
IBM VSE/Enterprise Systems Architecture
VSE Central Functions
6.7

VSE/REXX Reference

IBM

SC33-6642-11

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xxiii.

Twelfth Edition (March 2004)

This edition applies to Version 6 Release 7 of IBM REXX/VSE, which is part of VSE/Central Functions, Program Number
5686-066, and to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, comments may
be addressed to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.
© Copyright International Business Machines Corporation 1988, 2004.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. xv

Tables..xvii

Notices... xxiii
Programming Interface Information... xxiii
Trademarks and Service Marks... xxiv

Summary of Changes..xxv

Chapter 1. Introduction... 1
Who Should Read This Book..1
The Compiler and the Library for REXX/370... 1
How to Use This Book.. 1

How to Read the Syntax Diagrams...3
For Further REXX Information..4

Chapter 2. REXX General Concepts.. 7
Where to Find More Information... 7
Structure and General Syntax..8

Characters...8
Comments...8
Tokens...9
Implied Semicolons... 12
Continuations... 13

Expressions and Operators... 13
Expressions.. 13
Operators..13
Parentheses and Operator Precedence...16

Clauses and Instructions... 18
Null Clauses..18
Labels..18
Instructions.. 19
Assignments... 19
Keyword Instructions... 19
Commands..19

Assignments and Symbols.. 19
Constant Symbols.. 20
Simple Symbols..20
Compound Symbols... 20
Stems..21

Commands to External Environments...23
Environment... 23
Commands..23
Host Commands and Host Command Environments..24
The VSE Host Command Environment.. 25
The POWER Host Command Environment.. 25
The JCL Host Command Environment... 26
The LINK and LINKPGM Host Command Environments... 26

 iii

The CONSOLE Host Command Environment...26

Chapter 3. Keyword Instructions..27
ADDRESS..27
ARG...29
CALL..30
DO...32

Simple DO Group.. 33
Repetitive DO Loops... 33
Conditional Phrases (WHILE and UNTIL).. 35

DROP.. 37
EXIT..37
IF.. 38
INTERPRET.. 39
ITERATE... 40
LEAVE... 41
NOP.. 41
NUMERIC..42
OPTIONS.. 43
PARSE...44
PROCEDURE...46
PULL... 48
PUSH.. 49
QUEUE.. 49
RETURN..49
SAY... 50
SELECT... 50
SIGNAL...51
TRACE...53

Alphabetic Character (Word) Options..54
Prefix Options... 54
Numeric Options...55
A Typical Example.. 56
Format of TRACE Output.. 56

UPPER.. 57

Chapter 4. Functions..59
Syntax...59
Functions and Subroutines..59

Search Order...60
Errors During Execution... 61

Built-in Functions...61
ABBREV (Abbreviation).. 62
ABS (Absolute Value)... 62
ADDRESS.. 62
ARG (Argument)..63
ASSGN...64
BITAND (Bit by Bit AND)...64
BITOR (Bit by Bit OR)... 64
BITXOR (Bit by Bit Exclusive OR)...64
B2X (Binary to Hexadecimal)... 65
CENTER/CENTRE..65
COMPARE..66
CONDITION.. 66
COPIES..67
C2D (Character to Decimal)... 67
C2X (Character to Hexadecimal)..68

iv

DATATYPE... 68
DATE..69
DBCS (Double-Byte Character Set Functions)...71
DELSTR (Delete String)...71
DELWORD (Delete Word)..72
DIGITS.. 72
D2C (Decimal to Character)... 72
D2X (Decimal to Hexadecimal).. 73
ERRORTEXT.. 73
EXTERNALS.. 74
FIND..74
FORM.. 74
FORMAT.. 74
FUZZ..75
INDEX... 75
INSERT..75
JUSTIFY.. 76
LASTPOS (Last Position)...76
LEFT.. 76
LENGTH...76
LINESIZE.. 77
MAX (Maximum)... 77
MIN (Minimum)...77
OUTTRAP.. 77
OVERLAY...78
POS (Position)...78
QUEUED.. 78
RANDOM... 79
REVERSE...79
RIGHT... 79
REXXIPT..80
REXXMSG..80
SETLANG...80
SIGN..80
SLEEP..80
SOURCELINE.. 80
SPACE... 81
STORAGE.. 81
STRIP.. 81
SUBSTR (Substring)..82
SUBWORD...82
SYMBOL.. 82
SYSVAR... 83
TIME..83
TRACE... 84
TRANSLATE.. 85
TRUNC (Truncate)...85
USERID... 86
VALUE..86
VERIFY..86
WORD..87
WORDINDEX...87
WORDLENGTH..87
WORDPOS (Word Position).. 88
WORDS... 88
XRANGE (Hexadecimal Range).. 88
X2B (Hexadecimal to Binary)... 88
X2C (Hexadecimal to Character)..89

 v

X2D (Hexadecimal to Decimal).. 89
Additional Functions Provided in REXX/VSE...90

EXTERNALS.. 90
FIND..90
INDEX... 91
JUSTIFY.. 91
LINESIZE.. 92
USERID... 92

External Functions... 92
ASSGN...93
LOCKMGR... 94
MERGE.. 94
OPERMSG... 94
OUTTRAP.. 94
PAUSEMSG..97
REXXIPT..98
REXXMSG..99
SETLANG...99
SLEEP..100
SORTSTEM..101
STORAGE.. 101
SYSVAR... 102

Chapter 5. Parsing... 105
Parsing Rules... 105

Simple Templates for Parsing into Words... 105
Templates Containing String Patterns... 107
Templates Containing Positional (Numeric) Patterns... 108
Parsing with Variable Patterns...111
Using UPPER...111
Parsing Instructions Summary.. 112
Parsing Instructions Examples.. 112

Advanced Topics in Parsing...113
Parsing Multiple Strings... 114
Combining String and Positional Patterns: A Special Case...114
Parsing with DBCS Characters... 115
Details of Steps in Parsing... 115

Chapter 6. Numbers and Arithmetic... 119
Introduction... 119
Definition..120

Numbers...120
Precision... 120
Arithmetic Operators... 120
Arithmetic Operation Rules—Basic Operators.. 121
Arithmetic Operation Rules—Additional Operators.. 122
Numeric Comparisons..124
Exponential Notation... 124
Numeric Information..126
Whole Numbers..126
Numbers Used Directly by REXX... 126
Errors.. 126

Chapter 7. Conditions and Condition Traps... 129
Action Taken When a Condition Is Not Trapped... 130
Action Taken When a Condition Is Trapped..130
Condition Information... 132

vi

Descriptive Strings... 132
Special Variables... 132

The Special Variable RC... 132
The Special Variable SIGL..133

Chapter 8. Using REXX...135
Additional REXX Support...135

Programming Services... 135
Customizing Services... 136

Writing Programs... 137
Running a Program.. 138
Communicating with a User Console.. 138

Chapter 9. Reserved Keywords, Special Variables, and Command Names............141
Reserved Keywords... 141
Special Variables... 141
Reserved Command Names..142

Chapter 10. REXX/VSE Commands...143
Immediate Commands..143
DELSTACK.. 143
DROPBUF... 144
EXEC...145
EXECIO...145

Read Options.. 152
Additional Options Required for SAM Files... 152
EXECIO Input Checking... 153
Return Codes..153

HI..159
HT...159
MAKEBUF...159
NEWSTACK...160
QBUF.. 161
QELEM..162
QSTACK.. 163
RT... 164
SETUID...165
SUBCOM...165
TE... 166
TQ... 167
TS... 167
VSAMIO..167

Return Codes..172
Using the VSAMIO Command.. 174

Chapter 11. ADDRESS POWER Commands..181
Accessing Entries in VSE/POWER Queues..181
GETQE.. 182

Security Considerations... 185
PUTQE.. 186
QUERYMSG.. 194

Rules for Issuing Job Completion Messages.. 196
CTL... 196
Submitting and Controlling Power Jobs..198

Chapter 12. JCL Command Environment...201
The JCL Host Command Environment.. 201

 vii

Format of Address JCL Commands... 202
VSE JCL ON Conditions.. 202
Unsupported JCL Commands.. 202
VSE JCL Output Trapping... 202
Return codes from the JCL Host Command Environment.. 202

Chapter 13. Host Command Environments for Loading and Calling Programs.......205
Host Commands.. 205

The LINK Host Command Environment...206
Return Codes from the LINK Environment..207
The LINKPGM Host Command Environment...208
Return Codes from the LINKPGM Environment.. 210
Table of Authorized Programs..210

Invoking VSE Utilities...213
Invoking LIBR using ADDRESS LINK... 213
Invoking IDCAMS using ADDRESS LINK..214
Invoking ASSEMBLE and LNKEDT..214
Invoking DITTO.. 215

Chapter 14. REXX/VSE Console Automation... 217
Benefits of a Programmable REXX Console..217
A Look at VSE/ESA's Console Support.. 217

Console I/O Interfaces...218
General-Use Console Interfaces... 219
Master Console versus User Console.. 220
Routing Codes.. 220
Service Offerings.. 221

Console Command Environment...221
Console Commands... 221
Activating a Console Session... 222
Creating a Command and Response Correlation Token (CART)... 224
Querying the Current Console Setting... 225
Switching to a Console Session... 225
Deactivating a Console Session... 225
Examples of REXX and VSE Console Commands..226
Having Command Responses Outstanding in Parallel..226
Routing Messages From and Replies To a Specific Partition.. 227
Tracking of Operator Communication..228
Console Host Command Replaceable Routine..228

Console-related REXX Functions.. 229
DELMSG.. 229
FINDMSG..229
GETMSG..232
LOCKMGR... 235
MERGE.. 236
OPERMSG... 237
PAUSEMSG... 238
SENDCMD... 238
SENDMSG... 239
SORTSTEM..240
SYSDEF... 240
SYSVAR... 242
Error Codes of Failing Functions.. 242

Always Keep in Mind..244
Make Frequent Use of the GETMSG Function... 245
Do not Send Messages to "Yourself"... 245
Redirect Some Output to SYSLST.. 245

viii

Direct Messages to Only One Console (ECHOU Option)... 245
Remember the REXNORC Profile...246
Split off a Time-consuming Task into a Separate Job...246
Finish All Preparatory Work Prior to ACTIVATE CONSOLE..246
Handle One Command at a Time...246
Start Testing on a Small Scale... 246
The Most Important Rule... 247

REXX/VSE CPU Monitor... 247
REXX Console Application Framework... 247

Operation Scenarios...247
Concept.. 248
How to Use the REXX Console Application REXXCO...250

Automated Operation Demos (Examples).. 253
REXXLOAD.. 253
REXXFLSH.. 255
REXXCXIT... 255
REXXSPCE.. 256
REXXCPUM... 259
REXXDOM... 261
Other Examples (Not Related to Console Functions)..262

Miscellaneous Examples of Using the REXX Console...263
Retrieve Messages using Filter and Timestamp..264
Scan the Hardcopy File.. 264
Scan Job Messages for One Partition.. 264

Return and Reason Codes... 267
MCSOPER Macro.. 267
MCSOPMSG Macro... 268
MGCRE Macro...269
Command Processor Return and Reason Codes...270
CORCMD Command for Problem Solving.. 271

Chapter 15. REXX Sockets Application Program Interface...................................275
Programming Hints and Tips for Using REXX Sockets..275
SOCKET External Function.. 276
Tasks You Can Perform Using REXX Sockets.. 276
REXX Socket Functions..279
Accept.. 280
Bind.. 281
Close.. 282
Connect.. 283
Fcntl... 284
GetClientId...285
GetHostByAddr..285
GetHostByName.. 286
GetHostId.. 286
GetHostName.. 287
GetPeerName.. 287
GetSockName.. 287
GetSockOpt..288
GiveSocket... 289
Initialize... 290
Ioctl.. 291
Listen..291
Read... 292
Recv..293
RecvFrom... 294
Resolve...295

 ix

Select... 295
Send... 297
SendTo... 298
SetSockOpt.. 299
ShutDown...300
Socket.. 300
SocketSet... 302
SocketSetList... 302
SocketSetStatus.. 303
TakeSocket...303
Terminate...304
Translate.. 305
Version... 306
Write...306
REXX Sockets System Messages...307
REXX Sockets Return Codes..307
Sample Programs.. 309

REXX-EXEC RSCLIENT Sample Program... 309
REXX-EXEC RSSERVER Sample Program.. 311
Sample Programs Using the TCP/IP SSL Support with the REXX/VSE Socket Function..................314
Installation of REXX/VSE SOCKET Function..317

Chapter 16. Debug Aids... 319
Interactive Debugging of Programs.. 319
Interrupting Program Processing.. 321
Starting and Stopping Tracing... 321

Chapter 17. Programming Services.. 323
General Considerations for Calling REXX/VSE Routines.. 324

Parameter Lists for REXX/VSE Routines..325
Specifying the Address of the Environment Block.. 326
Return Codes for REXX/VSE Routines... 328

Calling REXX...328
Calling REXX Directly with the JCL EXEC Command...329
Calling REXX with ARXEXEC or ARXJCL.. 331

External Functions and Subroutines and Function Packages.. 344
Interface for Writing External Function and Subroutine Code..344
Function Packages... 347

Variable Pool – ARXEXCOM... 352
Maintain Entries in the Host Command Environment Table – ARXSUBCM..357
Trace and Execution Control Routine – ARXIC... 361
Get Result Routine – ARXRLT..363
SAY Instruction Routine – ARXSAY... 368
Halt Condition Routine – ARXHLT... 370
Text Retrieval Routine – ARXTXT.. 372
LINESIZE Function Routine – ARXLIN.. 376
OUTTRAP Interface Routine – ARXOUT..378

Chapter 18. Customizing Services.. 381
Flow of REXX Program Processing.. 381

Language Processor Environment Initialization and Termination.. 382
Loading and Freeing a REXX Program... 383
Processing of the REXX Program... 383

Overview of Replaceable Routines..384
Exit Routines.. 385

Chapter 19. Language Processor Environments.. 387

x

Overview of Language Processor Environments...387
Using the Environment Block.. 389
When Environments Are Automatically Initialized... 390
Characteristics of a Language Processor Environment.. 390
Flags and Corresponding Masks... 393
Module Name Table...398
Host Command Environment Table.. 401
Function Package Table...403
Values in the ARXPARMS Default Parameters Module...406
How ARXINIT Determines What Values to Use for the Environment.. 409

Values ARXINIT Uses to Initialize Environments..409
Chains of Environments and How Environments Are Located... 410

Locating a Language Processor Environment..411
Changing the Default Values for Initializing an Environment... 412

Providing Your Own Parameters Module...413
Specifying Values for Different Environments.. 413

Parameters You Cannot Change.. 414
Control Blocks Created for a Language Processor Environment..414

Format of the Environment Block (ENVBLOCK).. 414
Format of the Parameter Block (PARMBLOCK)... 416
Format of the Work Block Extension... 416
Format of the REXX Vector of External Entry Points... 418

Changing the Maximum Number of Environments in a Partition... 421
Using the Data Stack..422

Chapter 20. Initialization and Termination Routines... 427
Initialization Routine – ARXINIT...427

Entry Specifications... 427
Parameters... 428
Specifying How REXX Obtains Storage in the Environment..430
How ARXINIT Determines What Values to Use for the Environment...432
Parameters Module and In-Storage Parameter List... 432
Specifying Values for the New Environment... 433

Termination Routine – ARXTERM..437

Chapter 21. Replaceable Routines and Exits...439
Replaceable Routines..440

General Considerations..440
Using the Environment Block Address.. 441
Installing Replaceable Routines.. 441

Exec Load Routine... 442
The Exec Block... 445
The In-Storage Control Block.. 445

Input/Output Routine.. 446
Functions Supported for the I/O Routine.. 450
Buffer and Buffer Length Parameters..451
Line Number Parameter...452
I/O Control Block..452
Data Set Information Block (DSIB)..453

Host Command Environment Routine...456
Data Stack Routine.. 459

Functions Supported for the Data Stack Routine..461
Storage Management Routine...463
User ID Routine..465

Function Supported for the User ID Routine...466
Message Identifier Routine... 467
REXX Exit Routines.. 468

 xi

Exits for Language Processor Environment Initialization and Termination......................................468
Halt Exit.. 472
Installation-Supplied Exits.. 473

Chapter 22. Double-Byte Character Set (DBCS) Support......................................479
General Description...479

Enabling DBCS Data Operations and Symbol Use...480
Symbols and Strings...480
Validation..480
Using DBCS Characters in Symbols and Comments... 481
Instruction Examples...482

DBCS Function Handling..483
Built-in Function Examples..484

DBCS Processing Functions...488
Counting Option... 488

Function Descriptions..488
DBADJUST..488
DBBRACKET... 489
DBCENTER..489
DBCJUSTIFY...489
DBLEFT... 490
DBRIGHT.. 490
DBRLEFT...491
DBRRIGHT..491
DBTODBCS... 491
DBTOSBCS..492
DBUNBRACKET.. 492
DBVALIDATE...492
DBWIDTH... 493

Chapter 23. ARXTERMA Routine...495
Entry Specifications...495
Parameters...496
Return Specifications...496
Return Codes... 496

Chapter 24. Support for the Library for REXX/370 in REXX/VSE.......................... 499
Benefits of Using a Compiler... 499

Improved Performance..499
Reduced System Load..499
Protection for Source Code and Programs.. 499
Improved Productivity and Quality..499
Portability of Compiled Programs..499
SAA Compliance Checking...500
Compiler Publications.. 500

Routines and Interfaces for the Library for REXX/370 in REXX/VSE... 500
Programming Routines for a REXX Compiler Runtime Processor.. 500
Routines and Interfaces to Support a REXX Compiler... 500

