracks per cylinder

IJBVVVBN H Number of blocks per track on FBA disks or number of
bytes per track on ECKD disks

IJBVVEXB F Extent begin, number of starting allocation unit

IJBVVEXS F Extent size, number of allocation units

IJBVVCNM CL44 Catalog name

IJBVVDNM CL44 If IJBVVSE is OFF, then this field contains the cluster
component name as appeared in LISTCAT, otherwise one
of the following strings: “DEFINE CATALOG”, “DEFINE
SPACE”, “DELETE CATALOG”, “DELETE SPACE”

Output
None

Notes:

58 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

1. Any return code setting in IJBVRC is ignored.
2. When a catalog is created or deleted multiple events take place. These are reduced to a single event as

follows:

• At catalog creation, the catalog components which appear in LISTCAT as
VSAM.CATALOG.BASE.INDEX and VSAM.CATALOG.BASE.DATA are reported by the exit as an extent
named VSAM.CATALOG.BASE.

• At catalog deletion, the event is reported by the exit as fields IJBVVVOL, IJBVVVCT, IJBVVVCN,
IJBVVVTN, IJBVVVBN set to binary zeroes and the fields IJBVVEXB and IJBVVEXS set to -1. Neither
extent nor volume information are reported.

Chapter 3. Macros and Vendor Exits 59

60 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Part 3. Documentation and Multicultural Support

© Copyright IBM Corp. 1991, 2010 61

62 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 4. VSE Customer Documentation

To develop VSE documentation, consider the following to provide the information necessary for the user
to be able to effectively and easily use the product:

• The general approach to structuring data
• The design structure of the library
• The organizing principles of the individual manual.

Task-Oriented Approach
When writing a computer manual, the most important question a writer asks is: how do I structure my
book? According to which principles do I organize the available material? Which items do I include and
which should I omit? What information should I provide at what time?

VSE uses a task-oriented approach to organize and structure information in a way that both experienced
and inexperienced users of a product can easily follow.

The basic question a writer of task-oriented manuals asks is:

• Which tasks do I perform with this product?

The information given then in the manual is grouped to support that task. All the information in a
task-oriented book should be appropriate for the task being performed. Appropriateness to task is the
standard for excluding or selecting information.

Shipment Documentation

Operational Manual(s)
The operational manual(s) is/are structured according to the different tasks to be performed. The library
may include the following manuals:

• The Planning manual is written to guide the customer on the options a program offers and the resulting
decisions that need to be made for the tasks of installation, customizing, operation, administration,
application programming, and diagnosis of the software.

Topics covered may include:

– Installation planning to the product. For example, which system configurations support the program?
– Operation planning to the product. For example, which resources does the program use, or which

abnormal events might occur during execution of the program?
– Customizing planning to the product. For example, which user routines must be appended to the

program?
– Migration planning to the product. For example, which conversion aids can be used to migrate to the

program?
– Administrative planning to the product. For example, which resources (databases, transactions, or

user profiles) must be defined by the program?
– Application programming planning. For example, which system services or resources are required to

support application programs?
– Diagnosis planning. For example, which diagnostic aids are available?

• The Installation manual describes how to install and customize the product so that it is ready to be
used.

• Operations manual should describe the facilities for the user, the purpose and the means.

© Copyright IBM Corp. 1991, 2010 63

• Messages and Codes lists all messages and other error codes together with the reason and the
appropriate actions to take. This could also be a chapter in the Diagnosis manual.

• Diagnosis, either a separate manual or a chapter, should guide the user/administrator to determine if a
problem is a user error, or a problem within the product or a problem of a product combination.

64 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 5. Providing Multicultural Support

In today's worldwide marketplace, products must be designed to provide multicultural support.

When the subject of multicultural support is mentioned, most people think of translating software panels,
messages, and publications into languages other than English. But, multicultural support consists of
much more than just translation. To really support a national language, a product must accommodate all
aspects of the language. It demands attention to sorting sequences, to date and time, to currency, and to
many other national and cultural factors, to mention just a few items.

IBM has published a set of rules and guidelines that are considered necessary to enable a product to
provide that support. Like all other design considerations, the decision to follow particular rules and
guidelines is made after balancing various requirements with design constraints. For your program to
achieve maximum benefit from these rules and guidelines, however, you should consider them at the
earliest possible development stage.

Statements regarding multicultural support for any country named in these rules and guidelines are
suggestions for general applications. Particular industries and applications may require multicultural
support different from what is stated here.

Common User Access (CUA)
The Common User Access (CUA), a basic element of Systems Application Architecture® (SAA), ensures
consistency in designing interactive user interfaces. To ensure that the appropriate multicultural support
can be provided to the interfaces developed under this architecture, all IBM publications mentioned in
this description can be used in conjunction with the CUA documentation.

Concepts of Multicultural Support
There are two concepts vital to understand multicultural support: enable and implement.

Enable
To enable a product means to design that product in such a way as to facilitate the inclusion of national
language functions and to design a product in such a way as not to inhibit the inclusion and usability of
national language functions in other products.

During the design stages of a product, the developer must keep in mind that the architecture and the
design have to be flexible enough to allow national language functions or any specific language to be
included in the product (possibly at a later time) without requiring a redesign.

Implement
To implement a national language on a product means to add national language functions to a product
when the design has been enabled to accept those functions, as well as providing the customer and
service information in the user's national language. Implementation refers to specific languages and to
specific additions to a product.

Language Subsets
If languages are divided on the basis of their implementation characteristics, the rules and guidelines
fall into subsets that naturally support those characteristics. By using all the subsets and guidelines, a
designer ensures that a product is enabled for the national languages of all countries.

The following characteristics form the basis for creating subsets of the enabling rules and guidelines for
written languages:

© Copyright IBM Corp. 1991, 2010 65

• Left-to-right languages using single-byte characters. For example, Danish, English, Finnish, French,
German, Hungarian, Italian.

• Bidirectional languages using single-byte characters. For example, Arabic, Hebrew, Persian.
• Languages using double-byte characters. For example, Chinese, Japanese, Korean.

These groupings are based on practicality in data processing rather than linguistic reasons. For example,
the bidirectional languages are set apart from the others by their common requirement for functions that
permit handling of entry and presentation in two directions (right-to-left and left-to-right). Double-byte
languages are distinguished by their requirement for more than one single byte per character to code their
large character sets.

The first subset applies to left-to-right single-byte languages and contains the rules and guidelines that
are common to all languages. It is considered a base for all products. The other subsets deal uniquely
with the bidirectional and double-byte languages.

National Language Standards and Laws
There are many language-related standards and laws. Most countries have language laws affecting the
importation, sale, or use of data processing equipment, software, or documentation. Some of the laws
specify the language(s) to be used on labels, keyboards, documentation, or software. Other laws regulate
cultural aspects such as date formats, calendars, or numeric representation. Because there are many
laws and constant revision of laws, only the country issuing a law can describe it.

Some countries like Canada, Switzerland, and Belgium have legal requirements to support more than one
official language.

Implementation Considerations
If you plan to include multicultural support in your software package, you have to consider many design
and implementation aspects, for example:

• Which code page(s) are required;
• Which character sets are required;
• Isolation of language dependent hardware, and software code from executable code at the source, load

module, and packaging levels;
• Definition of graphic characters as delimiters for control purposes;
• Definition of variables used in translatable material and its location and order within a field;
• Expansion space for translation (expansion is based upon complete words and blanks associated with

those words; up to 10 characters English length require 100-200% while 70 characters or more English
length require only 30% expansion space).

• Input formats such as commands, keywords and responses must accept English input formats in the
same session as the multicultural input formats.

Multicultural Support for z/VSE Version 4
z/VSE Version 4 currently offers English and Japanese for the following products/functions:

• Interactive Interface
• Online Message Explanation (OME)
• Selected CICS end-user messages
• High Level Assembler for VSE messages

For the interactive interface and the OME, only one language can be used per installation. The customer
chooses the language when ordering the product.

The interactive interface of z/VSE comprises panels, help panels, online messages, and help messages.

66 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

The OME allows to display the explanation of any message issued by one of the z/VSE base products in
the customer selected language.

VSE Workdesk is a front-end to the interactive interface for workstation users.

DWF is an application development workplace for workstation users. It delivers all available languages,
but it is recommended to use only the language that was chosen for the z/VSE host system.

CICS allows to select the language

• globally by using CICS initialization options
• for each end-user
• for each terminal or transaction

High Level Assembler for VSE allows to select the language for each assembly run.

Some end-user applications provide multilingual support. All languages may be installed in the system
and the user selects the desired language.

Chapter 5. Providing Multicultural Support 67

68 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Part 4. Creating Installation Tapes and Servicing Your
Product

This part describes how to create installation tapes and how to service your product. Additional samples
corresponding to the topics described here are given in Part 5, “Packaging and Service Samples,” on page
105.

© Copyright IBM Corp. 1991, 2010 69

70 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 6. VSE Product Numbering Conventions

This chapter explains the IBM VSE product numbering conventions and helps vendors to avoid numbering
conflicts at customer installations.

These numbers reflect the structure of your product and are required by the Maintain System History
Program (MSHP) to ensure correct installation and service of your product.

MSHP is a program in VSE used for installing and servicing an IBM product. It is used for automating and
controlling various installation and service activities for a VSE system. You can use MSHP to install your
own products on VSE and to apply service to them.

Important: The structure influences how a product is installed and serviced. Therefore it is very
important that you consider the structure of your product early in the development process. Refer to
section “Rules for Product Structuring” on page 73 for a description of dependencies between product
structure, numbering scheme, distribution tape creation, and installation.

MSHP Product Identification
For installation and service of a program, MSHP uses alphanumeric combinations that identify the product
to MSHP. Here MSHP follows the standard IBM coding format for product identification. The identification
format consists of the following parts, not necessarily used in this sequence.

Format
┌────────────────────┐
│ TTTT-PPP-CC-CLC │
└────────────────────┘

where:
TTTT

stands for a four digit numeric code. It is part of the order number and is referred to as type.

At present, IBM uses the range 5600 to 5799.

For example, in Table 5 on page 72, the type is 5686 and identifies a VSE product.

PPP
stands for a three letter alphanumeric code. PPP is part of the order number and is referred to as
model. In the context of MSHP, the model is called product code.

The product code ranges from 001 to 998.

For example, as shown in Table 5 on page 72, the product code for VSE Central Functions Version 8
is CF8.

Note: MSHP accepts also alphanumeric combinations.

CC
stands for a two digit numeric code, the component number,indicating the component of a product.

The component number ranges from 01 to 98 within one product.

For example, as shown in Table 5 on page 72, MSHP is the seventh component of VSE Central
Functions.

CLC
refers to the Component Level Code. The CLC identifies the release of a product within a version.

For example, in Table 5 on page 72, the component level code for components belonging to VSE
Central Functions Version 8 Release 2 is 01C.

© Copyright IBM Corp. 1991, 2010 71

The following example shows numeric combinations that identify a product according to product name,
product number, component ID, CLC, and product identifier to MSHP.

Note: This format is used for all IBM VSE products uniformly since VSE/Advanced Functions 2.1.

Table 5. Product Identification Convention Example

IBM Product IBM Product
Number

Component ID CLC Product ID
(MSHP)

VSE/Cen. Func. 8.2.0
 • VSE/POWER
 • MSHP

5686-CF8
5686-CF8
5686-CF8

5686CF803
5686CF807

01C
01C

CF801C
CF801C

CICS Transaction Server 1.1.1 5686-054 568605400 B0P 054B0P

WebSphere® MQ for z/VSE
3.0.0

5655-U97 5655U9700 300 U97300

MSHP uses some of these numeric combinations for installation, others for service procedures.

To create the distribution tape, both component ID and product ID are needed. The following section
describes how these are constituted.

Component Identifier
The component ID identifies the component(s) of a product. For products to be serviced using MSHP, that
is to install PTFs and APAR fixes (ZAPs), one component identifier has to be defined per component of a
product. The component identifier is built from the program number followed by the component number.
The basic format of the component ID thus is TTTT-PPP-CC.

Fully-qualified component identifier
In order to identify the component uniquely to MSHP, the component must, however, be specified in "fully
qualified" format. Fully qualified means specifying both the component ID and the release level of the
component. This is what the complete, fully qualified component ID format looks like:
┌────────────────────┐
│ TTTT-PPP-CC-CLC │
└────────────────────┘

The fully qualified component ID for MSHP, for example, is 5686-CF8-07-01C. This identifies MSHP as
component 07 on level 01C of product 5686-CF8, which means VSE Central Functions Version 8.2.

A product usually consists of one component. Larger products, such as VSE Central Functions, contain
several components or functional units; it has as its seventh component, for example, MSHP (Maintain
System History Program). For products that contain more than one component, refer to “Rules for Product
Structuring” on page 73 for MSHP requirements.

In summary, components refer to the structure of a product, which should carefully be considered. In
general, one component should be sufficient, with the possible exception for multicultural support.

It is very important that you consider the structure of your products into components in time. The
structure influences how a product is installed and serviced. Since PTFs are built for components, a large
number of components may cause an increase in corequisite PTFs. For more information on corequisite
PTFs, please refer to “Ensuring the Correct Environment” on page 96.

Product Identifier
The product ID identifies a product and its release level to MSHP for installation and service. It is the
product ID that MSHP uses when referring to a product.

72 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

It is recommended that the product ID is in this format:
┌───────────┐
│ PPPCLC │
└───────────┘

For example, the product ID for VSE Central Functions Version 8 Release 2 is CF801C.

The first three characters (CF8 in the example) are the product code. The remaining characters (01C in
the example) identify the release level (CLC) of the program.

Note: MSHP supports multiple levels of a program. Note that:

• The PPP is changed with a new product version.
• The CLC is changed for a new product release.

Table 6. Changed Product ID through New Version and Release Level

IBM Product VRM Product Number CLC Resulting Product ID

MQSeries® VSE/ESA 2.1.1 5686–A06 1ZZ A061ZZ

MQSeries VSE/ESA 2.1.2 5686-A06 2ZZ A062ZZ

WebSphere MQ for z/VSE 3.0.0 5655-U97 300 U97300

Note: VRM = Version Release Modification

Using the Component and Product Identifier
When writing MSHP jobs using the identifiers described above, follow these rules:

1. Use the product ID rather than the CLC alone if both specifications are possible in an MSHP statement.
This holds true, for example, for the PRE parameter of the REQUIRES statement. Because CLCs are not
always unique, a duplicate CLC might prevent application of a PTF or installation of a product; MSHP
can not distinguish the different products using the same CLC.

2. Always use the fully-qualified component identifier in order to refer to a component on its correct
release level.

Note: The identifiers used for product installation can't be changed by service.

Rules for Product Structuring
The following MSHP requirements must be considered when defining components:

• If a program consists of a group of components that must be installed together (like some components
of VSE Central Functions), all components must have different component IDs, but the same CLC (and
therefore the same Product ID). To create an install tape, the product (residing in one sub-library) is first
defined to MSHP with one ARCHIVE statement for each component and one for the Product ID and then
put to tape with one BACKUP Product ID statement. The product is installed with one install job.

• If a program consists of a base component (group of components) and a series of features, out of which
only one can be selected (for example, a multicultural support feature), all components of the features
can have the same component ID but must have different CLCs (one Product ID for the base and one for
each feature). To create an install tape, the base and each feature (residing in different sub-libraries) are
defined to MSHP with corresponding ARCHIVE component ID and ARCHIVE Product ID statements and
are put to tape with separate BACKUP Product ID statements. The base and each feature are installed
with different install jobs.

• If a program consists of a base component and a series of features, out of which one or more can be
selected (for example, additional functions), all components must have different component IDs and
different CLCs (one Product ID for the base and one for each feature). To create an install tape, the base
and each feature (residing in different sub-libraries) are defined to MSHP with corresponding ARCHIVE

Chapter 6. VSE Product Numbering Conventions 73

component ID and ARCHIVE Product ID statements, and are put on tape with separate BACKUP Product
ID statements. The base and each feature are installed with different install jobs.

• If a component of a feature replaces a base component, the same component ID must be used for the
base and for the feature, but the CLC must be different. At installation time MSHP issues a warning that
the existing part will be overwritten.

Refer to Chapter 7, “Creating Installation Tapes,” on page 77 for details on creating installation tapes.

Convention for Vendor Product Identification
The purpose of this section is to

• Encourage the use of MSHP also for non-IBM products (makes life easier for customers and IBM
service).

• Keep the vendor products from stepping on each others' and on our toes when they invent their own
MSHP numbering scheme (which they did).

It is addressed at vendor products, completely independent of any IBM relation. Therefore these rules
do not apply whenever a vendor product is subject of a cooperative marketing agreement or even closer
relationship.

The previous sections explain the relationship between product number and all the MSHP numbers in the
ideal case. That is, either it's an IBM product that has the same program number worldwide or a non-IBM
product where the product owners set up their own program numbers, independent of IBM, and also
worldwide. Such a program number serves as the base to derive in conjunction with a CLC the Product
ID, component ID, and the fully-qualified component ID. In case of a vendor product with cooperative
marketing agreements with different IBM country organizations, different IBM program numbers will
be assigned in different countries. Then the - usually later - assigned IBM program number(s) will not
resemble the component ID, which would be the same worldwide. Anything else would imply differently
built distribution tapes for each of these countries.

Each product that works with VSE should have unique component and product identifiers. This applies
to both IBM and vendor products. The following naming convention ensures this uniqueness for products
worldwide. Identify your products as follows:

Type
The numbers 5600 - 5799 must not be used for type, since these numbers are reserved for IBM.

Model
Use a V as first character of your model/product code (PPP).

CLC
The CLC value used by IBM VSE products does not contain the letters T, U, V, W. Thus, these letters
are available to vendors to identify their products. The first two characters of the CLC value identify the
vendor (the third character can be chosen by the vendor, it can be A - Z, 1 - 9). The following two lists
show CLCs assigned previously to European and American vendors. These CLCs should therefore not be
used again in the future:

European vendors
TAx ABACO INFORMATICA S.A., Madrid, Spain
TCx ALPI S.P.A., Milano MI, Italy
UTx Alldata Software Haus, Stuttgart, Germany
TDx Archetype System Ltd., Hatters Lane, Watford, Herts WDI 8YH, UK
TEx ARTHUR ANDERSEN AND CO, London WC2R 3LT, UK
TKx Becker Software GmbH, Wiesbaden, Germany
TFx BTB Betriebswirtschaftliche u. Technische Beratungsgesellschaft mbH,

74 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

 Leinfelden-Echterdingen, Germany
TGx Byte Software House S.P.A., Torino, Italy
TJx CAP Debis SHI, Muenchen, Germany
TYx CAP Debis OrganisationsPartner GmbH, Bad Oldesloe, Germany
TTx CGI Interprogramm GmbH, Langenfeld, Germany
THx CIOB, Eindhoven, Netherlands
UHx Comparex, Mannheim, Germany
TIx COTEC - LISTER PETTER LTD, GLOS GL11 HS, UK
TLx ERITEL, Madrid, Spain
TMx Dipl.-Ing. Rainer Gehrke, Unternehmensberatung GmbH,
 Overath, Germany
TNx H&M System Software GmbH, Roedermark, Germany
TOx Ibias, PL Gouda, Netherlands
TPx IKO Software Service GmbH, Stuttgart, Germany
TQx Infologica, Stuttgart, Germany
TRx Infosoft Deutschland, Weiherhof-Zdf., Germany
TSx Insurance Software & Systems Ltd, Oslo 1, Norway
TUx IPACRI S.P.A., ROMA RM, Italy
TVx Klumpp Informatik, Stuttgart 31, Germany
TWx Lattwein GmbH, Dueren, Germany
TXx LS3, London W1N 7RA, UK
VIx Macro4, Worth, West Sussex, UK
TZx ORBIT COMPUTER SYSTEMS, Manchester, M3 5LF, UK
T1x Osys AG, Zuerich, Switzerland
T2x QUALITY SOFTWARE PRODUCTS LTD LEATHERHEAD, KT22 7AH, UK
T3x SAP AG, Walldorf, Germany
UJx SAPIENS, Israel
TBx Sema Group Systems AG, Wilhelmshaven, Germany
T4x Sema Group, Bruxelles, Belgium
T5x SIO, Montrouge, France
T6x SISTEMI INFORMATIVI S.P.A., ROMA RM, Italy
T7x SLIGOS, Paris La Defense, France
T8x Software AG, Darmstadt, Germany
T9x Soleri - Cigel, Puteaux Cedex, France

UAx STERIA, 78140 Velizy-Villacoublay, France
UBx TIMEGATE COMPUTER SYSTEMS LTD, WALSALL WS9 0QD, UK
UCx UNILOG RESEAUX et Systems, Paris 9, France
UDx Update GmbH, Kulmbach, Germany
UEx USU Softwarehaus Unternehmensberatung GmbH, Moeglingen, Germany
UFx VOLMAC, 3511 GB Utrecht, Netherlands
UGx Wilken GmbH, Ulm, Germany

American vendors
WOx ALLTEL Inc. (Systematics Inc.), Little Rock, AR
VAx Altai Software , Arlington, TX
WAx American Management Systems, Inc., Arlington, VA
WBx American Software, Atlanta, GA
W8x APSIS Software, Inc., Columbus, OH
VBx BI Moyle Assoc., Minneapolis, MN
VCx BMC Software, Sugar Land, TX
VDx Candle Corporation, Los Angeles, CA
WCx Cincom Systems, Cincinatti, OH
VJx Computer Associates Int'l, Islandia, NY
VKx Computer Associates Int'l, Islandia, NY
VSx Computer Associates Int'l, Islandia, NY
WUx Cyborg Systems Inc., Chicago, IL
WDx Data Design Associates, Sunnyvale, CA
W5x Data Kinetics, Ltd., Ottawa, Ontario, Canada
WKx Dun and Bradstreet, Atlanta, GA
WEx Genesys Software Systems, Methuen, MA
WFx Global Software, Raleigh, NC
WVx H & W Computer Systems Inc., Boise, ID
WXx Healthquest, Atlanta, GA
WYx Information Associates, Inc., Rochester, NY
WGx Information Builders, New York, NY
WHx Information Sciences Inc. (INSCI), Montvale, NJ
WIx Information Systems of America (ISA), Atlanta, GA
WZx Integral Systems, Inc., Walnut Creek, CA
VFx IntelliWare Systems, Inc., Dallas, TX
WWx Kirchmann Corp., Orlando, FL
VGx Landmark Systems, Vienna, VA
WJx Lawson Associates, Minneapolis, MN
VEx Legent Corp., Vienna, VA
VQx Legent Corp., Vienna, VA
VHx Mac Kinney Syst., Springfield, MO
WSx Micro Tempus Inc., Montreal, Ontario (Canada)

Chapter 6. VSE Product Numbering Conventions 75

W9x Open Connect Systems, Dallas, TX
W7x Open Software Technologies, Longwood, FL
W1x Performance Software, Inc., Richmond, VA
WTx Phoenix Software Co., Los Angeles, CA
WMx SAS Institute, Cary, NC
VLx SDI, San Mateo, CA
WRx SDM International Inc., Fuquay Varina, NC
VMx Smartech Systems, Inc., Dallas, TX
W2x Software Diversified Services, Minneapolis, MN
VOx Software Engineering of America, Atlanta, GA
WNx SPSS Inc., Chicago, IL
VNx Sterling Software, Chatsworth, CA
VRx Sterling Software, Chatsworth, CA
VPx Syncsort, Woodcliff Lake, NJ
VTx HFD Technologies, Blackwood, NJ
W6x SysData International, Inc., Hoboken, N.J. USA
WPx Thorn EMI Computer Software, Chelmsford, MA
W4x UNITECH Systems, Inc., Lisle IL USA
WQx Walker Interactive, San Francisco, CA
W3x Xerox Computer Services, Los Angeles, CA

Deviations
Blueline Software

uses: 1000-XXX-WE-YYY. 1000 and WE identify Blueline Software. XXX and YYY are internal code
different by product and release.

Computer Associates International
uses: 0202-CA-...

Legent Corporation, formerly Goal Systems International, Inc.
uses: 7965-XXX-00-YYY and 1989-XXX-00-YYY 7965/1989 and 00 identify Legent Corporation, XXX
identify the product and YYY the release.

Open Software Technologies
uses: 2822-V..-..-W7.

Sapiens
uses: 1818-V..-..-UJ.

Software Pursuits Inc.
uses: 1975-XXX-01-YYY. 1975 and 01 identify Software Pursuits Inc. XXX and YYY are internal code
different by product and release.

Request and updates for CLC numbers

Please use the address listed on the Reader's Comment Form to mail CLC number requests.

76 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 7. Creating Installation Tapes

This chapter describes how to prepare a distribution tape for a VSE product. Here the objective is:

• To facilitate installation by VSE customers. This requires an understanding of how IBM tapes are
installed and serviced by MSHP.

• To simplify procedures for customers familiar with IBM conventions.

Note: The structure of a product defines the layout of a product distribution tape and the product
installation and service process. Therefore it is important that the implications of a product structure are
already considered as part of the product design. Refer to “Rules for Product Structuring” on page 73 for a
description of dependencies.

Creating a Product Distribution Tape on VSE
A distribution tape must conform to the tape layout as described below if you want to achieve the
following:

• The product can be installed using MSHP.
• The product can be installed using the VSE product installation and service dialogs.
• The product can be serviced by PTFs.

System Requirements
A distribution tape for installation on a VSE system must be built on a VSE system.

Preparing a Library
Creation of a product tape requires preparation of the VSE library. Follow these steps to prepare the VSE
library for installation of your distribution tape:

1. Create your library.

You can create a library in either of the following ways:

• As a sequential file. For an example, please see “Creation of a Library on a Sequential Disk Extent”
on page 107.

• Or as a file in VSAM-managed space. This lets you use dialogs. For an example, please see
“Definition of a Library in VSAM Managed Space” on page 107.

Note: Creating a library is optional if you use an existing library.
2. Create a sublibrary that contains the code. You can create a sublibrary in either of the following ways:

• By using the dialogs
• Or by going into the ICCF command mode and using LIBR.

The name of the sublibrary should be unique for your and also for the customer's installation. Using
the following naming conventions ensures uniqueness:

for production part: aaa.PRprod-id
for generation part: aaa.Gnprod-id
where:
aaa= library name
prod-id= product ID
n = 1 through 9, depending on the number of generation sublibraries.

© Copyright IBM Corp. 1991, 2010 77

3. Compile or assemble the source code of the product. Catalog the object modules into the sublibrary
you just created. This sublibrary is the production library. It contains everything that is necessary for
running and servicing your product.

Points to Remember:

• All members should have names that identify them uniquely as part of the product. This is achieved
within IBM by assigning three characters to a product. These characters are called the Component
Code. Names of modules, phases, or also a reserved file name for a disk file should start with these
characters.

For example, all VSE/POWER modules start with IPW.
• If the product includes Librarian source members, select the correct member type from the list in

Chapter 11, “Library Member Types,” on page 119.
• If you are not using the High Level Assembler for VSE, executable macros have to be processed with

the EDECK option of the assembler. With High Level Assembler for VSE, E-decks are no longer used.
However, for compatibility reasons, the EDECKXIT parameter is available, which allows High Level
Assembler for VSE to translate E-decks back to A-books before processing.

Notes:

a. Macros can only be modified in A-book format.
b. High Level Assembler for VSE cannot convert A-books to E-decks.

