IBM VSE/Enterprise Systems Architecture
VSE Central Functions
6.7

VSE/REXX Reference

.||I

Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xxiii.

Twelfth Edition (March 2004)

This edition applies to Version 6 Release 7 of IBM REXX/VSE, which is part of VSE/Central Functions, Program Number
5686-066, and to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, comments may
be addressed to:

IBM Deutschland Entwicklung GmbH
Department 3248

Schoenaicher Strasse 220

D-71032 Boeblingen

Federal Republic of Germany

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1988, 2004.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

FiBUIES. e iuiieiieiiiiieiiiiieieiiiieiieiiettettettetestescsscssssssssssassassassassassassassasssnssassassassasaas XV
L= 1+ 1 (=PRI 4 |

[\ 0] 1 1o = -SRI ' ||
Programming Interface INformation.......ccciii it ve e e ba e e ae e e XXiii
Trademarks aNd SEIVICE MaArKS.....uuueiiiiiiiiiiiieiciiiieeeee e e e e e e e s e s sssssbbarrereeesseesssssssssarrrrereeeeesas XXiV

Summary of Changes.....cccccvcieiiiiiieiiiieiiiiiieiiiieiiniiienicaitesscesscsssessssssessesassesssss XXV

Chapter 1. INtroduction......ccccieiieiieiieiieiieiieiiiiiiiiiieiiesiesiastecssssessssssssassasssssassens 4

WHhO ShOULA REAA ThisS BOOK.....iiiiiiiiiiieiiiiiee ettt eeeiieeeeceeireee e eeiteee e eeavaeeeeesssaeeeeeeasessesssssessesenssansessnnsnneeas 1
The Compiler and the Library for REXX/37 0. uiiiiiieeiieeeiieeeireeecieeesieeesteeesveessareeesaaaessvaesnnsaeennsaessnsens 1
HOW 1O USE ThiS BOOK...eiiiiiitiiiiieiiiieceiiteeeceectieeeeceeiteee e eeeateeeeeesasbeeeeessseseeeessssseesenssessessssessesenssseneesenssrens 1
How to Read the SyntaX DiagramS....c..ueccieeciiieeiieeeiieeeiteeesteeesteeesteeesateessabee e abeeesssaeesasaesnnseesnnsaesnnees 3
For FUrther REXX INfOrMAatioN......ccoueieiiieieiecceiieee e cecttee e ceetreeeeeeibeeeeeeetbeeeeesnseseeeessseseeeessnseseesnssenees 4

Chapter 2. REXX General ConCepts....cccciuirieiieiiiienieinirenicesiesssessecassessecassesssassecsns 7

Where to FINAd MOre INfOrMAtiON.......iiiicieieeceiiieee et ceeite e eeteee e eestaeeeeesabeeeeeesabesseesensssreesensseseeesnnsenns 7
SErUCTUrE aNd GENEIAL SYNTAX....iiiiiieiciieiciieecteeceiee e eete e e teeeetteeestteesesteessseeeessteseaseeesasesesasseesassassnsseesnns 8
(01 3 F= U= Tox =1 £ T U U ORI 8
(00T 0010 41T 21 £SO USN 8
TOKEINS ettt ettt ettt eete e e eetba e e e eeabaeeeeeeabeaeeeeaabesaeeeaabbaeeeeaaabaaeeeeaabaaaeeeebtareeeenrbareeeeerrneeeeanes 9
TPl SEMICOLONS. . uiii ittt ettt et e eette e s tte e s bte e s bae e s bteeebaeessaeesseeesseessseessseeennns 12
CONTINUATIONS. .. citeeeeecciieeee ettt eette e eeebee e e e eebteeeeeeataeeeeessbareeeesssseeeeesssessessassessesensbeeseesensssseesenssrneas 13
EXPresSions aNd OPEIatorS......uiicieeicieeeeieeeeteeeeteeeeteeseteeseteeesteessssaesssseeasssasassssesassesessseseasseessssessnseenns 13
oY ST (o T T USSR 13
(0] 01=T 71 (] =TT URPTTPPPPPPR 13
Parentheses and Operator PreCEAENCE........uiiciiiieeeecceeecte ettt re e e rre e e tre e e aae e e rae e e areesnes 16
ClauSses ANd INSTIUCTIONS...cccvviieieeiiieeeeeiieeeeeeeiteeeeeeeteeeeeestaeeeeeessbeeeeeessesseeessssssseessssssseesasssseeseesssreseessses 18
NULL CLAUSES..vveeeeeereeee ettt ettt eeette e e ceetbee e e eeeabeeeeeessbaeeeeessbaeeeeesessesseseasbassessassassessesstssessenstansesennsrees 18
LAELS ettt ee et e e et e e s e bt aeeeeabaar e e e e abaareesaabrareeeenntaneeeennnrees 18
TN S TUCTIONS ctttieee ettt ettt ceett e eeetbe e e e eetbee e e e eeabaeeeeeesbaseesesssaeeeeeessbaeeesesraneesssssaseeesassreseessnsns 19
FE Yy LT 0 1=T 0 TSR 19
KEYWOI INStIUCTIONS. ... tiiietieeeiee ettt ettt et e e te e e e te e e e te e e e te e e eateeesateeeeateeeessaeesnteeeneeesnsesannees 19
COMIMANGS. ccctriieeeeiiee ettt e e eeebte e e eesbaeeeeessbeeeeeesabaseeeessssaseesassbassesensssseessassesseesasssaseesnssssneeesnnes 19
ASSIZNMENTS AN SYMDOLS....ii it e e e e ste e e e tee e s bee e sbaeeeabeeesabaeeensaessnsaeennseas 19
CONSEANT SYMDOLS. ... ettt ettt e et te e stte e e bee e s bae e s bteesbaeessaeesaseeessaeesseesssseennns 20
SIMIPLE SYMDOLS...eii et ee e e rte e e e te e e e be e e e tee e sbaeesbaeesabeeeenbeeeenseeesnsaeeansaeennseas 20
(07T 9] 0T T aTe IR V7a 01 Lo E 3RS 20
Y (=] 1 1 =TS 21
Commands t0 EXTErNal ENVIFONMENTS.....uuiiiiiiieieeeiireeeeeeiieeeeceeiteeeeeeeiteeeeeeeaaeeeeeeesateeeesessseseeessseseeessssenes 23
ENVITONMIENT ..ttt e e et e e e e eebaa e e e eeabaeeeeeesbbseeesesbaeseeesssbeseessssesseesansrsseesnsrrneas 23
COMIMIANGS. cccttieeeeeireeee ettt e e eeebte e e eeeabeeeeessbeeeesesbaseeeeasssaseesessbasseseasssssessasssssessnssraseesnssssneeesnnes 23
Host Commands and Host Command ENVIFONMENTS.......ccivuvieeiiiiiieeeeeeeiieeeeeeireeeecenreeeeeeesneeeeeennnees 24
The VSE Host Command ENVIFONMENT........eiiiiiiieieiieitieececreee e ceerreeeeeenteeeeeeaneeseeensseeeeesesresesssnsseneas 25
The POWER Host Command ENVIFONMENT........ciiiuiiiiiiiiieieceeireeeceeereeeeeeenreeeeensveeeeesssraeseessssseseessnnns 25
The JCL Host ComMMaNd ENVIFONMENT.....uiiiiiieeieieeireeeeeeeiieeeeceeiteeeeeeeireeeeeeerreeeeesssresseesssseesesesssseseennns 26
The LINK and LINKPGM Host Command ENVIFONMENTS.......ccovuviiiiiiiieeeeeiieeeceeireeeecesvreeeeesesneeeeeennns 26

The CONSOLE Host Command ENVIFONMENT......uueeeeeeeeeeee ettt e e s s e s s e e e e e e e aaeeeesnenes 26

Chapter 3. Keyword INStrucCtions......cccccecieiiuieieiincenienecieniecentecscessecascessecessocscacsss 27

AADDRESS. et e e e e e e e e e e e —— e e e e e e e e e e e e e e e a—————aeaeeeeeeeeaaaraa——aaaaaeeeeeeeeeaaannararrrraeees 27
Y o S 29
00 Y IS 30
) SRS 32

Y1007 01 (= L@ I €10 TUT o F SR UURRL 33

REPELITIVE DO LOOPS. . uutiieiieiiiieeieiitieeeeeittteeeeeetteeeesesteeessesteseeaeasssaeeseassesssesassesseseanssssesssssssnessssssenens 33

Conditional Phrases (WHILE and UNTIL)....cccieeciriieerieeceeeieesieeeteeeeseeseeesseesseeesseesnseesseesnsesnseesnnenn 35
3L SRS 37
[1 L T PO P TR PPPPPPPPR 37
I S 38
INT ER P RET ... ittt rresee s s e s s e et e et e e e e et e et e et e e e e e b e s s e s aasasaassassaeeeeeessesseseesnssssssssssssssssnnssnnssens 39
T E R AT E ettt e s e e s e e s s e e s e e e e eeeeee et e et e e e e s e e s se s s s e aaasaeesaeeeeeeeeeeeeereaeereerrnsnnnnannn 40
LB AV E . et e e s e e e e e e e et e et e e e et e et ———————aaeeeaeeaeeeeeeeeeeteete et e et et eaaa i naaaaeeaens 41
N O Pttt ettt e et e e e e e e e e e e e e e e e e eeeea e a———traeaeeeeeeeeaa e aa————araeeeeeeeeeaaaaara—taaaaeaeeeeeeaaaarrrararaereeaeaas 41
NUMERIC. ...ttt e e e e e e e et e e e e e e e eese e e e e b et a e e e e e eeeeeeseaaansssesanaeaeaeessesaansnsnsrasennnaeaseesesnnnnes 42
L0] 18 0 TR 43
L Y =R SUPPRRN 44
PROGCEDURE.... e ettt ettt et e e e e e e s e e s e e aa e s e e e e e eeeeeeesessansssesaeaaaeeseseesaanssssrnannaaaeesesannns 46
PULL. ettt sre s se e s e e st e e e e e e et et e ettt e e e e e e e e e s s s s asassassaesaeeeeeeeeeeseenessessssssssssssssssssssnsseeseeseeeeeeeesannann 48
U TR 49
QUEUE ettt e ee e e e eee e e e ee e s e e st eeeese e e ee e s e eeeeeeeeeeeeaseseeeeeseeeeeeseseseseesaseseesaseseaeeseeeaeenenens 49
RETURN . .. etttttttttittereeesee e e e s e e e e ee ettt ettt et e e e e s e s aaa s sessassassaeseeeeeeesseeesssesssssssssssssnssssssssseeseeeeeeeeseesesenseeenes 49
10 S PPN 50
10 = I U UPRPRR 50
SIGIN AL ettt ettt e e e e e e e s e s e et e e e e e e e e e e e e e e e e a———taaaeeeeeeeaaaaaa—a—ataeaeeeeeeeeaaaaanrarataraaeeeeeeeeaaannns 51
I3 O PP 53

Alphabetic Character (Word) OPtioNS......ccciiecciieeieeeceeeecee et e et e e see e e etae e e eareeeeareeeeaseesenseeeesseasnneas 54

e oY 1D o) o TSRS 54

N U =T A Tl @] o] o ISR 55

F R oY Tor- LI =t C= T 0] o] 1R 56

FOrmat Of TRACE OULPUL.....eeiiiee ettt ettt et e e e tre e e s et e e e s e e nbe e e e e snbeeeeeesnsaaeeesesseneesennssnnenns 56
UPPER. ettt ettt et s e e s e e e e e e e e e e e e e e e e et e e e e e et e e et b et a e aeeaeeeeeeaeeeeeeeeeeteererterraraen 57

R0 €= D S UUPPRRE 59
FUNCEIIONS ANA SUDTOULINES....uutiiiiiiiiiie ettt e e e e e e e e e aaababreeeeeeeeeeesessssssssesseeseeeeessennnns 59
YT el g N O e 1= OO PTURRRRRSOPP 60
Errors DUFNG EXECULION...cicctiiieiieieiteeeite ettt et s sttt s e e s tae e s saae e s bee e s see e s ateessasaessbaesnaseesnssaesnses 61
BUILE-IN FUNCTIONS. .etttiiieeei ettt e et et e e e ee e bbb b e e e e eeeeeesesesssssbseaeeeeeeeesseesssssssssenseeeesssenaes 61
ABBREV (ADDIEVIGTION)...eiiiiiiteieeieeieeeeeeetteee e ceite e e e eebee e e s sebteeessessaeeessessaeeeesessseeessensresessensseeesssssreeeas 62
ABS (ADSOLUTE VALUE)...eii ittt ettt ee ettt e e e st e e s eeavaee s sesseeeeeessareeessensbanesssansennessns 62
F BB 3] S YU 62
FY Y = (U] ' 1= 3 T PSSP 63
F 3 €11 U 64
BITAND (Bit DY Bit AND)...eiiiiiiieiiieeeiieeeiee et e et e eeteeeeteeeetteeeeateeeesbeeeeaseesessaesesseeassessnsseessseesssaesnnees 64
BITOR (Bit DY Bit OR)....utiiieiiieeiieeeiiee ettt ete e ettt e e tte e e te e et e e e aae e e ssee e sbeeeesseeeesseesenseseenseasansaesnnses 64
BITXOR (Bit by Bit EXCLUSIVE OR)...eiiicuiieeiiieeciiieeciiee ettt e ecitee ettt e eeateeeeate e e stee e ssee s nseeessesenseessseesnnseenns 64
B2X (Binary t0 HEXad@CIMAL).....c.ueiieiee ettt te e et e et e e et e e e tee e e bee e eaee e enseeeeans 65
CENTER/CENTRE . ..tttitiiiiiiieecctttteee et et e eeeeeciabrere e e e e e e e e seseessssssaaaeeseesesseeseassssssasssesaeaesssessassssrrarerreeaens 65
COMPARE. .. e et eee ettt eeeeeeeeeeseeeeeeeeaeasesssssssassasssssa s s s naaaasassaeaeseessessssssssssssssnssnnnnnnnnnnnnnns 66
(000 11N 1 1]\ U 66
(000] 1 = T 67
(001D N (01T Tr=Toa (=1 i (o B LYol = L) O 67

(002 QL (01 F=1 2= Tox (=Y g (o I (=)= Ve [=Tod 1 1 0 = 1) FE RN 68

DA I USRS 69
DBCS (Double-Byte Character Set FUNCLIONS).......iiccuieeeciieeeciieeeiieecctee et eeteeeeereeeecteeesbeeeeraeeeraeeenns 71
DELSTR (DLELE StHNE).cuiiiceiieieeieeeieesteeste et esttestesstee s tessseesseessseesste e seesseessaesseesnseeseessseenseesssesnsennn 71
DELWORD (DLETE WOI)....cioeeeeeeieeeeeee ettt ettt ettt e et e e s seaaae e s sesbaeeesesnseeeessensrenessessanessesnsneeeas 72
DIGIT S ittt rreeeeeeeeeeeeeeeeeeeeeeeeeeeeseesesassssssasaaaaaanassaseesaeeeeeeasesssesssssssssssssssnnnsnnnnnnnnseseeseeeeeeesssssnnns 72
DA ON (D L=Yel g =1 o O T U r=Yox =1 o) IR 72
D2X (Decimal to HEXAAECIMAL) . .uuuiiiiieieee ettt ettt eetae e e e e eabe e e sesnbeeeessensaeeessensseneessnns 73
R R O] S I =) I 73
EXTERNALS. ... oottt rrese s e e e e eeeeeeeeeeeeeesesseas e s s s s s s s s s naaasaesaseeaesesesssssssssasssssssnnnnnnnnnnnnnns 74
1 0 RN 74
T]] U 74
FORM AT ..ttt rrcreeeeeee e e e e e e e e eeeeee ettt eee et s e e s s s s s s a —_aaaaasaesseeaeaeeeesesssssssssesssssssssnsnnnsnnsnnnesseeeeeeeeeeeeessssnnnns 74
U 4NN 75
LN = SN 75
IN S E R T et ceeeieeee ettt et eeeeeeeeeee et reeeeeseesaeeeeeeeseesssssssssssssssssssnnsnnnnsasasseeseeeeeessessssssssssssssnnnsnnnnnnnnnns 75
JU S TR Y ettt ceeieeee e et eeeeee et ee et e e eeeesseesaaeeeaeeesssssssssessssssssnsannsnnnssaaesesasseeeeessesssessssssssssnnnnnnn 76
LASTPOS (LAST POSITION)...eiiiiiteieiiieteeie e cettee e ceettee e e eetrte e e e eavee e e s sesteeeseesaaeesessssaeeessesraeessssnssneesssnssenes 76
L E R T ettt e ettt e e e ettt e e e ee e et u e eeeetataueeeettann—eaeetttanaaeeetttnnaaeerttnnaaaeeretnnaaaaeernnnnanaaans 76
LENGT H. ..ottt ceeee e e e s e e e e eeeeeeeeeeeeeee s s e s s s s s s s s a s s naaaaaseesaseeassessssssssssessssssssnssnnnnnnnnnseseneeenesens 76
N Y 174 = 77
MAX (MAXIMIUIM) ..c.utteeeiieeieeeeeeeitteeeeeesbeeeeeesseeesessssreeeseessseseessassessessessassessesssaseseessssessssssssenssssnssnssessensens 77
NN LT a1 01U T) PR 77
DU T T R A P ettt eee et et ettt eeeee ettt ee et aaa i aeessseesesaeeaeeesssesssssssssssssssssnnsnnnnsssesessseeeeeessessssssssssssssnnnnnnn 77
OVERLAY ...ttt ctereee e e e e e e e e e eeeeeeee e e e e s e s s st s s s s s s s s e aaaaasessaaaseeeaessssssssssssssssssnsnnnsnnnsnnnseneeeeeeaeeanns 78
O R (o1 1 To]) PR 78
QUEUED e et e e e e e s e e e eeeeseeseseaeeeeeseeses e s ese e e s s e s s s s essaseeseeeeseseaseesenenseeseeeesasenn 78
RANDOM. ...ttt eee e e e s e e e e e e e eeeeeee e e e et e e e s s s s s s s s s aasaaessesaaaeesessssssssssssssssssssnnnnnnnnnnnsseeseseeaeaaens 79
REVERSEttttttitiiiiieieieeeee et e eeeeeeeeeeeeeeettse s s s e e eaeaasasseaseaeeesesssssssssssssssssnssnnnnnsnnsaeseeseeeeeeessesssssssssssssnnen 79
R G H T oottt rrreeeeeseeeeeeeeeeeeeeeeeeeeas e s s e s s s s s s aaaaeseeseseesasssssssssessssssssnnsnnssnnnnnnnseeseeeeeeessssssssnnnes 79
00 1 I RRRN 80
REXXMSG... oottt ee e e ee e e e e e e eeeeeeeeeseee e e e e s s s s s s s s s aaaaassaesaaseasessessessssssssssssssnnsnnnnnnnnnnssensees 80
] = I AN V1 C U 80
LT €] 80
I I U 80
SOUR CELINE ... ceeteeetee e it eeeeeeeeeeeeeeetrtt e eeeeeseeseesaeeeeeeaaessessessssssssssssssnnannnnnnsasessaeseeeeeesesssssssssssssssnnnn 80
SPACEttt eee e e e et e e e e et e et e e e e et e e et et —————————————————aaaeeeeeeeeteeeeeettertrtttrttatara—a———————————————_aaaaeteeeaees 81
STORAGE. ... e oottt eeeeeseeeeeeeeeeeaeeeesssessasesssssasssanaa anaaaaaaesaseeeaesseesssssssssssssnnsnnnnnnnn 81
ST R P ettt rrrereeee e e e e e e e e e e e e e e e e et e et a e e b — b ———————————aaaeeeeeeeeeeeaeereetrrrtarttraaraaaannnaaaaaeeeeeeeeeeeeraerrenes 81
SUBSTR (SUDSEIING) ueettieiieiieeieeieeeiessttesste et e seessteeseessteesseesseesseessseeseessseesseesssessessssesssessseesnsesssennn 82
SUBWORD. .. ciiiietie ittt reeeseesseeeeeeeeeeasesssssessessssssssssannnasaassasaseeeeessesssssssssssssssssnnsnnnnnnnnnnns 82
I 7041 =16 1 R 82
I 251/ = SR 83
I SN 83
TRACGE . ..ottt crceeeeeeee e et et et e et e et e e eeeetaeta s s s s s s a_—_ aaaasesseeeeaeeessssssssssssssssssssssssnnnnnseeseseeeeeeeesesssessssssrnes 84
TRANSLATE. ..cc ettt iceceeeeeeeeeeeeeeeeeeeeeeeeeeeereessessssassaana_anaaaessessseeesasssesssessssssssssssssssnnnnnnsnnnssseseneeeeeanns 85
B IR0 ORI (U] o= =) TR 85
USERID.... oottt rcceeeee e e e e e e e e e et e e e e e e e eee et ae e s s s s s s s aaaaseesaeaeaesassssssssssssssssssnnssnnnnnnnnnseseeeeeeeeeessesnenns 86
RN L SN 86
LY =38 2 U USTN 86
WWORD .. i iiiei i e ettt eeeeeeeseeeaeeeeeeeaeeseseeas e s s s s s s s s s s aaa s aasesaeeeeeesasessessesessssssssnnsnnnnnnnnanaseeseeees 87
WWORDINDEX. .. i iiiiiiiieeeeeeeeeeeeeeeettte e reeesseeseeeeeeeeeeeseeseeseesessassssssssannnnnasesaaseeeeeaesssssssssssssssssnnnnnnnnnnnnnns 87
LT @] 1 I 1 N N - P 87
WORDPOS (WOTId POSITION)...ccieieeieeieiteieeceeteeeeccereeeeeesreeeeeeesreressessvaresesssseeressesesnessesssssessesssseessesnses 88
LT L] B T 88
XRANGE (HEXQdECIMAL RANGE)..c..viieieeieiiieeieeste et estteeie et esee s teeseesteesseesaseesseesaseeseesseesnsessssesnsenns 88
X2B (HeXad@CIMAL t0 BINAIY) . .ccuieeciieeeieeceiee e tte et e e tee ettt e eeteeeebeeeeaseeeeabeeesasesaensesaenseeaensesaenseesnnses 88
DA Ol (R 15 c=Ta [=Tod 1 g =1 B (o N 01 F=1 = Vot £ =]) 89

X2D (HeEXad@Cimal t0 DECIMAL)....uueeeeeiiiiiieiieeeeeecreee ettt e e e e e et et e et eesessssssssseaereeseeeessesssssssssseeeseees 89

Additional Functions Provided in REXX/VSE.......ooo et et e e 90
I = Y5 T 90
FIND .ot ieeeeeee ettt ettt e e et e e ee bt e e e e e aaeeeeseasbeeeessasbaeeessasbaaseesassaseeseanaseseesaaresessennsaneeseensaeeessensreeeessnnns 90
INDEX e uiiiieeteeee e e ettt e e et e e eeate e e e e eatee e e s e sbaeeeesesateeessessbasessessaasesessasaeesesansaeeeessnsbeeeessanbaneessanseanessensreneas 91
L S 1 91
I NS 72 92
(1S =1 28 1 T 92

EXTEINAL FUNCIIONS.c.ciiiiii ittt e e e ee et e e e e e e e e ee s e assbbaeareesaeeeeseesssssbssseseeeeeeeeesannnes 92
FN T] 1 93
(001141 €] = SR 94
1= 94
(0] 24 = 2417 T C TS 94
(0 1O I 27 Y 94
U] 17 £ 97
o]0 1 = R 98
] 1T TR 99
o] 2 N 99
RS TR 100
I O 1 SN I =1 101
STORAGE ...ttt ettt e e et e e e e sttt e e e e eeabt e e e s se bt e eessessraeeeeessaaeeseesareeeeeaabeeeeseanreereseanraareeeans 101
R A3V = SRR 102

Chapter 5. Parsing.....cccccucieiiiiiiieireiienteniesiacisiaiscsessessessessssssssssssscsessessessessasses 105

ParSING RULES...ciiieiiiieiieieiee ettt ettt et s e e s be e e s be e e st ee e s beeesbeeesbeeessseaesnseeesnnsaesseeesnsseesnsens 105
Simple Templates for Parsing into WOrdS........cueiiiiiiiiieiiiieieiieseiee sttt siee s seee s svne s svaeesaee 105
Templates Containing StriNg PatlernS.....cuii ittt e s s e s s e e s s beeesneas 107
Templates Containing Positional (NUMENIC) Patterns.......ccceeceeeeeicieeceeciecee et 108
Parsing With Variable Patterns. ...ttt essaae e ssseeesaeae s 111
USING UPPER. ..ttt ettt ettt ettt et s bt et eeat et e e atesbe et e sheebesat e beeateebeenbesaeesesaeans 111
Parsing INStruCTIONS SUMMAIY....ccciiiicieirie et erte et et e st e st e s stee s sbee s sabeessaeeesssaaessseeessasaesnsss 112
Parsing INStruCtioNS EXAMPLES.....uiiiiciiiieie ettt sttt e st e s sbe e s sbe e s saeeessaeaessaaaesnaeeas 112

AdvanCed TOPICS IN PArSING.....cuccuiiiiiieiiieeiiieeseieessiee st e ssteessteessteesssteesssseesssseessssaesssseessseessseessseesns 113
Parsing MULLIPLE SEINES..uiiiciiiiiieiiiiee et ettt ettt ete st e e st e e sbte e sbeeesbeeesbaessseessseessseessasaeennne 114
Combining String and Positional Patterns: A Special Case......cccuvuiiiriiiriiieenniieeree e 114
Parsing With DBCS CharaClerS....cucuiiieieiiiieeiiieesiieessteessiteesreeesieeesseesseseessseessseessseessseesssseesssees 115
Details Of STEPS IN ParSiNG...ciccviiieiieieiieiriteeste et e siee s ree s e s s see s s sbee e sbee e sbee e sbeeesbeeesseessnseessnsens 115

Chapter 6. Numbers and Arithmetic......ccccevuieieiiieiieiiiieniceiieniceniecncceciececceceecees 119

|31 o Ta {1 ok 1 o] o RSP SPRPPR 119
(B 1] a1 (oo PO OO 120
NUMDEIS ettt ste e st e s sate e s sate e s sabeessate e s sbe e s aeee s seee s seeessseeesneeesseaesnssessnseasssens 120
= To YT o T PP 120
FAN g1 o] 0 oY Aol @] 01T =1 o] SR 120
Arithmetic Operation RULES—BaSsiC OPErators......ceiicciieeeieciiieeeeciteeeeeecree e e e eeite e e e serreeeesesnseeeesesnnes 121
Arithmetic Operation Rules—Additional OPerators.......cccuieeeeeciieeeeecieee et e e eevee e e e e naeee s 122
U] l=T g (ol 6fe] o g o¥- U Yo 1 SR 124
EXPONENTIAl NOTATION....uiiiii ettt cre e e ter e e e e srre e e e s reee e e e e areeeeeesnntaeeeeenseeessennnens 124
NUMEIIC INTOMMATION.cc ittt see e st e e st e s s be e e sbe e e sbeeesbaeesaseeesasaesnases 126
WHOLE NUMDETS. ...ttt s e e s bee e s bte e s bte e s bbe e sateessasaesseaesneens 126
Numbers Used DIreCtly DY REXX.....uuiii it eciiee e ectiee e s e teee s s etee e s s e nsae e e s enbaaee e e nseeeesennnnns 126
T o TP O PO ST PSPURUPPUPR 126

Chapter 7. Conditions and Condition Traps....ccccccceeterrereiecneceniecerennecesecsececsecaes 129
Action Taken When a Condition IS NOt Trapped.....cccccuieeeiccciiieecccirie e eeecrere e eeree e e eevtee e e nrae e e e e ennaeee e s 130
Action Taken When a Condition IS TrapPed......ccicccuieeeieciiieeeccciie e e eectee e e ecttee e s eevree e e s eensaee e s e ennsaeeesennenns 130
(0o]Te 11 (oY a T N al (o] aF=11To] VO STPPPPR 132

DESCIIPLIVE STIINES . tiiieiieieiitieiie et eett e et e e et e ebe e s s be e e s be e e steeessteesssbeessssaesassaessssaessssaesssaeessaesnnee 132

SPECIAL VAIADLES. ettt e e e et e e e e e e e e e s et te e e e e et te e e e e e nreeeeeeanberaeeenrraeeaeannes 132
The SPeCial Variable RC.... .ottt et e e s e tee e e s e reee e e e snree e e s enseeeeeeennsanesanan 132
The SPecial Variable SIGL......uu ettt e s e rrre e e e e reee e e e e sabe e e e s enbaeeeseenssaeeseesnnsneenan 133

Chapter 8. USiNG REXX...ccciuiiuirireirenresrentesiasiasiaisecsessessessessessosssssasssssassssssessesses 135

Pi¥e fo T1 i o] o P= 1l a4 =0 0 QTN] o] o L] o SRR 135
PrOZIramMING SEIVICES. ...uviiiciiiiiiieeeitie e et e sttt e ettt e sttt e stte e sttt e sbteesbeeessaeessaessssaesssaessseessssaesssseeenns 135
CUSTOMIZING SEIVICES. . .utiiiiieieiieieite e ettt eie e e stte st e s ste e e ste e s sbeessbeessabeesssbaeessseesssseessssaesnsseessssaesnnees 136

WWETEINE PrOSIamIS. .ceieiieieiieieiieeeiite e ettt e sttt e sttt e sttt e s bt e e sbaeesbaeesbaeesasaeesasaeesasaeesasseesseeessseesseeesnsenesnsenens 137

YT a T ol o T=1 = o RO 138

Communicating With @ USEr CONSOLE......iiiciiiiiiieiiiieeeite ettt sttt e s e e s ste e s sbe e s sbaessbeessasaesnans 138

Chapter 9. Reserved Keywords, Special Variables, and Command Names............ 141

=TT Y= Te I = YAV o £ SRR 141

SPECIAL VAIADLES. et e e et e e e e et e e e ee et te e e e e et b e e e e e e nreaeeeeanberaeeenrraeeaeannes 141

Reserved COMMANG NAMIES.....cuiii e riieeecciieee e cecteeeeeetteeeeesctbeeeeeesbaeeesessteeeesessstesessanssenesssssseseessssseseeann 142

Chapter 10. REXX/VSE COMMANCS.....ccccieituieiiereienracanrecsecassecssessecessosssassecassassns 143

el g oo F= N N O] oY a' F= Y a o =S 143

DELSTACK . .. ettt etteette ettt e ette et estte e e e s te e st e e beeesee e seesseesnsaesseesnsaasseeasseanseeanseesseeaseesnseesseesnseeseesseeenseanns 143

DROPBUF ... i teeeie ettt et e te e te et e s e e bt e e te e bt e e see e se e e st e ssseesseeesse e seeanseeseessseesseessseenseesseeanseanseesnsennseeanes 144

EXEC .. it iteeitte et et e et e st e e te e ete e st e e te e st e e te e b e e e te e b e e an e e et e e eree e bt eabee e te e bee e te e beeeateebeeenae e teeareeeteeaneeenreeres 145

)43 TS 145
=T Ve IO o) 4o 1= USSR 152
Additional Options Required fOr SAM FileS.....ou ittt eeecte e e eete e e e erae e e s e esaee e e eeanes 152
EXECIO INPUL ChECKING.cciuiiiiiieeiiieeiiieeseiee st e st e sste e s eite s seaee e ssaee e ssaeeesneeesneeessbeeessseeesaseessnsenssnsens 153
= UL T 000 U 153

1 TR USSRP 159

1 RSP PSRP 159

MAKEBUFtteeteceeste et rte e e et e st e e te e s ee e te e bee s te e seessse e saesnteasseesstessseeaseesnseeaseesnseeseesssesnseessseenseesseenn 159

NEWSTACK . ..c ettt etteeie et e te et e et e e te st eete e beesste s st e ssee e seessseessaesseeeaseesseeanseanseesnseenseesnseanseesssesnseesseesnsennses 160

(0] 1 | SRS 161

03I SRS 162

15 72 O LSS 163

USRS 164

10 = I U 1 TSP 165

SUBCOM..eiitesteeieertte ettt e e te st este s be e s ee e s bt e ssee s beeeste s seesseesaseeaseeenseesseessseaseessseaseessseenseesnseenseasnseensenns 165

L =R 166

L1 TS 167

15 SR 167

LTS £ TSRS 167
= UL T 000 =R 172
Using the VSAMIO COMMANG......iiiiiiiiiiieiiieeiiee st esieessieeessseeessseeessseeessseeessseasssseessaseesssssessaseessane 174

Chapter 11. ADDRESS POWER COMMANMS....ccccceuteiruieienieceieceecectecacessacascassacanss 181

Accessing Entries in VSE/POWER QUEUES.......ccutiieiitiiieeirieeseieesseeessteessseeessseeessneeessseeessseesssseessssenssnns 181

T 10 S S 182
SECUNIY CONSIAEIATIONS. .. .uiiiiieeciiieeccciee e e ecee e e eeteee e e et ee e e e s bteeeeeesteeeessensteeeesanstesessassesesssanssneenann 185

8 1 R 186

QUERYMSG....eeitieeiteeie et et e e e et este e te e s et e e te e seeesteesbeesnea e seeaseesaseeaseessseeaseessse e seessseenseesnseenseesnseansennseenn 194
Rules for Issuing JOb COMPLEtioN MESSAZES.uiiiiiiiriiieriiiesiieessieesrete st e ssreesseeessreesssseessnseesas 196

3 PSR 196

Submitting and Controlling POWET JODS.....ccciiiiiiiiiiierieecite sttt st s e e s s e s sabe e s eee s 198

Chapter 12. JCL Command Environment........cccccccceiieienienieceieceecestecascecsecassessncenss 201

The JCL Host Command ENVIFONMENT......ciiiiciieeececiieeecectiee e eeciree e s e ecree e e s eenareeessensteeessensasessssnsssnsessnes 201

vii

Format of Address JCL COMMANUS......uuuuuuuiiiieieeeeeeeeeee e e e eeeeeeeeeeeeeeeearaaaaa— s aesseesseeesssseeeeeeessssenes 202

VSE JCL ON CONGITIONS.cciiiiiiiiiieeiiiitiiieieeee e e eeeceiiareereeeeeeeeeseeeessssssseaeeeeeeeesesesssssssssseesseseessesensssssrnsns 202
UNSUPPOrted JCL COMMANGAS...ciiiciiiieeeeciieeeeecieee e eettee e e ettee e s e s atee e e e enreeeesenbaaeesesssesesssnnssnesssnnsenns 202
VSE JCL OULPUL TrapPPiNG.ceccureeieieeiiieeieieeseieessteesssteesssteessseeessseesssssesssssesssssesssssesssssesssssesssssesssssessans 202
Return codes from the JCL Host Command ENVIFONMENT........cooeiiiirriiiiieieeeeeececcireereee e e eeeennns 202

Chapter 13. Host Command Environments for Loading and Calling Programs.......205

HOST COMIMANGS. . .iiiiiiiieiieieiie ettt ettt ee e s ste e e s bte e s bbe e st ea e s stee s staesasbaesssaesssaesnnseesnssaesnnsaesnnsens 205
The LINK Host Command ENVIFONMENT......cciiciiiiiieirieeeiieesiteeseessiee s sieessieessaeessbeesseeessasaessaneas 206
Return Codes from the LINK ENVIFONMENT.....ccuiiiiiiiiiiieiritecrieecriee et essie e ssee e ssee e ssee e ssaeeessaeeessneas 207
The LINKPGM Host Command ENVIFONMENT.......iiiiiiiiiieeiciee it seieeseeeessieeeseveeeseaeeeseseeessneessaneessane 208
Return Codes from the LINKPGM ENVIrONMENT....cccoiiiiiiiiiiiieiiieeerieeesiee st e sseeessaeeessseeesssseessneeeeas 210
Table Of AUTNOTIZEA PrOZIamS.....cuciii ittt sttt et e st e s sre e s s be e s s e e s sabaesssbaeesabeeesaseessnses 210

INVOKING VSE ULIITIES.ccutiiieiieiiiieiciee sttt sttt e st e st e s et e s ste e s sate e s sabeessstaesssteesssseessssaesssseessssenennes 213
Invoking LIBR USING ADDRESS LINK....ccccttiiiiiiiiiteniieesiteeesireessiteesieeessieeessaeeessaeeesnseeessnsaesnnenesnnenas 213
Invoking IDCAMS USING ADDRESS LINK....ciccttiiiiiiiiitesiitessiee st e ssreessteessseessveessseessbeessveesssseesas 214
Invoking ASSEMBLE and LNKEDTuiiiiiitiiiitieiiteniteeeitessieteessseeessieesssaeessseesssseesssseessesessesssseeens 214
TNVOKING DITTO . utiiiiiieeiiiieeeiiee sttt sete e sttt e setteesssteesssteesaseeessteesasseessseeesasseesasseesasseesanseessnseesssseesnsees 215

Chapter 14. REXX/VSE Console Automation......ccccoccceiernecenieceiennecececeecessecaceees 217

Benefits of a Programmable REXX CONSOLE.......uiiiiiiiiiiiiicieeciee sttt sevee e sate e svae e sneeesveeesans 217

A LoOK at VSE/ESA'S CONSOLE SUPPOI . ciiiicciiiieeieeiieteeeeiiteeeeecteeeeeestteeessssseeeessanseeeessnnsessssssassssesssssssnes 217
(O00] 0 1Yo) (=R WO I N 0} (=] & =L = T T 218
General-Use ConS0Le INTErTaCES. ...cuii ittt ettt seee e s eaee e sate e seneeeseneeessaeesane 219
Master Console VErsus USEr CONSOLE.....ciiviiiiiiiiiiiieiriee ettt e st e s ste e s st e s see e s steesseeessaeaessasaesnnee 220
o101 (] 7= 6o Ta [= T S PP UTURPPR 220
SOIVICE OFfBIINES e iiiieiieieite ettt et e e te e s sate e s sate e s s sbeessataesssteesssteessssaessssaesnssessnssassnnes 221

Console Command ENVIFONMENT.....cociiiiiiiieeiiierie sttt ettt e s see e s sree e ssee e s sbeessseeessasaessssaesnasaesnnns 221
(0%o] 1Yo] LI 0] 1 o 4 g F= 1o e £ 70 P UPRPT 221
ACHIVAtING @ CONSOLE SESSION..cc.utiiiiiiiieiteirteeeettesste e e st e s st e s steessteesssteesssteessssaessssaesssseessssesssssaesns 222
Creating a Command and Response Correlation TOKEN (CART)....cevcueeeeerieeereesieeciee e eeeseee e 224
Querying the Current Cons0Lle SETING......civciiiiiiiiiriie ettt e e s essaee e sssbe e s abeessseaesas 225
SWItChING 10 @ CONSOLE SESSION...uuiiiiiiiieiieeriteett ettt et et e st e s sare e s sate e s sabaessaeaessasaesnssaesnnseas 225
Deactivating @ CONSOLE SESSION....c.uiiiiiieriiterrite et ssie e st e st e st e s srae e s s beesssbeessabeesssbaesssseessaseessnses 225
Examples of REXX and VSE Console COMMANAS......cciiiciieeeieiiiieeeceireeeeeecvie e e e ecveeeeseeveeeessesnseneeeens 226
Having Command Responses Outstanding in Parallel........ccoocvviriieiniieiniieineeeeeeceee e 226
Routing Messages From and Replies To a Specific Partition.....c.cccccvveeviieenneeinieeenee e eeee e 227
Tracking of Operator COMMUNICATION.....icciiiriiieeite ettt ree e s see e s see e s seeessaeeessaseesssenesaeas 228
Console Host Command Replaceable ROULINE........cccuuiiiiicciiiee ettt e e 228

Console-related REXX FUNCHIONS. .. .uiii ittt sttt site et e s svee s ste e s sba e s ssaessasaessabaesssaessnsaesnnns 229
D] T TS 229
FINDMSG ... oiictiieieeitteeieestteste et e e ee s st esste s seessee s seesseesase e seesnsaasseesasaanseesssesnseeassesnsessseesnseesseesnsesnsenans 229
GETMSG . ittt ettt ettt e et te st e st e e teesbe e st e e beesase e seessseesseesseeenseesseeenseesseessseenseeanseaseesnseenseeaneeans 232
0 10011 [SR 235
MERGE. ...ttt ctieteeeteestee s te et e s te e ste e st e s te e be e e s ee e seeasteesseeaseeesseeaseessseeaseeenseenseessseenseessseenseenseeenseaseenneen 236
L0 2 1 SRR 237
PAUSEMSG......ciciieieeeie et esteete et e e te e bt e s te e te e st e s st esseessseesseesnseasseesnsasasessssesnseessaeenseesseesnsesseesssennses 238
SENDCMD.....oiittieieetteete et este e ste e st ee s te e st e s aeesseessta e seessseesseesssaasseessseanseesseesnseaaseesnseanseesnseeseesnseansensns 238
3] =1 T 1S PSR 239
Y S I = R 240
)]] =1 SRS 240
) 1A SRS 242
Error Codes of Failing FUNCLIONS.....ciiiiiiiiieriiecte sttt st ee st be e s be e s s e e s s be e e sbeeesaneas 242

FAN YN S C=T=Y o TR T T T2 Vo PSSR 244
Make Frequent Use of the GETMSG FUNCLION.......ciii ittt rre e ree e e s ere e e e 245
Do N0t SeNd MeSSages t0 "YOUISEL ittt e s ba e s be e s aeeeas 245
RedireCt SOME OULPUL 10 SYSLST .ot eerrre e et e e e e et e e e e e be e e e s e nbaeeeeeensraeeeeennaneaean 245

viii

Direct Messages to Only One Console (ECHOU Option).....ccccveeeeerieeceenieesieeseeeieeseeeeseesveesneeeeeas 245

Remember the REXNORC Profile.....iu ittt ettt siee s iee s s see s s siae e ssae e ssaeeessaeaesnaeas 246
Split off a Time-consuming Task into a Separate JoD......ccccviiiiiiiiieiceeece e 246
Finish All Preparatory Work Prior to ACTIVATE CONSOLE..........oviiiicieeee et eeveee e e eeee e 246
Handle One Command at @ TiME....cuiiicieiiiiee ittt stte s siee e sseee e sbee s ssbae s sbaeesbaeesseeessaeesane 246
Start Testing 0N @ SMALl SCALB...cciuiiiiiiei it ee st e e sbee s sbeeesareas 246
The MOST IMPOITANT RULE....... ettt e et e e e e eree e e s e st te e e e e s nbaeeesenbeeeeesenssenesasnnes 247
REXX/VSE CPU MONIOI . ueiitieitieeieeiteesiessteestessteesseestessseestessessseessseessessnsesssesssseessessssssssessssssnsesssesansens 247
REXX Console AppliCation FramMEWOIK........cccuieiiieeiiieeeceiieee e ceciteeeseettee e s e esreeeessenneeeeseenssseessennssnesssnnnes 247
(O] o1 =N AT TR Tot =T a F= Y [0 1TSS 247
(000 3o =T o} S5 UUUPRURRN 248
How to Use the REXX Console Application REXXCO......ccucciieiiicciieeeeccieee e eereee e evtee e e 250
Automated Operation DEMOS (EXAMPLES)..cccuiieiiiieeiieeeiie et ettt et e tee e ree e e bee e e aee e e aeeeeseeeeaneas 253
g (0 7 I RS 253
g S TSP 255
=30 (094 1 USSR 255
g0] 2 0 =SS 256
REXXCPUM. .ttt et ste et e s ee e te s vt e e te s seesste e aeessseesseessseesseesssesnseasseesnseasseessseenseeansesnseesssesnseessenans 259
REXXDOM..ieetieeieeteesite st et e s te et e e sste e teesaaeesteasseesstasasaeastasnseeaseessseaaseeenseanseesnsesnseesssenseesseennsesnseenn 261
Other Examples (Not Related to Console FUNCHIONS)...cccuiiiiiiieeiieeciee ettt e e 262
Miscellaneous Examples of Using the REXX CONSOLE......uiiiiiiiriiiiiiiieeieccie ettt 263
Retrieve Messages using Filter and TimeStampP......covcveiriieiniiieniieeeieessie e s e e s saee s 264
SYor= 1o I (g o3 F= T e (o] o) VAN T =SSR 264
Scan Job Messages for ONe PartitioN.......uuuieieieircieieiieeeite st seieeesiee e see e sre e s see e s sbe e s sbeessasaesnnns 264
RetUrN @Nd REASON COUES...ciouiiiiiiiiiiee ittt sttt ste e s siee e seiee e s tee e s sbee s ssbee e sbee e sabeeessbeeesseessaseessaseessnsens 267
MCSOPER MACKTO....etteeieiiteeeeeitee ettt e ettt e e e et e e s s eee e e s e se e e e e e s sateeeesnnteeeesanneeeeseanseaeesaannreeenaanns 267
MCSOPMSG MACKO. ... uttieiieitiee ettt et te e et e e e sttt e e e s et e e e s et e e e s nbteeeeeeaseeeeseeneeeeseensaaeesennnneeens 268
MGCRE MACKO. ... ettieeeettee ettt ettt e e e et e e e st e e e sttt e e e ab et e e e s aneteessennreeesaeaseeeeaesnseeeeesanneees 269
Command Processor Return and ReasoN COUES........covciiirciieiiiiieiiieeeiieesieeesiteessieessveessraesssaeenns 270
CORCMD Command for Problem SOLVING.......c.ccuiiiiiiiiiieeiieencieesctee st ssreeseireeseieeeseaeeeseneeeseveeesane 271
Chapter 15. REXX Sockets Application Program Interface......cc.cccceervirncreinccnnena. 275
Programming Hints and Tips for USing REXX SOCKETS.....cicciiiriiiiriiiirieeeitessite st esiee s siee s seeesseeeeens 275
SOCKET EXEEINAl FUNCLION...ciicieticiee ettt sttt site e ste e siee e site e saee s sbee s sbe e e sabeeesabaessasaessaseessnseessnses 276
Tasks You Can Perform UsiNg REXX SOCKETS.....ciiciiiiiiiiiiieinieesite ettt siee s svee s siee s sbee s sbee e sans 276
REXX SOCKET FUNCIIONS. ... etiiiiiieeiiie ettt ettt sttt e st e s s te e s stt e s sbe e s sabeessabaessaeaessasaessasaesnnsaesnssens 279
Yo oL=Y o) PPN 280
2713 o PO PSP P PO PPRRPPPPRRPPRNS 281
(61 Lo 1= TP 282
(670] a1 01T o1 SO T PO PP PSPPSR 283
o] 0 PR PRSPPIt 284
(CT=Y (4 1T=1 01 e PO PRSP 285
(CT=1 [0 1o 1 =772 (o | SR 285
GETHOSTIBYINGIME. .. eeeeeei it e e e e s e s e e e e e e e e e eeeeeesessnsssstaaaeeeeesesessaanssssnnanaeeeesesannnen 286
LCT=Y 1 0153 (o SRR 286
GETHOSTINGMIE. .. ettt ettt e ettt e e e et e e e e nb et e e s e are e e e se st teeseasateeeesnneeeeeaanneeeennn 287
GETPEEINGAIME. ...ttt ettt e ettt e e e ettt e e sttt e e s bt te e s e s et e e s e e nseeeesensaeeeeesnnrteeeeaanneeaeesnne 287
GOESOCKNAIME. ..ttt ettt e s e e s ee e s saee e s bte e s beeesabeesasbeesssaaesnssaesneaesssaesnsseesnnsns 287
[CT=] Yo o1 1] o) SR 288
LCTA Yo ol (=) S PP PPRRPPPPRRUPTRIN: 289
YL T 11T USRS 290
oot | TP 291
1S3 (= o PO OO P PP UTRROPPPTPPROP 291
=T Lo RPN 292
R B OV .ttt ettt ettt e et e e e e e bttt e e e et e e e e areee e e e b et e e e e e nbteeeeenbeteeaearbeeeeeeanreeeeeanne 293
0= ToAV I o] o IO PO PO PP PP TP PPRPTRP 294
RESOLVE. . ittt ettt et e s e et e st e s bt e s a et e s bt e e s h et e e b te e s ate e e abae e sbeeeanteesantaesanreenan 295

1S7=] 0 PR URRRRRRUR PP 297
ST=] e JL Ko TETR USROS PP RTTO 298
Y=L 01011 (o | USSR 299
1] 2 [V B Lo 11V PO O T U RRUR OO 300
Yo 1o (=] ST RSO UTRN 300
Yo 1ol (<] AT ST SS S RRUUOR PP 302
Yo 1ol (=] AT IS SRS RURPUTRRRN 302
Yo 1ol (] AT 5] £= 1 AU =TRSO 303
TAKESOCKET....i i i ittt ettt e e e ee e br e e e e e e eeeeeese s s s s ba e b e aeaeaeeeseeeasasbbbaesraeaeeeeeseansssrrrrnaereeas 303
BT 011 = =TRSO 304
L= T 1] = =TRSO 305
VB ST ON . ettttetieee et e e e e eeeccrt et e ettt e e e e s s babreareeeeeeeesasassbbbaaaaesaeaeeseesaasssasaaaraeseeeeessenaaasbabaraeaeeeeeeeeeaaanssnrnrns 306
U et i ettt e e ettt e e et e e bbb b e e e e e e e e e e e e e e et bbb ——aaaeaeeeeeeae e ababaarraaaeaeeeeeaaaaarrarraraaeeeseeeaaann 306
REXX SOCKETS SYStEM MESSAEES. ...ciiicriiiriieiriteiiitessitte sttt stte e stte s steessbe e s steessabeeesseessasaessasaessssaesnssens 307
REXX SOCKEES RETUIN COUES...uuutiiiiiiiiiiieieecitritieeeeee e eeeecbarree e e e e e e e eeseseassssaaeereeeeeseeessssssssasseeeseseessennnns 307
F-Uaa] o] ol oY= d = 1o oS PR P P 309

REXX-EXEC RSCLIENT Sample PrOgram.....ccccceeicierieieeiiieesiteesieessereesseseessseesssseesssseesssseesssseessnees 309

REXX-EXEC RSSERVER Sample Programi....ccciccieeicieeeiiiesrieessieessieessiteessiseessseeesssseesssseesssseessnseesas 311