Overview...501
How REXX Identifies a Compiled Program..501
The Compiler Programming Table... 501
The Compiler Runtime Processor.. 503
Compiler Interface Routines..507
Compiler Interface Initialization Routine.. 508
Compiler Interface Termination Routine...509
Compiler Interface Load Routine...511
Compiler Interface Variable Handling Routine... 514

xii

External Routine Search Routine (ARXERS).. 517
Host Command Search Routine (ARXHST)..521
Exit Routing Routine (ARXRTE)..523

Appendix A. List of the Names of Macros Intended for Customers' Use................ 527
General-Use Programming Interfaces.. 527

Mapping Macros... 527
Product-Sensitive Programming Interfaces.. 528

Appendix B. Servicing REXX/VSE... 529

Appendix C. REXX Supplied Link Books.. 531
Bibliography.. 535

Index.. 537

 xiii

xiv

Figures

1. Example of Using the REXX Program Identifier..8

2. Concept of a DO Loop..36

3. Conceptual Overview of Parsing...116

4. Conceptual View of Finding Next Pattern...116

5. Conceptual View of Word Parsing...117

6. Job Management Using the QUERYMSG Function...199

7. Parameters for the LINK Environment... 207

8. Parameters for the LINKPGM Environment... 209

9. Table of Authorized Programs - Part 1 of 3.. 211

10. Table of Authorized Programs - Part 2 of 3.. 212

11. Table of Authorized Programs - Part 3 of 3.. 213

12. Console Data Flow.. 218

13. Example of a Message Action Table... 250

14. Example of a Job Skeleton... 251

15. Job Message Scanner REXXSCAN - Part 1 of 3..265

16. Job Message Scanner REXXSCAN - Part 2 of 3..266

17. Job Message Scanner REXXSCAN - Part 3 of 3..267

18. Overview of Parameter Lists for REXX/VSE Routines.. 326

19. Example of Calling a REXX Program from a JCL EXEC Statement...329

20. Example of a Function Package Directory..351

21. Request Block (SHVBLOCK)... 354

22. Overview of REXX Program Processing..382

23. Overview of Parameters Module.. 391

 xv

24. Function Package Table Entries – Function Package Directories..406

25. Three Language Processor Environments in a Chain...410

26. Separate Chains on Two Different Tasks..410

27. One Chain of Environments for Attached Tasks...411

28. Separate Data Stacks for Each Environment... 423

29. Sharing of the Data Stack between Environments...424

30. Separate Data Stack and Sharing of a Data Stack..425

31. Creating a New Data Stack with the NEWSTACK Command... 426

32. Extended Parameter List – Parameter 8.. 431

33. Sample Compiler Programming Table..503

34. Initializing REXX/VSE using ARXINST.Z... 530

35. Loading Single Phases into the SVA... 530

xvi

Tables

1. Language Codes for SETLANG Function...100

2. Return Codes for the SYSVAR function...103

3. Return and Reason Codes from Command Processors... 270

4. REXX socket functions for processing socket sets.. 277

5. REXX socket functions for creating, connecting, changing, and closing sockets................................... 277

6. REXX socket functions for exchanging data...277

7. REXX socket functions for resolving names and other identifiers...278

8. REXX socket functions for managing configurations, options, and modes... 278

9. REXX socket functions for translating data and doing tracing...279

10. REXX Variables..280

11. Common Return Codes for REXX/VSE Routines.. 328

12. Parameter for Calling the ARXJCL Routine.. 332

13. Return Codes for ARXJCL Routine..333

14. Parameters for ARXEXEC Routine.. 335

15. Format of the Exec Block (EXECBLK)... 337

16. Format of the Argument List...338

17. Format of the Header for the In-Storage Control Block.. 339

18. Vector of Records for the In-Storage Control Block.. 340

19. Format of the Evaluation Block.. 341

20. ARXEXEC Return Codes..343

21. External Function Parameter List... 345

22. Format of the Evaluation Block.. 346

23. Return Codes from Function or Subroutine Code (in Register 15).. 347

 xvii

24. Format of the Function Package Directory Header..349

25. Format of Entries in Function Package Directory...349

26. Parameters for ARXEXCOM.. 353

27. Format of the SHVBLOCK... 355

28. Return Codes from ARXEXCOM (in Register 15)..357

29. Parameters for ARXSUBCM.. 359

30. Format of an Entry in the Host Command Environment Table.. 360

31. Return Codes for ARXSUBCM... 360

32. Parameters for ARXIC...362

33. Return Codes for ARXIC..363

34. Parameters for ARXRLT.. 364

35. ARXRLT Return Codes for GETBLOCK or GETEVAL..366

36. ARXRLT Return Codes for the GETRLT and GETRLTE Functions... 367

37. Parameters for ARXSAY.. 368

38. Return Codes for ARXSAY...370

39. Parameters for ARXHLT.. 371

40. Return Codes for ARXHLT... 372

41. Parameters for ARXTXT.. 373

42. Text Unit and Day Returned - DAY Function...374

43. Text Unit and Month Returned - MTHLONG Function.. 375

44. Text Unit and Abbreviated Month Returned - MTHSHORT Function...375

45. Return Codes for ARXTXT...376

46. Parameters for ARXLIN...377

47. Return Codes for ARXLIN... 378

48. Parameters for ARXOUT... 379

xviii

49. Return Codes for ARXOUT.. 379

50. Overview of Replaceable Routines...384

51. Format of the Parameter Block (PARMBLOCK)..391

52. Summary of Each Flag Bit in the Parameters Module... 393

53. Flag Settings for NOMSGWTO and NOMSGIO..397

54. Format of the Module Name Table... 398

55. Format of the Host Command Environment Table Header..401

56. Format of Entries in Host Command Environment Table.. 402

57. Function Package Table Header... 404

58. Values in ARXPARMS Default Parameters Module (1)...407

59. Values in ARXPARMS Default Parameters Module (2)...407

60. Values in ARXPARMS Default Parameters Module (3)...408

61. Format of the Environment Block...415

62. Format of the Work Block Extension.. 417

63. Format of REXX Vector of External Entry Points.. 419

64. Format of the Environment Table... 422

65. Parameters for ARXINIT...428

66. Parameters Module and In-Storage Parameter List.. 433

67. Reason Codes for ARXINIT Processing..435

68. ARXINIT Return Codes for Finding an Environment (FINDENVB)...436

69. ARXINIT Return Codes for Initializing an Environment (INITENVB).. 437

70. Return Codes for ARXTERM..438

71. Parameters for the Exec Load Routine...443

72. Return Codes for the Exec Load Replaceable Routine.. 446

73. Input Parameters for the I/O Replaceable Routine... 448

 xix

74. I/O Control Block.. 452

75. Format of the Data Set Information Block... 453

76. Return Codes for the I/O Replaceable Routine..456

77. Parameters for a Host Command Environment Routine..457

78. Return Codes for the Host Command Environment Routine... 458

79. Parameters for the Data Stack Routine..460

80. Return Codes for the Data Stack Replaceable Routine... 463

81. Parameters for the Storage Management Replaceable Routine... 464

82. Return Codes for the Storage Management Replaceable Routine.. 465

83. Parameters for the User ID Replaceable Routine..466

84. Return Codes for the User ID Replaceable Routine...467

85. Return Codes for the Message Identifier Replaceable Routine.. 468

86. Parameters for ARXINITX...469

87. Return Codes for ARXINITX... 470

88. Parameter List for Halt Exit...472

89. Return Codes for Halt Exit.. 473

90. Return Codes...474

91. Parameters for Exec Processing Exit..475

92. DBCS Ranges...479

93. Parameters for ARXTERMA...496

94. Return Codes for ARXTERMA... 497

95. Compiler Programming Table Header Information..502

96. Compiler Programming Table Entry Information...502

97. Compiler Runtime Processor Expected Results.. 504

98. Parameters for a Compiler Runtime Processor..506

xx

99. Return Codes from a REXX Compiler Runtime Processor... 507

100. Parameter List for the Compiler Interface Initialization Routine..508

101. Return Codes from the Compiler Interface Initialization Routine.. 509

102. Parameter List for the Compiler Interface Termination Routine...510

103. Parameter List for the Compiler Interface Load Routine...512

104. Return Codes from the Compiler Interface Load Routine... 513

105. Parameter List for the Compiler Interface Variable Handling Routine... 515

106. Return Codes from the Compiler Interface Variable Handling Routine.. 517

107. Parameters for the External Routine Search Routine..519

108. Return Codes from the External Routine Search Routine... 520

109. Parameters for the Host Command Search Routine..521

110. Return Codes from the Host Command Search Routine... 523

111. Parameters for the Exit Routing Routine..524

112. Return Codes from the Exit Routing Routine... 525

113. Mapping Macros..527

114. Mapping Macros..528

115. Mandatory Phases.. 529

116. Recommended Phases...529

 xxi

xxii

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, USA.

For online versions of this book, we authorize you to:

• Copy, modify, and print the documentation contained on the media, for use within your enterprise,
provided you reproduce the copyright notice, all warning statements, and other required statements on
each copy or partial copy.

• Transfer the original unaltered copy of the documentation when you transfer the related IBM product
(which may be either machines you own, or programs, if the program's license terms permit a transfer).
You must, at the same time, destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes, resulting from this
authorization.

There are no warranties, express or implied, including the warranties of merchantability and fitness
for a particular purpose.

Some juristictions do not allow the exclusion of implied warranties, so the above exclusion may not apply
to you.

Your failure to comply with the terms above terminates this authorization. Upon termination, you must
destroy your machine readable documentation.

Programming Interface Information
This book is intended to help the customer write programs in the REXX programming language and
customize services that REXX/VSE 6.7 provides for REXX processing. This book primarily documents
General-use Programming Interface and Associated Guidance Information provided by REXX/VSE 6.7.

General-use programming interfaces allow the customer to write programs that obtain the services of
REXX/VSE 6.7.

However, this book also documents Product-sensitive Programming Interface and Associated Guidance
Information provided by REXX/VSE 6.7.

Product-sensitive programming interfaces allow the customer installation to perform tasks such as
diagnosing, modifying, monitoring, repairing, tailoring, or tuning of REXX/VSE 6.7. Use of such interfaces
creates dependencies on the detailed design or implementation of the IBM software product. Product-
sensitive programming interfaces should be used only for these specialized purposes. Because of their
dependencies on detailed design and implementation, it is to be expected that programs written to such
interfaces may need to be changed in order to run with new product releases or versions, or as a result of
service.

Product-sensitive Programming Interface and Associated Guidance Information is identified where it
occurs, by an introductory statement.

© Copyright IBM Corp. 1988, 2004 xxiii

The programming interfaces include data areas and parameter lists. Unless otherwise stated, all fields in
data areas/parameter lists are part of the programming interface. However, all "Reserved ..." fields are not
part of the programming interface.

See Appendix A, “List of the Names of Macros Intended for Customers' Use,” on page 527 for a list of
macros intended as programming interfaces.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

IBM BookManager

Library Reader VSE/ESA

Systems Application Architecture SAA

MVS/ESA AS/400

PS/2 OS/2

xxiv IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Summary of Changes

The twelfth edition of this manual (March 2004) contains several updates and editorial changes.

© Copyright IBM Corp. 1988, 2004 xxv

xxvi IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 1. Introduction

This introductory section:

• Identifies the book's purpose and audience
• Explains how to use the book.

Who Should Read This Book
This book describes the REstructured eXtended eXecutor (REXX) language. The REXX language is
implemented through:

• The REXX/VSE interpreter
• The Library for REXX/370 in REXX/VSE.

The interpreter is also called the language processor. The Library for REXX/370 in REXX/VSE is also called
a compiler's runtime processor. This book is intended for experienced programmers, particularly those
who have used a block-structured, high-level language (for example, PL/I, Algol, or Pascal).

REXX/VSE is a partial implementation of Level 2 Systems Application Architecture (SAA) REXX on the
VSE/ESA system. The purpose of SAA REXX is to define a consistent set of language elements that can
be used on several operating systems. If you plan to run REXX programs on other environments, however,
some restrictions may apply and you should review the publication SAA Common Programming Interface
REXX Level 2 Reference, SC24-5549.

REXX programs can do many tasks, including the automation of VSE/Operations. For example, if you use
the JCL EXEC command to call a REXX program, you can leave JCL statements on the stack for VSE/ESA
to process. This enables you to insert JCL statements or data into the current job stream.

Descriptions include the use and syntax of the language and how the language processor "interprets" the
language while a program is running under the REXX/VSE interpreter. The book also describes:

• REXX/VSE external functions and REXX/VSE commands you can use in a REXX program
• Programming services that let you interface with REXX and the language processor
• Customizing services that let you customize REXX processing and how the language processor accesses

and uses system services, such as storage and I/O requests.

The Compiler and the Library for REXX/370
See Chapter 24, “Support for the Library for REXX/370 in REXX/VSE,” on page 499 for information about
the Compiler and the Library for REXX/370.

How to Use This Book
This book is a reference rather than a tutorial. It assumes you are already familiar with REXX
programming concepts. The material in this book is arranged in chapters:

1. Chapter 1, “Introduction,” on page 1
2. Chapter 2, “REXX General Concepts,” on page 7
3. Chapter 3, “Keyword Instructions,” on page 27 (in alphabetic order)
4. Chapter 4, “Functions,” on page 59 (in alphabetic order)
5. Chapter 5, “Parsing,” on page 105 (a method of dividing character strings, such as commands)
6. Chapter 6, “Numbers and Arithmetic,” on page 119
7. Chapter 7, “Conditions and Condition Traps,” on page 129

Introduction

© Copyright IBM Corp. 1988, 2004 1

8. Chapter 8, “Using REXX,” on page 135
9. Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on page 141

10. Chapter 10, “REXX/VSE Commands,” on page 143
11. Chapter 11, “ADDRESS POWER Commands,” on page 181
12. Chapter 12, “JCL Command Environment,” on page 201
13. Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205
14. Chapter 14, “REXX/VSE Console Automation,” on page 217
15. Chapter 15, “REXX Sockets Application Program Interface,” on page 275
16. Chapter 16, “Debug Aids,” on page 319
17. Chapter 17, “Programming Services,” on page 323
18. Chapter 18, “Customizing Services,” on page 381
19. Chapter 19, “Language Processor Environments,” on page 387
20. Chapter 20, “Initialization and Termination Routines,” on page 427
21. Chapter 21, “Replaceable Routines and Exits,” on page 439
22. Chapter 22, “Double-Byte Character Set (DBCS) Support,” on page 479
23. Chapter 23, “ARXTERMA Routine,” on page 495
24. Chapter 24, “Support for the Library for REXX/370 in REXX/VSE,” on page 499

Appendixes cover:

• Appendix A, “List of the Names of Macros Intended for Customers' Use,” on page 527
• Appendix B, “Servicing REXX/VSE,” on page 529
• Appendix C, “REXX Supplied Link Books,” on page 531

This introduction and Chapter 2, “REXX General Concepts,” on page 7 provide general information
about the REXX programming language. The two chapters provide an introduction to REXX/VSE and
describe the structure and syntax of the REXX language; the different types of clauses and instructions;
the use of expressions, operators, assignments, and symbols; and issuing commands from a REXX
program.

Chapter 3, “Keyword Instructions,” on page 27 describes the keyword instructions. Chapter 4,
“Functions,” on page 59 describes the SAA built-in functions, additional built-in functions, and external
functions that REXX/VSE provides.

Other chapters provide information to help you use the different features of REXX and debug any
problems in your REXX programs. These chapters include:

• Chapter 5, “Parsing,” on page 105
• Chapter 6, “Numbers and Arithmetic,” on page 119
• Chapter 7, “Conditions and Condition Traps,” on page 129
• Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on page 141
• Chapter 16, “Debug Aids,” on page 319.

REXX/VSE provides several REXX/VSE commands you can use for REXX processing. Chapter 10,
“REXX/VSE Commands,” on page 143 describes the syntax of these commands.

Chapter 12, “JCL Command Environment,” on page 201 describes these environments introduced in
Chapter 2, “REXX General Concepts,” on page 7 in greater detail.

Chapter 14, “REXX/VSE Console Automation,” on page 217 describes a special REXX/VSE facility that is
centered around a VSE/ESA programmable console. This facility enables you to automate and make more
productive the operation of your VSE/ESA console.

Besides REXX language support, REXX/VSE provides:

• Programming services you can use to interface with REXX and the language processor

Introduction

2 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• Customizing services that let you customize REXX processing and how the language processor accesses
and uses system services, such as I/O and storage.

Chapter 17, “Programming Services,” on page 323 describes programming services. Chapter 18,
“Customizing Services,” on page 381 introduces customizing services, which the following chapters
describe in greater detail:

• Chapter 19, “Language Processor Environments,” on page 387
• Chapter 20, “Initialization and Termination Routines,” on page 427
• Chapter 21, “Replaceable Routines and Exits,” on page 439.

Note: REXX/VSE is interactive only from the operator's console. This reservation applies to any terms in
this book suggesting interactive input and output. For example, displaying output refers to presenting it
through the current output stream; entering information refers to providing it through the current input
stream.

The REXX/VSE messages are included in the z/VSE Messages and Codes manual and therefore available
in all VSE/ESA supported languages.

See the z/VSE Planning, and z/VSE System Upgrade and Service, if you plan to use the Fast Service
Upgrade (FSU) function to migrate to VSE/ESA 2.1. Appendix B, “Servicing REXX/VSE,” on page 529
provides information to help you reload phases after service into the SVA.

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ►►─── symbol indicates the beginning of a statement.

The ───► symbol indicates that the statement syntax is continued on the next line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the ►─── symbol and end with
the ───► symbol.