Refer also to the library member type E in Chapter 11, “Library Member Types,” on page 119.
• Your code should include such items as installation material and data files, because all non-library

data has to be handled separately.

Optional:
4. • If your program includes a generation part to be compiled on the customer site for better

adaptation to the customer environment, carefully catalog this material into a separate generation
sublibrary.You may use more than one sublibrary (only if the generation part does not fit on one
volume of the smallest DASD supported by VSE); this should be avoided when possible. This
generation library need not be installed in the production environment, saving disk space.

For example, the generation feature of VSE/Advanced Functions includes all macros needed to
generate the supervisor.

• Do not use a generation library for shipping code that is needed for service of the production part.
5. Link your product invoking the linkage editor.

Compiling or assembling transforms your program into object module(s) that are then cataloged into
the sublibary.

If your program is independent of other programs, you may also link it and ship only phases. Linking
at the customer's site is then not required. In this case, only the phase must reside in the sublibrary
used for creating the tape. Note that service must then be done for phases, that is, PTFs must contain
phases not object modules.

In case your program needs other programs, for instance CICS modules, you could still link your
program with one level of CICS. Then you would ship all phases including those object modules that
need relinking with the version of CICS installed at the customer's site. In this case, supply LINK
books.

Creating the Header
For each product (installable unit) create a header and catalog it into the sublibrary that contains the
code. Follow these steps to create the header and catalog it:

1. Use the letters "HD" followed by the product ID to compose the header name, that is, use HDPPPCLC.
2. Write the content of the header file to be as follows:

78 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

• 80 byte records that can contain any text. For IBM products these records contain the copyright
records, or a repetition of those records if more than one copyright notice is required.

The format of the text record is:

 col 1 - 6 HDR001
 col 7 - 8 sequence number (01 to 99)
 col 9 blank
 col 10-71 text (see example)
 col 73-80 optional card sequence number

• One end indicator record.

The format of the end record is:

 col 1 - 6 HDR099
 col 7 - 8 sequence number (01)
 col 9 blank
 col 10-12 END
 col 13-71 not used
 col 73-80 optional card sequence number

Example of the content of a header file:

CATALOG HDCF8.Z REPLACE=YES /* CATALOG HEADER FILE*/
HDR00101 LICENSED MATERIAL - PROPERTY OF IBM
HDR00102 5686-CF8 (C) COPYRIGHT IBM CORPORATION 2005
HDR00103 ALL RIGHTS RESERVED.
HDR00104 US GOVERNMENT USERS RESTRICTED RIGHTS -
HDR00105 USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
HDR00106 GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
HDR09901 END
/+

Note: IBM developers should check Corporate Standard C-S 0-6045-002 for the latest wording of the
copyright statement.

3. Catalog the header file as a member of type "Z" into your sublibrary using the following job:

 // JOB HEADER
 // EXEC LIBR
 ACCESS SUBLIB=lib.sublib
 CATALOG member.Z
 ... source of member.Z
 /+
 /*
 /&

Creating the History
Once the header has been created, the next step is to create the product's history file using MSHP.

Follow these steps to create a history file:

1. Check that you meet the requirements to create a history file, which are:

• disk space (non-VSAM)
• product identification

For product identification requirements, see “MSHP Product Identification” on page 71.
2. Write the MSHP job to create the history file.
3. Execute the MSHP job.

Chapter 7. Creating Installation Tapes 79

Example for creation of an MSHP history file
// JOB ARCH2ZZ
* ***
* ARCHIVE JOB FOR MQSeries 2.1.2 *
* ***
// ASSGN SYS017,DISK,VOL=MQS212,SHR
// EXEC MSHP,SIZE=1024K
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM UNIT=SYS017 EXTENT=0705:15 -
 ID='MQSERIES 2.1.2 BASIC.HISTORY'
ARCHIVE 5686-A06-00-2ZZ /* FULLY-QUALIFIED COMPONENT-ID */
ARCHIVE A062ZZ /* PRODUCT-ID */
COMPRISES 5686-A06-00 MACROS=(CMQ*,COPYR,MQICMD) TYPE=C
COMPRISES 5686-A06-00 MACROS=(CMQ*,MQI*) TYPE=H
COMPRISES 5686-A06-00 MACROS=(CMQ*) TYPE=P
COMPRISES 5686-A06-00 MACROS=(MQB*,MQC*,MQD*,MQJ*,MQS*,TT*) TYPE=Z
COMPRISES 5686-A06 00 MODULES=(MQB*,MQC*,MQD*,MQP*,MQS*)
COMPRISES 5686-A06-00 PHASES=(DCH*,MQB*,MQM*,MQP*,MQW*,TTM*,TTP*)
RESOLVES 'MQSERIES 2.1.2 - 5686-A06'
RESI PROD=A062ZZ PROD=PRD2.MQS212
/*
/&

Figure 6. Creating a History File

This MSHP job contains the following major parts:

CREATE HISTORY
The extent information for the history file is supplied in either of the following ways:

• Using the MSHP DETAIL CONTROL statement with DEFINE (as shown in the sample)
• Or using the DLBL and EXTENT statements for file name IJSYSHF

ARCHIVE component
This ARCHIVE statement describes your component to MSHP.

In our example the component is: 5686-A06-00-2ZZ .

ARCHIVE product
This ARCHIVE statement describes your product and is used to enter this information into the history
file.

In our sample the product ID is: A062ZZ.
RESOLVES

The MSHP RESOLVES statement associates here a comment with a product.

In our example the comment is: MQSeries.2.1.2 - 5686-A06.

The first 16 characters of the RESOLVES statement must correspond to the tapefile ID as specified
in the BACKUP job and is coded as shown on “Creating the Tape” on page 81.

The first 16 characters of this comment are used by the Service Dialogs as a nickname for the
installed product.

COMPRISE
The COMPRISE statement is used to specify the component, phases, modules, and/or macros that
make up a product. That information is entered into the history file.

The above sample uses generic COMPRISES rather than listing each member separately. Use
generic COMPRISES whenever possible. The definition must, however, be unique across all
products.

COMPRISE statements for macros are repeated for different macro types. Please refer to Chapter
11, “Library Member Types,” on page 119 for a list of macro types that are allocated for specific
use.

Note: Procedures and library members of type .PROC cannot be specified and serviced by MSHP.
But you may ship them in the sublibrary of your product.

80 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

RESIDENCE
The RESIDENCE statement defines the names of the production sublibrary or production and
generation sublibraries in which a product resides. This information is recorded in the history file
for any follow-on activities, such as service application, installation, or product backup.

Restrictions
• Use the INVOLVES LINK command only if the user does not have to relink after, for example, compiling

some modules or adding other libraries. Else, if a link is required for product activation, a LINK job
should be provided and mentioned in your Program Directory and/or z/VSE Installation documentation.

• Reduce requisite information to a minimum. Do not build MSHP REQUIRES statements into your job
except when creating the history file for a feature.

For additional samples of how to build a history file, see “Creating or Changing VSE/Advanced Functions
History Information” on page 109.

Creating the Tape
Now that you have prepared everything for building the tape, this is how you create the tape:

1. Write your MSHP BACKUP job. For a sample see below.
2. Execute the job.

Example for an MSHP BACKUP job
// JOB MQSBASE
* ***
* BACKUP JOB FOR MQSeries 2.1.2 *
* ***
// ASSGN SYS017,DISK,VOL=MQS212,SHR /* MQSeries HISTORY */
// PAUSE TAPE M1669 ON 570 MOUNTED? ---> PRESS ENTER, IF MOUNTED.
// ASSGN SYS006,570,D0
// EXEC MSHP,SIZE=1024K
BACKUP PRODUCT=A062ZZ -
 ID='MQSERIES...2.1.2' -
 HEADER=HDA062ZZ -
 PRODUCTION
DEF HISTORY SYSTEM -
 EXTENT=0705:15 UNIT=SYS017 -
 ID='MQSERIES 5686-A06 2.1.2 BASIC.HISTORY'
/*
/&

Figure 7. MSHP BACKUP Job

The MSHP BACKUP job contains the following major parts: JCL and BACKUP PRODUCT.

JCL

• Assign the distribution tape as SYS006.
• Provide ASSGN, DLBL, and EXTENT for the system history file. Usually, this is already available in the

partition setup.
• Provide ASSGN, DLBL, and EXTENT for the selected library and LIBDEFs.

BACKUP PRODUCT
This statement is used to create the tape. It writes the header, the history file, and the product
sublibrary onto tape.

The BACKUP PRODUCT statement has the following values:

• The value of PRODUCT is the product ID as used in the ARCHIVE product statement when creating
the history file in Figure 6 on page 80. In the sample this value is A062ZZ.

• The value of ID is the tapefile ID and is coded as follows:

Chapter 7. Creating Installation Tapes 81

http://publibfp.dhe.ibm.com/epubs/pdf/iesist91.pdf

It is 16 characters long. The first characters contain the product name or a suitable abbreviation
of it; the product name is followed by a "." (dot), followed by the product's version, release, and
modification level. Spaces not occupied by a character must be filled up with "." (dots).

In general, the first 10 characters contain the product name; the eleventh character is a "."(dot);
the last 5 characters indicate the product's version, release, and modification level, separated by
"."(dots).

In the sample this value is MQSeries...2.1.2

If the product's version, release, and modification level occupy more than 5 characters, the product
name must be abbreviated. For example, XY/370BA.27.53.0 .

WARNING: The tapefile ID must not contain any blanks.

Note: The tapefile ID is used by the installation dialogs. It may be specified in an INSTALL job and
should correspond to the first 16 characters of the RESOLVES statement when creating the history
file.

• The header is the one created for this product. In the sample the header is HDA062ZZ.
• The statement specifies the type of the library to be copied. In the sample it is PRODUCTION only.

Optional: Specify the DEFINE HISTORY statement only if you do not have the DLBL and EXTENT
statements for the history file (IJSYSHF) in your standard label sets. The file information is the same
as specified when creating the history file, see Figure 6 on page 80.

Resulting Tape Layout of the Product
As a result of the BACKUP job, the product is written to tape in the following format:

Table 7. Layout of a Distribution Tape

File Number Content Sample

1 header file HD022A10

2 product history file history file for product 022A10

3 product libraries DW202DA.PR$A10

4 null file (tape mark) null file

5 EOB (end of BACKUP information) EOB

6 null file (tape mark) null file

File 3 of the product distribution tape contains library data only.

Related installation material and other material should be packaged as library data, if possible. The
VSE Librarian provides support for shipping executable, parameterized procedures within a VSE library,
eliminating thus the need to package customizing and activation jobs as non-library data.

Shipment of Non-Library Material
Products may ship non-library material on a non-stacked distribution tape as additional files after the
library/history BACKUP copy. Examples are:

• Copies of VSAM files
• Machine readable documentation
• Non-serviced material.

Observe the following for shipment of the distribution tape:

• Installation of these additional files on the distribution tape is not supported by the install dialogs.
• Installation of such additional files on the distribution tape must be possible through functions supplied

by either of the following:

82 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

– VSE/Advanced Functions (for example, system utilities)
– The product itself (for example, ICCF DTSUTIL function for ICCF library)
– Products that are prerequisite to the product

• At present, no service method exists for these extra files. In addition, MSHP does not control the
content and level of such files.

To solve this, the material of some products is shipped as source statement library members. For
example, ICCF library members are shipped as I-books and then moved into the appropriate dataset at
installation time.

Creating a Feature Tape
A feature is a separate unit requiring a base product for installation. For identification to MSHP, a feature
uses the following numbering convention:

• A feature uses the same program number as that of the base product.
• A feature is identified by its own, unique component level code (CLC).
• A feature has its own component ID. Otherwise, MSHP would treat the feature as a new release of the

base product.

The following example illustrates the numbering convention for a base product in relation to one of its
features.

Table 8. Coding Convention Example for a Base Product and a Feature

Component ID CLC Product Code Product ID

Base Product 5686-007-01 C44 007 007C44

Feature 5686-007-02 C45 007 007C45

Warning: This definition of a feature is strictly in terms of MSHP. Feature and feature code as used for
distribution or ordering may consist of one or more features by MSHP definition.

The distribution tape for a feature is created in the same way as for a product, described in section
“Creating a Product Distribution Tape on VSE” on page 77. The only difference is when creating the history
file. The statement REQUIRES PRE=prod-id of the base product is added to the job. For an example, see
“History Information for a Feature of a Product” on page 110.

Creating a Tape for Selective Installation of a Product or Feature
At times, a customer wants to select parts of a product rather than installing the entire product on the
distribution tape. For example, translated Machine Readable Information (MRI) consists of panels, helps,
and messages translated into 15 or more languages. Installing all of the languages occupies a large
amount of disk space. Thus, in an attempt to save disk space, a customer may choose to install only some
of the languages offered.

While the customer may want to install some selected languages, the product owner may prefer to
ship all languages on one tape. The following approach describes how you can build a distributiontape
satisfying both needs. Requirements are:

• Each part of the product that can be selected must be a feature according to MSHP standards:

– The component identifier(s) of these features must be different from the component identifier of the
base product. Likewise, every feature must have a unique CLC.

– Whether one component identifier is used for all of the features or whether every feature has its own
identifier depends on the usage:

If the user should be able to select more than one of the different selectable features, then each of
them must have unique component identifiers.

Chapter 7. Creating Installation Tapes 83

Note: MSHP checks the component identifier when executing the INSTALL command. If it finds the
same component identifier with a different CLC installed, it assumes a new release of the same
product and overwrites the previous information. Because of this, the customer can select only one
feature from the offered choice of, for example, language support. This is contrary to the multilingual
option offered by some products.

The recommended approach for such cases is, therefore, to have one component identifier per
selectable feature. This enables a customer to select more than one, but not necessarily all, of the
available language support.

The tape layout is the same, whether the different features comprise the same component identifier
and different CLCs, or whether the component identifiers are also different.

• Each feature must reside in a separate sublibrary, have its own header and history file.

Create the history files in either of the following ways
1. Write one job per feature following the steps described in “Creating the History” on page 79 and

execute the job.

Or
2. Join all these separate jobs as job steps into one job. Use the /& only at the end of the complete job.

Execute the job.

For a sample see “History Information for a Product Consisting of Multiple Components Installed
Selectively” on page 114.

Create the tape
1. Write the MSHP BACKUP statement for backup of the first feature and end it by a /*.
2. This should be followed by the job step for the backup of the next feature.
3. This should be repeated as often as necessary.
4. Put a /& at the end.

For a sample job, see “Back up a Product or Feature for Selective Installation” on page 117. Note that you
follow the same steps as for creation of a single product, except that the End-of-Job statement occurs
only at the end.

As a result of the BACKUP job, the product is written to tape in the following format:

Table 9. Tape File Content for Selective Installation

File Number Content

1 header language 1

2 history language 1

3 library-backup for language 1

... ...

3m + 1 header language m

3m + 2 history language m

3m + 3 library backup for language m

3m + 4 null file (tape mark)

3m + 5 EOB (end of BACKUP information)

3m + 6 null file (tape mark)

84 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Shipping VM Code with a VSE Product
Products may consist of two parts: the program to run on a VSE host and a counterpart in VM. VM files:
z/VSE Unique Code (UC) uses .Z for this purpose. UC prepares the members by doing the following:

• Diskdump the program to a user's reader.
• Load the members with READ so that they are on disk in disk dump format.
• Wrap the catalog statement around them and catalog them as Z members in the VSE library.
• Transfer the members from VSE to VM as described in the z/VSE Installation documentation, under

"VM/VSE Interface" in the index; VSE supplies a skeleton in ICCF 59 SKVMVSE that uses DITTO.

If you used the same approach, you need to ship your skeleton with member type .I and appropriate ICCF
commands wrapped around it. ICCF lib 62 is used for optional products.

Shipping PC Code with a VSE Product
Products may consist of two parts: the program to run on a VSE host and a counterpart program to be
executed on a Personal Computer (PC). For these products VSE supports distribution of the PC code as
part of the product on a normal VSE distribution tape. Then it is possible to download this program on
to the PC when the product has been installed on VSE. Depending on the VSE system your product is
intended for, you have several possibilities to download your product onto the PC. For more information
see Chapter 14, “Shipping PC Code with VSE,” on page 131.

Tape Stacking
In order to reduce the number of tapes to be shipped, IBM stacks more than one VSE Optional Product on
one tape. Whenever you want to package different products into one offering, you can use this method of
stacking tapes.

Stacked tapes can be installed using the installation dialogs of VSE.

Format of a Stacked Tape or Cartridge
The format of a stacked tape or cartridge is as follows:

• A special header (start-of-stacked-tape indicator) comes before the first product on the tape.
• Each product tape appears as previously described; one product following the other.
• A special trailer (end-of-stacked-tape indicator) appears after the last product on tape.

The following figure shows the layout of a stacked tape or cartridge:

Table 10. Stacked Tape and Cartridge Format

Header tape mark
start-of stacked-tape indicator record
 (see description below)
tape mark

Chapter 7. Creating Installation Tapes 85

http://publibfp.dhe.ibm.com/epubs/pdf/iesist91.pdf

Table 10. Stacked Tape and Cartridge Format (continued)

Product 1 FILE 1 - HEADER FILE FOR FIRST PRODUCT
 tape mark
FILE 2 - MSHP HISTORY FOR FIRST PRODUCT
 tape mark
FILE 3 - PRODUCT LIBRARY FOR FIRST PRODUCT
 tape mark
FILE 4 - NULL FILE
 tape mark
FILE 5 - END OF BACKUP RECORD FOR FIRST PRODUCT
 tape mark
FILE 6 - NULL FILE

Following Products ...
 ...
 ... Repeat files 1-6 for all products to be stacked
 ...
 ...
 ...

Trailer tape mark
 end-of-stacked-tape indicator (see description below)
 tape mark

End of File tape mark

Format
The format of the START OF TAPE and END OF TAPE indicator is as follows:

1. tape mark
2. 80 byte record
3. tape mark

Table 11. Layout of the 80 Byte Record for START OF STACKED TAPE Indicator

Byte Type Content

00-01 hex x'0050'

02-03 hex x'0000'

04-07 hex x'00000001'

08-44 char c'START.OF.STACKED.TAPE.FOR.VSE/SP.ONLY'

45 char c' ' (1 blank)

46-79 hex 34x'00'

Table 12. Layout of the 80 Byte Record for END OF STACKED TAPE Indicator

Byte Type Content

00-01 hex x'0050'

02-03 hex x'0000'

04-07 hex x'00000001'

86 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Table 12. Layout of the 80 Byte Record for END OF STACKED TAPE Indicator (continued)

Byte Type Content

08-42 char c'END.OF.STACKED.TAPE.FOR.VSE/SP.ONLY'

43-45 char c' ' (3 blanks)

46-79 hex 34x'00'

The format of the two indicators is the same. The difference consists in the text of the character string
from byte 8 to byte 45.

Product Stacking Requirements
Observe the following when creating a stacked tape:

• Use multiple stacked tapes or cartridges only if the number of products do not fit on one physical tape
or cartridge.

• If the number of products requires more than one stacked tape or cartridge, products must not span
tape or cartridge volumes. Each stacked tape or cartridge must contain the "Start of Tape Indicator" and
the "End of Tape Indicator".

• A product requiring another product (which means REQUIRES PRE=prod-id) must follow the required
product on the tape. Thus, a product must be stacked before any of its feature(s).

Creating a Stacked Tape
VSE Optional Products are stacked by the IBM distribution centers. For non-IBM products the tape/
cartridge stacking process is achieved in either of these ways:

Method 1
Produce a stacked tape by creating the tape.

1. Copy the START OF TAPE indicator to your stacked tape or cartridge following these steps:

a. Write a tape mark
b. Write the begin indicator record
c. Write a tape mark

Note: Do not rewind the tape.
2. Copy the program(s) to your stacked tape or cartridge. Here follow these steps:

a. Write the first product to tape using the same back-up job you would also use for creating this
product's distribution tape.

Follow this using the job control statement // MTC FSF,SYS006,2. The BACKUP function of the
Librarian positions the tape at the end-of-block file written last.

Do not rewind the tape.
b. Repeat this procedure for the next product(s) as often as necessary.
c. Copy the END OF TAPE indicator to your stacked tape or cartridge. Here follow these steps:

i) Write a tape mark
ii) Write the end indicator record

iii) Write a tape mark
d. Write a tape mark.

Method 2
Produce a stacked tape by copying the different parts.

Chapter 7. Creating Installation Tapes 87

1. Prepare the different distribution tapes as described under “Creating a Product Distribution Tape on
VSE” on page 77.

2. Get the correct header and trailer from an existing stacked tape.
3. Use DITTO to copy header, products, and trailer in the correct sequence.

Summary
Consider this for installation and service of your product:

• Have your tapes conform to the IBM numbering convention standards for product identification.
• Have your tapes conform to the IBM distribution tape layout.

More Information
Refer to the following IBM manual for detailed information on JCL and MSHP statements:

• z/VSE System Control Statements

88 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

Chapter 8. Installing and Customizing Your Product

Installation
This chapter describes the VSE installation tools for tapes built according to the specifications outlined in
Chapter 7, “Creating Installation Tapes,” on page 77.

There are two ways to install your tape on VSE:

1. You can install your tape using the VSE installation dialogs.

or
2. You can install your tape writing your own MSHP INSTALL job.

Both ways require you to decide which library and sublibrary/ies should receive the product. Both
approaches are outlined below.

Using the VSE Installation Dialogs
The VSE dialogs support the installation process, regardless of whether the distribution tape contains one
product, one product from which parts can be selected, or several products on a stacked tape-- as long as
the tape is built as described in Chapter 7, “Creating Installation Tapes,” on page 77.

For detailed installation information refer to the z/VSE Installation manual that corresponds to the level of
VSE that is installed.

Using an MSHP Install Job
If you install a product from tape using an MSHP install job, follow these steps:

1. Select or create a library and select or create a sublibrary in which the product is to be installed.

For a description see “Preparing a Library” on page 77.
2. Copy the MSHP install job as provided in the product's Program Directory or in the z/VSE Installation

manual and tailor it to the requirements of your installation.
3. Execute the job.

Installing a Tape with One Product
The install job consists of job control and MSHP statements.

• For job control:

– Assign the distribution tape as SYS006.
– Provide ASSGN, DLBL, and EXTENT for the system history file. Usually, this is already available in the

partition setup.
– Provide ASSGN, DLBL, and EXTENT for the selected library and LIBDEFs. Usually, this is already

available in the partition setup.
• For MSHP statements, use the INSTALL PRODUCT FROMTAPE statement with the following

parameters:
PRODUCTION INTO=lib.sublib

specifies the name of the library and sublibrary.

The value of PRODUCTION INTO is the name of the sublibrary the product is written into.

In our example (Figure 8 on page 90), the value of PRODUCTION INTO is PRD2.MQS212.

© Copyright IBM Corp. 1991, 2010 89

http://publibfp.dhe.ibm.com/epubs/pdf/iesist91.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesist91.pdf

GENERATION INTO=lib.sublib
specifies the name of the library and sublibrary package.

In our sample no generation library is needed.

Note: If you do not specify a library, MSHP takes the library or sublibrary used in the RESIDENCE
statement as default.

Optional:
ID=

tapefile ID

If used, the value of ID must be the same as coded in the BACKUP job creating this tape. MSHP scans
the tape (forward only) for this ID.

If not specified, MSHP restores the product found on the tape on SYS006.

In the example, the value of ID is MQSERIES...2.1.2 .

Example

// JOB MUEINSTB
* INSTALL THE MQSERIES 2.1.2 BASE FROM TAPE, NO ADD. DICTIONARIES
// PAUSE TAPE WITH MQSERIES 2.1.2 BASE MOUNTED
// ASSGN SYS006,570
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024K
INST PRODUCT FROMTAPE ID='MQSERIES...2.1.2' -
 PROD INTO=PRD2.MQS212
/*
/&

Figure 8. Installing from a Tape with One Product

Installing a Tape with One Product but Parts to be Selected
For this selective install, you can use the same job as used for a tape with one product. In this case,
however, you must write one install statement per part selected including the tapefile ID.

The INSTALL statements must be placed so that all products are installed in the same sequence as stored
on the tape, if they are to be installed in one run. MSHP scans the tape for the specified tapefile ID, but
only in forward direction.

Products that are REQuired by other products must be installed prior to the REQuiring product. This
explains the requirement to BACKUP a product in the correct installation sequence.

Example

// JOB INSTALL QMF/VSE
* ***
* INSTALL JOB FOR QMF/VSE 7.2.0 FROM TAPE, 2 ADDITIONAL LANGUAGES *
* ***
// PAUSE TAPE WITH QMF/VSE 7.2.0 BASE MOUNTED?
// ASSGN SYS006,570
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024
INST PRODUCT FROMTAPE ID='QMF/VSE....7.2.0' -
 PROD INTO=PRD2.QMF720
INST PRODUCT FROMTAPE ID='QMF/VSE.D..7.2.0' -
 PROD INTO=PRD2.QMF720
INST PRODUCT FROMTAPE ID='QMF/VSE.F..7.2.0' -
 PROD INTO=PRD2.QMF720
/*
/&

Figure 9. Installing a Tape with One Product with Three Parts Selected

90 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Installing from a Stacked Tape
When installing products from a stacked tape, use the same job as used for a tape with parts that are
selected including the tapefile IDs.In this case, however, MSHP is called using the following statement:

// EXEC MSHP,SIZE=1024K,PARM='PIDSTACKED'

Example

// JOB INSTALL QMF/VSE
* ***
* INSTALL JOB FOR QMF/VSE 7.2.0 BASE / US ENGLISH and 3 ADDITIONAL*
* LANGUAGES FROM A z/VSE OPTIONAL PRODUCT TAPE *
* ***
// PAUSE STACKED TAPE WITH QMF/VSE 7.2.0 BASE AND NLS MOUNTED?
// ASSGN SYS006,570
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024,PARM='PIDSTACKED'
INST PRODUCT FROMTAPE ID='QMF/VSE....7.2.0' -
 PROD INTO=PRD2.QMF720
INST PRODUCT FROMTAPE ID='QMF/VSE.D..7.2.0' - /* GERMAN */
 PROD INTO=PRD2.QMF720
INST PRODUCT FROMTAPE ID='QMF/VSE.F..7.2.0' - /* FRENCH */
 PROD INTO=PRD2.QMF720
INST PRODUCT FROMTAPE ID='QMF/VSE.K..7.2.0' - /* JAPANESE*/
 PROD INTO=PRD2.QMF720
/*
/&

Figure 10. Installing Products from a Stacked Tape

Customizing
Most products require customizing after having been installed from the distribution tape. Customizing
means tailoring the product after installation to the customer's specific requirements. The following is a
likely list of items to be considered for customizing.

Avoiding Customer Compilation of Source Code
A software product should be delivered in compiled format regardless of whether or not the source
code is delivered. If the source code alone is delivered, the compilation of the source code requires
unnecessary time and effort from the customer. Moreover, if you ship source code only, the service must
be done in form of the source code; again, this requires customers to compile and link.

Certain customers want to change the source code to meet their needs, in which case a recompilation
of certain modules by the customer might be necessary. Keeping this possibility in mind, it is useful to
provide customers with the right parameters and exit routines.

Customizing Tasks for the Product
Once the product is installed, the customizing tasks should be performed. The following is a typical list of
such tasks.