Sample Programs Using the TCP/IP SSL Support with the REXX/VSE Socket Function.................. 314

Installation of REXX/VSE SOCKET FUNCHION....ciiiiiiiiiieteeeeeee et e e eeeeeeeeee e eeevasssssa e s e e e e e 317

Chapter 16. Debug Aids......cccccceiieiruiiniieiiniininiiniisiiiesiesiasisiiscsecsssessessessassascss 349

Interactive DebUZEING Of PrOSIamS. .. .o iiiiiiiiiiiieiiieessieessiee st e st e st e ssreessaeeesssbeesssbeessabeesssseesssseens 319
INterrupting Program PrOCESSING.....ciccueiiriieiieiee ittt ssieeseteesseeessieeessreeessseessseeesseesssseesssseesssseesssseesssens 321
Starting and STOPPING TIrACING.....uiiieiiereieeiiite sttt st e ssreesseessteessaeessbeesssbeesssteesssseesssseesssseessseesssaesas 321
Chapter 17. Programming SerViCeS.....cccceruirerteireitniiainecsecsessesressessessassassasascsecss 323
General Considerations for Calling REXX/VSE ROULINES.....ccccviiiieiriieiiiieeseeesee e sieeesieessieessvee e 324
Parameter Lists for REXX/VSE ROULINES.....uuuueeeeeeee ettt e e s e e e e e e e e e e e eeese e e eeeenees 325
Specifying the Address of the Environment BLOCK.......c.coivciiiiiiiiiiieiiieciecieceeee et 326
Return Codes for REXX/VSE ROULINES........cooi ittt s e e e e et e e e e e e e e e e e e ee e sassassss i ans 328
CALlING REXX it iettiieieeieiee sttt sttt esste e sete e st e s sate e seaeeessateessteessseaesseeesseessstessseeesnseessnseeesnneessnseessnsenesnsees 328
Calling REXX Directly with the JCL EXEC COMMANd....cccctiiiiiiiriiieiiiieisiiessieessieessreessveessnseessavees 329
Calling REXX With ARXEXEC OF ARXICL...eecuteeiieceeeieeiteestessieeseessteesseesteesseessseesseesnsesnsessssesnsessseenns 331
External Functions and Subroutines and FUNCLION PaCKages........cccvverriiiriieenniieeenieesnieesneeesseee e 344
Interface for Writing External Function and Subrouting Code........cccvvriiiiiiiiniieeniiieensieessieessieens 344
FUNCEHION PACKAZES. . et ittt ettt sttt ste e s saee s s sate e s saee e sbee e sbee e sbeeessbeeesaseessnneeesnses 347
Variable POOL = ARXEXCOM......cuiiiieicciiiee ettt e ettt e s e sttte e e e e evte e e s s ataee s s e nstaesessnsbeeeesenseaeessnnssenesssnnsenns 352
Maintain Entries in the Host Command Environment Table = ARXSUBCM......ccocciiecciieeeccciieee e, 357
Trace and Execution Control ROULINE — ARXIC.......coiiiiiieeiceiiee et e e et e e e e e e e e e s e v ee e e e eanneee s 361
Get ReSULE ROULING = ARXRLTuiiiie ettt sttt e tte e e e et e e e s tee e e s e st e e e e ssanbeeeeeenseaeessnnsseneesensenes 363
SAY InStruction ROULINE = ARXSAY ..ttt ettt e te e e e ette e e e e e are e e s e eabe e e e senbeeeeseessesessensensessnns 368
Halt Condition ROUTING = ARXHLT ...uiieiieeiieeececitees ettt e eete e s e eette e e e e tee e e senaaee e s esnssaeeesenseneeeennseneeanns 370
Text Retrieval ROUTING — ARXTXT ... cciieee e ectiee ettt e e e eeite e e e eeate e e e seataae e s e nsraeeessnseseesenstaeesenssenesaans 372
LINESIZE Function RoUting = ARXLIN....cciiiiiiiieceiiie e cecitee e sectree e e s itee e s s evee e s s ere e e e seeseaeeseenseeeesennnens 376
OUTTRAP Interface Routing = ARXOUTuuiiiiiiiiiee ettt e e e itre e e s e stte e e s e s tae e e e s snseee e s snseanessenssneas 378

Chapter 18. Customizing SErVICeS....cccccvuiruireiieiiniiniainecrecressesrestessasssssascsessecsesse 384

FLOW Of REXX Program PrOCESSING. ... cciccutiriiieriiiereitersieessieesseeessseeesssseesssseesssssesssessssseessssessssseessssaesns 381
Language Processor Environment Initialization and Termination........cceceeevceeeniieeniieesseeceseeesnee 382
Loading and Freeing a REXX Programi.....cccccciieriitieiiteniieessieessieessieessreessseessseesssseessssesssssesssnnes 383
Processing 0f the REXX PrOSIam.....cccuuiiiiieiriiieriiteeiieesieeesnieeessseeesssseesssseesssssesssseesssssssssesssssnesssnes 383

Overview of Replaceable ROUTINES.........cii ittt e e et e e e s e bree e s e raee e s e e nsaeeeeeennenns 384

EXIT ROUTINES ottt ettt st ettt et e st e bt e s he e s bt e s bt e s abe e beesase e bt e smeeeabeesmeesareesneenas 385

Chapter 19. Language Processor ENVironments........ccccceceeinecnecnecnecnecnecieccacascaecee 387

Overview of Language Processor ENVIFONMENTS......cicciiiiiiiiiiee ittt siee s siee s s iee s snee e savees 387

Using the ENVIFONMENT BLOCK.....ciiiiiiiiiiieiieeteceiee ettt sttt e st see e s ste e s sate e s sateesseeessseaesnns 389
When Environments Are Automatically Initialized.......c.uueeeeeiieeee e 390
Characteristics of a Language Processor ENVIFONMENT.......ccivuiiiiiiiiiiiieinieeseieessieesseeesseeesseeesseeesnnee 390
Flags and CorreSpONiNg MasKS.......coccieiicieiriieiniieeriteesiteessiteeseiteessttesssseessseesssaesssseessasaesssseesssseessnn 393
MOAULE NAME TaBLE.. ittt et e e st e e st e e sbee e sbee e sabeeesabeeesaseeesaseessasens 398
Host Command ENVIironmMENT TabLle....cuuiiiiiiiiiieiieeeieesstes sttt be e s e s be e s ba e s baeeas 401
FUNCEION PACKAZE TabLle..ciiiiiiiiiieiiiieectee ettt ettt e st e e st e e s be e s s ba e e sbeeesbaeesbaeesareeesnns 403
Values in the ARXPARMS Default Parameters Module.........cueeviiiiiiiiiiiieinieceeecee e 406
How ARXINIT Determines What Values to Use for the Environment.........cccovviiiriiiiniienniiennieeesieen. 409
Values ARXINIT Uses to Initialize ENVIFONMENTS......ccivciiiiciieiiiieiniieceiee et esiee e svee s sreesseeeens 409
Chains of Environments and How Environments Are LOCated.......ccccevrvieriiieiniiieniieennieessieessieesseeeens 410
Locating a Language Processor ENVIFONMENT.......cciiiiiiiiiiieireeceiee e esiee e svee s ae e s e s sae e s 411
Changing the Default Values for Initializing an ENVIroNmMENt......ccueviiieiniieiniieeeeeee e 412
Providing Your Own Parameters MOAULE........ocuiiiiiiiiieiiee ettt e st ssee e s seee s 413
Specifying Values for Different ENVIrONMENTS.....occiiiiiiiiiieeeieccitecsiee st ssiee s seee s svee s sreessvaessane 413
Parameters YOU Cannot Change......ccuiiiiiiieiieiiieieiteesit sttt e st e s s e e s s be e s s baesssbaeessbaessnseeeas 414
Control Blocks Created for a Language Processor ENVIFONMENT....c.ccveveiieiniieiriieeniieeeeeesee e e 414
Format of the Environment BLOCK (ENVBLOCK)......cciecueiciieieeriteneesieeseeeaeesreesaeesveeseesseesssesseanns 414
Format of the Parameter BLOCK (PARMBLOCK).......cccutiiiieieiiieseesieeseecteeseeeseeesveeseeesveesseesseenneeas 416
Format of the Work BLOCK EXTENSION......ciiciiiiieiriieieiteeeite sttt st e st sae e s ae e s sva e e saeas 416
Format of the REXX Vector of External ENtry POINTS......ccivcciiiii ittt e e e e 418
Changing the Maximum Number of Environments in a Partition.......ccccvcveiriieiniieinieecneeenee e 421
USING The Data STaCK...uiii ittt ettt et s st e s e e s be e s s be e s ssbeessaseessabaeesaseessnses 422

Chapter 20. Initialization and Termination Routines.......cccccccecierenceniecececrecanenes. 427

Initialization ROUTINE = ARXINIT....ciiiiiiiioiieiiiee ittt ettt ste e s see e s saee s ssaee e ssaee e ssaee e sneeesneeesneeesnnens 427
0N (VST oYYt [or= YA To =SSRt 427
P AFAIMETEIS. ..ttt ettt ettt e e e ettt e e st e e s e et e e e e et e e e e e bt e e e e e rbeeeeeenreeeeenanne 428
Specifying How REXX Obtains Storage in the ENvironment.......cccevciieiiiiiniieeniieesiecssiec e sseeens 430
How ARXINIT Determines What Values to Use for the Environment........ccccovvieieviiinieeincienniieennne 432
Parameters Module and In-Storage Parameter LiSt.......cccevrieiiiieniiieeiiiecriee e 432
Specifying Values for the New ENVIFONMENT.......c.ciiiiiiiriieiiieeieessite sttt s e e s sbe e s sne e 433
Termination ROUINE — ARXTERM...ciiiiiiiiiiicieecte sttt sttt e sttt e s sbe e s s ae e s s e e s sasaesnaneas 437

Chapter 21. Replaceable Routines and EXitS......cccceeceiruiinieniecnrecnececiecececcecancesss 439

REPLACEADIE ROUTINES......eiiiii ittt ettt eee e e te e e e e et e e e e e be e e e s e abaaeeeeessteeeesenstaseesensaeeesannssens 440
(CT=Ta LT = N 0o a1 Ta (=T = Lo o [T PR SRR 440
Using the ENvironmMent BLOCK AQAIrESS....civuiiiiiiiiiiieinieeieieeseieessiee st e ssveesseeessteesseeesssseessssaesnnee 441
Installing Replaceable ROULINGES......cuiiiiiiiiieiieecee sttt sttt e s s st ssbe e s be e e s baessabaeens 441

[CCTol oY=V Il 2 (oYU 1o =TT 442
THE EXEC BLOCK ..ttt ettt e st e st e e s te e snteesseeesstaesneaesseaesnneeesans 445
The IN-Storage CoNtrol BLOCK......ccuiiiiiiiiieiieee sttt s s e e s e s s e e e s beeesnees 445

INPUL/OULPUL ROUTINE. . eieeiiiiiee ettt ettt e e et e e e et te e e e e e ttee e e s e asseeeseenssaeeesenssesessennssneessassensesannes 446
Functions Supported for the I/O ROULINE........uuiiii et e e e e e e naee s 450
Buffer and Buffer LENgth Parameters. ... ittt st s s s e s s ae e s 451
LiNg NUMBDEE Parameter....ciicuiiiiiieeiieeecie ettt sttt et ste e s e e e s ste e ssteesssteessseessseessseesnnsaenan 452
YL@ N 000] a ko] =] LYol U ERRRRRTTT 452
Data Set Information BLOCK (DSIB)......ccueeueereesieeiieeeteesieesreestessseeseessseesseesseessessssesssessssesssesssessnses 453

Host Command EnVironmMeENT ROUTINE........iiiiiiiiiiiiiiiectesiee ettt st s st s e s be e s e s sabea e saneas 456

Data STACK ROULINE....utiiiiiieiiieetteeet sttt e st s st e e s e e s be e e s beeesbeeessbeeessbeaesseeesnseeesnsenesnens 459
Functions Supported for the Data Stack ROULINE.......cccccciiieiecciieee et 461

Storage ManagemeNnt ROULINE.....ciiiii ittt sttt e sete e s sate e st e e ssste e s ateessneeessntaessnseesaseeesnnes 463

USEE ID ROULINE. .t ttiiiiieieiieeeite ettt st e et e sttt e st e e s saee e sbte e saae e s b te e s sbaessbaesssaesssaesnssaessasaesnssaesnsseesnnses 465
Function Supported for the USer ID ROULINE.......cccuviiiiiecieeee ettt evree e e vree e e e e nnraee e 466

MesSage IAdeNtifier ROULINE......iii ittt ee e s ae e s sate e ssabe e s s aeeesnseaesnnsaesnaseas 467

REXX EXIT ROUTINES. ..citiiiiiiitieieitee sttt site e eite e site s svte s st e s stt e e sbte s sbaessbaessaseessasaessasaessasaesssaessnseessssaesnnns 468

xi

Exits for Language Processor Environment Initialization and Termination......cccccccevveeenceennieennnnen. 468
HALE EXIT. ettt ettt e st st e st e st e e bt e st e e b e sae e e bt e saee e beeeneesareenneeenreereens 472
INStallation=-SUPPLEA EXITS..ciiiiiiiieeicciiee ettt eeee e e e etre e e s et te e e s eeanbee e s sennbaeeeeeenseneeaenns 473

Chapter 22. Double-Byte Character Set (DBCS) Support........cccccceeeerercencencencenene.. 479

(CT=T =T D I=T Yol T (o] o TSR 479
Enabling DBCS Data Operations and SymbBOL USE......c.ccuvcuiiiiiiiiniiiiniecctecsee e 480
SYMDBOLS AN STINES..uiiiiiiiiieiieeeie ettt sttt e s e e s saee e s abe e s bbeesaabeesssbeessaseessnseesnssaesnnsens 480
RV =Y Ta F=1 o] 3 FO O OSSP 480
Using DBCS Characters in Symbols and COMMENTS.......coiriiiiiiieiiiiieiieeeieeseieessree e e sseeesseee e 481
INSTIUCTION EXAMIPLES. .. uiiieeieiiiee ettt ecrte e e eree e e e e ebee e e e s e ateeeesesasteeeeesnstaeeesenseeeeesnnsseasennnnses 482

DBCS FUNCEION HaNALING. .. eiiiiiiiiiiieieite ettt stee sttt e s te e s ste e s te e s saae e ssabaessataessseeesnssaesnnsaesnsenns 483
BUilt=in FUNCHION EXAMPLES...iiiiiiiee ettt e e e tee e e e eeatte e e s s ate e e e ssnbaaeesennsaaeeeesnnseeeanan 484

DBCS ProCesSIiNgG FUNCIIONS......uiiiiiiieiieeeiitesciiee st e st e st e st e s be e ssbe e s beessbeesssbaessssaessasaesssseesnsseessnses 488
(031U]) 4T a =3 @] o] 1T o FO TP 488

(1] aTox (o] T B =TTl o] o) 4o o 1= 488
]2 B LU U OS 488
D127 Y L = TS 489
D] 2708 = N I S 489
=T 00 LU 1S I PSP 489
D] 2 I USSR 490
D27 (1 N PSSR 490
D] 2 1 i TSP 491
D27 0 € o PRSPPSO 491
]S 7] 2 0 TSP 491
S 5] = O TSP 492
DBUNBRACKET .. et ttictteeteestteete et s stesteestee e teesbeessteesseesstessseesseessseasseesnseaseesnseeseesssesnseasseesnsesnseennes 492
DBVALIDATE. ...ttt etteetteeteestte et et e s te st este s beesseeesseessee s seesseesaseeaseessseesseesnseenseesaseenseesnsesnseesssesseesseenn 492
23T I S 493

Chapter 23. ARXTERMA Routine.......cccccereunireniiieniinniiininieinenineecneeceencnaeneeeess . 495

L) (VST oT=Tot 1 [oF=1 Ao = 495
=Y L 1= = o TSR 496
= U TS o XY ot ki [oF=1 (o -SSP 496
= U T 0T =PSRN 496

Chapter 24. Support for the Library for REXX/370 in REXX/VSE......ccccccceenrerecees. 499

Benefits 0f USING @ COMPILET..cicuiiiiiieieiieieiie ettt et e s stee s ste e s sbe e s sbaesssbeesssteessssaessssaesssseesns 499
I 0] o1 fo)V/=Te I o=t o (o] o a g F- U o TSR 499
B =Te [N o1=Ta ISV £S5 1= 0 o 1 o =T OSSRt 499
Protection for Source Code and PrOogramiS.......ccuiieciieerriieiiiieeniiteeeireeessreeesseeeesseesssseesssseesssseessssnesnns 499
Improved Productivity and QUALITY......eeiieeciieeiceciieee ettt ee e e e e e ee e e e e ee e e e enraeeeeeanes 499
Portability of COMPIled Programs....c.ii ittt st e st esste e s e e ssteessase e s areesssbeesnssaesas 499
SAA COMPLANCE ChECKING. ..ciuvtiiiiieiiiteeiteertte st e st e st e ss e e s s e e s s beessbaessbeessabeessaseesssseessseesssees 500
(070 paY o1 TST o U] o] [Tox= Y {] o 1SR 500
Routines and Interfaces for the Library for REXX/370 in REXX/VSE.....ccccoiiiiciieeeeeceee e, 500
Programming Routines for a REXX Compiler RUNTIME PrOCESSON.......uiiivieiriieieiieesieeesieeesieesssvee e 500
Routines and Interfaces to Support @ REXX COMPILEr.....cuuiiii ittt e e ree e e e e 500
OVEIVIBW...eteiiiiee et sete e sttt e st e e sttt e s bte e s tte e sbeeesbeeesaseeesaseessabaessasaeesseessasaessnseessaseessssaessseesssseesssees 501
How REXX Identifies @ COMPiled Program.......occciieiieiniiieiniieiniieesieessieesssieesseeessveesssvaesssseesssnesns 501
The Compiler Programming Table.......cii ittt sttt ee e s ee e s see e s saee e sneas 501
The Compiler RUNTIME PrOCESSOIuiiiiiciiiee ettt eeectte e e et e e e e tee e e e eatee e e e esaateeeeeesteeeesensaneesennsens 503
Compiler INtErface ROUTINES. .cii i iiiieee ettt ettt eecttee e e et e e e e e ere e e e e e abe e e e e e abaeeesesnbeeeeeesssaeeeesnnseneenan 507
Compiler Interface Initialization ROULINE.....ccuuiiiiccciee et e e e e e e 508
Compiler Interface Termination ROULINE.......ccciicciiiieieciiee et ecree e e e ree e e e eeere e e s e aree e s s e enraeeeeenas 509
Compiler Interface LOAd ROULINE.cciicciiiie ittt e e te e e e e are e e e e e abe e e e s eebaee e e eensanees 511

Compiler Interface Variable Handling ROUTINE.......cocciiiiiiiiiiiieicieceeeesiee et 514

External Routine Search ROUTING (ARXERS)....uuuuuiiiiiiiieeiiieeeeeieteeteeeeeeeeeseesssssreseeeeeesesessssssssssseseees 517

Host Command Search Routing (ARXHST)..ccueiiiririintereetere ettt sttt st 521

Exit ROUtING ROULING (ARXRTE)...ccuiiicieeeieeieeete st esteeeiessteesteesteestesseesseesnseesseesnseesseesnsesnseesnsesnsesnes 523
Appendix A. List of the Names of Macros Intended for Customers' Use................ 527
General-Use Programming INTerfaCes....ccuiii ittt sttt et see e s sae e s ae e s see e s sbaessasaesnanas 527

N FoT o] o1 =38 7= ol o - FO OO O SRS 527
Product-Sensitive Programming INtErfaces.......oociiiiiieiiiieiniieieee ettt 528
Appendix B. Servicing REXX/VSE......ccccetttuiiniiniinincressestestessassassassasssssssssessessens 529
Appendix C. REXX Supplied LINK BOOKS......cccccccttuieiteriienienacteniecantecsecessacasassacanns 531
=11 FT0 Y= - ¥] 1) 535
11T L= N 537

xiii

xiv

Figures

1. Example of Using the REXX Program Identifier........ccuiieieiciie ettt ettt e 8
2 6foT [o1=T o) Ao} it- T B 1O 1N o o] o JE USRS 36
3. Conceptual OVErVIEW OF PArSiNg.......ccciiiciiiiciieeciee et et se e e ee e vee e s tee e e stae e s saee e e bae e snbaeessbeeeenseaesnnes 116
4. Conceptual View of FINAING NEXt PatterN....c.cii ittt seee et e sre e s e e s sveessaeessreeennes 116
5. Conceptual VieW Of WOrd ParSing........c.ciccieeicieeicieecciee st eecteeeeeeesette s eveeesveeessveeesvaessbeeesssesessasssnses 117
6. Job Management Using the QUERYMSG FUNCLION.....ccutiiiiiiieiieieiieeeieeeeieecesieeeesieeessiee s sree e s sreeeesneeessnees 199
7. Parameters for the LINK ENVIFONMENT...cc.oiiiiiiiirieirteseetesi ettt st 207
8. Parameters for the LINKPGM ENVIFONMENT.....ccctiiiiriierieeiienieesitente et e see st esneesreesneesaneesreesaneeneesaee s 209
9. Table of Authorized Programs - Part 1 Of 3.......ociiioeeeeeeeeeeeee ettt e 211
10. Table of Authorized Programs = Part 2 0 3. ..ottt svee s svee s sree s svee s svaeeeane 212
11. Table of Authorized Programs - Part 3 0F 3.ttt et e e s aa e e aae s 213
12, CONSOLE DALA FLOW....tiiuiiiiieeieriteete ettt ettt st et st et e st e bt e st e e bt e sateebeesasesabeesneesabeesneesaseesseesnseenne 218
13. Example of a Message ACLION TabL....ccuiiic ittt ettt re e saa e e e saa e e e aeesaaeesanaeean 250
14. EXample 0f @ JOD SKELEION.....cui ittt e e e et e e e e e e e e e e e s braeeeeessteeeeennnseeessnns 251
15. Job Message Scanner REXXSCAN - Part L Of 3.t et eve e et 265
16. Job Message Scanner REXXSCAN = Part 2 0f 3. .ottt et e s e s e ssve e ssneeeas 266
17. Job Message Scanner REXXSCAN - Part 3 0f 3.ttt et 267
18. Overview of Parameter Lists for REXX/VSE ROULINES........cuvvuuuuriuiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssssnsnananaes 326
19. Example of Calling a REXX Program from a JCL EXEC Statement......cccceeveerienneeniienneeneenreeneesneennes 329
20. Example of a FUNCLION PaCKage DIirECIONY.....icciiieciiiieiieeeieeseteeeeieeseteessteessteessreessreessseeesssaeessnsessnnes 351
21. Request BLOCK (SHVBLOCK).....ciicieecieeceieeeeiee e eteeeeteeee e e ee e e s e teeseateeseaaaessntaessssaeesnseesnsseesnssessnsseesnens 354
22. 0Overview of REXX Program PrOCESSING......cucviiiiiueeriiieeerieeenieeesseesssseessseesssseesssseesssseessssesssssessssseessssens 382
23. Overview of Parameters MOGULE.......c.ooueiiriiiiee ettt sttt st 391

XV

xvi

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Function Package Table Entries — Function Package DireCtOries.....ccuiirvieeiriieeiriieeinieeerieeeseeeeseee e 406
Three Language Processor Environments in @ ChaiN........coccuieciieeccieeciieecceeeee e 410
Separate Chains on TWO DIfferent TASKS......cuiiii ittt e s e e e e ee e e e eanees 410
One Chain of Environments for Attached Tasks.......c.coviririrernenieeeeee e 411
Separate Data Stacks for EQCh ENVIFONMENT.....cciiiciiiieicciee ettt et e e e svtee e e e evree e s e e naae e e e enns 423
Sharing of the Data Stack between ENVIrONMENTS......c.viiiciiieiieeceeccee et etre e evee e ve e e eaaeeenes 424
Separate Data Stack and Sharing of @ Data StacCk.......ccccvvcieiriieiiiieiiiiecciecstec e 425
Creating a New Data Stack with the NEWSTACK COMMANd......ccceeieviieieiiieeeieeecieeeeieeeeieeeeeeeeeveeenns 426
Extended Parameter List — Parameter ...ttt s e 431
Sample Compiler Programming Table. ...ttt e s e e s bae e saree e neas 503
Initializing REXX/VSE USING ARXINST.Z..ccuvitieiieiiiieeeiiteeeiteeeitessteessiee s st e s sateesssseesssasesssaessssaesssseesnns 530
Loading Single Phases iNT0 the SVA........ ettt ettt e st e s e st e e s ate e s nta e e sbeesnaaeans 530

Tables

1. Language Codes for SETLANG FUNCHION.....ccuiiiiieieiteeeiteeecteeeeteeeeteeeeteeeete e e etaeeetaeesbaeessaessnsaeeensasennes 100
2. Return Codes for the SYSVAR fUNCHION.c...iiciiiiieieete ettt et 103
3. Return and Reason Codes from Command ProCESSOIS.covuerueriereerienieriereesreeeesreeeeseee e ssee e seeneeens 270
4. REXX socket functions for processing SOCKET SEIS.....uiiiiiiiiiiiiieiiieeieeeteceee e see e esaee s 277
5. REXX socket functions for creating, connecting, changing, and closing sockets.......ccccceevveeeceeeecreeennee. 277
6. REXX socket functions for eXxchanging data.......cccceeecieeiiiiiiiieeciee et s e e ae e s saee s 277
7. REXX socket functions for resolving names and other identifiers........ccceeeeiieciiieccie e 278
8. REXX socket functions for managing configurations, options, and Modes......c..ccccvevveerrvieerecieessceeessneens 278
9. REXX socket functions for translating data and doing traCing........ccccueeecieeeiieeeiiee e e 279
L0, REXX VATIADLES. ..ttt ettt ettt et st et s e e bt e st e bt esae e sabeesbeesabeeseesaseeseesnnens 280
11. Common Return Codes for REXX/VSE ROULINES.......oviiiiiiiiiccciieeeeeee et ee e e s e sssssssaeeeeeeee s 328
12. Parameter for Calling the ARXICL ROULINE.....cuiiiiiiiiiiieicieeseieeseieeseiteessee e sere s ssee e sseeessaeeesneeesneeesans 332
13. Return Codes fOor ARXICL ROUTINE...c.uiiuiiiiiiieientete ettt sttt ettt ettt sbe st ss e s s e b s nnees 333
14. Parameters for ARXEXEC ROUTINE.....cccuiiiiiriieiieeciteete ettt sttt st ettt st bt saeesne e s e e sreesneesane s 335
15. Format of the EXec BLOCK (EXECBLK).....coutiriiriiiieterieeterteseetete sttt sttt et s s sne e 337
16. Format of the ArgUMENT LiST....iii ittt e see e s ae e s ae e e saee e ssaseeessbe e e sseessneeas 338
17. Format of the Header for the In-Storage Control BLOCK........ccccuieeeiieeeiieeceeeceeeeee e 339
18. Vector of Records for the In-Storage Control BLOCK........c.uiivceiiiiieiiiiieicite et 340
19. Format of the Evaluation BLOCK........cc.iieeririereeeteeeteente ettt st st 341
20. ARXEXEC RETUIN COUES. ...ceitiitierieriierteeiteste st e site st e it st e st e saee e bt e sabeebeesaeeebeesaeesabeesneesaseesseesnsennnes 343
271. External FUNCEION Parameter LiST......cooieiireiieriieienieeienie ettt ettt st ss e st s e 345
22. Format of the Evaluation BLOCK.........ceiiiiiiiieeieee ettt sttt s s s s 346
23. Return Codes from Function or Subroutine Code (in ReZISter 15)...cccciiiecieeecciieeeiieeeieeecieeeeieeeevee e 347

Xvii

xviii

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45,

46.

47.

48.

Format of the Function Package DireCtory HEadercuuuiiiiiiiiiieiiecciee et 349
Format of Entries in FUNCtiON PAckage Dir€CIOIY......iuciiiiciiieiieecciie ettt evee e e sve e s svae e e sbae s svaeeeans 349
Parameters for ARXEXCOM. ..o ittt ettt st s e sttt e st e ne e st e s neesmaeenee e 353
Format 0f the SHVBLOCKoi ittt sttt sttt et sttt s e s b e s sseen e s ene s 355
Return Codes from ARXEXCOM (iN REGISTEN L15)....uiiciiriieceieieeiieeseessieesreesteesseesteeseeesseesseesssesseesnnens 357
Parameters fOr ARXSUBCM......cooiiiiiiiirteeeeestertesrt ettt ettt b st a e s e b e e sreeaees 359
Format of an Entry in the Host Command Environment Table........cccooeeiieiiccciiiec e 360
Return Codes fOr ARXSUBCM.. ..ottt ettt sttt et et sa e s s sre e v 360
Parameters fOr ARXIC..... .o ittt et st et st et e st st e s st e s bt e bt e sae e e be e saeesabeesneeenseesneesaeesaneas 362
REtUIN COdES fOr ARXIC....ciiiiieiieteeieeee ettt sttt st e ss et st e e s e bt e s bt e eesaeene s e e nneemeens 363
Parameters fOr ARXRLT ..o ittt ettt ettt st e s e st e s e st be e sae e e b e sae e e b e e sneesaseeneesmeesaneas 364
ARXRLT Return Codes for GETBLOCK OF GETEVAL....cccuivvitiriiriiieniienieeeenteeieeseesieesieesreesseesasessveenne 366
ARXRLT Return Codes for the GETRLT and GETRLTE FUNCHIONS......eiiiiriiiiienieeieereeeee e 367
Parameters fOr ARXSAY ... ittt sttt ettt sttt et sa e st e bt s e bt e e e sre e e sreenne 368
RETUIN COdES TOr ARXSAY ...ttt ettt sttt sttt ettt b e st e e b e sae e e b e e saeeebeesneesareesneesnneas 370
Parameters fOr ARXHLT ..ottt b e st e s e b e e b eaees 371
ReTUIN Codes fOr ARXHLT ...ttt ettt ettt et e s et s e b e sme e s b e e s neesmreenns 372
Parameters fOr ARXTXT ..ottt sttt sttt ettt st st b e s s e e e st e e e s e b e et e s b e e aeesreenne 373
Text Unit and Day Returned = DAY FUNCHIONuiiii ettt eecttee e eeate e e s eenve e e e s e asaee e e e nsaneeeenas 374
Text Unit and Month Returned - MTHLONG FUNCHION.......coeiiiiieriiieeneeeestee et 375
Text Unit and Abbreviated Month Returned - MTHSHORT FUNCEHON.....ceiiiiiiiiiieeeee e 375
RETUIN COAES FOr ARXTXT ..eieiieieeiteteeterte ettt ettt sttt s ettt sttt sb e b s e s b e e e e sre e b e smeensesmeen 376
Parameters fOr ARXLIN...c.cuii ettt ettt ettt s e st e s e e be e sar e e beesmeeebeesmeesareesnnens 377
Return Codes fOr ARXLIN....cc.ti ittt sttt sttt ettt e e s b e e sbeeaeesne e b e s e nne s 378
Parameters fOr ARXOUT ... ittt sttt e st e et e st e bt e saee s bt e saeesareesneesaneesneesaneenne 379

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

RetUrn Codes fOr ARXOUT ... ittt ettt sttt ettt et s e s b e s e s s e e me e s s e e sneesmreeneesnsesaneas 379
Overview of Replaceable ROULINES......c.uiiciiiieiiccieeecte ettt tee e rae e e be e e e tae e s baeesnbaeennns 384
Format of the Parameter BLOcCk (PARMBLOCK)........oitiiuirienienienie ettt sttt ettt eee 391
Summary of Each Flag Bit in the Parameters Module........c..ueccieeeiieeciiieccieccceecree e 393
Flag Settings for NOMSGWTO and NOMSGIO......ccccuiiriieeriieeniieesiieessireessieeesssneesssseesssseesssseesssnsesssnnens 397
Format of the Module Name Table........oi et 398
Format of the Host Command Environment Table Header.......c.coiiiieriieiieniiniienieeeesee e 401
Format of Entries in Host Command Environment Table.......cccvoirieiineninneneeeeeeeeeneneeseeeene 402
Function Package Table HEAUE ittt sttt et e s te e ssata e ssaeeessaeeesnnes 404
Values in ARXPARMS Default Parameters Module (1).......cceceeeeerereninininenenenesiesesieseeseeseesve e 407
Values in ARXPARMS Default Parameters Module (2)......ccoveriereriieninnenieenteseeee et 407
Values in ARXPARMS Default Parameters Module (3)......cccoeeerirenenininininenesesiesiesieseeeeeseeeve e 408
Format of the EnvIironmMent BLOCK.......coouii ittt s 415
Format of the Work BLOCK EXTENSION.....cc.tiiirieiirteititeree ettt s 417
Format of REXX Vector of EXternal ENTry POINTS.......cccciiiiieciiieeecceee et eerre e vree e e e eante e e e envaee e e 419
Format of the EnVironment Table.......ooeiiiieiieee ettt s 422
Parameters fOr ARXINITottt sttt et et s e st e s b e re e s b e e b e saseeneesaeeebeesneean 428
Parameters Module and In-Storage Parameter LiSt......ccciecceeieieeieiee ettt e e 433
Reason Codes for ARXINIT PrOCESSING.....ccivciiiriieiriieiriiteeeiieessiteeseeesseeessseessseesssseesssseessssesssnseessnees 435
ARXINIT Return Codes for Finding an Environment (FINDENVB)........cccovevviereenieneenenieeseneeseseeseeenne 436
ARXINIT Return Codes for Initializing an Environment (INITENVB)......ccccveveerieereerieeeieeseeeeeeseee e 437
Return Codes for ARXTERM....cuiiiiiiiieieieeeee ettt sttt st st st e st e sreeeesre e 438
Parameters for the EXec Load ROUTINE......coceeriiiiierieene ettt s 443
Return Codes for the Exec Load Replaceable ROULINE........ccuviiciiiiciiecciee et 446
Input Parameters for the I/O Replaceable ROUTINE.......ccooeviiiii e 448

Xix

XX

74.

75.

76.

717.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

| L@ N Ofe Y] 1 o] I =] (o Tl ST 452
Format of the Data Set Information BLOCK.......ccoeeviirieriirienieeceneeeee et 453
Return Codes for the I/O Replaceable ROULINE.......coiiciiiii ettt e 456
Parameters for a Host Command Environment ROUTINE........coviririererienieerieenee e 457
Return Codes for the Host Command Environment ROUEINE.......oociiiieriiieiienieeeeeeeee e 458
Parameters for the Data Stack ROULINE......coouiiiiriiiiieeeeee et 460
Return Codes for the Data Stack Replaceable ROUTINE.......c.c.uuiiiiicciiie it 463
Parameters for the Storage Management Replaceable ROULINE.........coeciieeiieieciie e 464
Return Codes for the Storage Management Replaceable ROULINE........ccocviiiciiiiiiiiicieiiiec e 465
Parameters for the User ID Replaceable ROULINE........ccccuiiiciieiciieccte et 466
Return Codes for the User ID Replaceable ROULINE........uuiiiieciiiie ettt 467
Return Codes for the Message Identifier Replaceable ROULINE......cccvieviieiciieiciieccee e, 468
Parameters fOr ARXINITX ..o ittt ettt ettt e sttt e s e st e s bt e sae e e sbeesaneebeesaeeeneesneesneenne 469
Return Codes fOr ARXINITX ..cociieirieteriereeniertesieeteste e s ee st e e e s st eee st e st e e e s s e eesreebessee st emeesreenesmeenne 470
Parameter List fOr Halt EXite....coc oottt 472
Return Codes fOr Halt EXit.....c.coiiririeriereeneeeeee sttt ettt ettt et e 473
RETUIN COUBS. ...ttt ettt ettt ettt et e st e bt e st e e bt e sae e e b e e saee s b e e sneesaseesneesaseeneesnseeseenns 474
Parameters for EXEC ProCeSSING EXit.....ciiciiiiciiiiiiiee ettt sre e stee e evee s eaee s sae e e s vee s sre e e s bae e nns 475
DB CS RANEES. . etitieeitite et te ettt e e ettt e e e et te e e e se e e e e e s nseeeeeaaunatee e s nb e e e e aaansbteeeaaaneteeeeenreeeeeenareaeeeeanren 479
Parameters for ARXTERMAo ettt ettt e sse s s e e e saeenne s 496
Return Codes for ARXTERMAL. ... oottt ettt sttt e re e sae e b e s e e e b e e smeesaneennis 497
Compiler Programming Table Header INformation.........ceeccieieciiiccee ettt e 502
Compiler Programming Table Entry INfOrmation......ccccevcieiiiiiiiiieiiiecceec et 502
Compiler Runtime Processor EXpected RESULLS........cccciiieiiieeieeciteceite et eere e sere e ae e s vae e e aae s 504
Parameters for a Compiler RUNTIME PrOCESSON....ciicciiieeieciiieeeeecitee e e ectee e e eeraee e e e esnseeeessesseeeesennsaneesenns 506

99. Return Codes from a REXX Compiler RUNTIME ProCESSOr.....uiiiiiiiiieeeeecitiee ettt cree e vaee e 507

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Parameter List for the Compiler Interface Initialization ROULINE........ccccviiiciiiiciiiicee e 508
Return Codes from the Compiler Interface Initialization ROULINE........ccoeeciiieiicciiiee e 509
Parameter List for the Compiler Interface Termination ROULINE........ccccvveecieeeiieeccieece e 510
Parameter List for the Compiler Interface Load ROULINE........uiiiiieciiiee it 512
Return Codes from the Compiler Interface Load ROULINE......cccviieiiieeiiieeiieeccee et 513
Parameter List for the Compiler Interface Variable Handling Routing.......cccooeveiviieiiiieiinieeinieeenee, 515
Return Codes from the Compiler Interface Variable Handling Routine.........cocceevviervieenieniiennieeneennne. 517
Parameters for the External Routine Search ROULINE.......coiciiiiiriiiie e 519
Return Codes from the External Routine Search ROUTINE.......ccocieviirieriiniiciineceeeee e 520
Parameters for the Host Command Search ROUTINE........cooiiiiieiiiiieeeeeeeeee e 521
Return Codes from the Host Command Search ROULINE......c..ccceeiieriirienieiineceee e 523
Parameters for the Exit ROUTING ROULINE....ccicuiiiiiiiiieeiiee ettt ssee e st eseaee e ssaeeessneeesans 524
Return Codes from the EXit ROULING ROULINE.....ciccuiiiiiiiieeiiiecciec ettt ettt re e e e e aae e e aae e 525
N F=T o] o] =38 7 F= ol o =T PP 527
N FT o] o =3 2= ol o - T PSSR 528
N F=YaTe P (o] VA o o B U] SR 529
RECOMMENAEA PRASES....c.eiiiieiiiieieetenee ettt ettt st sb e s bt esre e s e seesneemee s 529

xXi

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, USA.

For online versions of this book, we authorize you to:

« Copy, modify, and print the documentation contained on the media, for use within your enterprise,
provided you reproduce the copyright notice, all warning statements, and other required statements on
each copy or partial copy.

« Transfer the original unaltered copy of the documentation when you transfer the related IBM product
(which may be either machines you own, or programs, if the program's license terms permit a transfer).
You must, at the same time, destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes, resulting from this
authorization.

There are no warranties, express or implied, including the warranties of merchantability and fitness
for a particular purpose.

Some juristictions do not allow the exclusion of implied warranties, so the above exclusion may not apply
to you.

Your failure to comply with the terms above terminates this authorization. Upon termination, you must
destroy your machine readable documentation.

Programming Interface Information

This book is intended to help the customer write programs in the REXX programming language and
customize services that REXX/VSE 6.7 provides for REXX processing. This book primarily documents
General-use Programming Interface and Associated Guidance Information provided by REXX/VSE 6.7.

General-use programming interfaces allow the customer to write programs that obtain the services of
REXX/VSE 6.7.

However, this book also documents Product-sensitive Programming Interface and Associated Guidance
Information provided by REXX/VSE 6.7.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of REXX/VSE 6.7. Use of such interfaces
creates dependencies on the detailed design or implementation of the IBM software product. Product-
sensitive programming interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that programs written to such
interfaces may need to be changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs, by an introductory statement.

© Copyright IBM Corp. 1988, 2004 xxiii

The programming interfaces include data areas and parameter lists. Unless otherwise stated, all fields in
data areas/parameter lists are part of the programming interface. However, all "Reserved ..." fields are not
part of the programming interface.

See Appendix A, “List of the Names of Macros Intended for Customers' Use,” on page 527 for a list of
macros intended as programming interfaces.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

IBM BookManager
Library Reader VSE/ESA
Systems Application Architecture SAA
MVS/ESA AS/400

PS/2 0S/2

xxiv IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Summary of Changes

The twelfth edition of this manual (March 2004) contains several updates and editorial changes.

© Copyright IBM Corp. 1988, 2004 XXV

xxvi IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Introduction

Chapter 1. Introduction

This introductory section:

« Identifies the book's purpose and audience
« Explains how to use the book.

Who Should Read This Book

This book describes the REstructured eXtended eXecutor (REXX) language. The REXX language is
implemented through:

« The REXX/VSE interpreter

« The Library for REXX/370 in REXX/VSE.

The interpreter is also called the language processor. The Library for REXX/370 in REXX/VSE is also called

a compiler's runtime processor. This book is intended for experienced programmers, particularly those
who have used a block-structured, high-level language (for example, PL/I, Algol, or Pascal).

REXX/VSE is a partial implementation of Level 2 Systems Application Architecture (SAA) REXX on the
VSE/ESA system. The purpose of SAA REXX is to define a consistent set of language elements that can

be used on several operating systems. If you plan to run REXX programs on other environments, however,
some restrictions may apply and you should review the publication SAA Common Programming Interface
REXX Level 2 Reference, SC24-5549.

REXX programs can do many tasks, including the automation of VSE/Operations. For example, if you use
the JCL EXEC command to call a REXX program, you can leave JCL statements on the stack for VSE/ESA
to process. This enables you to insert JCL statements or data into the current job stream.

Descriptions include the use and syntax of the language and how the language processor "interprets" the
language while a program is running under the REXX/VSE interpreter. The book also describes:

« REXX/VSE external functions and REXX/VSE commands you can use in a REXX program
« Programming services that let you interface with REXX and the language processor

« Customizing services that let you customize REXX processing and how the language processor accesses
and uses system services, such as storage and I/O requests.

The Compiler and the Library for REXX/370

See Chapter 24, “Support for the Library for REXX/370 in REXX/VSE,” on page 499 for information about
the Compiler and the Library for REXX/370.

How to Use This Book

This book is a reference rather than a tutorial. It assumes you are already familiar with REXX
programming concepts. The material in this book is arranged in chapters:

1. Chapter 1, “Introduction,” on page 1

. Chapter 2, “REXX General Concepts,” on page 7

. Chapter 3, “Keyword Instructions,” on page 27 (in alphabetic order)

. Chapter 4, “Functions,” on page 59 (in alphabetic order)

. Chapter 5, “Parsing,” on page 105 (a method of dividing character strings, such as commands)

. Chapter 6, “Numbers and Arithmetic,” on page 119

N o 0 BN

. Chapter 7, “Conditions and Condition Traps,” on page 129

© Copyright IBM Corp. 1988, 2004 1

Introduction

8. Chapter 8, “Using REXX,” on page 135

9. Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on page 141
10. Chapter 10, “REXX/VSE Commands,” on page 143
11. Chapter 11, “ADDRESS POWER Commands,” on page 181
12. Chapter 12, “JCL Command Environment,” on page 201

13. Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205
14. Chapter 14, “REXX/VSE Console Automation,” on page 217

15. Chapter 15, “REXX Sockets Application Program Interface,” on page 275

16. Chapter 16, “Debug Aids,” on page 319

17. Chapter 17, “Programming Services,” on page 323

18. Chapter 18, “Customizing Services,” on page 381

19. Chapter 19, “Language Processor Environments,” on page 387

20. Chapter 20, “Initialization and Termination Routines,” on page 427

21. Chapter 21, “Replaceable Routines and Exits,” on page 439

22. Chapter 22, “Double-Byte Character Set (DBCS) Support,” on page 479

23. Chapter 23, “ARXTERMA Routine,” on page 495

24, Chapter 24, “Support for the Library for REXX/370 in REXX/VSE,” on page 499

Appendixes cover:

« Appendix A, “List of the Names of Macros Intended for Customers' Use,” on page 527
- Appendix B, “Servicing REXX/VSE,” on page 529

« Appendix C, “REXX Supplied Link Books,” on page 531

This introduction and Chapter 2, “REXX General Concepts,” on page 7 provide general information
about the REXX programming language. The two chapters provide an introduction to REXX/VSE and
describe the structure and syntax of the REXX language; the different types of clauses and instructions;
the use of expressions, operators, assignments, and symbols; and issuing commands from a REXX
program.

Chapter 3, “Keyword Instructions,” on page 27 describes the keyword instructions. Chapter 4,
“Functions,” on page 59 describes the SAA built-in functions, additional built-in functions, and external
functions that REXX/VSE provides.

Other chapters provide information to help you use the different features of REXX and debug any
problems in your REXX programs. These chapters include:

« Chapter 5, “Parsing,” on page 105

« Chapter 6, “Numbers and Arithmetic,” on page 119

« Chapter 7, “Conditions and Condition Traps,” on page 129

« Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on page 141
« Chapter 16, “Debug Aids,” on page 319.

REXX/VSE provides several REXX/VSE commands you can use for REXX processing. Chapter 10,
“REXX/VSE Commands,” on page 143 describes the syntax of these commands.

Chapter 12, “JCL Command Environment,” on page 201 describes these environments introduced in
Chapter 2, “REXX General Concepts,” on page 7 in greater detail.

Chapter 14, “REXX/VSE Console Automation,” on page 217 describes a special REXX/VSE facility that is
centered around a VSE/ESA programmable console. This facility enables you to automate and make more
productive the operation of your VSE/ESA console.

Besides REXX language support, REXX/VSE provides:

« Programming services you can use to interface with REXX and the language processor

2 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Introduction

- Customizing services that let you customize REXX processing and how the language processor accesses
and uses system services, such as I/O and storage.

Chapter 17, “Programming Services,” on page 323 describes programming services. Chapter 18,
“Customizing Services,” on page 381 introduces customizing services, which the following chapters
describe in greater detail:

« Chapter 19, “Language Processor Environments,” on page 387

« Chapter 20, “Initialization and Termination Routines,” on page 427

« Chapter 21, “Replaceable Routines and Exits,” on page 439.

Note: REXX/VSE is interactive only from the operator's console. This reservation applies to any terms in
this book suggesting interactive input and output. For example, displaying output refers to presenting it
through the current output stream; entering information refers to providing it through the current input
stream.

The REXX/VSE messages are included in the z/VSE Messages and Codes manual and therefore available
in all VSE/ESA supported languages.

See the z/VSE Planning, and z/VSE System Upgrade and Service, if you plan to use the Fast Service
Upgrade (FSU) function to migrate to VSE/ESA 2.1. Appendix B, “Servicing REXX/VSE,” on page 529
provides information to help you reload phases after service into the SVA.

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the structure defined below.
« Read the syntax diagrams from left to right, from top to bottom, following the path of the line.
The »»——symbol indicates the beginning of a statement.
The —» symbol indicates that the statement syntax is continued on the next line.
The »—symbol indicates that a statement is continued from the previous line.
The —»<«symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the »— symbol and end with
the —» symbol.

« Required items appear on the horizontal line (the main path).

»— STATEMENT — required_item —»<

« Optional items appear below the main path.

L optional_item J

« If you can choose from two or more items, they appear vertically, in a stack.

»— STATEMENT

If you must choose one of the items, one item of the stack appears on the main path.
»— STATEMENT required_choicel
T required_choice2 T
If choosing one of the items is optional, the entire stack appears below the main path.
»— STATEMENT >
toptional_choicel j
optional_choice2

« If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

Chapter 1. Introduction 3

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessus91.pdf

Introduction

default_choice

»— STATEMENT J { >«
toptional_choice j

optional_choice

An arrow returning to the left above the main line indicates an item that can be repeated.

»— STATEMENT L repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.

A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram
that appears in greater detail below the main diagram.

»— STATEMENT

fragment

»— expansion_provides_greater_detail —»«

Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but can
be specified in any case. Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

»—MAX—(fmzml:erl)M

For Further REXX Information

The following lists publications that are useful for programming in REXX:

The SAA Common Programming Interface REXX Level 2 Reference, SC24-5549, may be useful to more
experienced REXX users who may wish to code portable programs. This book defines SAA REXX.
Descriptions include the use and syntax of the language as well as explanations on how the language
processor interprets the language as a program is running.

The 0S/390 TSO/E REXX Reference, is a comprehensive reference for use on TSO/E.

The 0S/390 TSO/E REXX User's Guide, introduces the instructions and functions the REXX language
provides and explains how to write a REXX program. It describes how to run a REXX program in TSO/E
foreground and background, in MVS batch using JCL, or in any address space. This book also highlights
the major differences between the TSO/E CLIST language and the REXX language.

The VM/ESA: REXX/VM Primer, SC24-5598, is an excellent introduction to REXX and can help you get
started. If you have little or no experience in computer programming or programming in REXX, it is
worthwhile reading.

The VM/ESA REXX/VM Reference, is a comprehensive reference for use on VM.

The REXX/VM User's Guide, is suitable for beginners and programmers who have not used a structured
language before.

The VSE/ESA REXX/VSE User's Guide, provides a general introduction to REXX programming for
beginners. It introduces REXX instructions and built-in functions and explains how to write a REXX
program. It includes many examples of REXX applications.

4 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3a330.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj3c310.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/hcse2a10.pdf
https://www.vm.ibm.com/library/710pdfs/71631500.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf

Introduction

The VSE/ESA REXX/VSE Diagnosis Reference, provides information to help with diagnosing problems,

developing search arguments for searching problem reporting data bases, and collecting data for
reporting problems to IBM.

« The VSE/ESA Messages and Codes, contains REXX error numbers and messages.

See page “Compiler Publications” on page 500 for a list of books for the IBM Compiler and Library for
REXX/370.