• Required items appear on the horizontal line (the main path).
STATEMENT required_item

• Optional items appear below the main path.
STATEMENT

optional_item

• If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
STATEMENT required_choice1

required_choice2

If choosing one of the items is optional, the entire stack appears below the main path.
STATEMENT

optional_choice1

optional_choice2

• If one of the items is the default, it appears above the main path and the remaining choices are shown
below.

Introduction

Chapter 1. Introduction 3

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesple82.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessus91.pdf

STATEMENT

default_choice

optional_choice

optional_choice

• An arrow returning to the left above the main line indicates an item that can be repeated.

STATEMENT repeatable_item

A repeat arrow above a stack indicates that you can repeat the items in the stack.
• A set of vertical bars around an item indicates that the item is a fragment, a part of the syntax diagram

that appears in greater detail below the main diagram.
STATEMENT fragment

fragment
expansion_provides_greater_detail

• Keywords appear in uppercase (for example, PARM1). They must be spelled exactly as shown but can
be specified in any case. Variables appear in all lowercase letters (for example, parmx). They represent
user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are shown, you must enter
them as part of the syntax.

The following example shows how the syntax is described:

MAX (

,

number)

For Further REXX Information
The following lists publications that are useful for programming in REXX:

• The SAA Common Programming Interface REXX Level 2 Reference, SC24-5549, may be useful to more
experienced REXX users who may wish to code portable programs. This book defines SAA REXX.
Descriptions include the use and syntax of the language as well as explanations on how the language
processor interprets the language as a program is running.

• The OS/390 TSO/E REXX Reference, is a comprehensive reference for use on TSO/E.
• The OS/390 TSO/E REXX User's Guide, introduces the instructions and functions the REXX language

provides and explains how to write a REXX program. It describes how to run a REXX program in TSO/E
foreground and background, in MVS batch using JCL, or in any address space. This book also highlights
the major differences between the TSO/E CLIST language and the REXX language.

• The VM/ESA: REXX/VM Primer, SC24-5598, is an excellent introduction to REXX and can help you get
started. If you have little or no experience in computer programming or programming in REXX, it is
worthwhile reading.

• The VM/ESA REXX/VM Reference, is a comprehensive reference for use on VM.
• The REXX/VM User's Guide, is suitable for beginners and programmers who have not used a structured

language before.
• The VSE/ESA REXX/VSE User's Guide, provides a general introduction to REXX programming for

beginners. It introduces REXX instructions and built-in functions and explains how to write a REXX
program. It includes many examples of REXX applications.

Introduction

4 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3a330.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj3c310.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/hcse2a10.pdf
https://www.vm.ibm.com/library/710pdfs/71631500.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf

• The VSE/ESA REXX/VSE Diagnosis Reference, provides information to help with diagnosing problems,
developing search arguments for searching problem reporting data bases, and collecting data for
reporting problems to IBM.

• The VSE/ESA Messages and Codes, contains REXX error numbers and messages.

See page “Compiler Publications” on page 500 for a list of books for the IBM Compiler and Library for
REXX/370.

Introduction

Chapter 1. Introduction 5

http://publibfp.dhe.ibm.com/epubs/pdf/iesrde01.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

Introduction

6 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 2. REXX General Concepts

The REstructured eXtended eXecutor (REXX) language is particularly suitable for:

• Command procedures
• Application front ends
• Prototyping
• Personal computing. Individual users can write programs for their own needs.

REXX is a general purpose programming language like PL/I. REXX has the usual structured-programming
instructions — IF, SELECT, DO WHILE, LEAVE, and so on — and a number of useful built-in functions.

The language imposes no restrictions on program format. There can be more than one clause on a line, or
a single clause can occupy more than one line. Indentation is allowed. You can, therefore, code programs
in a format that emphasizes their structure, making them easier to read.

The limit on the length of the value of variables is the amount of storage available in a single request.

The limit on the length of symbols (variable names) is 250 characters.

You can use compound symbols, such as

NAME.Y.Z

(where Y and Z can be the names of variables or can be constant symbols), for constructing arrays and for
other purposes.

A host command is a command for the surrounding system to act upon. Issuing host commands from
within a REXX program is an integral part of the REXX language.

You can use REXX/VSE commands (for example, MAKEBUF, DROPBUF, and NEWSTACK) and ADDRESS
POWER commands in a REXX program. You can also link to programs and issue JCL commands. “Host
Commands and Host Command Environments.” on page 24 describes the different environments for
using host services.

The location for all parts of REXX/VSE is the PRD1.BASE sublibrary. All descriptions and examples in this
book refer to this sublibrary.

REXX programs must reside in a member of a sublibrary in the active PROC chain. For more information,
see REXX/VSE User's Guide.

You can call a program from batch using the JCL EXEC command. See Figure 19 on page 329 for an
example. Or you can call the ARXEXEC or ARXJCL interface from any program. See “Calling REXX with
ARXEXEC or ARXJCL” on page 331 for more information. Programs are loaded from the active PROC
chain.

A language processor runs REXX programs. If a program is interpreted, it is processed line-by-line and
word-by-word. It is not first translated to another form (compiled).

When a program is loaded into storage, the load routine checks for sequence numbers in the REXX
program. The routine removes the sequence numbers during the loading process. For information about
how the load routine checks for sequence numbers, see “Exec Load Routine” on page 442.

Where to Find More Information
You can find useful information in the REXX/VSE User's Guide. For any program written in the REXX
language, you can use the REXX TRACE instruction to get information on how the language processor
interprets the program or a particular instruction.

See page “Compiler Publications” on page 500 for a list of books for the IBM Compiler and Library for
REXX/370.

REXX General Concepts

© Copyright IBM Corp. 1988, 2004 7

http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf

Structure and General Syntax
REXX programs are recommended to start with a comment. REXX/VSE does not require this. However, for
portability reasons, you are recommended to start each REXX program with a comment that begins on the
first line and includes the word REXX. The example in Figure 1 on page 8 illustrates this. The program
starts with a comment and the characters "REXX" are in the first line (line 1).

/* REXX program to check ...
 ... The program then ... */
 ...
 ...
 ...
EXIT

Figure 1. Example of Using the REXX Program Identifier

A REXX program is built from a series of clauses that are composed of:

• Zero or more blanks (which are ignored)
• A sequence of tokens (see “Tokens” on page 9)
• Zero or more blanks (again ignored)
• A semicolon (;) delimiter that may be implied by line-end, certain keywords, or the colon (:).

Conceptually, each clause is scanned from left to right before processing, and the tokens composing it are
identified. Instruction keywords are recognized at this stage, comments are removed, and multiple blanks
(except within literal strings) are converted to single blanks. Blanks adjacent to operator characters and
special characters (see “Special Characters: ” on page 12) are also removed.

Characters
A character is a member of a defined set of elements that is used for the control or representation of data.
You can usually enter a character with a single keystroke. The coded representation of a character is its
representation in digital form. A character, the letter A, for example, differs from its coded representation
or encoding. Various coded character sets (such as ASCII and EBCDIC) use different encodings for the
letter A (decimal values 65 and 193, respectively). This book uses characters to convey meanings and
not to imply a specific character code, except where otherwise stated. The exceptions are certain built-in
functions that convert between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

A code page specifies the encodings for each character in a set. You should be aware that:

• Some code pages do not contain all characters that REXX defines as valid (for example, ¬, the logical
NOT character).

• Some characters that REXX defines as valid have different encodings in different code pages (for
example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Chapter 22, “Double-Byte Character Set
(DBCS) Support,” on page 479.

Comments
A comment is a sequence of characters (on one or more lines) delimited by /* and */. Within these
delimiters any characters are allowed. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. They are called nested comments. Comments can be anywhere
and can be of any length. They have no effect on the program, but they do act as separators. (Two tokens
with only a comment in between are not treated as a single token.)

/* This is an example of a valid REXX comment */

REXX General Concepts

8 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Take special care when commenting out lines of code containing /* or */ as part of a literal string.
Consider the following program segment:

01 parse pull input
02 if substr(input,1,5) = '/*123'
03 then call process
04 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /* that is part of the literal string /
*123 as the start of a nested comment. It would not process the rest of the program because it would be
looking for a matching comment end (*/).

You can avoid this type of problem by using concatenation for literal strings containing /* or */; line 2
would be:

if substr(input,1,5) = '/' || '*123'

You could comment out lines 2 and 3 correctly as follows:

01 parse pull input
02 /* if substr(input,1,5) = '/' || '*123'
03 then call process
04 */ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Chapter 22, “Double-Byte Character Set
(DBCS) Support,” on page 479 and the OPTIONS instruction “OPTIONS” on page 43.

Tokens
A token is the unit of low-level syntax from which clauses are built. Programs written in REXX are
composed of tokens. They are separated by blanks or comments or by the nature of the tokens
themselves. The classes of tokens are:
Literal Strings:

A literal string is a sequence including any characters and delimited by the single quotation mark (')
or the double quotation mark ("). Use two consecutive double quotation marks ("") to represent a "
character within a string delimited by double quotation marks. Similarly, use two consecutive single
quotation marks ('') to represent a ' character within a string delimited by single quotation marks. A
literal string is a constant and its contents are never modified when it is processed.

A literal string with no characters (that is, a string of length 0) is called a null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /* Same as "You shouldn't" */
'' /* The null string */

Note that a string followed immediately by a (is considered to be the name of a function. If followed
immediately by the symbol X or x, it is considered to be a hexadecimal string. If followed immediately
by the symbol B or b, it is considered to be a binary string. Descriptions of these forms follow.

Implementation maximum: A literal string can contain up to 250 characters. (But note that the
length of computed results is limited only by the amount of storage available.)

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a hexadecimal notation of its encoding. It is
any sequence of zero or more hexadecimal digits (0–9, a–f, A–F), grouped in pairs. A single leading 0

REXX General Concepts

Chapter 2. REXX General Concepts 9

is assumed, if necessary, at the front of the string to make an even number of hexadecimal digits. The
groups of digits are optionally separated by one or more blanks, and the whole sequence is delimited
by single or double quotation marks, and immediately followed by the symbol X or x. (Neither x nor
X can be part of a longer symbol.) The blanks, which may be present only at byte boundaries (and
not at the beginning or end of the string), are to aid readability. The language processor ignores them.
A hexadecimal string is a literal string formed by packing the hexadecimal digits given. Packing the
hexadecimal digits removes blanks and converts each pair of hexadecimal digits into its equivalent
character, for example: 'C1'X to A.

Hexadecimal strings let you include characters in a program even if you cannot directly enter the
characters themselves. These are valid hexadecimal strings:

'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number. Rather, it is an escape mechanism
that lets a user describe a character in terms of its encoding (and, therefore, is machine-dependent).
In EBCDIC, '40'X is the encoding for a blank. In every case, a string of the form '.....'x is simply an
alternative to a straightforward string. In EBCDIC 'C1'x and 'A' are identical, as are '40'x and a blank,
and must be treated identically.

Implementation maximum: The packed length of a hexadecimal string (the string with blanks
removed) cannot exceed 250 bytes.

Binary Strings:
A binary string is a literal string, expressed using a binary representation of its encoding. It is any
sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes) or 4 (nibbles). The first group
may have fewer than four digits; in this case, up to three 0 digits are assumed to the left of the first
digit, making a total of four digits. The groups of digits are optionally separated by one or more blanks,
and the whole sequence is delimited by matching single or double quotation marks and immediately
followed by the symbol b or B. (Neither b nor B can be part of a longer symbol.) The blanks, which may
be present only at byte or nibble boundaries (and not at the beginning or end of the string), are to aid
readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary digits given. If the number of binary
digits is not a multiple of eight, leading zeros are added on the left to make a multiple of eight before
packing. Binary strings allow you to specify characters explicitly, bit by bit.

These are valid binary strings:

'11110000'b /* == 'f0'x */
"101 1101"b /* == '5d'x */
'1'b /* == '00000001'b and '01'x */
'10000 10101010'b /* == '0001 0000 1010 1010'b */
''b /* == '' */

Symbols:
Symbols are groups of characters, selected from the:

• English alphabetic characters (A–Z and a–z1)
• Numeric characters (0–9)
• Characters @ # $ ¢ . ! 2? and underscore.
• Double-Byte Character Set (DBCS) characters (X'41'–X'FE')—ETMODE must be in effect for these

characters to be valid in symbols. See Chapter 22, “Double-Byte Character Set (DBCS) Support,” on
page 479 for more information.

Any lowercase alphabetic character in a symbol is translated to uppercase (that is, lowercase a–z to
uppercase A–Z) before use.

1 Note that some code pages do not include lowercase English characters a–z.
2 The encoding of the exclamation point character depends on the code page in use.

REXX General Concepts

10 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

These are valid symbols:

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it as a variable and can assign it a
value. If you have not assigned it a value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a–z to uppercase A–Z). Symbols that begin with a number or a period
are constant symbols and cannot be assigned a value.

One other form of symbol is allowed to support the representation of numbers in exponential format.
The symbol starts with a digit (0–9) or a period, and it may end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by one or more digits (which cannot be
followed by any other symbol characters). The sign in this context is part of the symbol and is not an
operator.

These are valid numbers in exponential notation:

17.3E-12
.03e+9

Implementation maximum: A symbol can consist of up to 250 characters. (But note that, if it is a
variable, the only limit on its value is the amount of storage obtainable in a single request.)

Numbers:
These are character strings consisting of one or more decimal digits, with an optional prefix of a
plus or minus sign, and optionally including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional exponential notation: an E (uppercase or
lowercase), followed optionally by a plus or minus sign, then followed by one or more decimal digits
defining the power of 10. Whenever a character string is used as a number, rounding may occur to a
precision specified by the NUMERIC DIGITS instruction (default nine digits). See Chapter 6, “Numbers
and Arithmetic,” on page 119-“Errors” on page 126 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and can have trailing blanks.
Blanks may not be embedded among the digits of a number or in the exponential part. Note that
a symbol (see preceding) or a literal string may be a number. A number cannot be the name of a
variable.

These are valid numbers:

12
'-17.9'
127.0650
73e+128
' + 7.9E5 '

You can specify numbers with or without quotation marks around them. Note that the sequence
-17.9 (without quotation marks) in an expression is not simply a number. It is a minus operator
(which may be prefix minus if no term is to the left of it) followed by a positive number. The result of
the operation is a number.

A whole number is a number that has a zero (or no) decimal part and that the language processor
would not usually express in exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in exponential notation can have
up to nine digits.

Operator Characters:
The characters: + - \ / % * | & = ¬ > < and the sequences >= <= \> \< \= >< <>
== \== // && || ** ¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= /= /== indicate
operations (see “Operators” on page 13). A few of these are also used in parsing templates, and the

REXX General Concepts

Chapter 2. REXX General Concepts 11

equal sign is also used to indicate assignment. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character sets, and, if this is the case,
appropriate translations may be used. In particular, the vertical bar (|) or character is often shown
as a split vertical bar (¦).

Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use the
two characters interchangeably according to availability and personal preference.

Special Characters:
The following characters, together with the individual characters from the operators, have special
significance when found outside of literal strings:

, ; :) (

These characters constitute the set of special characters. They all act as token delimiters, and blanks
adjacent to any of these are removed. There is an exception: a blank adjacent to the outside of a
parenthesis is deleted only if it is also adjacent to another special character (unless the character
is a parenthesis and the blank is outside it, too). For example, the language processor does not
remove the blank in A (Z). This is a concatenation that is not equivalent to A(Z), a function call. The
language processor does remove the blanks in (A) + (Z) because this is equivalent to (A)+(Z).

The following example shows how a clause is composed of tokens.

'REPEAT' A + 3;

This is composed of six tokens—a literal string ('REPEAT'), a blank operator, a symbol (A, which may have
a value), an operator (+), a second symbol (3, which is a number and a symbol), and the clause delimiter
(;). The blanks between the A and the + and between the + and the 3 are removed. However, one of the
blanks between the 'REPEAT' and the A remains as an operator. Thus, this clause is treated as though
written:

'REPEAT' A+3;

Implied Semicolons
The last element in a clause is the semicolon delimiter. The language processor implies the semicolon: at
a line-end, after certain keywords, and after a colon if it follows a single symbol. This means that you need
to include semicolons only when there is more than one clause on a line or to end an instruction whose
last character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon at most end of lines.
However, there are the following exceptions:

• The line ends in the middle of a string.
• The line ends in the middle of a comment. The clause continues on to the next line.
• The last token was the continuation character (a comma) and the line does not end in the middle of a

comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single symbol, a label) and after
certain keywords when they are in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /* and */, must not be split by a line-end
(that is, / and * should not appear on different lines) because they could not then be recognized correctly;
an implied semicolon would be added. The two consecutive characters forming a literal quotation mark
within a string are also subject to this line-end ruling.

REXX General Concepts

12 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Continuations
One way to continue a clause onto the next line is to use the comma, which is referred to as the
continuation character. The comma is functionally replaced by a blank, and, thus, no semicolon is
implied. One or more comments can follow the continuation character before the end of the line. The
continuation character cannot be used in the middle of a string or it will be processed as part of the string
itself. The same situation holds true for comments. Note that the comma remains in execution traces.

The following example shows how to use the continuation character to continue a clause.

say 'You can use a comma',
 'to continue this clause.'

This displays:

You can use a comma to continue this clause.

Expressions and Operators
Expressions in REXX are a general mechanism for combining one or more pieces of data in various ways to
produce a result, usually different from the original data.

Expressions
Expressions consist of one or more terms (literal strings, symbols, function calls, or subexpressions)
interspersed with zero or more operators that denote operations to be carried out on terms. A
subexpression is a term in an expression bracketed within a left and a right parenthesis.

Terms include:

• Literal Strings (delimited by quotation marks), which are constants
• Symbols (no quotation marks), which are translated to uppercase. A symbol that does not begin with a

digit or a period may be the name of a variable; in this case the value of that variable is used. Otherwise
a symbol is treated as a constant string. A symbol can also be compound.