• Defining and loading one or more VSAM files
• Creating or updating CICS tables
• Setting up the InterSystems Communications (ISC)
• Setting up the user profiles. This includes use of translated panels and messages of one or more

languages
• (Re)linking the product
• Adapting the startup job for the product
• Migrating information from an earlier version or release of the product

Chapter 8. Installing and Customizing Your Product 91

Writing Customizing Jobs
Software products should contain jobs that customize the product for different installations.

Beginning with VSE/SP Version 2, the following facilities are available for writing customizing tasks:

• Symbolic parameters can be used as variables in the job control language statements. Values can be
assigned to the symbolic parameters by the SETPARM statements. Note that SETPARM statements
cannot be used to supply values to non-JCL statements.

• It is possible to follow different sequences of job steps depending on the return codes using the
Conditional Job Control Language of VSE/Advanced Functions.

• Chapter 15, “Job for Customizing,” on page 133, contains as a sample the first part of a customizing job.
This job was actually provided for an IBM product and uses the above mentioned facilities. This sample
demonstrates the following points:

– The sequence of job steps is structured according to the tasks.

Conditional Job Control statements serve to combine the different job steps.
– The information for the user is put at the beginning as a JCL comment, guiding the user how to adapt

the job to this particular installation.
– Variables are used where the user has to supply the values for their particular installation, for

example library names. A table in the comment summarizes name, type, default, and description of
the parameters. The necessary SETPARM statements are placed right after the explanations. See the
section of the comment, headed Start of Parameter List (User Selection), as shown in Figure 43 on
page 133.

– Values in non-JCL statements that may have to be changed for the customer installation are also
summarized, along with information on what and how to change.

– Defaults are provided for

1. The installation environment, assuming a VSE system as shipped by IBM, as seen, for example,
from the library and sublibrary names.

2. Reasonable sized disk work files accommodating more than one user.

The result is an operational product that does not need elaborate calculations and tuning as a first step.
Tuning can be performed at a later time if necessary. Different steps of the original customizing job may
then be reused.

Use of REXX/VSE
REXX/VSE is part of the VSE Base System and can be used to tailor the VSE operating system instead of
using the VSE conditional job control language. You can use REXX/VSE in the z/VSE batch environment for:

• z/VSE operation automation
• Substitution and parameterization for job execution
• Direct communication to the z/VSE system console
• Input/output (I/O) operations to z/VSE libraries and sequential data sets
• Dynamic creation and execution of z/VSE job streams
• VSE/POWER job submission and controlling
• VSE/POWER queue element manipulation
• VSE/POWER command execution.
• JCL command execution
• VSE batch program invocation (LIBR, IDCAMS, LNKEDT, ASSEMBLER,..)
• Invocation of high-level programs such as PL1 or C.
• SYSIPT data routing to REXX stems
• Output routing to a REXX stem

92 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

• REXX message routing
• Retrieval of some kind of VSE system information

More information
Refer to the following IBM manuals for detailed information:

• z/VSE Installation
• z/VSE System Control Statements
• z/VSE Guide to System Functions
• REXX/VSE User's Guide
• REXX/VSE Reference

Chapter 8. Installing and Customizing Your Product 93

http://publibfp.dhe.ibm.com/epubs/pdf/iesist91.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
https://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/manuals/iesrue02.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

94 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 9. Providing Service

A product's quality depends also on the way it is serviced in the field. The service process is a method to
enhance a product's quality and image. This chapter shows how you can provide service for your product
using MSHP.

Service can be either corrective or preventive. Corrective service is supplied in response to a defect
discovered by an user of the product. Preventive service means applying available service to a product
before a defect is rediscovered by another user.

In Chapter 7, “Creating Installation Tapes,” on page 77 you saw that each product is structured into
components and that each component is identified by its component ID (see “Component Identifier”
on page 72) and CLC. Service is always for the component of the product, not for the product itself.
Therefore, the fully-qualified component identifier is used to relate the fix to that defective component.

Note: The identifiers used for product installation can't be changed by service.

Figure 6 on page 80 shows that for MSHP a component consists of PHASES, MODULES, and MACROS.
Only these kinds of members can be serviced by MSHP. The MACRO member types allocated for specific
use are shown in Chapter 11, “Library Member Types,” on page 119.

Corrective Service
There are two ways to supply corrective service for VSE products

• Through an APAR fix (ZAP)
• Through a Program Temporary Fix (PTF)

APAR
At IBM, every previously unknown technical problem of a current release of a product is reported in
the RETAIN system by an APAR record and uniquely identified by an APAR number. APAR stands for
Authorized Program Analysis Report.

APAR Number: An APAR number is seven characters long. The first and second character (APAR prefix) is
alphabetic; the following five characters are numeric.

For an IBM product the APAR prefix is assigned according to PDR 205 when the component(s) of this
product is(are) defined to RETAIN. For independent vendor products, any characters can be chosen for
the prefix. However, it is recommended that you don't use prefixes that are already assigned to IBM VSE
products (AP, DY, HB, IR PL, PN, PP, PQ) or to IBM Business Partner products (SO) to avoid possible
confusion for customers.

For information on how the customer can submit an APAR to IBM, refer to "Submitting an APAR" in the
z/VSE Guide for Solving Problems. Please remember to set up a contact where your customers can report
problems and submit the equivalent of an APAR.

APAR Fix
Code defects reported by an APAR are solved by an APAR fix, which is identified by the corresponding
APAR number in RETAIN.

The APAR fix is a fast, temporary fix to the problem recorded by the APAR that may be used before the
PTF is generally available and is also known as ZAP. Its goal is to give immediate help to a customer to
continue work; the fix does not have to be the permanent solution applied to the product later on, as this
will be the PTF. Incidentally, ZAP is not an acronym or an abbreviation; the word reflects the speed of the
fix.

© Copyright IBM Corp. 1991, 2010 95

http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf

An APAR fix is available to all users who have encountered that problem. For problems or code changes
affecting only one customer for which no APAR was written, a so-called local fix is applied.The local fix is
written in the same way as the APAR fix.

For a sample of how to write such a fix, see Chapter 12, “APAR Fix (ZAP),” on page 121.

Resolving an APAR via PTF
Normally IBM makes APAR fixes generally available by incorporating them into a PTF.

A PTF is a temporary but universal fix resulting from a technical problem in a current release of the
program. PTFs are built for all users of a product as a response to a program's error reported in the form
of an APAR.

PTFs are the preferred method of service. PTFs allow extensive changes of a product without making
it necessary to replace the entire product and requiring reinstallation of a product. Also, one PTF can
resolve several APARs. A PTF replaces one or more programming elements: a macro, module, or phase
in the component of an installed product. Note that other types of library members, such as procedures
(PROC) are not supported.

In contrast to the APAR fix, the PTF is not a fast fix but requires changes in the source code. The PTF
is temporary only in that the program fix may be designed and/or implemented differently in the next
release. The fixes for all problems reported in the form of APARS will be integrated in the next release of
the product.

PTF Number: PTFs are identified by a PTF number. A PTF number is seven characters long. The first and
second character are alphabetic; the following five characters are numeric.

For an IBM product the PTF prefix is assigned according to PDR 205 when the component(s) of this
product is(are) defined to RETAIN. For independent vendor products, any characters can be chosen for
the prefix. However, it is recommended that you don't use prefixes that are already assigned to IBM
VSE products (UD, UG, UL, UN UP, UQ, UR) or to IBM Business Partner products (UU) to avoid possible
confusion for customers.

Ensuring the Correct Environment
When servicing a product, you need to ensure that the PTF/APAR is applied properly and does not
damage the product. A product can be damaged when service is applied to a component on the wrong
release level or when prerequisite/corequisite changes (changes that depend on each other) for other
components are missing.

Since PTFs/APARs belong to a certain component, MSHP statements ensure that the PTF/APAR is applied
to the correct component in the correct environment.

The MSHP statements APPLY in a PTF and CORRECT in an APAR contain the full qualified component ID.
This relates the PTF/APAR to the component and thus ensures the correct target library.

The MSHP statement REQUIRES is used to ensure that the environment is correct. This statement
requests that other products, components, PTFs, or APAR fixes should be present, or explicitly not
present when the APAR/PTF is installed.

Note: The environment is defined by the identifiers used for product installation (component ID, CLC, and
product ID). These identifiers can't be changed by service.

Using REQUIRES
The following example describes a scenario where a technical problem is discovered in an operational
environment:

The product to be serviced in this scenario consists of two components, components A and B, each with
three modules, as illustrated in Figure 11 on page 97.

96 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

CASE 1: Defect in module A1 and A2 of component A

After the new product is shipped, you discover that a defect in component A needs to be fixed in the
modules A1 and A2 by means of a PTF.

Solution: PTF UD00001 will replace module A1 and A2 and ensures its correct target by using the
appropriate APPLY and REQUIRES statements:

APPLY 5666-001-01-A10:UD00001
REQUIRES PRE=001A10

CASE 2: Defect in module A1 that requires also a change in module B1

Some time later, another defect is discovered. Again, a module must be fixed in component A, but this
time a change in component B is also required.

Solution: Two PTFs, UD00002 and UD00003, are required, because two components are affected.

PTF UD00002 for component A:

The PTF requires the following for installation: because module A1 now contains the fix for the first
problem, which affects also module A2, the application of PTF UD00001 is required. To ensure the
application of the earlier PTF, this PTF is stated as a prerequisite PTF, as shown below.

Since the new change in module A1 requires the modified module B1 in component B, PTF UD00003 for
component B must be applied along with PTF UD00002. This is called a corequisite PTF.

The MSHP statements to ensure correct application look as follows:

 APPLY 5666-001-01-A10:UD00002
 REQUIRES PRE=001A10
 REQUIRES PRE=UD00001
 REQUIRES 5666-001-02 CO=UD00003

PTF UD00003 for component B:

The fix in component B replaces module B1 and requires PTF UD00002 for component A to be present,
too, so that they are applied together. The MSHP statements to ensure correct application look like this:

 APPLY 5666-001-02-A10:UD00003
 REQUIRES PRE=001A10
 REQUIRES 5666-001-01 CO=UD00002

┌───┐
│ PRODUCT ID = 001A10 │
├───────────────────────────────────┬───────────────────────────────────┤
│ │ │
│ COMPONENT A │ COMPONENT B │
│ │ │
│ fully-qualified component ID: │ fully-qualified component ID: │
│ 5666-001-01-A10 │ 5666-001-02-A10 │
│ │ │
│ │ │
│ ┌─────────┬──────────┬──────────┐│ ┌─────────┬───────────┬──────────┐│
│ │Module A1│ Module A2│ Module A3││ │Module B1│ Module B2 │Module B3 ││
│ │ │ │ ││ │ │ │ ││
│ │replaced │ replaced │ ││ │replaced │ │ ││
│ │ by │ by │ ││ │ by │ │ ││
│ │UD00002 │ UD00001 │ ││ │UD00003 │ │ ││
│ └─────────┴──────────┴──────────┘│ └─────────┴───────────┴──────────┘│
└───────────────────────────────────┴───────────────────────────────────┘

Figure 11. Example of a Serviced Product

Summary

The installation of PTFs and the resolution of prereq/coreq PTF situations are controlled by MSHP as
follows:

Prerequisite:
One PTF requires the application of another as a prerequisite to its own application.

Chapter 9. Providing Service 97

Corequisite:
Two PTFs require the application of each other. The PTFs must be installed together.

For additional sample PTFs refer to Chapter 13, “Programming Temporary Fix (PTF),” on page 123.

For detailed information on JCL and MSHP statements and their additional parameters, please refer to
z/VSE System Control Statements.

Building a PTF
Using Figure 12 on page 99 as an example of a PTF, this section shows how a complete PTF can be built.

A PTF consists of three parts:

• JCL with comment cards between // JOB and // EXEC MSHP
• MSHP statements
• The data

Part 1 : JCL with comment cards between // JOB and // EXEC MSHP: This comment describes the
problem(s) that is/are fixed by this PTF, and whatever else is necessary for successful PTF application. For
a sample of a PTF with special instructions in the comment, refer to “PTF for Macros” on page 124.

Part 2 : The MSHP statements make up the definition of the PTF. In addition to the environment
description, they define which PTFs are superseded, which library members are affected, and which
link books have to be relinked.
APPLY

is the first MSHP statement in a PTF. It relates the PTF to the component and thus ensures the correct
target library. All of the following MSHP statements are related Detail Control Statements.

RESOLVES
is a mandatory statement; it indicates which APARs are fixed by the PTF and may associate a
comment with a PTF.

REQUIRES
is an optional statement and ensures the correct PTF environment. For more examples of REQUIRES,
refer to “PTF for Synchronizing Service” on page 125 and the following pages.

SUPERSEDES
is an optional statement and identifies which PTFs are superseded by this one. For detailed
information, refer to “Superseding PTF and Associated Requires-Groups” on page 126.

AFFECTS
is a mandatory statement and lists the phases, modules, and macros that are replaced by the PTF.
Multiple PHASES, MODULES, and MACROS operands can be specified. If different macro types are to
be serviced in one PTF, at least one MACROS operand must be specified for each macro type.

INVOLVES
is an optional statement and is needed if modules are replaced, it must be link-edited after
installation. The specified value is the link-book(s).

Note: A link-book must have a member type of OBJ and must not include comments.

DATA
is a mandatory statement; it indicates the last MSHP statement in a PTF and is followed by the actual
library members that will replace the defective ones.

Part 3 : Data: The last PTF part, data, is actually part of the MSHP DATA statement, the new library
members. These members (phases, modules, and/or macros) can be listed in any order, however it is
recommended to group them. MSHP starts either the linkage editor if it finds a PHASE statement or the
librarian program if it finds a CATALOG statement and passes all following lines unaltered and unchecked
to the called program. If this program recognizes the end of a member, MSHP gets control back and again
starts checking the input lines.

The new modules, phases, or macros are prepared in a VSE library and are punched by using LIBR to build
the PTF elements. When punched by LIBR, some necessary statements are supplied by the librarian: the

98 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

PHASE and/or CATALOG statements, as well as the /+ delimiter statements. They should not be removed
from the library members. They are used for separation.

// JOB UD12345
* APPLICATION COMMENT(S) :
* COMPONENT : 5666-301-01-A42
* APARS FIXED : DY28888
*
* SPECIAL CONDITIONS : NONE
*
* COPYRIGHT : (C) COPYRIGHT IBM CORP. 1984
* LICENSED MATERIAL - PROPERTY OF IBM
*
* COMMENTS :
*
// PAUSE EOB OR CANCEL
// EXEC MSHP
 APPLY 5666-301-01-A42 : UD12345
 RESOLVES 'short description' APARS=DY28888
 REQUIRES PRE=(302H01)
 SUPERSEDES (UD23456,UD34567)
 AFFECTS -
 PHASES = (PHAABC -
 PHADEF) -
 MODULES = (MODGHI -
 MODJKL) -
 MACROS = (MACMNO -
 MACPQR) -
 TYPE = A -
 MACROS = MACSTU -
 TYPE = E
 INVOLVES LINK = LINKBOOK
 DATA;
 PHASE PHAABC,S+X'.......'
PHASE PHAABC
 PHASE PHADEF,S+X'.......'
PHASE PHADEF
 CATALOG MODGHI.OBJ REPLACE=YES
MODULE MODGHI
 CATALOG MODJKL.OBJ REPLACE=YES
MODULE MODJKL
 CATALOG MACMNO.A REPLACE=YES
MACRO MACMNO
 CATALOG MACPQR.A REPLACE=YES
MACRO MACPQR
 CATALOG MACPQR.E REPLACE=YES
MACRO MACSTU
/$
/*
/&

Figure 12. PTF Format

Distributing a PTF
PTFs are usually shipped on a tape called VSE service tape. A VSE Service Tape can contain only one PTF,
but can also consist of up to 9 tape volumes. It has the following layout:

Table 13. Layout of PTF Tape

File Number Content

1 History file prepared by MSHP 'LIST SERVICETAPE XREF'

2 Service documentation

3 null file (tape mark)

4 EXCLUDE-list

5 Cover letters

6 PTFs

7 null file (tape mark)

Chapter 9. Providing Service 99

Table 13. Layout of PTF Tape (continued)

File Number Content

8 null file (tape mark)

Description
All files that are relevant to MSHP (file 1, 2, 4, 5, and 6) must either contain MSHP information in the
correct format or must be empty. File 2 has to be blocked with the block size of 7980; the logical record
size has to be 133 characters (fixed format). File 4, file 5, and file 6 have to be blocked with the block size
of 10320; the logical record size has to be 80 characters (fixed format).

The files used by MSHP are described below; the files not used by MSHP are present for compatibility
reasons (pre-VSE/SP 2.1 format) only and may be empty.

File 1: TAPE HISTORY

This file is created as follows:

• Create tape with 5 tape marks and all PTFs on file 6.
• EXEC MSHP with LIST SERVICETAPE XREF.
• BACKUP history auxiliary to a work tape.
• Copy auxiliary history to file 1 of the final service tape.

The history on file 1 contains all MSHP information about the PTFs in file 6. It improves the performance
of the PTF application process if it exists; it can, however, be empty (null file).

File 2: Service Documentation

May contain any information the customer should get together with a VSE Service Tape; it can, however,
be empty (null file). Information in file 2 can be printed to SYSLST using the option Print Service
Documentation of the PTF Handling dialog or the MSHP LIST function.

File 4: EXCLUDE-list

Contains any sequence of EXCLUDE control statements, indicating which PTFs, components, or products
have to be automatically excluded from the service application process unless they are explicitly
requested by the user via the INCLUDE command. The control statements have to be specified according
to the syntax of the MSHP command EXCLUDE. Examples for FILE 4:

EXCLUDE PTF=(UD00001, UD00017, UD12345);

EXCLUDE PTF=(UD98765);

EXCLUDE COMPONENT=5686-066-07-15C

The file may be empty (null file) if nothing is to be excluded.

File 5: Cover letters

This file contains any sequence of the cover letters of the PTFs in file 6. It can be used to optimize the
LIST SERVICE COVER function of MSHP, which produces a list of cover letters of all PTFs on the service
tape. If this file is empty (null file), the cover letters are selected from the PTFs in file 6.

A cover letter describes the PTF. It consists of the first two parts of a PTF as described under “Building a
PTF” on page 98, that is, a cover letter is a PTF without the data.

For a sample of a cover letter containing special PTF instructions, refer to “PTF for Macros” on page 124.

FILE 6: PTFs

Contains any sequence of PTF jobs built as described under “Building a PTF” on page 98.

100 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Installing a PTF
PTF installation on VSE is done by MSHP. MSHP can be used either natively or with the support of the
service dialogs provided by the VSE/SP Unique Code Interactive Interface (II). The recommended way is
to use the dialogs.

VSE/SP Unique Code Dialogs
To assist the customer in using MSHP, the VSE/SP Unique Code II. provides the following dialog support
for service application:

Apply PTF from Service Tape

This dialog is mainly used for PTF mass application and merges all applicable PTFs from a service tape
directly into the product (sub)libraries of a running system. However, individual PTFs can be selected for
installation with the INCLUDE option or excluded from installation with the EXCLUDE option.

Analyze and Apply Service Tape

This dialog maintains a list of service tapes that have been analyzed and allows to display various
information about the PTFs on these tapes. The dialog provides:

• List functions based on tape, product, component, or PTF.
• Information on:

– Affected sub-library(ies)
– Affected members
– Requisites
– APARs fixed

• Select functions to choose service based on product, component, or PTF level for products that are
installed.

Note: Although this dialog displays the requisites of the listed PTFs, it does not check whether all
requirements are met. It only checks whether a listed PTF is already installed. Complete requisite
checking is done by MSHP.

Both dialogs support Indirect Service Application for systemlibraries. That means, service is not applied
directly to these libraries, but to additional temporary libraries. This allows to test the installed service
before applying it to the system libraries. Indirect service application is either defined by the PTF's APPLY
statement or may be specified by the customer using the Force Indirect option.

MSHP Processing Sequence
MSHP is able to service as many components as requested in one step and one run through the service
tape(s), if the system history file correctly reflects the sub-libraries in which the components reside, and
provided those sub-libraries are on-line.

Based on the history information and using the PTF's MSHP control statements, MSHP is able to
determine:

• Which PTFs from a service tape have to be applied to which product in which library.
• Which requisites are needed.
• Whether service may conflict with an already applied APAR fix or local fix.

MSHP installs PTFs by replacing existing members in the VSE library with the updated members provided
by PTFs.

Note: New members can be added, but existing members cannot be deleted.

The necessary steps to activate the correction in the system are described in the PTF coverletter and in
the JCL comments of the apply job.

Chapter 9. Providing Service 101

Before applying PTFs, MSHP builds a temporary history file, where the information about all requested
PTFs is gathered. It uses either the tape history file (file 1), if available, or it picks up all PTF information
from file 6, the PTF file. MSHP determines which PTFs are to be applied: those that are requested
by the customer and those that are needed to meet the requirements of the requested ones. For the
elected ones, MSHP checks the PTF requirements and protects local APAR fixes and user generated
members, if both, PTF and system history information, are correct. If more than one PTF affects the same
member, MSHP determines (based on the requisite relationship) which PTF contains the latest level of
this member. At application time, only this member is picked up, the older levels are ignored.

PTF data has not been moved so far. A cross-reference list of all applicable PTFs and APARs is then
printed and the user is asked for confirmation, before MSHP starts to pick up the affected members from
the tape, to replace them directly in the user's sub-libraries and to update the history file.

Revoking PTFs and APARs
Service that is installed REVOKABLE can be removed if deemed necessary.
APAR fixes and local fixes

are installed with a default option of REVOKABLE in the CORRECT statement. For PHASEs and
MODULEs, MSHP stores all relevant information in the system history file. These APARs can be
removed with the UNDO function. For source members, a job is punched to SYSPCH, which can be
started to restore the original source member, thus removing all changes done by the APAR fix.

Single PTFs application (via SYSRDR/SYSIN):
If PTFs are installed using the REVOKABLE option of the APPLY statement, backout jobs are created
on tape, which can be run to restore the original members.

Mass Application of PTFs:
If PTFs are installed from a service file using the INSTALL SERVICE command, and the REVOKABLE
option is specified, a BACKOUT job is created for each component and written to a backout tape.
The entire service can be revoked by executing the INSTALL BACKOUT command, should this be
necessary.

Note: Since MSHP selects only the members at the highest service level for installation, either ALL
PTFs of a MSHP service application job can be revoked or none.

Preventive Service
There are two methods to offer preventive service to customers: as cumulative service tape or as a
product refresh.

Cumulative Service Tape
All PTFs that have assembled in the course of time are merged and put on one tape, the cumulative
service tape (also known as Program Update Tape). This tape is shipped to the customer.

Refresh
This method is used for VSE packages and its optional products. The product is upgraded with all
available service (PTFs), tested and then sent to the distribution centers. A product refresh ensures that
new customers will receive the product with most of the available service already installed and current
customers can order a system refresh (free of charge) to upgrade the existing system.

VSE Refresh Installation
A VSE package refresh consists of updated base product libraries and of updated optional products. The
VSE base system refresh can be installed via the Fast Service Upgrade (FSU)process, optional products
have to be re-installed after the FSU process.

Since a FSU replaces complete libraries, a system upgrade with FSU can be much faster (depending on
number of PTFs) than installing the same amount of PTFs with MSHP, which replaces single members.

102 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

More information
Refer to the following IBM manuals for detailed information:

• z/VSE System Control Statements for information on how PTFs are built.
• z/VSE Guide for Solving Problems for information on how to submit an APAR.
• z/VSE System Upgrade and Service for information on PTF handling and running a FSU.

Chapter 9. Providing Service 103

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesgse30.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessus91.pdf

104 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Part 5. Packaging and Service Samples

This part provides primarily packaging and service samples. How to create installation tapes and how to
service your product is described in Part 4, “Creating Installation Tapes and Servicing Your Product,” on
page 69.

© Copyright IBM Corp. 1991, 2010 105

106 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 10. Packaging of Products

Products are packaged in VSE/Advanced Functions Version 2 format. The following jobs are examples
only, and should be adapted to the available installation and completed by adding the necessary LIBDEF
statements.

Note: To shorten the examples shown, parts were extracted and replaced by periods.

Library Creation

Creation of a Library on a Sequential Disk Extent
There is a sample skeleton like the one shown in Figure 13 on page 107 in ICCF library 59 called
SKLIBDEF.

// JOB CREATE LIBRARY /* CREATE LIBRARY FOR PROGRAM PRODUCT */
// OPTION PARSTD=ADD /* OPTION PARTITION STANDARD LABEL */
// ASSGN SYS007,140 /* ASSIGN DISK IF NECESSARY */
// DLBL PRODLIB,'NEW.PRIVATE.LIB' /* LABELS AND EXTENTS FOR */
// EXTENT SYS007,VOLID5,1,0,190,114 /*PRIVATE LIBRARIES */
// EXEC LIBR /* EXECUTE LIBRARIAN PROGRAM */
 DEFINE LIB=PRODLIB /* DEFINE THE LIBRARY 'PRODLIB' FOR */
/* /* LATER INSTALLATION STEP */
/&

Figure 13. Creating a Library on a Sequential Disk Extent

Definition of a Library in VSAM Managed Space
The VSE dialogs should be used to define a library in VSAM-managed space. The following job sequence
can also be used:

Packaging Samples

© Copyright IBM Corp. 1991, 2010 107

// JOB DEFINE
* DEFINE MASTER/USER CATALOG, SPACE, CLUSTER
// OPTION STDLABEL=ADD
// DLBL IJSYSCT,'VSAM.MASTER.CATALOG',,VSAM
// EXTENT SYSCAT,SYSRES,1,0,4465,95
// DLBL DNAME,'USER.CATALOG.NO1',,VSAM
// EXTENT SYS003,DOSWK1,1,0,4465,95
// DLBL SPACE,'VSAM.DATA.SPACE',,VSAM
// EXTENT SYS004,DOSWK2,1,0,10,1900
// ASSGN SYS003,cuu
// ASSGN SYS004,cuu
/*
// EXEC IDCAMS,SIZE=AUTO
 DEFINE MASTERCATALOG -
 (NAME(VSAM.MASTER.CATALOG) -
 VOLUME(SYSRES) -
 CYL(5 0))
 DEFINE USERCATALOG -
 (NAME(USER.CATALOG.NO1) -
 VOLUME(DOSWK1) -
 CYL(5 0)) -
 CATALOG(VSAM.MASTER.CATALOG)
 DEFINE SPACE -
 (FILE(SPACE) -
 CYL(100 0) -
 VOL(DOSWK2)) -
 CATALOG(USER.CATALOG.NO1)
 DEFINE CLUSTER -
 (NAME(VSE.PRODUCT.LIBRARY) -
 NONINDEXED -
 SHAREOPTION(3) -
 RECORDFORMAT(NOCIFORMAT) -
 CYL(20 10)) -
 CATALOG(USER.CATALOG.NO1)
/*
/&
// JOB DEFINEL
* DEFINE LIBRARY IN VSAM SPACE
// DLBL PRODLIB,'VSE.PRODUCT.LIBRARY',,VSAM,DISP=(OLD,KEEP)
// EXEC LIBR
 DEFINE LIB=PRODLIB
/*
/&

Figure 14. Defining a Library in VSAM Managed Space

Creating the Header

Header Information

Product Containing "Restricted Materials" (non-OCO product)
HDR00101 LICENSED MATERIALS - PROPERTY OF IBM
HDR00102 THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
HDR00103 <pgm-nr> (C) COPYRIGHT IBM CORP. 19xx, 20yy.
HDR00104 ALL RIGHTS RESERVED.
HDR00105 US GOVERNMENT USERS RESTRICTED RIGHTS -
HDR00106 USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
HDR00107 GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
HDR00108 SEE COPYRIGHT INSTRUCTIONS.
HDR09901 END

Figure 15. Header for Product Containing "Restricted Material"

Packaging Samples

108 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Product not Containing any "Restricted Materials" (OCO product)
HDR00101 LICENSED MATERIALS - PROPERTY OF IBM
HDR00102 <pgm-nr> (C) COPYRIGHT IBM CORP. 19xx, 20yy.
HDR00103 ALL RIGHTS RESERVED.
HDR00104 US GOVERNMENT USERS RESTRICTED RIGHTS -
HDR00105 USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
HDR00106 GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
HDR09901 END

Figure 16. Header for Product not Containing "Restricted Material"

Note:

1. IBM developers should check Corporate Standard C-S 0-6045-002 for the latest wording of the
copyright statement.

2. 19xx first year product was published.
3. 19yy last year product was published with substantial changes (5% or more changes from the

original).