Chapter 1. Introduction 5

http://publibfp.dhe.ibm.com/epubs/pdf/iesrde01.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

Introduction

6 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Chapter 2. REXX General Concepts

The REstructured eXtended eXecutor (REXX) language is particularly suitable for:

« Command procedures
 Application front ends

Prototyping
Personal computing. Individual users can write programs for their own needs.

REXX is a general purpose programming language like PL/I. REXX has the usual structured-programming
instructions — IF, SELECT, DO WHILE, LEAVE, and so on — and a number of useful built-in functions.

The language imposes no restrictions on program format. There can be more than one clause on a line, or
a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code programs
in a format that emphasizes their structure, making them easier to read.

The limit on the length of the value of variables is the amount of storage available in a single request.
The limit on the length of symbols (variable names) is 250 characters.

You can use compound symbols, such as
NAME.Y.Z

(where Y and Z can be the names of variables or can be constant symbols), for constructing arrays and for
other purposes.

A host command is a command for the surrounding system to act upon. Issuing host commands from
within a REXX program is an integral part of the REXX language.

You can use REXX/VSE commands (for example, MAKEBUF, DROPBUF, and NEWSTACK) and ADDRESS
POWER commands in a REXX program. You can also link to programs and issue JCL commands. “Host
Commands and Host Command Environments.” on page 24 describes the different environments for
using host services.

The location for all parts of REXX/VSE is the PRD1.BASE sublibrary. All descriptions and examples in this
book refer to this sublibrary.

REXX programs must reside in a member of a sublibrary in the active PROC chain. For more information,
see REXX/VSE User's Guide.

You can call a program from batch using the JCL EXEC command. See Figure 19 on page 329 for an
example. Or you can call the ARXEXEC or ARXJCL interface from any program. See “Calling REXX with
ARXEXEC or ARXJCL” on page 331 for more information. Programs are loaded from the active PROC
chain.

A language processor runs REXX programs. If a program is interpreted, it is processed line-by-line and
word-by-word. It is not first translated to another form (compiled).

When a program is loaded into storage, the load routine checks for sequence numbers in the REXX
program. The routine removes the sequence numbers during the loading process. For information about
how the load routine checks for sequence numbers, see “Exec Load Routine” on page 442.

Where to Find More Information

You can find useful information in the REXX/VSE User's Guide. For any program written in the REXX
language, you can use the REXX TRACE instruction to get information on how the language processor
interprets the program or a particular instruction.

See page “Compiler Publications” on page 500 for a list of books for the IBM Compiler and Library for
REXX/370.

© Copyright IBM Corp. 1988, 2004 7

http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf

REXX General Concepts

Structure and General Syntax

REXX programs are recommended to start with a comment. REXX/VSE does not require this. However, for
portability reasons, you are recommended to start each REXX program with a comment that begins on the
first line and includes the word REXX. The example in Figure 1 on page 8 illustrates this. The program
starts with a comment and the characters "REXX" are in the first line (line 1).

/* REXX program to check ...
The program then ... %/

EXIT
Figure 1. Example of Using the REXX Program Identifier

A REXX program is built from a series of clauses that are composed of:
« Zero or more blanks (which are ignored)
« A sequence of tokens (see “Tokens” on page 9)

« Zero or more blanks (again ignored)
« A semicolon (;) delimiter that may be implied by line-end, certain keywords, or the colon (:).

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it are
identified. Instruction keywords are recognized at this stage, comments are removed, and multiple blanks
(except within literal strings) are converted to single blanks. Blanks adjacent to operator characters and
special characters (see “Special Characters: ” on page 12) are also removed.

Characters

A character is a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from its coded representation
or encoding. Various coded character sets (such as ASCII and EBCDIC) use different encodings for the
letter A (decimal values 65 and 193, respectively). This book uses characters to convey meanings and

not to imply a specific character code, except where otherwise stated. The exceptions are certain built-in
functions that convert between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

A code page specifies the encodings for each character in a set. You should be aware that:

- Some code pages do not contain all characters that REXX defines as valid (for example, -, the logical
NOT character).

« Some characters that REXX defines as valid have different encodings in different code pages (for
example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Chapter 22, “Double-Byte Character Set
(DBCS) Support,” on page 479.

Comments

A comment is a sequence of characters (on one or more lines) delimited by /* and % /. Within these
delimiters any characters are allowed. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. They are called nested comments. Comments can be anywhere
and can be of any length. They have no effect on the program, but they do act as separators. (Two tokens
with only a comment in between are not treated as a single token.)

/* This is an example of a valid REXX comment x/

8 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Take special care when commenting out lines of code containing /* or %/ as part of a literal string.
Consider the following program segment:

01 parse pull input

02 if substr(input,1,5) = '/*123'
03 then call process

04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input

02 /% if substr(input,1,5) = '/%123'
03 then call process

04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal string /
%123 as the start of a nested comment. It would not process the rest of the program because it would be
looking for a matching comment end (x/).

You can avoid this type of problem by using concatenation for literal strings containing /* or x/; line 2
would be:

if substr(input,1,5) = '/' || '%123'
You could comment out lines 2 and 3 correctly as follows:

01 parse pull input

02 /* if substr(input,1,5) = '/' || '%123"'
03 then call process

04 x/ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Chapter 22, “Double-Byte Character Set
(DBCS) Support,” on page 479 and the OPTIONS instruction “OPTIONS” on page 43.

Tokens

A token is the unit of low-level syntax from which clauses are built. Programs written in REXX are
composed of tokens. They are separated by blanks or comments or by the nature of the tokens
themselves. The classes of tokens are:

Literal Strings:
A literal string is a sequence including any characters and delimited by the single quotation mark (')
or the double quotation mark ("). Use two consecutive double quotation marks ("") to representa "
character within a string delimited by double quotation marks. Similarly, use two consecutive single
quotation marks (' ') to represent a ' character within a string delimited by single quotation marks. A
literal string is a constant and its contents are never modified when it is processed.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

'"Fred'

"Don't Panic!"

'"You shouldn''t' /* Same as "You shouldn't" =/
v /* The null string */

Note that a string followed immediately by a (is considered to be the name of a function. If followed
immediately by the symbol X or x, it is considered to be a hexadecimal string. If followed immediately
by the symbol B or b, it is considered to be a binary string. Descriptions of these forms follow.

Implementation maximum: A literal string can contain up to 250 characters. (But note that the
length of computed results is limited only by the amount of storage available.)

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0-9, a—£, A—F), grouped in pairs. A single leading 0

Chapter 2. REXX General Concepts 9

REXX General Concepts

is assumed, if necessary, at the front of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited
by single or double quotation marks, and immediately followed by the symbol X or x. (Neither x nor

X can be part of a longer symbol.) The blanks, which may be present only at byte boundaries (and

not at the beginning or end of the string), are to aid readability. The language processor ignores them.
A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example: 'C1'X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

"ABCD ' x
"1d ec £8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. Rather, it is an escape mechanism
that lets a user describe a character in terms of its encoding (and, therefore, is machine-dependent).
In EBCDIC, '40'X is the encoding for a blank. In every case, a string of the form ".....'x is simply an
alternative to a straightforward string. In EBCDIC 'C1'x and 'A' are identical, as are '40'x and a blank,
and must be treated identically.

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Binary Strings:
A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
may have fewer than four digits; in this case, up to three 0 digits are assumed to the left of the first
digit, making a total of four digits. The groups of digits are optionally separated by one or more blanks,
and the whole sequence is delimited by matching single or double quotation marks and immediately
followed by the symbol b or B. (Neither b nor B can be part of a longer symbol.) The blanks, which may
be present only at byte or nibble boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of eight, leading zeros are added on the left to make a multiple of eight before
packing. Binary strings allow you to specify characters explicitly, bit by bit.

These are valid binary strings:

'111160000'b /% == 'f0'x */

"101 1101"b /* == '5d'x */

'1'b /* == '00000001'b and '01'x */

'10000 10101010'b /x == '0001 0000 1010 1010'b */

||b /* —_ 11! */
Symbols:

Symbols are groups of characters, selected from the:

« English alphabetic characters (A-Z and a-z1)
« Numeric characters (0-9)
« Characters@ # $ ¢ . ! 2? and underscore.

» Double-Byte Character Set (DBCS) characters (X'41'-X'FE')—ETMODE must be in effect for these
characters to be valid in symbols. See Chapter 22, “Double-Byte Character Set (DBCS) Support,” on
page 479 for more information.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a—z to
uppercase A-Z) before use.

1 Note that some code pages do not include lowercase English characters a-z.
2 The encoding of the exclamation point character depends on the code page in use.

10 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

These are valid symbols:

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned it a value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a—z to uppercase A-Z). Symbols that begin with a number or a period
are constant symbols and cannot be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0—-9) or a period, and it may end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The sign in this context is part of the symbol and is not an
operator.

These are valid numbers in exponential notation:

17.3E-12
.03e+9

Implementation maximum: A symbol can consist of up to 250 characters. (But note that, if it is a
variable, the only limit on its value is the amount of storage obtainable in a single request.)

Numbers:
These are character strings consisting of one or more decimal digits, with an optional prefix of a
plus or minus sign, and optionally including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding may occur to a
precision specified by the NUMERIC DIGITS instruction (default nine digits). See Chapter 6, “Numbers
and Arithmetic,” on page 119-“Errors” on page 126 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and can have trailing blanks.
Blanks may not be embedded among the digits of a number or in the exponential part. Note that
a symbol (see preceding) or a literal string may be a number. A number cannot be the name of a
variable.

These are valid numbers:

12

'-17.9'
127.0650
73e+128

'+ 7.9E5 '

You can specify numbers with or without quotation marks around them. Note that the sequence
-17.9 (without quotation marks) in an expression is not simply a number. It is a minus operator
(which may be prefix minus if no term is to the left of it) followed by a positive number. The result of
the operation is a number.

A whole number is a number that has a zero (or no) decimal part and that the language processor
would not usually express in exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

Operator Characters:
The characters:+ - \ / % * | & = = > <andthesequences>= <= \> \< \= >< <>
== \== // && || **=> =< == A== >> << >>= \<< =<< \>> ->> <<= /= /==indicate
operations (see “Operators” on page 13). A few of these are also used in parsing templates, and the

Chapter 2. REXX General Concepts 11

REXX General Concepts

equal sign is also used to indicate assignment. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character sets, and, if this is the case,
appropriate translations may be used. In particular, the vertical bar (|) or character is often shown
as a split vertical bar (}).

Throughout the language, the not character, -, is synonymous with the backslash (\). You can use the
two characters interchangeably according to availability and personal preference.

Special Characters:
The following characters, together with the individual characters from the operators, have special
significance when found outside of literal strings:

D

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. There is an exception: a blank adjacent to the outside of a
parenthesis is deleted only if it is also adjacent to another special character (unless the character

is a parenthesis and the blank is outside it, too). For example, the language processor does not
remove the blankin A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The
language processor does remove the blanks in (A) + (Z) because this is equivalent to (A)+(Z).

The following example shows how a clause is composed of tokens.
'REPEAT' A + 3;

This is composed of six tokens—a literal string (' REPEAT '), a blank operator, a symbol (A, which may have
avalue), an operator (+), a second symbol (3, which is a number and a symbol), and the clause delimiter
(;). The blanks between the A and the + and between the + and the 3 are removed. However, one of the
blanks between the 'REPEAT' and the A remains as an operator. Thus, this clause is treated as though
written:

'REPEAT' A+3;

Implied Semicolons

The last element in a clause is the semicolon delimiter. The language processor implies the semicolon: at
a line-end, after certain keywords, and after a colon if it follows a single symbol. This means that you need
to include semicolons only when there is more than one clause on a line or to end an instruction whose
last character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon at most end of lines.
However, there are the following exceptions:

« The line ends in the middle of a string.
» The line ends in the middle of a comment. The clause continues on to the next line.

« The last token was the continuation character (a comma) and the line does not end in the middle of a
comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be split by a line-end
(that is, / and * should not appear on different lines) because they could not then be recognized correctly;
an implied semicolon would be added. The two consecutive characters forming a literal quotation mark
within a string are also subject to this line-end ruling.

12 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Continuations

One way to continue a clause onto the next line is to use the comma, which is referred to as the
continuation character. The comma is functionally replaced by a blank, and, thus, no semicolon is
implied. One or more comments can follow the continuation character before the end of the line. The
continuation character cannot be used in the middle of a string or it will be processed as part of the string
itself. The same situation holds true for comments. Note that the comma remains in execution traces.

The following example shows how to use the continuation character to continue a clause.

say 'You can use a comma',
'to continue this clause.'

This displays:

You can use a comma to continue this clause.

Expressions and Operators

Expressions in REXX are a general mechanism for combining one or more pieces of data in various ways to
produce a result, usually different from the original data.

Expressions

Expressions consist of one or more terms (literal strings, symbols, function calls, or subexpressions)
interspersed with zero or more operators that denote operations to be carried out on terms. A
subexpression is a term in an expression bracketed within a left and a right parenthesis.

Terms include:

« Literal Strings (delimited by quotation marks), which are constants

« Symbols (no quotation marks), which are translated to uppercase. A symbol that does not begin with a
digit or a period may be the name of a variable; in this case the value of that variable is used. Otherwise
a symbolis treated as a constant string. A symbol can also be compound.

« Function calls (see Chapter 4, “Functions,” on page 59), which are of the form:

>>—I:j——swnbol———({: l__ __I]) >«
literal_string — (_J expression
Evaluation of an expression is left to right, modified by parentheses and by operator precedence in the

usual algebraic manner (see “Parentheses and Operator Precedence” on page 16). Expressions are
wholly evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings (typeless because it is not—as in some other
languages—of a particular declared type, such as Binary, Hexadecimal, Array, and so forth). Consequently,
the result of evaluating any expression is itself a character string. Terms and results (except arithmetic
and logical expressions) may be the null string (a string of length 0). Note that REXX imposes no
restriction on the maximum length of results. However, there is usually some practical limitation
dependent upon the amount of storage available to the language processor.

Operators

An operator is a representation of an operation, such as addition, to be carried out on one or two

terms. The following pages describe how each operator (except for the prefix operators) acts on two
terms, which may be symbols, strings, function calls, intermediate results, or subexpressions. Each prefix
operator acts on the term or subexpression that follows it. Blanks (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more than one character can

Chapter 2. REXX General Concepts 13

REXX General Concepts

have embedded blanks and comments. In addition, one or more blanks, where they occur in expressions
but are not adjacent to another operator, also act as an operator. There are four types of operators:

- Concatenation
« Arithmetic

« Comparison

- Logical.

String Concatenation

The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:

(blank)
Concatenate terms with one blank in between

Concatenate without an intervening blank

(abuttal)
Concatenate without an intervening blank

You can force concatenation without a blank by using the | | operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
separated only by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37 .4, then Fred'%"' evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred) (Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,
‘cl c2'x'CDE'
evaluate to ABCDE.
In the case of:
Fred/* The NOT operator precedes Peter. */-Peter
there is no abuttal operator implied, and the expression is not valid. However,
(Fred) /* The NOT operator precedes Peter. */(-Peter)

results in an abuttal, and evaluates to 37.40.

Arithmetic

You can combine character strings that are valid numbers (see “Tokens” on page 9) using the arithmetic
operators:

+
Add

Subtract

Multiply

14 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Divide
%

Integer divide (divide and return the integer part of the result)
/

Remainder (divide and return the remainder—not modulo, because the result may be negative)
*%

Power (raise a number to a whole-number power)
Prefix -
Same as the subtraction: @ - number

Prefix +
Same as the addition: @ + number.

See Chapter 6, “Numbers and Arithmetic,” on page 119 for details about precision, the format of valid
numbers, and the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential
notation, it is likely that rounding has occurred.

Comparison

The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or O otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The ==,

==, /==, and -== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to right.
If one string is shorter than and is a leading substring of another, then it is smaller than (less than) the
other. The strict comparison operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a numeric comparison (in
which leading zeros are ignored, and so forth—see Chapter 6, “Numbers and Arithmetic,” on page 119) is
effected. Otherwise, both terms are treated as character strings (leading and trailing blanks are ignored,
and then the shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order may depend on the character set used for the implementation. For example, in an
EBCDIC environment, lowercase alphabetics precede uppercase, and the digits 0-9 are higher than

all alphabetics. In an ASCII environment, the digits are lower than the alphabetics, and lowercase
alphabetics are higher than uppercase alphabetics.

The comparison operators and operations are:

True if the terms are equal (numerically or when padded, and so forth)

\=) o=, /=

True if the terms are not equal (inverse of =)
Greater than

Less than

><
Greater than or less than (same as not equal)

<
Greater than or less than (same as not equal)

Chapter 2. REXX General Concepts 15

REXX General Concepts

Greater than or equal to

\&, =<
Not less than

Less than or equal to

\>; >
Not greater than
True if terms are strictly equal (identical)

\==, ===, [==

True if the terms are NOT strictly equal (inverse of ==

>>
Strictly greater than

<<
Strictly less than

>>=
Strictly greater than or equal to

\<K, <<
Strictly NOT less than

<<=
Strictly less than or equal to

\>>, >
Strictly NOT greater than

Note: Throughout the language, the not character, -, is synonymous with the backslash (\). You can use
the two characters interchangeably, according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

Logical (Boolean)

A character string is taken to have the value false if it is 0, and true if it is 1. The logical operators take one
or two such values (values other than 0 or 1 are not allowed) and return @ or 1 as appropriate:

&
AND Returns 1 if both terms are true.

Inclusive OR Returns 1 if either term is true.

&&
Exclusive OR Returns 1 if either (but not both) is true.

Prefix \,-
Logical NOT Negates; 1 becomes 0, and 0@ becomes 1.
Parentheses and Operator Precedence

Expression evaluation is from left to right; parentheses and operator precedence modify this:

« When parentheses are encountered (other than those that identify function calls) the entire
subexpression between the parentheses is evaluated immediately when the term is required.

« When the sequence:
terml operatorl term2 operator2 term3

is encountered, and operatoxr2 has a higher precedence than operatorl, the subexpression (texm2
operator2 term3)is evaluated first. The same rule is applied repeatedly as necessary.

16 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon as
they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+25 evaluates to 13 (rather than the

25 that would result if strict left to right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2)x5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression - 3x%2 evaluates to 9 (instead of -9) because the

prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

+ == \
(prefix operators)

*%
(power)

*1% [l
(multiply and divide)

+ -
(add and subtract)

(blank) || (abuttal)
(concatenation with or without blank)

=><
(comparison operators)
==>> <<

\: -z

>< <>

Chapter 2. REXX General Concepts 17

REXX General Concepts

| &&
(or, exclusive or)

Examples:

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and other
variables are uninitialized. Then:

A+5 -> '8’

A-4%2 -> '-5'

A/2 -> '1.5'

0.5%%2 -> '0.25"'

(A+1)>7 -> ‘0" /* that is, False x/
boiglt -> 1! /* that is, True =«/
== -> 0" /* that is, False %/
o=t -> 1! /* that is, True =*/
(A+1)*3=12 -> 1! /* that is, True =«/
'077'>"11" -> 1! /* that is, True =*/
Q77" >> '11' -> 'Q' /* that is, False x/
'abc' >> 'ab' -> 1! /* that is, True =«/
'abc' << 'abd' -> 1! /* that is, True =*/
'ab ' << 'abd' -> 1! /* that is, True =*/
Today is Day -> "TODAY IS Monday'

'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> ‘ond' /* Substr is a function */
lixxx ! -> PIXXXT!

'000000' >> 'OEOOOO' -> 1! /* that is, True =*/

Note: The last example would give a different answer if the > operator had been used rather than >>.
Because '0EOQ000' is a valid number in exponential notation, a numeric comparison is done; thus 'OE0000"
and '000000' evaluate as equal. The REXX order of precedence usually causes no difficulty because it

is the same as in conventional algebra and other computer languages. There are two differences from
common notations:

« The prefix minus operator always has a higher priority than the power operator.
« Power operators (like other operators) are evaluated left-to-right.

For example:

-3%%2 == 9 /%x not -9 =%/
-(2+1)**x2 == 9 /% not -9 */
2% *2%*3 == 64 /* not 256 %/

Clauses and Instructions

Clauses can be subdivided into the following types:

Null Clauses

A clause consisting only of blanks or comments or both is a null clause. It is completely ignored (except
that if it includes a comment it is traced, if appropriate).

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or ELSE
in an IF instruction is not equivalent to using a dummy instruction (as it would be in PL/I). The NOP
instruction is provided for this purpose.

Labels

A clause that consists of a single symbol followed by a colon is a label. The colon in this context implies a
semicolon (clause separator), so no semicolon is required. Labels identify the targets of CALL instructions,
SIGNAL instructions, and internal function calls. More than one label may precede any instruction. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses may be labels. This permits multiple labels before other clauses.
Duplicate labels are permitted, but control passes only to the first of any duplicates in a program. The

18 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or
function invocation.

Instructions

An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be: assignments, keyword instructions, or commands.

Assignments

A single clause of the form symbol=expression is an instruction known as an assignment. An assighment
gives a variable a (new) value. See “Assighments and Symbols” on page 19.

Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control the external interfaces, the flow of control, and so forth. Some
keyword instructions can include nested instructions. In the following example, the DO construct (DO,
the group of instructions that follow it, and its associated END keyword) is considered a single keyword
instruction.

DO
instruction
instruction
instruction
END

A subkeyword is a keyword that is reserved within the context of some particular instruction, for
example, the symbols TO and WHILE in the DO instruction.

Commands

A command is a clause consisting of only an expression. The expression is evaluated and the result is
passed as a command string to some external environment.

Assignments and Symbols

A variable is an object whose value can change during the running of a REXX program. The process of
changing the value of a variable is called assigning a new value to it. The value of a variable is a single
character string, of any length, that may contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL instructions, the VALUE built-in
function, the VALUE built-in function, or the Variable Access Routine (IRXEXCOM), or the variable pool
access interface (ARXEXCOM) but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named by
the symbol to the left of the equal sign. If you omit expression, the variable is set to the null string.
However, it is recommended that you explicitly set a variable to the null string: symbol="".

Variable names can contain DBCS characters. For information about DBCS characters, see Chapter 22,
“Double-Byte Character Set (DBCS) Support,” on page 479.

Example:

/* Next line gives FRED the value "Frederic" =/
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0—9) or a period. (Without this restriction on the
first character of a variable name, you could redefine a number; for example 3=4; would give a variable
called 3 the value 4.)

Chapter 2. REXX General Concepts 19

REXX General Concepts

You can use a symbol in an expression even if you have not assigned it a value, because a symbol

has a defined value at all times. A variable you have not assigned a value is uninitialized. Its value is

the characters of the symbol itself, translated to uppercase (that is, lowercase a—z to uppercase A-Z).
However, if it is a compound symbol (described under “Compound Symbols” on page 20), its value is the
derived name of the symbol.

Example:
/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term in an expression (rather than
a keyword of some kind, for example), a symbol belongs to one of four groups: constant symbols, simple
symbols, compound symbols, and stems. Constant symbols cannot be assigned new values. You can
use simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables, such as arrays and lists.

Constant Symbols
A constant symbol starts with a digit (0—-9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

77

827.53

.12345

12e5 /* Same as 12E5 %/
3D

17E-3

Simple Symbols

A simple symbol does not contain any periods and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? x/
?12

Compound Symbols

A compound symbol permits the substitution of variables within its name when you refer to it. A
compound symbol contains at least one period and at least two other characters. It cannot start with
a digit or a period, and if there is only one period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period). This is followed
by a tail, parts of the name (delimited by periods) that are constant symbols, simple symbols, or null.

The derived name of a compound symbol is the stem of the symbol, in uppercase, followed by the tail,

in which all simple symbols have been replaced with their values. A tail itself can be comprised of the
characters A-Z,a-z,0-9,and @ # $ ¢ . ! ?andunderscore. The value of a tail can be any character
string, including the null string and strings containing blanks. For example:

taila='% ('

tailb=""

stem.taila=99

stem.tailb=stem.taila

say stem.tailb /* Displays: 99 */

20 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

/* But the following instruction would cause an error x/
/* say stem.*x (*/

You cannot use constant symbols with embedded signs (for example, 12.3E+5) after a stem; in this case,
the whole symbol would not be a valid symbol.

These are compound symbols:

FRED. 3
Array.I.J
AMESSY. .One.2.

Before the symbol is used (that is, at the time of reference), the language processor substitutes the values
of any simple symbols in the tail (I, J, and One in the examples), thus generating a new, derived name.
This derived name is then used just like a simple symbol. That is, its value is by default the derived name,
or (if it has been used as the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing (subscripting) of collections
of variables that have a common stem. Note that the values substituted can contain any characters
(including periods and blanks). Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the symbol

s0.sl.s2. --- .sn
is given by
do.vl.v2. --- .vn

where dO is the uppercase form of the symbol s0, and v1 to vn are the values of the constant or simple
symbols s1 through sn. Any of the symbols s1-sn can be null. The values v1-vn can also be null and can
contain any characters (in particular, lowercase characters are not translated to uppercase, blanks are not
removed, and periods have no special significance).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable A */
z=4 /* ‘4! to Z */
c='Fred' /* 'Fred' to C */
a.z="Fred' /* '"Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5! to C.Fred */
y.a.z="Annie' /* "Annie' to Y.3.4 */
say a z C a.a a.z a.c c.a a.fred y.a.4

/* displays the string: */

/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" =*/

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering great scope for the creative programmer. A useful application is to set
up an array in which the subscripts are taken from the value of one or more variables, effecting a form of
associative memory (content addressable).

Implementation maximum: The length of a variable name, before and after substitution, cannot exceed
250 characters.

Stems

A stem is a symbol that contains just one period, which is the last character. It cannot start with a digit or
a period.

These are stems:

FRED.
A.

Chapter 2. REXX General Concepts 21

REXX General Concepts

By default, the value of a stem is the string consisting of the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its value is the value of that
variable.

Further, when a stem is used as the target of an assignment, all possible compound variables whose
names begin with that stem receive the new value, whether they previously had a value or not. Following
the assignment, a reference to any compound symbol with that stem returns the new value until another
value is assigned to the stem or to the individual variable.

For example:
hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

/* says "empty empty full" %/
Thus, you can give a whole collection of variables the same value. For example:

total. = 0

do forever
say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name = total.name + amount
end

Note: You can always obtain the value that has been assigned to the whole collection of variables by using
the stem. However, this is not the same as using a compound variable whose derived name is the same as
the stem. For example:

total. = 0

null = "o

total.null = total.null + 5

say total. total.null /* says "0 5" x/

You can manipulate collections of variables, referred to by their stem, with the DROP and PROCEDURE
instructions. DROP FRED. drops all variables with that stem (see “DROP” on page 37), and PROCEDURE
EXPOSE FRED. exposes all possible variables with that stem (see “PROCEDURE” on page 46).

Note:

1. When the ARG, PARSE, or PULL instruction or the VALUE built-in function or the variable pool access
interface (ARXEXCOM), changes a variable, the effect is identical with an assignment. Anywhere a
value can be assigned, using a stem sets an entire collection of variables.

2. Because an expression can include the operator =, and an instruction may consist purely of an
expression (see “Commands to External Environments” on page 23), a possible ambiguity is resolved
by the following rule: any clause that starts with a symbol and whose second token is (or starts with)
an equal sign (=) is an assignment, rather than an expression (or a keyword instruction). This is not
a restriction, because you can ensure the clause is processed as a command in several ways, such
as by putting a null string before the first name, or by enclosing the first part of the expression in
parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an assignment, this should
not cause confusion. For example, the clause:

Address='10 Downing Street';

is an assignment, not an ADDRESS instruction.

3. You can use the SYMBOL function (see page “SYMBOL” on page 82) to test whether a symbol
has been assigned a value. In addition, you can set SIGNAL ON NOVALUE to trap the use of any
uninitialized variables (except when they are tails in compound variables—see page “NOVALUE ” on
page 129).

22 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

Commands to External Environments

Issuing commands to the surrounding environment is an integral part of REXX.

Environment

The system under which REXX programs run is assumed to include at least one host command
environment for processing commands. An environment is selected by default on entry to a REXX
program. The environment for processing host commands. is known as the host command environment.
You can change the environment by using the ADDRESS instruction. You can find out the name of the
current environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the REXX program.

REXX/VSE provides six host command environments: VSE, POWER, JCL, LINK, LINKPGM, and CONSOLE.
The default environment for processing commands is VSE.

“Host Commands and Host Command Environments.” on page 24 explains the different types of host
commands you can use in a REXX program and the different host command environments for the
processing of host commands.

The environments are provided in the host command environment table, which specifies the host
command environment name and the routine that is called to handle the command processing for that
host command environment. You can provide your own host command environment and corresponding
routine and define them in the host command environment table. “Host Command Environment Table” on
page 401 describes the table in more detail. “Changing the Default Values for Initializing an Environment”
on page 412 describes how to change the defaults to define your own host command environments. You
can also use the ARXSUBCM routine to maintain entries in the host command environment table (see
page “Maintain Entries in the Host Command Environment Table - ARXSUBCM” on page 357).

Commands
To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null string), which is then
prepared as appropriate and submitted to the host command environment. Any part of the expression not
to be evaluated should be enclosed in quotation marks.

The environment then processes the command, which may have side-effects. It eventually returns control
to the language processor, after setting a return code. A return code is a string, typically a number, that
returns some information about the command that has been processed. A return code usually indicates

if a command was successful or not but can also represent other information. The language processor
places this return code in the REXX special variable RC. See “Special Variables” on page 132.

In addition to setting a return code, the underlying system may also indicate to the language processor if
an error or failure occurred. An error is a condition raised by a command for which a program that uses
that command would usually be expected to be prepared. (An example of an error could be an EXECIO
command that tries to write a record that is truncated.) A failure is a condition raised by a command

for which a program that uses that command would not usually be expected to recover (for example, a
command that is not executable or cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for ERROR or FAILURE is
ON (see Chapter 7, “Conditions and Condition Traps,” on page 129). They may also cause the command to
be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the default—see
“TRACE” on page 53.

Here is an example of submitting a command.

"ADDRESS VSE EXEC" myprog

Chapter 2. REXX General Concepts 23

REXX General Concepts

The host command environment is VSE. MYPROG is a member in a sublibrary in the active PROC chain.
The command results in running MYPROG.

Note: Whenever you enter a host command from a REXX program, enclose in quotation marks any part of
the expression that is not to be evaluated. This can be the entire command or parts of the expression.

Whenever a host command is processed, the return code from the command is placed in the REXX special
variable RC.

Host Commands and Host Command Environments.

A host command is a command for the surrounding environment to act upon. You can issue host
commands from a REXX program. When the language processor processes a clause that it does not
recognize as an assignment or other REXX instruction, the language processor treats the clause as a host
command and routes the command to the host command environment. The host command environment
processes the command and then returns control to the language processor.

For example, in REXX processing, a host command can be:

« A REXX/VSE command (such as NEWSTACK or QBUF)

An ADDRESS POWER command (such as PUTQE, GETQE, QUERYMSG, or any of the POWER commands
that you can issue through a CTL service request. See “The POWER Host Command Environment” on
page 25 and Chapter 11, “ADDRESS POWER Commands,” on page 181 for details.)

« The name of a REXX procedure in the active PROC search chain.

« A JCL command.
« The name of a program invoked by ADDRESS LINK or ADDRESS LINKPGM.

An ADDRESS CONSOLE command (such as ACTIVATE, CART, CONSTATE, CONSWITCH, and
DEACTIVATE).

If a REXX program contains

FRED varl var2

the language processor considers the clause to be a host command and passes the clause to the current
host command environment for processing. The host command environment processes the command,
sets a return code in the REXX special variable RC, and returns control to the language processor. The
return code set in RC is the return code from the host command you specified. (For example, the value in
RC can be the return code from a VSE/ESA command processor.) A return code of -3 is always returned if
you use a host command in a program and the host command environment cannot locate the command
(REXX/VSE command, REXX program, or phase).

If a system abend occurs during a host command, no return code is set and no recovery is available. If
no abend occurs during a host command, the REXX special variable RC is set to the decimal value of the
return code from the command.

Certain conditions may be raised depending on the value of the special variable RC:

- If the RC value is negative, the FAILURE condition is raised.
- If the RC value is positive, the ERROR condition is raised.
« If the RC value is zero, neither the ERROR nor FAILURE conditions are raised.

See Chapter 7, “Conditions and Condition Traps,” on page 129 for more information.

If you issue a host command in a REXX program, it is recommended that you enclose the entire command
(or as much of it as possible) in quotation marks, for example:

"routine-name pl p2"

REXX/VSE provides six host command environments:
- VSE

24 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX General Concepts

POWER

« JCL

LINK
LINKPGM
CONSOLE

The VSE Host Command Environment
The default host command environment is VSE.

You can use the VSE host command environment to invoke REXX/VSE commands (such as MAKEBUF and
NEWSTACK) and services. (See Chapter 10, “REXX/VSE Commands,” on page 143).

You can also call another REXX program using the EXEC command. In the VSE environment, you can use
all REXX/VSE commands but you cannot use POWER, JCL, or Console commands. You can use one of
the following instructions to call a REXX program. The instructions in the following example assume the
current host command environment is not VSE.

ADDRESS VSE "EXEC programname pl p2 .."
ADDRESS VSE "EX programname pl p2 .."
ADDRESS VSE "programname pl p2 .." /* Implicit EXEC command */
If you use the ADDRESS VSE EXEC command to invoke another REXX program, the system searches the

active PROC chain for the partition. If the program is not found, the search for the program ends and the
REXX special variable RC is set to -3.

Note that the value that can be set in the REXX special variable RC for the VSE environment is a signed 31
bit number in the range -2,147,483,648 to +2,147,483,647.

To load and call a phase from the active PHASE search chain, use one of the host command environments
that Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205
describes.

The POWER Host Command Environment

The POWER host command environment is for VSE/POWER spool-access services requests, GET, PUT,
and CTL. (For details about the VSE/POWER spool-access services interface, see VSE/POWER Application
Programming. In the POWER host command environment, you can use both REXX/VSE and POWER
commands. The POWER host command environment lets you:

« Use the PUTQE command to put elements on a POWER queue and the GETQE command to retrieve
POWER queue elements

« Send a CTL service request to POWER. See “CTL” on page 196 for a list of the POWER commands that
you can send through a CTL service request. See VSE/POWER Administration and Operation, for the
syntax of these commands.

« Use the QUERYMSG command to return job completion messages into the stem specified by OUTTRAP.
« Execute REXX/VSE commands
When the language processor encounters a command for the POWER host command environment, it:

1. Checks if it is GETQE, PUTQE or QUERYMSG. If so, the language processor executes the command.

2. Checks if it is a valid command for the ADDRESS VSE environment. If so, the language processor
executes the command.

3. Sends the command to POWER through the VSE/POWER spool-access services interface.

Chapter 2. REXX General Concepts 25

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

REXX General Concepts

The JCL Host Command Environment

You can use the JCL host command environment to issue a JCL command in a much simpler way than
with the conditional job control language. This host command environment is invoked via the command
ADDRESS JCL.

See Chapter 12, “JCL Command Environment,” on page 201 for detailed information.

The LINK and LINKPGM Host Command Environments

Loading and calling a program is called linking. REXX/VSE provides the LINK and LINKPGM host
command environments to let you load and call non-REXX programs. These programs must be phases
from the active PHASE search chain. LINK and LINKPGM offer different ways to provide parameters.

See Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205 for
detailed information.

The CONSOLE Host Command Environment

The CONSOLE host command environment allows to activate and deactivate one or more VSE/ESA
console sessions. Having activated a VSE/ESA console session, VSE/ESA console commands can
be imbedded into a REXX program. A GETMSG function receives command responses and console
messages.

See Chapter 14, “REXX/VSE Console Automation,” on page 217 for detailed information.

26 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ADDRESS

Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies
the instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords; other words (such as expression) denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case dependent; the symbols if, If, and iF
all have the same effect. Note also that you can usually omit most of the clause delimiters (;) shown
because they are implied by the end of a line.

As explained in “Keyword Instructions” on page 19, a keyword instruction is recognized only if its keyword
is the first token in a clause, and if the second token does not start with an = character (implying an
assignment) or a colon (implying a label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword defined by REXX cannot
be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A syntax
error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction. (The
keyword THEN is also recognized in the body of an IF or WHEN clause.) In other contexts, keywords

are not reserved and can be used as labels or as the names of variables (though this is generally not
recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of individual instructions.
For example, the symbols VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions,
respectively. For details, see the description of each instruction. For a general discussion on reserved
keywords, see “Reserved Keywords” on page 141.

Blanks adjacent to keywords have no effect other than to separate the keyword from the subsequent
token. One or more blanks following VALUE are required to separate the expression from the subkeyword
in the example following;:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
add to the readability:

ADDRESS VALUE'ENVIR'| |number

ADDRESS

»— ADDRESS He g

environment L _J
expression
L J expressionl ——
VALUE

ADDRESS temporarily or permanently changes the destination of commands. A command is a clause
that is not a REXX assignment or another REXX instruction. Commands are strings sent to an external
environment. You can send commands by specifying clauses consisting of only an expression (see
“Commands to External Environments” on page 23) or by using the ADDRESS instruction.

© Copyright IBM Corp. 1988, 2004 27

ADDRESS

REXX/VSE provides the following host command environments:

« VSE (for REXX/VSE commands). This is the default. In this environment, you can use REXX/VSE
commands but not POWER commands.

« POWER (for VSE/POWER spool-access services requests—GET, CTL, GCM, and PUT). In this
environment, you can use both REXX/VSE and POWER commands.

« JCL. In this environment, you can issue a JCL command in a much simpler way than with the conditional
VSE job control language. You can issue JCL commands via a REXX program.

« Environments for linking to a program
— LINK (See “The LINK Host Command Environment” on page 206 for details.)
— LINKPGM (See “The LINKPGM Host Command Environment” on page 208).
« CONSOLE. In this environment, you can manage VSE/ESA console sessions.

“Commands to External Environments” on page 23 describes how to enter commands to the host.

To send a single command to a specified environment, code an environment, a literal string or a single
symbol, which is taken to be a constant, followed by an expression. (The environment name is the name
of an external procedure or process that can process commands.) The expression is evaluated, and

the resulting string is routed to the environment to be processed as a command. (Enclose in quotation
marks any part of the expression you do not want to be evaluated.) After execution of the command,
environment is set back to whatever it was before, thus temporarily changing the destination for a single
command. The special variable RC is set, just as it would be for other commands. (See “Commands” on
page 23.) Errors and failures in commands processed in this way are trapped or traced as usual.

Example:

ADDRESS LINK "routine p1 p2"
ADDRESS JCL "MAP" /* VSE environment */

If you specify only environment, a lasting change of destination occurs: all commands that follow are
routed to the specified command environment, until the next ADDRESS instruction is processed. The
previously selected environment is saved.

Example:

Address VSE
"QBUF"
"MAKEBUF"

Similarly, you can use the VALUE form to make a lasting change to the environment. Here expression1
(which may be simply a variable name) is evaluated, and the result forms the name of the environment.
You can omit the subkeyword VALUE if expressionl does not begin with a literal string or symbol (that is, if
it starts with a special character, such as an operator character or parenthesis).

Example:

ADDRESS ('ENVIR'||number) /x Same as ADDRESS VALUE 'ENVIR'||number =%/

With no arguments, commands are routed back to the environment that was selected before the previous
lasting change of environment was made, and the current environment name is saved. After changing

the environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instruction (“CALL” on page 30) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function (see page “ADDRESS” on page 62).

REXX/VSE provides host command environments that you can use with the ADDRESS instruction. After
the environment processes the host command, a return code from the command is set in the REXX
special variable RC. The return code may be a -3, which indicates that the environment could not

28 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARG

locate the command you specified. For more information about the environments you can use with the
ADDRESS instruction and the return codes set in the special variable RC, see “The VSE Host Command
Environment” on page 25.

You can provide your own environments or routines that handle command processing in each
environment. For more information, see “Host Command Environment Table” on page 401.

ARG

»— ARG ;>
L template_list —J

ARG retrieves the argument strings provided to a program or internal routine and assigns them to
variables. It is a short form of the instruction:

; >
L template_list J

The template_list is often a single template but can be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

»— PARSE UPPER ARG

Unless a subroutine or internal function is being processed, the strings passed as parameters to the
program are parsed into variables according to the rules described in the section on parsing (“Parsing
Rules” on page 105).

If a subroutine or internal function is being processed, the data used will be the argument strings that the
caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase (that is, lowercase a-z
to uppercase A-Z) before processing them. Use the PARSE ARG instruction if you do not want uppercase
translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source string or strings
(typically with different templates). The source string does not change. The only restrictions on the length
or content of the data parsed are those the caller imposes.

Example:
/* String passed is "Easy Rider" =«/
Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one string to be available to the program or routine, you can use a comma in the
parsing template_list so each template is selected in turn.

Example:

/* Function is called by FRED('data X',1,5) */

Fred: Arg string, numl, num2

/* Now: STRING contains 'DATA X' */

/* NUML contains '1' */

/* NUM2 contains '5' */
Note:

1. The ARG built-in function can also retrieve or check the argument strings to a REXX program or internal
routine. See “ARG (Argument)” on page 63.

Chapter 3. Keyword Instructions 29

CALL

2. The source of the data being processed is also made available on entry to the program. See the PARSE
instruction (SOURCE option) “PARSE” on page 44 for details.

CALL

»— CALL name] ; >

L expression —J

OFF ERROR
FAILURIj
HALT

“— ON ERROR L J J
FAILURE NAME frapname

HALT

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify ON
or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 7, “Conditions and Condition Traps,” on page 129.

To call a routine, specify name, a literal string or symbol that is taken as a constant. The name must be a
symbol, which is treated literally, or a literal string. The routine called can be:

An internal routine
A function or subroutine that is in the same program as the CALL instruction or function call that calls
it.

A built-in routine
A function (which may be called as a subroutine) that is defined as part of the REXX language.

An external routine
A function or subroutine that is neither built-in nor in the same program as the CALL instruction or
function call that calls it.

If name is a string (that is, you specify name in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that the names of built-in
functions (and generally the names of external routines, too) are in uppercase; therefore, you should
uppercase the name in the literal string.

The called routine can optionally return a result, and when it does, the CALL instruction is functionally
identical with the clause:

»— result=name — ({]) — ;>

L expression J

If the called routine does not return a result, then you will get an error if you call it as a function (as
previously shown).

If the subroutine returns a result, the result is stored in the REXX special variable RESULT, not the special
variable RC. The REXX special variable RC is set when you enter host commands from a REXX program
(see “Host Commands and Host Command Environments.” on page 24), but RC is not set when you use
the CALL instruction. See Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on
page 141 for descriptions of the three REXX special variables RESULT, RC, and SIGL.

30 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

CALL

REXX/VSE supports specifying up to 20 expressions, separated by commas. The expressions are
evaluated in order from left to right and form the argument strings during execution of the routine. Any
ARG or PARSE ARG instruction or ARG built-in function in the called routine accesses these strings rather
than any previously active in the calling program, until control returns to the CALL instruction. You can
omit expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same mechanism as function
calls. (See Chapter 4, “Functions,” on page 59.) The search order is in the section on functions (see
“Search Order” on page 60) but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at the label that matches name
in the CALL instruction. If you specify the routine name in quotation marks, then an internal routine is
not considered for that search order. You can use SIGNAL and CALL together to call an internal routine
whose name is determined at the time of execution; this is known as a multi-way call (see “SIGNAL”
on page 51). The RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various functions. They always
return a string that is the result of the routine. (See “Built-in Functions” on page 61.)

External routines:
Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in REXX or in any language that supports the system-dependent
interfaces. For information about using the system-dependent interfaces, see “External Functions and
Subroutines and Function Packages” on page 344. For information about the search order REXX/VSE
uses to locate external routines, see “Search Order” on page 60. If the CALL instruction calls an
external routine written in REXX as a subroutine, you can retrieve any argument strings with the ARG
or PARSE ARG instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are generally accessible. However,
the PROCEDURE instruction can set up a local variables environment to protect the subroutine and caller
from each other. The EXPOSE option on the PROCEDURE instruction can expose selected variables to a
routine.

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller's variables are always hidden. The status of
internal values (NUMERIC settings, and so forth) start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine the line number of the CALL instruction is available in the
variable SIGL (in the caller's variable environment). This may be used as a debug aid, as it is, therefore,
possible to find out how control reached a routine. Note that if the internal routine uses the PROCEDURE
instruction, then it needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point control returns to the
clause following the original CALL. If the RETURN instruction specified an expression, the variable RESULT
is set to the value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */

arg z

call factorial z

say z'! =' result

exit

factorial: procedure /* Calculate factorial by =*/
arg n /* recursive invocation. x/

if n=0 then return 1
call factorial n-1
return zresult *x n

Chapter 3. Keyword Instructions 31

DO

During internal subroutine (and function) execution, all important pieces of information are automatically
saved and are then restored upon return from the routine. These are:

« The status of DO loops and other structures: Executing a SIGNAL while within a subroutine is safe
because DO loops, and so forth, that were active when the subroutine was called are not ended. (But
those currently active within the subroutine are ended.)

« Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it, and this
does not affect the tracing of the caller. Conversely, if you simply wish to debug a subroutine, you can
insert a TRACE Results at the start and tracing is automatically restored to the conditions at entry (for
example, Off) upon return. Similarly, ? (interactive debug) and ! (command inhibition) are saved across
routines.

« NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in “NUMERIC” on page
42) are saved and are then restored on return. A subroutine can, therefore, set the precision, and so
forth, that it needs to use without affecting the caller.

- ADDRESS settings: The current and previous destinations for commands (see “ADDRESS” on page 27)
are saved and are then restored on return.

« Condition traps: (CALL ON and SIGNAL ON) are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without affecting the
conditions the caller set up.

« Condition information: This information describes the state and origin of the current trapped condition.
The CONDITION built-in function returns this information. See “CONDITION” on page 66.

- Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see “TIME” on page
83), but because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

« OPTIONS settings: ETMODE and EXMODE are saved and are then restored on return. For more
information, see “OPTIONS” on page 43.

Implementation maximum: The total nesting of control structures, which includes internal routine calls,
may not exceed a depth of 250.

DO

»— DO ; END —
L repetitor J L conditional J

instruction
> ; >
L name J
repetitor
»—— name=expri >
L TO — exprt J L BY — exprb J L FOR — exprf —J
FOREVER
N exprr /

conditional

»tWHILE —_— exprwj—N
UNTIL — expru

DO groups instructions together and optionally processes them repetitively. During repetitive execution, a
control variable (name) can be stepped through some range of values.

32 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DO

Syntax Notes:

= The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or zero. If
necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

« The exprw or expru options (if present) can be any expression that evaluates to 1 or 0.

« The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which they
are written.

« The instruction can be any instruction, including assignments, commands, and keyword instructions
(including any of the more complex constructs such as IF, SELECT, and the DO instruction itself).

« The subkeywords WHILE and UNTIL are reserved within a DO instruction, in that they cannot be used
as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb,
or exprf. FOREVER is also reserved, but only if it immediately follows the keyword DO and an equal sign
does not follow it.

« The exprb option defaults to 1, if relevant.

Simple DO Group

If you specify neither repetitor nor conditional, the construct merely groups a number of instructions
together. These are processed one time.

In the following example, the instructions are processed one time. Example:

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
a=a+2
Say 'Smile!’
End

Repetitive DO Loops

If a DO instruction has a repetitor phrase or a conditional phrase or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. (See “Conditional Phrases (WHILE and UNTIL)” on page 35).

Simple Repetitive Loops

A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions is
nominally processed "forever”, that is, until the condition is satisfied or a REXX instruction is processed
that ends the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE and UNTIL)” on page
35.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive whole
number or zero), and the loop is then processed that many times.

Example:

/* This displays "Hello" five times x/
Do 5

say 'Hello'

end

Note that, similar to the distinction between a command and an assignment, if the first token of exprris a
symbol and the second token is (or starts with) =, the controlled form of repetitor is expected.

Chapter 3. Keyword Instructions 33

DO

Controlled Repetitive Loops

The controlled form specifies name, a control variable that is assigned an initial value (the result of expri,
formatted as though 0 had been added) before the first execution of the instruction list. The variable is
then stepped (by adding the result of exprb) before the second and subsequent times that the instruction
list is processed.

The instruction list is processed repeatedly while the end condition (determined by the result of exprt) is
not met. If exprb is positive or 0, the loop is ended when name is greater than exprt. If negative, the loop
is ended when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only one time, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs indefinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /* Displays: */
say i /* 3 */
end /* 2 */

/% 1 */
/* 0 */
/* =il */
/* =2 */

The numbers do not have to be whole numbers:

Example:

1=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
say Y /* .0 */
end /* 1.7 */

/* 2.4 */

/* 3.1 */

/* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration of the loop. Altering
the value of the control variable is not usually considered good programming practice, though it may be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). Therefore, if the end condition is met immediately,
the group of instructions can be skipped entirely. Note also that the control variable is referred to by
name. If (for example) the compound name A. I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts just like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only one time—when the DO instruction
is first processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example:
Do Y=0.3 to 4.3 by 0.7 for 3 /% Displays: */
say Y /* 0.3 */
end /* 1.0 */

/* 1.7 */

In a controlled loop, the name describing the control variable can be specified on the END clause. This
name must match name in the DO clause in all respects except case (note that no substitution for
compound variables is carried out); a syntax error results if it does not. This enables the nesting of loops
to be checked automatically, with minimal overhead.

34 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DO

Example:
Do K=1 to 10
End k /% Checks that this is the END for K loop */

Note: The NUMERIC settings may affect the successive values of the control variable, because REXX
arithmetic rules apply to the computation of stepping the control variable.

Conditional Phrases (WHILE and UNTIL)

A conditional phrase can modify the iteration of a repetitive DO loop. It may cause the termination of a
loop. It can follow any of the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated each time around the loop using the latest
values of all variables (and must evaluate to either @ or 1), and the loop is ended if exprw evaluates to 0 or
expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop, the
condition is evaluated at the bottom—before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
say i
end
/* DisplayS: Illll II3II II5II II7II */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

Chapter 3. Keyword Instructions 35

DO

Evaluate exprr+0 or
evaluate expri +0 and then
exprt +0, exprb +0, and
exprf +0 in order written.