• Function calls (see Chapter 4, “Functions,” on page 59), which are of the form:

symbol (

literal_string (

,

expression

)

Evaluation of an expression is left to right, modified by parentheses and by operator precedence in the
usual algebraic manner (see “Parentheses and Operator Precedence” on page 16). Expressions are
wholly evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings (typeless because it is not—as in some other
languages—of a particular declared type, such as Binary, Hexadecimal, Array, and so forth). Consequently,
the result of evaluating any expression is itself a character string. Terms and results (except arithmetic
and logical expressions) may be the null string (a string of length 0). Note that REXX imposes no
restriction on the maximum length of results. However, there is usually some practical limitation
dependent upon the amount of storage available to the language processor.

Operators
An operator is a representation of an operation, such as addition, to be carried out on one or two
terms. The following pages describe how each operator (except for the prefix operators) acts on two
terms, which may be symbols, strings, function calls, intermediate results, or subexpressions. Each prefix
operator acts on the term or subexpression that follows it. Blanks (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more than one character can

REXX General Concepts

Chapter 2. REXX General Concepts 13

have embedded blanks and comments. In addition, one or more blanks, where they occur in expressions
but are not adjacent to another operator, also act as an operator. There are four types of operators:

• Concatenation
• Arithmetic
• Comparison
• Logical.

String Concatenation
The concatenation operators combine two strings to form one string by appending the second string to
the right-hand end of the first string. The concatenation may occur with or without an intervening blank.
The concatenation operators are:
(blank)

Concatenate terms with one blank in between
||

Concatenate without an intervening blank
(abuttal)

Concatenate without an intervening blank
You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by another operator. This can
occur when two terms are syntactically distinct, such as a literal string and a symbol, or when they are
separated only by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then Fred'%' evaluates to
37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,

'c1 c2'x'CDE'

evaluate to ABCDE.

In the case of:

 Fred/* The NOT operator precedes Peter. */¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

 (Fred)/* The NOT operator precedes Peter. */(¬Peter)

results in an abuttal, and evaluates to 37.40.

Arithmetic
You can combine character strings that are valid numbers (see “Tokens” on page 9) using the arithmetic
operators:
+

Add
-

Subtract
*

Multiply

REXX General Concepts

14 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

/
Divide

%
Integer divide (divide and return the integer part of the result)

//
Remainder (divide and return the remainder—not modulo, because the result may be negative)

**
Power (raise a number to a whole-number power)

Prefix -
Same as the subtraction: 0 - number

Prefix +
Same as the addition: 0 + number.

See Chapter 6, “Numbers and Arithmetic,” on page 119 for details about precision, the format of valid
numbers, and the operation rules for arithmetic. Note that if an arithmetic result is shown in exponential
notation, it is likely that rounding has occurred.

Comparison
The comparison operators compare two terms and return the value 1 if the result of the comparison is
true, or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator doubled. The ==,
\==, /==, and ¬== operators test for an exact match between two strings. The two strings must be
identical (character by character) and of the same length to be considered strictly equal. Similarly, the
strict comparison operators such as >> or << carry out a simple character-by-character comparison, with
no padding of either of the strings being compared. The comparison of the two strings is from left to right.
If one string is shorter than and is a leading substring of another, then it is smaller than (less than) the
other. The strict comparison operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a numeric comparison (in
which leading zeros are ignored, and so forth—see Chapter 6, “Numbers and Arithmetic,” on page 119) is
effected. Otherwise, both terms are treated as character strings (leading and trailing blanks are ignored,
and then the shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive, and for both the exact
collating order may depend on the character set used for the implementation. For example, in an
EBCDIC environment, lowercase alphabetics precede uppercase, and the digits 0–9 are higher than
all alphabetics. In an ASCII environment, the digits are lower than the alphabetics, and lowercase
alphabetics are higher than uppercase alphabetics.

The comparison operators and operations are:
=

True if the terms are equal (numerically or when padded, and so forth)
\=, ¬=, /=

True if the terms are not equal (inverse of =)
>

Greater than
<

Less than
><

Greater than or less than (same as not equal)
<>

Greater than or less than (same as not equal)

REXX General Concepts

Chapter 2. REXX General Concepts 15

>=
Greater than or equal to

\<, ¬<
Not less than

<=
Less than or equal to

\>, ¬>
Not greater than

==
True if terms are strictly equal (identical)

\==, ¬==, /==
True if the terms are NOT strictly equal (inverse of ==)

>>
Strictly greater than

<<
Strictly less than

>>=
Strictly greater than or equal to

\<<, ¬<<
Strictly NOT less than

<<=
Strictly less than or equal to

\>>, ¬>>
Strictly NOT greater than

Note: Throughout the language, the not character, ¬, is synonymous with the backslash (\). You can use
the two characters interchangeably, according to availability and personal preference. The backslash can
appear in the following operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

Logical (Boolean)
A character string is taken to have the value false if it is 0, and true if it is 1. The logical operators take one
or two such values (values other than 0 or 1 are not allowed) and return 0 or 1 as appropriate:
&

AND Returns 1 if both terms are true.
|

Inclusive OR Returns 1 if either term is true.
&&

Exclusive OR Returns 1 if either (but not both) is true.
Prefix \,¬

Logical NOT Negates; 1 becomes 0, and 0 becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence modify this:

• When parentheses are encountered (other than those that identify function calls) the entire
subexpression between the parentheses is evaluated immediately when the term is required.

• When the sequence:

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than operator1, the subexpression (term2
operator2 term3) is evaluated first. The same rule is applied repeatedly as necessary.

REXX General Concepts

16 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Note, however, that individual terms are evaluated from left to right in the expression (that is, as soon as
they are encountered). The precedence rules affect only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to 13 (rather than the
25 that would result if strict left to right evaluation occurred). To force the addition to occur before the
multiplication, you could rewrite the expression as (3+2)*5. Adding the parentheses makes the first
three tokens a subexpression. Similarly, the expression -3**2 evaluates to 9 (instead of -9) because the
prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):
+ - ¬ \

(prefix operators)

**
(power)

* / % //
(multiply and divide)

+ -
(add and subtract)

(blank) || (abuttal)
(concatenation with or without blank)

= > <
(comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

/= /==

&
(and)

REXX General Concepts

Chapter 2. REXX General Concepts 17

| &&
(or, exclusive or)

Examples:

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value is Monday, and other
variables are uninitialized. Then:

A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> '0.25'
(A+1)>7 -> '0' /* that is, False */
' '='' -> '1' /* that is, True */
' '=='' -> '0' /* that is, False */
' '¬=='' -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
'077'>'11' -> '1' /* that is, True */
'077' >> '11' -> '0' /* that is, False */
'abc' >> 'ab' -> '1' /* that is, True */
'abc' << 'abd' -> '1' /* that is, True */
'ab ' << 'abd' -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
'!'xxx'!' -> '!XXX!'
'000000' >> '0E0000' -> '1' /* that is, True */

Note: The last example would give a different answer if the > operator had been used rather than >>.
Because '0E0000' is a valid number in exponential notation, a numeric comparison is done; thus '0E0000'
and '000000' evaluate as equal. The REXX order of precedence usually causes no difficulty because it
is the same as in conventional algebra and other computer languages. There are two differences from
common notations:

• The prefix minus operator always has a higher priority than the power operator.
• Power operators (like other operators) are evaluated left-to-right.

For example:

-3**2 == 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

Clauses and Instructions
Clauses can be subdivided into the following types:

Null Clauses
A clause consisting only of blanks or comments or both is a null clause. It is completely ignored (except
that if it includes a comment it is traced, if appropriate).

Note: A null clause is not an instruction; for example, putting an extra semicolon after the THEN or ELSE
in an IF instruction is not equivalent to using a dummy instruction (as it would be in PL/I). The NOP
instruction is provided for this purpose.

Labels
A clause that consists of a single symbol followed by a colon is a label. The colon in this context implies a
semicolon (clause separator), so no semicolon is required. Labels identify the targets of CALL instructions,
SIGNAL instructions, and internal function calls. More than one label may precede any instruction. Labels
are treated as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses may be labels. This permits multiple labels before other clauses.
Duplicate labels are permitted, but control passes only to the first of any duplicates in a program. The

REXX General Concepts

18 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

duplicate labels occurring later can be traced but cannot be used as a target of a CALL, SIGNAL, or
function invocation.

Instructions
An instruction consists of one or more clauses describing some course of action for the language
processor to take. Instructions can be: assignments, keyword instructions, or commands.

Assignments
A single clause of the form symbol=expression is an instruction known as an assignment. An assignment
gives a variable a (new) value. See “Assignments and Symbols” on page 19.

Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies the
instruction. Keyword instructions control the external interfaces, the flow of control, and so forth. Some
keyword instructions can include nested instructions. In the following example, the DO construct (DO,
the group of instructions that follow it, and its associated END keyword) is considered a single keyword
instruction.

DO
 instruction
 instruction
 instruction
END

A subkeyword is a keyword that is reserved within the context of some particular instruction, for
example, the symbols TO and WHILE in the DO instruction.

Commands
A command is a clause consisting of only an expression. The expression is evaluated and the result is
passed as a command string to some external environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX program. The process of
changing the value of a variable is called assigning a new value to it. The value of a variable is a single
character string, of any length, that may contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL instructions, the VALUE built-in
function, the VALUE built-in function, or the Variable Access Routine (IRXEXCOM), or the variable pool
access interface (ARXEXCOM) but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of the variable named by
the symbol to the left of the equal sign. If you omit expression, the variable is set to the null string.
However, it is recommended that you explicitly set a variable to the null string: symbol=''.

Variable names can contain DBCS characters. For information about DBCS characters, see Chapter 22,
“Double-Byte Character Set (DBCS) Support,” on page 479.

Example:

/* Next line gives FRED the value "Frederic" */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0–9) or a period. (Without this restriction on the
first character of a variable name, you could redefine a number; for example 3=4; would give a variable
called 3 the value 4.)

REXX General Concepts

Chapter 2. REXX General Concepts 19

You can use a symbol in an expression even if you have not assigned it a value, because a symbol
has a defined value at all times. A variable you have not assigned a value is uninitialized. Its value is
the characters of the symbol itself, translated to uppercase (that is, lowercase a–z to uppercase A–Z).
However, if it is a compound symbol (described under “Compound Symbols” on page 20), its value is the
derived name of the symbol.

Example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term in an expression (rather than
a keyword of some kind, for example), a symbol belongs to one of four groups: constant symbols, simple
symbols, compound symbols, and stems. Constant symbols cannot be assigned new values. You can
use simple symbols for variables where the name corresponds to a single value. You can use compound
symbols and stems for more complex collections of variables, such as arrays and lists.

Constant Symbols
A constant symbol starts with a digit (0–9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting of the characters of
the symbol (that is, with any lowercase alphabetic characters translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /* Same as 12E5 */
3D
17E-3

Simple Symbols
A simple symbol does not contain any periods and does not start with a digit (0–9).

By default, its value is the characters of the symbol (that is, translated to uppercase). If the symbol has
been assigned a value, it names a variable and its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /* Same as WHATAGOODIDEA? */
?12

Compound Symbols
A compound symbol permits the substitution of variables within its name when you refer to it. A
compound symbol contains at least one period and at least two other characters. It cannot start with
a digit or a period, and if there is only one period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first period). This is followed
by a tail, parts of the name (delimited by periods) that are constant symbols, simple symbols, or null.
The derived name of a compound symbol is the stem of the symbol, in uppercase, followed by the tail,
in which all simple symbols have been replaced with their values. A tail itself can be comprised of the
characters A–Z, a–z, 0–9, and @ # $ ¢ . ! ? and underscore. The value of a tail can be any character
string, including the null string and strings containing blanks. For example:

taila='* ('
tailb=''
stem.taila=99
stem.tailb=stem.taila
say stem.tailb /* Displays: 99 */

REXX General Concepts

20 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

/* But the following instruction would cause an error */
/* say stem.* (*/

You cannot use constant symbols with embedded signs (for example, 12.3E+5) after a stem; in this case,
the whole symbol would not be a valid symbol.

These are compound symbols:

FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used (that is, at the time of reference), the language processor substitutes the values
of any simple symbols in the tail (I, J, and One in the examples), thus generating a new, derived name.
This derived name is then used just like a simple symbol. That is, its value is by default the derived name,
or (if it has been used as the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing (subscripting) of collections
of variables that have a common stem. Note that the values substituted can contain any characters
(including periods and blanks). Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the symbol

s0.s1.s2. --- .sn

is given by

d0.v1.v2. --- .vn

where d0 is the uppercase form of the symbol s0, and v1 to vn are the values of the constant or simple
symbols s1 through sn. Any of the symbols s1-sn can be null. The values v1-vn can also be null and can
contain any characters (in particular, lowercase characters are not translated to uppercase, blanks are not
removed, and periods have no special significance).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable A */
z=4 /* '4' to Z */
c='Fred' /* 'Fred' to C */
a.z='Fred' /* 'Fred' to A.4 */
a.fred=5 /* '5' to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
y.a.z='Annie' /* 'Annie' to Y.3.4 */

say a z c a.a a.z a.c c.a a.fred y.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

You can use compound symbols to set up arrays and lists of variables in which the subscript is not
necessarily numeric, thus offering great scope for the creative programmer. A useful application is to set
up an array in which the subscripts are taken from the value of one or more variables, effecting a form of
associative memory (content addressable).

Implementation maximum: The length of a variable name, before and after substitution, cannot exceed
250 characters.

Stems
A stem is a symbol that contains just one period, which is the last character. It cannot start with a digit or
a period.

These are stems:

FRED.
A.

REXX General Concepts

Chapter 2. REXX General Concepts 21

By default, the value of a stem is the string consisting of the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its value is the value of that
variable.

Further, when a stem is used as the target of an assignment, all possible compound variables whose
names begin with that stem receive the new value, whether they previously had a value or not. Following
the assignment, a reference to any compound symbol with that stem returns the new value until another
value is assigned to the stem or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

/* says "empty empty full" */

Thus, you can give a whole collection of variables the same value. For example:

total. = 0
do forever
 say "Enter an amount and a name:"
 pull amount name
 if datatype(amount)='CHAR' then leave
 total.name = total.name + amount
 end

Note: You can always obtain the value that has been assigned to the whole collection of variables by using
the stem. However, this is not the same as using a compound variable whose derived name is the same as
the stem. For example:

total. = 0
null = ""
total.null = total.null + 5
say total. total.null /* says "0 5" */

You can manipulate collections of variables, referred to by their stem, with the DROP and PROCEDURE
instructions. DROP FRED. drops all variables with that stem (see “DROP” on page 37), and PROCEDURE
EXPOSE FRED. exposes all possible variables with that stem (see “PROCEDURE” on page 46).

Note:

1. When the ARG, PARSE, or PULL instruction or the VALUE built-in function or the variable pool access
interface (ARXEXCOM), changes a variable, the effect is identical with an assignment. Anywhere a
value can be assigned, using a stem sets an entire collection of variables.

2. Because an expression can include the operator =, and an instruction may consist purely of an
expression (see “Commands to External Environments” on page 23), a possible ambiguity is resolved
by the following rule: any clause that starts with a symbol and whose second token is (or starts with)
an equal sign (=) is an assignment, rather than an expression (or a keyword instruction). This is not
a restriction, because you can ensure the clause is processed as a command in several ways, such
as by putting a null string before the first name, or by enclosing the first part of the expression in
parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an assignment, this should
not cause confusion. For example, the clause:

Address='10 Downing Street';

is an assignment, not an ADDRESS instruction.
3. You can use the SYMBOL function (see page “SYMBOL” on page 82) to test whether a symbol

has been assigned a value. In addition, you can set SIGNAL ON NOVALUE to trap the use of any
uninitialized variables (except when they are tails in compound variables—see page “NOVALUE ” on
page 129).

REXX General Concepts

22 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Commands to External Environments
Issuing commands to the surrounding environment is an integral part of REXX.

Environment
The system under which REXX programs run is assumed to include at least one host command
environment for processing commands. An environment is selected by default on entry to a REXX
program. The environment for processing host commands. is known as the host command environment.
You can change the environment by using the ADDRESS instruction. You can find out the name of the
current environment by using the ADDRESS built-in function. The underlying operating system defines
environments external to the REXX program.

REXX/VSE provides six host command environments: VSE, POWER, JCL, LINK, LINKPGM, and CONSOLE.
The default environment for processing commands is VSE.

“Host Commands and Host Command Environments.” on page 24 explains the different types of host
commands you can use in a REXX program and the different host command environments for the
processing of host commands.

The environments are provided in the host command environment table, which specifies the host
command environment name and the routine that is called to handle the command processing for that
host command environment. You can provide your own host command environment and corresponding
routine and define them in the host command environment table. “Host Command Environment Table” on
page 401 describes the table in more detail. “Changing the Default Values for Initializing an Environment”
on page 412 describes how to change the defaults to define your own host command environments. You
can also use the ARXSUBCM routine to maintain entries in the host command environment table (see
page “Maintain Entries in the Host Command Environment Table – ARXSUBCM” on page 357).

Commands
To send a command to the currently addressed environment, use a clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null string), which is then
prepared as appropriate and submitted to the host command environment. Any part of the expression not
to be evaluated should be enclosed in quotation marks.

The environment then processes the command, which may have side-effects. It eventually returns control
to the language processor, after setting a return code. A return code is a string, typically a number, that
returns some information about the command that has been processed. A return code usually indicates
if a command was successful or not but can also represent other information. The language processor
places this return code in the REXX special variable RC. See “Special Variables” on page 132.