For an OCO Product with More than One Copyright Information
HDR00101 LICENSED MATERIALS - PROPERTY OF IBM
HDR00102 5686-CF7 (C) COPYRIGHT IBM CORPORATION 2004
HDR00103 ALL RIGHTS RESERVED.
HDR00104 US GOVERNMENT USERS RESTRICTED RIGHTS -
HDR00105 USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
HDR00106 GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
HDR00107
HDR00108 ENGLISH SYNONYM INFORMATION IS BASED ON THE AMERICAN HERITAGE
HDR00109 DICTIONARY DATA BASE - ROGET'S II, THE NEW THESAURUS - OWNED
HDR00110 BY HOUGHTON MIFFLIN COMPANY AND USED WITH PERMISSION.
HDR00111
HDR00112 (C) COPYRIGHT HOUGHTON MIFFLIN COMPANY 1982
HDR00113
HDR00114 GRADE DATA IS USED WITH PERMISSION FROM THE LIVING WORD
HDR00115 VOCABULARY.
HDR00116
HDR00117 (C) COPYRIGHT WORLD BOOK, INC. 1984
HDR00118
HDR00119 SPANISH SYNONYM INFORMATION IN BASED ON THE DICCIONARIO
HDR00120 ESPANOL DE SINONIMOS Y ANTONIMUS, 8TH EDITION (ELEVENTH RE-
HDR00121 PRINT), PUBLISHED BY AGUILAR S.A. IN MADRID, SPAIN AND USED
HDR00122 WITH PERMISSION.
HDR00123
HDR00124 (C) COPYRIGHT FEDERICO CARLOS SAINZ DE ROBLES 1984
HDR00125
HDR00126 SWEDISH SYNONYM INFORMATION IS BASED ON THE STORA
HDR00127 SYNONYMORDBOKEN, PUBLISHED BY STROMBERG'S IN STOCKHOLM,
HDR00128 SWEDEN, AND USED WITH PERMISSION.
HDR00129
HDR00130 (C) COPYRIGHT ALVA STROMBERG 1952
HDR00131
HDR09901 END

Figure 17. Header for an OCO Product with More than One Copyright Information

Creating or Changing VSE/Advanced Functions History Information

Creating History Information

History Information for One Component

Information using MSHP

In this sample, the extent information for the product's history file is supplied by the MSHP detailed
statement DEFINE.

Packaging Samples

Chapter 10. Packaging of Products 109

// JOB ARCH2ZZ
* ***
* ARCHIVE JOB FOR MQSeries 2.1.2 *
* ***
// ASSGN SYS017,DISK,VOL=MQS212,SHR
// EXEC MSHP,SIZE=1024K
CREATE HISTORY SYSTEM
DEFINE HISTORY SYSTEM UNIT=SYS017 EXTENT=0705:15 -
 ID='MQSERIES 2.1.2 BASIC.HISTORY'
ARCHIVE 5686-A06-00-2ZZ /* FULLY-QUALIFIED COMPONENT-ID */
ARCHIVE A062ZZ /* PRODUCT-ID */
COMPRISES 5686-A06-00 MACROS=(CMQ*,COPYR,MQICMD) TYPE=C
COMPRISES 5686-A06-00 MACROS=(CMQ*,MQI*) TYPE=H
COMPRISES 5686-A06-00 MACROS=(CMQ*) TYPE=P
COMPRISES 5686-A06-00 MACROS=(MQB*,MQC*,MQD*,MQJ*,MQS*,TT*) TYPE=Z
COMPRISES 5686-A06 00 MODULES=(MQB*,MQC*,MQD*,MQP*,MQS*)
COMPRISES 5686-A06-00 PHASES=(DCH*,MQB*,MQM*,MQP*,MQW*,TTM*,TTP*)
RESOLVES 'MQSERIES 2.1.2 - 5686-A06'
RESI PROD=A062ZZ PROD=PRD2.MQS212
/*
/&

Figure 18. Extent Information for the History File Using MSHP

Information using Job Control

In this sample, the extent information for the product's history file is supplied by JOB CONTROL
statements.

// JOB VSAM BASE HISTORY
// DLBL IJSYSHF,'VSM.H21.HISTORY.FILE' /* DEFINE HISTORY FOR VSAM BASE */
// EXTENT SYS012,,1,0,7550,10 /* ON TRACK 7550 AND SIZE OF 10 */
// ASSGN SYS012,130 /* ASSIGNMENT FOR THE HISTORY */
// EXEC MSHP,SIZE=1024K
ARCHIVE 5686-CF7-05-81C
ARCHIVE CF781C
RESOLVES 'VSE/VSAM VERSION 7.1.0'
COMPRISES 5686-CF7-05 -
PHASES = ($$$COC66 -
 $$BACLOS -
 $SVAVSAM -
 . . . -
 IDC* -
 IIP* -
 IKQ*) -
MACROS = (BLDVRP -
 DLVRP -
 ENDREQ -
 ERASE -
 . . . -
 SHOWCAT -
 TCLOSE -
 WRTBFR) TYPE=A ;
COMPRISES 5686-CF7-05 -
MACROS = (HDCF781C) TYPE=Z ;
RESIDENCE PRODUCT=CF781C PRODUCTION=PRODPPS.PRVSM610 ;
/*
/&

Figure 19. Extent Information for the History File Using Job Control

History Information for a Feature of a Product
If you compare this sample to the job of the base product on the previous page, you will notice that the
history information for a feature of a product requires only this one additional statement:

REQUIRES PRE=CF781C /* PRE-REQUISITE BASIC PRODUCT */

Packaging Samples

110 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

// JOB VCM710 HISTORY FILE
// DLBL IJSYSHF,'VCM.H01.HISTORY.FILE' /* DEFINE HIST. FOR VSAM FEAT.*/
// EXTENT SYS012,,1,0,7560,10 /* ON TRACK 7560, SIZE OF 10 */
// ASSGN SYS012,130 /* ASSIGNMENT FOR HIST.FILE */
// EXEC MSHP,SIZE=1024K
ARCHIVE 5686-CF7-03-81G
ARCHIVE CF781G
RESOLVES 'VSE/VSAM VERSION 7.1.0 COMMON MACROS'
REQUIRES PRE=CF781C ; /* VSE/VSAM VERSION 7.1.0 */
COMPRISES 5686-CF7-03 -
MACROS = (ACB -
 EXLST -
 . . . -
 SHOWCB -
 TESTCB) TYPE=A ;
COMPRISES 5686-CF7-03 -
MACROS = (HDCF781G) TYPE=Z ;
RESIDENCE PRODUCT=CF781G PRODUCTION=PRODPPS.PRVCM710 ;
/*
/&

Figure 20. Creating History Information for a Feature of a Product

Packaging Samples

Chapter 10. Packaging of Products 111

History Information for a Product Consisting of Multiple Components Installed
Together
// JOB VSECF71 HISTORY FILE
// DLBL IJSYSHF,'VSE/AF.NEW.HIST',99/365,SD
// EXTENT SYS012,SYS380,1,0,1560,45
// ASSGN SYS012,380
// EXEC MSHP,SIZE=1024K
CREATE HIST SYSTEM
ARCHIVE 5686-CF7-01-81C ;
ARCHIVE 5686-CF7-02-81C ;
ARCHIVE 5686-CF7-03-81C ;
ARCHIVE 5686-CF7-04-81C ;
ARCHIVE 5686-CF7-05-81C ;
ARCHIVE 5686-CF7-06-81C ;
ARCHIVE 5686-CF7-07-81C ;
ARCHIVE 5686-CF7-08-81C ;
ARCHIVE 5686-CF7-09-81C ;
ARCHIVE CF781C /* LEVEL ID FOR VSE/CF VERSION 7.1.0 */ ;
RESOLVES 'VSE CENTRAL FUNCTIONS VERSION 7.1.0' ;
COMPRISES 5686-CF7-02 - /* OK */
PHASES = ($$ABERRF -
 $$ABERRG -
 $$ABERRK -
 $$ABERRL -
 $$ABERRM -
 $$ABERRN -
 $$ABERRO -
 . . . -
 IJDANCHX -
 IJDPR3 -
 IJH* -
 IJJ*) ;
COMPRISES 5686-CF7-02 -
MODULES = ($$ABEREF -
 $$ABERRG -
 $$ABERRK -
 . . . -
 IJJGSD* -
 IJJGV* -
 IJJH* -
 IJJT* -
 IJJX* -
 IJND*) ;
COMPRISES 5686-CF7-02 - /* OK */
MACROS = (CDMOD -
 CHECK -
 . . . -
 . . . -
 TRUNC -
 WRITE) TYPE=E ;
COMPRISES 5686-CF7-02 - /* OK */
MACROS = (BOMTAC -
 IJJT$SEC) TYPE=A ;

Figure 21. History Information for a Product with Multiple Components Installed Together (Part 1 of 2)

Packaging Samples

112 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

COMPRISES 5686-CF7-04 - /* OK */
PHASES = ($$ABERAN -
 $$ABERRS -
 . . . -
 $$BOOR01) -
MODULES = ($$ABERAN -
 $$ABERRS -
 . . . -
 $$BOMR01 -
 $$BOOR01) -
MACROS = (DFR -
 DISEN -
 . . . -
 RESCN -
 SETDEV) TYPE=A ;COMPRISES 5686-CF7-06 -
PHASES = ($$$CO81C -
 $$A$* -
 $$ABERA1 -
 . . . -
 SAFORMEM -
 SSERV) ;
COMPRISES 5686-CF7-06 - /* OK */
MODULES = ($$$CO81C -
 $$A$IPL* -
 . . . -
 VMCF$BCP -
 VMCFCP) ;
COMPRISES 5686-CF7-06 -
MACROS = (APL -
 APPCVM -
 . . . -
 MSAT -
 MVCOM) TYPE=A ;
COMPRISES 5686-CF7-06 -
MACROS = (NPGR -
 NPGRLST -
 . . . -
 XPOST -
 XWAIT) TYPE=E ;
COMPRISES 5686-CF7-06 -
MACROS = (HDCF781C) TYPE=Z ;
COMPRISES 5686-CF7-07 - /* OK */
PHASES = (MSHP* -
 PTF*) -
MODULES = (IKR*) ;
COMPRISES 5686-CF7-08 -
PHASES = (BLN* -
 BLX* -
 INFO*) -
MODULES = (BLN* -
 IJBXA* -
 BLX*) -
MACROS = (BLN*) TYPE=T ;
COMPRISES 5686-CF7-08 -
MACROS = (BLN*) TYPE=M ;
COMPRISES 5686-CF7-08 -
MACROS = (BLN*) TYPE=N ;
RESIDENCE PRODUCT=CF781C PRODUCTION=IJSYSR1.SYSLIB -
 GENERATION=GENLIB1.G1$007 ;
/*
/&

Figure 21. History Information for a Product with Multiple Components Installed Together (Part 2 of 2)

Packaging Samples

Chapter 10. Packaging of Products 113

History Information for a Product Consisting of Multiple Components Installed
Selectively
// JOB DEFHIST
* ***
* DEFINE HISTORY FOR QMF/VSE 7.2.0 LANGUAGES *
* ***
// DLBL QMF720,'QMF.VSE.LIBRARY.R720'
// EXTENT ,QMF72A
// EXTENT ,QMF72B
// ASSGN SYS021,DISK,VOL=QMF72T,SHR
// EXEC MSHP,SIZE=1024K
 /* DEFINE HISTORY FOR QMF FRENCH */
 CREATE HISTORY SYSTEM
 DEFINE HISTORY SYSTEM UNIT=SYS021 EXTENT=0935:15 -
 ID='QMF/VSE 7.2.0 FRENCH.HISTORY'
 ARCHIVE 5648-061-07-2NU /* FULLY-QUALIFIED COMPONENT-ID */
 ARCHIVE 0612NU /* PRODUCT-IDENTIFIER */
 RESOLVES 'MQF/VSE 7.2.0 FRENCH - 5648-061'
 COMPRISES 5648-061-07 -
 PHASES=(DSQ*,DXE*) -
 MODULES=(DSQ*) -
 MACROS=(DSQ*,DXE*,DXY*) TYPE=A
 COMPRISES 5648-061-07 -
 MACROS=(DSQ*,DXE*,HD*) TYPE=Z
 REQUIRES PRE=0612NR /* PRE-REQUISITE BASIC PRODUCT */
 RESIDENCE PRODUCT=0612NU PRODUCTION=QMF720.PR$2NU
 /* DEFINE HISTORY FOR QMF FRENCH */
 CREATE HISTORY SYSTEM
 DEFINE HISTORY SYSTEM UNIT=SYS021 EXTENT=0950:15 -
 ID='QMF/VSE 7.2.0 JAPANESE.HISTORY'
 ARCHIVE 5648-061-10-2NX /* FULLY-QUALIFIED COMPONENT-ID */
 ARCHIVE 0612NX /* PRODUCT-IDENTIFIER */
 RESOLVES 'QMF/VSE 7.2.0 JAPANESE - 5648-061'
 COMPRISES 5648-061-10 -
 PHASES=(DSQ*,DXE*) -
 MODULES=(DSQ*) -
 MACROS=(DSQ*,DXE*,DXY*) TYPE=A
 COMPRISES 5648-061-10 -
 MACROS=(DSQ*,DXE*,HD*) TYPE=Z
 REQUIRES PRE=0612NR /* PRE-REQUISITE BASIC PRODUCT */
 RESIDENCE PRODUCT=0612NX PRODUCTION=QMF720.PR$2NX

/*
/&

Figure 22. History Information for a Product Consisting of Multiple Components Installed Selectively

Adding, Changing and Restoring History Information

Adding Information to an Existing History File
This job removes the default product ID generated by MSHP during the installation of the product on the
z/VSE system. The product ID is then re-archived to permit the addition of the new RESOLVES statement
that contains the 16 character tapefile ID. The sublibrary in the RESIDENCE statement should use the
name of the sublibrary that contains the product.

Packaging Samples

114 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

* $$ JOB JNM=NEWHIST,DISP=D,CLASS=0
// JOB NEWHIST CORRECT THE HISTORY FILE
// DLBL IJSYSHF,'history.filename',99/365,SD
// EXTENT SYSxxx,vvvvvv,1,0,sss,nnnn
// ASSGN SYSxxx,DISK,VOL=vvvvvv,SHR
// EXEC MSHP,SIZE=1024K
 REMOVE prod-id
 ARCHIVE prod-id
 RESOLVES 'tape.file.id ord.number product release'
 COMPRISES component ID -
 PHASES = (generic names,...) -
 MODULES = (generic names,...) -
 MACROS = (generic names,...) TYPE=A
 RESIDENCE PRODUCT=prod-id PRODUCTION=lib.sublib
/*
/&
* $$ EOJ

Figure 23. Adding Information to an Existing History File

Removing Product and Component Identifiers
When removing product and component identifiers, you can either include both REMOVE statements in
one job, or submit two separate jobs as shown below.

// JOB REMOVE PRODID
// EXEC MSHP,SIZE=1024K
REMOVE 09916O
/*
/&
// JOB REMOVE COMP
// EXEC MSHP,SIZE=1024K
REMOVE 5648-099-01-16O
/*
/&

Figure 24. Removing Product and Component Identifiers

Changing Entries in an Existing Product History
This job first archives new product information into a new defined history file. With the MERGE step those
parts of the product definition that are not defined are taken over from the old product history.

// JOB UPDATE HISTORY /* UPDATE HISTORY FOR PROGRAM PRODUCT */
// DLBL IJSYSHF,'NEW.2NR.HISTORY.FILE' /* DEFINE NEW HISTORY FILE */
// EXTENT SYS013,,1,0,7750,10 /* ON TRACK 7550 and SIZE OF 10 */
// ASSGN SYS012,130 /* ASSIGMENT FOR THE AUX HISTORY */
// ASSGN SYS013,130 /* ASSIGMENT FOR THE NEW HISTORY */
// EXEC MSHP,SIZE=1024K
 CREATE HISTORY SYSTEM /* CONTROL STATEMENT FOR CREATION */
 ARCHIVE 5648-061-07-2NU /* COMPONENT ID AND RELEASE-NO */
 ARCHIVE 0612NU /* NEW MSHP PRODUCT IDENTIFIER */
 RESOLVES 'QMF.VSE 7.2.0 FRENCH' /* COMMENT FOR RETRACE PRODUCT */
 REQUIRES PERE=(0612NR) /* UPDATE OF PREREQUISITES */
 COMPRISES 5648-061-07 - /* COMPONENT THAT IS COMPRISED */
 PHASES = (DSQ* - /* DEFINITION OF THE PHASES, MODULES, */
 DXE*) - /* MACROS CONTAINED IN THIS PROGRAM */
 MODULES = (DSQ*) - /* PRODUCT. */
 MACROS = (QSQ* -
 DXE* -
 DXY*) TYPE=A
 COMPRISES 5648-061-07 -
 MACROS = (DSQ* -
 DXE* -
 DXY*) TYPE=Z
 MERGE HISTORX - /* MERGE OLD SYSTEM ENTRIES TO THE NEW*/
 AUXILIARY SYSTEM /* HISTORY WITH THE UPDATED ENTRIES. */
 DEFINE HISTORY AUXILIARY - /* DETAIL STATEMENT FOR 'OLD' HISTORY */
 EXTENT=7220:45 - /* ON TRACK 7720 AND A SIZE OF */
 ID='2NU.PRD.HISTORY.FILE' - /* 45 TRACKS. PROVIDE AN IDENTIFIER */
 UNIT=SYS012 - /* AND WHERE THE HISTORA RESIDES */
/*
/&

Figure 25. Changing Entries in an Existing Product History

Packaging Samples

Chapter 10. Packaging of Products 115

Restoring the History File
// JOB RESTORE HISTORY FILE /* JOB TO RESTORE MSHP HISTORY */
// ASSGN SYS006,280 /* ASSIGNMENT FOR TAPE UNIT 280 */
// MTC REW,SYS006 /* REWIND TAPE */
// MTC FSF,SYS006,2 /* TAPE POSITIONING AT HISTORY FILE */
// EXEC MSHP,SIZE=1024K
RESTORE HISTORY SYSTEM /* MSHP FUNCTION STATEMENT */
 DEFINE HISTORY SYSTEM - /* DETAIL STATEMENT FOR SYSTEM HISTORY */
 EXTENT=7550:10 - /* ON TRACK 7550 AND A LENGTH OF */
 ID='SYSTEM.HISTORY.FILE' - /* 10 TRACKS . PROVIDE AN IDENTIFIER */
 UNIT=SYS012 /* AND WHERE THE HISTORY SHOULD BE */
/* /* RESTORED. */
// MTC REW,SYS006 /* REWIND TAPE
/&

Figure 26. Restoring the History File

Backup of a Product or Feature

Back up the Production and Generation Part of a Product
General Format:

* $$ JOB JNM=BCKNEW,CLASS=0,DISP=D
// JOB BCKNEW BACKUP PRODUCT IN NEW FORMAT
// DLBL lib,'product.library.name',99/365
// EXTENT ,vvvvvv,1,0,sss,nnnn
// DLBL IJSYSHF,'history.file.name',99/365,SD
// EXTENT SYSxxx,vvvvvv,1,0,sss,nnnn
// ASSGN SYSxxx,DISK,VOL=vvvvvv,SHR
// ASSGN SYS006,cuu /* of the tape unit */
// MTC REW,SYS006
// MTC WTM,SYS006,2 /* Optional. To ensure that new */
// MTC REW,SYS006 /* tapes are initialized. */
// EXEC MSHP,SIZE=1024K
 BACKUP PROD=(prod-id) ID='tapefile-id' HEADER=prod-id PROD GENE
/*
// MTC REW,SYS006
/&
* $$ EOJ

Figure 27. Backing Up a Product or Feature

The distribution tape created through this backup operation now has the format described in Table 7 on
page 82.

Back up the Production Part of a Product or Feature
// JOB BACKUP DITTO/ESA 1.3.0 FOR VSE
// PAUSE TAPE ON 280 MOUNTED? ---> PRESS ENTER, IF MOUNTED.
// ASSGN SYS006,280
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024K
BACKUP PRODUCT=09936O ID='DITTO/ESA..1.3.0' HEADER=HD09936O PROD
/*
// MTC REW,SYS006
/*
/&

Figure 28. Backing Up the Production Part of a Product

Packaging Samples

116 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Back up a Product or Feature for Selective Installation
// JOB BACKUP QMF
// PAUSE TAPE ON 570 MOUNTED? ---> PRESS ENTER, IF MOUNTED.
// ASSGN SYS021,DISK,VOL=QMF72A,SHR /* QMF/VSE HISTORY FILE */
// ASSGN SYS006,570,D0 /* SYS006 DISTRIBUTION TAPE */
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024K
 BACKUP PRODUCT=0612NR - /* QMF/VSE BASE / US ENGLISH */
 ID='QMF/VSE....7.2.0' -
 HEADER=HD0612NR -
 PRODUCTION
 BACKUP PRODUCT=0612NU - /* QMF/VSE FRENCH */
 ID='QMF/VSE.F..7.2.0' -
 HEADER=HD0612NU -
 PRODUCTION
 BACKUP PRODUCT=0612NV - /* QMF/VSE GERMAN */
 ID='QMF/VSE.G..7.2.0' -
 HEADER=HD0612NV -
 PRODUCTION
 BACKUP PRODUCT=0612NX - /* QMF/VSE JAPANESE */
 ID='QMF/VSE.K..7.2.0' -
 HEADER=HD0612NX -
 PRODUCTION
/*
// MTC RUN,SYS006
/*
/&

Figure 29. Backing Up a Product or Feature for Selective Installation

Installing a Product or Feature

Installing a Product with a Production Part
* $$ JOB JNM=INSNEW,CLASS=0,DISP=D
// JOB INSNEW INSTALL A NEW FORMATTED TAPE
// DLBL lib,'product.library.name',99/365
// EXTENT ,vvvvvv,1,0,sss,nnnn
// DLBL IJSYSHF,'history.file.name',99/365,SD
// EXTENT SYSxxx,vvvvvv,1,0,sss,nnnn
// ASSGN SYSxxx,DISK,VOL=vvvvvv,SHR
// ASSGN SYS006,cuu /* CUU OF TAPE UNIT */
// MTC REW,SYS006
// EXEC MSHP,SIZE=1024K
 INSTALL PRODUCT FROMTAPE -
ID='tapefile-id' PROD INTO=lib.sublib
/*
/&
* $$ EOJ

Figure 30. Installing a Product with a Production Part

Installing a Product with a Production and Generation Part
// JOB INSTALL PROGRAM PRODUCT /* INSTALL PROGRAM PRODUCT */
// ASSGN SYS006,280 /* ASSIGNMENT FOR TAPE UNIT */
// MTC REW,SYS006 /* POSITIONING OF THE TAPE */
// EXEC MSHP,SIZE=1024K
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID = 'prodname...V.R.M' - /* SPECIFY IDENTIFIER FOR MSHP */
 PRODUCTION INTO=prodlib - /* SPECIFY PRODUCTION LIBRARY */
 GENERATION INTO=genlib /* SPECIFY GENERATION LIBRARY */
/*
// MTC REW,SYS006 /* REWIND DISTRIBUTION TAPE */
/&

Figure 31. Installing a Product with a Production and Generation Part

Packaging Samples

Chapter 10. Packaging of Products 117

Installing a Product with Selected Parts
The first INSTALL statement installs the required base product; the later step(s) install the selected
part(s). Note that the base product is installed before the part requiring the base product. Also, the
sequence corresponds to the sequence as backed up to tape.

// JOB INSTALL QMF/VSE 7.2.0 /* INSTALL QMF/VSE BASE AND FRENCH */
// PAUSE TAPE ON 280 MOUNTED? ---> PRESS ENTER, IF MOUNTED.
// ASSGN SYS006,28 /* ASSIGNMENT FOR TAPE UNIT */
// MTC REW,SYS006 /* POSITIONING OF TAPE */
// EXEC MSHP,SIZE=1024K
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE....7.2.0' - /* TAPE FILE ID OF BASE PRODUCT */
 PRODUCTION INTO=PRD2.QMF720 /* SPECIFY PRODUCTION LIBRARY */
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE.F..7.2.0' - /* TAPE FILE ID OF SELECTED LANG. */
 PRODUCTION INTO=PRD2.QMF720 /* SPECIFY PRODUCTION LIBRARY */
COMPATIBLE WITH=(0612NR)
/*
// MTC REW,SYS006 /* REWIND DISTRIBUTION TAPE */
/*
/&

Figure 32. Installing a Product with Selected Parts

Installing a Product from a Stacked Tape
// JOB INSTALL FROM STACKED TAPE
* INSTALL QMF/VSE 7.2.0 BASE / US ENGLISH, INSTALL
* FRENCH, GERMAN AND JAPANESE LANGUAGE SUPPORT FROM A Z/VSE OPTIONAL
* PRODUCT TAPE INTO DIFFERENT LIBRARIES
// PAUSE STACKED TAPE 280 MOUNTED? --> PRESS ENTER, IF MOUNTED.
// ASSGN SYS006,280 /* ASSIGNMENT FOR TAPE UNIT */
// MTC REW,SYS006 /* POSITIONING OF TAPE */
// EXEC MSHP,SIZE=1024K,PARM='PIDSTACKED'
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE....7.2.0' - /* TAPE FILE ID OF BASE PRODUCT */
 PRODUCTION INTO=PRD2.QMF720 /* SPECIFY PRODUCTION LIBRARY */
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE.F..7.2.0' - /* TAPE FILE ID OF FRENCH LANGUAGE */
 PRODUCTION INTO=PRD2.QMF720F /* SPECIFY PRODUCTION LIBRARY */
COMPATIBLE WITH=(0662NR) /* BASE PRODUCT DEPENDENCY */
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE.G..7.2.0' - /* TAPE FILE ID OF GERMAN LANGUAGE */
 PRODUCTION INTO=PRD2.QMF720G /* SPECIFY PRODUCTION LIBRARY */
COMPATIBLE WITH=(0662NR) /* BASE PRODUCT DEPENDENCY */
INSTALL PRODUCT FROMTAPE - /* CONTROL STATEMENT FOR MSHP */
 ID='QMF/VSE.G..7.2.0' - /* TAPE FILE ID OF JAPANSE LANGUAGE*/
 PRODUCTION INTO=PRD2.QMF720K /* SPECIFY PRODUCTION LIBRARY */
COMPATIBLE WITH=(0662NR) /* BASE PRODUCT DEPENDENCY */
/*
// MTC RUN,SYS006 /* REWIND AND UNLOAD STACKED TAPE */
/*
/&

Figure 33. Installing from a Stacked Tape

Packaging Samples

118 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 11. Library Member Types

Library members with a type other than OBJ or PHASE are serviced by MSHP as macros only if a
one-character type or PROC or HTML is used. The following list shows the member types allocated for
specific use. If product-related data is to be shipped in the product's library, a member type must be
chosen that does not conflict with any listed here.