\4

Assign start value to control

variable.
Use TO value (exprt) to test el Discontinue execution of DO
control variable for termination. P group if TO value is exceeded.

” , . Discontinue execution of DO
Use count 0 |t.erat.|ons (exprr) - group if number of iterations
to test for termination.

is exceeded.

' . Discontinue execution of DO
Use FOR value (exprf) to test group if FOR value (number of
for termination. iterations through the loop) is
=] exceeded.

Use WHILE expression (exprw) Discontinue execution of DO

to test for termination. s group if WHILE condition is
. not met.

¥

Execute instruction(s) in the
DO group.

¥

N Discontinue execution of DO
. group if UNTIL condition is
met.

Use UNTIL expression (expru)
to test for termination. .-

4

Use BY value (exprb) to
update control variable.

Figure 2. Concept of a DO Loop

36 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DROP

DROP

»— DROP {

A

) ...

name ;
L(—name—)—J

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
(Blanks are not necessary either inside or outside the parentheses, but you can add them if desired.) This
subsidiary list must follow the same rules as the original list (that is, be valid variable names, separated by
blanks) except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a name more than one
time or to DROP a variable that is not known. If an exposed variable is named (see “PROCEDURE” on page
46), the variable in the older generation is dropped.

Example:
j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='c d e'

drop (mylist) f

/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period, as the last character), drops all
variables starting with that stem.

Example:

Drop z.
/* Drops all variables with names starting with Z. %/

EXIT

»— EXIT ;>
L expression J

EXIT leaves a program unconditionally. Optionally EXIT returns a character string to the caller. The
program is stopped immediately, even if an internal routine is currently being run. If no internal routine is
active, RETURN (see “RETURN” on page 49) and EXIT are identical in their effect on the program that is
being run.

If you specify expression, it is evaluated and the string resulting from the evaluation is passed back to the
caller when the program stops.

Chapter 3. Keyword Instructions 37

IF

Example:
j=3

Exit j4
/* Would exit with the string '12' x/

If you do not specify expression, no data is passed back to the caller. If the program was called as an
external function, this is detected as an error—either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT, in that it stops the
whole program and returns no result string.

Note: If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the host. If the conversion fails, it is deemed to be a failure of the
host interface and thus is not subject to trapping with SIGNAL ON SYNTAX. The returned string must

be a whole number whose value fits in a general register (that is, must be in the range -2**31 through
2**31-1). Further processing of this value depends on the method of invocation of the REXX procedure
(see “Calling REXX Directly with the JCL EXEC Command” on page 329).

IF

»w— IF — expression THEN instruction —»
L. J .J

’ ’

[»d
>

L ELSE ﬁ— instruction J)

’

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in © or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after the ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before the ELSE.

Example:
if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = 'YES' Then
If name = 'FRED' Then
say 'OK, Fred.'
Else
nop
Else
say 'Why not?'

Note:

38 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

INTERPRET

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the IF clause to be ended by the
THEN, without a ; being required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

INTERPRET

»— INTERPRET — expression — ; »«

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated and is then processed (interpreted) just as though the resulting string were a
line inserted into the program (and bracketed by a DO; and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO...END and SELECT...END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example:
data="'FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */
Example:
data="'do 3; say "Hello there!"; end'
interpret data /* Displays: */
/* Hello there! */
/* Hello there! */
/* Hello there! */
Note:

1. Label clauses are not permitted in an interpreted character string.

2. If you are new to the concept of the INTERPRET instruction and are getting results that you do not
understand, you may find that executing it with TRACE R or TRACE I in effect is helpful.

Example:

/* Here is a small REXX program. x/
Trace Int

name='Kitty'

indirect="name'

interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the trace:

kitty

3 %-% name='Kitty'
>L> "Kitty"

4 x-x indirect='name'
>L> “name"

5 %-x interpret 'say "Hello"' indirect'"!"'
>L> "say "Hello""
>V> “name"
>0> "say "Hello" name"

Chapter 3. Keyword Instructions 39

ITERATE

SL> g

>0> "say "Hello" name"!""
*-% say "Hello" name"!"
>L> "Hello"

>V> "Kitty"

>0> "Hello Kitty"

>L> n ! n

>0> "Hello Kitty!"

Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another
literal string. The resulting pure character string is then interpreted, just as though it were actually part
of the original program. Because it is a new clause, it is traced as such (the second x - * trace flag
under line 5) and is then processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!)is then displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on page 86) instead of the
INTERPRET instruction. The following line could, therefore, have replaced line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to be
interpreted together, or when an expression is to be evaluated dynamically.

ITERATE

»— ITERATE

; >
Lname J

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a simple
DO).

Execution of the group of instructions stops, and control is passed to the DO instruction. The control
variable (if any) is incremented and tested, as usual, and the group of instructions is processed again,
unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE steps the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
if i=2 then iterate
say i
end
/* Displays the numbers: "1" "3" "4" %/

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

40 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

LEAVE

LEAVE

»— LEAVE ; e
L name —j

LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any DO construct other
than a simple DO).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause. The control variable (if any) will contain the value it had when the LEAVE instruction was
processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active loop
(which may be the innermost), and that loop (and any active loops inside it) is then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5
say i
if i=3 then leave
end
/* Displays the numbers: "1" "2" "3" x/

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

NOP

»— NOP — ; >«

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause:

Example:

Select
when a=c then nop /* Do nothing =/
when a>c then say 'A > C'
otherwise say 'A< C'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would be
ignored. The second WHEN clause would be seen as the first instruction expected after the THEN, and
would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is, therefore, a valid
target for the THEN clause.

Chapter 3. Keyword Instructions 41

NUMERIC

NUMERIC

»— NUMERIC DIGITS L _J Ha o
expression1

SCIENTIFIC
[]

M——-——— ENGINEERING ———

- expression2 —
L VALUE J
FUzz
L expression3 —J

M FORM

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail on Chapter 6, “Numbers and Arithmetic,” on page 119-“Errors” on page
126, but in summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in functions are evaluated.
If you omit expressionl, the precision defaults to 9 digits. Otherwise, expression1 must evaluate to a
positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but note that high
precisions are likely to require a good deal of processing time. It is recommended that you use the
default value wherever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See “DIGITS”
on page 72.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of arithmetic operations and
arithmetic built-in functions. This may be either SCIENTIFIC (in which case only one, nonzero digit
appears before the decimal point) or ENGINEERING (in which case the power of 10 is always a
multiple of 3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the
FORM directly, or it is taken from the result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string (that is, if it starts
with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See “FORM” on
page 74.

NUMERIC FUzz
controls how many digits, at full precision, are ignored during a numeric comparison operation. (See
“Numeric Comparisons” on page 124.) If you omit expression3, the default is 0 digits. Otherwise,
expression3 must evaluate to 0 or a positive whole number, rounded if necessary according to the
current NUMERIC DIGITS setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ value
during every numeric comparison. The numbers are subtracted under a precision of DIGITS minus
FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See “FUZZ” on
page 75.

Note: The three numeric settings are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (“CALL” on page 30) for more details.

42 1IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

OPTIONS

OPTIONS

»— OPTIONS — expression — ; »<

OPTIONS passes special requests or parameters to the language processor. For example, these may be
language processor options or perhaps define a special character set.

The expression is evaluated, and the result is examined one word at a time. The language processor
converts the words to uppercase. If the language processor recognizes the words, then they are obeyed.
Words that are not recognized are ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:

ETMODE
specifies that literal strings and symbols and comments containing DBCS characters are checked for
being valid DBCS strings. If you use this option, it must be the first instruction of the program.

If the expression is an external function call, for example OPTIONS 'GETETMOD' (), and the program
contains DBCS literal strings, enclose the name of the function in quotation marks to ensure that the
entire program is not scanned before the option takes effect. It is not recommended to use internal
function calls to set ETMODE because of the possibility of errors in interpreting DBCS literal strings in
the program.

NOETMODE
specifies that literal strings and symbols and comments containing DBCS characters are not checked
for being valid DBCS strings. NOETMODE is the default. The language processor ignores this option
unless it is the first instruction in a program.

EXMODE
specifies that instructions, operators, and functions handle DBCS data in mixed strings on a logical
character basis. DBCS data integrity is maintained.

NOEXMODE
specifies that any data in strings is handled on a byte basis. The integrity of DBCS characters, if any,
may be lost. NOEXMODE is the default.

Note:

1. Because of the language processor's scanning procedures, you must place an OPTIONS 'ETMODE'
instruction as the first instruction in a program containing DBCS characters in literal strings, symbols,
or comments. If you do not place OPTIONS 'ETMODE' as the first instruction and you use it later in
the program, you receive error message ARX0033I. If you do place it as the first instruction of your
program, all subsequent uses are ignored. If the expression contains anything that would start a label
search, all clauses tokenized during the label search process are tokenized within the current setting of
ETMODE. Therefore, if this is the first statement in the program, the default is NOETMODE.

2. To ensure proper scanning of a program containing DBCS literals and DBCS comments, enter the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE as literal strings (that is, enclosed in quotation
marks) in the OPTIONS instruction.

3. The EXMODE setting is saved and restored across subroutine and function calls.

4. To distinguish DBCS characters from 1-byte EBCDIC characters, sequences of DBCS characters are
enclosed with a shift-out (SO) character and a shift-in (SI) character. The hexadecimal values of the SO
and SI characters are X'OE' and X'OF', respectively.

5. When you specify OPTIONS 'ETMODE', DBCS characters within a literal string are excluded from the
search for a closing quotation mark in literal strings.

6. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear several times within the
result. The one that takes effect is determined by the last valid one specified between the pairs
ETMODE-NOETMODE and EXMODE-NOEXMODE.

Chapter 3. Keyword Instructions 43

PARSE

PARSE

»— PARSE ARG >
L UPPER —J M EXTERNAL ———————
f—————oNUMERIC ——M8MM8™
PULL

SOURCE

M VALUE WITH —
L expression J

f—————VAR — name¢ —

VERSION

> ; >
L template_list —J

PARSE assigns data (from various sources) to one or more variables according to the rules of parsing. (See
Chapter 5, “Parsing,” on page 105.)

The template_list is often a single template but may be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Each template is applied to a single source string. Specifying multiple templates is never a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See page “Parsing
Multiple Strings” on page 114 for information on parsing multiple source strings.

If you do not specify a template, no variables are set but action is taken to prepare the data for parsing,

if necessary. Thus for PARSE PULL, a data string is removed from the queue, and for PARSE VALUE,
expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not have a value, the
NOVALUE condition is raised, if it is enabled.

If you specify the UPPER option, the data to be parsed is first translated to uppercase (that is, lowercase
a—z to uppercase A-Z). Otherwise, no uppercase translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the string or strings passed to a program or internal routine as input arguments. (See the ARG
instruction on page “ARG” on page 29 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program or internal routine with
the ARG built-in function.

PARSE EXTERNAL
reads from the current input stream. ASSGN(STDIN) returns the name of the current input stream.
PARSE EXTERNAL returns a field based on the record that is read. If the current input stream is
SYSIPT, REXX/VSE reads SYSIPT data until encountering an end-of-data indicator, such as /*. If
SYSIPT has no data, then PARSE EXTERNAL returns a null string. If the input stream is SYSLOG, then
REXX/VSE solicits input from the operator's console. The operator receives a message containing the
partition number and is asked to supply some input to the program. (If you are sending output to the
console, code a pertinent SAY instruction before the PARSE EXTERNAL.)

PARSE NUMERIC
The current numeric controls (as set by the NUMERIC instruction, see “NUMERIC” on page 42) are
available. These controls are in the order DIGITS FUZZ FORM.

Example:

Parse Numeric Varl

44 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PARSE

After this instruction, Varl would be equal to: 9 0 SCIENTIFIC. See “NUMERIC” on page 42 and the
built-in functions “DIGITS” on page 72, “FORM” on page 74, and “FUZZ” on page 75.

PARSE PULL
parses the next string from the external data queue. If the external data queue is empty, PARSE
PULL reads a line from the current input stream and the program pauses, if necessary, until a line is
complete. ASSGN(STDIN) returns the name of the current input stream. If the current input stream
is SYSLOG, the PULL instruction gets input from the operator's console. The operator receives the
partition number and is asked to supply some input to the program. (If you are sending output to the
console, code a pertinent SAY instruction before the PARSE PULL.) You can add data to the head or
tail of the queue by using the PUSH and QUEUE instructions, respectively. You can find the number
of lines currently in the queue with the QUEUED built-in function. (See page “QUEUED” on page 78.)
The queue remains active as long as the language processor is active. for the life of the job. Other
programs in the system can alter the queue and use it as a means of communication with programs
written in REXX. See also the PULL instruction on page “PULL” on page 48.

PULL and PARSE PULL read from the data stack. In REXX/VSE, if the data stack is empty, PULL and
PARSE PULL read from the current input stream. ASSGN(STDIN) returns the name of the current input
stream. If the input stream is SYSIPT REXX/VSE reads SYSIPT data until encountering an end-of-data
indicator, such as /*. If SYSIPT has no data, PULL and PARSE PULL return a null string.

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a string
that is fixed (does not change) while the program is running.

The string parsed has the following general structure:

system_id how_called program_name additional_tokens

system_id
This is VSE.
how_called
The string COMMAND, FUNCTION, or SUBROUTINE, depending on whether the program was called

as a host command (for example as a host command from ADDRESS VSE), a function call in an
expression, or through the CALL instruction.

program_name
The name of the program in uppercase. This is the member name only (no library or sublibrary
name). If the name is not known, this token is a question mark (?).

additional_tokens
Note that for all of the additional tokens, if the information is not known, the token is a question
mark.
A string indicating the active chain from which the program was loaded, for example PROC.

« The name of the file from which the program was loaded. This is in the format:
Library.sublibrary.membername.membertype.

« Program name as called, not translated to uppercase. This is the name exactly as it was passed
to the language processor.

« Initial (default) environment name in uppercase.

« The name of the address space in uppercase. This is from the ADDRSPN field in the parameters
module.

« The token from the PARSETOK field in the parameters module (see page “PARSETOK ” on page
393).

For example, the string parsed might look like one of the following:

VSE COMMAND PARSE PROC LIZH.PROC.PARSE.PROC PARSE VSE VSE ?

Chapter 3. Keyword Instructions 45

PROCEDURE

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no expression, then the null
string is used. Note that WITH is a subkeyword in this context and cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid as a variable name
(that is, it cannot start with a period or a digit). Note that the variable name is not changed unless it
appears in the template, so that for example:

PARSE VAR string wordl string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string. Similarly

PARSE UPPER VAR string wordl string

in addition translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:
1. A word describing the language, which is the string "REXX370"
2. The language level description, for example, 3.48.

3. Three tokens describing the language processor release date, for example, "31 May 1993". 3 May
1993. The date, month, and year are in the format dd mon yyyy, the same format as the default
for the DATE function.

PROCEDURE

»— PROCEDURE Hea)

EXPOSE {: j

A

name
L(—name—)—J

PROCEDURE, within an internal routine (subroutine or function), protects variables by making them
unknown to the instructions that follow it. After a RETURN instruction is processed, the original variables
environment is restored and any variables used in the routine (that were not exposed) are dropped. (An
exposed variable is one belonging to a caller of a routine that the PROCEDURE instruction has exposed.
When the routine refers to or alters the variable, the original (caller's) copy of the variable is used.) An
internal routine need not include a PROCEDURE instruction; in this case the variables it is manipulating
are those the caller "owns." If used, the PROCEDURE instruction must be the first instruction processed
after the CALL or function invocation; that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed. Any reference to it (including
setting and dropping) refers to the variables environment the caller owns. Hence, the values of existing
variables are accessible, and any changes are persistent even on RETURN from the routine. If name is not
enclosed in parentheses, it identifies a variable you want to expose and must be a symbol that is a valid
variable name, separated from any other name with one or more blanks.

46 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PROCEDURE

If parentheses enclose a single name, then, after the variable name is exposed, the value of name is
immediately used as a subsidiary list of variables. (Blanks are not necessary either inside or outside the
parentheses, but you can add them if desired.) This subsidiary list must follow the same rules as the
original list (that is, valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than one
time, or to specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some limited set
of the caller's variables can be made accessible, and these variables can be changed (or new variables in
this set can be created). All these changes are visible to the caller upon RETURN from the routine.

Example:

/* This is the main REXX program x/

j=1; z.1="'a'

call toft

say j km /* Displays "1 7 M" */

exit

/* This is a subroutine */

toft: procedure expose j k z.j
say j k z.j /% Displays "1 K a" */
k=7; m=3 /* Note: M is not exposed */
return

Note that if Z. J in the EXPOSE list had been placed before J, the caller's value of J would not have been
visible at that time, so Z.1 would not have been exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main REXX program x/

j=1;k=6;m=9

a="jkm

call test

exit

/* This is a subroutine */

test: procedure expose (a) /* Exposes A, J, K, and M */
say a j km /* Displays "j km1 6 9" */
return

You can use subsidiary lists to more easily expose a number of variables at one time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main REXX program x/
c=11; d=12; e=13

Showlist="c d' /* but not E */

call Playvars
say cd e £ /* Displays "11 New 13 9" x/
exit

/* This is a subroutine */

Playvars: procedure expose (showlist) f

say word(showlist,2) /* Displays "d" */
say value(word(showlist,2),'New') /% Displays "12" and sets new value */
say value(word(showlist,2)) /* Displays "New" */
e=8 /* E is not exposed */
f=9 /* F was explicitly exposed */
return

Specifying a stem as name exposes this stem and all possible compound variables whose names begin
with that stem. (See “Stems” on page 21 for information about stems.)

Example:

/* This is the main REXX program x/
a.=11; i=13; j=15
i=1i+1

Chapter 3. Keyword Instructions 47

PULL

C.5 = '"FRED'

call lucky7

say a. a.1 i jc. c.5

say 'You should see 11 7 14 15 C. FRED'

exit

lucky7:Procedure Expose i j a. c.

/* This exposes I, J, and all variables whose */

/* names start with A. or C. */

A.1='7' /x This sets A.1 in the caller's */
/* environment, even if it did not */
/* previously exist. */

return

Variables may be exposed through several generations of routines, if desired, by ensuring that they are
included on all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions on “CALL” on page 30 and Chapter 4, “Functions,” on
page 59 for details and examples of how routines are called.

PULL

»— PULL

; e
L template_list J

PULL reads a string from the head of the external data queue. It is just a short form of the instruction:
»— PARSE UPPER PULL ; >
L template_list J

The current head-of-queue is read as one string. Without a template_list specified, no further action

is taken (and the string is thus effectively discarded). If specified, a template_list is usually a single
template, which is a list of symbols separated by blanks or patterns or both. (The template_list can be
several templates separated by commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are assigned the null string.)
The string is translated to uppercase (that is, lowercase a—z to uppercase A-Z) and then parsed into
variables according to the rules described in the section on parsing (“Parsing Rules” on page 105). Use
the PARSE PULL instruction if you do not desire uppercase translation.

The REXX/VSE implementation of the external data queue is the data stack. REXX programs can use

the data stack. In REXX/VSE, if the data stack is empty, PULL reads from the current input stream.
ASSGN(STDIN) returns the name of the current input stream. If the current input stream is SYSIPT,
REXX/VSE reads SYSIPT data until encountering an end-of-data indicator, such as /*. If SYSIPT has no
data, the PULL instruction returns a null string. If the current input stream is SYSLOG, then REXX/VSE
solicits input from the operator's console. The operator receives a message containing the partition
number and is asked to supply some input to the program. (If you are sending output to the console, code
a pertinent SAY instruction before the PULL.)

The length of each element you can place onto the data stack can be up to one byte less than 16
megabytes.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the first word the user
enters.

The QUEUED built-in function (see “QUEUED” on page 78) returns the number of lines currently in the

48 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PUSH

PUSH

»— PUSH L J He ol
expression

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) onto the
external data queue.

If you do not specify expression, a null string is stacked.

Note: The REXX/VSE implementation of the external data queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data stack contains one
buffer initially, but you can create additional buffers using MAKEBUF.

Example:
a='Fred'
push /* Puts a null line onto the queue */
push a 2 /% Puts "Fred 2" onto the queue x/

The QUEUED built-in function (described on “QUEUED” on page 78) returns the number of lines
currently in the external data queue.

QUEUE

»— QUEUE ;e
L expression —J

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out).

If you do not specify expression, a null string is queued.

Note: The REXX/VSE implementation of the external data queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data stack contains one
buffer initially, but you can create additional buffers using MAKEBUF.

Example:
a="'Toft'
queue a 2 /*x Enqueues "Toft 2" x/
queue /* Enqueues a null line behind the last x/

The QUEUED built-in function (described on “QUEUED” on page 78) returns the number of lines
currently in the external data queue.

RETURN

»— RETURN L J o
expression

RETURN returns control (and possibly a result) from a REXX program or internal routine to the point of its
invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect on
the program that is being run. (See “EXIT” on page 37.)

Chapter 3. Keyword Instructions 49

SAY

If a subroutine is being run (see the CALL instruction), expression (if any) is evaluated, control passes

back to the caller, and the REXX special variable RESULT is set to the value of expression. If expression is
omitted, the special variable RESULT is dropped (becomes uninitialized). The various settings saved at the
time of the CALL (tracing, addresses, and so forth) are also restored. (See “CALL” on page 30.)

If a function is being processed, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point where
the function was called. See the description of functions on Chapter 4, “Functions,” on page 59 for more
details.

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expression is evaluated and before the result is used or assigned to RESULT.

SAY

»— SAY 1-_ __I ; >
expression

SAY writes a line to the current output stream. ASSGN(STDOUT) returns the name of the current output
stream. If the output stream is SYSLOG, REXX/VSE sends the data to the operator's console. (NOMSGIO
and NOMSGWTO in the PARMBLOCK FLAGS flag byte determine the REXX processing rules that affect
sending this data. “Flags and Corresponding Masks” on page 393 describes the flags.) Along with the
actual output, REXX/VSE sends the partition number of the job producing the output.

Note: VSE/ESA replaces any non-displayable character with a blank if SYSLOG is receiving the output.
The result of expression may be of any length. If you omit expression, the null string is written.

Example:

data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" x/

SELECT

A

»— SELECT — ;L WHEN — expression

»
»

instruction l»

END — ; >«
J

T J THEN L_J

3

L OTHERWISE
L.J

instruction

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in © or 1. If the result is 1, the
instruction following the associated THEN (which may be a complex instruction such as IF, DO, or SELECT)
is processed and control then passes to the END. If the result is 0, control passes to the next WHEN
clause.

50 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SIGNAL

If none of the WHEN expressions evaluates to 1, control passes to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE causes an error (but note that you can
omit the instruction list that follows OTHERWISE).

Example:
balance=100
check=50
balance = balance - check
Select

when balance > 0 then
say 'Congratulations! You still have' balance 'dollars left.'
when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."
end
Otherwise
say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."
end /* Select %/

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is not
equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the WHEN clause to be ended by the
THEN without a ; (delimiter) being required.

SIGNAL
»— SIGNAL labelname ;>
expression ————
1-—-VALUE ——I
OFF ERROR

M— FAILURE —
HALT
M NOVALUE —]

~— SYNTAX —

~— ON ——— ERROR L J 7
M— FAILURE — NAME — trapname

HALT

M NOVALUE —

— SYNTAX —~

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE expression),
or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 7, “Conditions and Condition Traps,” on page 129.

To change the flow of control, a label name is derived from labelname or taken from the result of
evaluating the expression after VALUE. The labelname you specify must be a literal string or symbol that

Chapter 3. Keyword Instructions 51

SIGNAL

is taken as a constant. If you use a symbol for labelname, the search is independent of alphabetic case.

If you use a literal string, the characters should be in uppercase. This is because the language processor
translates all labels to uppercase, regardless of how you enter them in the program. Similarly, for SIGNAL
VALUE, the expression must evaluate to a string in uppercase or the language processor does not find the
label. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal string (that
is, if it starts with a special character, such as an operator character or parenthesis). All active pending
DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended (that is, they cannot be
resumed). Control then passes to the first label in the program that matches the given name, as though
the search had started from the top of the program.

Example:
Signal fred; /* Transfer control to label FRED below */
Fred: say 'Hi!'
Because the search effectively starts at the top of the program, if duplicates are present, control always

passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

Using SIGNAL VALUE

The VALUE form of the SIGNAL instruction allows a branch to a label whose name is determined at the
time of execution. This can safely effect a multi-way CALL (or function call) to internal routines because
any DO loops, and so forth, in the calling routine are protected against termination by the call mechanism.

Example:

fred='PETE"
call multiway fred, 7

exit
Multiway: procedure
arg label . /* One word, uppercase */
/* Can add checks for valid labels here %/
signal value label /* Transfer control to wherever */
Pete: say arg(l) '!' arg(2) /x Displays: "PETE ! 7" */
return

52 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TRACE

TRACE

»— TRACE

;e
L number —J

Normal
I |

All
R M—— Commands —
L ' _J Error

Failure

M Intermediates —]

- Labels 1
Off
Results
- Scan o
Or, alternatively:
»— TRACE ; P
string
symbol

L 1 —/
L Al _J expression

TRACE controls the tracing action (that is, how much is sent to the output stream) during processing of

a REXX program. (Tracing describes some or all of the clauses in a program, producing descriptions of
clauses as they are processed.) TRACE is mainly used for debugging. Its syntax is more concise than

that of other REXX instructions because TRACE is usually entered manually during interactive debugging.
(This is a form of tracing in which the user can interact with the language processor while the program

is running.) For this use, economy of key strokes is especially convenient. (In a batch environment, the
interaction is between the current input stream and the program. ASSGN(STDOUT) returns the name of
the current output stream, and ASSGN(STDIN) returns the name of the current input stream. Tracing and
interactive debug use the same input and output streams.)

TRACE writes to the current output stream. If the output stream is SYSLOG, REXX/VSE sends the data
to the operator's console. Along with the actual output, REXX/VSE sends the partition number of the job
producing the output.

If specified, the number must be a whole number.
The string or expression evaluates to:

« A numeric option
« One of the valid prefix or alphabetic character (word) options described later
« Null.

The symbol is taken as a constant, and is, therefore:

« A numeric option
« One of the valid prefix or alphabetic character (word) options described later.

Chapter 3. Keyword Instructions 53

TRACE

The option that follows TRACE or the result of evaluating expression determines the tracing action. You
can omit the subkeyword VALUE if expression does not begin with a symbol or a literal string (that is, if it
starts with a special character, such as an operator or parenthesis).

Alphabetic Character (Word) Options

Although you can enter the word in full, only the capitalized and highlighted letter is needed; all
characters following it are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All
Traces (that is, displays) all clauses before execution.

Commands
Traces all commands before execution. If the command results in an error or failure,3 then tracing also
displays the return code from the command.

Error

Traces any command resulting in an error or failure3 after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure3 after execution, together with the return code from the
command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during evaluation of expressions
and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal
Traces any command resulting in a negative return code after execution, together with the return code
from the command. This is the default setting.

off
Traces nothing and resets the special prefix options (described later) to OFF.

Results
Traces all clauses before execution. Displays final results (contrast with Intermediates, preceding)
of evaluating an expression. Also displays values assigned during PULL, ARG, and PARSE instructions.
This setting is recommended for general debugging.

Scan
Traces all remaining clauses in the data without them being processed. Basic checking (for missing
ENDs and so forth) is carried out, and the trace is formatted as usual. This is valid only if the TRACE S
clause itself is not nested in any other instruction (including INTERPRET or interactive debug) or in an
internal routine.

Prefix Options

The prefixes ! and ? are valid either alone or with one of the alphabetic character options. You can specify
both prefixes, in any order, on one TRACE instruction. You can specify a prefix more than one time, if
desired. Each occurrence of a prefix on an instruction reverses the action of the previous prefix. The
prefix(es) must immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:

3 See “Commands” on page 23 for definitions of error and failure.

54 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TRACE

Controls interactive debug. During usual execution, a TRACE option with a prefix of ? causes
interactive debug to be switched on. (See “Interactive Debugging of Programs” on page 319 for full
details of this facility.) While interactive debug is on, interpretation pauses after most clauses that are
traced. (If you are working from the operator's console, these pauses occur. If you are using files for
input and output, interactive debug reads the next line instead of pausing. The term pause is used
generically in this description. It means the activity that is usual for the input stream you are using.
Similarly, this description mentions information you enter; this means information you input using the
method appropriate for your current input stream.)

For example, the instruction TRACE ?E makes the language processor pause for input after executing
any command that returns an error (that is, a nonzero return code). If the current input stream
provides a null string as input, processing continues to the next instructon. (If the current input stream
is SYSIPT, the language processor strips trailing blanks.) The current input stream can also provide an
instruction for execution.

When interactive debug is starting, a message indicating this is sent to the current output stream.
While interactive debug is active, it reads from the current input stream. (If the current input stream is
afile, itis read one line at a time, and a null string is returned when there are no more lines to read. If
the current input stream is SYSLOG, interactive debug reads from the operator's console.)

Any TRACE instructions in the program being traced are ignored. (This is so that you are not taken out
of interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

« Entering TRACE O turns off all tracing.

 Entering TRACE with no options restores the defaults—it turns off interactive debug but continues
tracing with TRACE Normal (which traces any failing command after execution) in effect.

 Entering TRACE ? turns off interactive debug and continues tracing with the current option.

Entering a TRACE instruction with a ? prefix before the option turns off interactive debug and
continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive debug. (Because the
language processor ignores any further TRACE statements in your program after you are in interactive
debug, use CALL TRACE '?' toturn off interactive debug.)

Note: You can start interactive debug by using the TS immediate command in a REXX program or by
specifying TS on a call to ARXIC from a non-REXX program. See Chapter 10, “REXX/VSE Commands,”
on page 143 for more information about immediate commands and “TS” on page 167 for more
information about TS.

Inhibits host command execution. During regular execution, a TRACE instruction with a prefix of !
suspends execution of all subsequent host commands. For example, TRACE !C causes commands to
be traced but not processed. As each command is bypassed, the REXX special variable RC is set to 0.
You can use this action for debugging potentially destructive programs. (Note that this does not inhibit
any commands entered manually while in interactive debug. These are always processed.)

You can switch off command inhibition, when it is in effect, by issuing a TRACE instruction with a
prefix !. Repeated use of the ! prefix, therefore, switches you alternately in or out of command
inhibition mode. Or, you can turn off command inhibition at any time by issuing TRACE 0 or TRACE
with no options.

Numeric Options

If interactive debug is active and if the option specified is a positive whole number (or an expression that
evaluates to a positive whole number), that number indicates the number of debug pauses to be skipped
over. (See separate section in “Interactive Debugging of Programs” on page 319, for further information.)
However, if the option is a negative whole number (or an expression that evaluates to a negative whole

Chapter 3. Keyword Instructions 55

TRACE

number), all tracing, including debug pauses, is temporarily inhibited for the specified number of clauses.
For example, TRACE -100 means that the next 100 clauses that would usually be traced are not, in fact,
displayed. After that, tracing resumes as before.

Tracing Tips
1. When a loop is being traced, the DO clause itself is traced on every iteration of the loop.

2. You can retrieve the trace actions currently in effect by using the TRACE built-in function (see “TRACE”
on page 84).

3. If available at the time of execution, comments associated with a traced clause are included in the
trace, as are comments in a null clause, if you specify TRACE A, R, I, or S.

4. Commands traced before execution always have the final value of the command (that is, the string
passed to the environment), and the clause generating it produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See the CALL instruction
(“CALL” on page 30) for more details.

A Typical Example
One of the most common traces you will use is:
TRACE ?R
/* Interactive debug is switched on if it was off, x/
/* and tracing Results of expressions begins. */
Format of TRACE Output

Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting and so forth. The language processor may replace any control codes in the encoding of data (for
example, EBCDIC values less than '40'x) with a question mark (?) to avoid console interference. Results (if
requested) are indented an extra two spaces and are enclosed in double quotation marks so that leading
and trailing blanks are apparent.

A line number precedes the first clause traced on any line. If the line number is greater than 99999, the
language processor truncates it on the left, and the ? prefix indicates the truncation. For example, the line
number 100354 appears as ?00354. All lines displayed during tracing have a three-character prefix to
identify the type of data being traced. These can be:

*=%
Identifies the source of a single clause, that is, the data actually in the program.

+++
Identifies a trace message. This may be the nonzero return code from a command, the prompt

message when interactive debug is entered, an indication of a syntax error when in interactive debug,
or the traceback clauses after a syntax error in the program (see below).

>>>
Identifies the result of an expression (for TRACE R) or the value assigned to a variable during parsing,
or the value returned from a subroutine call.

>.>

Identifies the value "assigned" to a placeholder during parsing (see “The Period as a Placeholder” on
page 106).

The following prefixes are used only if TRACE Intermediates isin effect:

>C>
The data traced is the name of a compound variable, traced after substitution and before use,
provided that the name had the value of a variable substituted into it.

>F>
The data traced is the result of a function call.

56 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

UPPER

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>0>
The data traced is the result of an operation on two terms.

>P>
The data traced is the result of a prefix operation.

>V>
The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null,
the default tracing actions are restored. The defaults are TRACE N, command inhibition (!) off, and
interactive debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced. Any
CALL or INTERPRET or function invocations active at the time of the error are also traced. If an attempt to
transfer control to a label that could not be found caused the error, that label is also traced. The special
trace prefix +++ identifies these traceback lines.

UPPER

»— UPPER g:blel ; >

UPPER translates the contents of one or more variables to uppercase. The variables are translated in
sequence from left to right.

The variable is a symbol, separated from any other variables by one or more blanks or comments. Specify
only simple symbols and compound symbols. (See “Simple Symbols” on page 20.)

Using this instruction is more convenient than repeatedly invoking the TRANSLATE built-in function.

Example:
al='Hello'; bl="'there'
Upper al bl
say al bl /* Displays "HELLO THERE" x/

An error is signalled if a constant symbol or a stem is encountered. Using an uninitialized variable is not
an error, and has no effect, except that it is trapped if the NOVALUE condition (SIGNAL ON NOVALUE) is
enabled.

For more complete information, see the VM/ESA REXX/VM Reference.

Chapter 3. Keyword Instructions 57

https://www.vm.ibm.com/library/710pdfs/71631400.pdf

UPPER

58 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 4. Functions

A function is an internal, built-in, or external routine that returns a single result string. (A subroutine is
a function that is an internal, built-in, or external routine that may or may not return a result and that is
called with the CALL instruction.)

Syntax

A function call is a term in an expression that calls a routine that carries out some procedures and returns
a string. This string replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the notation:

»— function_name — ({ L _J j) >«
expression

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation-defined maximum number of expressions, separated by commas,
between the parentheses. In REXX/VSE, the implementation maximum is up to 20 expressions. These
expressions are called the arguments to the function. Each argument expression may include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no blank in between,
or the construct is not recognized as a function call. (A blank operator would be assumed at this point
instead.) Only a comment (which has no effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are all then passed to

the function. This then runs some operation (usually dependent on the argument strings passed, though
arguments are not mandatory) and eventually returns a single character string. This string is then included
in the original expression just as though the entire function reference had been replaced by the name of a
variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see “SUBSTR (Substring)” on
page 82) and could be used as:

N1="'abcdefghijk'
Z1="Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' x/

A function may have a variable number of arguments. You need to specify only those that are required. For
example, SUBSTR('ABCDEF',4) would return DEF.

Functions and Subroutines

The function calling mechanism is identical with that for subroutines. The only difference between
functions and subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:

Internal
If the routine name exists as a label in the program, the current processing status is saved, so that
it is later possible to return to the point of invocation to resume execution. Control is then passed to
the first label in the program that matches the name. As with a routine called by the CALL instruction,
various other status information (TRACE and NUMERIC settings and so forth) is saved too. See the
CALL instruction (“CALL” on page 30) for details about this. You can use SIGNAL and CALL together

© Copyright IBM Corp. 1988, 2004 59

to call an internal routine whose name is determined at the time of execution; this is known as a
multi-way call (see “SIGNAL” on page 51).

If you are calling an internal routine as a function, you must specify an expression in any RETURN
instruction to return from it. This is not necessary if it is called as a subroutine.

Example:
/* Recursive internal function execution... %/
arg x
say x'! ="' factorial(x)
exit
factorial: procedure /* Calculate factorial by */
arg n /* recursive invocation. */

if n=0 then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE instruction
ensures that a new variable n is created for each invocation.

Note: When there is a search for a routine, the language processor currently scans the statements
in the REXX program to locate the internal label. During the search, the language processor may
encounter a syntax error. As a result, a syntax error may be raised on a statement different from the
original line being processed.

Built-in
These functions are always available and are defined in the next section of this manual. (See “Built-in
Functions” on page 61—“X2D (Hexadecimal to Decimal)” on page 89.)

External
You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language (including REXX) that supports the system-dependent
interfaces the language processor uses to call it. You can call a REXX program as a function and,
in this case, pass more than one argument string. The ARG or PARSE ARG instructions or the ARG
built-in function can retrieve these argument strings. When called as a function, a program must
return data to the caller. For information about writing external functions and subroutines and the
system dependent interfaces, see “External Functions and Subroutines and Function Packages” on
page 344.

Note:

1. Calling an external REXX program as a function is similar to calling an internal routine. The external
routine is, however, an implicit PROCEDURE in that all the caller's variables are always hidden and
the status of internal values (NUMERIC settings and so forth) start with their defaults (rather than
inheriting those of the caller).

2. Other REXX programs can be called as functions. You can use either EXIT or RETURN to leave the
called REXX program, and in either case you must specify an expression.

3. With care, you can use the INTERPRET instruction to process a function with a variable function
name. However, you should avoid this if possible because it reduces the clarity of the program.

Search Order

The search order for functions is: internal routines take precedence, then built-in functions, and finally
external functions.

Internal routines are not used if the function name is given as a literal string (that is, specified in
guotation marks); in this case the function must be built-in or external. This lets you usurp the name of,
say, a built-in function to extend its capabilities, yet still be able to call the built-in function when needed.

Example:

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure

arg in

60 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

if in='"' then in='Standard'
return 'DATE' (in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for
the search to succeed, as in the example. The same is usually true of external functions. The search order
for external functions and subroutines follows.

1. Check the following function packages defined for the language processor environment:
« User function packages
« Local function packages
- System function packages.

2. If a match to the function name is not found, the function search order flag (FUNCSOFL) is checked.
The FUNCSOFL flag (see page “FUNCSOFL ” on page 394) indicates whether to search the active
PHASE chain or the PROC chain first.

If the flag is off, check the active PHASE chain. If a match to the function name is not found, search the
PROC chain.

If the flag is on, search the PROC chain. If a match to the function name is not found, check the active
PHASE chain.

Note: By default, the FUNCSOFL flag is off, which indicates searching the active PHASE chain before
searching for a REXX program.

Errors During Execution

If an external or built-in function detects an error of any kind, the language processor is informed, and a
syntax error results. Execution of the clause that included the function call is, therefore, ended. Similarly,
if an external function fails to return data correctly, the language processor detects this and reports it as
an error.

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL ON
SYNTAX) and recovery may then be possible. If the error is not trapped, the program is ended.

Built-in Functions

REXX provides a rich set of built-in functions, including character manipulation, conversion, and
information functions.

In addition to the functions SAA REXX provides, REXX/VSE has six additional built-in functions:
EXTERNALS, FIND, INDEX, JUSTIFY, LINESIZE, and USERID. If you plan to write REXX programs that

run on other SAA environments, note that these functions are not available to all the environments. In this
section, these six built-in functions are identified as non-SAA functions.

In addition to the built-in functions, REXX/VSE also provides external functions that you can use to
perform different tasks. “External Functions” on page 92 describes these functions. The following are
general notes on the built-in functions:

« The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

« The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are unaffected
by changes to the NUMERIC settings, except where stated.

< Any argument named as a string may be a null string.

« If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start
character or word in a string, it must be a positive whole number, unless otherwise stated.

« Where the last argument is optional, you can always include a comma to indicate you have omitted it;
for example, DATATYPE (1,), like DATATYPE (1), would return NUM.

« If you specify a pad character, it must be exactly one character long. (A pad character extends a string,
usually on the right. For an example, see the LEFT built-in function on page “LEFT” on page 76.)

Chapter 4. Functions 61

- If a function has an option you can select by specifying the first character of a string, that character can
be in upper- or lowercase.

« A number of the functions described in this topic support DBCS. A complete list and descriptions of
these functions are in Chapter 22, “Double-Byte Character Set (DBCS) Support,” on page 479.

ABBREV (Abbreviation)

»— ABBREV — (— information — , — info L J) >«
,— length

returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Here are some examples:

ABBREV('Print', 'Pri') -> 1
ABBREV('PRINT', 'Pxi') -> 0
ABBREV('PRINT', 'PRI', 4) -> 0
ABBREV ('PRINT', '"PRY") -> 0
ABBREV ('PRINT',"'") -> 1
ABBREV('PRINT',"'"',1) -> 0

Note: A null string always matches if a length of 0 (or the default) is used. This allows a default keyword to
be selected automatically if desired; for example:

say 'Enter option:'; pull option .

select /% keywordl is to be the default %/
when abbrev('keywordl',6 option) then ...
when abbrev('keyword2',6option) then ...

otherwise nop;
end;

ABS (Absolute Value)

»— ABS — (— number —) >«

returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS('12.3") > 12.3
ABS(' -0.307') -> 0.307
ADDRESS

»— ADDRESS — (—) >«

62 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

returns the name of the environment to which commands are currently being submitted. See the
ADDRESS instruction (page “ADDRESS” on page 27) for more information. Trailing blanks are removed
from the result. Here are some examples:

ADDRESS () -> '"VSE' /* default under VSE */
ADDRESS () -> '"POWER' /* assumes address change */
ARG (Argument)

»— ARG — (Ln f) >«
L,—option—J

returns an argument string or information about the argument strings to a program or internal routine.
If you do not specify n, the number of arguments passed to the program or internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument string does not exist, the null
string is returned. The n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The following are valid
options. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)

Exists
returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Returns O otherwise.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Returns O otherwise.

Here are some examples:

/* following "Call name;" (no arguments) x/

ARG () ->
ARG (1) -> Y
ARG(2) -> t
ARG(1,'e") -> 0
ARG(1,'0") -> 1
/* following "Call name 'a',,'b';" %/
ARG () -> 3
ARG (1) -> ‘a'
ARG (2) -> o
ARG (3) -> ‘b
ARG (n) -> e /* for n>=4 x/
ARG(1,'e") -> 1
ARG(2,'E") -> 0
ARG(2,'0") -> 1
ARG(3,'0") -> 0
ARG(4,'0") -> 1
Note:

1. The number of argument strings is the largest number n for which ARG (n, 'e') would return 1 or 0 if
there are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks) is
included with the command.

3. You can retrieve and directly parse the argument strings to a program or internal routine with the ARG
or PARSE ARG instructions. (See “ARG” on page 29, “PARSE” on page 44, and “Parsing Rules” on page
105.)

Chapter 4. Functions 63

ASSGN

ASSGN is an external function. See page “ASSGN” on page 93 for a description.

BITAND (Bit by Bit AND)

»— BITAND — (— string1 L) >«

’ L string2 J L ,— pad J

returns a string composed of the two input strings logically ANDed together, bit by bit. (The encodings of
the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If no pad character is provided, the AND operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero length (null) string.

Here are some examples:

BITAND('12'x) -> 112'x

BITAND('73'x, '27'x) -> '23'x

BITAND('13'x, '5555'x) -> '1155'

BITAND('13'x, '5555'x, '74"'x) -> '1154"' x

BITAND('pQzS',, 'BF'x) -> 'pgrs’ /% EBCDIC %/
BITOR (Bit by Bit OR)

»— BITOR — (— stringl L) >«

’ L string2 J L ,— pad J

returns a string composed of the two input strings logically inclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the OR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string. Here are some examples:

BITOR('12'x) => '12'x

BITOR('15'x, '24"'x) -> '35"'x

BITOR('15'x, '2456"'x) -> '3556"'x

BITOR('15"'x, '2456'x, 'FO'x) => '35F6"'x

BITOR('1111'x,, '4D'x) -> '5D5D "' x

BITOR('Fzred',, '40'x) -> '"FRED' /* EBCDIC */
BITXOR (Bit by Bit Exclusive OR)

»— BITXOR — (— stringl L) >«

’ L string2 J L ,— pad J

returns a string composed of the two input strings logically eXclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the XOR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial

64 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string?2 is the zero length (null) string.

Here are some examples:

BITXOR('12'x) -> '12'x

BITXOR('12'x, '22"'x) -> '30'x

BITXOR('1211'x, '22"'x) -> '3011'x

BITXOR('1111'x, '444444"x) -> '555544'x
BITXOR('1111'x, '444444'x, '40"'x) -> '555504'x
BITXOR('1111'x,,"'4D'x) -> '5C5C'x

BITXOR('C711'x, '222222"'x,"' ') -> 'E53362'x /x EBCDIC %/

B2X (Binary to Hexadecimal)

»— B2X — (— binary_string —) »«

returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
blanks in binary_string (at four-digit boundaries only, not leading or trailing) to aid readability; they are
ignored.

The returned string uses uppercase alphabetics for the values A—F, and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string is
not a multiple of four, then up to three 0 digits are added on the left before the conversion to make a total
that is a multiple of four.

Here are some examples:

B2X('116000011") -> 'c3'
B2X('10111"') -> ‘17!
B2X('101") -> B

B2X('1 1111 0000') -> ‘1F0"

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X('10111')) -> ‘23" /* decimal 23 x/

CENTER/CENTRE

»t CENTER — (j— string _— Iength L _J) >«
CENTRE — (,— pad

returns a string of length length with string centered in it, with pad characters added as necessary to make
up length. The length must be a positive whole number or zero. The default pad character is blank. If the
string is longer than length, it is truncated at both ends to fit. If an odd number of characters are truncated
or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER (abc,7) -> ' ABC '
CENTER(abc,8,"'-") -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American spellings, this function can
be called either CENTRE or CENTER.

Chapter 4. Functions 65

COMPARE

»— COMPARE — (— stringl — , — string2 L J) >«
,— pad

returns O if the strings, string1 and string2, are identical. Otherwise, returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The default
pad character is a blank.

Here are some examples:

COMPARE ('abc', 'abc') -> 0

COMPARE ('abc', 'ak") -> 2

COMPARE('ab ','ab"') -> 0

COMPARE('ab ', 'ab',' ') -> 0

COMPARE('ab ', 'ab', 'x") -> 3

COMPARE('ab-- ','ab','-") -> 5
CONDITION

»— CONDITION — (L J) >«
option

returns the condition information associated with the current trapped condition. (See Chapter 7,
“Conditions and Condition Traps,” on page 129 for a description of condition traps.) You can request
the following pieces of information:

« The name of the current trapped condition

 Any descriptive string associated with that condition

« The instruction processed as a result of the condition trap (CALL or SIGNAL)
« The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized and highlighted letter
is needed; all characters following it are ignored.)

Condition name
returns the name of the current trapped condition.

Description
returns any descriptive string associated with the current trapped condition. See “Descriptive Strings”
on page 132 for the list of possible strings. If no description is available, returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omit option.

Status
returns the status of the current trapped condition. This can change during processing, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or ignored.

If no condition has been trapped, then the CONDITION function returns a null string in all four cases.

Here are some examples:

CONDITION() -> "CALL' /* perhaps */
CONDITION('C") -> '"FAILURE'
CONDITION('I") -> "CALL'

66 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

CONDITION('D") -> 'FailureTest'
CONDITION('S") -> '"OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine called
with CALL ON trapname has returned, the current trapped condition reverts to the condition that was
current before the CALL took place (which may be none). CONDITION returns the values it returned
before the condition was trapped.

COPIES

»— COPIES — (— string — ,— n—) >«

returns n concatenated copies of string. The n must be a positive whole number or zero.

Here are some examples:

COPIES('abc',3) -> "abcabcabc’
COPIES('abc',0) -> v

C2D (Character to Decimal)

»— C2D — (— string) >«
L_,J

returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you do not specify n, string is processed as an unsigned binary number.

If string is null, returns 0.

Here are some examples:

C2D('09'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 65409
c2D('") -> (0]
C2D('a") -> 129 /* EBCDIC %/

If you specify n, the string is taken as a signed number expressed in n characters. The number is positive
if the leftmost bit is off, and negative, in two's complement notation, if the leftmost bit is on. In both
cases, it is converted to a whole number, which may, therefore, be negative. The string is padded on

the left with '00'x characters (note, not "sign-extended"), or truncated on the left to n characters. This
padding or truncation is as though RIGHT (string,n, '00'x) had been processed. If nis 0, C2D always
returns 0.

Here are some examples:

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('FO81'X,2) -> -3967
C2D('FOG81'X,1) -> -127
C2D('0031'X,0) -> 0

Implementation maximum: The input string cannot have more than 250 characters that are significant in
forming the final result. Leading sign characters ('00'x and 'FF'x) do not count toward this total.

Chapter 4. Functions 67

C2X (Character to Hexadecimal)

»— C2X — (— string —) >«

returns a string, in character format, that represents string converted to hexadecimal. The returned string
contains twice as many bytes as the input string. For example, on an EBCDIC system, C2X(1) returns F1
because the EBCDIC representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A—F and does not include blanks. The string
can be of any length. If string is null, returns a null string.

Here are some examples:

C2X('72s") -> "F7F2A2"' /x 'C6F7C6F2C1F2'X in EBCDIC */
C2X('0123'X) -> '0123" /* 'FOF1F2F3'X in EBCDIC x/

»»— DATATYPE — (— string

) >«
|

returns NUM if you specify only string and if string is a valid REXX number that can be added to 0 without
error; returns CHAR if string is not a valid number.

If you specify type, returns 1 if string matches the type; otherwise returns 0. If string is null, the function
returns O (except when type is X, which returns 1 for a null string). The following are valid types. (Only
the capitalized and highlighted letter is needed; all characters following it are ignored. Note that for the
hexadecimal option, you must start your string specifying the name of the option with x rather than h.)

Alphanumeric
returns 1 if string contains only characters from the ranges a—z, A-Z, and 0-9.

Binary
returns 1 if string contains only the characters 0 or 1 or both.