In addition to setting a return code, the underlying system may also indicate to the language processor if
an error or failure occurred. An error is a condition raised by a command for which a program that uses
that command would usually be expected to be prepared. (An example of an error could be an EXECIO
command that tries to write a record that is truncated.) A failure is a condition raised by a command
for which a program that uses that command would not usually be expected to recover (for example, a
command that is not executable or cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for ERROR or FAILURE is
ON (see Chapter 7, “Conditions and Condition Traps,” on page 129). They may also cause the command to
be traced if TRACE E or TRACE F is set. TRACE Normal is the same as TRACE F and is the default—see
“TRACE” on page 53.

Here is an example of submitting a command.

"ADDRESS VSE EXEC" myprog

REXX General Concepts

Chapter 2. REXX General Concepts 23

The host command environment is VSE. MYPROG is a member in a sublibrary in the active PROC chain.
The command results in running MYPROG.

Note: Whenever you enter a host command from a REXX program, enclose in quotation marks any part of
the expression that is not to be evaluated. This can be the entire command or parts of the expression.

Whenever a host command is processed, the return code from the command is placed in the REXX special
variable RC.

Host Commands and Host Command Environments.
A host command is a command for the surrounding environment to act upon. You can issue host
commands from a REXX program. When the language processor processes a clause that it does not
recognize as an assignment or other REXX instruction, the language processor treats the clause as a host
command and routes the command to the host command environment. The host command environment
processes the command and then returns control to the language processor.

For example, in REXX processing, a host command can be:

• A REXX/VSE command (such as NEWSTACK or QBUF)
• An ADDRESS POWER command (such as PUTQE, GETQE, QUERYMSG, or any of the POWER commands

that you can issue through a CTL service request. See “The POWER Host Command Environment” on
page 25 and Chapter 11, “ADDRESS POWER Commands,” on page 181 for details.)

• The name of a REXX procedure in the active PROC search chain.
• A JCL command.
• The name of a program invoked by ADDRESS LINK or ADDRESS LINKPGM.
• An ADDRESS CONSOLE command (such as ACTIVATE, CART, CONSTATE, CONSWITCH, and

DEACTIVATE).

If a REXX program contains

FRED var1 var2

the language processor considers the clause to be a host command and passes the clause to the current
host command environment for processing. The host command environment processes the command,
sets a return code in the REXX special variable RC, and returns control to the language processor. The
return code set in RC is the return code from the host command you specified. (For example, the value in
RC can be the return code from a VSE/ESA command processor.) A return code of -3 is always returned if
you use a host command in a program and the host command environment cannot locate the command
(REXX/VSE command, REXX program, or phase).

If a system abend occurs during a host command, no return code is set and no recovery is available. If
no abend occurs during a host command, the REXX special variable RC is set to the decimal value of the
return code from the command.

Certain conditions may be raised depending on the value of the special variable RC:

• If the RC value is negative, the FAILURE condition is raised.
• If the RC value is positive, the ERROR condition is raised.
• If the RC value is zero, neither the ERROR nor FAILURE conditions are raised.

See Chapter 7, “Conditions and Condition Traps,” on page 129 for more information.

If you issue a host command in a REXX program, it is recommended that you enclose the entire command
(or as much of it as possible) in quotation marks, for example:

"routine-name p1 p2"

REXX/VSE provides six host command environments:

• VSE

REXX General Concepts

24 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• POWER
• JCL
• LINK
• LINKPGM
• CONSOLE

The VSE Host Command Environment
The default host command environment is VSE.

You can use the VSE host command environment to invoke REXX/VSE commands (such as MAKEBUF and
NEWSTACK) and services. (See Chapter 10, “REXX/VSE Commands,” on page 143).

You can also call another REXX program using the EXEC command. In the VSE environment, you can use
all REXX/VSE commands but you cannot use POWER, JCL, or Console commands. You can use one of
the following instructions to call a REXX program. The instructions in the following example assume the
current host command environment is not VSE.

ADDRESS VSE "EXEC programname p1 p2 …"

ADDRESS VSE "EX programname p1 p2 …"

ADDRESS VSE "programname p1 p2 …" /* Implicit EXEC command */

If you use the ADDRESS VSE EXEC command to invoke another REXX program, the system searches the
active PROC chain for the partition. If the program is not found, the search for the program ends and the
REXX special variable RC is set to -3.

Note that the value that can be set in the REXX special variable RC for the VSE environment is a signed 31
bit number in the range -2,147,483,648 to +2,147,483,647.

To load and call a phase from the active PHASE search chain, use one of the host command environments
that Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205
describes.

The POWER Host Command Environment
The POWER host command environment is for VSE/POWER spool-access services requests, GET, PUT,
and CTL. (For details about the VSE/POWER spool-access services interface, see VSE/POWER Application
Programming. In the POWER host command environment, you can use both REXX/VSE and POWER
commands. The POWER host command environment lets you:

• Use the PUTQE command to put elements on a POWER queue and the GETQE command to retrieve
POWER queue elements

• Send a CTL service request to POWER. See “CTL” on page 196 for a list of the POWER commands that
you can send through a CTL service request. See VSE/POWER Administration and Operation, for the
syntax of these commands.

• Use the QUERYMSG command to return job completion messages into the stem specified by OUTTRAP.
• Execute REXX/VSE commands

When the language processor encounters a command for the POWER host command environment, it:

1. Checks if it is GETQE, PUTQE or QUERYMSG. If so, the language processor executes the command.
2. Checks if it is a valid command for the ADDRESS VSE environment. If so, the language processor

executes the command.
3. Sends the command to POWER through the VSE/POWER spool-access services interface.

REXX General Concepts

Chapter 2. REXX General Concepts 25

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

The JCL Host Command Environment
You can use the JCL host command environment to issue a JCL command in a much simpler way than
with the conditional job control language. This host command environment is invoked via the command
ADDRESS JCL.

See Chapter 12, “JCL Command Environment,” on page 201 for detailed information.

The LINK and LINKPGM Host Command Environments
Loading and calling a program is called linking. REXX/VSE provides the LINK and LINKPGM host
command environments to let you load and call non-REXX programs. These programs must be phases
from the active PHASE search chain. LINK and LINKPGM offer different ways to provide parameters.

See Chapter 13, “Host Command Environments for Loading and Calling Programs,” on page 205 for
detailed information.

The CONSOLE Host Command Environment

The CONSOLE host command environment allows to activate and deactivate one or more VSE/ESA
console sessions. Having activated a VSE/ESA console session, VSE/ESA console commands can
be imbedded into a REXX program. A GETMSG function receives command responses and console
messages.

See Chapter 14, “REXX/VSE Console Automation,” on page 217 for detailed information.

REXX General Concepts

26 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword that identifies
the instruction. Some keyword instructions affect the flow of control, while others provide services to the
programmer. Some keyword instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote keywords or
subkeywords; other words (such as expression) denote a collection of tokens as defined previously.
Note, however, that the keywords and subkeywords are not case dependent; the symbols if, If, and iF
all have the same effect. Note also that you can usually omit most of the clause delimiters (;) shown
because they are implied by the end of a line.

As explained in “Keyword Instructions” on page 19, a keyword instruction is recognized only if its keyword
is the first token in a clause, and if the second token does not start with an = character (implying an
assignment) or a colon (implying a label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword defined by REXX cannot
be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG built-in function. A syntax
error results if the keywords are not in their correct positions in a DO, IF, or SELECT instruction. (The
keyword THEN is also recognized in the body of an IF or WHEN clause.) In other contexts, keywords
are not reserved and can be used as labels or as the names of variables (though this is generally not
recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of individual instructions.
For example, the symbols VALUE and WITH are subkeywords in the ADDRESS and PARSE instructions,
respectively. For details, see the description of each instruction. For a general discussion on reserved
keywords, see “Reserved Keywords” on page 141.

Blanks adjacent to keywords have no effect other than to separate the keyword from the subsequent
token. One or more blanks following VALUE are required to separate the expression from the subkeyword
in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following example, although it would
add to the readability:

ADDRESS VALUE'ENVIR'||number

ADDRESS

ADDRESS

environment

expression

VALUE

expression1

;

ADDRESS temporarily or permanently changes the destination of commands. A command is a clause
that is not a REXX assignment or another REXX instruction. Commands are strings sent to an external
environment. You can send commands by specifying clauses consisting of only an expression (see
“Commands to External Environments” on page 23) or by using the ADDRESS instruction.

ADDRESS

© Copyright IBM Corp. 1988, 2004 27

REXX/VSE provides the following host command environments:

• VSE (for REXX/VSE commands). This is the default. In this environment, you can use REXX/VSE
commands but not POWER commands.

• POWER (for VSE/POWER spool-access services requests—GET, CTL, GCM, and PUT). In this
environment, you can use both REXX/VSE and POWER commands.

• JCL. In this environment, you can issue a JCL command in a much simpler way than with the conditional
VSE job control language. You can issue JCL commands via a REXX program.

• Environments for linking to a program

– LINK (See “The LINK Host Command Environment” on page 206 for details.)
– LINKPGM (See “The LINKPGM Host Command Environment” on page 208).

• CONSOLE. In this environment, you can manage VSE/ESA console sessions.

“Commands to External Environments” on page 23 describes how to enter commands to the host.

To send a single command to a specified environment, code an environment, a literal string or a single
symbol, which is taken to be a constant, followed by an expression. (The environment name is the name
of an external procedure or process that can process commands.) The expression is evaluated, and
the resulting string is routed to the environment to be processed as a command. (Enclose in quotation
marks any part of the expression you do not want to be evaluated.) After execution of the command,
environment is set back to whatever it was before, thus temporarily changing the destination for a single
command. The special variable RC is set, just as it would be for other commands. (See “Commands” on
page 23.) Errors and failures in commands processed in this way are trapped or traced as usual.

Example:

ADDRESS LINK "routine p1 p2"
ADDRESS JCL "MAP" /* VSE environment */

If you specify only environment, a lasting change of destination occurs: all commands that follow are
routed to the specified command environment, until the next ADDRESS instruction is processed. The
previously selected environment is saved.

Example:

Address VSE
"QBUF"
"MAKEBUF"

Similarly, you can use the VALUE form to make a lasting change to the environment. Here expression1
(which may be simply a variable name) is evaluated, and the result forms the name of the environment.
You can omit the subkeyword VALUE if expression1 does not begin with a literal string or symbol (that is, if
it starts with a special character, such as an operator character or parenthesis).

Example:

ADDRESS ('ENVIR'||number) /* Same as ADDRESS VALUE 'ENVIR'||number */

With no arguments, commands are routed back to the environment that was selected before the previous
lasting change of environment was made, and the current environment name is saved. After changing
the environment, repeated execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately.

The two environment names are automatically saved across internal and external subroutine and function
calls. See the CALL instruction (“CALL” on page 30) for more details.

The address setting is the currently selected environment name. You can retrieve the current address
setting by using the ADDRESS built-in function (see page “ADDRESS” on page 62).

REXX/VSE provides host command environments that you can use with the ADDRESS instruction. After
the environment processes the host command, a return code from the command is set in the REXX
special variable RC. The return code may be a -3, which indicates that the environment could not

ADDRESS

28 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

locate the command you specified. For more information about the environments you can use with the
ADDRESS instruction and the return codes set in the special variable RC, see “The VSE Host Command
Environment” on page 25.

You can provide your own environments or routines that handle command processing in each
environment. For more information, see “Host Command Environment Table” on page 401.

ARG

ARG

template_list

;

ARG retrieves the argument strings provided to a program or internal routine and assigns them to
variables. It is a short form of the instruction:

PARSE UPPER ARG

template_list

;

The template_list is often a single template but can be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Unless a subroutine or internal function is being processed, the strings passed as parameters to the
program are parsed into variables according to the rules described in the section on parsing (“Parsing
Rules” on page 105).

If a subroutine or internal function is being processed, the data used will be the argument strings that the
caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase (that is, lowercase a–z
to uppercase A–Z) before processing them. Use the PARSE ARG instruction if you do not want uppercase
translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same source string or strings
(typically with different templates). The source string does not change. The only restrictions on the length
or content of the data parsed are those the caller imposes.

Example:

/* String passed is "Easy Rider" */

Arg adjective noun .

/* Now: ADJECTIVE contains 'EASY' */
/* NOUN contains 'RIDER' */

If you expect more than one string to be available to the program or routine, you can use a comma in the
parsing template_list so each template is selected in turn.

Example:

/* Function is called by FRED('data X',1,5) */

Fred: Arg string, num1, num2

/* Now: STRING contains 'DATA X' */
/* NUM1 contains '1' */
/* NUM2 contains '5' */

Note:

1. The ARG built-in function can also retrieve or check the argument strings to a REXX program or internal
routine. See “ARG (Argument)” on page 63.

ARG

Chapter 3. Keyword Instructions 29

2. The source of the data being processed is also made available on entry to the program. See the PARSE
instruction (SOURCE option) “PARSE” on page 44 for details.

CALL

CALL name

,

expression

OFF ERROR

FAILURE

HALT

ON ERROR

FAILURE

HALT

NAME  trapname

;

CALL calls a routine (if you specify name) or controls the trapping of certain conditions (if you specify ON
or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 7, “Conditions and Condition Traps,” on page 129.

To call a routine, specify name, a literal string or symbol that is taken as a constant. The name must be a
symbol, which is treated literally, or a literal string. The routine called can be:
An internal routine

A function or subroutine that is in the same program as the CALL instruction or function call that calls
it.

A built-in routine
A function (which may be called as a subroutine) that is defined as part of the REXX language.

An external routine
A function or subroutine that is neither built-in nor in the same program as the CALL instruction or
function call that calls it.

If name is a string (that is, you specify name in quotation marks), the search for internal routines is
bypassed, and only a built-in function or an external routine is called. Note that the names of built-in
functions (and generally the names of external routines, too) are in uppercase; therefore, you should
uppercase the name in the literal string.

The called routine can optionally return a result, and when it does, the CALL instruction is functionally
identical with the clause:

result=name (

,

expression

) ;

If the called routine does not return a result, then you will get an error if you call it as a function (as
previously shown).

If the subroutine returns a result, the result is stored in the REXX special variable RESULT, not the special
variable RC. The REXX special variable RC is set when you enter host commands from a REXX program
(see “Host Commands and Host Command Environments.” on page 24), but RC is not set when you use
the CALL instruction. See Chapter 9, “Reserved Keywords, Special Variables, and Command Names,” on
page 141 for descriptions of the three REXX special variables RESULT, RC, and SIGL.

CALL

30 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXX/VSE supports specifying up to 20 expressions, separated by commas. The expressions are
evaluated in order from left to right and form the argument strings during execution of the routine. Any
ARG or PARSE ARG instruction or ARG built-in function in the called routine accesses these strings rather
than any previously active in the calling program, until control returns to the CALL instruction. You can
omit expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same mechanism as function
calls. (See Chapter 4, “Functions,” on page 59.) The search order is in the section on functions (see
“Search Order” on page 60) but briefly is as follows:
Internal routines:

These are sequences of instructions inside the same program, starting at the label that matches name
in the CALL instruction. If you specify the routine name in quotation marks, then an internal routine is
not considered for that search order. You can use SIGNAL and CALL together to call an internal routine
whose name is determined at the time of execution; this is known as a multi-way call (see “SIGNAL”
on page 51). The RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various functions. They always
return a string that is the result of the routine. (See “Built-in Functions” on page 61.)

External routines:
Users can write or use routines that are external to the language processor and the calling program.
You can code an external routine in REXX or in any language that supports the system-dependent
interfaces. For information about using the system-dependent interfaces, see “External Functions and
Subroutines and Function Packages” on page 344. For information about the search order REXX/VSE
uses to locate external routines, see “Search Order” on page 60. If the CALL instruction calls an
external routine written in REXX as a subroutine, you can retrieve any argument strings with the ARG
or PARSE ARG instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are generally accessible. However,
the PROCEDURE instruction can set up a local variables environment to protect the subroutine and caller
from each other. The EXPOSE option on the PROCEDURE instruction can expose selected variables to a
routine.

Calling an external program as a subroutine is similar to calling an internal routine. The external routine,
however, is an implicit PROCEDURE in that all the caller's variables are always hidden. The status of
internal values (NUMERIC settings, and so forth) start with their defaults (rather than inheriting those of
the caller). In addition, you can use EXIT to return from the routine.

When control reaches an internal routine the line number of the CALL instruction is available in the
variable SIGL (in the caller's variable environment). This may be used as a debug aid, as it is, therefore,
possible to find out how control reached a routine. Note that if the internal routine uses the PROCEDURE
instruction, then it needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point control returns to the
clause following the original CALL. If the RETURN instruction specified an expression, the variable RESULT
is set to the value of that expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive calls to itself.

Example:

/* Recursive subroutine execution... */
arg z
call factorial z
say z'! =' result
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 call factorial n-1
 return result * n

CALL

Chapter 3. Keyword Instructions 31

During internal subroutine (and function) execution, all important pieces of information are automatically
saved and are then restored upon return from the routine. These are:

• The status of DO loops and other structures: Executing a SIGNAL while within a subroutine is safe
because DO loops, and so forth, that were active when the subroutine was called are not ended. (But
those currently active within the subroutine are ended.)

• Trace action: After a subroutine is debugged, you can insert a TRACE Off at the beginning of it, and this
does not affect the tracing of the caller. Conversely, if you simply wish to debug a subroutine, you can
insert a TRACE Results at the start and tracing is automatically restored to the conditions at entry (for
example, Off) upon return. Similarly, ? (interactive debug) and ! (command inhibition) are saved across
routines.

• NUMERIC settings: The DIGITS, FUZZ, and FORM of arithmetic operations (in “NUMERIC” on page
42) are saved and are then restored on return. A subroutine can, therefore, set the precision, and so
forth, that it needs to use without affecting the caller.