A -
Assembler copy books

B -
VTAM® source books

C -
COBOL copy books or C/370 source programs

D -
Document Composition Facility image libraries for DCF/DLF VSE NCP Assembler copy books

E -
Edited macros (This member type cannot be changed by an APAR fix if you use the new High Level
Assembler for VSE. It is recommended not to use this member type, use A-books instead.) Also refer
to step “3” on page 78.

F -
NCP assembler macros edited

G -
ATMS conversion macros for DCF/DLF VSE

H -
GML-tags for DCF/DLF VSE or C/370 standard header files

I -
ICCF library (DTSFILE) members 1

M -
SPF and other dialog message members

N -
SPF and other dialog panel members

P -
PL/1 copy books

R -
RPG copy books

S -
SPF and other dialog skeleton members

T -
SPF and other dialog table members

U -
Unattended node support members

V -
Text repository file (VSE/SP Unique Code only)

W -
PC-code for downloading

1 The product-related data must be shipped in the format required for the appropriate sublibrary, that is,
data shipped in the I-sublibrary must be of type ICCF DTSFILE member and contain the necessary DTSUTIL
control statements (ADD MEMBER, PURGE MEMBER, AND END OF MEMBER control statements).

Library Member Types

© Copyright IBM Corp. 1991, 2010 119

Y -
Information books

Z -
Sample programs, installation books

HTML -
Hyper Type Markup Language (Web)

PROC -
VSE Procedures

Library Member Types

120 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 12. APAR Fix (ZAP)

// JOB MSHPZAP
// EXEC MSHP,SIZE=1024K
 CORRECT 5686-010-01-A12:PL54321
 REQUIRES PRE=UD12345
 RESOLVES 'HARDWAIT AT INITIALIZE'
 AFFECTS PHASE=EGQMAIN
 ALTER 468 58E0E004 : 41E00FFF
/*
/&

Figure 34. APAR Fix (ZAP) for a Phase

In the following sample a module is corrected, then the linkage editor called to relink the module(s). This
results in a corrected phase. Please note that in addition to the JCL required for a ZAP for a phase, also a
work file must be assigned to SYS004.

// JOB MSHPZAP
// EXEC MSHP,SIZE=1024K
 CORRECT 5686-010-01-A12:PL54321
 RESOLVES 'HARDWAIT AT INITIALIZE'
 AFFECTS MODULE=EGQMAIN
 ALTER 468 58E0E004 : 41E00FFF
 INVOLVES LINK=EGQLNK
/*
/&

Figure 35. APAR Fix (ZAP) for a Module

For further examples, see z/VSE System Upgrade and Service.

The next sample ZAPs a macro. Please note that in addition to the JCL required for a simple ZAP for a
phase, work files must be assigned to SYS002, SYS003, SYS004.

// JOB MSHPZAP
// EXEC MSHP,SIZE=1024K
 CORRECT 5688-143-00-CD1:HB55555
 RESOLVES 'FIX TEXT'
 AFFECTS MACRO=FIJxxxx TYPE=C
 REPLACE : 041910
 A55555 MOVE WS-DOCNO TO NUMB-FIELD IN SIA2. 041910
/$
 REPLACE : 047010
 A55555 MOVE WS-DOCNO TO NUMB-FIELD IN SIA2. 047010
/$
/*
/&

Figure 36. APAR Fix (ZAP) for a Macro

All samples are REVOKABLE ZAPs, the default parameter on the CORRECT statement. This means the
ZAP can be removed using the UNDO statement of MSHP. For more information refer to “Revoking PTFs
and APARs” on page 102.

If a ZAP requires additional space, phases and modules can be expanded. However, this expansion
remains even if the ZAP is revoked later.

Service Samples

© Copyright IBM Corp. 1991, 2010 121

http://publibfp.dhe.ibm.com/epubs/pdf/iessus91.pdf

// JOB ZAPPUB2
// EXEC MSHP
 CORRECT 1234-098-01-VB1 : BI12345 REVOKABLE
 RESOLVES 'MORE THAN 254 I/O DEVICES'
 AFFECTS PHASE=BMM1 EXPAND=100
* the EXPAND value is decimal
 ALTER 004080 00000000 : 41E00FFF
 ALTER 004084 . . . : . . .
* assuming 004080 is right at the end of old module or phase
/*
/&

Figure 37. APAR Fix (ZAP) Expanding a Phase

Service Samples

122 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 13. Programming Temporary Fix (PTF)

PTF for Phases
// JOB UG00207
* PROBLEM DESCRIPTIONS:
* GB00163 - INCORRECT DATA WHEN RUNNING ON
* SYSTEM EQUIPPED WITH PR/SM FEATURE
* GB00166 - 3380-K HANDLED AS IBM 3380-E
* GB00167 - SUPPORT FOR IBM 0671 DASD
*
* COMPONENT: 5796-PLQ-00-230
*
* APARS FIXED: GB00163, GB00166, GB00167
*
* SPECIAL CONDITIONS:
* COPYRIGHT; (C) COPYRIGHT IBM CORP. 1990
* LICENSED MATERIAL - PROPERTY OF IBM
* ENHANCEMENT; VSE/PT SUPPORTS NOW VSE SYSTEMS RUNNING IN AN LPAR
* ON A MACHINE EQUIPPED WITH THE PR/SM FEATURE
* ENHANCEMENT; VSE/PT SUPPORTS DASD 0671-MOD4,0671-MOD8
*
* COMMENTS:
* NONE;
*
*
// PAUSE EOB OR CANCEL
// EXEC MSHP,SIZE=1024K
 APPLY 5796-PLQ-00-230:UG00207;
 REQUIRES PRE=PLQ230;
 RESOLVES 'PR/SM,3380-K,0671' APARS=(GB00163,GB00166,GB00167);
 AFFECTS -
 PHASES = (VSEPTSP -
 VSEPTDA) -
 VSEPTSA);
 DATA;
 PHASE VSEPTSP,S+X'.......'
PHASE VSEPTSP
 PHASE VSEPTDA,S+X'.......'
PHASE VSEPTDA
 PHASE VSEPTSA,S+X'.......'
PHASE VSEPTSA
/$
/*
/&

Figure 38. PTF for Phases

Service Samples

© Copyright IBM Corp. 1991, 2010 123

PTF for Modules
// JOB UL52789
// OPTION CATAL
* COMPONENT: 5666-338-01-D75
* APARS FIXED: PL43691
* SPECIAL CONDITIONS:
* COPYRIGHT: (C) COPYRIGHT IBM CORP.1988
* LICENSED MATERIAL - PROPERTY OF IBM
* COMMENTS:
* CROSS REFERENCE-MODULE/MACRO NAMES TO APARS
* DDDFO194 PL43691
*
* CROSS REFERENCE-APARS TO MODULE/MACRO NAMES
* PL43691 DDDFO194
*
* THE FOLLOWING MODULES AND/OR MACROS ARE AFFECTED BY THIS PTF:
*
* MODULES
* DDDFO194
*
* LISTEND
// PAUSE EOB OR CANCEL
// EXEC MSHP,SIZE=1024K
APPLY 5666-338-01-D75:UL52789;
REQUIRES PRE=338D75;
REQUIRES PRE=UL47064;
RESOLVES APARS=PL43691;
AFFECTS MODULES=DDDFO194;
INVOLVES LINK=(DDDLEDIT,DDDLSTOR);
DATA;
DDDFO194.OBJ
/$
/*
/&

Figure 39. PTF for Modules

PTF for Macros
MSHP recognizes only three types of library members: modules (OBJ), phases (PHASE), and macros (one
character extension or PROC or HTML, refer to Chapter 11, “Library Member Types,” on page 119). The
following example shows how DisplayWrite/370 CLISTs are serviced as macros. It also shows that the
cover letter or comment cards in the PTF may contain instructions that must be read and followed before
the fix can be active.

CLISTs of DisplayWrite/370 are shipped as members of a VSE library. When customizing the product, a
VSAM file is defined and loaded with the CLISTs from where they are used by DisplayWrite/370. CLISTs
can also be updated by a PTF, but this requires a special job to be run after PTF application for updating
the VSAM file for the fix to be effective.

Service Samples

124 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

// JOB UL93576
// OPTION CATAL
* COMPONENT: 5686-022-34-A43
* APARS FIXED: PL78703
* SPECIAL CONDITIONS:
* COPYRIGHT: (C) COPYRIGHT IBM CORP.1990
* LICENSED MATERIAL - PROPERTY OF IBM
* ACTION:
* AFTER APPLYING THIS PTF THE FOLLOWING ACTIONS MUST BE TAKEN:
* 1. TRANSFER CLIST DOCUMENT 'DKLARAB' INTO THE DISPLAYWRITE/370
* VSAM CLUSTER 'DDD210.DDDMAST'.
* FOR THIS PURPOSE USE THE MODIFIED JOB 'DDDJGLUE.Z' SUPPLIED
* WITH DW/370 V2.1.0 AND SPECIFY THE CLIST DOCUMENT NAME IN
* THE PARAMETER FIELD OF THE EXEC STATEMENT.
* // EXEC PGM=DDDDGLUE,SIZE=512K,PARM='DKLARAB'
* 2. IF YOU WORK WITH COMPILED VERSIONS OF THE CLIST DOCUMENTS,
* REFER TO CHAPTER 5, 'ACTIVATING A COMPILED CLIST DOCUMENT'
* IN THE DISPLAYWRITE/370 INSTALLATION AND ADMINISTRATION
* GUIDE, PERFORM STEP 3, 4 AND 5 TO COMPILE AND LOAD THE
* NEW COPY OF DKLARAB INTO THE DDDCLIX MODULE.
* COMMENTS:
* CROSS REFERENCE-MODULE/MACRO NAMES TO APARS
* DKLARAB PL78703
* CROSS REFERENCE-APARS TO MODULE/MACRO NAMES
* PL78703 DKLARAB
* THE FOLLOWING MODULES AND/OR MACROS ARE AFFECTED BY THIS PTF:
* MACROS
* DKLARAB
* LISTEND
// PAUSE EOB OR CANCEL
// EXEC MSHP,SIZE=1024K
APPLY 5686-022-34-A43:UL93576 ;
REQUIRES PRE=(022A10,022A43);
SUPERSEDES (UL87283);
RESOLVES APARS=(PL75044,PL78703);
AFFECTS MACROS=(DKLARAB) TYPE=X;
AFFECTS MACROS=(IESVTABC) TYPE=PROC;
AFFECTS MACROS=(IESxxxxx) TYPE=HTML;
DATA;
DKLARAB.X
IESVTABC.PROC
IESxxxxx.HTML
/$
/*
/&

Figure 40. PTF for Macros

PTF for Synchronizing Service
A PTF for a base product may require a fix in one or more of its features at the same time, so that all
products are at the same level. This is achieved by corequisite PTFs.

General description
A PTF for the supervisor of VSE Central Functions requires synchronization. While the compiled
supervisors are contained in the VSE Central Functions production system, the supervisor macros (used
for compilation) are kept in the VSE Central Functions generation feature, which is a separate product. A
PTF replacing a supervisor in the VSE Central Functions production part must, therefore, make sure that
the appropriate macros in the generation part are also replaced. The generation feature need, however,
not be installed since it is a separate, optional product.

Solution
Using VSE Central Functions 7.1, 5686-CF7, as an example, this is how PTFs are synchronized:

The supervisor part is component 6 of VSE Central Functions. Thus, the applicable component identifier
is 5686-CF7-06. The CLC for the production system is 81C; the CLC for the generation feature is 15J.
The product ID for the production system is CF781C, and for the generation feature CF781J. The fully-
qualified component ID for the defective component is 5686-CF7-06-81C in the production system and
5686-CF7-06-81J in the generation feature.

Service Samples

Chapter 13. Programming Temporary Fix (PTF) 125

Two PTFs are needed: one called UD12345 for component 5686-CF7-06-81C of the base product; the
other PTF UD54321 for the component 5686-CF7-06-81J of the feature.

The PTF for the feature applies to one environment only and is described by the REQUIRES group with
these conditions:

 PRE= CF781J the product it fixes must be present
 PRE= CF781C the feature's base product must be present
 CO = UD12345 the corresponding PTF for the base must be applied
 together with it.

The REQUIRES groups of the PTF for the base product must describe two different environments, one
with, one without the feature.

 PRE= CF781C the product it fixes must be present
 PRE= CF/81J the feature must be present
 CO = UD54321 the corresponding PTF for the feature must be
 applied together with it, it is a corequisite PTF.

or

 PRE= CF781C the product it fixes must be present
 NOT= CF781J the feature must not be present, so no corequisite
 PTF is required.

The complete REQUIRES groups for both PTFs:

in PTF UD12345 in PTF UD54321

APPLY 5686-CF7-06-81C : UD12345 APPLY 5686-CF7-06-81J : UD54321
REQUIRES PRE = CF781C REQUIRES PRE = CF781J
REQUIRES PRE = CF781J REQUIRES PRE = CF781C
REQUIRES CO = UD54321 REQUIRES CO = UD12345
OR
REQUIRES PRE = 81C
REQUIRES NOT = 81J
RESOLVES APAR = XX11111 RESOLVES APAR = XX11111

Superseding PTF and Associated Requires-Groups
This example shows how the REQUIRES groups for a PTF have to be built if a PTF supersedes another PTF.

This scenario deals with a product 5660-012, on release level G40. Its product ID is 012G40. It consists
of one component only; the fully qualified component ID is 5660-012-01-G40. It contains the macro
BTMOD and several modules M1 to M9.

Now, macro BTMOD needs a fix, to be delivered by PTF numbered UD44444. It is not the first PTF built for
the product.

PTF UD11111 replaced modules M1, M7, and M9.
PTF UD22222 replaced modules M6 and M9, and macro BTMOD.
PTF UD33333 replaced macro BTMOD only.
PTF UD44444 replaces again BTMOD only.

Clearly, PTF UD44444 makes PTF UD33333 superfluous, in MSHP terms, it supersedes PTF UD33333. But
how are the preceding PTFs influencing the last PTF, UD44444?

When PTF UD33333, the superseded one, was shipped it had integrated in BTMOD a fix delivered by its
predecessor PTF UD22222. This PTF, in its turn, had not only fixed BTMOD, but also the modules M6 and
M9. Module M9 was fixed before by PTF UD11111, together with module M1 and M7. This means, all
the fixed modules must be available together with BTMOD, because the code in the new macro BTMOD
requires it. This is again ensured by constructing the correct REQUIRES group for UD44444. To do this we
look at the REQUIRES groups of its predecessors.
UD11111

REQUIRES PRE=012G40

Service Samples

126 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

UD22222
REQUIRES PRE=012G40 REQUIRES PRE=UD11111

UD33333
REQUIRES PRE=012G40 REQUIRES PRE=UD22222

UD44444
REQUIRES PRE=012G40 REQUIRES PRE=UD22222 SUPERSEDES (UD33333)

Of course, it is easy to construct much more complicated REQUIRES groups if more than one component
and/or product have to be synchronized, because of a more complex component structure with features
on top of the product. This easier example is sufficient to show the rule:

The superseding PTF picks up the REQUIRES group(s) of its predecessor in addition to its own - except for
pre-reqs already covered. Here: UD11111 is not repeated since it is REQUIREd by UD22222.

REQUIRES-Groups if Several Products Affected
This example shows how the REQUIRES groups for PTFs have to be built if one module is contained in
different products. This will keep you from ever implementing such a construction.

The scenario deals with four products, one of them a base product, the other three features on top of this
base product. Each of the products contain among other modules MODA, the base product contains in
addition also a module called MODB.

An explanation of such a construction could be that module MODA includes more or different functions
if included in one of the features, whereas the module with the same name in the base is a stub only. A
description of the four products and their relation in MSHP terms is given below.
Base product

is identified by the fully qualified component ID=5660-012-01-G40 and product ID=012G40. It
contains among others the modules MODA and MODB. Its installation does not require anything
special.

Feature 1
is identified by the fully qualified component ID=5660-012-02-G50 and product ID=012G50. It
contains among others the module MODA also contained in the base product. The feature requires
the base product, but is mutually exclusive with the second feature (012G60). Coded in its history
information is REQUIRES PRE=012G40 REQUIRES NOT=012G60

Feature 2
is identified by the fully qualified component ID=5660-012-03-G60 and product ID=012G60. It
contains among others the module MODA. The feature requires the base product, but is mutually
exclusive with the first feature (012G50). Coded in its history information is REQUIRES PRE=012G40
REQUIRES NOT=012G50

Feature 3
is identified by the fully qualified component ID=5660-012-03-G70 and product ID=012G70. It
contains among others the module MODA. The feature requires the base product, is mutually
exclusive with the first feature (012G50), and replaces feature 2 (012G60). Coded in its history
information is REQUIRES PRE=012G40 REQUIRES NOT=012G50

The replacement of feature 2 is achieved by having the same component ID with different CLC. When
installing this feature 3 on top of feature 2, MSHP recognizes this, and issues the message:

G70 supersedes G60. Enter KEEP or DELETE.

If the answer is DELETE, the information for feature 2 is overwritten with the information for feature 3.

Now, this ubiquitous module MODA needs a fix, to be delivered by PTF. In addition, module MODB,
contained in the base product only, also needs a PTF.

Since PTFs are built per component, one must check how the four different products can be serviced
without applying a PTF to an environment it does not belong to. Below is shown, by help of a truth table,
how the PTFs' REQUIRE statements must be coded in order to prevent such a disaster.

Service Samples

Chapter 13. Programming Temporary Fix (PTF) 127

The truth table below shows the four products per column and a 1 indicates its presence. Each row shows
one environment. Some of these combinations cannot occur because of the different PRE-requisites
explained above. This is called an "invalid environment".

Table 14. Truth Table for Finding the Correct REQUIRES Group

012G40 012G50 012G60 012G70 Required PTF

1 0 0 0 PTF1 REQUIRES PRE=(012G40) REQUIRES
NOT=(012G50,012G60,012G70) REQUIRES CO=(PTF5)
AFFECTS MODULES=(MODA)

1 0 0 1 PTF2 REQUIRES PRE=(012G70) REQUIRES
NOT=(012G50,012G60) REQUIRES CO=(PTF5) AFFECTS
MODULES=(MODA)

1 0 1 0 PTF3 REQUIRES PRE=(012G60) REQUIRES
NOT=(012G50,012G70) REQUIRES CO=(PTF5) AFFECTS
MODULES=(MODA)

1 0 1 1 invalid environment (no PTF)

1 1 0 0 PTF4 REQUIRES PRE=(012G50) REQUIRES
NOT=(012G60,012G70) REQUIRES CO=(PTF5) AFFECTS
MODULES=(MODA)

1 1 0 1 invalid environment (no PTF)

1 1 1 0 invalid environment (no PTF)

1 1 1 1 invalid environment (no PTF)

Four PTFs are needed to fix MODA, one for each product. The REQUIRES groups are shown in the truth
table. A fifth PTF is required to supply the corrected MODB for the base product. Its REQUIRE groups
describe the four different environments explained in the truth table:

 PTF5
 REQUIRES PRE=(012G40)
 REQUIRES NOT=(012G50,012G60,012G70)
 REQUIRES CO=(PTF1)
 OR
 REQUIRES PRE=(012G40,012G70)
 REQUIRES NOT=(012G50,012G60)
 REQUIRES CO=(PTF2)
 OR
 REQUIRES PRE=(012G40,012G60)
 REQUIRES NOT=(012G50,012G70)
 REQUIRES CO=(PTF3)
 OR
 REQUIRES PRE=(012G40,012G50)
 REQUIRES NOT=(012G60,012G70)
 REQUIRES CO=(PTF4)
 AFFECTS MODULES=(MODB)

Of course, MODB could have been included in PTF1, which fixes the base component. Nevertheless, a
separate PTF5 would be required for the remaining three environments, since the other PTFs are not
applied to the base component.

Sample for a Complex PTF Structure
The following samples show two PTFs that have a corequisite relationship. Also shown is the use of the
SUPERSEDES statement and the use of REQUIRES groups for two products.

Service Samples

128 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

// JOB UD90367
// OPTION CATAL
* COMPONENT: 5686-03-206(032DB6)
* APARS FIXED: DY43306
* SPECIAL CONDITIONS:
* COPYRIGHT: (C) COPYRIGHT IBM CORP.1993
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* PLEASE NOTE THAT THIS PTF HAS COREQUISITES.
* COMMENTS:
* CROSS REFERENCE-MODULE/MACRO NAMES TO APARS
*
* CROSS REFERENCE-APARS TO MODULE/MACRO NAMES
*
*
// PAUSE EOB OR CANCEL
// EXEC MSHP
APPLY 5686-032-06-DB6:UD90367 INDIRECT;
REQUIRES PRE=(032DB6);
REQUIRES NOT=(032DB7);
REQUIRES PRE=(UD49152,UD49206,UD48839);
OR
REQUIRES PRE=(032DB6,032DB7);
REQUIRES PRE=(UD49152,UD49206,UD48839);
REQUIRES CO=(UD90368);
SUPERSEDES (UD48894,UD49112,UD49163,UD49221);
RESOLVES APARS=(DY43103,DY43207,DY43275,DY43295,DY43306);
AFFECTS PHASES=($$A$SUPM,$$A$SUPV,$$A$SUPX,$$A$SUP3,$IJBAR, -
 $IJBDCMD,$IJBHDUP,......), -
 MACROS=(EXTRACT,GETFLD,IJJLBSER,LBSERV,MAPEXTR, -
 MODCTB,......) TYPE=E;
DATA;
 CATALOG EXTRACT.E EOD=YY REPLACE=YES
...macro EXTRACT
 CATALOG GETFLD.E EOD=YY REPLACE=YES
...macro GETFLD
 CATALOG IJJLBSER.E EOD=YY REPLACE=YES
...macro IJJLBSER
 CATALOG LBSERV.E EOD=YY REPLACE=YES
...macro LBSERV
 CATALOG MAPEXTR.E EOD=YY REPLACE=YES
...macro MAPEXTR
 CATALOG MODCTB.E EOD=YY REPLACE=YES
...macro MODCTB
 CATALOG
...macro
/$
DATA;
 PHASE $$A$SUPM,+X'000000'
...phase $$A$SUPM
 PHASE $$A$SUPV,+X'000000'
...phase $$A$SUPV
 PHASE $$A$SUPX,+X'000000'
...phase $$A$SUPX
 PHASE $$A$SUP3,+X'000000'
...phase $$A$SUP3
 PHASE $IJBAR,S+X'000000',SVAPFIX
...phase $IJBAR
 PHASE $IJBDCMD,S+X'000000',SVA
...phase $IJBDCMD
 PHASE $IJBHDUP,S+X'000000',SVA
...phase $IJBHDUP
 PHASE
...phase
/$
/*
/&

Figure 41. PTF for a Base Part of a Component

Service Samples

Chapter 13. Programming Temporary Fix (PTF) 129

// JOB UD90368
// OPTION CATAL
* COMPONENT: 5686-03-206(032DB7)
* APARS FIXED: DY43306
* SPECIAL CONDITIONS:
* COPYRIGHT: (C) COPYRIGHT IBM CORP.1993
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* PLEASE NOTE THAT THIS PTF HAS COREQUISITES.
* ACTION:
* IN CASE YOU DRIVE YOUR OWN SUPERVISOR YOU HAVE TO RE-ASSEMBLE IT
* AFTER APPLYING THIS SERVICE.
* TO GET THE FIXES ACTIVE YOU HAVE TO IPL AFTER SUCCESSFUL
* ASSEMBLY.
* COMMENTS:
* CROSS REFERENCE-MODULE/MACRO NAMES TO APARS
*
*
* CROSS REFERENCE APARS TO MODULE/MACRO NAMES
*
*
* THE FOLLOWING MODULES AND/OR MACROS ARE AFFECTED BY THIS PTF:
*
* MACROS
*
*
* LISTEND
// PAUSE EOB OR CANCEL
// EXEC MSHP
APPLY 5686-032-06-DB7:UD90368;
REQUIRES PRE=(032DB6,032DB7);
REQUIRES PRE=(UD49222);
REQUIRES CO=(UD90367);
RESOLVES APARS=(DY43306);
AFFECTS MACROS=(DISP,MAPPCE,MAPPUBX,MAPSAACM,MAPTIB, -
 ) TYPE=E;
DATA;
 CATALOG DISP.E EOD=YY REPLACE=YES
...macro DISP
 CATALOG MAPPCE.E EOD=YY REPLACE=YES
...macro MAPPCE
 CATALOG MAPPUBX.E EOD=YY REPLACE=YES
...macro MAPPUBX
 CATALOG MAPSAACM.E EOD=YY REPLACE=YES
...macro MAPSAACM
 CATALOG MAPTIB.E EOD=YY REPLACE=YES
...macro MAPTIB
 CATALOG
...macro
/$
/*
/&

Figure 42. PTF for a Generation Part of a Component

Service Samples

130 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 14. Shipping PC Code with VSE

Shipping Workstation Code with z/VSE
The workstation file transfer to/from the VSE libraries in VSE significantly simplifies the procedure to
distribute workstation products with the z/VSE system. Theoretically, the product owner could simply
send the files from the workstation to a z/VSE library as a binary string of data, and the user would
download the files from the VSE library to his workstation; this could be done with SEND or RECEIVE as
shown in the following example, or with the equivalent function of the emulator that is used.

 SEND c\product.EXE c: product EXEBIN (FILE=LIB BINARY L=lib S=sublib
 RECEIVE c\product.EXE c: product EXEBIN (FILE=LIB BINARY L=lib S=sublib

If the workstation product is to be serviced on z/VSE using MSHP PTFs, then the following restrictions
apply:

• The workstation files must be stored in the VSE library in fixed-80 logical record format.
• The members in the VSE library can only have a one-character member type.

Fixed-80 record format can easily be achieved with the LRECL option of the SEND command.

The one-character member type is an MSHP restriction. (Chapter 11, “Library Member Types,” on page
119 lists the member types allocated for specific use.) Unfortunately it forbids a one-to-one mapping of
the member names unless the workstation files have unique file names independent of the file extension.
It is the product owner's responsibility to devise a suitable naming scheme for the workstation and VSE
library members.

Packaging Workstation Code into a Product Library
The following sample procedure assumes that:

• The workstation product is to be serviced with MSHP and fixed-80 record format is required.
• The product code exists on a workstation attached to a z/VSE.
• The product is installed in sublibrary PWS.PROD.
• Product members are stored with member type X (refer to Chapter 11, “Library Member Types,” on

page 119 for reserved member types).