Cc
returns 1 if string is a mixed SBCS/DBCS string.

Dbcs
returns 1 if string is a DBCS-only string enclosed by SO and SI bytes.

Lowercase
returns 1 if string contains only characters from the range a-z.

Mixed case
returns 1 if string contains only characters from the ranges a-z and A-Z.

Number
returns 1 if string is a valid REXX number.

Symbol
returns 1 if string contains only characters that are valid in REXX symbols. (See “Tokens” on page 9.)
Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A-Z.

Whole number
returns 1 if string is a REXX whole number under the current setting of NUMERIC DIGITS.

68 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

heXadecimal
returns 1 if string contains only characters from the ranges a—£, A-F, 0-9, and blank (as long as
blanks appear only between pairs of hexadecimal characters). Also returns 1 if string is a null string,
which is a valid hexadecimal string.

Here are some examples:

DATATYPE(' 12 ') -> "NUM'
DATATYPE('") -> 'CHAR'
DATATYPE('123%") -> "CHAR'

DATATYPE('12.3','N
DATATYPE('12.3"','W
DATATYPE('Fred','M
DATATYPE('','M")

DATATYPE('Fred', 'L’
DATATYPE('?20K','s"'
DATATYPE('BCd3', 'X'
DATATYPE('BC d3','X

I) _>
I) _>
I) _>

->
) ->
) ->
) ->
|) ->

PRrRROOROR

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

DATE

»— DATE — (L) e
1
output_date_format

Group 1
»—, input_date >«
j
,— —,— —— output_separator_char
Group 2
»-, >«
L input_date_format J
Group 3

»—, L J L f >«
output_separator_char ’ L J
input_separator_char

Notes:

11f the Century or Julian format is specified, then no other options are permitted. These two
formats are provided for compatibility with programs written for releases prior to VSE/ESA Version 2
Release 2.2. It is recommended that they not be used for new programs.

returns, by default, the local date in the format: dd mon yyyy (day, month, year—for example, 25 Dec
1998), with no leading zero or blank on the day. Otherwise, the string input_date is converted to the
format specified by output_date_format. input_date_format can be specified to define the current format
of input_date. The default for input_date_format and output_date_format is Normal.

input_separator_char and output_separator__char can be specified to define the separator character for
the input and output dates, respectively. Any single non-alphanumeric character is valid. See note “3” on
page 71 for more information.

You can use the following options to obtain specific date formats. (Only the bold character is needed; all
characters following it are ignored.)

Chapter 4. Functions 69

Base
the number of complete days (that is, not including the current day) since and including the base date,
1 January 0001, in the format: dddddd (no leading zeros or blanks). The expression DATE('B"') //7
returns a number in the range 0—6 that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week. Note that REXX/VSE supports US
English only.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except century years
that are not divisible by 400). It does not take into account any errors in the calendar system that
created the Gregorian calendar originally.

Century
the number of days, including the current day, since and including January 1 of the last year that
is @ multiple of 100 in the form: ddddd (no leading zeros). Example: A call to DATE(C) on March 13
1992 returns 33675, the number of days from 1 January 1900 to 13 March 1992. Similarly, a call to
DATE(C) on 2 January 2000 returns 2, the number of days from 1 January 2000 to 2 January 2000.

Note: When the Century option is used for input, the output may change, depending on the current
century. For example, if DATE('S''1',C) was entered on any day between 1 January 1900 and 31
December 1999, the result would be 19000101. However, if DATE('S''1',C) was entered on any day
between 1 January 2000 and 31 December 2099, the result would be 20000101. It is important to
understand the above, and code accordingly.

Days
the number of days, including the current day, so far in this year in the format: ddd (no leading zeros or
blanks).
European
date in the format: dd/mm/yy
Julian
date in the format: yyddd.
Month
full English name of the current month, for example, August. Only valid for output_date_format.
Normal
date in the format: dd mon yyyy. This is the default. (dd cannot have any leading zeros or blanks;

yyyy must have leading zeros but cannot have any leading blanks). The abbreviated form of the month
name is used (for example, "Jan", "Feb", and so on).

Ordered

date in the format: yy/mm/dd (suitable for sorting, and so forth).
Standard

date in the format: yyyymmdd (suitable for sorting, and so forth).
Usa

date in the format: mm/dd/yy.

Weekday
the English name for the day of the week in mixed case, for example, Tuesday. Only valid for
output_date_format.

Here are some examples, assuming today is 13 March 1992:

DATE () -> ‘13 Mar 1992'
DATE(, '19960527"','S") -> ‘27 May 1996'
DATE('B") -> '727269'
DATE('B', '27 May 1996',) -> 728805
DATE('B', '27xMay*1996',,, 'x") -> 728805
DATE('C") -> '33675'
DATE('E") -> '13/03/92"
DATE('E',,,'+") -> '13+03+92"

70 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

'081698','U",,"")

'35488','C")

DATE("
DATE (' '96/05/27','0")
DATE('U','97059','3")

ccunuoununo=z=2=xuam

D)
>
)
>
)
')

DATE('U', '1.Feb.1998,'N', '+"',".
DATE('U', '1998-08-16"','S"',"'", "'~

DATE('W")

Note:

-> '16/08/98'
-> '92073"'
-> 'Maxch'
-> '13 Mar 1992'
-> '28 Feb 1997'
-> '92/03/13"'
-> '19920313"'
-> '19920313"
-> '1992-03-13"'
-> '03/13/92"'
-> '05/27/96"
-> '02/28/97'
) -> '02+01+98"'
) -> '081698'
-> 'Friday'

1. The first call to DATE or TIME in one clause causes a time stamp to be made that is then used for all
calls to these functions in that clause. Therefore, multiple calls to any of the DATE or TIME functions or
both in a single expression or clause are guaranteed to be consistent with each other.

2. Input dates given in 2-digit year formats are interpreted as being within a 100 year window as

calculated by:

(current_year - 50) = low end of window
(current_year + 49) = high end of window

3. input_separator_char and outputy_separator_char apply to the following formats, and have the

following default values:

Format Name Format Structure Default Separator
Value

European dd/mm/yy '

Normal dd mon yyyy i

Ordered yy/mm/dd N

Standard yyyymmdd "

Usa mm/dd/yy A

Note that Null is a valid value for input_separator_char and output_separator_char.

DBCS (Double-Byte Character Set Functions)
The following are all part of DBCS processing functions. See Chapter 22, “Double-Byte Character Set

(DBCS) Support,” on page 479.

DBADJUST
DBBRACKET
DBCENTER
DBCJUSTIFY
DBLEFT

DELSTR (Delete String)

DBRIGHT
DBRLEFT
DBRRIGHT
DBTODBCS
DBTOSBCS

DBUNBRACKET
DBVALIDATE
DBWIDTH

»— DELSTR — (— string — ,—n

) >«
1——,——-length——I

Chapter 4. Functions 71

returns string after deleting the substring that begins at the nth character and is of length characters.
If you omit length, or if length is greater than the number of characters from n to the end of string, the
function deletes the rest of string (including the nth character). The length must be The n must be a

positive whole number. If n is greater than the length of string, the function returns string unchanged.

Here are some examples:

DELSTR('abcd',3) -> ‘ab’
DELSTR('abcde',3,2) -> 'abe’
DELSTR('abcde',6) -> 'abcde’
DELWORD (Delete Word)
»— DELWORD — (— string — ,—n) >«
l——,——-length——I

returns string after deleting the substring that starts at the nth word and is of length blank-delimited
words. If you omit length, or if length is greater than the number of words from n to the end of string,

the function deletes the remaining words in string (including the nth word). The length must be a positive
whole number or zero. The n must be a positive whole number. If n is greater than the number of words
in string, the function returns string unchanged. The string deleted includes any blanks following the final
word involved but none of the blanks preceding the first word involved.

Here are some examples:

DELWORD('Now is the time',2,2) => 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

DIGITS

»— DIGITS — (—) >«

returns the current setting of NUMERIC DIGITS. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

DIGITS() -> 9 /> by default x/

D2C (Decimal to Character)

»— D2C — (— wholenumber L J) >«
,—n

returns a string, in character format, that represents wholenumber, a decimal number, converted to
binary. If you specify n, it is the length of the final result in characters; after conversion, the input string
is sign-extended to the required length. If the number is too big to fit into n characters, then the result is
truncated on the left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading '00'x characters.

72 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

D2C(9) -> b /* '09'x is unprintable in EBCDIC */
D2C(129) -> 'a' /* '81'x is an EBCDIC 'a‘’ */
D2C(129,1) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,2) -> "a' /* '0081'x is EBCDIC ' a' */
D2C(257,1) -> b /* '01'x is unprintable in EBCDIC */
D2C(-127,1) -> 'a' /* '81'x is EBCDIC 'a' */
D2C(-127,2) -> "al /* 'FF'x is unprintable EBCDIC; */

/* '81'x is EBCDIC 'a' */
D2C(-1,4) -> ' ' /* '"FFFFFFFF'x is unprintable in EBCDIC x/
D2C(12,0) -> n /* ''" is a null string */

Implementation maximum: The output string may not have more than 250 significant characters, though
a longer result is possible if it has additional leading sign characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

»— D2X — (— wholenumber L J) >«
,—n

returns a string, in character format, that represents wholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the values A—F and does not include
blanks.

If you specify n, it is the length of the final result in characters; after conversion the input string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on the
left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

D2X(9) -> ‘9!
D2X(129) -> ‘81’
D2X(129,1) -> 1
D2X(129,2) -> ‘81’
D2X(129,4) -> '0081'
D2X(257,2) -> ‘o1’
D2X(-127,2) -> ‘81’
D2X(-127,4) -> "FF81'
D2X(12,0) -> Y

Implementation maximum: The output string may not have more than 500 significant hexadecimal
characters, though a longer result is possible if it has additional leading sign characters (0 and F).

ERRORTEXT

»— ERRORTEXT — (— n—) >«

returns the REXX error message associated with error number n. The n must be in the range 0-99, and
any other value is an error. Returns the null string if n is in the allowed range but is not a defined REXX
error number. See z/VSE Messages and Codes for a complete description of error numbers and messages.

Here are some examples:

ERRORTEXT (16) -> 'Label not found'
ERRORTEXT (60) -> o

Chapter 4. Functions 73

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

EXTERNALS
This is a non-SAA built-in function. See “EXTERNALS” on page 90 for a description.

FIND

WORDPOS is the preferred built-in function for this type of word search; see page “WORDPOS (Word
Position)” on page 88 for a complete description. FIND is a non-SAA built-in function. See “FIND” on
page 90 for a description.

FORM

»- FORM — (—) »«

returns the current setting of NUMERIC FORM. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

FORM() -> 'SCIENTIFIC' /% by default =/

FORMAT

»w— FORMAT — (— number —»

T J
1——before-—J 1“' f f

|
Laﬁer_J , Lexpp_j L’_expt_j

v

) >«

returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, just as though the operation number+0
had been carried out. The result is precisely that of this operation if you specify only number. If you
specify any other options, the number is formatted as follows.

The before and after options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of these, the number of characters used for that part is
as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying © causes the number to be rounded to an integer.

Here are some examples:

FORMAT('3"',4) -> ' g
FORMAT('1.73"',4,0) -> ' 2!
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76"',4,1) -> ' -0.8'
FORMAT('3.03"',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300"
FORMAT(' - 12.73") -> '-12.73"
FORMAT('0.000") -> ‘0"

74 1BM VSE/Enterprise Systems Architecture VSE Central Functions

: REXX/VSE V6R7 Reference

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. The expp sets the number of places for the exponent part; the default is to use as many as
needed (which may be zero). The expt sets the trigger point for use of exponential notation. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, no exponent is supplied, and the number is expressed in simple form with added zeros as
necessary. If expp is not large enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent would
be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be @ when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent would be 0
and expp is not specified, simple form is used.

Here are some examples:

FORMAT ('12345.73"',,,2,2) -> '1.234573E+04'

FORMAT('12345.73"',,3,,0) -> '1.235E+4"

FORMAT('1.234573',,3,,0) -> '1.235"

FORMAT('12345.73"',,,3,6) -> '12345.73"

FORMAT ('1234567e5',,3,0) -> '123456700000.000"
FUZZ

»— FUZZ — (—) >«

returns the current setting of NUMERIC FUZZ. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

FUZZ () -> 0] /* by default =/

INDEX

POS is the preferred built-in function for obtaining the position of one string in another; see “POS
(Position)” on page 78 for a complete description. INDEX is a non-SAA built-in function. See “INDEX” on
page 91 for a description.

INSERT

»— INSERT — (— new — , — target —»

> L f) >«
CL,J L
Llength—j L,—padJ

inserts the string new, padded or truncated to length length, into the string target after the nth character.
The default value for n is 0, which means insert before the beginning of the string. If specified, n and
length must be positive whole numbers or zero. If n is greater than the length of the target string, padding
is added before the string new also. The default value for length is the length of new. If length is less than
the length of the string new, then INSERT truncates new to length length. The default pad character is a
blank.

Chapter 4. Functions 75

Here are some examples:

INSERT(' ', 'abcdef',3) -> '"abc def'

INSERT('123','abc',5,6) -> 'abc 123 '

INSERT('123', 'abc',5,6,'+") -> "abc++123+++"

INSERT('123"', 'abc') -> '123abc’

INSERT('223','abc',,5,'-") -> '123--abc’
JUSTIFY

This is a non-SAA built-in function. See “JUSTIFY” on page 91 for a description.

LASTPOS (Last Position)

»— LASTPOS — (— needle — , — haystack L J) >«
, — start

returns the position of the last occurrence of one string, needle, in another, haystack. (See also the POS
function.) Returns 0 if needle is the null string or is not found. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying start, the point at which
the backward scan starts. start must be a positive whole number and defaults to LENGTH (haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(' ', ‘'abc def ghi') -> 8
LASTPOS(" ', 'abcdefghi') -> 0
LASTPOS('xy "', 'efgxyz') -> 4
LASTPOS(' ', 'abc def ghi',7) -> 4
LEFT
»— LEFT — (— string — , — length L J) >«
,— pad

returns a string of length length, containing the leftmost length characters of string. The string returned is
padded with pad characters (or truncated) on the right as needed. The default pad character is a blank.
length must be a positive whole number or zero. The LEFT function is exactly equivalent to:

»— SUBSTR — (— string — ,— 1 — ,— length L J) >«
,— pad

Here are some examples:

LEFT('abc d',8) -> 'abc d '

LEFT('abc d',8,"'.") -> ‘abc d..."

LEFT('abc def',7) -> 'abc de'
LENGTH

»— LENGTH — (— string —) »«

returns the length of string.

76 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

LENGTH('abcdefgh') -> 8

LENGTH('abc defg') -> 8

LENGTH(' ") -> 0
LINESIZE

This is a non-SAA built-in function. See “LINESIZE” on page 92 for a description.

MAX (Maximum)

»—MAX—(fmzml:erl)M

returns the largest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> =8

MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MAX if more
arguments are needed.

MIN (Minimum)

»—MIN—(fmzmt:erl)—N

returns the smallest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7

MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1)) -=> 1

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MIN if more
arguments are needed.

OUTTRAP
OUTTRAP is an external function. See page “OUTTRAP” on page 94.

Chapter 4. Functions 77

OVERLAY

»— OVERLAY — (— new — , — target —»

T -
" , Llength—j L,—padJ

returns the string target, which, starting at the nth character, is overlaid with the string new, padded or
truncated to length length. (The overlay may extend beyond the end of the original target string.) If you
specify length, it must be a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, padding is added before the new string. The default
pad character is a blank, and the default value for n is 1. If you specify n, it must be a positive whole
number.

Here are some examples:

OVERLAY(' ', 'abcdef',3) -> 'ab def'
OVERLAY('.', 'abcdef',3,2) -> 'ab. ef'
OVERLAY('qq', 'abcd') -> 'qqcd’
OVERLAY('qq', 'abcd',4) -> 'abcqq’
OVERLAY('123','abc',5,6,"'+") -> 'abc+123+++"

POS (Position)
»— POS — (— needle — , — haystack L J) >«

, — Sstart

returns the position of one string, needle, in another, haystack. (See also the INDEX and LASTPOS
functions.) Returns 0 if needle is the null string or is not found or if start is greater than the length of
haystack. By default the search starts at the first character of haystack (that is, the value of start is 1).
You can override this by specifying start (which must be a positive whole number), the point at which the
search starts.

Here are some examples:

POS('day', 'Saturday') -> 6

POS('x"', 'abc def ghi') -> 0

POS(' ', 'abc def ghi') -> 4

POS(' ', 'abc def ghi',5) -> 8
QUEUED

»— QUEUED — (—) >«

returns the number of lines remaining in the external data queue when the function is called.
The REXX/VSE implementation of the external data queue is the data stack.

Here is an example:

QUEUED() -> 5 /* Perhaps x/

78 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

RANDOM

»— RANDOM — () >«

max

L me—j Lmax—j L,—seedJ

J

returns a quasi-random nonnegative whole number in the range min to max inclusive. If you specify
max or min or both, max minus min cannot exceed 100000. The min and max default to @ and 999,
respectively. To start a repeatable sequence of results, use a specific seed as the third argument, as
described in Note “1” on page 79. This seed must be a positive whole number ranging from 0 to
999999999.

Here are some examples:

RANDOM () -> 305

RANDOM (5, 8) -> 7

RANDOM (2) -> 0 /* 0 to 2 */

RANDOM(, ,1983) -> 123 /% reproducible %/
Note:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /% any number would x/

/* do for a seed */
do 39
sequence = sequence RANDOM(1,6)
end

say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seed almost certainly produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different results each
time it is run.

2. The random number generator is global for an entire program; the current seed is not saved across
internal routine calls.

REVERSE

»— REVERSE — (— string —) -»«

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc. ") -> '.CcBA'

REVERSE('XYZ ') -> ' ZYX!
RIGHT

»— RIGHT — (— string — , — length

C_.J

Chapter 4. Functions 79

returns a string of length length containing the rightmost length characters of string. The string returned is
padded with pad characters (or truncated) on the left as needed. The default pad character is a blank. The
length must be a positive whole number or zero.

Here are some examples:

RIGHT('abc d',8) -> ' abc d'

RIGHT('abc def',5) -> 'c def'

RIGHT('12',5,'0") -> '00012'
REXXIPT

REXXIPT is an external function. See page “REXXIPT” on page 98.

REXXMSG
REXXMSG is an external function. See page “REXXMSG” on page 99.

SETLANG
SETLANG is an external function. See page “SETLANG” on page 99.

SIGN

»— SIGN — (— number —) >«

returns a number that indicates the sign of number. The number is first rounded according to standard
REXX rules, just as though the operation numbexr+0 had been carried out. Returns -1 if number is less
than O; returns Q if it is O; and returns 1 if it is greater than 0.

Here are some examples:

SIGN('12.3") -> 1

SIGN(' -0.307') -> -1

SIGN(0.0) -> 0
SLEEP

SLEEP is an external function. See page “SLEEP” on page 100.

SOURCELINE

»— SOURCELINE — (ﬁ—) >«
n

returns the line number of the final line in the program if you omit returns the line number of the final line
in the program if you omit n, or returns the nth line in the program if you specify n. If specified, n must be
a positive whole number and must not exceed the number of the final line in the program.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE (1) -> "/ This is a 10-1line REXX program =/’

80 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SPACE

»— SPACE — (— string L) >«

LU A U |

returns the blank-delimited words in string with n pad characters between each word. If you specify n, it
must be a positive whole number or zero. If it is 0, all blanks are removed. Leading and trailing blanks are
always removed. The default for nis 1, and the default pad character is a blank.

Here are some examples:

STORAGE

STRIP

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> "abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',0) -> 'abcdef’
SPACE('abc def ',2,'+") -> 'abc++def’
STORAGE is an external function. See page “STORAGE” on page 101.
»— STRIP — (— string L) >«

’ L option J L ,— char J

returns string with leading or trailing characters or both removed, based on the option you specify. The
following are valid options. (Only the capitalized and highlighted letter is needed; all characters following
it are ignored.)

Both
removes both leading and trailing characters from string. This is the default.

Leading
removes leading characters from string.

Trailing
removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Here are some examples:

STRIP(' ab c ') -> 'ab c¢'
STRIP(' ab c ','L") -> 'ab ¢ '
STRIP(' ab c¢c ','t') -> ' ab c¢'
STRIP('12.7000',,0) -> '12.7"
STRIP('0012.700',,0) -> '12.7"

Chapter 4. Functions 81

SUBSTR (Substring)

»— SUBSTR — (— string — ,—n L) >«

LU B U |

returns the substring of string that begins at the nth character and is of length length, padded with pad if
necessary. The n must be a positive whole number. If n is greater than LENGTH(string), then only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Here are some examples:

SUBSTR('abc',2) -> "be'
SUBSTR('abc',2,4) -> 'be !
SUBSTR('abc',2,6,"'.") -> 'be....

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string. See also the
LEFT and RIGHT functions.

SUBWORD

»— SUBWORD — (— string — ,—n L J) >«
, — length

returns the substring of string that starts at the nth word, and is up to length blank-delimited words. The
n must be a positive whole number. If you omit length, it defaults to the number of remaining words

in string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> v

»— SYMBOL — (— name —) -»«

returns the state of the symbol named by name. Returns BAD if name is not a valid REXX symbol. Returns
VAR if it is the name of a variable (that is, a symbol that has been assigned a value). Otherwise returns
LIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned a value (that
is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an expression) to prevent
substitution before it is passed to the function.

82 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

/* following: Drop A.3; J=3 %/

SYMBOL('3") -> '"VAR'

SYMBOL (J) -> "LIT' /% has tested "3" */

SYMBOL('a.j") -> '"LIT' /* has tested A.3 */

SYMBOL (2) -> '"LIT" /% a constant symbol x/

SYMBOL('%") -> 'BAD' /% not a valid symbol =/
SYSVAR

SYSVAR is an external function. See page “SYSVAR” on page 102.

TIME

»w— TIME — () >«
Lo tionJ
P

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and seconds) by default, for
example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time

clock. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)

Civil
returns the time in Civil format: hh:mmxx. The hours may take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59 a.m.—appearing as 12 : 00am through
11 :59am) from noon and afternoon (12 noon through 11:59 p.m.—appearing as 12 :00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset. The number has no leading zeros or blanks, and the setting
of NUMERIC DIGITS does not affect the number. The fractional part always has six digits.

Hours
returns up to two characters giving the number of hours since midnight in the format: hh (no leading
zeros or blanks, except for a result of 0).

Long
returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of seconds, in microseconds).
The first eight characters of the result follow the same rules as for the Normal form, and the fractional
part is always six digits.

Minutes
returns up to four characters giving the number of minutes since midnight in the format: mmmm (no
leading zeros or blanks, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss, as described previously. The hours can have the
values 00 through 23, and minutes and seconds, 00 through 59. All these are always two digits. Any
fractions of seconds are ignored (times are never rounded up). This is the default.

Reset
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The number
has no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect the number. The
fractional part always has six digits.

Chapter 4. Functions 83

Seconds
returns up to five characters giving the number of seconds since midnight in the format: sssss (no
leading zeros or blanks, except for a result of 0).

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> '16:54:22"'

TIME('C') -> '4:54pm'

TIME('H') -> '16'

TIME('L") -> '16:54:22.123456' /* Perhaps x/
TIME('M") -> '1014" /* 54 + 60%16 *x/
TIME('N') -> '16:54:22"'

TIME('S") -> '60862"' /* 22 + 60%(54+60%16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME('E') or TIME('R"), the elapsed-time clock is started, and either call returns 0. From then on,
callsto TIME('E') andto TIME('R"') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which is to say that an internal routine inherits the time
clock its caller started. Any timing the caller is doing is not affected, even if an internal routine resets the
clock. An example of the elapsed-time clock:

time('E") -> 0 /* The first call */
/* pause of one second here */
time('E") -> 1.002345 /* or thereabouts *x/
/* pause of one second here x/
time('R") -> 2.004690 /* or thereabouts %/
/* pause of one second here x/
time('R") -> 1.002345 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single clause. The elapsed-time clock
is synchronized to the other calls to TIME and DATE, so multiple calls to the elapsed-time clock in a single
clause always return the same result. For the same reason, the interval between two usual TIME/DATE
results may be calculated exactly using the elapsed-time clock.

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits (equivalent
to over 31.6 years), an error results.

TRACE

»— TRACE — (

) >«
L option J

returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be one of the valid prefixes ? or ! or one of the
alphabetic character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L,
N, O, R, or S) or both. (See the TRACE instruction on “Alphabetic Character (Word) Options” on page 54 for
full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debug is
active. Also unlike the TRACE instruction, option cannot be a number.

Here are some examples:

TRACE () -> '?R' /% maybe %/
TRACE('0") -> '?R' /% also sets tracing off */
TRACE('?I") -> '0' /% now in interactive debug */

84 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TRANSLATE

»— TRANSLATE(— string —»

I s e =
wabiee , L tablei J L,—pad J

returns string with each character translated to another character or unchanged. You can also use this
function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for each
character in string. If the character is found, then the corresponding character in tableo is used in the
result string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is not
found, the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither translation table and omit pad, string is simply
translated to uppercase (that is, lowercase a—z to uppercase A-Z), but, if you include pad, the language
processor translates the entire string to pad characters. tablei defaults to XRANGE ('00'x, 'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Here are some examples:

TRANSLATE ('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b") -> 'a&&ce!

TRANSLATE('abcdef', '12','ec') -> 'ab2d1f’
TRANSLATE('abcdef', '12', 'abcd','.") -> '12. .ef'
TRANSLATE('APQRV',, 'PR") -> 'AQ V'
TRANSLATE ('APQRV' ,XRANGE('00'X,'Q")) -> "APQ '
TRANSLATE('4123', 'abcd', '1234") -> "dabc'

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a string.
In the example, the last character of any four-character string specified as the second argument would be
moved to the beginning of the string.

TRUNC (Truncate)

»— TRUNC — (— number) >«
L _,.J

returns the integer part of number and n decimal places. The default n is © and returns an integer with no
decimal point. If you specify n, it must be a positive whole number or zero. The number is first rounded
according to standard REXX rules, just as though the operation number+0 had been carried out. The
number is then truncated to n decimal places (or trailing zeros are added if needed to make up the
specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3) -> 12

TRUNC (127.09782, 3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary before the
function processes it.

Chapter 4. Functions 85

USERID
USERID is a non-SAA built-in function. See “USERID” on page 92 for a description.

VALUE

»— VALUE — (— name) >«
[J

, L newvalue J

returns the value of the symbol that name (often constructed dynamically) represents and optionally
assigns it a new value. By default, VALUE refers to the current REXX-variables environment. name must be
a valid REXX symbol. (You can confirm this by using the SYMBOL function.) Lowercase characters in name
are translated to uppercase. Substitution in a compound name (see “Compound Symbols” on page 20)
occurs if possible.

If you specify newvalue, then the named variable is assigned this new value. This does not affect the
result returned; that is, the function returns the value of name as it was before the new assignment.

Here are some examples:

/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' x/
VALUE('a'k) -> 'A3' /% looks up A3 */
VALUE('a'k]|k) => '7' /x looks up A33 */
VALUE('fred') -> 'K' /% looks up FRED */
VALUE (fred) -> '3' /% looks up K */
VALUE (fred,5) -> '3' /% looks up K and %/

/* then sets K=5 */
VALUE (fred) -> '5' /% looks up K */
VALUE('LIST.'k) => 'Hi' /% looks up LIST.5 %/

Note: If the VALUE function refers to an uninitialized REXX variable then the default value of the variable
is always returned; the NOVALUE condition is not raised.

If you specify the name as a single literal string, the symbol is a constant and so the string between

the quotation marks can usually replace the whole function call. (For example, fred=VALUE('k") ; is
identical with the assignment fred=k;, unless the NOVALUE condition is being trapped. See Chapter 7,
“Conditions and Condition Traps,” on page 129.)

VERIFY

»— VERIFY — (— string — , — reference L) >«

’ L option J L , — start J

returns a number that, by default, indicates whether string is composed only of characters from reference;
returns @ if all characters in string are in reference, or returns the position of the first character in string not
in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and highlighted letter is
needed. All characters following it are ignored, and it can be in upper- or lowercase, as usual.) If you
specify Match, the function returns the position of the first character in string that is in reference, or
returns O if none of the characters are found.

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

86 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise the function returns the start value.

Here are some examples:

VERIFY('123','1234567890") -> 0
VERIFY('1Z3', '1234567890") -> 2
VERIFY ('AB4T', '1234567890") -> 1
VERIFY('ABAT', '1234567890','M") -> 3
VERIFY('ABAT', '1234567890"','N") -> 1
VERIFY('1P3Q4', '1234567890"',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','"',,3) -> 3
VERIFY('AB3CD5', '1234567890','M',4) -> 6
WORD
»w— WORD — (— string — ,— n—) >«

returns the nth blank-delimited word in string or returns the null string if fewer than n words are in string.
The n must be a positive whole number. This function is exactly equivalent to SUBWORD(string,n,1).

Here are some examples:

WORD('Now is the time',3) -> "the'

WORD('Now is the time',5) -> v
WORDINDEX

»— WORDINDEX — (— string — ,— n—) »«

returns the position of the first character in the nth blank-delimited word in string or returns 0 if fewer
than n words are in string. The n must be a positive whole number.

Here are some examples:

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0
WORDLENGTH

»— WORDLENGTH — (— string — ,— n—) >«

returns the length of the nth blank-delimited word in string or returns O if fewer than n words are in string.
The n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0]

Chapter 4. Functions 87

WORDPOS (Word Position)

»— WORDPOS — (— phrase — , — string L J) >«
, — start

returns the word number of the first word of phrase found in string or returns 0 if phrase contains no
words or if phrase is not found. Multiple blanks between words in either phrase or string are treated as a
single blank for the comparison, but otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by specifying start (which must
be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the', 'now is the time') -=> 3
WORDPOS('The', 'now is the time') -=> 0
WORDPOS('is the', 'now is the time') -=> 2
WORDPOS ('is the', 'now is the time') => 2
WORDPOS('is time ', 'now is the time') -=> 0
WORDPOS('be', 'To be or not to be') -=> 2
WORDPOS('be', 'To be or not to be',3) -=> 6
WORDS

»— WORDS — (— string —) -»«

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS(' ') -> 0]

XRANGE (Hexadecimal Range)

»— XRANGE — (

LstartJ L,—end—j s

returns a string of all valid 1-byte encodings (in ascending order) between and including the values start
and end. The default value for startis '00 ' x, and the default value for end is ' FF ' x. If start is greater
than end, the values wrap from 'FF'x to '00 ' x. If specified, start and end must be single characters.

Here are some examples:

XRANGE('a','f") -> 'abcdef’

XRANGE('03'x, '07'x) =-> '0304050607 ' x

XRANGE (, '04"'x) -> '0001020304 ' x

XRANGE('i',"'3") -> '898A8B8C8D8ESF9091'x /* EBCDIC =/

XRANGE('FE'x, '02'x) =-> 'FEFF000102 ' x

X2B (Hexadecimal to Binary)

»— X2B — (— hexstring —) >«

88 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

returns a string, in character format, that represents hexstring converted to binary. The hexstring is a
string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted to a
string of four binary digits. You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.
If hexstring is null, the function returns a null string.

Here are some examples:

X2B('C3") -> '11000011'
X2B('7") -> '0111°
X2B('1 C1') -> '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into binary
form.

Here are some examples:

X2B(C2X('C3'x)) =-> '11000011'
X2B(D2X('129')) =-> '10000001'
X2B(D2X('12')) -> '1100'

X2C (Hexadecimal to Character)

»— X2C — (— hexstring —) >«

returns a string, in character format, that represents hexstring converted to character. The returned string
is half as many bytes as the original hexstring. hexstring can be of any length. If necessary, it is padded
with a leading 0 to make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

X2C('F7F2 A2') -> '72s' /* EBCDIC */
X2C('F7f2a2"') -> '72s' /* EBCDIC */
X2C('F") -> v /* 'OF' is unprintable EBCDIC x/

X2D (Hexadecimal to Decimal)

»— X2D — (— hexstring) >«
L_.J

returns the decimal representation of hexstring. The hexstring is a string of hexadecimal characters. If the
result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, hexstring is processed as an unsigned binary number.

Chapter 4. Functions 89

REXX/VSE Functions

Here are some examples:

X2D('OE") -> 14

X2D('81") -> 129

X2D('F81") -> 3969

X2D('FF81") -> 65409

X2D('c6 £0'X) -> 240 /* EBCDIC =%/

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number in two's complement notation.
In both cases it is converted to a whole number, which may, therefore, be negative. If nis 0, the function
returns O.

If necessary, hexstring is padded on the left with @ characters (note, not "sign-extended"), or truncated on
the left to n characters.

Here are some examples:

X2D('8s1',2) -> -127
X2D('81',4) -> 129
X2D('FO81',4) -> -3967
X2D('Fo81"',3) -> 129
X2D('FO81',2) -> -127
X2D('FO81',1) -> 1
X2D('0031',0) -> 0

Implementation maximum: The input string may not have more than 500 hexadecimal characters that
will be significant in forming the final result. Leading sign characters (0 and F) do not count towards this
total.

Additional Functions Provided in REXX/VSE

In addition to the SAA-defined built-in functions, REXX/VSE provides the following built-in functions:

EXTERNALS

»— EXTERNALS — (—) >«

always returns a 0. For example:

EXTERNALS () -> 0 /* Always x/

The EXTERNALS function returns the number of elements in the terminal input buffer (system external
event queue). In REXX/VSE there is no equivalent buffer. Therefore, the EXTERNALS function always
returns a Q.

FIND

WORDPOQS is the preferred built-in function for this type of word search. See page “WORDPOS (Word
Position)” on page 88 for a complete description.

»— FIND — (— string — , — phrase —) »«

returns the word number of the first word of phrase found in string or returns 0 if phrase is not found
or if there are no words in phrase. The phrase is a sequence of blank-delimited words. Multiple blanks
between words in phrase or string are treated as a single blank for the comparison.

90 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX/VSE Functions

Here are some examples:

FIND('now is the time', 'is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> 0]

Note that WORDPOS is the preferred built-in function for this type of word search.

For more complete information, see the z/VM REXX/VM Reference.

INDEX

POS is the preferred built-in function for obtaining the position of one string in another. See page “POS
(Position)” on page 78 for a complete description.

»— INDEX — (— haystack — , — needle L J) >«
, — start

returns the character position of one string, needle, in another, haystack, or returns 0 if the string needle
is not found or is a null string. By default the search starts at the first character of haystack (start has
the value 1). You can override this by specifying a different start point, which must be a positive whole
number.

Here are some examples:

INDEX('abcdef', 'cd') -> 3
INDEX('abcdef', 'xd") -> 0
INDEX('abcdef', 'bc',3) -> 0
INDEX('abcabc', 'bc',3) -> 5
INDEX('abcabc', 'bc',6) -> 0]

Note that POS is the preferred built-in function for obtaining the position of one string in another.

For more complete information, see the z/VM REXX/VM Reference.

JUSTIFY

»— JUSTIFY — (— string — ,— length

) >«
|

returns string formatted by adding pad characters between blank-delimited words to justify to both
margins. This is done to width length (length must be a positive whole number or zero). The default pad
character is a blank.

The first step is to remove extra blanks as though SPACE (string) had been run (that is, multiple blanks
are converted to single blanks, and leading and trailing blanks are removed). If length is less than the
width of the changed string, the string is then truncated on the right and any trailing blank is removed.
Extra pad characters are then added evenly from left to right to provide the required length, and the pad
character replaces the blanks between words.

Here are some examples:

JUSTIFY('The blue sky',14) -> '‘The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9,'+") -> 'The++blue'

For more complete information, see the z/VM REXX/VM Reference.

Chapter 4. Functions 91

https://www.vm.ibm.com/library/710pdfs/71631400.pdf
https://www.vm.ibm.com/library/710pdfs/71631400.pdf
https://www.vm.ibm.com/library/710pdfs/71631400.pdf

External Functions

LINESIZE

»— LINESIZE — (—) >«

returns the width of the current output device. If the current output destination is SYSLOG, LINESIZE
returns 66. If it is SYSLST, LINESIZE returns 120. You can use ASSGN (STDOUT) to return the name of the
current output device.

USERID

»— USERID — (—) >«

returns one of the following values:

1. The last user ID specified on the SETUID command, or, if none,

2. The user ID of the calling REXX program, if one REXX program calls another, or, if none,
3. The user ID under which the job is running, or, if none,

4. The job name.

The USERID function returns the first value that does not have a null value. For example, if the user ID
specified on SETUID is null, USERID returns the user ID under which the job is running.

There are several ways to specify the user ID, not limited to the following:

« On the POWER JOB card

« The logon userid/password passed through the PWRSPL macro when you submit a job from the
interactive interface (ICCF)

« On the REXX/VSE command SETUID. (See page “SETUID” on page 165 for details.)

You can replace the routine (phase) that is called to determine the value the USERID function returns.
This is known as the user ID replaceable routine; and “User ID Routine” on page 465 describes it. See
Chapter 21, “Replaceable Routines and Exits,” on page 439 for details about replaceable routines and any
exceptions to this rule.

For more complete information, see the z/VM REXX/Reference.

External Functions

You can use the following external functions to perform different tasks:

« ASSGN

« LOCKMGR (see note)
« MERGE (see note)

« OPERMSG (see note)
« OUTTRAP

« PAUSEMSG (see note)
« REXXIPT

« REXXMSG

« SETLANG

- SLEEP

« SORTSTEM (see note)

92 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

https://www.vm.ibm.com/library/710pdfs/71631400.pdf

External Functions

- STORAGE.
« SYSVAR
Note: These are functions packaged with REXX Console Automation. Some more functions which allow

a REXX program to work with the REXX console are described in the section “Console-related REXX
Functions” on page 229.

This section describes external functions. For general information about the syntax of function calls, see
“Syntax” on page 59.

Chapter 18, “Customizing Services,” on page 381 describes customization and language processor
environments in more detail.

ASSGN

»— ASSGN — (STDIN) >«
, — SYSIPT
,— SYSLOG
, — filename

STDOUT
,— SYSLST
, — SYSLOG
, — filename

ASSGN returns the name of the current input or output stream and, optionally, changes it. You can use
ASSGN(STDIN) or ASSGN(STDOUT) to return the name of the current input or output stream, respectively.
If you specify one of the optional items, ASSGN returns the name of the current stream and changes the
current stream to the value you specified.

If you specify filename, this is the name of the input or output file. The filename must be 1 to 8 characters.
Note:

1. Using SYSLST with STDIN or using SYSIPT with STDOUT results in REXX error 40,
Invalid call to routine.

2. You must provide your own I/0O replaceable routine unless you use one of the following file names:
« SYSLOG
e SYSIPT
« SYSLST

« SYSxxx (Where xxx is numeric) If you specify a system file SYSxxx you might receive an error by the
I/0 replaceable routine ARXINOUT. See “Input/Output Routine” on page 446 for a list of supported
file names.

« Any other 7-character name.

Otherwise, you receive an error. See “Input/Output Routine” on page 446 for information about
supplying a replaceable routine.

You need to open a SAM file (using EXECIO...(OPEN) before reading from or writing to the file. SYSIPT,
SYSLST, and SAM files you have opened use the replaceable routine ARXINOUT.

3. SAM file names can be 1 to 7 characters.

PARSE EXTERNAL, PARSE PULL, PULL, SAY, TRACE, and error messages use the current input and output
streams.

Chapter 4. Functions 93

External Functions

The INDD field in the module name table specifies the default input stream (SYSIPT), and the OUTDD
field specifies the default output stream (SYSLST). Instead of using ASSGN to change the input or output
stream, you can specify the INDD or OUTDD field in the in-storage parameter list during a call to ARXINIT.
See “Module Name Table” on page 398 for a description of the module name table.

Examples:
[HHIHKFKFEFAFAFAIA KA KA AHAHA REXX ok ko ko ko Ao Aok A&k ko ko Ao A& /
/* This REXX program gets a word from the input stream and sends x/
/* it to the output stream. */
B /

oldin = ASSGN('STDIN', 'SYSLOG')
oldout = ASSGN('STDOUT', 'SYSLOG')

say 'Enter the wozrd.'
PULL word /* Get the word. =x/
SAY word

CALL ASSGN 'STDIN',oldin

CALL ASSGN 'STDOUT',oldout
EXIT

LOCKMGR

»— LOCKMGR — (— request — ,— name —) -»«

The LOCKMGR function allows to serialize REXX programs. See the detailed description on “LOCKMGR”
on page 235.

MERGE

»— MERGE — (— string —) >«

The MERGE function creates a new library member using a given skeleton and input variables. See the
detailed description on “MERGE” on page 236.

OPERMSG

»— OPERMSG — (— request —) »«

The OPERMSG function adds or removes an operator communication exit. See the detailed description on
“OPERMSG” on page 237.

OUTTRAP

94 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

External Functions

»— OUTTRAP — (

L ﬁ ,— 999999999 — , — CONCAT ﬁ J
varname

L‘ 999999999 T f_ , — CONCAT j J
L max —j L , — NOCONCAT J

—) >«

OUTTRAP returns

« OFF (if it has not been previously used)
« the previously used varname

if used with arguments the following is trapped in the specified varname:

- user data provided by ARXOUT. This is only possible from a user program invoked by LINK or LINKPGM.

job completion information retrieved by QUERYMSG.

command output and error information from JCL.
SYSLST output for LIBR and IDCAMS
« error information from PUTQE (page “PUTQE” on page 186). and GETQE (page “GETQE” on page 182)

command output from VSE/POWER commands (CTL requests) routed back through the VSE/POWER
spool-access services interface, or error information if the command fails.

(See VSE/POWER Application Programming, for a list of POWER commands you can send through a CTL
service request. See VSE/POWER Administration and Operation, for the syntax of these commands.)

varname
is the stem of a compound variable (a stem must end with a period). It has no default value (trapping
is not in effect until activated).

max
is the maximum number of lines to store in the compound variables. You can specify a number, an
asterisk in quotation marks ('*'), or a blank. If you specify '*' or a blank, all the output is stored.
The default is 999999999. Once the maximum number of lines are stored, subsequent lines are not
stored in compound variables.

CONCAT
specifies storing trapped lines from successive commands in consecutive order until the maximum
number of lines is reached. For example, if the first command has three lines of output and the second
command has two lines of output, lines are stored in varname.1 through varname.5, respectively.
CONCAT is the default.

NOCONCAT
specifies overwriting stored lines from successive commands. For example, if the first command has
three lines of output, they are stored in varname.1 through varname.3. Storing two lines of output
from the second command overwrites the lines from the first command in varname.1 and varname.2.
(Varname.3 would no longer contain the third line of the first command's output.) Before OUTTRAP
stores output, varname is dropped (as if a REXX DROP instruction specifying the name of the stem had
been used).

All unused variables have the value of their own names in uppercase. Varname.0 contains the number of
lines that have been stored. For example, if you specify cmdout. as the varname, the number of lines
stored is in cmdout.0.

A program written in REXX cannot turn trapping off. Once trapping is turned on, it remains in effect
until the program is done running. If a second call to a subsequent program is made, trapping is not in

Chapter 4. Functions 95

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

External Functions

effect unless the second program turns trapping on. When the second program ends, the trapping for
that program ends and trapping for the first program is again in effect. (The REXX variables that trapping
affects are in the program that is currently running.)

Additional Variables That OUTTRAP Sets

In addition to the variables that store the lines of output, OUTTRAP stores information in the following
variables:

varname.0
contains the total number of lines stored. The number in this variable cannot be larger than
varname.MAX or varname . TRAPPED.

varname.MAX
contains the maximum number of output lines that the user specified or the default. See example “4”
on page 96.

varname.TRAPPED
contains the total number of lines of command output. The number in this variable can be larger than
varname.0 or varname.MAX.

varname.CON
contains either CONCAT or NOCONCAT.

Examples:
The following are some examples of using OUTTRAP.

Note: You should use quotation marks around the string you specify for varname and around the
keywords CONCAT and NOCONCAT.

1. To determine if trapping is in effect:

y = OUTTRAP()
SAY y /* Produces the variable name being used to */
/* store output or "OFF" if trapping is off */

2. To suppress all command output:
y = OUTTRAP('output.',0)

Note: This form of OUTTRAP is best for suppressing command output.

3. To store output from commands in consecutive order, using the stem output., you can use one of the
following:

y = OUTTRAP('output.','x', 'CONCAT')
OUTTRAP('output.')

y
y = OUTTRAP('output.',,'CONCAT')

4. This example contrasts CONCAT and NOCONCAT. Suppose you use the following to store output lines
from two commands:

y = OUTTRAP('ABC."',4, 'CONCAT")

Command 1 has three lines of output.

ABC.0 --> 3 /* total lines stored */
ABC.1 --> Command 1 output line 1

ABC.2 --> Command 1 output line 2

ABC.3 --> Command 1 output line 3

ABC.4 --> ABC.4 /* uninitialized variable %/
ABC.MAX --> 4

ABC.TRAPPED --> 3 /* total output lines */
ABC.CON --> CONCAT

96 1IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

External Functions

Command 2 has two lines of output. They are stored in variables starting after the three lines already

stored.
ABC.0O --> 4 /* total lines stored */
ABC.1 --> Command 1 output line 1
ABC.2 --> Command 1 output line 2
ABC.3 --> Command 1 output line 3
ABC.4 --> Command 2 output line 1
ABC . MAX --> 4
ABC.TRAPPED --> 5 /* total lines output */
ABC.CON --> CONCAT

(The second line from Command 2 is not stored because max is 4.)

However, if you use:
y = OUTTRAP('ABC.',4, 'NOCONCAT')

to store the same two commands, this produces different results:

Results after Command 1 are the same (except for ABC. CON):

ABC.0 --> 3 /* total lines stored */
ABC.1 --> Command 1 output line 1

ABC.2 --> Command 1 output line 2

ABC.3 --> Command 1 output line 3

ABC.4 --> ABC.4 /* uninitialized variable %/
ABC . MAX --> 4

ABC.TRAPPED --> 3 /* total lines output */
ABC.CON --> NOCONCAT

However, output lines from Command 2 overwrite lines from Command 1.

ABC.0 --> 2 /* total lines stored */
ABC.1 --> Command 2 output line 1

ABC.2 --> Command 2 output line 2

ABC.3 --> ABC.3 /* becomes uninitialized =*/
ABC.4 --> ABC.4

ABC . MAX -=> 4

ABC.TRAPPED --> 2 /* total lines output */
ABC.CON --> NOCONCAT

5. The following example uses OUTTRAP to capture error information from PUTQE:

y = OUTTRAP('mystem."')
ADDRESS POWER "PUTQE RDR MEMBER memberl WAIT 3 CLASS 0"

If Class 0 is busy, so that the three-second interval elapses before the job can be put on the RDR
queue, OUTTRAP stores error information in the compound variables whose names begin with the
stem mystem..

PAUSEMSG

»— PAUSEMSG — (— message —) >«

The PAUSEMSG function issues a console message and waits for an operator reply. See the detailed
description on “PAUSEMSG” on page 238.

Chapter 4. Functions 97

External Functions

REXXIPT

»— REXXIPT — () >«
tinput_stem. j
OFF

REXXIPT lets a program (called with ADDRESS JCL, ADDRESS LINK or ADDRESS LINKPGM) read data
stored in compound variables as if it were SYSIPT data. It returns a previously defined input stem or 'OFF".

REXXIPT cannot be used in a REXX program running in a subtask. If a second call to a subsequent REXX
program is made, REXXIPT is off unless a stem is assigned to REXXIPT. When the second program ends,
REXXIPT data is deleted and REXXIPT for the first program is on again.

The input_stem is the name of a stem (it must end with a period). It is used as the SYSIPT input stream for
the specified host command environment. OFF specifies that no stem contains SYSIPT data.

To use the REXXIPT function:

1. Store the lines of data into compound variables.
2. Store the number of lines in input_stem stem.O.
3. Call the REXXIPT function.

4. Use the ADDRESS instruction to call the program.

In the following example, the ADDRESS instruction specifies the LINK environment and calls the program
MYPHASE:

line.1="Now is the time"

line.2="for all good men"

line.3="to come to the aid of their country."
line.0=3 /* total number of lines of data x/
oldstem = REXXIPT(line.)

ADDRESS LINK "MYPHASE"

The REXXIPT function call specifies name of the stem. In this example, 1ine. is the name of the stem.
To use the SYSIPT information provided by a stem, the REXXIPT function call must precede an ADDRESS
instruction that loads and calls another program. You can use REXXIPT for the following environments:

« ADDRESS JCL
» ADDRESS LINK
« ADDRESS LINKPGM.

When MYPHASE reads a record from SYSIPT, it reads the contents of the compound variables in order.
Thatis, it reads 1ine. 1, then 1ine. 2, and finally 1ine. 3.

The called program uses the VSE/ESA OPEN, GET, and CLOSE macros using a DTFDI-egivalent from
SYSIPT to read the data. A record containing fewer than 128 bytes is padded with blanks. A record
containing more than 128 bytes is truncated. See z/VSE System Macro Reference for detailed information.

Reading the last record acts as the end of file condition. The input_stem.0 contains the total number of
records. Reading a record whose number is one more than the contents of input_stem.0 indicates the end
of data.

If you call a program a second time and it reads the records again, reading starts at the first record. Each
time you start reading SYSIPT data you start at the first record again.

Note:

1. To have access to SYSIPT data, you need to use the JCL card // EXEC REXX= to call the program that
contains the REXXIPT function call. (Otherwise, you receive error 40.)

2. The called program uses the OPEN, GET, and CLOSE macros using DTFDI from SYSIPT to read the data.

98 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

External Functions

3. The input_stem.0 contains the total number of records.

4. Supported command environments can use REXXIPT from the main task. The REXX program must be
called by the JCL statement // EXEC REXX.

REXXMSG

»— REXXMSG — (

) >«
1——symbol——J

This function is intended for the general user. REXXMSG specifies the output destination where REXX/VSE
messages are routed to. This destination is valid for all REXX programs running under the same

language program environment. REXXMSG also enables the complete supression of REXX/VSE messages.
REXXMSG sets the NOMSGWTO and NOMSGIO flags. These two flags control where REXX error messages
are routed.

symbol can be one of the following:
ON
switches all REXX messages on. This is equal to NOMSGWTO=0FF and NOMSGIO=0FF.