• ADDRESS settings: The current and previous destinations for commands (see “ADDRESS” on page 27)
are saved and are then restored on return.

• Condition traps: (CALL ON and SIGNAL ON) are saved and then restored on return. This means that
CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be used in a subroutine without affecting the
conditions the caller set up.

• Condition information: This information describes the state and origin of the current trapped condition.
The CONDITION built-in function returns this information. See “CONDITION” on page 66.

• Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller (see “TIME” on page
83), but because the time clock is saved across routine calls, a subroutine or internal function can
independently restart and use the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS settings: ETMODE and EXMODE are saved and are then restored on return. For more
information, see “OPTIONS” on page 43.

Implementation maximum: The total nesting of control structures, which includes internal routine calls,
may not exceed a depth of 250.

DO

DO

repetitor conditional

;

instruction

END

name
;

repetitor
name=expri

TO exprt BY exprb FOR exprf

FOREVER

exprr

conditional
WHILE exprw

UNTIL expru

DO groups instructions together and optionally processes them repetitively. During repetitive execution, a
control variable (name) can be stepped through some range of values.

DO

32 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Syntax Notes:

• The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions that evaluate to a
number. The exprr and exprf options are further restricted to result in a positive whole number or zero. If
necessary, the numbers are rounded according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to 1 or 0.
• The TO, BY, and FOR phrases can be in any order, if used, and are evaluated in the order in which they

are written.
• The instruction can be any instruction, including assignments, commands, and keyword instructions

(including any of the more complex constructs such as IF, SELECT, and the DO instruction itself).
• The subkeywords WHILE and UNTIL are reserved within a DO instruction, in that they cannot be used

as symbols in any of the expressions. Similarly, TO, BY, and FOR cannot be used in expri, exprt, exprb,
or exprf. FOREVER is also reserved, but only if it immediately follows the keyword DO and an equal sign
does not follow it.

• The exprb option defaults to 1, if relevant.

Simple DO Group
If you specify neither repetitor nor conditional, the construct merely groups a number of instructions
together. These are processed one time.

In the following example, the instructions are processed one time. Example:

/* The two instructions between DO and END are both */
/* processed if A has the value "3". */
If a=3 then Do
 a=a+2
 Say 'Smile!'
 End

Repetitive DO Loops
If a DO instruction has a repetitor phrase or a conditional phrase or both, the group of instructions forms a
repetitive DO loop. The instructions are processed according to the repetitor phrase, optionally modified
by the conditional phrase. (See “Conditional Phrases (WHILE and UNTIL)” on page 35).

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an expression that
evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the group of instructions is
nominally processed "forever", that is, until the condition is satisfied or a REXX instruction is processed
that ends the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE and UNTIL)” on page
35.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must result in a positive whole
number or zero), and the loop is then processed that many times.

Example:

/* This displays "Hello" five times */
Do 5
 say 'Hello'
 end

Note that, similar to the distinction between a command and an assignment, if the first token of exprr is a
symbol and the second token is (or starts with) =, the controlled form of repetitor is expected.

DO

Chapter 3. Keyword Instructions 33

Controlled Repetitive Loops
The controlled form specifies name, a control variable that is assigned an initial value (the result of expri,
formatted as though 0 had been added) before the first execution of the instruction list. The variable is
then stepped (by adding the result of exprb) before the second and subsequent times that the instruction
list is processed.

The instruction list is processed repeatedly while the end condition (determined by the result of exprt) is
not met. If exprb is positive or 0, the loop is ended when name is greater than exprt. If negative, the loop
is ended when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated only one time, before the
loop begins and before the control variable is set to its initial value. The default value for exprb is 1. If
exprt is omitted, the loop runs indefinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /* Displays: */
 say i /* 3 */
 end /* 2 */
 /* 1 */
 /* 0 */
 /* -1 */
 /* -2 */

The numbers do not have to be whole numbers:

Example:

I=0.3 /* Displays: */
Do Y=I to I+4 by 0.7 /* 0.3 */
 say Y /* 1.0 */
 end /* 1.7 */
 /* 2.4 */
 /* 3.1 */
 /* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration of the loop. Altering
the value of the control variable is not usually considered good programming practice, though it may be
appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the control variable is
stepped, on the second and subsequent iterations). Therefore, if the end condition is met immediately,
the group of instructions can be skipped entirely. Note also that the control variable is referred to by
name. If (for example) the compound name A.I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In this case, you must
specify exprf, and it must evaluate to a positive whole number or zero. This acts just like the repetition
count in a simple repetitive loop, and sets a limit to the number of iterations around the loop if no other
condition stops it. Like the TO and BY expressions, it is evaluated only one time—when the DO instruction
is first processed and before the control variable receives its initial value. Like the TO condition, the FOR
condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
 say Y /* 0.3 */
 end /* 1.0 */
 /* 1.7 */

In a controlled loop, the name describing the control variable can be specified on the END clause. This
name must match name in the DO clause in all respects except case (note that no substitution for
compound variables is carried out); a syntax error results if it does not. This enables the nesting of loops
to be checked automatically, with minimal overhead.

DO

34 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Example:

Do K=1 to 10
 ...
 ...
 End k /* Checks that this is the END for K loop */

Note: The NUMERIC settings may affect the successive values of the control variable, because REXX
arithmetic rules apply to the computation of stepping the control variable.

Conditional Phrases (WHILE and UNTIL)
A conditional phrase can modify the iteration of a repetitive DO loop. It may cause the termination of a
loop. It can follow any of the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated each time around the loop using the latest
values of all variables (and must evaluate to either 0 or 1), and the loop is ended if exprw evaluates to 0 or
expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions. For an UNTIL loop, the
condition is evaluated at the bottom—before the control variable has been stepped.

Example:

Do I=1 to 10 by 2 until i>6
 say i
 end
/* Displays: "1" "3" "5" "7" */

Note: Using the LEAVE or ITERATE instructions can also modify the execution of repetitive loops.

DO

Chapter 3. Keyword Instructions 35

Figure 2. Concept of a DO Loop

DO

36 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DROP

DROP name

(name)

;

DROP "unassigns" variables, that is, restores them to their original uninitialized state. If name is not
enclosed in parentheses, it identifies a variable you want to drop and must be a symbol that is a valid
variable name, separated from any other name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of variables to drop.
(Blanks are not necessary either inside or outside the parentheses, but you can add them if desired.) This
subsidiary list must follow the same rules as the original list (that is, be valid variable names, separated by
blanks) except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a name more than one
time or to DROP a variable that is not known. If an exposed variable is named (see “PROCEDURE” on page
46), the variable in the older generation is dropped.

Example:

j=4
Drop a z.3 z.j
/* Drops the variables: A, Z.3, and Z.4 */
/* so that reference to them returns their names. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='c d e'
drop (mylist) f
/* Drops the variables C, D, E, and F */
/* Does not drop MYLIST */

Specifying a stem (that is, a symbol that contains only one period, as the last character), drops all
variables starting with that stem.

Example:

Drop z.
/* Drops all variables with names starting with Z. */

EXIT

EXIT

expression

;

EXIT leaves a program unconditionally. Optionally EXIT returns a character string to the caller. The
program is stopped immediately, even if an internal routine is currently being run. If no internal routine is
active, RETURN (see “RETURN” on page 49) and EXIT are identical in their effect on the program that is
being run.

If you specify expression, it is evaluated and the string resulting from the evaluation is passed back to the
caller when the program stops.

DROP

Chapter 3. Keyword Instructions 37

Example:

j=3
Exit j*4
/* Would exit with the string '12' */

If you do not specify expression, no data is passed back to the caller. If the program was called as an
external function, this is detected as an error—either immediately (if RETURN was used), or on return to
the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT, in that it stops the
whole program and returns no result string.

Note: If the program was called through a command interface, an attempt is made to convert the returned
value to a return code acceptable by the host. If the conversion fails, it is deemed to be a failure of the
host interface and thus is not subject to trapping with SIGNAL ON SYNTAX. The returned string must
be a whole number whose value fits in a general register (that is, must be in the range -2**31 through
2**31-1). Further processing of this value depends on the method of invocation of the REXX procedure
(see “Calling REXX Directly with the JCL EXEC Command” on page 329).

IF

IF expression
;

THEN
;

instruction

ELSE
;

instruction

IF conditionally processes an instruction or group of instructions depending on the evaluation of the
expression. The expression is evaluated and must result in 0 or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you specify an ELSE, the
instruction after the ELSE is processed only if the result of the evaluation is 0 (false).

Example:

if answer='YES' then say 'OK!'
 else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the THEN part, you need a
semicolon before the ELSE.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP instruction to eliminate errors
and possible confusion when IF constructs are nested, as in the following example.

Example:

If answer = 'YES' Then
 If name = 'FRED' Then
 say 'OK, Fred.'
 Else
 nop
Else
 say 'Why not?'

Note:

IF

38 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, SELECT, or the IF instruction itself. A null clause is not an instruction,
so putting an extra semicolon (or label) after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the IF clause to be ended by the
THEN, without a ; being required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

INTERPRET

INTERPRET expression ;

INTERPRET processes instructions that have been built dynamically by evaluating expression.

The expression is evaluated and is then processed (interpreted) just as though the resulting string were a
line inserted into the program (and bracketed by a DO; and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that constructions such as
DO…END and SELECT…END must be complete. For example, a string of instructions being interpreted
cannot contain a LEAVE or ITERATE instruction (valid only within a repetitive DO loop) unless it also
contains the whole repetitive DO…END construct.

A semicolon is implied at the end of the expression during execution, if one was not supplied.

Example:

data='FRED'
interpret data '= 4'
/* Builds the string "FRED = 4" and */
/* Processes: FRED = 4; */
/* Thus the variable FRED is set to "4" */

Example:

data='do 3; say "Hello there!"; end'
interpret data /* Displays: */
 /* Hello there! */
 /* Hello there! */
 /* Hello there! */

Note:

1. Label clauses are not permitted in an interpreted character string.
2. If you are new to the concept of the INTERPRET instruction and are getting results that you do not

understand, you may find that executing it with TRACE R or TRACE I in effect is helpful.

Example:

/* Here is a small REXX program. */
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the trace:

kitty
 3 *-* name='Kitty'
 >L> "Kitty"
 4 *-* indirect='name'
 >L> "name"
 5 *-* interpret 'say "Hello"' indirect'"!"'
 >L> "say "Hello""
 >V> "name"
 >O> "say "Hello" name"

INTERPRET

Chapter 3. Keyword Instructions 39

 >L> ""!""
 >O> "say "Hello" name"!""
 - say "Hello" name"!"
 >L> "Hello"
 >V> "Kitty"
 >O> "Hello Kitty"
 >L> "!"
 >O> "Hello Kitty!"
Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then proceeds in two stages.
First the string to be interpreted is built up, using a literal string, a variable (INDIRECT), and another
literal string. The resulting pure character string is then interpreted, just as though it were actually part
of the original program. Because it is a new clause, it is traced as such (the second *-* trace flag
under line 5) and is then processed. Again a literal string is concatenated to the value of a variable
(NAME) and another literal, and the final result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see “VALUE” on page 86) instead of the
INTERPRET instruction. The following line could, therefore, have replaced line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or more statements are to be
interpreted together, or when an expression is to be evaluated dynamically.

ITERATE

ITERATE
name

;

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other than that with a simple
DO).

Execution of the group of instructions stops, and control is passed to the DO instruction. The control
variable (if any) is incremented and tested, as usual, and the group of instructions is processed again,
unless the DO instruction ends the loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE steps the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active loops inside the one
selected for iteration are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
 if i=2 then iterate
 say i
 end
/* Displays the numbers: "1" "3" "4" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects the innermost loop.

ITERATE

40 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

LEAVE

LEAVE
name

;

LEAVE causes an immediate exit from one or more repetitive DO loops (that is, any DO construct other
than a simple DO).

Processing of the group of instructions is ended, and control is passed to the instruction following the
END clause. The control variable (if any) will contain the value it had when the LEAVE instruction was
processed.

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends the innermost active
repetitive loop. If name is specified, it must be the name of the control variable of a currently active loop
(which may be the innermost), and that loop (and any active loops inside it) is then ended. Control then
passes to the clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5
 say i
 if i=3 then leave
 end
/* Displays the numbers: "1" "2" "3" */

Note:

1. If specified, name must match the symbol naming the control variable in the DO clause in all respects
except case. No substitution for compound variables is carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an INTERPRET instruction
is processed) during execution of a loop, the loop becomes inactive until the subroutine has returned
or the INTERPRET instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the innermost loop.

NOP

NOP ;

NOP is a dummy instruction that has no effect. It can be useful as the target of a THEN or ELSE clause:

Example:

Select
 when a=c then nop /* Do nothing */
 when a>c then say 'A > C'
 otherwise say 'A < C'
end

Note: Putting an extra semicolon instead of the NOP would merely insert a null clause, which would be
ignored. The second WHEN clause would be seen as the first instruction expected after the THEN, and
would, therefore, be treated as a syntax error. NOP is a true instruction, however, and is, therefore, a valid
target for the THEN clause.

LEAVE

Chapter 3. Keyword Instructions 41

NUMERIC

NUMERIC DIGITS

expression1

FORM
SCIENTIFIC

ENGINEERING

VALUE

expression2

FUZZ

expression3

;

NUMERIC changes the way in which a program carries out arithmetic operations. The options of this
instruction are described in detail on Chapter 6, “Numbers and Arithmetic,” on page 119-“Errors” on page
126, but in summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in functions are evaluated.
If you omit expression1, the precision defaults to 9 digits. Otherwise, expression1 must evaluate to a
positive whole number and must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage available), but note that high
precisions are likely to require a good deal of processing time. It is recommended that you use the
default value wherever possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in function. See “DIGITS”
on page 72.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of arithmetic operations and
arithmetic built-in functions. This may be either SCIENTIFIC (in which case only one, nonzero digit
appears before the decimal point) or ENGINEERING (in which case the power of 10 is always a
multiple of 3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or ENGINEERING set the
FORM directly, or it is taken from the result of evaluating the expression (expression2) that follows
VALUE. The result in this case must be either SCIENTIFIC or ENGINEERING. You can omit the
subkeyword VALUE if expression2 does not begin with a symbol or a literal string (that is, if it starts
with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in function. See “FORM” on
page 74.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric comparison operation. (See
“Numeric Comparisons” on page 124.) If you omit expression3, the default is 0 digits. Otherwise,
expression3 must evaluate to 0 or a positive whole number, rounded if necessary according to the
current NUMERIC DIGITS setting, and must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the NUMERIC FUZZ value
during every numeric comparison. The numbers are subtracted under a precision of DIGITS minus
FUZZ digits during the comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in function. See “FUZZ” on
page 75.

Note: The three numeric settings are automatically saved across internal and external subroutine and
function calls. See the CALL instruction (“CALL” on page 30) for more details.

NUMERIC

42 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

OPTIONS

OPTIONS expression ;

OPTIONS passes special requests or parameters to the language processor. For example, these may be
language processor options or perhaps define a special character set.

The expression is evaluated, and the result is examined one word at a time. The language processor
converts the words to uppercase. If the language processor recognizes the words, then they are obeyed.
Words that are not recognized are ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:
ETMODE

specifies that literal strings and symbols and comments containing DBCS characters are checked for
being valid DBCS strings. If you use this option, it must be the first instruction of the program.

If the expression is an external function call, for example OPTIONS 'GETETMOD'(), and the program
contains DBCS literal strings, enclose the name of the function in quotation marks to ensure that the
entire program is not scanned before the option takes effect. It is not recommended to use internal
function calls to set ETMODE because of the possibility of errors in interpreting DBCS literal strings in
the program.

NOETMODE
specifies that literal strings and symbols and comments containing DBCS characters are not checked
for being valid DBCS strings. NOETMODE is the default. The language processor ignores this option
unless it is the first instruction in a program.

EXMODE
specifies that instructions, operators, and functions handle DBCS data in mixed strings on a logical
character basis. DBCS data integrity is maintained.

NOEXMODE
specifies that any data in strings is handled on a byte basis. The integrity of DBCS characters, if any,
may be lost. NOEXMODE is the default.

Note:

1. Because of the language processor's scanning procedures, you must place an OPTIONS 'ETMODE'
instruction as the first instruction in a program containing DBCS characters in literal strings, symbols,
or comments. If you do not place OPTIONS 'ETMODE' as the first instruction and you use it later in
the program, you receive error message ARX0033I. If you do place it as the first instruction of your
program, all subsequent uses are ignored. If the expression contains anything that would start a label
search, all clauses tokenized during the label search process are tokenized within the current setting of
ETMODE. Therefore, if this is the first statement in the program, the default is NOETMODE.

2. To ensure proper scanning of a program containing DBCS literals and DBCS comments, enter the
words ETMODE, NOETMODE, EXMODE, and NOEXMODE as literal strings (that is, enclosed in quotation
marks) in the OPTIONS instruction.

3. The EXMODE setting is saved and restored across subroutine and function calls.
4. To distinguish DBCS characters from 1-byte EBCDIC characters, sequences of DBCS characters are

enclosed with a shift-out (SO) character and a shift-in (SI) character. The hexadecimal values of the SO
and SI characters are X'0E' and X'0F', respectively.

5. When you specify OPTIONS 'ETMODE', DBCS characters within a literal string are excluded from the
search for a closing quotation mark in literal strings.

6. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear several times within the
result. The one that takes effect is determined by the last valid one specified between the pairs
ETMODE-NOETMODE and EXMODE-NOEXMODE.

OPTIONS

Chapter 3. Keyword Instructions 43

PARSE

PARSE

UPPER

ARG

EXTERNAL

NUMERIC

PULL

SOURCE

VALUE

expression

WITH

VAR name

VERSION

template_list

;

PARSE assigns data (from various sources) to one or more variables according to the rules of parsing. (See
Chapter 5, “Parsing,” on page 105.)