Proceed as follows:

1. Switch to the host session and sign on to the z/VSE system.
2. Prepare the host session for file transfer (PF6 or fast path 386 from Main Selection Panel).
3. Send product members to the VSE library, for example:

SEND file1.CMD c: file1 X (FILE=LIB L=PWS S=PROD BINARY LRECL=80
SEND file2.EXE c: file2 X (FILE=LIB L=PWS S=PROD BINARY LRECL=80
SEND file3.ZIP c: file3 X (FILE=LIB L=PWS S=PROD BINARY LRECL=80

The result of the these commands is three files FILE1.X, FILE2.X, and FILE3.X in VSE library
PWS.PROD.

Note that this format of the SEND commands applies to all kinds of workstation files, that is, ASCII text
files, binary files, compressed files, etc.

Also note that, if the size of the PWS file is not a multiple of 80, the last record is padded with ASCII
blanks X'20'. When such a file is received back to the workstation, it will contain these extra blanks.
These blanks can be removed by a separate program if they cause problems. Please let us know if you
find any problems with these extra blank characters at the end of a file.

Downloading PC Code

© Copyright IBM Corp. 1991, 2010 131

4. Prepare the product tape as described in Chapter 7, “Creating Installation Tapes,” on page 77.

Note: It is recommended to send ASCII text in binary form to avoid code page conversion problems.

The Download Procedure
1. Switch to the host session and sign on to the z/VSE system.
2. Prepare the host session for file transfer (PF6 or fast path 386 from Main Selection Panel).
3. Download the product members with the corresponding RECEIVE commands, for example:

RECEIVE file1.CMD c: file1 X (FILE=LIB L=PWS S=PROD BINARY
RECEIVE file2.EXE c: file2 X (FILE=LIB L=PWS S=PROD BINARY
RECEIVE file3.ZIP c: file3 X (FILE=LIB L=PWS S=PROD BINARY

The RECEIVE commands are identical with the SEND commands except for the LRECL option that does
not apply.

This facility is part of the VSE Workstation File Transfer Support --formerly called Intelligent Workstation
Support (IWS)-- which is a CICS application and is included in z/VSE.

Automatic Download
The steps described previously can easily be put into a procedure and automated:

1. Load download procedure (which loads the other files).
2. Run download procedure.

Downloading PC Code

132 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Chapter 15. Job for Customizing

For a discussion of this sample, please refer to “Writing Customizing Jobs” on page 92.

..* $$ JOB JNM=IPZINST,DISP=D,CLASS=0

..* $$ PRT DISP=D,CLASS=A

..* $$ PUN DISP=I,CLASS=A
// JOB IPZINST
* **
* ** THE JOB IPZINST **
* ** o INSTALLS THE VSAM CLUSTERS OF DM/VSE **
* ** **
* ** o SUBMITS THE FOLLOWING JOBS: **
* ** IPZCAFCT - CATALOGS FCT ENTRIES FOR **
* ** SELECTED DICTIONARIES **
* ** IPZCMFCT - CATALOGS FCT ENTRIES FOR MIGRATION **
* ** **
* ** o ASSEMBLES AND LINKS CICS BMS MAPS AND **
* ** THE DM/VSE DISOSS MIGRATION PROGRAM AND **
* ** LOADS DM/VSE SAMPLE PANELS. **
* **
* ** IF YOU DON'T INSTALL DM/VSE THE FIRST TIME **
* ** MAKE SURE THAT THE FOLLOWING FILES ARE CLOSED: **
* ** DDD* **
/. C DDDMAST DDDPDOC DDDWDOC DDDRCO DDDSLG **
/. C DDDTRA DDD2DOC DDDL3GX **
* ** EKL* **
/. C EKLAFRI EKLBPOR EKLDANS EKLDEUT EKLDSCH **
* ** DKL* **
/. C DKLFONT **
* ** IPZ* **
/. C IPZDFLT IPZREST **
* **
// PAUSE PRESS ENTER TO CONTINUE

Figure 43. Job for Customizing (Part 1 of 5)

Customizing Sample

© Copyright IBM Corp. 1991, 2010 133

/. C ***
/. C * THE FOLLOWING MODIFICATIONS M U S T BE DONE BEFORE RUNNING *
/. C * THE JOB IPZINST: *
/. C * -- IN EACH LINE DELETE THE STRING '..' WHEN IT APPEARS IN *
/. C * THE FIRST TWO COLUMNS. *
/. C * (SEARCH FOR ..* AND ../) *
/. C * -- REPLACE THE STRING '-V001-' BY ONE OR MORE VSAM VOLUME *
/. C * IDS OWNED BY THE VSAM CATALOG THAT CONTAINS THE *
/. C * VSAM FILES OF DM/VSE. *
/. C * -- MODIFY THE FOLLOWING PARAMETERS IF NECESSARY: *
/. C * *
/. C * --- *
/. C * |PARAMETER | PARAMETER| DEFAULT | DESCRIPTION | *
/. C * |NAME | TYPE | VALUE | | *
/. C * |----------|----------|----------|------------------| *
/. C * |LIB | SETPARM | PRD2 | LIBRARY NAME | *
/. C * |----------|----------|----------|------------------| *
/. C * |SUBLIB | SETPARM | PROD | SUBLIBRARY NAME | *
/. C * |----------|----------|----------|------------------| *
/. C * |TAPE | SETPARM | 180 | TAPE UNIT ADDRESS| *
/. C * |----------|----------|----------|------------------| *
/. C * |CATNAME | SETPARM | VSESPUC | CATALOG NAME | *
/. C * --- *
/. C * *
/. C * -- MODIFY THE FOLLOWING VALUES IF NECESSARY: *
/. C * *
/. C * --- *
/. C * |USED VALUE |WHERE VALUE IS USED | *
/. C * |---------------------|-----------------------------| *
/. C * |PRD2.PROD | LIBR COMMANDS, | *
/. C * | | LIBDEF STATEMENTS | *
/. C * |---------------------|-----------------------------| *
/. C * |VSESP.USER.CATALOG | VSAM CATALOG ID | *
/. C * --- *
/. C * *
/. C * -- MODIFY THE SETPARM PARAMETERS LISTED IN THE PARAMETER *
/. C * LIST (USER SELECTION) TO YOUR NEEDS. *
/. C ***
/. C * NOTE: *
/. C * --> "PRD2.PROD" IS ASSUMED TO BE THE LIBRARY WHERE YOU *
/. C * RESTORE THE CONTENTS OF THE TAPE DM/VSE120 BASE1OF3 *
/. C * AND DM/VSE120 BASE3OF3. *
/. C * IF YOU USE A DIFFERENT SUBLIBRARY MODIFY *
/. C * o THE LIB AND SUBLIB PARAMETER (USER SELECTION) *
/. C * LOCATE "PRD2.PROD" AND MODIFY *
/. C * o ONE LIBR STATEMENT TO CATALOG IPZFCTM6/7 (PART1.6)*
/. C * o ONE LIBR STATEMENT TO CATALOG DDDLEX16/17 (PART 6)*
/. C * --> ALL DM/VSE FILES WILL BE CREATED IN VSAM MANAGED SPACE.*
/. C * IF YOU USE DIFFERENT VSAM CATALOGS MODIFY THE JOB *
/. C * IPZINST TO YOUR NEEDS. (FOR EXAMPLE, DLBL, SETPARM *
/. C * (STATEMENTS AND THE VSAM CATALOG ID *
/. C * IN VSAM STATEMENTS). *
/. C ***

Figure 43. Job for Customizing (Part 2 of 5)

Customizing Sample

134 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

/. C
/. C ***
/. C ***
/. C * *
/. C * START OF PARAMETER LIST (USER SELECTION) *
/. C * *
/. C ***
/. C ***
/. C
/. C * --*
/. C * CHANGE THE PARAMETERS TO YOUR NEEDS. *
/. C * --*
/. C LIB.SUBLIB CONTAINS DM/VSE (DM/VSE120 BASE1OF3 AND BASE3OF3)
/. C THE LIB AND SUBLIB PARAMETER ARE ALSO USED FOR THE
/. C LIBR COMMANDS IN PART3 (LANGUAGE SELECTION).
// SETPARM LIB=PRD2 LIBRARY
// SETPARM SUBLIB=PROD SUBLIBRARY
/. C
/. C FOLLOWING LIBDEF STATEMENTS ARE ACTIVE FOR THE ENTIRE JOB
// LIBDEF *,SEARCH=&LIB..&SUBLIB
// LIBDEF PHASE,CATALOG=&LIB..&SUBLIB
/. C
// SETPARM TAPE=180 TAPE UNIT ADDRESS (USED FOR THE TAPE
/. C DM/VSE120 BASE2OF3)
// SETPARM CATNAME=VSESPUC CATALOG NAME FOR VSAM CLUSTER
/. C
/. C * --*
/. C * SELECT THE DM/VSE INSTALLATION LEVEL: *
/. C * TYPE 0 IF THIS IS THE FIRST INSTALLATION OF DM/VSE *
/. C * TYPE 110 IF YOU HAVE ALREADY INSTALLED DM/VSE 1.1.0 *
/. C * TYPE 111 IF YOU HAVE ALREADY INSTALLED DM/VSE 1.1.1 *
/. C * TYPE 112 IF YOU HAVE ALREADY INSTALLED DM/VSE 1.1.2 *
/. C * TYPE 120 IF YOU HAVE ALREADY INSTALLED DM/VSE 1.2.0 *
/. C * --*
/. C
// SETPARM ILEVEL=0 DM/VSE INSTALLATION LEVEL
/. C
/. C * --*
/. C * SELECT THE CICS/DOS/VS INSTALLATION LEVEL: *
/. C * TYPE 6 IF YOU INSTALL DM/VSE ON A VSE/SP WITH CICS 1.6 *
/. C * TYPE 7 IF YOU INSTALL DM/VSE ON A VSE/SP WITH CICS 1.7 *
/. C * --*
/. C
// SETPARM JLEVEL=7 CICS/DOS/VS INSTALLATION LEVEL
/. C
/. C * --*

Figure 43. Job for Customizing (Part 3 of 5)

Customizing Sample

Chapter 15. Job for Customizing 135

/. C * SELECT THE LANGUAGE BY TYPING YES/NO. *
/. C * US ENGLISH IS REQUIRED AND ALWAYS INSTALLED. *
/. C * EACH LANGUAGE SELECTION CAUSES AUTOMATICALLY A DICTIONARY *
/. C * SELECTION. *
/. C * NOTE: YOU CAN LOAD A LANGUAGE ONLY IF THE SETPARM PARAMETER *
/. C * "PART3" IS SET TO YES. *
/. C * TAKE CARE WHEN RELOADING A LANGUAGE, *
/. C * FOR EXAMPLE, MODIFICATIONS OF CLISTS AREL LOST. *
/. C * --*
/. C
// SETPARM BPORT=NO BRAZIL LANGUAGE SELECTION
// SETPARM DANSK=NO DANISH LANGUAGE SELECTION
// SETPARM DEUTS=NO GERMAN LANGUAGE SELECTION
/. C * --*
/. C * SELECT DICTIONARIES BY TYPING YES/NO *
/. C * (US ENGLISH IS ALWAYS INSTALLED) *
/. C * NOTE: YOU CAN LOAD A DICTIONARY ONLY IF SETPARM PARAMETER *
/. C * "PART4" IS SET TO YES. *
/. C * A SELECTION OF DICTIONARIES CAUSES THE JOB IPZCAFCT *
/. C * TO CATALOG IPZFCT2.A OR IPZFCT3.A (FCT ENTRIES). *
/. C * IF A DICTIONARY IS SELECTED THE CORRESPONDING *
/. C * FCT ENTRY IS ADDED ELSE DROPPED. *
/. C * --*
// SETPARM BPOR=NO BRAZIL DICTIONARY
// SETPARM DANS=NO DANISH DICTIONARY
// SETPARM DEUT=NO GERMAN DICTIONARY
/. C
/. C * --*
/. C * *
/. C * SELECT THE PART(S) YOU WANT TO PROCESS BY TYPING YES/NO *
/. C * --*
/. C * SETPARM | DESCRIPTION OF THE SETPARM PARAMETER *
/. C * PARAMETER| *
/. C * --*
/. C * PART1 | BASIC INSTALLATION OF DM/VSE *
/. C * | 1.1 DELETES AND ADDS STANDARD LABELS FOR *
/. C * | THE VSAM FILES OF DM/VSE *
/. C * | 1.2 DELETES VSAM CLUSTERS OF DM/VSE AND *
/. C * | PREPARES MIGRATION *
/. C * | 1.3 DEFINES VSAM CLUSTERS FOR MASTER FILE AND *
/. C * | LOADS BASIC LANGUAGE CLIST DOCUMENTS *
/. C * | 1.4 DEFINES AND LOADS THE RESTORE FILE *
/. C * | 1.5 DEFINES AND INITIALIZES THE SAMPLE DATA SET *
/. C * | 1.6 CREATES JOB TO CATALOG FCT MIGRATION ENTRIES *
/. C * --*
/. C * PART2 | DELETES, DEFINES, AND INITIALIZES *
/. C * | DW/370 WORKING CLUSTERS *
/. C * --*
/. C * PART3 | LOADS LANGUAGE DOCUMENTS *
/. C * --*
/. C * PART4 | PREPARES AND LOADS LANGUAGE DICTIONARIES *
/. C * | FROM TAPE DM/VSE120 BASE2OF3 *
/. C * --*

Figure 43. Job for Customizing (Part 4 of 5)

Customizing Sample

136 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

/. C * PART5 | DEFINES AND LOADS FONT TABLES *
/. C * --*
/. C * PART6 | CREATES A JOB STREAM TO CATALOG THE FCT ENTRIES *
/. C * | FOR SELECTED DICTIONARIES AND MIGRATION *
/. C * --*
/. C * PART7 | ASSEMBLES AND LINKS DW/370 PROVIDED CICS BMS MAPS*
/. C * --*
/. C * PART8 | LINKS DM/VSE DISOSS MIGRATION PROGRAM IPZDISSV *
/. C * | AND LOADS THE SAMPLE PANELS OF DM/VSE *
/. C * --*
/. C
// SETPARM PART1=YES BASIC INSTALLATION
// SETPARM PART2=YES DW/370 WORKING CLUSTER
// SETPARM PART3=YES LANGUAGE DOCUMENTS
// SETPARM PART4=YES LANGUAGE DICTIONARIES
// SETPARM PART5=YES FONTS
// SETPARM PART6=YES BUILD DM/VSE FCT ENTRIES
// SETPARM PART7=YES ASSEMBLE AND LINK CICS BMS MAPS
// SETPARM PART8=YES LINK DM/VSE DISOSS MIGRATION PROG
/. C
/. C ***
/. C ***
/. C * *
/. C * END OF PARAMETER LIST (USER SELECTION) *
/. C * *
/. C ***
/. C ***
/. C
/. C ***
/. C ***
/. C * *
/. C * START OF THE INSTALLATION PROCEDURE *
/. C * *
/. C ***
/. C ***
/. C
/. C * --*
/. C * SET DICTIONARY SETPARM STATEMENTS CORRESPONDING TO THE *
/. C * LANGUAGE SELECTION *
/. C * --*
IF BPORT = YES THEN
// SETPARM BPOR=YES
IF DANSK = YES THEN
// SETPARM DANS=YES
IF DEUTS = YES THEN
// SETPARM DEUT=YES
/. C * --*
/. C * CHECK SETPARM PARAMETERS: *
/. C * IF THE SETPARMS ARE NOT ASSIGNED TO VALID VALUES *
/. C * THE JOB IS TERMINATED AND A MESSAGE IS WRITTEN. *
/. C * --*

Figure 43. Job for Customizing (Part 5 of 5)

Customizing Sample

Chapter 15. Job for Customizing 137

Customizing Sample

138 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Glossary

This glossary includes terms and definitions for IBM z/VSE.

The following cross-references are used in this glossary:

1. See refers the reader from a term to a preferred synonym, or from an acronym or abbreviation to the
defined full form.

2. See also refers the reader to a related or contrasting term.

A

Access Control Logging and Reporting
An IBM licensed program to log all attempts of access to protected data and to print selected formatted
reports on such attempts.

access control table (DTSECTAB)
A table that is used by the system to verify a user's right to access a certain resource.

access list
A table in which each entry specifies an address space or data space that a program can reference.

access method
A program, that is, a set of commands (macros) to define files or addresses and to move data to and from
them; for example VSE/VSAM or VTAM.

account file
A disk file that is maintained by VSE/POWER containing accounting information that is generated by VSE/
POWER and the programs running under VSE/POWER.

addressing mode (AMODE)
A program attribute that refers to the address length that a program is prepared to handle on entry.
Addresses can be either 24 bits, 31 bits, or 64 bits in length. In 24 bit addressing mode, the processor
treats all virtual addresses as 24-bit values; in 31 bit addressing mode, the processor treats all virtual
addresses as 31-bit values and in 64-bit addressing mode, the processor treats all virtual addresses as
64-bit values. Programs with an addressing mode of ANY can receive control in either 24 bit or 31 bit
addressing mode. 64 bit addressing mode cannot be used as program attribute.

administration console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed to
one particular console. Contrast this with the user console, which receives only those messages that are
directed to it, for example messages that are issued from a job that was submitted with the request to
echo its messages to that console. The operator of an administration console can reply to all outstanding
messages and enter all system commands.

alternate block
On an FBA disk, a block that is designated to contain data in place of a defective block.

© Copyright IBM Corp. 1991, 2010 139

alternate index
In systems with VSE/VSAM, the index entries of a given base cluster that is organized by an alternate
key, that is, a key other than the prime key of the base cluster. For example, a personnel file preliminary
ordered by names can be indexed also by department number.

alternate library
An interactively accessible library that can be accessed from a terminal when the user of that terminal
issues a connect or switch library request.

alternate track
A library, which becomes accessible from a terminal when the user of that terminal issues a connect or
switch (library) request.

AMODE
Addressing mode.

APA
All points addressable.

APAR
Authorized Program Analysis Report.

appendage routine
A piece of code that is physically located in a program or subsystem, but logically and extension of a
supervisor routine.

application profile
A control block in which the system stores the characteristics of one or more application programs.

application program
A program that is written for or by a user that applies directly to the user's work, such as a program that
does inventory control or payroll. See also batch program and online application program.

AR/GPR
Access register and general-purpose register pair.

ASC mode
Address space control mode.

ASI (automated system initialization) procedure
A set of control statements, which specifies values for an automatic system initialization.

attention routine (AR)
A routine of the system that receives control when the operator presses the Attention key. The routine
sets up the console for the input of a command, reads the command, and initiates the system service that
is requested by the command.

140 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

automated system initialization (ASI)
A function that allows control information for system startup to be cataloged for automatic retrieval during
system startup.

autostart
A facility that starts VSE/POWER with little or no operator involvement.

auxiliary storage
Addressable storage that is not part of the processor, for example storage on a disk unit. Synonymous
with external storage.

B

B-transient
A phase with a name beginning with $$B and running in the Logical Transient Area (LTA). Such a phase is
activated by special supervisor calls.

bar
2 GigyByte (GB) line

basic telecommunications access method (BTAM)
An access method that permits read and write communication with remote devices. BTAM is not
supported on z/VSE.

BIG-DASD
A subtype of Large DASD that has a capacity of more than 64 K tracks and uses up to 10017 cylinders of
the disk.

block
Usually, a block consists of several records of a file that are transmitted as a unit. But if records are very
large, a block can also be part of a record only. On an FBA disk, a block is a string of 512 bytes of data. See
also a control block.

block group
In VSE/POWER, the basic organizational unit for fixed-block architecture (FBA) devices. Each block group
consists of a number of 'units of transfer' or blocks.

C

CA splitting
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R. In VSE/VSAM, to double a
control area dynamically and distribute its CIs evenly when the specified minimum of free space get used
up by more data.

Glossary 141

carriage control character
The fist character of an output record (line) that is to be printed; it determines how many lines should be
skipped before the next line is printed.

catalog
A directory of files and libraries, with reference to their locations. A catalog may contain other information
such as the types of devices in which the files are stored, passwords, blocking factors. To store a library
member such as a phase, module, or book in a sublibrary. See also VSE/VSAM catalog.

cell pool
An area of virtual storage that is obtained by an application program and managed by the callable cell
pool services. A cell pool is located in an address space or a data space and contains an anchor, at least
one extent, and any number of cells of the same size.

central location
The place at which a computer system's control device, normally the systems console in the computer
room, is installed.

chained sublibraries
A facility that allows sublibraries to be chained by specifying the sequence in which they must be
searched for a certain library member.

chaining
A logical connection of sublibraries to be searched by the system for members of the same type (phases
or object modules, for example).

channel command word (CCW)
A doubleword at the location in main storage that is specified by the channel address word. One or more
CCWs make up the channel program that directs data channel operations.

channel program
One or more channel command words that control a sequence of data channel operations. Execution of
this sequence is initiated by a start subchannel instruction.

channel scheduler
The part of the supervisor that controls all input/output operations.

channel subsystem
A feature of z/Architecture that provides extensive additional channel (I/O) capabilities to IBM Z.

channel to channel attachment (CTCA)
A function that allows data to be exchanged

1. Under the control of VSE/POWER between two virtual VSE machines running under VM or
2. Under the control of VTAM between two processors.

character-coded request
A request that is encoded and transmitted as a character string. Contrast with field-formatted request.

142 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

checkpoint
1. A point at which information about the status of a job and the system can be recorded so that the job

step can be restarted later.
2. To record such information.

CICS (Customer Information Control System)
An IBM program that controls online communication between terminal users and a database.
Transactions that are entered at remote terminals are processed concurrently by user-written application
programs. The program includes facilities for building, using, and servicing databases.

CICS ECI
The CICS External Call Interface (ECI) is one possible requester type of the CICS business logic interface
that is provided by the CICS Transaction Server for z/VSE. It is part of the CICS client and allows
workstation programs to CICS function on the z/VSE host.

CICS EXCI
The EXternal CICS Interface (EXCI) is one possible requester type of the CICS business logic interface that
is provided by the CICS Transaction Server for z/VSE. It allows any BSE batch application to call CICS
functions.

CICS system definition data set (CSD)
A VSAM KSDS cluster that contains a resource definition record for every record defined to CICS using
resource definition online (RDO).

CICS Transaction Server for z/VSE
A z/VSE base program that controls online communication between terminal users and a database. This is
the successor system to CICS/VSE.

CICS TS
CICS Transaction Server

CICS/VSE
Customer Information Control System/VSE. No longer shipped on the Extended Base Tape and no longer
supported, cannot run on z/VSE 5.1 or later.

class
In VSE/POWER, a group of jobs that either come from the same input device or go to the same output
device.

CMS
Conversational monitor system running on z/VM.

common library
A library that can be interactively accessed by any user of the (sub)system that owns the library.

Glossary 143

communication adapter
A circuit card with associated software that enables a processor, controller, or other device to be
connected to a network.

communication region
An area of the supervisor that is set aside for transfer of information within and between programs.

component
1. Hardware or software that is part of a computer system.
2. A functional part of a product, which is identified by a component identifier.
3. In z/VSE, a component program such as VSE/POWER or VTAM.
4. In VSE/VSAM, a named, cataloged group of stored records, such as the data component or index

component of a key-sequenced file or alternate index.

component identifier
A 12-byte alphanumeric string, uniquely defining a component to MSHP.

conditional job control
The capability of the job control program to process or to skip one or more statements that are based on a
condition that is tested by the program.

connect
To authorize library access on the lowest level. A modifier such as "read" or "write" is required for the
specified use of a sublibrary.

connection pooling
Introduced with an z/VSE 5.1 update to manage (reuse) connections of the z/VSE database connector in
CICS TS.

connector
In the context of z/VSE, a connector provides the middleware to connect two platforms: Web Client and
z/VSE host, middle-tier and z/VSE host, or Web Client and middle-tier.

connector (e-business connector)
A piece of software that is provided to connect to heterogeneous environments. Most connectors
communicate to non-z/VSE Java-capable platforms.

container
Is part of the JVM of application servers such as the IBM WebSphere Application Server, and facilitates
the implementation of servlets, EJBs, and JSPs, by providing resource and transaction management
resources. For example, an EJB developer must not code against the JVM of the application server, but
instead against the interface that is provided by the container. The main role of a container is to act as
an intermediary between EJBs and clients, Is the host part of the VSE JavaBeans, and is started using
the job STARTVCS, which is placed in the reader queue during the installation of z/VSE. Runs by default
in dynamic class R. and also to manage multiple EJB instances. After EJBs have been written, they must
be stored in a container residing on an application server. The container then manages all threading and
client-interactions with the EJBs, and co-ordinate connection- and instance pooling.

144 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

control interval (CI)
A fixed-length area of disk storage where VSE/VSAM stores records and distributes free space. It is the
unit of information that VSE/VSAM transfers to or from disk storage. For FBA it must be an integral
multiple to be defined at cluster definition, of the block size.

control program
A program to schedule and supervise the running of programs in a system.

conversational monitor system (CMS)
A virtual machine operating system that provides general interactive time sharing, problem solving, and
program development capabilities and operates under the control of z/VM.

count-key-data (CKD) device
A disk device that store data in the record format: count field, key field, data field. The count field
contains, among others, the address of the record in the format: cylinder, head (track), record number,
and the length of the data field. The key field, if present, contains the record's key or search argument.
CKD disk space is allocated by tracks and cylinders. Contrast with FBA disk device. See also extended
count-key-data device.

cross-partition communication control
A facility that enables VSE subsystems and user programs to communicate with each other; for example,
with VSE/POWER.

cryptographic token
Usually referred to simply as a token, this is a device, which provides an interface for performing
cryptographic functions like generating digital signatures or encrypting data.

cryptography
1. A method for protecting information by transforming it (encrypting it) into an unreadable format, called

ciphertext. Only users who possess a secret key can decipher (or decrypt) the message into plaintext.
2. The transformation of data to conceal its information content and to prevent its unauthorized use or

undetected modification .

D

data block group
The smallest unit of space that can be allocated to a VSE/POWER job on the data file. This allocation is
independent of any device characteristics.

data conversion descriptor file (DCDF)
With a DCDF, you can convert individual fields within a record during data transfer between a PC and its
host. The DCDF defines the record fields of a particular file for both, the PC and the host environment.

data import
The process of reformatting data that was used under one operating system such that it can subsequently
be used under a different operating system.

Glossary 145

Data Interfile Transfer, Testing, and Operations (DITTO) utility
An IBM program that provides file-to-file services for card I/O, tape, and disk devices. The latest version is
called DITTO/ESA for VSE.

Data Language/I (DL/I)
A database access language that is used with CICS.

data link
In SNA, the combination of the link connection and the link stations joining network noes, for example, a
z/Architecture channel and its associated protocols. A link is both logical and physical.

data security
The protection of data against unauthorized disclosure, transfer, modification, or destruction, whether
accidental or intentional .

data set header record
In VSE/POWER abbreviated as DSHR, alias NDH or DSH. An NJE control record either preceding output
data or, in the middle of input data, indicating a change in the data format.

data space
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can directly
manipulate through z/Architecture instructions. Unlike an address space, a data space can hold only
user data; it does not contain shared areas, or programs. Instructions do not execute in a data space.
Contrast with address space.

data terminal equipment (DTE)
In SNA, the part of a data station that serves a data source, data sink, or both.

database connector
Is a function introduced with z/VSE 5.1.1, which consists of a client and server part. The client provides
an API (CBCLI) to be used by applications on z/VSE, the server on any Java capable platform connects a
JDBC driver that is provided by the database. Both client and server communicate via TCP/IP.