STDOUT
REXX error messages are written to the standard output device STDOUT. The messages are
surpressed if the current output is SYSLOG. This is equal to NOMSGWTO=0N and NOMSGIO=0FF.

SYSLOG
REXX error messages cannot be written to the standard output device STDOUT. Messages are written
to SYSLOG. This is equal to NOMSGWTO=0FF and NOMSGIO=0N.

OFF
all REXX error messages are supressed. This is equal to NOMSGWTO=0N and NOMSGIO=0N.

REXXMSG returns the previous symbol set by REXXMSG. Here is an example

previous = REXXMSG('ON') /* -> returns 'OFF' and sets messages on x/
result = REXXMSG(previous)/* -> returns 'ON' and sets msg off */

REXXMSG() just returns the current REXX error message destination without setting anything. REXXMSG()
is set to ON as shipped by IBM. You may, however, have customized your installation to different settings.

Here is an example

previous
current

REXXMSG('STDOUT') /% -> returns 'OFF' and sets STDOUT =%/
REXXMSG () /* -> returns 'STDOUT' */

Return Codes: Any invalid input results in a return code of 40.

Overruling REXXMSG

The REXX administrator can overrule the REXXMSG function and can suppress messages by setting
NOPMSGS=0N and ALTMSGS=0FF in the ARXPARMS parameters module. You may now specify
REXXMSG('ON'"), the function is processed, REXXMSG() returns 'ON' but no messages are written.

SETLANG

»— SETLANG — (

) >«
L langcode J

Chapter 4. Functions 99

External Functions

SETLANG returns a three-character code that indicates the language in which REXX messages are
currently being displayed. Table 1 on page 100 shows the language codes and the corresponding
languages for each code.

You can optionally specify one of the language codes as an argument on the function. This sets the
language in which REXX messages are displayed. SETLANG returns the code of the language in which
REXX messages are currently displayed and changes the language in which subsequent messages will be
displayed.

Table 1. Language Codes for SETLANG Function

Language Code Language

ENP US English - all uppercase

ENU US English - mixed case (upper and lowercase) (This is the default.)

Here are some examples:

curlang = SETLANG() -> 'ENU' /% Returns current language (ENU) %/

oldlang

SETLANG("ENP")=-> 'ENU' /% returns current language (ENU)
and sets language to US English
uppercase (ENP) */

After a program uses SETLANG to set a specific language, any REXX message the system issues is
displayed in that language. If the program calls another program (either as a function or subroutine

or using the EXEC command), any REXX messages are displayed in the language you specified on

the SETLANG function. The language you specified on SETLANG is the language for displaying REXX
messages until the program processes another call to SETLANG or the environment in which the program
is running terminates.

Note:

1. The default language for REXX messages depends on the language feature that is installed on
your system. The default language is in the language field of the parameters module (see page
“LANGUAGE ” on page 392). You can use the SETLANG function to determine and set the language for
REXX messages.

2. The language codes you can specify on the SETLANG function also depend on the language features
that are installed on your system. If you specify a language code on the SETLANG function and the
corresponding language feature is not installed on your system, SETLANG does not issue an error
message. However, if the system needs to display a REXX message and cannot locate the message for
the particular language you specified, the system issues an error message. The system then tries to
display the REXX message in US English.

SLEEP

»— SLEEP — (— n—) >«

Use SLEEP to wait for a number of seconds. n specifies the number of seconds a REXX program is
requested to wait. After this time has elapsed, the REXX program continues processing. The highest
allowed value is 55924. Any invalid input results in return code 40 and message ARX0040I.

Examples: The result of the SLEEP function is zero.
fc = SLEEP(1)
assigns the variable fc the value zero.

CALL SLEEP 1

100 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

External Functions

assigns the variable result the value zero.

SORTSTEM

»— SORTSTEM — (— stemname — ,— zone — , — sortorder —) >«

The SORTSTEM function allows to sort contents of a stem variable. See the detailed description on
“SORTSTEM” on page 240.

STORAGE

Y
A

,1
»— STORAGE — (— address J }

| LIengthJ L LdataJ j

STORAGE returns length bytes of data from the specified address in storage. The address is a character
string containing the hexadecimal representation of the storage address from which data is retrieved.

Optionally, you can specify length, the decimal number of bytes to be retrieved from address. The default
length is 1 byte. When length is 0, STORAGE returns a null character string.

If you specify data, STORAGE returns the information from address and then overwrites the storage
starting at address with data you specified on the function call. The data is the character string to be
stored at address. The length argument does not affect how much storage is overwritten; the entire data is
written.

If the STORAGE function tries to retrieve or change data beyond the storage limit, only the storage up to
the limit is retrieved or changed.

Note: Virtual storage addresses can be fetch protected or update protected, or they may not be valid
addresses to VSE/ESA. An abend results if STORAGE references a nonexistent address or tries to update
nonexistent storage, retrieve the contents of fetch-protected storage, or update store-protected storage.

The STORAGE function returns a null string if any part of the request fails. Because the STORAGE function
can retrieve and update virtual storage at the same time, it is not evident whether the retrieve or update
caused the null string to be returned. In addition, a request for retrieving or updating storage of a shorter
length might have been successful. When part of a request fails, the failure point is on a decimal 4096
boundary.

Examples
1. To retrieve 25 bytes of data from address 000AAE35, use the STORAGE function as follows:

storret = STORAGE (OOOAAE3S,25)
2. To replace the data at address 0035D41F with REXX/VSE, use the following STORAGE function:

storrep = STORAGE (0035D41F,, 'REXX/VSE")

This example first returns 1 byte of information found at address 0035D41F and then replaces the
data beginning at address 0035D41F with the characters REXX/VSE.

Note: Information is retrieved before it is replaced.

Chapter 4. Functions 101

External Functions

SYSVAR

»— SYSVAR — (— arg_name —) >«

SYSVAR returns system information about VSE/ESA. This information is stored in a REXX variable. The
information returned depends on the arg_name specified on the function call. Any invalid input results in
return code 40 and message ARX0040I. arg_name can be the following:

SYSMRC
stores the highest return code from VSE JCL in the variable SYSMRC. The return code may be up to 4
characters long.

SYSJOBNAME
the variable SYSJOBNAME returns the VSE JCL jobname (// JOB jobname). jobname may be from 1 to
8 characters long.

SYSJCLPROC
returns the JCL procedure name if the REXX program is invoked from a nested JCL procedure.
Otherwise it will return a null string.

SYSLIBRCODE
returns the Librarian return and reason code of an EXECIO command for Libr members. It is a string
consisting of two words. Each word consists of four digits. The first word shows the return code, the
second word shows the reason code, e.g. ‘0016 0067".

SYSPOWINM
the variable SYSPOWJNM stores the VSE/POWER jobname (* $$ JOB JINM=jobname). jobname may be
from 1 to 8 characters long. This variable may be only used if the VSE/POWER partition control block
is available.

SYSPOWINUM
the variable SYSPOWJINUM stores the jobnumber of the VSE/POWER job calling the REXX program.
This variable may be only used if the VSE/POWER partition control block is available.

SYSPOWJCLS
the variable SYSPOWJCLS stores the jobclass of the VSE/POWER job calling the REXX program. This
variable may be only used if the VSE/POWER partition control block is available.

SYSPID
the variable SYSPID returns the partition ID. It is 2 bytes long.

SYSVERSION
the variable SYSVERSION returns the VSE/ESA supervisor version (3 digits).

SYSERRCODES
relates to the VSE console environment: this variable contains the return and reason codes (see
“Return and Reason Codes” on page 267) of the VSE system macro (such as MGCRE, MCSOPER, or
WTO) which is used to issue a VSE console command. An example is shown in section “SYSVAR” on
page 242.

SYSCPUID
stores the CPUID of your VSE system in the variable SYSCPUID.

Examples: Return the VSE JCL jobname: if a REXX exec runs under the JCL job with jobcard "// JOB
REXXJOB".

fc=SYSVAR('SYSJOBNAME ')
SAY SYSJOBNAME /+ Displays REXXJOB */

Return the VSE/ESA supervisor version:

fc=SYSVAR('SYSVERSION')
SAY SYSVERSION /% Displays 610 */

Return the Librarian return and reason code:

102 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

External Functions

" EXECIO %= PRD2.PROD.myfile.Z (FINIS "
IF RC=20 THEN
DO
CALL SYSVAR|'SYSLIBRCODE' |
IF (WORD(syslibrcode,1)='0016"' &
(syslibxcode,2)="'0067"
THEN SAY EXECIO failed as member is locking

Return Codes: Table 2 on page 103 shows the return codes for the SYSVAR function.

Table 2. Return Codes for the SYSVAR function

Return Code Description

0 Processing was successful.

4 Processing was not successful. System information could not be retrieved.

8 Processing was not successful. System information could not be stored into a REXX
variable.

40 Any invalid input was entered.

Chapter 4. Functions 103

External Functions

104 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

Chapter 5. Parsing

Parsing Rules

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 29, “PARSE” on page 44, and
“PULL” on page 48).

The data to parse is a source string. Parsing splits up the data in a source string and assigns pieces of it
into the variables named in a template. A template is a model specifying how to split the source string.
The simplest kind of template consists of only a list of variable names. Here is an example:

variablel variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names.

String patterns
Match characters in the source string to specify where to split it. (See “Templates Containing String
Patterns” on page 107 for details.)

Positional patterns
Indicate the character positions at which to split the source string. (See “Templates Containing
Positional (Numeric) Patterns” on page 108 for details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value 'time and tide' with varl var2 var3

The template in this instruction is: varl var2 vaxr3. The datato parse is between the keywords PARSE
VALUE and the keyword WITH, the source string time and tide. Parsing divides the source string into
blank-delimited words and assigns them to the variables named in the template as follows:

varl="time'
var2="and'
var3="'tide'

In this example, the source string to parse is a literal string, time and tide. Inthe next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */
string="'time and tide'
parse value string with varl var2 var3 /* same results *x/

(PARSE VALUE does not convert lowercase a—z in the source string to uppercase A-Z. If you want
to convert characters to uppercase, use PARSE UPPER VALUE. See “Using UPPER” on page 111 for a
summary of the effect of parsing instructions on case.)

All of the parsing instructions assign the parts of a source string into the variables named in a template.
There are various parsing instructions because of differences in the nature or origin of source strings. (A
summary of all the parsing instructions is on page “Parsing Instructions Summary” on page 112.)

© Copyright IBM Corp. 1988, 2004 105

Parsing

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to parse is always a
variable. In PARSE VAR, the name of the variable containing the source string follows the keywords PARSE
VAR. In the next example, the variable stars contains the source string. The template is starl star2

stazr3.
/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars starl star2 star3 /* starl='Sirius' «/

/* star2='Polaris' =/
/* star3='Rigil' */

Allvariables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for all parsing: for parsing
into words with simple templates and for parsing with templates containing patterns. Here is an example
using parsing into words.

/* More variables in template than (words in) the source string x/

satellite="moon'

parse var satellite Earth Mercury /* Earth='moon' =*/
/* Mercury="" */

If there are more words in the source string than variables in the template, the last variable in the template
receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template =*/

satellites="'moon Io Europa Callisto...'

parse var satellites Earth Jupiter /* Earth='moon' «/
/* Jupiter='Io Europa Callisto...'x/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a variable.
The exception to this is the word or group of words assigned to the last variable. The last variable in a
template receives leftover data, preserving extra leading and trailing blanks. Here is an example:

/* Preserving extra blanks */
solar5="'Mercury Venus Earth Mars Jupiter '

parse var solar5 varl var2 var3 vard

/* varl ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* vard ='Mars Jupiter */

In the source string, Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigning var3="'Earth'. Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value ' Pluto " with varl /* varl=' Pluto "%/

The Period as a Placeholder

A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It is
useful:

« As a "dummy variable" in a list of variables
« Or to collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'

parse var stars . . brightest . /* brightest='Sirius' */
/* Alternative to period as placeholder */

106 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns

A string pattern matches characters in the source string to indicate where to split it. A string pattern can
be a:

Literal string pattern
One or more characters within quotation marks.

Variable string pattern
A variable within parentheses with no plus (+) or minus (-) or equal sign (=) before the left
parenthesis. (See “Parsing with Variable Patterns” on page 111 for details.)

Here are two templates: a simple template and a template containing a literal string pattern:

varl var2 /* simple template */
varl ', ' var2 /> template with literal string pattezrn */

The literal string patternis: ', '. This template:

« Puts characters from the start of the source string up to (but not including) the first character of the
match (the comma) into varl

« Puts characters starting with the character after the last character of the match (the character after the
blank that follows the comma) and ending with the end of the string into var2.

A template with a string pattern can omit some of the data in a source string when assigning data
into variables. The next two examples contrast simple templates with templates containing literal string

patterns.
/* Simple template */
name='Smith, John'
parse var name 1ln fn /* Assigns: 1ln='Smith,"' %/

/* fn="'John' x/

Notice that the comma remains (the variable 1n contains 'Smith, '). In the next example the template is
In ', ' fn. This removes the comma.

/* Template with literal string pattezn */

name="'Smith, John'

parse var name 1ln ', ' fn /* Assigns: 1ln='Smith' */
/* fn="'John' %/

First, the language processor scans the source string for ', . It splits the source string at that point. The
variable 1n receives data starting with the first character of the source string and ending with the last
character before the match. The variable £n receives data starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (on page “Combining String and Positional Patterns: A Special Case” on page 114) in which
a template with a string pattern does not omit matching data in the source string.) We used the pattern
", ' (with ablank) instead of ', ' (no blank) because, without the blank in the pattern, the variable fn
receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, then any variables preceding the
unmatched string pattern get all the data in question. Any variables after that pattern receive the null
string.

A null string is never found. It always matches the end of the source string.

Chapter 5. Parsing 107

Parsing

Templates Containing Positional (Numeric) Patterns

A positional pattern is a number that identifies the character position at which to split data in the source
string. The number must be a whole number.

An absolute positional pattern is

« A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=) preceding it

« Avariable in parentheses with an equal sign before the left parenthesis. (See “Parsing with Variable
Patterns” on page 111 for details on variable positional patterns.)

The number specifies the absolute character position at which to split the source string.

Here is a template with absolute positional patterns:
variablel 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in the
input string, 21 to the 21st position. This template:

« Puts characters 1 through 10 of the source string into variablel
« Puts characters 11 through 20 into variable2
« Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such as:

character positions:

1 11 21 40
. end of
FIELDS:|LASTNAME [FIRST PSEUDONYM record

The following example uses this record structure.

/* Parsing with absolute positional patterns in template */
record.1="'Clemens Samuel Mark Twain

record.2="'Evans Mary Ann George Eliot

record.3="'Munro H.H. Saki

do n=1 to 3

parse var record.n lastname 11 firstname 21 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* Says 'By George!' after record 2 x/

The source string is first split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 into 1astname, characters 11 to 20 into £irstname, and characters 21 to 40 into
pseudonym.

The template could have been:
1 lastname 11 firstname 21 pseudonym
instead of
lastname 11 firstname 21 pseudonym
Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no sign
before a number in a template. The number refers to a particular character position in the source string.
These two templates work the same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

108 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. (It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
see “Parsing with Variable Patterns” on page 111.)

The number specifies the relative character position at which to split the source string. The plus or minus
indicates movement right or left, respectively, from the start of the string (for the first pattern) or from the
position of the last match. The position of the last match is the first character of the last match. Here is
the same example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */
record.1="'Clemens Samuel Mark Twain

record.2="'Evans Mary Ann George Eliot

record.3="'Munro H.H. Saki

do n=1 to 3

parse var record.n lastname +10 firstname + 10 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* same results x*/

Blanks between the sign and the number are insignificant. Therefore, +10 and + 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special case (on page
“Combining String and Positional Patterns: A Special Case” on page 114) when a string pattern precedes
a variable name and a positional pattern follows the variable name). The templates from the examples of
absolute and relative positional patterns give the same results.

lastname 11‘

‘ lastname +10

firstname +10

pseudonym

firstname 21‘ pseudonym

(Implied Put characters Put characters Put characters
starting 1 through 10 11 through 20 21 through
point is in lastname. in firstname. end of string
position (Non-inclusive (Non-inclusive in pseudonym.
1.) stopping point stopping point

is 11 (1+10).) is 21 (11+10).)

Only with positional patterns can a matching operation back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) x*/
string="'astronomers'

parse var string 2 varl 4 1 var2 2 4 var3 5 11 var4d

say string 'study' varl]||var2||var3||var4d

/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) =*/
string="astronomers'

parse var string 2 varl +2 -3 var2 +1 +2 var3 +1 +6 vard

say string 'study' varl||var2||var3||var4d /* same results */

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the last two examples are equivalent.

Chapter 5. Parsing 109

Parsing

2 var2 2 1 var2 2 4 var3 5 11 var4
‘ 2 ‘ var2 +1‘ ‘ —3‘ var2 +1‘ +2 var3 +1 +6 vard
Start Non- Go to 1 Non- Go to 4 Go to 11
at 2. inclusive (4-3=1). inclusive (2+2=4). (5+6=11).
stopping stopping Non-inclusive
point is point is stopping point
4 (2+2=4). 2 (1+41=2). is 5 (4+1=5).

You can use templates with positional patterns to make multiple assignments:

/* Making multiple assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemazch'

parse var books 1 Eliot 1 Evans

/* Assigns the (entire) value of books to Eliot and to Evans. */

Combining Patterns and Parsing Into Words

What happens when a template contains patterns that divide the source string into sections containing
multiple words? String and positional patterns divide the source string into substrings. The language
processor then applies a section of the template to each substring, following the rules for parsing into

words.
/* Combining string pattern and parsing into words */
name=" John Q. Public'
parse var name fn init '.' 1n /* Assigns: fn='John' */
/* init=' Q' */
/* In="' Public' =*/

The pattern divides the template into two sections:

« fn init

«1n

The matching pattern splits the source string into two substrings:

-« ' John Q'

e ' Public'

The language processor parses these substrings into words based on the appropriate template section.

John had three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because init is
the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into 1n without removing any blanks. This
is because 1n is the only variable in this section of the template. (For details about treatment of blanks,
see “Simple Templates for Parsing into Words” on page 105.)

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string varl var2 4 var3 6 vard4 /% Assigns: varl='R' %/

/* var2='E' x/
/* var3=' X' x/
/* vard="' X' x/

The pattern divides the template into three sections:

- varl var2
e var3
« vard

The matching patterns split the source string into three substrings that are individually parsed into words:

110 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

- IR El
. 1 XI
. 1 XI

The variable varl receives 'R'; var2 receives 'E'. Both var3 and var4 receive ' X' (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment of
blanks, see “Simple Templates for Parsing into Words” on page 105.)

Parsing with Variable Patterns

You may want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference. Blanks are not
necessary inside or outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string pattern

parse var name fn init '. ' 1ln

Here is how to specify that pattern as a variable string pattern:

strngptrn=".
parse var name fn init (strngptrn) 1n

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the value of the
variable is then treated as a string pattern. The variable can be one that has been set earlier in the same

template.

Example:
/* Using a variable as a string pattezrn */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /% assume 11/15/90 =*
pull date

parse var date month 3 delim +1 day +2 (delim) year
/* Sets: month='11"'; delim='/"'; day='15"'; year='90' x/

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of the variable is treated
as an absolute or relative positional pattern. The value of the variable must be a positive whole number or
zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting character positions of the last two fields.

Example:
/* Using a variable as a positional pattern */
dataline = '12 26 Samuel ClemensMark Twain'
parse var dataline posl pos2 6 =(posl) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

Why is the positional pattern 6 needed in the template? Remember that word parsing occurs after the
language processor divides the source string into substrings using patterns. Therefore, the positional
pattern =(posl) cannot be correctly interpreted as =12 until after the language processor has split the
string at column 6 and assigned the blank-delimited words 12 and 26 to posl and pos2, respectively.

Using UPPER

Specifying UPPER on any of the PARSE instructions converts characters to uppercase (lowercase a-z to
uppercase A-Z) before parsing. The following table summarizes the effect of the parsing instructions on
case.

Chapter 5. Parsing 111

Parsing

Converts alphabetic characters to uppercase Maintains alphabetic characters in case entered
before parsing
ARG PARSE ARG

PARSE UPPER ARG

PARSE UPPER EXTERNAL PARSE EXTERNAL
PARSE UPPER NUMERIC PARSE NUMERIC
PULL PARSE PULL

PARSE UPPER PULL

PARSE UPPER SOURCE PARSE SOURCE
PARSE UPPER VALUE PARSE VALUE
PARSE UPPER VAR PARSE VAR
PARSE UPPER VERSION PARSE VERSION

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL instruction is simply a short
form of PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG (instead of ARG
or PARSE UPPER ARG) and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Parsing Instructions Summary

Remember: All parsing instructions assign parts of the source string into the variables named in the
template. The following table summarizes where the source string comes from.

Instruction Where the source string comes from

ARG Arguments you list when you call the program or arguments in the

PARSE ARG call to a subroutine or function.

PARSE EXTERNAL Reads from the current input stream. ASSGN(STDIN) returns the
name of the current input stream.

PARSE NUMERIC Numeric control information (from NUMERIC instruction).

PULL The string at the head of the external data queue. (If queue empty,

PARSE PULL uses default input, typically the terminal.) input.

PARSE SOURCE REXX/VSE-supplied string giving information about the executing
program.

PARSE VALUE Expression between the keyword VALUE and the keyword WITH in
the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION REXX/VSE-supplied string specifying the language, language level,

and (three-word) date.

Parsing Instructions Examples

All examples in this section parse source strings into words.

112 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

ARG
/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg varl var2 /* Assigns: varl='RED'; var2='BLUE' x/

If varl<>'RED' & varl<>'YELLOW' & varl<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(varl)+length(var2)
SELECT;

When total=7 then new='puzrple'

When total=9 then new='orange'

When total=10 then new='green'

Otherwise new=varl /* entered duplicates %/
END
Say new; exit /* Displays: "purple" x/
Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the arguments
in the CALL to a subroutine is in “Parsing Multiple Strings” on page 114.

PARSE ARG works the same as ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

PARSE EXTERNAL

Say "Enter Yes or No =====>
parse upper external answer 2 .
If answer="'Y'
then say "You said 'Yes'!"
else say "You said 'No'!"

PARSE NUMERIC

parse numeric digits fuzz form
say digits fuzz form /* Displays: '9 O SCIENTIFIC' */
/* (if defaults are in effect) */

PARSE PULL
PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /x Assigns: fourscore='80'; seven='7' x/
SAY fourscore+seven /* Displays: "87" */
PARSE SOURCE

parse source syshame .
Say sysname /* Displays: "VSE" */

PARSE VALUE example is on “Simple Templates for Parsing into Words” on page 105.

PARSE VAR examples are throughout the chapter, starting on “Simple Templates for Parsing into Words”
on page 105.

PARSE VERSION

parse version . level .
say level /* Displays: "3.48" x/

PULL works the same as PARSE PULL except that PULL converts alphabetic characters to uppercase
before parsing.

Advanced Topics in Parsing

This section includes parsing multiple strings and flow charts depicting a conceptual view of parsing.

Chapter 5. Parsing 113

Parsing

Parsing Multiple Strings

Only ARG and PARSE ARG can have more than one source string. To parse multiple strings, you can specify
multiple comma-separated templates. Here is an example:

parse arg templatel, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. (For an ARG
instruction, the source strings to parse come from arguments you specify when you call a program or
CALL a subroutine or function.) Each comma is an instruction to the parser to move on to the next string.

Example:
/* Parsing multiple strings in a subroutine */
num="'3"
musketeers="Porthos Athos Aramis D'Artagnon"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /x Displays: "4" and " D'Artagnon" */
EXIT
Sub:
parse arg subtotal, . . . fourth
total=subtotal+l
RETURN

Note that when a REXX program is started as a command, only one argument string is recognized. You can
pass multiple argument strings for parsing:

« When one REXX program calls another REXX program with the CALL instruction or a function call.
« When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two commas in a row) or contains no variable names, parsing proceeds to the next
template and source string.

Combining String and Positional Patterns: A Special Case

There is a special case in which absolute and relative positional patterns do not work identically. We have
shown how parsing with a template containing a string pattern skips over the data in the source string that
matches the pattern (see “Templates Containing String Patterns” on page 107). But a template containing
the sequence:

- string pattern
- variable name
« relative positional pattern

does not skip over the matching data. A relative positional pattern moves relative to the first character
matching a string pattern. As a result, assignment includes the data in the source string that matches the
string pattern.

/* Template containing string pattern, then variable name, then x/
/* relative positional pattern does not skip over any data. */
string="'REstructured eXtended eXecutor'

parse var string varl 3 junk 'X' var2 +1 junk 'X' var3 +1 junk

say varl||var2||var3 /* Concatenates variables; displays: "REXX" %/

Here is how this template works:

114 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

varl 3‘ junk X’ var2 +1 junk X’ var3 +1 ‘junk
Put Starting Starting Starting Starting Starting

characters at 3, put with first with with with
1 through characters X’ put 1 character second ‘X’ character

2 in varl. up to (not (+1) after put 1 (+1) after
(Stopping including) character first X’ character second ‘X’
point is first X’ in var2. put up to in var3. put rest
3.) in junk. second ‘X’ in junk.

in junk

varl=’RE’ junk= var2="X’ junk= var3="X’ junk=

‘structu- ‘tended e’ ‘ecutor’
red e’

Parsing with DBCS Characters

Parsing with DBCS characters generally follows the same rules as parsing with SBCS characters. Literal
strings can contain DBCS characters, but numbers must be in SBCS characters. See “PARSE” on page 482
for examples of DBCS parsing.

Details of Steps in Parsing

The three figures that follow are to help you understand the concept of parsing. Please note that the
figures do not include error cases.

The figures include terms whose definitions are as follows:

string start

is the beginning of the source string (or substring).

string end

is the end of the source string (or substring).

length

is the length of the source string.

match start

is in the source string and is the first character of the match.

match end

is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position

is in the source string. For a string pattern, it is the first matching character. For a positional pattern, it
is the position of the matching character.

token

is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value

is the numeric value of a positional pattern. This can be either a constant or the resolved value of a

variable.

Chapter 5. Parsing 115

Parsing

Figure 3. Conceptual Overview of Parsing

|

Start:
End of ye.
template? >

n

String start=match end.
Match start=length + 1.
Match end=length + 1. Return

lno

Token period |yes,
or variable?

i

Step to
next token.

lno

String start=match start.

lno

Token an yes,
equal?

Variable |yes_| Resolve
form? its value.

String start=match end.
Match start=min(length+1, value).
Match end=match start. Return

Token a yes, | Variable |yes | Resolve Match start=min(length+1, match
plus? form? its value. start + value).
Match end=match start. Return
lno [no
String start=match start.
Token a yes | Variable |yes | Resolve Match start=max(1, match
minus? form? its value. start - value).
[ho Match end=match start. Return

no

String start=match end.

Match start=min(length+1, value).

Match end=match start. Return

Token a lit- |yes

eral string?

4

Token a var- |yes
iable string?

Resolve
its value.

Match found in Match start=match position.
rest of string? Match end=match position

String start=match end.

+ pattern length. Return.

no lnc
String start=match end.
Match start=length + 1.
Match end=length + 1. Return
Token yes Match start=length + 1.
a comma? Match end=length + 1. Return

Figure 4. Conceptual View of Finding Next Pattern

116 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing

Start: Match end <= |no ; -
string start? String end=Match start.

yes

h 4

A

String end=length + 1.

Substring=substr(source string,
string start,(string end-string start)).
Token=previous pattern.

<
<

Any more tokens? |19
yes
Step to next token.
yes
A 4
Token a variable no | Ret
or a period? " —
yes
Any more tokens? no
yes
. A 4
Next token a variable |no | Assign rest of substring
or period? "| to variable.
yes
. ” no _ Assign null string
Any substring left? to variable.

yes

Strip any leading blanks.

g ” no | Assign null string
Any substring left? to variable.

yes

Blank found in substring? ["%»{ Assign rest of substring
to variable.

yes

Assign word from substring to variable and step past blank.

Figure 5. Conceptual View of Word Parsing

Chapter 5. Parsing 117

Parsing

118 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication, and division) in
as natural a way as possible. What this really means is that the rules followed are those that are
conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the rules vary considerably
(indeed much more than generally appreciated) from person to person and from application to application
and in ways that are not always predictable. The arithmetic described here is, therefore, a compromise
that (although not the simplest) should provide acceptable results in most applications.

Introduction

Numbers (that is, character strings used as input to REXX arithmetic operations and built-in functions)
can be expressed very flexibly. Leading and trailing blanks are permitted, and exponential notation can be
used. Some valid numbers are:

12 /* a whole number */
'-76" /* a signed whole number */
12.76 /* decimal places */

"'+ 0.003 ' /* blanks around the sign and so forth */
17. /* same as "17" */

.5 /* same as "0.5" */

4E9 /* exponential notation */
0.73e-7 /* exponential notation */

In exponential notation, a number includes an exponent, a power of ten by which the number is multiplied
before use. The exponent indicates how the decimal point is shifted. Thus, in the preceding examples,
4E9 is simply a short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.

The arithmetic operators include addition (+), subtraction (-), multiplication (x), power (xx), division (/),
prefix plus (+), and prefix minus (-). In addition, there are two further division operators: integer divide (%
divides and returns the integer part; remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to definite rules. The
most important of these rules are as follows (see the "Definition" section for full details):

« Results are calculated up to some maximum number of significant digits (the default is 9, but you can
alter this with the NUMERIC DIGITS instruction to give whatever accuracy you need). Thus, if a result
requires more than 9 digits, it would usually be rounded to 9 digits. For example, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of digits for perfect accuracy).

 Except for division and power, trailing zeros are preserved (this is in contrast to most popular
calculators, which remove all trailing zeros in the decimal part of results). So, for example:

->
=>
=>
->

NN NN
NN
[oXoXoXo)
~% 1 +
NN NN
BN NIGHN
NS D

Io¥cXo)

This behavior is desirable for most calculations (especially financial calculations).

If necessary, you can remove trailing zeros with the STRIP function (see “STRIP” on page 81), or by
division by 1.

« A zero result is always expressed as the single digit 0.

« Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS (the
default is 9). If the number of places needed before the decimal point exceeds the NUMERIC DIGITS

© Copyright IBM Corp. 1988, 2004 119

Numbers and Arithmetic

setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number
is expressed in exponential notation:

le6 x leb -> 1E+12 /* not 1000000000000 x/
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */
Definition

A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers

A number in REXX is a character string that includes one or more decimal digits, with an optional decimal
point. (See “Exponential Notation” on page 124 for an extension of this definition.) The decimal point may
be embedded in the number, or may be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or -) that must come
before any digits or decimal point. The sign can also have leading or trailing blanks.

Therefore, number is defined as:.

- L blanks J L sign

digits >
T 7 J — digits — .— digits — L blanks J
blanks

— . — digits ——

— digits — .——

blanks
are one or more spaces

sign
is either + or -
digits
are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

Precision

Precision is the maximum number of significant digits that can result from an operation. This is controlled
by the instruction:

»— NUMERIC DIGITS

L J ;e
expression

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) to which calculations are carried out. Results are rounded to that precision, if
necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The REXX standard for the default
precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However, use small values with
care—the loss of precision and rounding thus requested affects all REXX computations, including, for
example, the computation of new values for the control variable in DO loops.

Arithmetic Operators

REXX arithmetic is performed by the operators +, -, %, /, %, //, and % (add, subtract, multiply, divide,
integer divide, remainder, and power), which all act on two terms, and the prefix plus and minus

120 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

operators, which both act on a single term. This section describes the way in which these operations
are carried out.

Before every arithmetic operation, the term or terms being operated upon have leading zeros removed
(noting the position of any decimal point, and leaving only one zero if all the digits in the number are
zeros). They are then truncated (if necessary) to DIGITS + 1 significant digits before being used in the
computation. (The extra digit is a "guard" digit. It improves accuracy because it is inspected at the end
of an operation, when a number is rounded to the required precision.) The operation is then carried out
under up to double that precision, as described under the individual operations that follow. When the
operation is completed, the result is rounded if necessary to the precision specified by the NUMERIC
DIGITS instruction.

Rounding is done in the traditional manner. The digit to the right of the least significant digit in the result
(the "guard digit") is inspected and values of 5 through 9 are rounded up, and values of 0 through 4 are
rounded down. Even/odd rounding would require the ability to calculate to arbitrary precision at all times
and is, therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would be no digit before it.
Significant trailing zeros are retained for addition, subtraction, and multiplication, according to the rules
that follow, except that a result of zero is always expressed as the single digit 0. For division, insignificant
trailing zeros are removed after rounding.

The FORMAT built-in function (see “FORMAT” on page 74) allows a number to be represented in a
particular format if the standard result provided does not meet your requirements.

Arithmetic Operation Rules—Basic Operators

The basic operators (addition, subtraction, multiplication, and division) operate on numbers as follows.

Addition and Subtraction

If either number is 0, the other number, rounded to NUMERIC DIGITS digits, if necessary, is used as the
result (with sign adjustment as appropriate). Otherwise, the two numbers are extended on the right and
left as necessary, up to a total maximum of DIGITS + 1 digits (the number with the smaller absolute value
may, therefore, lose some or all of its digits on the right) and are then added or subtracted as appropriate.

Example:
XXX. XXX + YY.YYyyyy
becomes:
XXX . XXX00
+ 0yy.yyyyy
222 .22222Z

The result is then rounded to the current setting of NUMERIC DIGITS if necessary (taking into account any
extra "carry digit" on the left after addition, but otherwise counting from the position corresponding to the
most significant digit of the terms being added or subtracted). Finally, any insignificant leading zeros are
removed.

The prefix operators are evaluated using the same rules; the operations +number and -number are
calculated as O+number and O-numbex, respectively.

Multiplication

The numbers are multiplied together (“long multiplication") resulting in a number that may be as long as
the sum of the lengths of the two operands.

Example:

XXX XXX % YY.YYYYyy

Chapter 6. Numbers and Arithmetic 121

Numbers and Arithmetic

becomes:

2727272 .722272722727Z

The result is then rounded, counting from the first significant digit of the result, to the current setting of
NUMERIC DIGITS.
Division
For the division:
YYY / XXXXX

the following steps are taken: First the number yyy is extended with zeros on the right until it is larger
than the number xxxxx (with note being taken of the change in the power of ten that this implies).

Thus, in this example, yyy might become yyy00. Traditional long division then takes place. This might be
written:

XXXXX | yyy00

The length of the result (zzzz) is such that the rightmost z is at least as far right as the rightmost digit

of the (extended) y number in the example. During the division, the y number is extended further as
necessary. The z number may increase up to NUMERIC DIGITS+1 digits, at which point the division stops
and the result is rounded. Following completion of the division (and rounding if necessary), insignificant
trailing zeros are removed.

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just described.

/* With: Numeric digits 5 x/

12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20%3 -> 3.60
7%3 -> 21
0.9%0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1

8.0/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms being operated upon is
arbitrary. The operations may be carried out as integer operations with the exponent being calculated and
applied afterward. Therefore, the significant digits of a result are not in any way dependent on the position
of the decimal point in either of the terms involved in the operation.

Arithmetic Operation Rules—Additional Operators

The operation rules for the power (x%), integer divide (%), and remainder (/ /) operators follow.

Power

The ** (power) operator raises a number to a power, which may be positive, negative, or 0. The power
must be a whole number. (The second term in the operation must be a whole number and is rounded

to DIGITS digits, if necessary, as described under “Numbers Used Directly by REXX” on page 126.) If
negative, the absolute value of the power is used, and then the result is inverted (divided into 1). For
calculating the power, the number is effectively multiplied by itself for the number of times expressed by
the power, and finally trailing zeros are removed (as though the result were divided by 1).

122 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

In practice (see Note “1” on page 123 for the reasons), the power is calculated by the process of
left-to-right binary reduction. For ax*n: n is converted to binary, and a temporary accumulator is set to
1. If n = 0 the initial calculation is complete. (Thus, ax%0 = 1 for all a, including Ox%0.) Otherwise each
bit (starting at the first nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator
is multiplied by a. If all bits have now been inspected, the initial calculation is complete; otherwise the
accumulator is squared and the next bit is inspected for multiplication. When the initial calculation is
complete, the temporary result is divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using a precision of
DIGITS + L + 1 digits. L is the length in digits of the integer part of the whole number n (that is, excluding
any decimal part, as though the built-in function TRUNC (n) had been used). Finally, the result is rounded
to NUMERIC DIGITS digits, if necessary, and insignificant trailing zeros are removed.

Integer Division

The % (integer divide) operator divides two numbers and returns the integer part of the result. The
result returned is defined to be that which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this subtraction, the absolute values of both
the dividend and the divisor are used: the sign of the final result is the same as that which would result
from regular division.

The result returned has no fractional part (that is, no decimal point or zeros following it). If the result
cannot be expressed as a whole number, the operation is in error and will fail—that is, the result must not
have more digits than the current setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10
digits for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in effect. Note
that this operator may not give the same result as truncating regular division (which could be affected by
rounding).

Remainder

The // (remainder) operator returns the remainder from integer division and is defined as being the
residue of the dividend after the operation of calculating integer division as previously described. The sign
of the remainder, if nonzero, is the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer division on the same
two terms would fail, the remainder cannot be calculated).

Additional Operator Examples

Following are some examples using the power, integer divide, and remainder operators:.

/* Again with: Numeric digits 5 %/

2%%3 -> 8
2%%-3 -> 0.125
1.7%%8 -> 69.758
%3 -> 0
2.1//3 -> 2.1
10% -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Note:

1. A particular algorithm for calculating powers is used, because it is efficient (though not optimal)
and considerably reduces the number of actual multiplications performed. It, therefore, gives better
performance than the simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be calculated as a by-product
of the standard division operation. The division process is ended as soon as the integer result is
available; the residue of the dividend is the remainder.

Chapter 6. Numbers and Arithmetic 123

Numbers and Arithmetic

Numeric Comparisons

The comparison operators are listed in “Comparison” on page 15. You can use any of these for comparing
numeric strings. However, you should not use ==, \==, ===, >>, \>>, =>>, <<, \ <<, and -<< for comparing
numbers because leading and trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers (calculating the difference)
and then comparing the result with 0. That is, the operation:.

A?Z
where ? is any numeric comparison operator, is identical with:.
(A-2)2"'0

It is, therefore, the difference between two numbers, when subtracted under REXX subtraction rules, that
determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the amount by which two
numbers may differ before being considered equal for the purpose of comparison. The FUZZ value is set
by the instruction:

»— NUMERIC FUZZ

1__ __I ; e
expression

Here expression must result in a positive whole number or zero. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value for each numeric
comparison. That is, the numbers are subtracted under a precision of DIGITS minus FUZZ digits during
the comparison. Clearly the FUZZ setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as though
NUMERIC DIGITS 8 had been putin effect for the duration of the operation.

Example:.

Numeric digits 5
Numeric fuzz O

say 4.9999 =5 /* Displays "0O" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1

say 4.9999 =5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0O" */

Exponential Notation

The preceding description of numbers describes "pure" numbers, in the sense that the character strings
that describe numbers can be very long. For example:

10000000000 * 10000000000
would give

100000000000000000000
and

00000000001 * .00000000001
would give

0.0000000000000000000001

124 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

For both large and small numbers some form of exponential notation is useful, both to make long
numbers more readable, and to make execution possible in extreme cases. In addition, exponential
notation is used whenever the "simple" form would give misleading information.

For example:

numeric digits 5
say 54321%54321

would display 2950800000 in long form. This is clearly misleading, and so the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as:.

digits

v

” L blanks J L S| J
gn M digits — .— digits —]
L blanks J . digits —
— digits — .—~

[
>

L digits J L blanks J -

L J

The integer following the E represents a power of ten that is to be applied to the number. The E can be in
uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric to the user.
Specifically, because of the format of numbers in exponential notation, strings, such as OE123 (0 raised to
the 123 power) and 1E342 (1 raised to the 342 power), are numeric. In addition, a comparison such as
OE123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems when comparing nonnumeric
strings, use the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" x/
12E-5 = 0.00012 /* Displays "1" %/
-12e4 = -120000 /* Displays "1" x/
0el23 = Qed56 /* Displays "1" x/
0el23 == Qedb6 /* Displays "0" %/

The preceding numbers are valid for input data at all times. The results of calculations are returned in
either conventional or exponential form, depending on the setting of NUMERIC DIGITS. If the number

of places needed before the decimal point exceeds DIGITS, or the number of places after the point
exceeds twice DIGITS, exponential form is used. The exponential form REXX generates always has a sign
following the E to improve readability. If the exponent is 0, then the exponential part is omitted—that is,
an exponential part of E+0 is never generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in long form, by
using the FORMAT built-in function (see page “FORMAT” on page 74).

Scientific notation is a form of exponential notation that adjusts the power of ten so a single nonzero
digit appears to the left of the decimal point. Engineering notation is a form of exponential notation in
which from one to three digits (but not simply 0) appear before the decimal point, and the power of ten is
always expressed as a multiple of three. The integer part may, therefore, range from 1 through 999. You
can control whether Scientific or Engineering notation is used with the instruction:.

SCIENTIFIC
[1

»— NUMERIC FORM Heg

M——— ENGINEERING ——

\ i -
L o J expression

Chapter 6. Numbers and Arithmetic 125

Numbers and Arithmetic

Scientific notation is the default.

/* after the instruction =/
Numeric form scientific

123.45 % lell -> 1.2345E+13

/* after the instruction =/
Numeric form engineering

123.45 * 1lell -> 12.345E+12

Numeric Information

To determine the current settings of the NUMERIC options, use the built-in functions DIGITS, FORM, and
FUZZ. These functions return the current settings of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC
FUZZ, respectively.

Whole Numbers

Within the set of numbers REXX understands, it is useful to distinguish the subset defined as whole
numbers. A whole number in REXX is a number that has a decimal part that is all zeros (or that has
no decimal part). In addition, it must be possible to express its integer part simply as digits within the
precision set by the NUMERIC DIGITS instruction. REXX would express larger numbers in exponential
notation, after rounding, and, therefore, these could no longer be safely described or used as whole
numbers.

Numbers Used Directly by REXX

As discussed, the result of any arithmetic operation is rounded (if necessary) according to the setting of
NUMERIC DIGITS. Similarly, when REXX directly uses a number (which has not necessarily been involved
in an arithmetic operation), the same rounding is also applied. It is just as though the number had been
added to 0.

In the following cases, the number used must be a whole number, and the largest number you can use is
999999999.

« The positional patterns in parsing templates (including variable positional patterns)
« The power value (right hand operand) of the power operator

« The values of exprr and exprfin the DO instruction

« The values given for DIGITS or FUZZ in the NUMERIC instruction

« Any number used in the numeric option in the TRACE instruction.

Errors

Two types of errors may occur during arithmetic:
« Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, you can use exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.
- Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an arithmetic operation
may fail because of lack of storage. This is considered a terminating error as usual, rather than an
arithmetic error.

126 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic 127

Numbers and Arithmetic

128 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A condition trap can
modify the flow of execution in a REXX program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see “CALL” on page 30 and “SIGNAL” on page 51).

»t CALL J OFF — condition I ; >
SIGNAL L ON — condition L J
NAME — trapname

condition and trapname are single symbols that are taken as constants. Following one of these
instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for all
condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to the routine or label
trapname if you have specified trapname. Otherwise, control passes to the routine or label condition.
CALL or SIGNAL is used, depending on whether the most recent trap for the condition was set using CALL
ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external routine. If
you use SIGNAL, the trapname can be only an internal label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and neither CALL ON FAILURE nor SIGNAL ON FAILURE is active. The condition is
raised at the end of the clause that called the command but is ignored if the ERROR condition trap is
already in the delayed state. The delayed state is the state of a condition trap when the condition has
been raised but the trap has not yet been reset to the enabled (ON) or disabled (OFF) state.

SIGNAL ON ERROR traps all positive return codes, and negative return codes only if CALL ON FAILURE
and SIGNAL ON FAILURE are not set.

Note: See “The VSE Host Command Environment” on page 25 for a definition of host commands.

FAILURE
raised if a command indicates a failure condition upon return. The condition is raised at the end of the
clause that called the command but is ignored if the FAILURE condition trap is already in the delayed
state.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes from commands.

HALT
raised if an external attempt is made to interrupt and end execution of the program. The condition
is usually raised at the end of the clause that was being processed when the external interruption
occurred.

For example, the immediate command HI (Halt Interpretation) raises a halt condition. The RXHLT exit
(“REXX Exit Data Areas and Parameters” on page 473) also raises a halt condition. See “Interrupting
Program Processing” on page 321.

NOVALUE
raised if an uninitialized variable is used:

- As aterm in an expression
« As the name following the VAR subkeyword of a PARSE instruction
« As a variable reference in a parsing template, a PROCEDURE instruction, or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

© Copyright IBM Corp. 1988, 2004 129

Conditions and Condition Traps

/* The following does not raise NOVALUE. %/
signal on novalue

a.=0

say a.z

say 'NOVALUE is not raised.'

exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is running. This includes all
kinds of processing errors, including true syntax errors and "run-time" errors, such as attempting an
arithmetic operation on nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT (and a
SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped

When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

« For HALT and SYNTAX, the processing of the program ends, and a message (see z/VSE Messages and
Codes) describing the nature of the event that occurred usually indicates the condition.

« For all other conditions, the condition is ignored and its state remains OFF.

Action Taken When a Condition Is Trapped

When a condition trap is currently enabled (ON) and the specified condition occurs, instead of the usual
flow of control, a CALL trapname or SIGNAL trapname instruction is processed automatically. You can
specify the trapname after the NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do

not specify a trapname, the name of the condition itself (ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is
used.

For example, the instruction call on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction call
on error name commanderror would enable the trap and call the routine COMMANDERROR if the
condition occurred.

Question

At the 9/93 ARB, this wording changed from 'occurred.’ to 'occurred, and the caller usually receives an
indication of failure.! Should this change print for VSE?

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

- If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition is
disabled (set to OFF), and the SIGNAL takes place in exactly the same way as usual (see page “SIGNAL”
on page 51).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction for
the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON SYNTAX
is enabled when a SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not found, a
usual syntax error termination occurs.

130 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

Conditions and Condition Traps

« If the action taken is a CALL (which can occur only at a clause boundary), the CALL is made in the usual
way (see page “CALL” on page 30) except that the call does not affect the special variable RESULT. If the
routine should RETURN any data, then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during execution of an INTERPRET
instruction, execution of the INTERPRET may be interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is put into a delayed state.
This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF)

is made for the condition. This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the delayed state it remains
enabled, but if the condition is raised again, it is either ignored (for ERROR or FAILURE) or (for the other
conditions) any action (including the updating of the condition information) is delayed until one of the
following events occurs:

1. ACALL ON or SIGNAL ON, for the delayed condition, is processed. In this case a CALL or SIGNAL
takes place immediately after the new CALL ON or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In this case the condition trap is
disabled and the default action for the condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. ARETURN is made from the subroutine. In this case the condition trap is no longer delayed and the
subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is, the flow is not affected by
the CALL).

Note:

1. You must be extra careful when you write a syntax trap routine. Where possible, put the routine near
the beginning of the program. This is necessary because the trap routine label might not be found if
there are certain scanning errors, such as a missing ending comment. Also, the trap routine should
not contain any statements that might cause more of the program in error to be scanned. Examples
of this are calls to built-in functions with no quotation marks around the name. If the built-in function
name is in uppercase and is enclosed in quotation marks, REXX goes directly to the function, rather
than searching for an internal label.

2. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the condition,
the current instruction is ended, if necessary. Therefore, the instruction during which an event
occurs may be only partly processed. For example, if SYNTAX is raised during the evaluation of
the expression in an assignment, the assignment does not take place. Note that the CALL for
ERROR, FAILURE, and HALT traps can occur only at clause boundaries. If these conditions arise
in the middle of an INTERPRET instruction, execution of INTERPRET may be interrupted and later
resumed. Similarly, other instructions, for example, DO or SELECT, may be temporarily interrupted by
a CALL at a clause boundary.

3. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the caller. See
the CALL instruction (page “CALL” on page 30) for details of other information that is saved during a
subroutine call.

4. The state of condition traps is not affected when an external routine is called by a CALL, even if the
external routine is a REXX program. On entry to any REXX program, all condition traps have an initial
setting of OFF.

5. While user input is processed during interactive tracing, all condition traps are temporarily set OFF.
This prevents any unexpected transfer of control—for example, should the user accidentally use
an uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a syntax error
during interactive tracing does not cause exit from the program but is trapped specially and then
ignored after a message is given.

6. The system interface detects certain execution errors either before execution of the program starts
or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Chapter 7. Conditions and Condition Traps 131

Conditions and Condition Traps

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of successive
clauses can be labels; therefore, multiple labels are allowed before another type of clause.

Condition Information

When any condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded. You can inspect this information by using
the CONDITION built-in function (see page “CONDITION” on page 66).

The condition information includes:

« The name of the current trapped condition
« The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)

The status of the trapped condition
« Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as the result of a condition
trap (CALL ON or SIGNAL ON). Condition information is saved and restored across subroutine or function
calls, including one because of a CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still available after the routine
returns.

Descriptive Strings

The descriptive string varies, depending on the condition trapped.

ERROR
The string that was processed and resulted in the error condition.
FAILURE
The string that was processed and resulted in the failure condition.
HALT
Any string associated with the halt request. This can be the null string if no string was provided.
NOVALUE
The derived name of the variable whose attempted reference caused the NOVALUE condition. The
NOVALUE condition trap can be enabled only using SIGNAL ON.
SYNTAX
Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on the

nature and position of the processing error. You can enable the SYNTAX condition trap only by using
SIGNAL ON.

Special Variables

A special variable is one that may be set automatically during processing of a REXX program. There are
three special variables: RC, RESULT, and SIGL. None of these has an initial value, but the program may
alter them. (For information about RESULT, see page “RETURN” on page 49.)