The template_list is often a single template but may be several templates separated by commas. If
specified, each template is a list of symbols separated by blanks or patterns or both.

Each template is applied to a single source string. Specifying multiple templates is never a syntax error,
but only the PARSE ARG variant can supply more than one non-null source string. See page “Parsing
Multiple Strings” on page 114 for information on parsing multiple source strings.

If you do not specify a template, no variables are set but action is taken to prepare the data for parsing,
if necessary. Thus for PARSE PULL, a data string is removed from the queue, and for PARSE VALUE,
expression is evaluated. For PARSE VAR, the specified variable is accessed. If it does not have a value, the
NOVALUE condition is raised, if it is enabled.

If you specify the UPPER option, the data to be parsed is first translated to uppercase (that is, lowercase
a–z to uppercase A–Z). Otherwise, no uppercase translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

PARSE ARG
parses the string or strings passed to a program or internal routine as input arguments. (See the ARG
instruction on page “ARG” on page 29 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program or internal routine with
the ARG built-in function.

PARSE EXTERNAL
reads from the current input stream. ASSGN(STDIN) returns the name of the current input stream.
PARSE EXTERNAL returns a field based on the record that is read. If the current input stream is
SYSIPT, REXX/VSE reads SYSIPT data until encountering an end-of-data indicator, such as /*. If
SYSIPT has no data, then PARSE EXTERNAL returns a null string. If the input stream is SYSLOG, then
REXX/VSE solicits input from the operator's console. The operator receives a message containing the
partition number and is asked to supply some input to the program. (If you are sending output to the
console, code a pertinent SAY instruction before the PARSE EXTERNAL.)

PARSE NUMERIC
The current numeric controls (as set by the NUMERIC instruction, see “NUMERIC” on page 42) are
available. These controls are in the order DIGITS FUZZ FORM.

Example:

Parse Numeric Var1

PARSE

44 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

After this instruction, Var1 would be equal to: 9 0 SCIENTIFIC. See “NUMERIC” on page 42 and the
built-in functions “DIGITS” on page 72, “FORM” on page 74, and “FUZZ” on page 75.

PARSE PULL
parses the next string from the external data queue. If the external data queue is empty, PARSE
PULL reads a line from the current input stream and the program pauses, if necessary, until a line is
complete. ASSGN(STDIN) returns the name of the current input stream. If the current input stream
is SYSLOG, the PULL instruction gets input from the operator's console. The operator receives the
partition number and is asked to supply some input to the program. (If you are sending output to the
console, code a pertinent SAY instruction before the PARSE PULL.) You can add data to the head or
tail of the queue by using the PUSH and QUEUE instructions, respectively. You can find the number
of lines currently in the queue with the QUEUED built-in function. (See page “QUEUED” on page 78.)
The queue remains active as long as the language processor is active. for the life of the job. Other
programs in the system can alter the queue and use it as a means of communication with programs
written in REXX. See also the PULL instruction on page “PULL” on page 48.

PULL and PARSE PULL read from the data stack. In REXX/VSE, if the data stack is empty, PULL and
PARSE PULL read from the current input stream. ASSGN(STDIN) returns the name of the current input
stream. If the input stream is SYSIPT REXX/VSE reads SYSIPT data until encountering an end-of-data
indicator, such as /*. If SYSIPT has no data, PULL and PARSE PULL return a null string.

PARSE SOURCE
parses data describing the source of the program running. The language processor returns a string
that is fixed (does not change) while the program is running.

The string parsed has the following general structure:

system_id how_called program_name additional_tokens

system_id
This is VSE.

how_called
The string COMMAND, FUNCTION, or SUBROUTINE, depending on whether the program was called
as a host command (for example as a host command from ADDRESS VSE), a function call in an
expression, or through the CALL instruction.

program_name
The name of the program in uppercase. This is the member name only (no library or sublibrary
name). If the name is not known, this token is a question mark (?).

additional_tokens
Note that for all of the additional tokens, if the information is not known, the token is a question
mark.

• A string indicating the active chain from which the program was loaded, for example PROC.
• The name of the file from which the program was loaded. This is in the format:
library.sublibrary.membername.membertype.

• Program name as called, not translated to uppercase. This is the name exactly as it was passed
to the language processor.

• Initial (default) environment name in uppercase.
• The name of the address space in uppercase. This is from the ADDRSPN field in the parameters

module.
• The token from the PARSETOK field in the parameters module (see page “PARSETOK ” on page

393).

For example, the string parsed might look like one of the following:

VSE COMMAND PARSE PROC LIZH.PROC.PARSE.PROC PARSE VSE VSE ?

PARSE

Chapter 3. Keyword Instructions 45

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no expression, then the null
string is used. Note that WITH is a subkeyword in this context and cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is valid as a variable name
(that is, it cannot start with a period or a digit). Note that the variable name is not changed unless it
appears in the template, so that for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the remainder back to
string. Similarly

PARSE UPPER VAR string word1 string

in addition translates the data from string to uppercase before it is parsed.
PARSE VERSION

parses information describing the language level and the date of the language processor. This
information consists of five blank-delimited words:

1. A word describing the language, which is the string "REXX370"
2. The language level description, for example, 3.48.
3. Three tokens describing the language processor release date, for example, "31 May 1993". 3 May
1993. The date, month, and year are in the format dd mon yyyy, the same format as the default
for the DATE function.

PROCEDURE

PROCEDURE

EXPOSE name

(name)

;

PROCEDURE, within an internal routine (subroutine or function), protects variables by making them
unknown to the instructions that follow it. After a RETURN instruction is processed, the original variables
environment is restored and any variables used in the routine (that were not exposed) are dropped. (An
exposed variable is one belonging to a caller of a routine that the PROCEDURE instruction has exposed.
When the routine refers to or alters the variable, the original (caller's) copy of the variable is used.) An
internal routine need not include a PROCEDURE instruction; in this case the variables it is manipulating
are those the caller "owns." If used, the PROCEDURE instruction must be the first instruction processed
after the CALL or function invocation; that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed. Any reference to it (including
setting and dropping) refers to the variables environment the caller owns. Hence, the values of existing
variables are accessible, and any changes are persistent even on RETURN from the routine. If name is not
enclosed in parentheses, it identifies a variable you want to expose and must be a symbol that is a valid
variable name, separated from any other name with one or more blanks.

PROCEDURE

46 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If parentheses enclose a single name, then, after the variable name is exposed, the value of name is
immediately used as a subsidiary list of variables. (Blanks are not necessary either inside or outside the
parentheses, but you can add them if desired.) This subsidiary list must follow the same rules as the
original list (that is, valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a name more than one
time, or to specify a name that the caller has not used as a variable.

Any variables in the main program that are not exposed are still protected. Therefore, some limited set
of the caller's variables can be made accessible, and these variables can be changed (or new variables in
this set can be created). All these changes are visible to the caller upon RETURN from the routine.

Example:

/* This is the main REXX program */
j=1; z.1='a'
call toft
say j k m /* Displays "1 7 M" */
exit

/* This is a subroutine */
toft: procedure expose j k z.j
 say j k z.j /* Displays "1 K a" */
 k=7; m=3 /* Note: M is not exposed */
 return

Note that if Z.J in the EXPOSE list had been placed before J, the caller's value of J would not have been
visible at that time, so Z.1 would not have been exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/* This is the main REXX program */
j=1;k=6;m=9
a ='j k m'
call test
exit

/* This is a subroutine */
test: procedure expose (a) /* Exposes A, J, K, and M */
 say a j k m /* Displays "j k m 1 6 9" */
 return

You can use subsidiary lists to more easily expose a number of variables at one time or, with the VALUE
built-in function, to manipulate dynamically named variables.

Example:

/* This is the main REXX program */
c=11; d=12; e=13
Showlist='c d' /* but not E */
call Playvars
say c d e f /* Displays "11 New 13 9" */
exit

/* This is a subroutine */
Playvars: procedure expose (showlist) f
 say word(showlist,2) /* Displays "d" */
 say value(word(showlist,2),'New') /* Displays "12" and sets new value */
 say value(word(showlist,2)) /* Displays "New" */
 e=8 /* E is not exposed */
 f=9 /* F was explicitly exposed */
 return

Specifying a stem as name exposes this stem and all possible compound variables whose names begin
with that stem. (See “Stems” on page 21 for information about stems.)

Example:

/* This is the main REXX program */
a.=11; i=13; j=15
i = i + 1

PROCEDURE

Chapter 3. Keyword Instructions 47

C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/* This exposes I, J, and all variables whose */
/* names start with A. or C. */
A.1='7' /* This sets A.1 in the caller's */
 /* environment, even if it did not */
 /* previously exist. */
return

Variables may be exposed through several generations of routines, if desired, by ensuring that they are
included on all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions on “CALL” on page 30 and Chapter 4, “Functions,” on
page 59 for details and examples of how routines are called.

PULL

PULL

template_list

;

PULL reads a string from the head of the external data queue. It is just a short form of the instruction:
PARSE UPPER PULL

template_list

;

The current head-of-queue is read as one string. Without a template_list specified, no further action
is taken (and the string is thus effectively discarded). If specified, a template_list is usually a single
template, which is a list of symbols separated by blanks or patterns or both. (The template_list can be
several templates separated by commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are assigned the null string.)
The string is translated to uppercase (that is, lowercase a–z to uppercase A–Z) and then parsed into
variables according to the rules described in the section on parsing (“Parsing Rules” on page 105). Use
the PARSE PULL instruction if you do not desire uppercase translation.

The REXX/VSE implementation of the external data queue is the data stack. REXX programs can use
the data stack. In REXX/VSE, if the data stack is empty, PULL reads from the current input stream.
ASSGN(STDIN) returns the name of the current input stream. If the current input stream is SYSIPT,
REXX/VSE reads SYSIPT data until encountering an end-of-data indicator, such as /*. If SYSIPT has no
data, the PULL instruction returns a null string. If the current input stream is SYSLOG, then REXX/VSE
solicits input from the operator's console. The operator receives a message containing the partition
number and is asked to supply some input to the program. (If you are sending output to the console, code
a pertinent SAY instruction before the PULL.)

The length of each element you can place onto the data stack can be up to one byte less than 16
megabytes.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the first word the user
enters.

The QUEUED built-in function (see “QUEUED” on page 78) returns the number of lines currently in the

PULL

48 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PUSH

PUSH

expression

;

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In, First Out) onto the
external data queue.

If you do not specify expression, a null string is stacked.

Note: The REXX/VSE implementation of the external data queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data stack contains one
buffer initially, but you can create additional buffers using MAKEBUF.

Example:

a='Fred'
push /* Puts a null line onto the queue */
push a 2 /* Puts "Fred 2" onto the queue */

The QUEUED built-in function (described on “QUEUED” on page 78) returns the number of lines
currently in the external data queue.

QUEUE

QUEUE

expression

;

QUEUE appends the string resulting from expression to the tail of the external data queue. That is, it is
added FIFO (First In, First Out).

If you do not specify expression, a null string is queued.

Note: The REXX/VSE implementation of the external data queue is the data stack. The length of an
element in the data stack can be up to one byte less than 16 megabytes. The data stack contains one
buffer initially, but you can create additional buffers using MAKEBUF.

Example:

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The QUEUED built-in function (described on “QUEUED” on page 78) returns the number of lines
currently in the external data queue.

RETURN

RETURN

expression

;

RETURN returns control (and possibly a result) from a REXX program or internal routine to the point of its
invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are identical in their effect on
the program that is being run. (See “EXIT” on page 37.)

PUSH

Chapter 3. Keyword Instructions 49

If a subroutine is being run (see the CALL instruction), expression (if any) is evaluated, control passes
back to the caller, and the REXX special variable RESULT is set to the value of expression. If expression is
omitted, the special variable RESULT is dropped (becomes uninitialized). The various settings saved at the
time of the CALL (tracing, addresses, and so forth) are also restored. (See “CALL” on page 30.)

If a function is being processed, the action taken is identical, except that expression must be specified on
the RETURN instruction. The result of expression is then used in the original expression at the point where
the function was called. See the description of functions on Chapter 4, “Functions,” on page 59 for more
details.

If a PROCEDURE instruction was processed within the routine (subroutine or internal function), all
variables of the current generation are dropped (and those of the previous generation are exposed) after
expression is evaluated and before the result is used or assigned to RESULT.

SAY

SAY

expression

;

SAY writes a line to the current output stream. ASSGN(STDOUT) returns the name of the current output
stream. If the output stream is SYSLOG, REXX/VSE sends the data to the operator's console. (NOMSGIO
and NOMSGWTO in the PARMBLOCK FLAGS flag byte determine the REXX processing rules that affect
sending this data. “Flags and Corresponding Masks” on page 393 describes the flags.) Along with the
actual output, REXX/VSE sends the partition number of the job producing the output.

Note: VSE/ESA replaces any non-displayable character with a blank if SYSLOG is receiving the output.

The result of expression may be of any length. If you omit expression, the null string is written.

Example:

data=100
Say data 'divided by 4 =>' data/4
/* Displays: "100 divided by 4 => 25" */

SELECT

SELECT ; WHEN expression
;

THEN
;

instruction

OTHERWISE
;

instruction

END ;

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in 0 or 1. If the result is 1, the
instruction following the associated THEN (which may be a complex instruction such as IF, DO, or SELECT)
is processed and control then passes to the END. If the result is 0, control passes to the next WHEN
clause.

SAY

50 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If none of the WHEN expressions evaluates to 1, control passes to the instructions, if any, after
OTHERWISE. In this situation, the absence of an OTHERWISE causes an error (but note that you can
omit the instruction list that follows OTHERWISE).

Example:

 balance=100
 check=50
 balance = balance - check
 Select
 when balance > 0 then
 say 'Congratulations! You still have' balance 'dollars left.'
 when balance = 0 then do
 say 'Warning, Balance is now zero! STOP all spending.'
 say "You cut it close this month! Hope you do not have any"
 say "checks left outstanding."
 end
 Otherwise
 say "You have just overdrawn your account."
 say "Your balance now shows" balance "dollars."
 say "Oops! Hope the bank does not close your account."
 end /* Select */

Note:

1. The instruction can be any assignment, command, or keyword instruction, including any of the more
complex constructs such as DO, IF, or the SELECT instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after a THEN clause is not
equivalent to putting a dummy instruction. The NOP instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword THEN is treated differently,
in that it need not start a clause. This allows the expression on the WHEN clause to be ended by the
THEN without a ; (delimiter) being required.

SIGNAL

SIGNAL labelname

VALUE

expression

OFF ERROR

FAILURE

HALT

NOVALUE

SYNTAX

ON ERROR

FAILURE

HALT

NOVALUE

SYNTAX

NAME trapname

;

SIGNAL causes an unusual change in the flow of control (if you specify labelname or VALUE expression),
or controls the trapping of certain conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap. OFF turns off the specified
condition trap. ON turns on the specified condition trap. All information on condition traps is contained in
Chapter 7, “Conditions and Condition Traps,” on page 129.

To change the flow of control, a label name is derived from labelname or taken from the result of
evaluating the expression after VALUE. The labelname you specify must be a literal string or symbol that

SIGNAL

Chapter 3. Keyword Instructions 51

is taken as a constant. If you use a symbol for labelname, the search is independent of alphabetic case.
If you use a literal string, the characters should be in uppercase. This is because the language processor
translates all labels to uppercase, regardless of how you enter them in the program. Similarly, for SIGNAL
VALUE, the expression must evaluate to a string in uppercase or the language processor does not find the
label. You can omit the subkeyword VALUE if expression does not begin with a symbol or literal string (that
is, if it starts with a special character, such as an operator character or parenthesis). All active pending
DO, IF, SELECT, and INTERPRET instructions in the current routine are then ended (that is, they cannot be
resumed). Control then passes to the first label in the program that matches the given name, as though
the search had started from the top of the program.

Example:

Signal fred; /* Transfer control to label FRED below */

Fred: say 'Hi!'

Because the search effectively starts at the top of the program, if duplicates are present, control always
passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction is assigned to the
special variable SIGL. This can aid debugging because you can use SIGL to determine the source of a
transfer of control to a label.

Using SIGNAL VALUE

The VALUE form of the SIGNAL instruction allows a branch to a label whose name is determined at the
time of execution. This can safely effect a multi-way CALL (or function call) to internal routines because
any DO loops, and so forth, in the calling routine are protected against termination by the call mechanism.

Example:

fred='PETE'
call multiway fred, 7

exit
Multiway: procedure
 arg label . /* One word, uppercase */
 /* Can add checks for valid labels here */
 signal value label /* Transfer control to wherever */

Pete: say arg(1) '!' arg(2) /* Displays: "PETE ! 7" */
 return

SIGNAL

52 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TRACE

TRACE

number

?

!

Normal

All

Commands

Error

Failure

Intermediates

Labels

Off

Results

Scan

;

Or, alternatively:

TRACE

string

symbol

VALUE

expression

;

TRACE controls the tracing action (that is, how much is sent to the output stream) during processing of
a REXX program. (Tracing describes some or all of the clauses in a program, producing descriptions of
clauses as they are processed.) TRACE is mainly used for debugging. Its syntax is more concise than
that of other REXX instructions because TRACE is usually entered manually during interactive debugging.
(This is a form of tracing in which the user can interact with the language processor while the program
is running.) For this use, economy of key strokes is especially convenient. (In a batch environment, the
interaction is between the current input stream and the program. ASSGN(STDOUT) returns the name of
the current output stream, and ASSGN(STDIN) returns the name of the current input stream. Tracing and
interactive debug use the same input and output streams.)