Database 2 (Db2)
An IBM rational database management system.

Db2-based connector
Is a feature introduced with VSE/ESA 2.5, which includes a customized Db2 version, together with VSAM
and DL/I functionality, to provide access to Db2, VSAM, and DL/I data, using Db2 Stored Procedures.

Db2 Runtime only Client edition
The Client Edition for z/VSE comes with some enhanced features and improved performance to integrate
z/VSE and Linux on z Systems.

Db2 Stored Procedure
In the context of z/VSE, a Db2 Stored Procedure is a Language Environment (LE) program that accesses
Db2 data. However, from VSE/ESA 2.5 onwards you can also access VSAM and DL/I data using a Db2
Stored Procedure. In this way, it is possible to exchange data between VSAM and Db2.

146 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

DBLK
Data block.

DCDF
Data conversion descriptor file.

deblocking
The process of making each record of a block available for processing.

dedicated (disk) device
A device that cannot be shared among users.

device address
1. The identification of an input/output device by its device number.
2. In data communication, the identification of any device to which data can be sent or from which data

can be received.

device driving system (DDS)
A software system external to VSE/POWER, such as a CICS spooler or PSF, that writes spooled output to a
destination device.

Device Support Facilities (DSF)
An IBM supplied system control program for performing operations on disk volumes so that they can
be accessed by IBM and user programs. Examples of these operations are initializing a disk volume and
assigning an alternative track.

device type code
The four- or five-digit code that is used for defining an I/O device to a computer system. See also ICKDSF

dialog
In an interactive system, a series of related inquiries and responses similar to a conversation between two
people. For z/VSE, a set of panels that can be used to complete a specific task; for example, defining a file.

dialog manager
The program component of z/VSE that provides for ease of communication between user and system.

digital signature
In computer security, encrypted data, which is appended to or part of a message, that enables a recipient
to prove the identity of the sender.

Digital Signature Algorithm (DSA)
The Digital Signature Algorithm is the US government-defined standard for digital signatures. The DSA
digital signature is a pair of large numbers, computed using a set of rules (that is, the DSA) and a set
of parameters such that the identity of the signatory and integrity of the data can be verified. The DSA
provides the capability to generate and verify signatures.

Glossary 147

directory
In z/VSE the index for the program libraries.

direct access
Accessing data on a storage device using their address and not their sequence. This is the typical access
on disk devices as opposed to magnetic tapes. Contrast with sequential access.

disk operating system residence volume (DOSRES)
The disk volume on which the system sublibrary IJSYSRS.SYSLIB is located including the programs and
procedures that are required for system startup.

disk sharing
An option that lets independent computer systems uses common data on shared disk devices.

disposition
A means of indicating to VSE/POWER how a job input or output entry is to be handled: according to its
local disposition in the RDR/LST/PUN queue or its transmission disposition when residing in the XMT
queue. A job might, for example, be deleted or kept after processing.

distribution tape
A magnetic tape that contains, for example, a preconfigured operating system like z/VSE. This tape is
shipped to the customer for program installation.

DITTO/ESA for VSE
Data Interfile Transfer, Testing, and Operations utility. An IBM program that provides file-to-file services
for disk, tape, and card devices.

DSF
Device Support Facilities.

DSH (R)
Data set header record.

dummy device
A device address with no real I/O device behind it. Input and output for that device address are spooled
on disk.

duplex
Pertaining to communication in which data can be sent and received at the same time.

DU-AL (dispatchable unit - access list)
The access list that is associated with a z/VSE main task or subtask. A program uses the DU-AL associated
with its task and the PASN-AL associated with its partition. See also “PASN-AL (primary address space
number - access list)” on page 160.

dynamic class table
Defines the characteristics of dynamic partitions.

148 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

dynamic partition
A partition that is created and activated on an 'as needed' basis that does not use fixed static allocations.
After processing, the occupied space is released. Dynamic partitions are grouped by class, and jobs are
scheduled by class. Contrast with static partition.

dynamic space reclamation
A librarian function that provides for space that is freed by the deletion of a library member to become
reusable automatically.

E

ECI
See “CICS ECI” on page 143.

emulation
The use of programming techniques and special machine features that permit a computer system to
execute programs that are written for another system or for the use of I/O devices different from those
that are available.

emulation program (EP)
An IBM control program that allows a channel-attached 3705 or 3725 communication controller to
emulate the functions of an IBM 2701 Data Adapter Unit, or an IBM 2703 Transmission Control.

end user
1. A person who makes use of an application program.
2. In SNA, the ultimate source or destination of user data flowing through an SNA network. Might be an

application program or a terminal operator.

Enterprise Java Bean
An EJB is a distributed bean. "Distributed" means, that one part of an EJB runs inside the JVM of a web
application server, while the other part runs inside the JVM of a web browser. An EJB either represents
one data row in a database (entity bean), or a connection to a remote database (session bean). Normally,
both types of an EJB work together. This allows to represent and access data in a standardized way in
heterogeneous environments with relational and non-relational data. See also JavaBean.

entry-sequenced file
A VSE/VSAM file whose records are loaded without respect to their contents and whose relative byte
addresses cannot change. Records are retrieved and stored by addressed access, and new records are
added to the end of the file.

Environmental Record Editing and Printing (EREP) program
A z/VSE base program that makes the data that is contained in the system record file available for further
analysis.

EPI
See CICS EPI.

Glossary 149

ESCON Channel (Enterprise Systems Connection Channel)
A serial channel, using fiber optic cabling, that provides a high-speed connection between host and
control units for I/O devices. It complies with the ESA/390 and IBM Z I/O Interface until z114. The zEC12
processors do not support ESCON channels.

exit routine
1. Either of two types of routines: installation exit routines or user exit routines. Synonymous with exit

program.
2. See user exit routine.

extended addressability
The ability of a program to use 31 bit or 64 bit virtual storage in its address space or outside the address
space.

extended recovery facility (XRF)
In z/VSE, a feature of CICS that provides for enhanced availability of CICS by offering one CICS system as
a backup of another.

External Security Manager (ESM)
A priced vendor product that can provide extended functionality and flexibility that is compared to that of
the Basic Security Manager (BSM), which is part of z/VSE.

F

FASTCOPY
See “VSE/Fast Copy” on page 171.

fast copy data set program (VSE/Fast Copy)
See “VSE/Fast Copy” on page 171.

fast service upgrade (FSU)
A service function of z/VSE for the installation of a refresh release without regenerating control
information such as library control tables.

FAT-DASD
A subtype of Large DASD, it supports a device with more than 4369 cylinders (64 K tracks) up to 64 K
cylinders.

FCOPY
See VSE/Fast Copy.

fence
A separation of one or more components or elements from the remainder of a processor complex. The
separation is by logical boundaries. It allows simultaneous user operations and maintenance procedures.

fetch
1. To locate and load a quantity of data from storage.

150 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

2. To bring a program phase into virtual storage from a sublibrary and pass control to this phase.
3. The name of the macro instruction (FETCH) used to accomplish 2. See also loader.

Fibre Channel Protocol (FCP)
A combination of hardware and software conforming to the Fibre Channel standards and allowing system
and peripheral connections via FICON and FICON Express feature cards on IBM zSeries processors. In
z/VSE, zSeries FCP is employed to access industry-standard SCSI disk devices.

fragmentation (of storage)
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

FSU
Fast service upgrade.

FULIST (FUnction LIST)
A type of selection panel that displays a set of files and/or functions for the choice of the user.

G

generation
See macro generation.

generation feature
An IBM licensed program order option that is used to tailer the object code of a program to user
requirements.

GETVIS space
Storage space within partition or the shared virtual area, available for dynamic allocation to programs.

guest system
A data processing system that runs under control of another (host) system. On the mainframe z/VSE can
run as a guest of z/VM.

H

hard wait
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup.

hash function
A hash function is a transformation that takes a variable-size input and returns a fixed-size string, which is
called the hash value. In cryptography, the hash functions should have some additional properties:

• The hash function should be easy to compute.
• The hash function is one way; that is, it is impossible to calculate the 'inverse' function.

Glossary 151

• The hash function is collision-free; that is, it is impossible that different input leads to the same hash
value.

hash value
The fixed-sized string resulting after applying a hash function to a text.

High-Level Assembler for VSE
A programming language providing enhanced assembler programming support. It is a base program of
z/VSE.

home interface
Provides the methods to instantiate a new EJB object, introspect an EJB, and remove an EJB
instantiation., as for the remote interface is needed because the deployment tool generates the
implementation class. Every Session bean's home interface must supply at least one create() method.

host mode
In this operating mode, a PC can access a VSE host. For programmable workstation (PWS) functions, the
Move Utilities of VSE can be used.

host system
The controlling or highest level system in a data communication configuration.

host transfer file (HTF)
Used by the Workstation File Transfer Support of z/VSE as an intermediate storage area for files that are
sent to and from IBM personal computers.

HTTP Session
In the context of z/VSE, identifies the web-browser client that calls a servlet (in other words, identifies the
connection between the client and the middle-tier platform).

I

ICCF
See VSE/ICCF.

ICKDSF (Device Support Facilities)
A z/VSE base program that supports the installation, use, and maintenance of IBM disk devices.

include function
Retrieves a library member for inclusion in program input.

index
1. A table that is used to locate records in an indexed sequential data set or on indexed file.
2. In, an ordered collection of pairs, each consisting of a key and a pointer, used by to sequence and

locate the records of a key-sequenced data set or file; it is organized in levels of index records. See
also alternate index.

152 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

input/output control system (IOCS)
A group of IBM supplied routines that handle the transfer of data between main storage and auxiliary
storage devices.

integrated communication adapter (ICA)
The part of a processor where multiple lines can be connected.

integrated console
In z/VSE, the service processor console available on IBM Z that operates as the z/VSE system console.
The integrated console is typically used during IPL and for recovery purposes when no other console is
available.

Interactive Computing and Control Facility (ICCF)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

interactive partition
An area of virtual storage for the purpose of processing a job that was submitted interactively via VSE/
ICCF.

Interactive User Communication Vehicle (IUCV)
Programming support available in a VSE supervisor for operation under z/VM. The support allows users to
communicate with other users or with CP in the same way they would with a non-preferred guest.

intermediate storage
Any storage device that is used to hold data temporarily before it is processed.

IOCS
Input/output control system.

IPL
Initial program load.

irrecoverable error
An error for which recovery is impossible without the use of recovery techniques external to the computer
program or run.

IUCV
Interactive User Communication Vehicle.

J

JAR
Is a platform-independent file format that aggregates many files into one. Multiple applets and their
requisite components (.class files, images, and sounds) can be bundled in a JAR file, and then
downloaded to a web browser using a single HTTP transaction (much improving the download speed).
The JAR format also supports compression, which reduces the files size (and further improves the

Glossary 153

download speed). The compression algorithm that is used is fully compatible with the ZIP algorithm. The
owner of an applet can also digitally sign individual entries in a JAR file to authenticate their origin.

Java application
A Java program that runs inside the JVM of your web browser. The program's code resides on a local
hard disk or on the LAN. Java applications might be large programs using graphical interfaces. Java
applications have unlimited access to all your local resources.

Java bytecode
Bytecode is created when a file containing Java source language statements is compiled. The compiled
Java code or "bytecode" is similar to any program module or file that is ready to be executed (run on a
computer so that instructions are performed one at a time). However, the instructions in the bytecode
are really instructions to the Java Virtual Machine. Instead of being interpreted one instruction at a time,
bytecode is instead recompiled for each operating-system platform using a just-in-time (JIT) compiler.
Usually, this enables the Java program to run faster. Bytecode is contained in binary files that have the
suffix.CLASS

Java servlet
See servlet.

JHR
Job header record.

job accounting interface
A function that accumulates accounting information for each job step, to be used for charging the users of
the system, for planning new applications, and for supervising system operation more efficiently.

job accounting table
An area in the supervisor where accounting information is accumulated for the user.

job catalog
A catalog made available for a job by means of the file name IJSYSUC in the respective DLBL statement.

job entry control language (JECL)
A control language that allows the programmer to specify how VSE/POWER should handle a job.

job step
In 1 of a group of related programs complete with the JCL statements necessary for a particular run.
Every job step is identified in the job stream by an EXEC statement under one JOB statement for the
whole job.

job trailer record (JTR)
As VSE/POWER parameter JTR, alias NJT. An NJE control record terminating a job entry in the input or
output queue and providing accounting information.

154 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

K

key
In VSE/VSAM, one or several characters that are taken from a certain field (key field) in data records for
identification and sequence of index entries or of the records themselves.

key sequence
The collating sequence either of records themselves or of their keys in the index or both. The key
sequence is alphanumeric.

key-sequenced file
A VSE/VSAM file whose records are loaded in key sequence and controlled by an index. Records are
retrieved and stored by keyed access or by addressed access, and new records are inserted in the file in
key sequence.

KSDS
Key-sequenced data sets. See key-sequenced file.

L

label
1. An identification record for a tape, disk, or diskette volume or for a file on such a volume.
2. In assembly language programming, a named instruction that is generally used for branching.

label information area
An area on a disk to store label information that is read from job control statements or commands.
Synonymous with label area.

Language Environment for z/VSE
An IBM software product that is the implementation of Language Environment on the VSE platform.

language translator
A general term for any assembler, compiler, or other routine that accepts statements in one language and
produces equivalent statements in another language.

Large DASD
A DASD device that

1. Has a capacity exceeding 64 K tracks and
2. Does not have VSAM space created prior to VSE/ESA 2.6 that is owned by a catalog.

LE/VSE
Short form of Language Environment for z/VSE.

librarian
The set of programs that maintains, services, and organizes the system and private libraries.

Glossary 155

library block
A block of data that is stored in a sublibrary.

library directory
The index that enables the system to locate a certain sublibrary of the accessed library.

library member
The smallest unit of a data that can be stored in and retrieved from a sublibrary.

line commands
In VSE/ICCF, special commands to change the declaration of individual lines on your screen. You can
copy, move, or delete a line declaration, for example.

linkage editor
A program that is used to create a phase (executable code) from one or more independently translated
object modules, from one or more existing phases, or from both. In creating the phase, the linkage editor
resolves cross-references among the modules and phases available as input. The program can catalog the
newly built phases.

linkage stack
An area of protected storage that the system gives to a program to save status information for a branch
and stack or a stacking program call.

link station
In SNA, the combination of hardware and software that allows a node to attach to and provide control for
a link.

loader
A routine, commonly a computer program, that reads data or a program into processor storage. See also
relocating loader.

local shared resources (LSR)
A VSE/VSAM option that is activated by three extra macros to share control blocks among files.

lock file
In a shared disk environment under VSE, a system file on disk that is used by the sharing systems to
control their access to shared data.

logical partition
In LPAR mode, a subset of the server unit hardware that is defined to support the operation of a system
control program.

logical record
A user record, normally pertaining to a single subject and processed by data management as a unit.
Contrast with physical record, which may be larger or smaller.

156 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

logical unit (LU)
1. A name that is used in programming to represent an I/O device address. physical unit (PU), system

services control point (SSCP), primary logical unit (PLU), and secondary logical unit (SLU).
2. In SNA, a port through which a user accesses the SNA network,

a. To communicate with another user and
b. To access the functions of the SSCP. An LU can support at least two sessions. One with an SSCP and

one with another LU and might be capable of supporting many sessions with other LUs.

logical unit name
In programming, a name that is used to represent the address of an input/output unit.

logical unit 6.2
A SNA/SDLC protocol for communication between programs in a distributed processing environment. LU
6.2 is characterized by

1. A peer relationship between session partners,
2. Efficient utilization of a session for multiple transactions,
3. Comprehensive end-to-end error processing, and
4. A generic Application Programming Interface (API) consisting of structured verbs that are mapped into

a product implementation.

logons interpret interpret routine
In VTAM, an installation exit routine, which is associated with an interpret table entry, that translates
logon information. It also verifies the logon.

LPAR mode
Logically partitioned mode. The CP mode that is available on the Configuration (CONFIG) frame when
the PR/SM feature is installed. LPAR mode allows the operator to allocate the hardware resources of the
processor unit among several logical partitions.

M

macro definition
A set of statements and instructions that defines the name of, format of, and conditions for generating a
sequence of assembler statements and machine instructions from a single source statement.

macro expansion
See macro generation

macro generation
An assembler operation by which a macro instruction gets replaced in the program by the statements of
its definition. It takes place before assembly. Synonymous with macro expansion.

macro (instruction)
1. In assembler programming, a user-invented assembler statement that causes the assembler to

process a set of statements that are defined previously in the macro definition.

Glossary 157

2. A sequence of VSE/ICCF commands that are defined to cause a sequence of certain actions to be
performed in response to one request.

maintain system history program (MSHP)
A program that is used for automating and controlling various installation, tailoring, and service activities
for a VSE system.

main task
The main program within a partition in a multiprogramming environment.

master console
In z/VSE, one or more consoles that receive all system messages, except for those that are directed
to one particular console. Contrast this with the user console, which receives only those messages that
are specifically directed to it, for example messages that are issued from a job that was submitted with
the request to echo its messages to that console. The operator of a master console can reply to all
outstanding messages and enter all system commands.

maximum (max) CA
A unit of allocation equivalent to the maximum control area size on a count-key-data or fixed-block
device. On a CKD device, the max CA is equal to one cylinder.

memory object
Chunk of virtual storage that is allocated above the bar (2 GB) to be created with the IARV64 macro.

message
In VSE, a communication that is sent from a program to the operator or user. It can appear on a console, a
display terminal or on a printout.

MSHP
See maintain system history program.

multitasking
Concurrent running of one main task and one or several subtasks in the same partition.

MVS
Multiple Virtual Storage. Implies MVS/390, MVS/XA, MVS/ESA, and the MVS element of the z/OS (OS/390)
operating system.

N

NetView
A z/VSE optional program that is used to monitor a network, manage it, and diagnose its problems.

network address
In SNA, an address, consisting of subarea and element fields, that identifies a link, link station, or NAU.
Subarea nodes use network addresses; peripheral nodes use local addresses. The boundary function in
the subarea node to which a peripheral node is attached transforms local addresses to network addresses
and vice versa. See also network name.

158 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

network addressable unit (NAU)
In SNA, a logical unit, a physical unit, or a system services control point. It is the origin or the destination
of information that is transmitted by the path control network. Each NAU has a network address that
represents it to the path control network. See also network name, network address.

Network Control Program (NCP)
An IBM licensed program that provides communication controller support for single-domain, multiple-
domain, and interconnected network capability. Its full name is ACF/NCP.

network definition table (NDT)
In VSE/POWER networking, the table where every node in the network is listed.

network name
1. In SNA, the symbolic identifier by which users refer to a NAU, link, or link station. See also network

address.
2. In a multiple-domain network, the name of the APPL statement defining a VTAM application program.

This is its network name, which must be unique across domains.

node
1. In SNA, an end point of a link or junction common to several links in a network. Nodes can be

distributed to host processors, communication controllers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities.

2. In VTAM, a point in a network that is defined by a symbolic name. Synonymous with network node. See
major node and minor node.

node type
In SNA, a designation of a node according to the protocols it supports and the network addressable units
(NAUs) it can contain.

O

object module (program)
A program unit that is the output of an assembler or compiler and is input to a linkage editor.

online application program
An interactive program that is used at display stations. When active, it waits for data. Once input arrives, it
processes it and send a response to the display station or to another device.

operator command
A statement to a control program, issued via a console or terminal. It causes the control program
to provide requested information, alter normal operations, initiate new operations, or end existing
operations.

optional licensed program
An IBM licensed program that a user can install on VSE by way of available installation-assist support.

Glossary 159

output parameter text block (OPTB)
in VSE/POWER's spool-access support, information that is contained in an output queue record if a * $$
LST or * $$ PUN statement includes any user-defined keywords that have been defined for autostart.

P

page data set (PDS)
One or more extents of disk storage in which pages are stored when they are not needed in processor
storage.

page fixing
Marking a page so that it is held in processor storage until explicitly released. Until then, it cannot be
paged out.

page I/O
Page-in and page-out operations.

page pool
The set of page frames available for paging virtual-mode programs.

panel
The complete set of information that is shown in a single display on terminal screen. Scrolling back and
forth through panels like turning manual pages. See also selection panel.

partition balancing
A z/VSE facility that allows the user to specify that two or more or all partitions of the system should
receive about the same amount of time on the processor.

PASN-AL (primary address space number - access list)
The access list that is associated with a partition. A program uses the PASN-AL associated with its
partition and the DU-AL associated with its task (work unit). See also DU-AL.

Each partition has its own unique PASN-AL. All programs running in this partition can access data spaces
through the PASN-AL. Thus a program can create a data space, add an entry for it in the PASN-AL,
and obtain the ALET that indexes the entry. By passing the ALET to other programs in the partition, the
program can share the data space with other programs running in the same partition.

PDS
Page data sets.

phase
The smallest complete unit of executable code that can be loaded into virtual storage.

physical record
The amount of data that is transferred to or from auxiliary storage. Synonymous with block.

160 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

PNET
Programming support available with VSE/POWER; it provides for the transmission of selected jobs,
operator commands, messages, and program output between the nodes of a network.

POWER
See VSE/POWER.

pregenerated operating system
An operating system such as z/VSE that is shipped by IBM mainly in object code. IBM defines such key
characteristics as the size of the main control program, the organization, and size of libraries, and required
system areas on disk. The customer does not have to generate an operating system.

preventive service
The installation of one or more PTFs on a VSE system to avoid the occurrence of anticipated problems.

primary address space
In z/VSE, the address space where a partition is executed. A program in primary mode fetches data from
the primary address space.

primary library
A VSE library owned and directly accessible by a certain terminal user.

printer/keyboard mode
Refers to 1050 or 3215 console mode (device dependent).

Print Services Facility (PSF)/VSE
An access method that provides support for the advanced function printers.

private area
The virtual space between the shared area (24 bit) and shared area (31 bit), where (private) partitions are
allocated. Its maximum size can be defined during IPL. See also shared area.

private memory object
Memory object (chunk of virtual storage) that is allocated above the 2 GB line (bar) only accessible by the
partition that created it.

private partition
Any of the system's partitions that are not defined as shared. See also shared partition.

production library
1. In a pre-generated operating system (or product), the program library that contains the object code for

this system (or product).
2. A library that contains data that is needed for normal processing. Contrast with test library.

programmer logical unit
A logical unit available primarily for user-written programs. See also logical unit name.

Glossary 161

program temporary fix (PTF)
A solution or by-pass of one or more problems that are documented in APARs. PTFs are distributed to IBM
customers for preventive service to a current release of a program.

PSF/VSE
Print Services Facility/VSE.

PTF
See Program temporary fix.

Q

Queue Control Area (QCA)
In VSE/POWER, an area of the data file, which might contain:

• Extended checkpoint information
• Control information for a shared environment.

queue file
A direct-access file that is maintained by VSE/POWER that holds control information for the spooling of
job input and job output.

R

random processing
The treatment of data without respect to its location on disk storage, and in an arbitrary sequence that is
governed by the input against which it is to be processed.

real address area
In z/VSE, processor storage to be accessed with dynamic address translation (DAT) off

real address space
The address space whose addresses map one-to-one to the addresses in processor storage.

real mode
In VSE, a processing mode in which a program might not be paged. Contrast with virtual mode.

recovery management support (RMS)
System routines that gather information about hardware failures and that initiate a retry of an operation
that failed because of processor, I/O device, or channel errors.

refresh release
An upgraded VSE system with the latest level of maintenance for a release.

relative-record file
A VSE/VSAM file whose records are loaded into fixed-length slots and accessed by the relative-record
numbers of these slots.

162 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

release upgrade
Use of the FSU functions to install a new release of z/VSE.

relocatable module
A library member of the type object. It consists of one or more control sections cataloged as one member.

relocating loader
A function that modifies addresses of a phase, if necessary, and loads the phase for running into the
partition that is selected by the user.

remote interface
In the context of z/VSE, the remote interface allows a client to make method calls to an EJB although the
EJB is on a remote z/VSE host. The container uses the remote interface to create client-side stubs and
server-side proxy objects to handle incoming method calls from a client to an EJB.

remote procedure call (RPC)
1. A facility that a client uses to request the execution of a procedure call from a server. This facility

includes a library of procedures and an external data representation.
2. A client request to service provider in another node.

residency mode (RMODE)
A program attribute that refers to the location where a program is expected to reside in virtual storage.
RMODE 24 indicates that the program must reside in the 24-bit addressable area (below 16 megabytes),
RMODE ANY indicates that the program can reside anywhere in 31-bit addressable storage (above or
below 16 megabytes).

REXX/VSE
A general-purpose programming language, which is particularly suitable for command procedures, rapid
batch program development, prototyping, and personal utilities.

RMS
Recovery management support.

RPG II
A commercially oriented programming language that is specifically designed for writing application
programs that are intended for business data processing.

S

SAM ESDS file
A SAM file that is managed in VSE/VSAM space, so it can be accessed by both SAM and VSE/VSAM
macros.

SCP
System control programming.

Glossary 163

SDL
System directory list.

search chain
The order in which chained sublibraries are searched for the retrieval of a certain library member of a
specified type.

second-level directory
A table in the SVA containing the highest phase names that are found on the directory tracks of the
system sublibrary.

Secure Sockets Layer (SSL)
A security protocol that allows the client to authenticate the server and all data and requests to be
encrypted. SSL was developed by Netscape Communications Corp. and RSA Data Security, Inc..

segmentation
In VSE/POWER, a facility that breaks list or punch output of a program into segments so that printing or
punching can start before this program has finished generating such output.

selection panel
A displayed list of items from which a user can make a selection. Synonymous with menu.

sense
Determine, on request or automatically, the status or the characteristics of a certain I/O or
communication device.

sequential access method (SAM)
A data access method that writes to and reads from an I/O device record after record (or block after
block). On request, the support performs device control operations such as line spacing or page ejects on
a printer or skip some tape marks on a tape drive.

service node
Within the VSE unattended node support, a processor that is used to install and test a master VSE system,
which is copied for distribution to the unattended nodes. Also, program fixes are first applied at the
service node and then sent to the unattended nodes.

service program
A computer program that performs function in support of the system. See with utility program.

service refresh
A form of service containing the current version of all software. Also referred to as a system refresh.

service unit
One or more PTFs on disk or tape (cartridge).

164 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

shared area
In z/VSE, shared areas (24 bit) contain the Supervisor areas and SVA (24 bit) and shared areas (31 bit) the
SVA (31 bit). Shared areas (24 bit) are at the beginning of the address space (below 16 MB), shared area
(31 bit) at the end (below 2 GB).

shared disk option
An option that lets independent computer systems use common data on shared disk devices.

shared memory objects
Chunks of virtual storage allocated above the 2 GB line (bar), that can be shared among partitions.

shared partition
In z/VSE, a partition that is allocated for a program (VSE/POWER, for example) that provides services and
communicates with programs in other partitions of the system's virtual address spaces. In most cases
shared partitions are no longer required.

shared spooling
A function that permits the VSE/POWER account file, data file, and queue file to be shared among several
computer systems with VSE/POWER.

shared virtual area (SVA)
In z/VSE, a high address area that contains a list system directory list (SDL) of frequently used phases,
resident programs that are shared between partitions, and an area for system support.