The Special Variable RC

For ERROR and FAILURE, the REXX special variable RC is set to the command return code, as usual,
before control is transferred to the condition label. The return code may be the return code from a routine
(such as, a REXX program) that caused the ERROR or FAILURE condition. The return code may also be a
-3, which indicates that the command could not be found. For more information about issuing commands
and their return codes, see “The VSE Host Command Environment” on page 25.

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

132 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Conditions and Condition Traps

The Special Variable SIGL

Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. Where the transfer of control is
because of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL ON
SYNTAX when the number of the line in error can be used, for example, to control a text editor. Typically,
code following the SYNTAX label may PARSE SOURCE to find the source of the data, then call an editor to
edit the source file positioned at the line in error. Note that in this case you may have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:

signal on syntax

a=a+1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX =/

syntax:
say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(xc)
say "SOURCELINE" (sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.

Chapter 7. Conditions and Condition Traps 133

Conditions and Condition Traps

134 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Using REXX

Chapter 8. Using REXX

The REXX language consists of keyword instructions and built-in functions that you use in a REXX
program. The keyword instructions and built-in functions are described in Chapter 3, “Keyword
Instructions,” on page 27 and Chapter 4, “Functions,” on page 59, respectively.

You can also use external functions and REXX/VSE commands in a REXX program. The functions are
described in “External Functions” on page 92. The REXX/VSE commands provide additional services that
let you:

« Control I/O processing

« Perform data stack requests

- Change characteristics that control how a REXX program runs

« Check for the existence of a specific host command environment.

See Chapter 10, “REXX/VSE Commands,” on page 143 for details.

See “Writing Programs” on page 137 for information about services you can use in programs.

REXX/VSE is a partial implementation of Level 2 SAA REXX on the VSE/ESA system. By using the keyword
instructions and functions that are defined for the SAA REXX language, you can write REXX programs that
can run in any of the supported SAA environments. See the SAA Common Programming Interface REXX
Level 2 Reference for more information.

Additional REXX Support

REXX/VSE also provides:

programming services
You can use these to interface with REXX and the language processor.

customizing services
These let you customize REXX processing and accessing and using system services.

Programming Services

The REXX/VSE programming services are:

ARXEXCOM - Variable Pool Access
ARXEXCOM lets you access and manipulate the current generation of REXX variables. Commands and
programs can call ARXEXCOM to inspect, set, and drop REXX variables. See page “Variable Pool -
ARXEXCOM” on page 352 for a description.

ARXSUBCM - Maintain Host Command Environments
ARXSUBCM is a programming interface to the host command environment table. This table contains
the names of the environments and routines that handle the processing of host commands. You can
use ARXSUBCM to add, change, delete, and query entries in the table. See page “Maintain Entries in
the Host Command Environment Table — ARXSUBCM” on page 357 for a description.

ARXIC - Trace and Execution Control
ARXIC, the trace and execution control routine, is an interface to the immediate commands HI, HT,
RT, TQ, TS, and TE. A program can call ARXIC to use these commands to affect the processing and
tracing of REXX programs. See page “Trace and Execution Control Routine — ARXIC” on page 361 for a
description.

ARXRLT - Get Result
ARXRLT gets the result from a REXX program. that the ARXEXEC routine called. ARXRLT also allows
a non-REXX program to get an EVALBLOK to return a result to REXX. See page “Get Result Routine —
ARXRLT” on page 363 for a description.

© Copyright IBM Corp. 1988, 2004 135

Using REXX

ARXJCL and ARXEXEC - Exec Processing
The ARXJCL and ARXEXEC routines call a REXX program. These routines are programming interfaces
to the language processor. You can run a program in batch by specifying ARXJCL as the program name
on the JCL EXEC statement. You can call either ARXJCL or ARXEXEC from an application program to
call a REXX program. See page “Calling REXX” on page 328 for descriptions.

External Functions and Subroutines and Function Packages
You can write your own external functions and subroutines to extend the programming capabilities
of the REXX language. You can write external functions or subroutines in REXX. Or you can write
them in any programming language that supports the system-dependent interfaces that the language
processor uses to call a function or subroutine.

You can also group frequently used external functions and subroutines into a package. This allows
quick access to the functions and subroutines. To include an external function or subroutine in a
function package, the function or subroutine must be link-edited into a phase. See page “External
Functions and Subroutines and Function Packages” on page 344 for a description of the system-
dependent interfaces for writing external functions and subroutines and how to define function
packages.

ARXOUT - OUTTRAP Interface Routine
ARXOUT lets programs write a character string to the REXX stem specified by the OUTTRAP external
function. Programs using this interface must have been invoked by the ADDRESS LINK or ADDRESS
LINKPGM host command environment. See page “OUTTRAP Interface Routine — ARXOUT” on page
378 for a description.

ARXSAY - SAY Instruction Routine
ARXSAY lets you write a character string to the same output stream as the REXX SAY instruction. See
page “SAY Instruction Routine — ARXSAY” on page 368 for a description.

ARXHLT - Halt Condition Routine
ARXHLT queries or resets the halt condition. See page “Halt Condition Routine — ARXHLT” on page
370 for a description.

ARXTXT - Text Retrieval Routine
ARXTXT retrieves data from the message repository. This is the same text that the language processor
uses for the ERRORTEXT built-in function and for certain options of the DATE built-in function. For
example, a program can use ARXTXT to retrieve the name of a month or the text of a syntax error
message. See page “Text Retrieval Routine — ARXTXT” on page 372 for a description.

ARXLIN - LINESIZE Function Routine
ARXLIN lets you retrieve the same value that the LINESIZE built-in function returns. See page
“LINESIZE Function Routine — ARXLIN” on page 376 for a description.

Customizing Services

There are services you can use to customize REXX processing. Many services let you change how a
program is processed and how the language processor interfaces with the system to access and use
system services, such as storage and I/0. Customization services for REXX processing include the
following:

Environment Characteristics
Various routines and services allow you to customize the environment in which the language
processor processes a REXX program. This environment is known as the language processor
environment and defines various characteristics relating to program processing and how to access
and use system services. There are default environment characteristics that you can change and also
a routine you can use to define your own environment.

Replaceable Routines
When a REXX program runs, various system services are used, such as services for loading and freeing
a program, I/0, obtaining and freeing storage, and data stack requests. Replaceable routines handle
these types of system services. (They are called replaceable routines because you can provide your
own routine that either replaces the REXX/VSE routine or that performs pre-processing and then calls
the REXX/VSE routine.)

136 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Using REXX

Exit Routines

You can provide exit routines to customize various aspects of REXX processing.

The chapters Chapter 18, “Customizing Services,” on page 381 through “Installing the Exec Processing,
Exec Initialization, and Exec Termination” on page 477 describe the different ways in which you can

customize REXX processing.

Writing Programs

You can use the following in a program:

Assignment

All keyword instructions that are described in Chapter 3, “Keyword Instructions,” on page 27

All built-in functions that are described in Chapter 4, “Functions,” on page 59

The external functions ASSGN, OUTTRAP, REXXIPT, REXXMSG, SETLANG, SLEEP, STORAGE, and
SYSVAR. See “External Functions” on page 92 for more information.

The following REXX/VSE commands:

DELSTACK - Deletes the most current data stack that was created with NEWSTACK.
DROPBUF - Drops (discards) a buffer that was previously created on the data stack with MAKEBUF.

EXEC - runs a REXX program in the active PROC chain. (See “Writing Programs” on page 137 for an
example.)

EXECIO - Reads data from and writes data to files. You can use EXECIO to read data from and write
data to the data stack or stem variables.

MAKEBUF - Creates a buffer on the data stack.

NEWSTACK - Creates a new data stack and effectively isolates the current data stack that the
program is using.

QBUF - Queries how many buffers are currently on the active data stack.
QELEM - Queries how many elements are on the data stack above the most recently created buffer.
QSTACK - Queries the number of data stacks currently in existence.

SETUID - Lets you specify the user ID and password associated with a request through the VSE/
POWER spool-access services interface.

SUBCOM - Determines whether a particular host command environment is available to process host
commands.

TE (Trace End) - Ends tracing of the program.
TS (Trace Start) - Starts tracing of the program.

See Chapter 10, “REXX/VSE Commands,” on page 143 for details on these commands.

Instructions to call a program

You can call a REXX program from another REXX program using the following instructions (the examples
assume that the current host command environment is VSE):

"EXEC program_name pl p2 .."
"EX program_name pl p2 .."

"program_name pl p2 .." /* Implicit EXEC command */

« ADDRESS POWER commands:

GETQE - retrieves an entry from a POWER queue and stores the lines it retrieves.
PUTQE — places a job on a POWER queue.
QUERYMSG - returns job completion messages into the stem specified by OUTTRAP.

Chapter 8. Using REXX 137

Using REXX

— CTL service requests to POWER (sent through the VSE/POWER spool-access services interface). See
“Commands to External Environments” on page 23 for more information.

« Instructions that load and call programs

You can use the LINK and LINKPGM host command environments to load and call a phase from the
active PHASE search chain. For example:

ADDRESS LINK "PROGRAM pl1 p2 ..."

For more information, see Chapter 13, “Host Command Environments for Loading and Calling
Programs,” on page 205.

« JCL commands

You can use the JCL host command environment to issue JCL commands via a REXX program. For
example:

ADDRESS JCL "jcl_command"

For more information, see “The JCL Host Command Environment” on page 201.

« Console commands

You can use the CONSOLE host command environment to issue console commands via a REXX program.
For example:

ADDRESS CONSOLE "console_command"

For more information, see Chapter 14, “REXX/VSE Console Automation,” on page 217.

« Programming services

See Chapter 17, “Programming Services,” on page 323 for descriptions of programming services such
as ARXEXEC, ARXJICL, ARXEXCOM, and ARXIC.

Running a Program

You can call a REXX program directly by using the JCL EXEC command (see “Calling REXX Directly with
the JCL EXEC Command” on page 329). Or you call a REXX program by using the ARXJCL or ARXEXEC
routine. These routines are programming interfaces to the language processor. See “The ARXEXEC
Routine” on page 334 and “The ARXJCL Routine” on page 331 for details about these programming
interfaces and information about using ARXJCL to run a REXX program.

You can use ARXJCL to call a REXX program from a non-REXX program (for example, a PL/I program).

To call a REXX program from another REXX program, you can use the REXX/VSE EXEC command. Here
are some examples using the ADDRESS command. The environment following the ADDRESS keyword is
POWER. This specifies sending the expression within quotation marks to the POWER environment.

ADDRESS POWER "EXEC program_name pl p2 .."
ADDRESS POWER "EX program_name pl p2 .."

See “The VSE Host Command Environment” on page 25 for more information about environments for
issuing host commands.

Communicating with a User Console

With the ECHO parameter in the VSE/POWER $$ JOB statement REXX can communicate with a user
console. In the following example all messages REXX writes to SYSLOG are routed to a user console
named REXX. Replies given on the user console are routed to the REXX exec.

* $$ JOB JINM=REXXJOB, ...,ECHO=(ALL,REXX)
// JOB REXXJOB

138 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Using REXX

// EXEC REXX=RXPGM
/&
* $$ EOJ

The demo program REXXTRY, which is described on “REXXTRY” on page 262, provides an interactive
testing facility of REXX statements.

Chapter 8. Using REXX 139

Using REXX

140 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Keywords, Variables, and Command Names

Chapter 9. Reserved Keywords, Special Variables,
and Command Names

This topic describes reserved keywords, special variables, and reserved command names. Where there is
no ambiguity, you can use keywords as symbols; the precise rules are given here.

REXX has three special variables: RC, RESULT, and SIGL. (The names of the special variables are not
reserved.)

The names of REXX/VSE commands are reserved.

Reserved Keywords

The syntax of REXX implies that some symbols are reserved for the language processor's use in certain
contexts.

Within particular instructions, some symbols may be reserved to separate the parts of the instruction.
These symbols are called keywords. Examples of REXX keywords are the WHILE in a DO instruction, and
the THEN (which ends a clause in this case) following an IF or WHEN clause.

Apart from these cases, the language processor checks only simple symbols that are the first token in a
clause and that are not followed by an equal sign (=) or colon (:) to see if they are instruction keywords.
You can use the symbols freely elsewhere in clauses without their being treated as keywords.

However, you are not recommended to use host commands or subcommands with the same name as
REXX keywords (QUEUE, for example). This can create problems for programmers whose REXX programs
might be used for some time and in circumstances outside their control. You may want to enclose

an entire host command in quotation marks. This ensures that the language processor processes the
expression as a host command.

Special Variables

There are three special variables that the language processor can set automatically:

RC
is the return code from any executed host command (or subcommand). Following the SIGNAL events
SYNTAX, ERROR, or FAILURE, RC is set to the code appropriate to the event: the syntax error number
or the command return code. RC is unchanged following a NOVALUE or HALT event.

Note: Host Commands from input during debug mode do not change the value of RC.

The special variable RC can also be set to a -3 if the host command could not be found. See “The VSE
Host Command Environment” on page 25 for information about issuing commands from a program.

The REXX/VSE commands also return a value in the special variable RC. Some of the commands
return the result from the command. For example, the QBUF command returns the number of buffers
currently on the data stack in the special variable RC. Chapter 10, “REXX/VSE Commands,” on page
143 describes the commands.

RESULT
is set by a RETURN instruction in a called subroutine, if the RETURN instruction specifies an
expression. If the RETURN instruction has no expression, RESULT is dropped (becomes uninitialized.)

SIGL
contains the line number of the clause currently executing when the last transfer of control to a label
took place. (A SIGNAL, a CALL, an internal function call, or a trapped error condition could cause this.)

None of these variables has an initial value. You can change their values, just as with any other variable.
You can access them using the variable pool access interface ARXEXCOM (page “Variable Pool —

© Copyright IBM Corp. 1988, 2004 141

Keywords, Variables, and Command Names

ARXEXCOM?” on page 352). The PROCEDURE and DROP instructions also affect these variables in the
usual way.

Certain other information is always available to a REXX program. This includes the name by which
the program was called and the source of the program, which is available using the PARSE SOURCE
instruction. See page “PARSE SOURCE ” on page 45 for details about the information PARSE SOURCE
returns.

PARSE VERSION provides information about the version and date of the language processor code that is
running. (See page “PARSE VERSION ” on page 46.)

The TRACE built-in function returns the current trace setting. The ADDRESS built-in function returns the
name of the host command environment.

Finally, you can obtain the current NUMERIC settings with the DIGITS, FORM, and FUZZ built-in functions.

Reserved Command Names

You can also use REXX/VSE commands in REXX programs. The names of these commands are reserved.
It is recommended that you do not use these names for names of your REXX programs or phases. The
REXX/VSE commands are in the next chapter.

142 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Immediate Commands

Chapter 10. REXX/VSE Commands

REXX/VSE provides commands to perform different services, such as I/O and data stack requests. You
can use the REXX/VSE commands in both the VSE and the POWER environment. “The VSE Host Command
Environment” on page 25 and “The POWER Host Command Environment” on page 25 describe these
environments.

The REXX/VSE commands perform services, such as:
« Performing data stack services (MAKEBUF, DROPBUF, QBUF, QELEM, NEWSTACK, DELSTACK, QSTACK)
« Changing characteristics that control tracing (immediate commands TE and TS)

Note: See “Immediate Commands” on page 143 for details about use of immediate commands.

« Checking for the existence of a host command environment (SUBCOM).

Note: The names of the REXX/VSE commands are reserved. It is recommended that you do not use these
names for names of your REXX programs or phases.

Immediate Commands

The immediate commands are:

HI — Halt Interpretation
HT — Halt Typing

« RT — Resume Typing

e TE-Trace End

e TQ — Trace Query.

« TS — Trace Start.

You can use HI, HT, RT, and TQ only by including them on a call from a non-REXX program to the
programming interface ARXIC. You can use TE and TS by including them in a REXX program or specifying
them on a call to ARXIC from a non-REXX program.

The operator can send a message to a particular partition. A partition that is running a REXX program
ignores the message.

For information about the syntax of each immediate command, see the description of the command in
this chapter.

DELSTACK

»— DELSTACK >«

DELSTACK deletes the most recent data stack NEWSTACK has created and all elements on it. If a new
data stack was not created, DELSTACK removes all the elements from the original data stack.

You can create a new data stack with NEWSTACK and delete that data stack with DELSTACK. Or your
program can call an external function or subroutine that is written in REXX and includes a DELSTACK
command to delete the data stack.

Examples:

1. To create a new data stack for a called routine and delete the data stack when the routine returns, use
the NEWSTACK and DELSTACK commands as follows:

© Copyright IBM Corp. 1988, 2004 143

DROPBUF

"NEWSTACK" /* data stack 2 created */
CALL subl
“DELSTACK“ /* data stack 2 deleted */

EXIT
subl:
PUSH ...
QUEUE ...

PULL ...
RETURN

2. After creating multiple new data stacks, you can find out how many data stacks were created and
delete all but the original data stack using NEWSTACK, QSTACK, and DELSTACK as follows:

"NEWSTACK" /* data stack 2 created %/
“NEWSTACK“ /* data stack 3 created %/

“NEWSTACK“ /* data stack 4 created */

"QSTACK"
times = RC-1 /* set times to the number of new data stacks created */
DO times /* delete all but the original data stack =%/
"DELSTACK" /% delete one data stack %/
END

DROPBUF

n

DROPBUF removes the most recently created (with MAKEBUF) data stack buffer and all elements on the
data stack in the buffer. If you specify n, DROPBUF removes a specific data stack buffer and all buffers
created after it.

Operands:

n
specifies the number of the first data stack buffer you want to drop. DROPBUF removes the specified
buffer and all buffers created after it. Any elements that were placed on the data stack after the
specified buffer was created are also removed. If n is not specified, only the most recently created
buffer and its elements are removed.

The data stack initially contains one buffer, which is known as buffer 0. This buffer is never removed
because MAKEBUF does not create it. DROPBUF O removes all buffers that were created on the data
stack with MAKEBUF and all elements that were put on the data stack. DROPBUF 0 effectively clears
the data stack including the elements on buffer 0.

The following table shows how DROPBUF sets the REXX special variable RC.

Return Code Meaning

0 DROPBUF was successful.
1 An incorrect number n was specified. For example, n was A1l.
2 The specified buffer does not exist. For example, you get a return code of 2 if you try to

drop a buffer that does not exist.

144 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXEC

Examples: A subroutine (sub2) in a REXX program issues MAKEBUF to create four buffers. Before the
subroutine returns, it removes buffers two and above and all elements within the buffers.

/* REXX program =/

CALL sub2

exit

sub2:
"MAKEBUF"
QUEUE A
"MAKEBUF"
QUEUE B
QUEUE C
"MAKEBUF"
QUEUE D
"MAKEBUF"
QUEUE E
QUEUE F

"DROPBUF 2"
RETURN

EXEC

/*
/*

/*
/*

/*

buffer 1 created */

buffer 2 created x/

buffer 3 created x/

buffer 4 created %/

buffers 2 and above deleted %/

»— EXec — pgm_name ﬁu
string

EXEC runs a REXX program in the active PROC chain.

Operands:

pgm_name

is the name of the program. It is 8 characters or fewer.

string

is an argument string. The language processor treats this as a single argument. The string is optional.

See “The VSE Host Command Environment” on page 25 for examples.

EXECIO

Chapter 10. REXX/VSE Commands 145

EXECIO

»— EXECIO tlmej—»
*

»——~— DISKR ber_name

J Read Options l—r—N

L linenum J L (1_J L BYTES byt

L STRTBYTE strinum —J

SYSIPT

L linenum J L (1 J L RECSIZEnJ

SAM_filename

P I |
linenum L (" SAM File Options

M DISKRU ber_name

J Read Options l—'

L linenum J L (1_J L BYTES byte

L STRTBYTE strinum —J

SAM_fil

linenum L (1sAM File Options 2 J

“— DISKW ber_name

L (1 [— NODATA

‘ Write Options |—*

3
]
L DATA —J L STEM var_name J L BYTES bytesnum J

———— SYSLST

L STEM var_name J

L RECSIZE -n —J

(1 [—NOCCT
[_

NOCC
j

(
LCC—J LSTEM var_name J

_
T

L STEM var_name

Read Options

(FIFO 1

1 2
(_J SAM File Options }—J

¥

L SKIP J L OPEN J L FINIS J

LIFO

~— STEMvar_name —

Write Options

»LOPEN—J LFINISJ L)—J;<

SAM File Options

0J”

»d

- L BLKSIZE n J L RECFORM

FIXUNB
FIXBLK
VARUNB
VARBLK
UNDEF

Notes:

1You can enter the options between the parentheses in any order.

L RECSIZE 4

nJ

146 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXECIO

2 SAM files require additional options for opening a file explicitly or implicitly.

3 The default is NODATA for a new member. For a member that already exists, the default is its value from
when it was created.

4 RECSIZE is required with RECFORM FIXUNB or RECFORM FIXBLK; do not use it with other types of record
formats.

EXECIO controls the input and output (I/0) of information to and from a file. Supported operations are
DISKR, DISKW and DISKRU (read and update).

EXECIO can read or write data on the program stack or in REXX variables directly. You can use EXECIO for
I/0 tasks such as copying information to and from a file to add, delete, or update information. A program
can read information from a file to the data stack for serialized processing or to a list of variables for
random processing. A program can write information from the data stack or a list of variables to a file.

EXECIO operates on the following types of files:

Sublibrary members of any type. The REXX program must specify the full name of the member on the
EXECIO command. (The full name consists of a library name, sublibrary name, member name, and
member type, for example: mylib.mysublib.myfile.typea.) An example of reading a sublibrary
member is on “1” on page 154. Usually library members have a logical record format "fixed.". But
some types, for example DUMP, PHASE, have a logical record format "string". In this case the member
consists of 1 record only with arbitrary length.

SYSIPT, SYSLST, and SYSPCH. These names are reserved words on the EXECIO command. You must
specify DISKR (not DISKRU) with SYSIPT. Note that REXX/VSE reads SYSIPT data until encountering an
end-of-file indicator, such as /*. See “Calling REXX Directly with the JCL EXEC Command” on page 329
for an example of input lines in SYSIPT. If a REXX program is invoked from a nested JCL procedure,
EXECIO from SYSIPT cannot read from the current procedure.

SAM files. Only SAM files on disk are supported.

Before using EXECIO to perform I/O to or from a SAM file, you need to assign a name to the file. You do
this by using DLBL to associate the file with a file name. Accessing SAM files requires additional options
on the EXECIO command that are not needed for other files. See “Additional Options Required for SAM
Files” on page 152 for details. See “3” on page 154 for an example.

Put quotation marks around any operands, such as DISKW, STEM, FINIS, or LIFO.

Operands:

lines

is the number of lines to be processed. This operand can be an integer or *, which indicates an
arbitrary number. When the operand is * and EXECIO is reading from a file, input is read until EXECIO
reaches the end of the file.

If you specify a value of 0, no I/O operations are performed unless you also specify OPEN or FINIS or
both.

« If you specify OPEN and the file is closed, EXECIO opens the file but does not read or write any lines.
If you specify OPEN and the file is open, EXECIO does not read or write any lines.

In either case, if you are reading from a file and specify a nonzero value for linenum, EXECIO sets
the current record number to the record number linenum indicates.

Note: The current record number is the number of the next record EXECIO will read. By default, the
current record number is set to the first record when a file is opened. However, if you specify OPEN
and a nonzero value for linenum, EXECIO sets the current record number to the record number
linenum indicates.

- If you specify FINIS and the file is open, EXECIO does not read or write any lines, but it closes the
file. If you specify FINIS and the file is not already open, EXECIO does not open the file and then
close it.

« If you specify both OPEN and FINIS, EXECIO processes the OPEN first and then the FINIS.

Chapter 10. REXX/VSE Commands 147

EXECIO

When EXECIO writes an arbitrary number of lines from the data stack, it stops only when it reaches
a null line. If there is no null line on the data stack and the stack becomes empty, EXECIO continues
with the current input stream. ASSGN(STDIN) returns the name of the current input stream. When
end-of-file is reached, EXECIO ends.

When EXECIO writes an arbitrary number of lines from a list of compound variables, it stops when it
reaches a null value or an uninitialized variable (one that has not been assigned a value).

DISKR
opens a file for input (if it is not already open) and reads the specified number of lines from the file
and places them on the data stack.

If you specify the STEM operand, the lines are placed in a list of variables instead of on the data stack.
While a file is open for input, you cannot write information back to the same file.

The file is not automatically closed unless:

« The task, under which the file was opened, ends

« The last language processor environment associated with the task, under which the file was opened,
is terminated. (See Chapter 19, “Language Processor Environments,” on page 387 for information
about language processor environments).

DISKRU
opens a file for update (if it is not already open) and reads the specified number of lines from the file
and places them on the data stack.

If you specify the STEM operand, the lines are placed in a list of variables instead of on the data stack.
While a file is open for update, the last record read can be changed and then written back to the file
with a corresponding EXECIO DISKW command. Typically, you open a file for update when you want to
change information in the file.

The file is not automatically closed unless:

« The task, under which the file was opened, ends

- The last language processor environment associated with the task, under which the file was opened,
is terminated.

After you open a file for update (by issuing a DISKRU as the first operation against the file), you can
use either DISKR or DISKRU to fetch subsequent records for update.

DISKW
opens a file for output (if it is not already open) and writes the specified number of lines to the file. The
lines are from the data stack or, if you specify STEM var_name, from a list of variables.

You can use the DISKW operand to write information to a different file from the one opened for input,
or to update, one line at a time, the same file opened for update.

When you write data to a library member with logical record format "string" and the number specified
with option BYTES is smaller than the length of the string to be written, then the data is truncated and
the return code is set to 1. If the BYTES number is greater than the available string length, only the
available number of bytes is written and the return code is set to zero.

When a file is open for update, you can use DISKW to rewrite the last record read. The lines value
must be 1 when doing an update. For lines values greater than 1, the user receives an error message
and a return code of 20, and the program is ended. Once a line is written, the program cannot rewrite
the line; attempting to do so causes an error.

When a file with logical record format "string" is open for update, you can use DISKW to rewrite

the latest portion read. The new string may have a different length than the one being replaced. No
padding or truncation of the new string takes place. After one portion of the record has been updated,
the attempt to write another portion without a DISKRU operation in between causes an error.

The file is not automatically closed unless:

« The task, under which the file was opened, ends.

148 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXECIO

- The last language processor environment associated with the task, under which the file was opened,
is terminated.

Note:

1. The length of an updated line is set to the length of the line it replaces. When an updated line is
longer than the line it replaces, information that extends beyond the replaced line is truncated.
When information is shorter than the replaced line, the line is padded with blanks to the original
line length.

2. You can read a DUMP or a PHASE either as a whole or broken up into portions using options BYTES
and STRTBYTE. Writing or reading for update of a PHASE is not possible. The open will fail with
return code 20 and error messages containing LIBRM OPEN feedback (code 236, incorrect phase
handling). When you write a DUMP or other string-type members, use option BYTES. Otherwise,
the library member is defined with fixed logical record format and only 80 bytes of the first record
will be written. You also get a truncation return code of 1.

member_name

SYSIPT

SYSLST

SYSPCH

SAM_filename
The file name is a sublibrary member, SYSIPT, SYSLST, SYSPCH, or the name assigned to a SAM file.
The name of a sublibrary member is in the format: library.sublibrary.member.filetype. For input or
output to a SAM file, you must use DLBL to assign the file a name before using EXECIO. The DLBL
statement can either refer to a SAM-file in VSAM-managed space, or directly to a disk. If you are
processing a file directly on a disk, an ASSGN SYS007,cuu is necessary for DISKW and an ASSGN
SYS006,cuu for DISKR and DISKRU.

linenum
is the line number in the file at which EXECIO is to begin reading. When a file is closed and reopened
because of specifying a record number preceding the current record number, the file is open for:

- input, if you specify DISKR

« update, if you specify DISKRU.

When a file is open for input or update, the current record number is the number of the next record to
be read. When linenum specifies a record number earlier than the current record number in an open
file, you need to close and reopen the file to reposition the current record number at linenum. When
this occurs and the file was not opened at the same task level as that of the program running, trying to

close the file at a different task level causes an EXECIO error. Do not use the linenum operand in this
case.

Specifying a value of 0 for linenum is the same as not specifying the linenum operand. In either case,
EXECIO begins reading the file as follows:

- If the file was already opened, EXECIO begins reading with the line following the last line that was
read

- If the file was just opened, EXECIO begins reading with the first line of the file.

You have to write a user or application I/O replaceable routine to have EXECIO exploit files such as
SYSIN, SYSOUT, SYSRDR, or SYSLOG.

EXECIO DISKW on SYSLST and EXECIO DISKR from SYSIPT are supported. For SYSLST and SYSIPT
you do not need to specify BLKSIZE, RECSIZE, or the RECFORM options.

The following values are used:

File name BLKSIZE RECSIZE RECFORM
SYSLST (option CC) 121 121 FIXUNB
SYSLST (otherwise) 256 256 FIXUNB

Chapter 10. REXX/VSE Commands 149

EXECIO

File name BLKSIZE RECSIZE RECFORM
SYSPCH 81 81 FIXUNB
SYSIPT 128 128 FIXUNB

For SYSLST with CC option specified, a record greater than 121 bytes is truncated with a return code
rc=1. For SYSLST without CC option specified, a record greater than 120 bytes is truncated with a
return code rc=1. If you want to use a different record length for SYSLST, you can specify operand
RECSIZE n with 0<n<=256 (including carriage control character). In this case, you cannot specify
option CC.

For SYSIPT, if a record size smaller than 128 bytes is desired, you can specify operand RECSIZE n with
0<n<=128.

BYTES bytesnum
If you want to process (read or write) a library member of type "string" in separate units, specify
the BYTES operand followed by the number of bytes you want to handle as one unit. Smaller units
require less storage to execute the command. The BYTES operand is only valid for library members
with logical record format "string".

If you store (write) a new library member, the option BYTES implies that logical record format "string"
is used for this library member.

STRTBYTE strtnum
Specifies a byte number within a library member of logical record format "string". STRTBYTE specifies
the byte number where reading is to start. It is only valid together with operand BYTES.

Note that changing the position where reading should continue is always accompanied by an implicit
close and re-open of the file.

Note:

1. You can read a DUMP or a PHASE either as a whole or broken up into portions using options BYTES
and STRTBYTE.

2. Writing or reading for update of a PHASE is not possible. The open will fail with return code 20 and
error messages containing LIBRM OPEN feedback (code 236, incorrect phase handling).

3. When you write a DUMP or other string-type members, use option BYTES. Otherwise, the library
member is defined with fixed logical record format and only 80 bytes of the first record will be
written. You also get a truncation return code of 1.

FINIS
closes the file after EXECIO completes. You can close a file only if it was opened at the same task level
as the program issuing EXECIO.

You can use FINIS with a lines value of 0 to have EXECIO close an open file without first reading or
writing a record.

The language processor environment is terminated after the end of a step in a batch job that called
REXX. Therefore, all files a REXX program opens are typically closed automatically when the top level
program ends. However, it is a good programming practice to explicitly close all files when finished
with them.

OPEN
opens the specified file if it is not already open. For reading from a file, you can use OPEN with a lines
value of 0 to have EXECIO do one of the following:

« Open afile without reading any records

« Set the current record number (that is, the number of the next record EXECIO will read) to the
record number the linenum operand indicates, by specifying a value for linenum.

For writing to a file, you must use OPEN with a lines value of 0 to have EXECIO open a file without
writing any records.

150 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXECIO

NODATA
DATA

This option is valid only for DISKW and is required only for opening a member of a sublibrary. (It is
ignored for other types of files.) NODATA indicates the sublibrary member does not contain SYSIPT
DATA. DATA indicates the sublibrary member contains SYSIPT DATA.

The default is NODATA for a new member. For a member that already exists, the default is its value
from when it was created.

NOCC
MCC
ASA

CC, NOCC, MCC, and ASA are valid only with SYSLST. CC, MCC, and ASA indicate treating the first
character as a carriage control character. (The first character must be a valid American Standards
Association (ASA) or machine control character. See the z/VSE System Macro Reference for a list of
valid carriage control characters.)

NOCC indicates that EXECIO provides carriage control for the next line. NOCC is the default.

You can use CC, MCC, ASA, or NOCC for each single I/O request. This means your program can contain
multiple EXECIO commands with different control character options for SYSLST.

STEM var_name

specifies the stem of the list of variables into which to place information or from which to write
information. Compound variables permit indexing. To use compound variables, make sure the
var_name ends with a period, for example, myvar..

If you specify * as the number of lines to write, EXECIO stops writing information to the file when it
finds a null line or an uninitialized compound variable. For example, if the list contains 10 compound
variables, EXECIO stops at myvar.11.

In the following example, the list of compound variables has the stem myvar. and lines of
information (records) are placed in variables myvar.1, myvar.2, myvar. 3, and so forth.

"EXECIO = DISKR MYLIB.MYSUB.MYFILE.TYPEA (FINIS STEM MYVAR."

For reading from a file, the number of variables in the list is placed in myvazr. 0. Suppose 10 lines of
information are read into the myvax. variables. Then myvazr .0 contains the number 10 (indicating
that 10 records are read), and myvazr .1 contains record 1, myvax. 2 contains record 2, and so forth
up tomyvar.10, which contains record 10. All stem variables beyond myvazr.10 (that is, myvar.11,
myvazr.12, and so on) are residual and contain the value that was specified before issuing the EXECIO
command.

To avoid confusion about whether a residual stem variable value is meaningful, you may want to clear
the entire stem variable before issuing the EXECIO command. To clear all compound variables whose
names begin with a particular stem, you can:

» Use the DROP instruction (for example, DROP myvar.) to set all possible compound variables
whose names begin with that stem to the values of their own names in uppercase.

- Use an assignment to set all possible compound variables whose names begin with that stem to
nulls (for example, myvar. =").

Example “5” on page 154 shows using EXECIO with stem variables, and example “15” on page 157
illustrates the effect of residual data.

When writing an arbitrary number of lines from a file, var_name.0 has no effect on controlling the
number of lines written.

Note: For reading from a file, if var_name does not end with a period, the variable names must be
appended with numbers, but an index in a loop cannot access them. For writing to a file, if var_name
does not end with a period, the variable names must be appended with consecutive numbers, such as
myvarl, myvar2, myvar3.

Chapter 10. REXX/VSE Commands 151

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

EXECIO

Read Options

FIFO
places information on the data stack in FIFO (first in first out) order. FIFO is the default.

LIFO
places information on the data stack in LIFO (last in first out) order.

SKIP
reads the specified number of lines but does not place them on the data stack or in variables. When
the number of lines is *, EXECIO skips to the end of the file.

Additional Options Required for SAM Files

Accessing SAM files requires additional information that is not needed for other files. Block size, record
format, and (for certain record formats) record size are necessary for opening a file explicitly or implicitly
(for example, to perform positioning within a file). You specify this information in the following additional
options on the EXECIO command. These options are required whenever a file is opened. A file is opened
explicitly if you specify the OPEN option. It is opened implicitly if:

« The file is not currently open.

« You switch from input processing (DISKR) to outprocessing (DISKRU or DISKW) or from output
processing to input processing.

« linenum specifies a record number that precedes the current record number.

BLKSIZE n
specifies the block size of the file. The maximum size is 32761. See z/VSE System Macros User's
Guide for details about the block size.

RECFORM FIXUNB

RECFORM FIXBLK

RECFORM VARUNB

RECFORM VARBLK

RECFORM UNDEF
specifies whether the record format is fixed unblocked, fixed blocked, variable unblocked, variable
blocked, or undefined.

RECSIZE n
specifies the record size. This is required for FIXUNB and FIXBLK format records. Do not use RECSIZE
for other record formats. Records are blank-extended if they are too short. If the records are too long,
EXECIO ends with an error.

Closing Files

If you specify FINIS on EXECIO, the file is closed after EXECIO completes processing. If you do not
specify FINIS, the file is closed:

« When the task, under which the file was opened, is terminated, or

« When the last language processor environment associated with the task, under which the file was
opened, is terminated (even if the task itself is not terminated).

« Before a file is implicitly opened.

Whenever the file in VSAM-managed space is closed or opened (explicitly or implicitly) the file is
processed according the open and close disposition on the DLBL statement, that is, the file may be
defined, allocated, reset, or deleted. The initial positioning is handled according to the open disposition.

In general, when a REXX program is called, any files that the program opens are closed when the
top-level program completes. For example, suppose you are running a program (top-level program) that
calls another program. The second program uses EXECIO to open a file and then returns control to the
first program without closing the file. The file is still open when the top-level program regains control.
The top-level program can then read the same file continuing from the point where the nested program

152 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmge41.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmge41.pdf

EXECIO

finished EXECIO processing. When the top-level program ends, the file is automatically closed. (Example
“12” on page 156 illustrates this.)

EXECIO Input Checking

The EXECIO options CC, NOCC, DATA, NODATA, BLKSIZE, RECFORM, and RECSIZE are ignored if they are
specified differently than described in the EXECIO syntax diagram. For example, if you specify

EXECIO %= DISKR SYSIPT 5 (CC

the CC option is ignored.

EXECIO only does a minimum of input checking. It is your reponsibility to correctly set up the input
parameters. EXECIO uses the DTFDI, the DTFCP, or the DTFPR for SYSIPT, SYSLST, and SYSPCH, and
the DTFSD for all other SAM filenames. Refer to the manuals VSE/ESA System Macros User's Guide and
VSE/ESA System Macros Reference for details about DTFSD and DTFDI. EXECIO takes care of the 8 extra
bytes required for output by the DTFSD macro for the BLKSIZE parameter. For example, if you use
BLKSIZE 4096 to write a record you use BLKSIZE 4096 to read the record.

The largest size you can specify with the RECSIZE or BLKSIZE parameter in REXX/VSE is 32761.

REXX procedures using EXECIO to access library members may cause unusable library blocks if they are
canceled. Use the librarian TEST command to restore those blocks.

An EXECIO return code rc=20 may have various reasons, for example

1. partition storage may be exhausted. Try a failing procedure in a larger partition.

2. alibrary member which is not accessible may be already opened by another partition.
3. end of extent has been reached.

4. a WRITE was issued for a file opened for READ.

Message ARX0565I may provide you with additional information why the EXECIO command failed.

Return Codes
The following table shows how EXECIO sets the REXX special variable RC.

Return Code Meaning

0 Successful completion of requested operation

1 Data was truncated during DISKW operation

2 End-of-file reached before the specified number of lines were read during a DISKR

or DISKRU operation. This does not occur if you use * for number of lines because
the remainder of the file is always read. For a member of a sublibrary, this return
code may indicate the file is empty.

20 Severe error. EXECIO completed unsuccessfully and a message is issued. For a SAM
file:

« The file may not exist

» You may have specified a record format, block size, or record size that does not
match the file
= A new file could not be defined.

Examples:

Chapter 10. REXX/VSE Commands 153

EXECIO

1. This example reads from a sublibrary member. The EXECIO command reads an entire PROC member

into INPUT.1, INPUT.2, and so on, and closes the file when done.

'"EXECIO * DISKR LIBNAME.SUBLIB.MEMBER.PROC (STEM INPUT. FINIS'

. This example reads one line from SYSIPT and puts it on the stack in LIFO order. The EXECIO

command does not close the file.

'"EXECIO 1 DISKR SYSIPT (LIFO'

. This example writes to a SAM file. You must previously use DLBL, for example

// DLBL FILEO®1,'MY.OUTPUT.FILE'
// EXTENT ,SYSWK1,,,13260,15
// ASSGN SYS007,231

to assign a name (FILEO1) to the file:

'"EXECIO * DISKW FILEG1 (STEM SAMFILE. BLKSIZE 64 RECFORM FIXBLK' ,
'RECSIZE 64'

The file definition above refers to a specific disk location.

Or you can specify the DLBL within your REXX procedure:

ADDRESS JCL "//DLBL FILE®@1,'MY.OUTPUT.FILE',,6VSAM,CAT=VSESPUC," || ,
"RECSIZE=65,RECORDS=(10,5) ,DISP=(NEW,KEEP)"

ADDRESS JCL "/="

'"EXECIO % DISKW FILE®1 (STEM SAMFILE. BLKSIZE 64 RECFORM FIXBLK' ,

'RECSIZE 64'

Here the file definition refers to a SAM-file in VSAM-managed space.

. This example copies an entire existing SAM file named USERID.MY.INPUT into a member

of an existing library named DEPT5.MEMO.MAR2.TEXT. You must previously use DLBL (for
example, // DLBL MYIPT, 'USERID.MY.INPUT') to assign a name (MYINPUT) to the file
USERID.MY.INPUT. The library member DEPT5.MEMO.MAR22.TEXT does not need any previous
DLBL.

"NEWSTACK" /% Create a new data stack for input only */

"EXECIO * DISKR MYINPUT (FINIS BLKSIZE 64 RECFORM FIXUNB RECSIZE 64"
QUEUE '' /* Add a null line to indicate the end of information =%/
"EXECIO * DISKW DEPT5.MEMO.MAR22.TEXT (FINIS"

"DELSTACK" /% Delete the new data stack =%/

5. This example copies an arbitrary number of lines from an existing SAM file,

USERID.TOTAL.DATA, into a list of compound variables. DATA. is the stem. You must previously
use // DLBL ALLDATA, 'USERID.TOTAL.DATA' to assign the name ALLDATA to the file
USERID.TOTAL.DATA.)

ARG lines

"EXECIO" lines "DISKR ALLDATA (STEM data. BLKSIZE 64 RECFORM FIXUNB
RECSIZE 64"

SAY data.0 'records were read.'

6. This example updates the second line in file DEPT5.EMPLOYEE.LIST. (You must previously use //

DLBL EMPLIST, 'DEPT5.EMPLOYEE.LIST"') to assign the name EMPLIST to the file.

"EXECIO 1 DISKRU EMPLIST 2 (BLKSIZE 400 RECFORM FIXBLK RECSIZE 80"
PULL line

PUSH 'Crandall, Amy AMY 5500

"EXECIO 1 DISKW EMPLIST (FINIS"

7. This example reads from a SAM file to find the first occurrence of the string "Jones". (You must

previously use DLBL to associate the sequential file with the file name, INPUT.) The program ignores
upper and lowercase distinctions. The example demonstrates how to read and search one record at a

154 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXECIO

time. For better performance, you can read all records to the data stack or to a list of variables, search
them, and then return the updated records.

done = 'no'
lineno = 0
DO WHILE done = 'no'
"EXECIO 1 DISKR INPUT (BLKSIZE 100 RECFORM FIXBLK RECSIZE 100"
IF RC = O THEN /* Record was read */
DO
PULL record
lineno = lineno + 1 /* Count the record =/
IF INDEX(record, 'JONES') -= © THEN

DO
SAY 'Found in record' lineno
done = 'yes'
SAY 'Record = ' record
END
ELSE NOP
END
ELSE
done = 'yes'
END
"EXECIO O DISKR INPUT (FINIS"
EXIT 0

8. This program copies records from the SAM file MY.INPUT.DATA to MY.OUT.DATA. (You must
previously use DLBL to assign MY.INPUT.DATA the name INFILE and assign MY.OUT.DATA the name
OUTFILE.) The program assumes that the input file has no null lines.

SAY 'Copying ...'

"EXECIO * DISKR INFILE (FINIS BLKSIZE 64 RECFORM VARBLK"
QUEUE '' /* Insert a null line at the end to indicate end of file =x/
"EXECIO = DISKW OUTFILE (FINIS BLKSIZE 64 RECFORM VARBLK"

SAY 'Copy complete.'
EXIT O

9. This program starts at the third record and reads five records from a SAM file to which you have
assigned the name MYINPUT. It strips trailing blanks from the records and then writes any record that
is longer than 20 characters. The file is not closed when the program is finished.

"EXECIO 5 DISKR MYINPUT 3 (BLKSIZE 64 RECFORM VARBLK"

DO i =1 to 5
PARSE PULL line
stripline = STRIP(line,t)
len = LENGTH(stripline)

IF len > 20 THEN
SAY 'Line' stripline 'is long.'
ELSE NOP
END

/* The file is still open for processing x/

EXIT O

10. This program reads the first 100 records (or until EOF) of the SAM file assigned the name INVNTOR.
It places records on the data stack in LIFO order. It issues a message about the result of the EXECIO
operation.

eofflag = 2 /* Return code to indicate end of file =%/

"EXECIO 100 DISKR INVNTOR (LIFO BLKSIZE 80 RECFORM VARBLK FINIS"
return_code = RC

IF return_code = eofflag THEN
SAY 'Premature end of file.'
ELSE
SAY '100 Records read.'
DROPBUF 0
EXIT return_code

Chapter 10. REXX/VSE Commands 155

EXECIO

11. This program erases any existing data from the SAM file FRED.WORKSET.FILE by opening the file and
then closing it without writing any records. Doing this means EXECIO simply writes an end-of-file
marker, which erases any existing records in the file. (You must previously use DLBL to assign
FRED.WORKSET.FILE the name NAMES.)

/* Open the file for writing, but do not write a recoxrd. */
"EXECIO O DISKW NAMES (OPEN BLKSIZE 64 RECFORM VARBLK"

/* Close the file. This completes erasing any existing records x/
"EXECIO © DISKW NAMES (FINIS"

Note that in this example, EXECIO ... (OPEN followed by the EXECIO ... (FINISisequivalent
to:

"EXECIO © DISKW NAMES (OPEN FINIS BLKSIZE 64 RECFORM VARBLK"

12. The next example includes two programs. The first (top-level) program, PROG1, calls PROG2. PROG2
opens the file, reads the first three records, and then returns control to PROG1. Note that PROG2
does not specify FINIS on EXECIO, so the file remains open.

When the PROG1 regains control, it issues EXECIO and gets the fourth record because the file is
still open. If PROG2 had specified FINIS on EXECIO, PROG1 would have read the first record. In the
example, both programs run at the same task level.

/* PROG1 -- This program calls PROG2 to open a file. */
/* The file is a SAM file, and you must use DLBL to */
/* assign it a name before using EXECIO; for example: */
/* // DLBL myinput, 'userid.my.input' */
/* PROG1 then continues reading the same file. */
say 'Executing the first program PROG1'
/* */
/* Now call PROG2 to open the file. */
/* This program uses a CALL instrucion to call the second program. =*/
/* The REXX/VSE EXEC command would have the same result. */
/* */
/* If PROG2 opens a file and does not close the file before */
/* returning control to PROG1, the file remains open when */
/* control is returned to PROGI1. */
/* */
say 'Calling the second program PROG2'
call prog2 /* Call PROG2 to open file */
say 'Now back from the second program PROG2. Issue another EXECIO.'
"EXECIO 1 DISKR MYINPUT (STEM Z. /* EXECIO reads record 4 */
say z.1
say 'Now close the file'
"EXECIO © DISKR MYINPUT (FINIS" /* Close file so it can be freed =/
EXIT O
/* PROG2 -- This program opens the file MYINPUT, reads 3 records, */
/* and returns control to PROG1 without closing the file. */
/* */
say "Now in the second program PROG2"
DOI =1 to 3 /* Read and produce first 3 records x/
"EXECIO 1 DISKR MYINPUT (STEM Y. BLKSIZE 120 RECFORM VARUNB"
say y.1
END
Say 'Leaving second program PROG2. Three records were read from file.'
RETURN

13. This program opens the SAM file MY.INVNTORY without reading any records. The program then uses
a main loop to read records from the file and process the records. (You must have previously used
DLBL to assign the file the name INPUT and to assign MY.AVAIL.FILE the name OUTPUT.)

/* Open INPUT file for input, but do not read any records */

"EXECIO © DISKR INPUT (OPEN BLKSIZE 100 RECFORM FIXBLK RECSIZE 100"

eof = 'NO' /* Initialize end-of-file flag */

avail_count = 0 /* Initialize counter */

DO WHILE eof = 'NO' /* Loop till EOF of input file */
"EXECIO 1 DISKR INPUT (STEM LINE." /% Read a line */
IF RC = 2 THEN /* If end of file is reached, */

156 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

EXECIO

eof = 'YES' /* set end-of-file (eof) flag; */
ELSE /* otherwise, a record is read. */
DO
IF INDEX(line.1, 'AVAILABLE') THEN /* Look for records */
/* marked "available" */
DO /* "Available" record found */
/* Write record to available file */

"EXECIO 1 DISKW OUTPUT (STEM LINE. BLKSIZE 100 RECFORM FIXBLK
RECSIZE 100"

avail_count = avail_count + 1 /* Increment "available"

counter x/

END
END

END

"EXECIO © DISKR INPUT (FINIS" /% Close currently open INPUT file. */

"EXECIO © DISKW OUTPUT (FINIS" /% Close OUTPUT file if currently open. */
/* If OUTPUT file is not open, */
/* EXECIO has no effect. */

EXIT O

14. This program opens SYSIPT and sets the current record number to record 8 so that the next EXECIO
DISKR command begins reading at the eighth record.

"EXECIO O DISKR SYSIPT 8 (OPEN" /% Open file SYSIPT for input and
set current record number to 8. */

CALL READ_NEXT_RECORD /* Call subroutine to read record on

to the data stack. The next

record EXECIO reads is record 8

because the previous EXECIO set

the current record number to 8. */
"EXECIO O DISKR SYSIPT (FINIS" /% Close the SYSIPT file. */
EXIT

read_next_record:
"EXECIO 1 DISKR SYSIPT (STEM Z."
say z.1
return

15. This program uses EXECIO to successively append the records from SAMPLE1.DATA and then from
SAMPLE2.DATA to the end of the file ALL.SAMPLE.DATA. It illustrates the effect of residual data in
STEM variables. SAMPLE1.DATA contains 20 records; SAMPLE2.DATA contains 10 records. (You must
previously use DLBL to assign SAMPLE1.DATA the name IN1, SAMPLE2.DATA the name IN2, and
ALL.SAMPLE.DATA the name OUT.)