SIT (System Initialization Table)
A table in CICS that contains data used the system initialization process. In particular, the SIT can
identify (by suffix characters) the version of CICS system control programs and CICS tables that you have
specified and that are to be loaded.

skeleton
A set of control statements, instructions, or both, that requires user-specific information to be inserted
before it can be submitted for processing.

socksified
See socks-enabled.

Socks-enabled
Pertaining to TCP/IP software, or to a specific TCP/IP application, that understands the socks protocol.
"Socksified" is a slang term for socks-enabled.

socks protocol
A protocol that enables an application in a secure network to communicate through a firewall via a socks
server.

socks server
A circuit-level gateway that provides a secure one-way connection through a firewall to server
applications in a nonsecure network.

Glossary 165

source member
A library member containing source statements in any of the programming languages that are supported
by VSE.

split
To double a specific unit of storage space (CI or CA) dynamically when the specified minimum of free
space gets used up by new records.

spooling
The use of disk storage as buffer storage to reduce processing delays when transferring data between
peripheral equipment and the processor of a computer. In z/VSE, this is done under the control of VSE/
POWER.

Spool Access Protection
An optional feature of VSE/POWER that restricts individual spool file entry access to user IDs that have
been authenticated by having performed a security logon.

spool file
1. A file that contains output data that is saved for later processing.
2. One of three VSE/POWER files on disk: queue file, data file, and account file.

SSL
See Secure Sockets Layer.

stacked tape
An IBM supplied product-shipment tape containing the code of several licensed programs.

standard label
A fixed-format record that identifies a volume of data such as a tape reel or a file that is part of a volume
of data.

stand-alone program
A program that runs independently of (not controlled by) the VSE system.

startup
The process of performing IPL of the operating system and of getting all subsystems and applications
programs ready for operation.

start option
In VTAM, a user-specified or IBM specified option that determines conditions for the time a VTAM system
is operating. Start options can be predefined or specified when VTAM is started.

static partition
A partition, which is defined at IPL time and occupying a defined amount of virtual storage that remains
constant. See also dynamic partition.

166 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

storage director
An independent component of a storage control unit; it performs all of the functions of a storage control
unit and thus provides one access path to the disk devices that are attached to it. A storage control unit
has two storage directors.

storage fragmentation
Inability to allocate unused sections (fragments) of storage in the real or virtual address range of virtual
storage.

suballocated file
A VSE/VSAM file that occupies a portion of an already defined data space. The data space might contain
other files. See also unique file.

sublibrary
In VSE, a subdivision of a library. Members can only be accessed in a sublibrary.

sublibrary directory
An index for the system to locate a member in the accessed sublibrary.

submit
A VSE/POWER function that passes a job to the system for processing.

SVA
See shared virtual area.

Synchronous DataLink Control (SDLC)
A discipline for managing synchronous, code-transparent, serial-by-bit information transfer over a link
connection. Transmission exchanges might be duplex or half-duplex over switched or non-switched links.
The configuration of the link connection might be point-to-point, multipoint, or loop.

SYSRES
See system residence volume.

system control programming (SCP)
IBM supplied, non-licensed program fundamental to the operation of a system or to its service or both.

system directory list (SDL)
A list containing directory entries of frequently used phases and of all phases resident in the SVA. The list
resides in the SVA.

system file
In z/VSE, a file that is used by the operating system, for example, the hardcopy file, the recorder file, the
page data set.

Glossary 167

System Initialization Table (SIT)
A table in CICS that contains data that is used by the system initialization process. In particular, the SIT
can identify (by suffix characters) the version of CICS system control programs and CICS tables that you
have specified and that are to be loaded.

system recorder file
The file that is used to record hardware reliability data. Synonymous with recorder file.

system refresh
See service refresh.

system refresh release
See refresh release.

system residence file (SYSRES)
The z/VSE system sublibrary IJSYSRS.SYSLIB that contains the operating system. It is stored on the
system residence volume DORSES.

system residence volume (SYSRES)
The disk volume on which the system sublibrary is stored and from which the hardware retrieves the
initial program load routine for system startup.

system sublibrary
The sublibrary that contains the operating system. It is stored on the system residence volume (SYSRES).

T

task management
The functions of a control program that control the use, by tasks, of the processor and other resources
(except for input/output devices).

time event scheduling support
In VSE/POWER, the time event scheduling support offers the possibility to schedule jobs for processing
in a partition at a predefined time once repetitively. The time event scheduling operands of the * $$ JOB
statement are used to specify the wanted scheduling time.

TLS
See Transport Layer Security.

track group
In VSE/POWER, the basic organizational unit of a file for CKD devices.

track hold
A function that protects a track that is being updated by one program from being accessed by another
program.

168 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

transaction
1. In a batch or remote batch entry, a job or job step. 2. In CICS TS, one or more application programs

that can be used by a display station operator. A given transaction can be used concurrently from one
or more display stations. The execution of a transaction for a certain operator is also referred to as a
task.

2. A given task can relate only to one operator.

transient area
An area within the control program that is used to provide high-priority system services on demand.

Transport Layer Security
The newest SSL cryptographic protocol. It provides additional strength to privacy and data integrity.

Turbo Dispatcher
A facility of z/VSE that allows to use multiprocessor systems (also called CEC: Central Electronic
Complexes). Each CPU within such a CEC has accesses to be shared virtual areas of z/VSE: supervisor,
shared areas (24 bit), and shared areas (31 bit). The CPUs have equal rights, which means that any CPU
might receive interrupts and work units are not dedicated to any specific CPU.

U

UCB
Universal character set buffer.

universal character set buffer (UCB)
A buffer to hold UCS information.

UCS
Universal character set.

user console
In z/VSE, a console that receives only those system messages that are specifically directed to it. These
are, for example, messages that are issued from a job that was submitted with the request to echo its
messages to that console. Contrast with master console.

user exit
A programming service that is provided by an IBM software product that can be requested during the
execution of an application program for the service of transferring control back to the application program
upon the later occurrence of a user-specified event.

V

variable-length relative-record data set (VRDS)
A relative-record data set with variable-length records. See also relative-record data set.

variable-length relative-record file
A VSE/VSAM relative-record file with variable-length records. See also relative-record file.

Glossary 169

VIO
See virtual I/O area.

virtual address
An address that refers to a location in virtual storage. It is translated by the system to a processor storage
address when the information stored at the virtual address is to be used.

virtual addressability extension (VAE)
A storage management support that allows to use multiple virtual address spaces.

virtual address space
A subdivision of the virtual address area (virtual storage) available to the user for the allocation of private,
nonshared partitions.

virtual disk
A range of up to 2 gigabytes of contiguous virtual storage addresses that a program can use as workspace.
Although the virtual disk exists in storage, it appears as a real FBA disk device to the user program. All I/O
operations that are directed to a virtual disk are intercepted and the data to be written to, or read from,
the disk is moved to or from a data space.

Like a data space, a virtual disk can hold only user data; it does not contain shared areas, system data, or
programs. Unlike an address space or a data space, data is not directly addressable on a virtual disk. To
manipulate data on a virtual disk, the program must perform I/O operations.

Starting with z/VSE 5.2, a virtual disk may be defined in a shared memory object.

virtual I/O area (VIO)
An extension of the page data set; used by the system as intermediate storage, primarily for control data.

virtual mode
The operating mode of a program, where the virtual storage of the program can be paged, if not enough
processor (real) storage is available to back the virtual storage.

virtual partition
In VSE, a division of the dynamic area of virtual storage.

virtual storage
Addressable space image for the user from which instructions and data are mapped into processor
storage locations.

virtual tape
In z/VSE, a virtual tape is a file (or data set) containing a tape image. You can read from or write to a
virtual tape in the same way as if it were a physical tape. A virtual tape can be:

• A VSE/VSAM ESDS file on the z/VSE local system.
• A remote file on the server side; for example, a Linux, UNIX, or Windows file. To access such a remote

virtual tape, a TCP/IP connection is required between z/VSE and the remote system.

170 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

volume ID
The volume serial number, which is a number in a volume label that is assigned when a volume is
prepared for use by the system.

VRDS
Variable-length relative-record data sets. See variable-length relative record file.

VSAM
See VSE/VSAM.

VSE (Virtual Storage Extended)
A system that consists of a basic operating system and any IBM supplied and user-written programs that
are required to meet the data processing needs of a user. VSE and hardware it controls form a complete
computing system. Its current version is called z/VSE.

VSE/Advanced Functions
A program that provides basic system control and includes the supervisor and system programs such as
the Librarian and the Linkage Editor.

VSE Connector Server
Is the host part of the VSE JavaBeans, and is started using the job STARTVCS, which is placed in the
reader queue during installation of z/VSE. Runs by default in dynamic class R.

VSE/DITTO (VSE/Data Interfile Transfer, Testing, and Operations Utility)
An IBM licensed program that provides file-to-file services for disk, tape, and card devices.

VSE/ESA (Virtual Storage Extended/Enterprise Systems Architecture)
The predecessor system of z/VSE.

VSE/Fast Copy
A utility program for fast copy data operations from disk to disk and dump/restore operations via an
intermediate dump file on magnetic tape or disk.

VSE/FCOPY (VSE/Fast Copy Data Set program)
An IBM licensed program for fast copy data operations from disk to disk and dump/restore operations via
an intermediate dump file on magnetic tape or disk. There is also a stand-alone version: the FASTCOPY
utility.

VSE/ICCF (VSE/Interactive Computing and Control Facility)
An IBM licensed program that serves as interface, on a time-slice basis, to authorized users of terminals
that are linked to the system's processor.

VSE/ICCF library
A file that is composed of smaller files (libraries) including system and user data, which can be accessed
under the control of VSE/ICCF.

Glossary 171

VSE JavaBeans
Are JavaBeans that allow access to all VSE-based file systems (VSE/VSAM, Librarian, and VSE/ICCF),
submit jobs, and access the z/VSE operator console. The class library is contained in the VSEConnector.jar
archive. See also JavaBeans.

VSE library
A collection of programs in various forms and storage dumps stored on disk. The form of a program is
indicated by its member type such as source code, object module, phase, or procedure. A VSE library
consists of at least one sublibrary, which can contain any type of member.

VSE/POWER
An IBM licensed program that is primarily used to spool input and output. The program's networking
functions enable a VSE system to exchange files with or run jobs on another remote processor.

VSE/VSAM (VSE/Virtual Storage Access Method)
An IBM access method for direct or sequential processing of fixed and variable length records on disk
devices.

VSE/VSAM catalog
A file containing extensive file and volume information that VSE/VSAM requires to locate files, to allocate
and deallocate storage space, to verify the authorization of a program or an operator to gain access to a
file, and to accumulate use statistics for files.

VSE/VSAM managed space
A user-defined space on disk that is placed under the control of VSE/VSAM.

W

wait for run subqueue
In VSE/POWER, a subqueue of the reader queue with dispatchable jobs ordered in execution start time
sequence.

wait state
The condition of a processor when all operations are suspended. System recovery from a hard wait is
impossible without performing a new system startup. See hard wait.

Workstation File Transfer Support
Enables the exchange of data between IBM Personal Computers (PCs) linked to a z/VSE host system
where the data is kept in intermediate storage. PC users can retrieve that data and work with it
independently of z/VSE.

work file
A file that is used for temporary storage of data being processed.

172 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Numerics

24-bit addressing
Provides addressability for address spaces up to 16 megabytes.

31-bit addressing
Provides addressability for address spaces up to 2 gigabytes.

64-bit addressing
Provides addressability for address spaces up to 2 gigabytes and above.

Glossary 173

174 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

Index

A
accessibility xi
APAR 95
APAR fix 95
APAR number definition 95
APAR, revoke 102
application of PTF 101
APPLY statement 98
ARCHIVE statement 80

B
BACKUP PRODUCT statement 81
base component 73
book design 63
building of PTF 98

C
class

AIT 51
BAM 43
command processing exits 51
FSVC 42
LNG 52
PSUP 40
SUP 35
SVC 41
vendor exits 20
VSAM 57

CLC 71
component ID, use of fully-qualified 73
component identifier 72
component identifier, fully qualified 72
Component Level Code (CLC) 71
component number 71
corequisite PTF 97, 125
corrective service 95
cover letter 100
CREATE HISTORY statement 80
creation of tape 81
creation, feature tape 83
creation, header 78
creation, history 79
creation, stacked tape 87
creation, tape for selective installation 83
cumulative service tape 102
customer compilation, avoiding 91
customizing 91
customizing, job sample 133

D
database, vendor applications 4
dialogs for installation 89

disability xi
distributing a PTF 99
distribution tape, preparation 77
documentation 63
documentation, shipment 63
documentation, task-oriented 63
DTF build

LE/VSE 52
vendor interface 52

E
Early Test Program 3
ETP, vendors 3
examples

PRODID 18
exclude list, service tape 100

F
feature 73
feature tape, creation of 83
fix, APAR 95
fix, local 95
format, PTF 98

G
generation library 77

H
header creation 78
High Level Assembler for VSE

Full scale input processing processing exi 50
improved console support 48, 50
Message processing processing exit 48

history creation 79

I
I/O interrupt (subclass = IOINT) 36
I/O supervisor

I/O interrupt (subclass = IOINT) 36
post SIO/SSCH (subclass = POSTSIO)
35
SSTATE 35
vendor interface 35, 36

improved console support
command/reply processing exit 49
Message processing exit 48
operator communications 48, 49

INSTALL PRODUCT FROMTAPE statement 89
installation 89
installation of PTF 101
installation, tape with one product 89

Index 175

installation, use of MSHP job 89
installation, use of VSE dialogs 89
installing from stacked tape 91
installing selected parts 90
interfaces

for vendors 11, 20
PRODEXIT macro 20
PRODID macro 11
vendor exits 34
VSE/AF 11, 20

interfaces, overview 9

J
JCL Interfaces

JCLIF macro 32
job streams, samples 107
job, sample of customizing 133
jobs for installation 89

L
layout of tape, product 82
LE/VSE

DTF build 52
vendor interface 52

library member types 119
local fix 95

M
macros

PRODEXIT 20
PRODID 11

Macros
JCLIF 32

Maintain System History Program 71
manual structure 63
model 71
MSHP 71, 101, 102
multicultural support 65
multicultural support, z/VSE 66

N
National Solution Center Database 4
NLS, method of distribution 83
non-library material, shipment of 82
nucleus function

class = PSUP 40
class = SUP 35
class = SVC 41
vendor interface 35, 40, 41

O
operator communications

command/reply processing exit 49
improved console support 48, 49

overview, interfaces 9

P
PartnerWorld 3
PC code shipment 85
PC code, shipping with VSE 131
post SIO/SSCH (subclass = POSTSIO) 35
prerequisite PTF 97
preventive service 102
preventive service, refresh 102
PRODEXIT macro 20
PRODEXIT services

DEFINE service 23
DELETE service 30
DISABLE service 29
DSECT service 31
dynamic ENABLE service 27
ENABLE service 26
eynamic DISABLE service 30
RETURN service 28

PRODID AUTH service 14
PRODID CHECK service 16
PRODID DEFINE service 11
PRODID DELETE service 17
PRODID DSECT service 13
PRODID macro 11
PRODID, example 18
product code 71
product distribution tape, preparation 77
product identification, MSHP 71
product identification, vendor convention 74
product identifier 72
product numbering 71
product stacking, requirements 87
product structure 73, 77
product, tape layout 82
production library 77
program retrieval

exchange phase (subclass = EXPHASE) 38
external interrupt (subclass = EXT) 38
post fetch (subclass = POSTFCH) 40
pre fetch (subclass = PREFCH) 39
SSTATE 37
vendor interface 37–40

Program Temporary Fix (PTF)
analyze and apply service tape 101
application 101
apply PTF from service tape 101
building 98
corequisite 97
distribution 99
format 98
indirect service application 101
installation 101
MSHP 101
number 96
prerequisite 97
resolving an APAR 96
revoke. 102

program update tape 102
programming interface, different VSE releases 9
programming interface, IBM 9
PTF 96
PTF, corequisite 125
PTF, samples 123

176 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

PTF, superseding 126
publications 63

R
requirements, product stacking 87
REQUIRES, sample of 96, 110, 125–127
requisite 101
RESIDENCE statement 80
revoke 102

S
selected parts, installing 90
selective installation, creation of tape for 83
service

FSU 102
installation 102
refresh 102

service documentation 100
service synchronization 125
service tape, exclude list 100
service tape, tape history 100
service tape, VSE 99
service, corrective 95
service, preventive 102
services

PRODEXIT DEFINE service 23
PRODEXIT DELETE service 30
PRODEXIT DISABLE service 29
PRODEXIT DISABLE,DYN=YES service 30
PRODEXIT DSECT service 31
PRODEXIT ENABLE service 26
PRODEXIT ENABLE,DYN=YES service 27
PRODEXIT RETURN service 28
PRODID AUTH 14
PRODID DEFINE 11
PRODID DSECT 13

Services
PRODID CHECK 16
PRODID DELETE 17

shipment of PC code 85
shipment of VM code 85
shipment, non-libary material 82
source code, shipment of 91
stacked tape creation 87
stacked tape, installing from 91
stacking of product tapes 85
subclass

vendor exits 20
SUBSID INQUIRY macro 9
SUPERSEDES 98
superseding PTF 126
synchronization, service 125
system interface

class = FSVC 42
vendor interface 42

T
tape creation 77, 81
tape history, service tape 100
tape layout, product 82

tape stacking 85
tapefile ID, definition 81
tapefile ID, use of 80, 89–91
task-orientation 63
testing, vendor software 3
type 71

V
vendor exits

class 20
specifications 34
subclass 20
VSE/AF attention routine, class=AIT 51
VSE/AF basic access method, class=BAM 43
VSE/AF console support, class=DOC 48
VSE/AF fast path supervisor call, class=FSVC
42
VSE/AF supervisor call, class=SVC 41
VSE/AF supervisor, class=PSUP 40
VSE/AF supervisor, class=SUP 35
VSE/VSAM Exit, class=VSAM 57
z/VSE language environment, class=LNG 52

Vendor Exits
communication area 20
Deletion 22
Problem Program State (PSTATE) 22
Process 20
PRODEXIT Area 20
PSW Key 20
Recovery 23
Register Conventions 22
Supervisor State (SSTATE) 21

vendor interface
class = AIT 51
class = BAM 43
class = DOC 48
class = DOCP 49
class = FSVC 42
class = LNG 52
class = PSUP 40
class = SUP 35
class = VSAM 57
class=SVC 41
end-of-task - $IJBSEOT phase (subclass = EOT) 41
exchange phase (subclass = EXPHASE) 38
Full Scale input processing exit 49
I/O interrupt (subclass = IOINT) 36
I/O supervisor 35, 36
Message processing exit 48
nucleus function 35, 40, 41
operator communications 48, 49
post fetch (subclass = POSTFCH) 40
post SIO/SSCH (subclass = POSTSIO) 35
pre fetch (subclass = PREFCH) 39
PRODEXIT services 20
PRODID services 11, 19
program check (subclass = PCK) 36
program retrieval 37–40
SSTATE 35, 37
system interface 42

vendor, communication channels 3
vendor, product identification 74
VM code shipment 85

Index 177

VSAM
vendor exit 57

VSE service tape 99
VSE/AF

vendor interfaces 11, 20
VSE/SP Unique Code dialog 101
VSE/VSAM

vendor exit 57
VTAPE Command Interface 32

Z
ZAP 95
ZAP, examples 121

178 IBM z/VSE: z/VSE V4R3.0 Preparing a Product for VSE

IBM®

Product Number: 5609-ZV5

SC33-8424-02

	Contents
	Figures
	Tables
	Notices
	Accessibility
	Using Assistive Technologies
	Documentation Format

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Part 1. IBM Contact Points
	Chapter 1. IBM Communication Channels for Software Vendors
	The IBM PartnerWorld
	Early Test Program (ETP)
	Further Information

	National Solution Center Database
	Example

	Part 2. Programming Interfaces
	Chapter 2. Overview
	IBM Programming Interfaces
	Other Attachments
	Support of Multiple VSE Releases
	Vendor Support

	Chapter 3. Macros and Vendor Exits
	PRODID Macro - Accessing VSE Services
	PRODID DEFINE Service
	Prerequisites
	Requirements for the caller
	Input Parameter Description
	Output
	Return Codes
	Cancel Conditions

	PRODID DSECT Service
	Input Parameter Description
	Output
	Return Codes

	PRODID AUTH Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Return Codes
	Cancel Conditions

	PRODID CHECK Service
	Requirements for the caller
	Invocation
	Input Parameter Description
	Output
	Return Codes
	Cancel Conditions

	PRODID DELETE Service
	Requirements for the caller
	Input Parameter Description
	Output
	Return Codes
	Cancel Conditions

	Example of PRODID
	Defining your Program to VSE and Requesting a Token
	Using a VSE Service

	PRODEXIT Macro - Handling Vendor Exits
	Exit Specification
	Classes and Subclasses
	Exit Process
	Vendor Exit PSW Key
	PRODEXIT Communication Area Location At Exit Entry

	Exit Scopes
	Exit Types
	Supervisor State (SSTATE) Exits
	Problem Program State (PSTATE) Exits (RID = USERTID)

	Register Conventions
	On Exit Entry:
	On PRODEXIT Service Return

	Deleting an Exit
	Recovering from Errors
	PRODEXIT Services
	The New Dynamic Enable/Disable Services

	PRODEXIT DEFINE Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Return Codes
	Cancel Conditions

	PRODEXIT ENABLE Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions

	Dynamic PRODEXIT ENABLE
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions

	PRODEXIT RETURN Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions (PSTATE Only)

	PRODEXIT DISABLE Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions

	Dynamic PRODEXIT DISABLE
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions

	PRODEXIT DELETE Service
	Requirements For The Caller
	Input Parameter Description
	Output
	Cancel Conditions

	PRODEXIT DSECT Service
	Area Location

	Macro Interface to VTAPE Command
	Invocation
	Restrictions
	Input

	Vendor Exits
	Vendor Exit - VSE/AF Supervisor (SUP)
	Post SIO/SSCH
	I/O Interrupt
	Program Check
	External Interrupt
	Program Retrieval - Exchange Phase
	Program Retrieval - Pre Fetch
	Program Retrieval - Post Fetch

	Vendor Exit - VSE/AF Supervisor (PSUP)
	End-Of-Task - $IJBSEOT Phase

	Vendor Exit - VSE/AF Supervisor Call
	Vendor Exit - VSE/AF Fast Path Supervisor Call
	Vendor Exit - VSE/AF Basic Access Method
	Invocation
	Pre OPEN
	Pre CLOSE
	EOX Processing
	CVH Processing
	Post OPEN
	Post CLOSE

	Vendor Exit - VSE/AF Console Support
	Message Processing Exit
	Command/Reply Processing Exit
	Full Scale input processing exit

	Vendor Exit - VSE/AF Attention Routine
	Pre-Scan Exit
	Post-Scan Exit

	Vendor Exit - z/VSE Language Environment
	A return code is set up in IJBVRC
	How to Use this Exit

	Vendor Exit - VSE/VSAM Extent Exit

	Part 3. Documentation and Multicultural Support
	Chapter 4. VSE Customer Documentation
	Task-Oriented Approach
	Shipment Documentation
	Operational Manual(s)

	Chapter 5. Providing Multicultural Support
	Common User Access (CUA)
	Concepts of Multicultural Support
	Enable
	Implement

	Language Subsets
	National Language Standards and Laws
	Implementation Considerations
	Multicultural Support for z/VSE Version 4

	Part 4. Creating Installation Tapes and Servicing Your Product
	Chapter 6. VSE Product Numbering Conventions
	MSHP Product Identification
	Component Identifier
	Fully-qualified component identifier

	Product Identifier
	Using the Component and Product Identifier
	Rules for Product Structuring
	Convention for Vendor Product Identification
	Type
	Model
	CLC
	European vendors
	American vendors
	Deviations

	Chapter 7. Creating Installation Tapes
	Creating a Product Distribution Tape on VSE
	System Requirements
	Preparing a Library
	Creating the Header
	Creating the History
	Example for creation of an MSHP history file
	Restrictions

	Creating the Tape
	Example for an MSHP BACKUP job
	Resulting Tape Layout of the Product

	Shipment of Non-Library Material

	Creating a Feature Tape
	Creating a Tape for Selective Installation of a Product or Feature
	Create the history files in either of the following ways
	Create the tape

	Shipping VM Code with a VSE Product
	Shipping PC Code with a VSE Product
	Tape Stacking
	Format of a Stacked Tape or Cartridge
	Format

	Product Stacking Requirements
	Creating a Stacked Tape
	Method 1
	Method 2

	Chapter 8. Installing and Customizing Your Product
	Installation
	Using the VSE Installation Dialogs
	Using an MSHP Install Job
	Installing a Tape with One Product
	Example

	Installing a Tape with One Product but Parts to be Selected
	Example

	Installing from a Stacked Tape
	Example

	Customizing
	Avoiding Customer Compilation of Source Code
	Customizing Tasks for the Product
	Writing Customizing Jobs
	Use of REXX/VSE

	Chapter 9. Providing Service
	Corrective Service
	APAR
	APAR Fix
	Resolving an APAR via PTF
	Ensuring the Correct Environment
	Using REQUIRES
	CASE 1: Defect in module A1 and A2 of component A
	CASE 2: Defect in module A1 that requires also a change in module B1
	Summary

	Building a PTF
	Distributing a PTF
	Description

	Installing a PTF
	VSE/SP Unique Code Dialogs
	MSHP Processing Sequence

	Revoking PTFs and APARs

	Preventive Service
	Cumulative Service Tape
	Refresh
	VSE Refresh Installation

	Part 5. Packaging and Service Samples
	Chapter 10. Packaging of Products
	Library Creation
	Creation of a Library on a Sequential Disk Extent
	Definition of a Library in VSAM Managed Space

	Creating the Header
	Header Information
	Product Containing "Restricted Materials" (non-OCO product)
	Product not Containing any "Restricted Materials" (OCO product)
	For an OCO Product with More than One Copyright Information

	Creating or Changing VSE/Advanced Functions History Information
	Creating History Information
	History Information for One Component
	Information using MSHP
	Information using Job Control

	History Information for a Feature of a Product
	History Information for a Product Consisting of Multiple Components Installed Together
	History Information for a Product Consisting of Multiple Components Installed Selectively

	Adding, Changing and Restoring History Information
	Adding Information to an Existing History File
	Removing Product and Component Identifiers
	Changing Entries in an Existing Product History
	Restoring the History File

	Backup of a Product or Feature
	Back up the Production and Generation Part of a Product
	Back up the Production Part of a Product or Feature
	Back up a Product or Feature for Selective Installation

	Installing a Product or Feature
	Installing a Product with a Production Part
	Installing a Product with a Production and Generation Part
	Installing a Product with Selected Parts
	Installing a Product from a Stacked Tape

	Chapter 11. Library Member Types
	Chapter 12. APAR Fix (ZAP)
	Chapter 13. Programming Temporary Fix (PTF)
	PTF for Phases
	PTF for Modules
	PTF for Macros
	PTF for Synchronizing Service
	General description
	Solution

	Superseding PTF and Associated Requires-Groups
	REQUIRES-Groups if Several Products Affected
	Sample for a Complex PTF Structure

	Chapter 14. Shipping PC Code with VSE
	Shipping Workstation Code with z/VSE
	Packaging Workstation Code into a Product Library
	The Download Procedure
	Automatic Download

	Chapter 15. Job for Customizing

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	Z