/***/

/* Read all records from IN1 and append them to the */
/* end of OUT. */
[Fekkk ek kekok ok ke ek keok ok ok o ko keok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ok ok kok ok ok ok /
program_RC = 0O /* Initialize exec return code */
/* Read all records */

"EXECIO * DISKR IN1 (STEM NEWVAR. FINIS BLKSIZE 80 RECFORM VARBLK"

if rc = 0 then /* If read was successful */

do

[Fekkk ek kekok ok ke ek keok ok ok e ok keok ok ok ek ok kok ok o ok ko ok ok o ok ok ok o ok ok ok ok ok ok ok ok ok ok sk ok kok ok ok /
/* At this point, newvar.® should be 20, indicating 20 records =/
/* have been read. Stem variables newvar.l, newvar.2, and so on =*/

/* through newvar.20 contain the 20 records that were read. */
/***/
Say o o o o o o o o o e e e e e e e e e e e e e e e - n
say newvar.0 "records have been read from first input file."
say
do i = 1 to newvar.0 /* Loop through all records */
say newvar.i /* Produce the ith record */
end
/* Write exactly the number of records read */
"EXECIO" newvar.® "DISKW OUT (STEM NEWVAR. BLKSIZE 80 RECFORM VARBLK"
if rc = 0 then /* If write was successful */
do

Chapter 10. REXX/VSE Commands 157

EXECIO

say
say newvar.@ "records were written to the output file."
end
else
do
program_RC = RC /* Save program_return code */
say
say "Error during 1st EXECIO ... DISKW, return code is " RC
say
end
end
else
do
program_RC = RC /* Save program_return code */
say
say "Error during 1st EXECIO ... DISKR, return code is " RC
say
end
If program_RC = 0 then /* If no errors so far... continue =%/
do

[Feke ek ek e kok o ko e kok o ok ek o ok eokok o ok ok ekok o ok ok skeokok o ok ok eokok ok kok ok ek ok ok ok /
/* At this time, the stem variables newvar.® through newvar.20 x/

/* contain residual data from the previous EXECIO. */
/* The "DROP newvar." instruction clears these residual */
/* values from the stem. */
/***/
DROP newvar. /* Set all stems variables to their =*/

/* uninitialized state */
/***/
/* Read all records from IN2 and append them to the */
/* end of OUTPUT. */

/***/
/*Read all recordsx/
"EXECIO * DISKR IN2 (STEM NEWVAR. FINIS BLKSIZE 80 RECFORM VARBLK"

if rc = 0 then /* If read was successful */
do

[Fekkk ek kekok ok ke ek kokok ok ok ke keok ok ok ko ok ok ok ok ok ok ok ok ok ok kok ok ok ok kok ok ok ok ko ok ok ok ok ok
/* Now newvar.® should be 10, indicating 10 records have */
/* been read. Stem variables newvar.l through newvar.10 */
/* contain the 10 records. If we had not cleared */
/* the stem newvar. with the previous DROP instruction, */
/* variables newvar.l1l through newvar.20 would still */
/* contain records 11 through 20 from the first file. */
/* However, we would know that the last EXECIO DISKR did */
/* not read these values because the current newvar.0 */

/* variable indicates the last EXECIO read only 10 records. x/
/***/
say
say
SBY "ceecesscossssscossssscossosssossosssoosoosSoosooSS0SS
say newvar.0 "records have been read from second input file."
say
do i =1 to newvar.0 /x Loop through all records */
say newvar.i /* Produce the ith record */
end

/* Write exactly the number of records read =*/
"EXECIO" newvar.® "DISKW OUT (STEM NEWVAR. BLKSIZE 80 RECFORM VARBLK"

if rc = 0 then /* If write was successful */
do
say
say newvar.0 "records were written to output file."
end
else
do
program_RC = RC /x Save exec_return code */
say
say "Error during 2nd EXECIO ...DISKW, return code is " RC
say
end
end
else
do
program_RC = RC /* Save program_return code */
say
say "Error during 2nd EXECIO ... DISKR, return code is " RC
say
end
end
/* Close output file */

158 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

HI

HI

"EXECIO © DISKW OUT (FINIS BLKSIZE 80 RECFORM VARBLK"

exit O

16. This example reads bytes 100 to 199 from a dump file, inserts string "REXX_CHANGE", and rewrites
the dump.

'"EXECIO 1 DISKRU SYSDUMP.BG.DBGOOGOO.DUMP (STEM DUMP. BYTES 100',
'STRBYTE 100 OPEN'

dump.1 = 'REXX_CHANGE' || dump.1

'"EXECIO 1 DISKW SYSDUMP.BG.DBGOOOGO.DUMP (STEM dump. BYTES 111',
'FINIS'

HT

»— HI >«

Note: This immediate command is available only from an application program. You specify HI on a call to
ARXIC (see page “Trace and Execution Control Routine — ARXIC” on page 361) from a non-REXX program.

HI (Halt Interpretation) is an immediate command that halts the interpretation of all currently running
programs. HI is available only if a program is running.

After HI, program processing ends or control passes to a routine or label if the halt condition trap has
been turned on in the program. For example, if the program contains a SIGNAL ON HALT instruction and
HI interrupts processing, control passes to the HALT : label in the program. See Chapter 7, “Conditions
and Condition Traps,” on page 129 for information about the HALT condition.

»— HT >«

Note: This immediate command is available only from an application program. You specify it in a call to
ARXIC (see page “Trace and Execution Control Routine — ARXIC” on page 361) from a non-REXX program.

HT (Halt Typing) is an immediate command that suppresses output that a program generates. The HT
immediate command is available only if a program is running.

After HT, the program that is running continues processing, but the only output written to the current
output device is output from commands that the program issues. All other output from the program is
suppressed.

MAKEBUF

»— MAKEBUF —»«

MAKEBUF creates a new buffer on the data stack.

Initially, the data stack contains one buffer, which is known as buffer 0. You can create additional buffers
by using MAKEBUF. MAKEBUF returns the number of the buffer it has created in the REXX special variable
RC. For example, the first time a program issues MAKEBUF, it creates the first buffer and returns a 1 in the
special variable RC. The second time a program issues MAKEBUF, it creates another buffer and returns a 2
in the special variable RC.

Chapter 10. REXX/VSE Commands 159

NEWSTACK

The following table shows how MAKEBUF sets the REXX special variable RC.

Return Code Meaning

1 A single additional buffer after the original buffer 0 now exists on the data stack.
2 A second additional buffer after the original buffer O now exists on the data stack.
3 A third additional buffer after the original buffer O now exists on the data stack.

n An nth additional buffer after the original buffer O now exists on the data stack.

To remove buffers created with MAKEBUF from the data stack, use the DROPBUF command (see
“DROPBUF” on page 144).

Example: A program places two elements, elem1 and elem2, on the data stack. The program calls a
subroutine (sub3) that also places an element, elem3, on the data stack. The program and the subroutine
(sub3) each create a buffer on the data stack so they do not share their data stack information. Before the
subroutine returns, it uses DROPBUF to remove the buffer it created.

/* REXX program to ... */

"MAKEBUF" /* Creates buffer. %/
SAY 'The number of buffers created is' RC /* RC =1 x/
PUSH eleml

PUSH elem2

CALL sub3

exit
sub3:
"MAKEBUF" /* Creates second buffer. %/
buffnum=RC
PUSH elem3

“bROPBUF“ buffnum /* Deletes second buffer created %/

RETURN

NEWSTACK

»— NEWSTACK <«

NEWSTACK creates a new data stack and hides or isolates the current data stack. A program cannot
access elements on the previous data stack until it issues a DELSTACK command to delete the new data
stack and any elements remaining in it.

After a program issues NEWSTACK, any element placed on the data stack with a PUSH or QUEUE
instruction is placed on the new data stack. If a program calls a routine (function or subroutine) after
issuing NEWSTACK, that routine also uses the new data stack and cannot access elements on the
previous data stack, unless it issues a DELSTACK command. If you use a NEWSTACK command, you
must use a corresponding DELSTACK command to delete the data stack NEWSTACK created.

When there are no more elements on the new data stack, PULL obtains information from the input stream
even though elements remain in the previous data stack. ASSGN(STDIN) returns the name of the current
input device. (By default, this is SYSIPT.) To access elements on the previous data stack, use a DELSTACK
command. If a new data stack was not created, DELSTACK removes all elements from the original data
stack.

You can create multiple new data stacks but can access only elements on the most recently created data
stack. To find out how many data stacks you have created, use the QSTACK command (page “QSTACK”
on page 163). To find out the number of elements on the most recently created stack, use the QUEUED
built-in function (page “QUEUED” on page 78).

160 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

QBUF

If multiple language processor environments are chained together and you create a new data stack

with NEWSTACK, the new data stack is available only to programs that run in the language processor
environment in which the new data stack was created. The other environments in the chain cannot access
the new data stack.

Examples:

1. To protect elements placed on the data stack from a subroutine that might also use the data stack, you
can use NEWSTACK and DELSTACK as follows:

PUSH elementl
PUSH element2

“NEWSTACK“ /* Creates data stack 2. %/
CALL sub
"DELSTACK" /* Deletes data stack 2. %/

PULL stackelem

PULL stackelem
EXIT

2. Torun a program named ABC that is a member in REXXLIB.SAMPLES.PROGRAM1.PROC specify
REXX=program_name on the JCL EXEC statement.

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC REXX=PROGRAM1

Alternately, you could use the ARXJCL routine to run a REXX program. Specify ARXJCL on the JCL EXEC
statement and specify in the PARM field the member name of the program and arguments:

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC ARXJCL,PARM='PROGRAM1'

This creates a new data stack. You can then put two elements on the new data stack for the program
PROGRAM2.

"NEWSTACK" /* Creates data stack 2. %/
PUSH eleml

PUSH elem2

ADDRESS LINK "PROGRAM2"

"DELSTACK" /* Deletes data stack 2. %/

QBUF

»— QBUF >«

QBUF queries the number of buffers that have been created on the data stack with the MAKEBUF
command. QBUF returns the number of buffers in the REXX special variable RC. If you have not used
MAKEBUF to create any buffers on the data stack, QBUF sets the special variable RC to 0. This is the only
buffer the data stack initially contains.

QBUF returns the current number of data stack buffers created by a program and other routines
(functions and subroutines) the program calls. You can issue QBUF from the calling program or from

a called routine. For example, if a program issues two MAKEBUF commands and then calls a routine that
issues another MAKEBUF command, QBUF returns 3 in the REXX special variable RC.

The following table shows how QBUF sets the REXX special variable RC.

Return Code Meaning

0 Only buffer 0 exists on the data stack.

Chapter 10. REXX/VSE Commands 161

QELEM

Return Code Meaning

1 One additional buffer exists on the data stack.
2 Two additional buffers exist on the data stack.
n n additional buffers exist on the data stack.
Examples:

1. If a program creates two buffers on the data stack using MAKEBUF, deletes one buffer using
DROPBUF, and then issues QBUF, RC is set to 1.

"MAKEBUF" /* Creates buffer. */
FMAKEBUF“ /* Creates second buffer. */
EDROP%UF“ /* Deletes second buffer created. %/
SEEUFThe number of buffers created is' RC /* RC = 1 %/

2. Suppose a program uses MAKEBUF to create a buffer and then calls a routine that also issues
MAKEBUF. The called routine then calls another routine that issues two MAKEBUF commands to
create two buffers. If either of the called routines or the original program issues QBUF, this sets the
REXX special variable RC to 4.

"DROPBUF 0" /* Delete any buffers MAKEBUF created. */
"MAKEBUF" /* Create one buffer. */
SAY 'Buffers created = ' RC /* RC =1 x/
CALL subl

"QBUF"

SAY 'Buffers created = ' RC /* RC =4 «/
EXIT

subl:

"MAKEBUF" /* Create second buffer. %/
SAY 'Buffers created = ' RC /* RC =2 %/
CALL sub2

”QBUF”

SAY 'Buffers created = ' RC /* RC =4 %/
RETURN

sub2:

"MAKEBUF" /* Create third buffer. %/
SAY 'Buffers created = ' RC /* RC =3 %/
"MAKEBUF" /* Create fourth buffer. %/
SAY 'Buffers created = ' RC /* RC =4 %/
RETURN

QELEM

»— QELEM >«

QELEM returns the number of elements in the buffer that MAKEBUF most recently created. QELEM
returns the number of elements in the REXX special variable RC. If MAKEBUF has not created any buffers,
QELEM returns @ in RC, regardless of the number of elements on the data stack. Thus, when QBUF returns
0, QELEM also returns 0.

You can use QELEM to coordinate the use of MAKEBUF. Knowing how many elements are in a data
stack buffer can also be useful before a program issues DROPBUF, because DROPBUF removes the most
recently created buffer and all elements in it.

The QUEUED built-in function (see page “QUEUED” on page 78) returns the total number of elements in
the data stack, not including buffers.

162 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

QSTACK

The following table shows how QELEM sets the REXX special variable RC.

Return Code Meaning

0

Either the MAKEBUF command has not been issued or the buffer that MAKEBUF
most recently created contains no elements.

1 MAKEBUF has been issued, and there is one element in the current buffer.

2 MAKEBUF has been issued, and there are two elements in the current buffer.

3 MAKEBUF has been issued, and there are three elements in the current buffer.

n MAKEBUF has been issued, and there are n elements in the current buffer.
Examples:

1. If a program creates a buffer on the data stack using MAKEBUF and then puts three elements on the

2.

data stack, QELEM returns the number 3.

"MAKEBUF" /* Creates buffer. */

PUSH one

PUSH two

PUSH three

"QELEM"

SAY 'The number of elements in the buffer is' RC /* RC = 3 %/

Suppose a program creates a buffer on the data stack, puts two elements on the data stack, creates
another buffer, and then puts one element on the data stack. If the program issues QELEM, it returns
the number 1. The QUEUED function, however, which returns the total number of elements on the data
stack, returns the number 3.

"MAKEBUF" /* Creates buffer. */
QUEUE one
PUSH two
"MAKEBUF" /* Creates second buffer. %/
PUSH one
"QELEM"
SAY 'The number of elements in the most recent buffer is' RC /* 1 %/
SAY 'The total number of elements is' QUEUED() /* returns 3 %/
3. To check whether a data stack buffer contains elements before you remove the buffer, use the result
from QELEM and QOBUF in an IF.. THEN...ELSE instruction.
"MAKEBUF"
PUSH a
”QELEM”
numelem = RC /* Assigns value of RC to variable NUMELEM x/
"QBUF"
numbuf = RC /* Assigns value of RC to variable NUMBUF x/
IF (numelem = 0) & (numbuf > ©) THEN
"DROPBUF" /* Deletes most recently created buffer */
ELSE
DO numelem
PULL elem
SAY elem
END
»— QSTACK -»«

QSTACK queries the number of data stacks in existence for a program that is running. QSTACK returns the
number of data stacks in the REXX special variable RC. The value QSTACK returns is the total number of

Chapter 10. REXX/VSE Commands 163

RT

data stacks, including the original data stack. If you have not used NEWSTACK to create a new data stack,
QSTACK returns 1 in the special variable RC.

QSTACK returns the current number of data stacks created by a program and by other routines (functions
and subroutines) the program calls. You can issue QSTACK from the calling program or from a called
routine. Suppose a program issues one NEWSTACK command and then calls a routine that issues another
NEWSTACK command; if none of the new data stacks is deleted with DELSTACK, QSTACK returns 3 in the
REXX special variable RC.

The following table shows how QSTACK sets the REXX special variable RC.

Return Code Meaning
0 No data stack exists. See “Data Stack Routine” on page 459.
1 Only the original data stack exists.
2 The original data stack and one new data stack exist.
3 The original data stack and two new data stacks exist.
n The original data stack and n - 1 new data stacks exist.
Examples:
1. Suppose a program creates two new data stacks using NEWSTACK and then deletes one data stack

2.

RT

using DELSTACK. If the program issues QSTACK, QSTACK returns 2 in the REXX special variable RC.

"NEWSTACK" /* Creates data stack 2. %/
PNEWSTACK“ /* Creates data stack 3. */
"DELSTACK" /* Deletes data stack 3. */
"QSTACK"

SAY 'The number of data stacks is' RC /* RC = 2 %/

Suppose a program creates one new data stack and then calls a routine that also creates a new data
stack. The called routine then calls another routine that creates two new data stacks. When either of
the called routines or the original program issues QSTACK, it returns 5 in the REXX special variable RC.
The data stack that is active is data stack 5.

"NEWSTACK" /* Creates data stack 2. %/
CALL subl

"QSTACK"

SAY 'Data stacks =' RC /* RC = 5 %/

EXIT

subl:

"NEWSTACK" /* Creates data stack 3. %/
CALL sub2

"QSTACK"

SAY 'Data stacks =' RC /* RC = 5 %/

RETURN

sub2:
"NEWSTACK" /* Creates data stack 4. %/

"NEWSTACK" /* Creates data stack 5. %/
"QSTACK"

SAY 'Data stacks =' RC /% RC = 5 %/

RETURN

»— RT >«

164 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SETUID

Note: This immediate command is available only from an application program. You specify it on a call to
ARXIC (see page “Trace and Execution Control Routine — ARXIC” on page 361) from a non-REXX program.

The RT (Resume Typing) immediate command resumes producing output that was previously suppressed.
The RT immediate command is available only if a program is running. Output that the program generated
after the HT command and before the RT command is lost.

SETUID

»— SETUID — userid L _J p<
password

SETUID lets you specify the user ID and password to be associated with an ADDRESS POWER command.
You can set the user ID for the life of a REXX program or can modify it at any time during a REXX program.

Operands:

userid
is the user ID to use on subsequent requests to POWER. The userid must be from 1 to 8 characters. If
you omit the userid or specify a userid of more than 8 characters, you receive return code -6.

password
is the password to associate with the given userid and subsystem communication request. The
password must be from 1 to 8 characters. Supply a password when an ADDRESS POWER command
would require it, for example when a VSE/POWER master password is needed for unlimited access
(refer to the MPWD operand of the POWER generation macro described in the VSE/POWER Application
Programming, SC33-6736 manual) or when a password protects a POWER queue entry. If master
password has been specified, POWER does no longer use the userid for access checking; userid can
be any string from 1 to 8 characters in this case.

The userid and password combination are associated with each subsequent POWER command (VSE/
POWER spool-access services CTL request), PUTQE command (VSE/POWER spool-access services PUT
request), or GETQE command (VSE/POWER spool-access services GET request). The initial value of the
userid is what the USERID built-in function would return (see “USERID” on page 92). If one REXX program
calls another, the user ID in the calling REXX program is the initial user ID in the called program. The initial
password is all blanks, or, if one REXX program calls another, the initial password is that of the calling
REXX program. If you invoke SETUID without specifying a password, then the password is reset to the
default of blanks.

Some ADDRESS POWER commands check the userid and the password and do not permit processing to
continue if these do not match. See VSE/POWER Application Programming, for details about the scope
of access. Any information you specify after the password causes a return code of -4. In this case, REXX
does not change the userid and password values.

Examples:
"SETUID MYNAME1A" /* Sets the user ID to MYNAME1lA */
"SETUID MYNAME1B" /* Sets the user ID to MYNAME1B */
"SETUID MYNAME1C MYPASSWD" /* Sets the user ID to MYNAMELC */
/* and specifies password MYPASSWD x/

»— SUBCOM — envname -»<

Chapter 10. REXX/VSE Commands 165

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

TE

TE

SUBCOM queries the existence of a specified host command environment. SUBCOM searches the host
command environment table for the named environment and sets the REXX special variable RC to 0 or 1.
If RC contains 0, the environment exists. If RC contains 1, the environment does not exist.

Before a program runs, a default host command environment is defined to process the commands that
the program issues. You can use the ADDRESS keyword instruction (page “ADDRESS” on page 27) to
change this environment to another environment if the environment is defined in the host command
environment table. Use SUBCOM to determine whether the environment is defined in the host command
environment table for the current language processor environment. You can use the ADDRESS built-in
function (page “ADDRESS” on page 62) to determine the name of the environment to which host
commands are currently being submitted.

Operands:

envname
is the name of the host command environment for which SUBCOM is to search.

REXX/VSE provides the following host command environments:

- VSE

- POWER

« LINK

« LINKPGM

- JCL

CONSOLE

When you call a program, the default host command environment is VSE.
The following table shows how SUBCOM sets the REXX special variable RC.

RC Value Description
0 The host command environment exists.
1 The host command environment does not exist.

Examples: To check whether the POWER environment is available before using the ADDRESS instruction
to change the environment, use the SUBCOM command as follows:

"SUBCOM power"
IF RC = O THEN

ADDRESS power
ELSE NOP

»— TE >«

Note: You can use TE in a REXX program or specify it in a call to ARXIC from a non-REXX program.

TE (Trace End) is an immediate command that ends tracing REXX programs. The TE immediate command
is available if a program is running. The program continues processing, but tracing is off.

If you are running in interactive debug, you can also use TE in the current input stream to end tracing.

Example: A program calls an internal subroutine. The subroutine is not processing correctly and you want
to trace it. At the beginning of the subroutine, you can insert a TS command to start tracing. At the end

of the subroutine, before the RETURN instruction, insert the TE command to end tracing before control
returns to the main program.

166 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TQ

TQ

TS

»— TQ >«

Note: You can use TQ to test if tracing in a REXX program was set on or off.

TQ (Trace Query) is an immediate command available only from an application program. The program
continues processing.

The following table shows how TQ sets the REXX special variable RC.

RC Value Description

0 Processing was successful. REXX trace was set OFF by TE.

4 Processing was successful. REXX trace was set ON by TS.

»— TS >

Note: You can use TS in a REXX program or specify it on a call to ARXIC from a non-REXX program.

TS (Trace Start) is an immediate command that starts tracing REXX programs. Tracing lets you control
the execution of a program and debug problems. The TS immediate command is available if a program
is running. The language processor writes trace output to the current output stream. ASSGN(STDOUT)
returns the name of the current output stream.

To end tracing, you can use the TRACE OFF instruction or the TE immediate command. You can also use
TE in the program to stop tracing at a specific point. If you are running in interactive debug, you can use
TE to end tracing.

For more information about tracing, see the TRACE instruction on “TRACE” on page 53 and Chapter 16,
“Debug Aids,” on page 319.

VSAMIO

Chapter 10. REXX/VSE Commands 167

VSAMIO

»— VSAMIO READ FILENAME — fnam >
WRITE L RECORDS — numrec J
DELETE
UPDATE
bSTARTREC — recnum L STEM — stemvar —J OPEN_READ
STARTKEY — key OPEN_WRITE

OPEN_UPDATE

A 4

L CLOSE J PASSWORD — pwd L FILETYPE — typvar J -

CICS_APPLID — applid

>

L RECLEN — rlenvar J L KEYPOS — kposvar —J L KEYLEN — klenvar J]

L PROCESSED — recvar J a

VSAMIO controls the input and output (I/0) of information to and from a VSAM file. Supported operations
are READ, WRITE, DELETE, and UPDATE.

VSAMIO can read or write data in REXX stem variables. If you use VSAMIO to read information from a
VSAM file to a list of variables, the first file line is stored in variable.1, the second file line is stored in
variable.2, and so on.

The various operands and combination of operands of the VSAMIO command permit you to do many
types of I/O. For example, you can use the VSAMIO command to:

« Read information from a VSAM file

- Write information to a VSAM file

« Open a VSAM file without reading or writing any records.

« Empty a VSAM file

« Copy information from one VSAM file to another

« Copy information to and from a list of compound variables (REXX stem)
« Add information to a VSAM file

« Update information in a VSAM file

« Delete information in a VSAM file

There are three types of VSAM data sets supported by VSAMIO:

Key-Sequenced Data Set (KSDS)
is used when a record is accessed through a key field within the record. Every record in a KSDS must
have a unique key value. An additional alternate index (AIX) via an additional unique or non-unique
key field is possible.

Entry-Sequenced Data Set (ESDS)

is used for data that is primarily accessed in the order it was created. An additional alternate index
(AIX) via an extra unique or non-unique key field is possible.

Relative Record Data Set (RRDS)
is used for data in which every item has a particular number, called Relative Record Number (RRN).

RRDS records in REXX/VSE consist of a prefix containing the RRN as the first word followed by the
record data itself. When reading RRDS records, REXX/VSE returns them with a 12 character prefix
starting with a blank, followed by a 10-digit-representation of the RRN, followed by another blank, for
instance:

168 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

VSAMIO

' 00000OOO22 data...data...data...'

When writing or updating a RRDS record, you have to specify the RRN-number as the first word of
arbitrary length within the first 12 bytes of the record, for instance:

‘22 data...data...data...data...'
' 00022 data...data...data...'

VSAM data sets can either be defined and used only via batch applications or they can be defined
and used via one of the installed CICSes. VSAMIO can handle both: pure batch VSAM data sets, and
CICS-defined data sets.

Besides the usual batch interface, an alternative processing is provided for CICS-defined VSAM files via
cross partition communication with a CICS partition. This is especially useful, if read/write access is
necessary for both, CICS and the REXX program. Due to access through CICS, the VSAM cluster must only
be opened once by CICS; thus there is no need for defining the VSAM data set with shareoption 4.

Before VSAMIO can perform I/0 to or from a VSAM file in batch mode, you have to use DLBL to associate
the file with the file name. The following example associates USERID.MY.INPUT of catalog MYCAT with the
file MYINP:

ADDRESS JCL "// DLBL MYINP, 'USERID.MY.INPUT',,6 VSAM,CAT=MYCAT"
ADDRESS JCL "/*"

Operands:

READ
Copy records from a VSAM data set into a REXX stem variable starting with stemvar.1, stemvar.2, ...
Variable stemvar.0 contains the number of really copied records. The number of records copied are
determined by operand RECORDS. Default is 1 record.

For VSAM data sets of types KSDS, KSDS AIX, and ESDS AIX, records are retrieved according to the
key sequence. For ESDS data sets records are retrieved according to the sequence they were written,
and RRDS data sets according to their relative record number sequence.

If data set is already opened and neither STARTREC / STARTKEY nor one of the options OPEN_READ,
OPEN_WRITE, or OPEN_UPDATE are specified, reading starts at the current position. Reading
increases the current position in the VSAM data set accordingly.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is READ,
the data set is automatically opened for reading first.

WRITE
Copy a REXX stem variable to a VSAM data set. Every variable is copied, starting with stemvar.1
and finishing with stemvar.nnn, where nnn is either the numrec-value (if operand RECORDS has been
specified as a number), or the value of stemvar.0 (if set to a whole number), or the predecessor of the
first uninitialized stem variable (if RECORDS is specified as '*' and stemvar.0 is not set), or the default
value 1.

For VSAM data sets of types KSDS, and KSDS AIX, records are written according to the value
contained in the key field. You can write in any key order, but it is most efficient to do it in key
sequence. For ESDS and ESDS AIX data sets records are written to the end of the file, and RRDS data
set records are written according to their value in the relative record number field.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is WRITE,
the data set is automatically opened for updating first.

UPDATE
Replace records within a VSAM data set by new values provided in a REXX stem variable. Every
variable is copied, starting with stemvar.1 and finishing with stemvar.nnn, where nnn is either the
numrec-value (if operand RECORDS has been specified as a number), or the value of stemvar.0 (if set
to a whole number), or the predecessor of the first uninitialized stem variable (if RECORDS is specified
as '"*' and stemvar.0 is not set), or the default value 1.

Chapter 10. REXX/VSE Commands 169

VSAMIO

For VSAM data sets of types KSDS and KSDS AIX, you can change the length of the record being
updated. Stem values longer than the maximum size are truncated and RC is set to -1. You cannot
change the key field of a record.

For ESDS and ESDS AIX data sets you cannot change the length of the record being updated. For ESDS
AIX files you cannot change the reference key, too. If the updating stem value is smaller than the
current record size, the initial part is changed and the rest remains the same as before. Stem values
longer than the current record size are truncated and RC is set to -1.

RRDS files have fixed record length, thus the same record length rules apply as for ESDS files.

If an ESDS data set is already opened and neither STARTREC nor one of the options OPEN_READ,
OPEN_WRITE, or OPEN_UPDATE are specified, updating starts at the current position. Updating
increases the current position in the VSAM data set accordingly.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is
UPDATE, the data set is automatically opened for updating first.

DELETE
Delete records from a non-ESDS VSAM data set. If data set is already opened for updating and neither
STARTREC / STARTKEY nor one of the options OPEN_READ, OPEN_WRITE, or OPEN_UPDATE are
specified, deleting starts at the current position in the VSAM data set.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is DELETE,
the data set is automatically opened for updating first.

FILENAME fnam
refers to a DLBL name for the VSAM data set to be processed in batch mode, or the CICS-defined
filename for the VSAM data set if processed through CICS.

For batch-processed data sets before using VSAMIO to perform I/O to or from a VSAM file, you need
to assign a name to the file. You do this by using DLBL to associate the file with a file name.

RECORDS numrec
specifies the number of VSAM data set records to be processed.

Use "™*' to read or delete the starting record together with all following records in the data set. Default
for reading and deleting is 1 record, if operand RECORDS is not given.

For writing and updating, the default is the value specified in stemvar.0, if operand RECORDS is not
mentioned. If even stemvar.0 is not set, the default for writing and updating is 1 record. If RECORDS is
specified as "*' and stemvar.0 is not set, writing and updating stops when it reaches a null value or an
uninitialized variable (one that has not been assigned a value).

If you specify a RECORDS value of 0, no I/O operations are performed unless you also specify
OPEN_READ, OPEN_WRITE, OPEN_UPDATE, or CLOSE:

- If you specify OPEN_xxxx and the file is closed, VSAMIO opens the file in the given mode, but does
not read, write, update, or delete any records. If you specify OPEN and the file is open in a different
mode, VSAMIO reopens the file in the given mode.

In either case, if you are processing a file and specify operand STARTREC or STARTKEY, VSAMIO
sets the current record to the record indicated by STARTREC or STARTKEY. The current record is the
record VSAMIO is to be read next without repositioning. By default, the current record is set to the
first record when a file is opened.

- If you specify CLOSE and the file is open, VSAMIO does not process any records, but it closes the
file.

STARTREC recnum
Positions to record number recnum for ESDS-filetype data sets and to the first record with a relative
record number greater than or equal to recnum for RRDS-filetype data sets. (Re-)positioning always
starts with a reset to the first record.

170 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

VSAMIO

STARTKEY key
Positions to the first record with a key greater than or equal to the specified key for KSDS-filetype
data sets or AIX-filetype data sets. (Re-)positioning always starts with a reset to the record with the
smallest key.

If the key contains blanks, enclose it in single quotation marks. You can also specify a key in
hexadecimal format, for example: X'C1C2C3". If you specify a key smaller than the defined key length,
only the initial part of the key is used for positioning (a "generic key search").

STEM stemvar
Specifies a REXX stem variable used to copy data from a VSAM data set to REXX (READ) or from REXX
to a VSAM data set (WRITE, UPDATE).

OPEN_READ
Opens the VSAM data set only for reading. You can open a closed file without further processing, if you
use OPEN_READ with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for reading. If the data
set is already open for reading, the current record is reset to the record defined with STARTREC or
STARTKEY if specified, otherwise it is reset to the first record.

If you process the VSAM data set via CICS, the CICS file definitions determine whether reading is
allowed. CICS authorizations for Browsing, and Reading should be set to YES.

OPEN_WRITE
Opens the VSAM data set for (re-)writing. You can open a closed file without further processing, if you
use OPEN_WRITE with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for writing.

If you process the VSAM data set via CICS, the CICS file definitions determine whether writing is
allowed. CICS authorizations for Adding, Browsing, Deleting, Reading, and Updating should be set to
YES. In this case there is no difference between OPEN_WRITE and OPEN_UPDATE.

OPEN_UPDATE
Opens the VSAM data set for updating and appending. You can open a closed file without further
processing, if you use OPEN_WRITE with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for updating and
appending. If operation is READ, DELETE, or UPDATE, the current record is reset to the record defined
with STARTREC or STARTKEY if specified, otherwise it is reset to the first record.

If you process the VSAM data set via CICS, the CICS file definitions determine whether writing
and updating is allowed. CICS authorizations for Adding, Browsing, Deleting, Reading, and Updating
should be set to YES. In this case there is no difference between OPEN_WRITE and OPEN_UPDATE.

CLOSE
Closes the VSAM data set after VSAMIO completes. You can close an open file without further
processing, if you use CLOSE with a numrec value of 0.

The language processor environment is terminated after the end of a step in a batch job calling REXX.
Within this termination all still open files are closed automatically. However, it is good programming
practice to explicitly close files no longer needed.

If you process the VSAM data set via CICS, this data set is only removed from the REXX internal
administration, but it is kept open within the CICS partition.

PASSWORD pwd
Specifies the password for the VSAM data set. It consists of one through eight characters.

Password specification is not supported for CICS-processed VSAM files.

CICS_APPLID applid
Specifies the CICS Applid of the CICS used to process the operation on the VSAM data set. It consists
of one through eight characters.

Chapter 10. REXX/VSE Commands 171

VSAMIO

Specify this operand when "opening" a VSAM data set that should be processed via CICS. REXX/VSE
saves attributes of opened data sets till they are closed; thus if CICS_APPLID has been specified

at open time, succeeding operations are always performed via the given CICS even without extra
specification of CICS_APPLID on the following VSAMIO commands.

A specific server task must be running within CICS to handle CICS-processed access to VSAM files.
This corresponding CICS server task is usually started automatically within CICS. If not, it can be
started explicitly invoking transaction ICVA. The CICS server task can be stopped explicitly using
transaction ICVP.

The status of the file in CICS should be ENABLED.

FILETYPE typvar
returns one of the values ESDS, KSDS, RRDS, ESDP (ESDS_Path), KSDP (KSDS_Path), NOTV
(NotVSAM), or UNKN (Unknown)

RECLEN rlenvar
returns the maximum length of a record of the given VSAM data set.

KEYPOS kposvar
returns position of the VSAM key within records of the given VSAM data set.

KEYLEN klenvar
returns the length of the VSAM key.

PROCESSED recvar
returns the number of processed (read, written, updated, deleted) records.

Return Codes

Command VSAMIO returns one of the following return codes in the REXX special variable RC:

Return Code Meaning

0 Successful processing

1 Successful processing, but at least one of the written or updated records has been
truncated.

2 End-of-file has been reached.

3 A key problem has been detected. Possible reasons are:

» A KSDS file is to be updated, but there exists no record with the given key value.

- ARRDS file is to be updated, but there exists no record with the given Relative
Record Number.

« For KSDS files is the given STARTKEY higher than all existing keys in the file.

» For RRDS files is the given STARTREC higher than all existing Relative Record
Numbers in the file.

4 An empty data set is tried to be opened for reading only (VSAM RC 8, VSAM error
code 110 from OPEN).

7 The VSE/VSAM file cannot be opened, since it is currently in use by another program
(VSAM RC 8, VSAM error code 168 from OPEN).

8 An error occurred during a VSE/VSAM I/0 operation. Messages ARX0690E and
ARX0691E contain more information.

9 The record to be written contains a key that already exists in the file (VSAM RC 8,
VSAM error code 8).

12 One of the VSAMIO functions WRITE, UPDATE, or DELETE is specified, but the file is

opened only for reading.

172 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Code

VSAMIO

Meaning

16

VSAMIO fails because of a storage problem. Use a partition with more GETVIS
space to run the REXX program.

20

A syntax error is detected in the VSAMIO command. One of the operand keywords
may have a typing error.

21

None of the possible VSAMIO functions READ, WRITE, DELETE, or UPDATE is
specified.

22

Specification of operand STEM is invalid due to one of the reasons:

» For functions READ, WRITE, or UPDATE operand STEM is not specified.
» Keyword STEM is specified without a token following.

= Stem name is specified without a dot "' at the end.

23

Operand FILENAME specifies an invalid filename:

» FILENAME is not specified.

» Keyword FILENAME is specified without a token following.
= The length of the given filename is greater than 7.

24

Specification of operand PASSWORD or operand CICS_APPLID is invalid:

« Operand PASSWORD specifies an invalid password, i.e. its length is greater than 8,
or keyword PASSWORD is specified without a token following.

» Operand CICS_APPLID specifies an invalid CICS application, i.e. its length is
greater than 8, or keyword CICS_APPLID is specified without a token following.

25

Specification of operand STARTKEY is invalid due to one of the reasons:

= STARTKEY is specified together with VSAM function WRITE.
» STARTKEY is specified for a non-KSDS file.
» STARTKEY is specified for function UPDATE of a KSDS-file.

« Length of the STARTKEY value is greater than the keylength defined for the given
KSDS file.

26

Specification of operand STARTREC is invalid due to one of the reasons:

« STARTREC is specified together with VSAM function WRITE.
» STARTREC is specified for a KSDS file.
« STARTREC is specified for function UPDATE of a RRDS file.

27

Operand RECORDS specifies an invalid number of records.

28

Specification of the opening mode is invalid due to one of the reasons:

» More than one of the keywords OPEN_READ, OPEN_WRITE, and OPEN_UPDATE
are specified.

« OPEN_READ is specified together with one of the functions WRITE, UPDATE, or
DELETE.

« OPEN_WRITE is specified together with one of the functions UPDATE, or DELETE.

Chapter 10. REXX/VSE Commands 173

VSAMIO

Return Code Meaning

29 Specification of a Relative Record Number as the first word of an RRDS record is
invalid due to one of the reasons:

« All the first 12 characters are blanks.
» The first word in the record does not start with a digit.
 The first word starts with more than 10 digits.

30 Function DELETE is specified for an ESDS file.

44 CEEPIPI invocation returns with an error. Message ARX0693 contains more
information.

48 Invocation of ARXENTRY fails. This is usually an internal error. Messages contain
more information.

52 A problem occurred with the Variable Pool Access Interface (ARXEXCOM) of REXX.

Possible reasons are:

» The value of a variable should be fetched, but the buffer for the copy is too small.
= Avariable name is not valid.

« Avariable value is not valid; it is may be too long.

99 Internal error, which should not occur. Please contact IBM.

Using the VSAMIO Command

Reading Information from a VSAM file

To read information from a VSAM file to a list of variables, use VSAMIO with the READ operand. To read all
records from the VSAM file MYINP, you could use:

"VSAMIO READ FILENAME MYINP CICS_APPLID DBDCCICS",
"RECORDS * STEM newvar. OPEN_READ CLOSE"

VSAMIO READ places records from the file in compound variables. The name after keyword STEM must
end with a period. If 10 lines of information are read, newvar.1 contains record 1, newvar.2 contains
record 2, and so forth, up to newvar.10, which contains record 10. The nhumber of items in the list of
compound variables is in the special variable newvar.0. Thus, if 10 lines of information a read into the
newvar. variables, newvar.0 contains the number 10. Every stem variable beyond newvar.10 is dropped,
i.e. reset to its initial variable name value.

If MYINP is an RRDS file, the Relative Record Number of every record is stored within a 12-character
prefix of newvar.1, newvar.2, and so on.

' 0000000004 Crandall, Amy AMY 5421"

How to specify the number of records to read: In the preceding example, the asterisk after RECORDS
specifies reading the entire file. To read a specific number of lines, put the number immediately after
RECORDS:

"VSAMIO READ FILENAME MYINP RECORDS 25 STEM newvar. OPEN_READ CLOSE"
To read just one record, you can omit specification of RECORDS, since reading 1 record is the default.
"VSAMIO READ FILENAME MYINP STEM newvar."

To open a file without reading any records, specify 0 immediately after RECORDS and specify the
OPEN_READ or OPEN_UPDATE operand.

174 1BM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

VSAMIO

"VSAMIO READ FILENAME RECORDS @ OPEN_READ"
Using OPEN_READ or OPEN_UPDATE: Depending on the purpose you have for the input file, use either
the OPEN_READ or OPEN_UPDATE operand.
« OPEN_READ - Reading Only

To start I/O from a file that you want only to read, use the OPEN_READ operand. The CLOSE option
closes the file after the information is read.

"VSAMIO READ FILENAME ... RECORDS * ... CLOSE"

Note: Do not use the CLOSE option if you want the next VSAMIO in your program to continue reading at
the record immediately following the last record read.

- OPEN_UPDATE - Reading and Updating

To start I/O to a file that you want to read and update, use the OPEN_UPDATE operand without the
CLOSE option.

More about using OPEN_UPDATE appears in "Updating Information...".

Option of specifying a starting record: If you want to start reading at a record other than the beginning of
the file, specify operand STARTKEY for KSDS or AIX-files and operand STARTREC for ESDS/RRDS-files. For
example, to read all the records of an ESDS- or RRDS-file starting at record 100, you could use:

"VSAMIO READ FILENAME MYINP RECORDS % STEM newvar. STARTREC 100 CLOSE"
To start at record 100 and read only 5 records, use:

"VSAMIO READ FILENAME MYINP RECORDS 5 STEM newvar. STARTREC 100 CLOSE"
To open a file at record 100 without reading any records, use:

"VSAMIO READ FILENAME MYINP RECORDS © STARTREC 100 OPEN_READ"
To read all the records of a KSDS-file starting with record "Smith ", you could use:

"VSAMIO READ FILENAME MYINP RECORDS * STEM newvar. STARTKEY 'Smith t

Writing Information to a VSAM File: To write information to a VSAM file from a list of variables, use
VSAMIO with the WRITE operand. To write from the compound variables newvar.1, newvar.2, newvar. 3,
and so on to the VSAM file MYINP, you could use:

"VSAMIO WRITE FILENAME MYINP RECORDS * STEM newvar. CLOSE"

To write records to a VSAM RRDS file, specify the Relative Record Number as first word in newvar.1,
newvar.2, and so on.

'0004 Crandall, Amy AMY 5421'

How to specify the number of records to write: There exist several ways to define the number of records
to write. You can specifiy a number immediately after VSAMIO:

"VSAMIO WRITE FILENAME MYINP RECORDS 25 STEM newvar."
You can assign a numeric value to stemvar.0

newvar.0 = 25
"VSAMIO WRITE FILENAME MYINP STEM newvar."

Chapter 10. REXX/VSE Commands 175

VSAMIO

An asterisk after RECORDS means to write all stem variables starting with stemvar.1, stemvar.2, ... until a
null value or an uninitialized compound variable is reached:

Drop newvar.
Do i=1 to 25; newvar.i = 'some data'; End
"VSAMIO WRITE FILENAME MYINP STEM newvar. RECORDS x"

If neither RECORDS, nor stemvar.0 is specified, only data in stemvar.1 is written.

To open a file without writing records to it, specify 0 after RECORDS and specify the OPEN_WRITE or
OPEN_UPDATE operand.

"VSAMIO WRITE FILENAME MYINP RECORDS © OPEN_WRITE"
Note: To empty a batch-processed file, you can use the VSAMIO command:
"YSAMIO WRITE FILENAME MYINP RECORDS © OPEN_WRITE CLOSE"

Copying Information from One File to Another::

Copying an entire file: To copy the entire VSAM file MYINP to file JOESINP, you could use the following
instructions:

"VSAMIO READ FILENAME MYINP RECORDS x OPEN_READ CLOSE STEM newvar."
"VSAMIO WRITE FILENAME JOESINP RECORDS * OPEN_WRITE CLOSE STEM newvar."

Copying a specified number of lines to a new file: To copy 10 lines of data from the VSAM file MYINP to
the file JOESINP, you could use:

"VSAMIO READ FILENAME MYINP RECORDS 10 CLOSE STEM newvar."
"VSAMIO WRITE FILENAME JOESINP RECORDS 10 OPEN_WRITE CLOSE STEM newvar."

Adding lines to a file: To add 5 records from the VSAM file MYINP to the file JOESINP, you could use:

"VSAMIO READ FILENAME MYINP RECORDS 5 CLOSE STEM newvar."
"VSAMIO WRITE FILENAME JOESINP RECORDS 5 OPEN_UPDATE CLOSE STEM newvar."

Updating Information in a VSAM File:

Updating a KSDS file: Suppose you have a VSAM KSDS file named MYKSDS that contains a list of
employee names, user IDs, and phone extensions. Its key starts at position O with a length of 24 bytes.
One record is this one:

Crandall, Amy AMY 5421
You can change this information. For example, to change phone extension to 5500, you could use:

"VSAMIO READ FILENAME MYKSDS STARTKEY 'Crandall, Amy' RECORDS 1",
“"STEM newvar. OPEN_UPDATE"

newvar.l = Substr(newvar.l1,1,WORDINDEX(newvar.1,4)-1) || '5500'
"VSAMIO UPDATE FILENAME MYKSDS RECORDS 1 STEM newvar. CLOSE"

Updating an ESDS file: Suppose you have a CICS-defined VSAM ESDS file named MYESDS that contains a
list of employee names, user IDs, and phone extensions. The 5th record is this one:

Crandall, Amy AMY 5421

You can change this information. For example, to change phone extension to 5500, you could use:

"VSAMIO READ CICS_APPLID DBDCCICS FILENAME MYESDS STARTREC 5 RECORDS 1",
"STEM newvar. OPEN_UPDATE"

newvar.l = Substr(newvar.l1,1,WORDINDEX(newvar.1,4)-1) || '5500'

"VSAMIO UPDATE FILENAME MYESDS STARTREC 5 RECORDS 1 STEM newvar. CLOSE"

176 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

VSAMIO

Updating an RRDS file: Suppose you have a VSAM RRDS file named MYRRDS that contains a list of
employee names, user IDs, and phone extensions. The record with Relative Record Number 5 is this one:

Crandall, Amy AMY 5421
You can change this information. For example, to change phone extension to 5500, you could use:

"VSAMIO READ FILENAME MYRRDS STARTREC 5 RECORDS 1",

"STEM newvar. OPEN_UPDATE"
newvar.l = Substr(newvar.l1,1,WORDINDEX(newvar.1,5)-1) || '5500'
"VSAMIO UPDATE FILENAME MYRRDS RECORDS 1 STEM newvar. CLOSE"

The VSAMIO READ returns in newvar.1:

' 0000000005 Crandall, Amy AMY 5421

Deleting Information in a VSAM File:

Deleting records in a KSDS file: Suppose you have a VSAM KSDS file named MYKSDS that contains a list
of employee names, user IDs, and phone extensions. Its key starts at position 0 with a length of 24 bytes.
One record is this one:

Crandall, Amy AMY 5421
You can change this information. For example, to change phone extension to 5500, you could use:

"VSAMIO DELETE FILENAME MYKSDS STARTKEY 'Crandall, Amy' RECORDS 1"

Deleting Information in an ESDS file: It is not possible to delete ESDS file records!

Deleting Information in an RRDS file: Suppose you have a VSAM RRDS file named MYRRDS that contains
a list of employee names, user IDs, and phone extensions. The record with Relative Record Number 5 is
this one:

Crandall, Amy AMY 5421
To delete this record, you could use:

"VSAMIO DELETE FILENAME MYRRDS STARTREC 5 RECORDS 1"

Examples:

1. This example reads an entire VSAM file into input.1, input.2, and so on, and closes the file when done.
As always, you must previously use DLBL:

ADDRESS JCL "// DLBL VSMFILE, 'VSAM.CLUSTER1',,b6VSAM,CAT=VSESPUC"

ADDRESS JCL " /%"

'VSAMIO READ FILENAME VSMFILE STEM input. RECORDS % PASSWORD THISPW CLOSE'
SAY input.0@ 'records have been read.'

2. This example creates a VSAM ESDS file with 10 records.

input.0 = 10

Do i=1 to 10
input.i = right(i,i,'e') || ' this is record ' i

End

'"VSAMIO WRITE FILENAME VSMESDS STEM input. OPEN_WRITE CLOSE' ,
'"FILETYPE ftyp RECLEN recl'

Three records are updated.

Do i=1 to 3

update_input.i = right(i+3,i+3,'0') || ' this is update
End
'"VSAMIO UPDATE FILENAME VSMESDS STEM update_input. RECORDS 3 STARTREC 4'

i+3

The file is closed.

Chapter 10. REXX/VSE Commands 177

VSAMIO

'VSAMIO READ FILENAME VSMESDS RECORDS © CLOSE'
3. This example creates a VSAM KSDS file with 10 records. Key consists of the first 8 bytes in the record.

input.0 = 10
Do i=1 to 10
input.i = right(i,8,'0') || ' this is recoxd
End
'"VSAMIO WRITE FILENAME VSMKSDS STEM input. OPEN_WRITE CLOSE' ,
"FILETYPE ftyp RECLEN recl KEYLEN keyl KEYPOS keyp'

i

Then records with keys 00000009 and 00000010 are deleted.

'VSAMIO DELETE FILENAME VSMKSDS RECORDS 2 STARTKEY 00000009’

Three other records are updated.

Do i=1 to 3

update_input.i = right(2*i,8,'0') || ' this is updated record ' 2x*i
End
'VSAMIO UPDATE FILENAME VSMKSDS STEM update_input. RECORDS 3'

The file is closed.
'VSAMIO DELETE FILENAME VSMKSDS RECORDS © CLOSE'
4. This example creates a VSAM RRDS file with 10 records.

input.0 = 10
Do i=1 to 10
input.i = right(i,3,'0') || ' this is recoxd
End
'"VSAMIO WRITE FILENAME VSMRRDS STEM input. OPEN_WRITE CLOSE' ,
'"FILETYPE ftyp RECLEN recl'

i

Then records 9 and 10 are deleted.
'VSAMIO DELETE FILENAME VSMRRDS RECORDS 2 STARTREC 9'
Three other records are updated.

Do i=1 to 3

update_input.i = right(2%i,8,'0') || ' this is updated record ' 2%i
End
'VSAMIO UPDATE FILENAME VSMRRDS STEM update_input. RECORDS 3'

The file is closed.
'VSAMIO DELETE FILENAME VSMRRDS RECORDS © CLOSE'

5. This example copies VSAM file VSMESDA into file VSMESDS, and appends another VSAM file VSMESDB
to this file VSMESDS.

'"VSAMIO READ FILENAME VSMESDA STEM content. RECORDS * CLOSE'
'"VSAMIO WRITE FILENAME VSMESDS STEM content. OPEN_WRITE'
'VSAMIO READ FILENAME VSMESDB STEM content. RECORDS * CLOSE'
'"VSAMIO WRITE FILENAME VSMESDS STEM content. CLOSE'

6. This example copies again VSAM file VSMESDA into file VSMESDS, and appends another VSAM file
VSMESDB to this file VSMESDS. Only 10 records are copied at once.

records_at_once = 10
Files VSMESDA and VSMESDS are opened.

'VSAMIO READ FILENAME VSMESDA RECORDS O OPEN_READ'
'"VSAMIO WRITE FILENAME VSMESDS RECORDS © OPEN_WRITE'

VSMESDS is copied in