TRACE writes to the current output stream. If the output stream is SYSLOG, REXX/VSE sends the data
to the operator's console. Along with the actual output, REXX/VSE sends the partition number of the job
producing the output.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later
• Null.

The symbol is taken as a constant, and is, therefore:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later.

TRACE

Chapter 3. Keyword Instructions 53

The option that follows TRACE or the result of evaluating expression determines the tracing action. You
can omit the subkeyword VALUE if expression does not begin with a symbol or a literal string (that is, if it
starts with a special character, such as an operator or parenthesis).

Alphabetic Character (Word) Options
Although you can enter the word in full, only the capitalized and highlighted letter is needed; all
characters following it are ignored. That is why these are referred to as alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:
All

Traces (that is, displays) all clauses before execution.
Commands

Traces all commands before execution. If the command results in an error or failure,3 then tracing also
displays the return code from the command.

Error
Traces any command resulting in an error or failure3 after execution, together with the return code
from the command.

Failure
Traces any command resulting in a failure3 after execution, together with the return code from the
command. This is the same as the Normal option.

Intermediates
Traces all clauses before execution. Also traces intermediate results during evaluation of expressions
and substituted names.

Labels
Traces only labels passed during execution. This is especially useful with debug mode, when the
language processor pauses after each label. It also helps the user to note all internal subroutine calls
and transfers of control because of the SIGNAL instruction.

Normal
Traces any command resulting in a negative return code after execution, together with the return code
from the command. This is the default setting.

Off
Traces nothing and resets the special prefix options (described later) to OFF.

Results
Traces all clauses before execution. Displays final results (contrast with Intermediates, preceding)
of evaluating an expression. Also displays values assigned during PULL, ARG, and PARSE instructions.
This setting is recommended for general debugging.

Scan
Traces all remaining clauses in the data without them being processed. Basic checking (for missing
ENDs and so forth) is carried out, and the trace is formatted as usual. This is valid only if the TRACE S
clause itself is not nested in any other instruction (including INTERPRET or interactive debug) or in an
internal routine.

Prefix Options
The prefixes ! and ? are valid either alone or with one of the alphabetic character options. You can specify
both prefixes, in any order, on one TRACE instruction. You can specify a prefix more than one time, if
desired. Each occurrence of a prefix on an instruction reverses the action of the previous prefix. The
prefix(es) must immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:

3 See “Commands” on page 23 for definitions of error and failure.

TRACE

54 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

?
Controls interactive debug. During usual execution, a TRACE option with a prefix of ? causes
interactive debug to be switched on. (See “Interactive Debugging of Programs” on page 319 for full
details of this facility.) While interactive debug is on, interpretation pauses after most clauses that are
traced. (If you are working from the operator's console, these pauses occur. If you are using files for
input and output, interactive debug reads the next line instead of pausing. The term pause is used
generically in this description. It means the activity that is usual for the input stream you are using.
Similarly, this description mentions information you enter; this means information you input using the
method appropriate for your current input stream.)

For example, the instruction TRACE ?E makes the language processor pause for input after executing
any command that returns an error (that is, a nonzero return code). If the current input stream
provides a null string as input, processing continues to the next instructon. (If the current input stream
is SYSIPT, the language processor strips trailing blanks.) The current input stream can also provide an
instruction for execution.

When interactive debug is starting, a message indicating this is sent to the current output stream.
While interactive debug is active, it reads from the current input stream. (If the current input stream is
a file, it is read one line at a time, and a null string is returned when there are no more lines to read. If
the current input stream is SYSLOG, interactive debug reads from the operator's console.)

Any TRACE instructions in the program being traced are ignored. (This is so that you are not taken out
of interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

• Entering TRACE O turns off all tracing.
• Entering TRACE with no options restores the defaults—it turns off interactive debug but continues

tracing with TRACE Normal (which traces any failing command after execution) in effect.
• Entering TRACE ? turns off interactive debug and continues tracing with the current option.
• Entering a TRACE instruction with a ? prefix before the option turns off interactive debug and

continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive debug. (Because the
language processor ignores any further TRACE statements in your program after you are in interactive
debug, use CALL TRACE '?' to turn off interactive debug.)

Note: You can start interactive debug by using the TS immediate command in a REXX program or by
specifying TS on a call to ARXIC from a non-REXX program. See Chapter 10, “REXX/VSE Commands,”
on page 143 for more information about immediate commands and “TS” on page 167 for more
information about TS.

!
Inhibits host command execution. During regular execution, a TRACE instruction with a prefix of !
suspends execution of all subsequent host commands. For example, TRACE !C causes commands to
be traced but not processed. As each command is bypassed, the REXX special variable RC is set to 0.
You can use this action for debugging potentially destructive programs. (Note that this does not inhibit
any commands entered manually while in interactive debug. These are always processed.)

You can switch off command inhibition, when it is in effect, by issuing a TRACE instruction with a
prefix !. Repeated use of the ! prefix, therefore, switches you alternately in or out of command
inhibition mode. Or, you can turn off command inhibition at any time by issuing TRACE O or TRACE
with no options.

Numeric Options
If interactive debug is active and if the option specified is a positive whole number (or an expression that
evaluates to a positive whole number), that number indicates the number of debug pauses to be skipped
over. (See separate section in “Interactive Debugging of Programs” on page 319, for further information.)
However, if the option is a negative whole number (or an expression that evaluates to a negative whole

TRACE

Chapter 3. Keyword Instructions 55

number), all tracing, including debug pauses, is temporarily inhibited for the specified number of clauses.
For example, TRACE -100 means that the next 100 clauses that would usually be traced are not, in fact,
displayed. After that, tracing resumes as before.

Tracing Tips
1. When a loop is being traced, the DO clause itself is traced on every iteration of the loop.
2. You can retrieve the trace actions currently in effect by using the TRACE built-in function (see “TRACE”

on page 84).
3. If available at the time of execution, comments associated with a traced clause are included in the

trace, as are comments in a null clause, if you specify TRACE A, R, I, or S.
4. Commands traced before execution always have the final value of the command (that is, the string

passed to the environment), and the clause generating it produced in the traced output.
5. Trace actions are automatically saved across subroutine and function calls. See the CALL instruction

(“CALL” on page 30) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Format of TRACE Output
Every clause traced appears with automatic formatting (indentation) according to its logical depth of
nesting and so forth. The language processor may replace any control codes in the encoding of data (for
example, EBCDIC values less than '40'x) with a question mark (?) to avoid console interference. Results (if
requested) are indented an extra two spaces and are enclosed in double quotation marks so that leading
and trailing blanks are apparent.

A line number precedes the first clause traced on any line. If the line number is greater than 99999, the
language processor truncates it on the left, and the ? prefix indicates the truncation. For example, the line
number 100354 appears as ?00354. All lines displayed during tracing have a three-character prefix to
identify the type of data being traced. These can be:
-

Identifies the source of a single clause, that is, the data actually in the program.
+++

Identifies a trace message. This may be the nonzero return code from a command, the prompt
message when interactive debug is entered, an indication of a syntax error when in interactive debug,
or the traceback clauses after a syntax error in the program (see below).

>>>
Identifies the result of an expression (for TRACE R) or the value assigned to a variable during parsing,
or the value returned from a subroutine call.

>.>
Identifies the value "assigned" to a placeholder during parsing (see “The Period as a Placeholder” on
page 106).

The following prefixes are used only if TRACE Intermediates is in effect:
>C>

The data traced is the name of a compound variable, traced after substitution and before use,
provided that the name had the value of a variable substituted into it.

>F>
The data traced is the result of a function call.

TRACE

56 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

>L>
The data traced is a literal (string, uninitialized variable, or constant symbol).

>O>
The data traced is the result of an operation on two terms.

>P>
The data traced is the result of a prefix operation.

>V>
The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the expression is null,
the default tracing actions are restored. The defaults are TRACE N , command inhibition (!) off, and
interactive debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in error is always traced. Any
CALL or INTERPRET or function invocations active at the time of the error are also traced. If an attempt to
transfer control to a label that could not be found caused the error, that label is also traced. The special
trace prefix +++ identifies these traceback lines.

UPPER

UPPER variable ;

UPPER translates the contents of one or more variables to uppercase. The variables are translated in
sequence from left to right.

The variable is a symbol, separated from any other variables by one or more blanks or comments. Specify
only simple symbols and compound symbols. (See “Simple Symbols” on page 20.)

Using this instruction is more convenient than repeatedly invoking the TRANSLATE built-in function.

Example:

a1='Hello'; b1='there'
Upper a1 b1
say a1 b1 /* Displays "HELLO THERE" */

An error is signalled if a constant symbol or a stem is encountered. Using an uninitialized variable is not
an error, and has no effect, except that it is trapped if the NOVALUE condition (SIGNAL ON NOVALUE) is
enabled.

For more complete information, see the VM/ESA REXX/VM Reference.

UPPER

Chapter 3. Keyword Instructions 57

https://www.vm.ibm.com/library/710pdfs/71631400.pdf

UPPER

58 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 4. Functions

A function is an internal, built-in, or external routine that returns a single result string. (A subroutine is
a function that is an internal, built-in, or external routine that may or may not return a result and that is
called with the CALL instruction.)

Syntax
A function call is a term in an expression that calls a routine that carries out some procedures and returns
a string. This string replaces the function call in the continuing evaluation of the expression. You can
include function calls to internal and external routines in an expression anywhere that a data term (such
as a string) would be valid, using the notation:

function_name (

,

expression

)

The function_name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation-defined maximum number of expressions, separated by commas,
between the parentheses. In REXX/VSE, the implementation maximum is up to 20 expressions. These
expressions are called the arguments to the function. Each argument expression may include further
function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no blank in between,
or the construct is not recognized as a function call. (A blank operator would be assumed at this point
instead.) Only a comment (which has no effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are all then passed to
the function. This then runs some operation (usually dependent on the argument strings passed, though
arguments are not mandatory) and eventually returns a single character string. This string is then included
in the original expression just as though the entire function reference had been replaced by the name of a
variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see “SUBSTR (Substring)” on
page 82) and could be used as:

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/* Sets Z1 to 'Part of N1 is: bcdefgh' */

A function may have a variable number of arguments. You need to specify only those that are required. For
example, SUBSTR('ABCDEF',4) would return DEF.

Functions and Subroutines
The function calling mechanism is identical with that for subroutines. The only difference between
functions and subroutines is that functions must return data, whereas subroutines need not.

The following types of routines can be called as functions:
Internal

If the routine name exists as a label in the program, the current processing status is saved, so that
it is later possible to return to the point of invocation to resume execution. Control is then passed to
the first label in the program that matches the name. As with a routine called by the CALL instruction,
various other status information (TRACE and NUMERIC settings and so forth) is saved too. See the
CALL instruction (“CALL” on page 30) for details about this. You can use SIGNAL and CALL together

© Copyright IBM Corp. 1988, 2004 59

to call an internal routine whose name is determined at the time of execution; this is known as a
multi-way call (see “SIGNAL” on page 51).

If you are calling an internal routine as a function, you must specify an expression in any RETURN
instruction to return from it. This is not necessary if it is called as a subroutine.

Example:

/* Recursive internal function execution... */
arg x
say x'! =' factorial(x)
exit

factorial: procedure /* Calculate factorial by */
 arg n /* recursive invocation. */
 if n=0 then return 1
 return factorial(n-1) * n

FACTORIAL is unusual in that it calls itself (this is recursive invocation). The PROCEDURE instruction
ensures that a new variable n is created for each invocation.

Note: When there is a search for a routine, the language processor currently scans the statements
in the REXX program to locate the internal label. During the search, the language processor may
encounter a syntax error. As a result, a syntax error may be raised on a statement different from the
original line being processed.

Built-in
These functions are always available and are defined in the next section of this manual. (See “Built-in
Functions” on page 61—“X2D (Hexadecimal to Decimal)” on page 89.)

External
You can write or use functions that are external to your program and to the language processor. An
external routine can be written in any language (including REXX) that supports the system-dependent
interfaces the language processor uses to call it. You can call a REXX program as a function and,
in this case, pass more than one argument string. The ARG or PARSE ARG instructions or the ARG
built-in function can retrieve these argument strings. When called as a function, a program must
return data to the caller. For information about writing external functions and subroutines and the
system dependent interfaces, see “External Functions and Subroutines and Function Packages” on
page 344.

Note:

1. Calling an external REXX program as a function is similar to calling an internal routine. The external
routine is, however, an implicit PROCEDURE in that all the caller's variables are always hidden and
the status of internal values (NUMERIC settings and so forth) start with their defaults (rather than
inheriting those of the caller).

2. Other REXX programs can be called as functions. You can use either EXIT or RETURN to leave the
called REXX program, and in either case you must specify an expression.

3. With care, you can use the INTERPRET instruction to process a function with a variable function
name. However, you should avoid this if possible because it reduces the clarity of the program.

Search Order
The search order for functions is: internal routines take precedence, then built-in functions, and finally
external functions.

Internal routines are not used if the function name is given as a literal string (that is, specified in
quotation marks); in this case the function must be built-in or external. This lets you usurp the name of,
say, a built-in function to extend its capabilities, yet still be able to call the built-in function when needed.

Example:

/* This internal DATE function modifies the */
/* default for the DATE function to standard date. */
date: procedure
 arg in

60 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 if in='' then in='Standard'
 return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string must be in uppercase for
the search to succeed, as in the example. The same is usually true of external functions. The search order
for external functions and subroutines follows.

1. Check the following function packages defined for the language processor environment:

• User function packages
• Local function packages
• System function packages.

2. If a match to the function name is not found, the function search order flag (FUNCSOFL) is checked.
The FUNCSOFL flag (see page “FUNCSOFL ” on page 394) indicates whether to search the active
PHASE chain or the PROC chain first.

If the flag is off, check the active PHASE chain. If a match to the function name is not found, search the
PROC chain.

If the flag is on, search the PROC chain. If a match to the function name is not found, check the active
PHASE chain.

Note: By default, the FUNCSOFL flag is off, which indicates searching the active PHASE chain before
searching for a REXX program.

Errors During Execution
If an external or built-in function detects an error of any kind, the language processor is informed, and a
syntax error results. Execution of the clause that included the function call is, therefore, ended. Similarly,
if an external function fails to return data correctly, the language processor detects this and reports it as
an error.

If a syntax error occurs during the execution of an internal function, it can be trapped (using SIGNAL ON
SYNTAX) and recovery may then be possible. If the error is not trapped, the program is ended.

Built-in Functions
REXX provides a rich set of built-in functions, including character manipulation, conversion, and
information functions.

In addition to the functions SAA REXX provides, REXX/VSE has six additional built-in functions:
EXTERNALS, FIND, INDEX, JUSTIFY, LINESIZE, and USERID. If you plan to write REXX programs that
run on other SAA environments, note that these functions are not available to all the environments. In this
section, these six built-in functions are identified as non-SAA functions.

In addition to the built-in functions, REXX/VSE also provides external functions that you can use to
perform different tasks. “External Functions” on page 92 describes these functions. The following are
general notes on the built-in functions:

• The parentheses in a function are always needed, even if no arguments are required. The first
parenthesis must follow the name of the function with no space in between.

• The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC FUZZ 0 and are unaffected
by changes to the NUMERIC settings, except where stated.

• Any argument named as a string may be a null string.
• If an argument specifies a length, it must be a positive whole number or zero. If it specifies a start

character or word in a string, it must be a positive whole number, unless otherwise stated.
• Where the last argument is optional, you can always include a comma to indicate you have omitted it;

for example, DATATYPE(1,), like DATATYPE(1), would return NUM.
• If you specify a pad character, it must be exactly one character long. (A pad character extends a string,

usually on the right. For an example, see the LEFT built-in function on page “LEFT” on page 76.)

Chapter 4. Functions 61

• If a function has an option you can select by specifying the first character of a string, that character can
be in upper- or lowercase.

• A number of the functions described in this topic support DBCS. A complete list and descriptions of
these functions are in Chapter 22, “Double-Byte Character Set (DBCS) Support,” on page 479.

ABBREV (Abbreviation)

ABBREV (information , info

, length

)

returns 1 if info is equal to the leading characters of information and the length of info is not less than
length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for length is the number of
characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> 0
ABBREV('PRINT','PRI',4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> 0

Note: A null string always matches if a length of 0 (or the default) is used. This allows a default keyword to
be selected automatically if desired; for example:

say 'Enter option:'; pull option .
select /* keyword1 is to be the default */
 when abbrev('keyword1',option) then ...
 when abbrev('keyword2',option) then ...
 ...
 otherwise nop;
end;

ABS (Absolute Value)

ABS (number)

returns the absolute value of number. The result has no sign and is formatted according to the current
NUMERIC settings.

Here are some examples:

ABS('12.3') -> 12.3
ABS(' -0.307') -> 0.307

ADDRESS

ADDRESS ()

62 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

returns the name of the environment to which commands are currently being submitted. See the
ADDRESS instruction (page “ADDRESS” on page 27) for more information. Trailing blanks are removed
from the result. Here are some examples:

ADDRESS() -> 'VSE' /* default under VSE */
ADDRESS() -> 'POWER' /* assumes address change */

ARG (Argument)

ARG (
n

, option

)

returns an argument string or information about the argument strings to a program or internal routine.

If you do not specify n, the number of arguments passed to the program or internal routine is returned.

If you specify only n, the nth argument string is returned. If the argument string does not exist, the null
string is returned. The n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The following are valid
options. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)
Exists

returns 1 if the nth argument exists; that is, if it was explicitly specified when the routine was called.
Returns 0 otherwise.

Omitted
returns 1 if the nth argument was omitted; that is, if it was not explicitly specified when the routine
was called. Returns 0 otherwise.

Here are some examples:

/* following "Call name;" (no arguments) */
ARG() -> 0
ARG(1) -> ''
ARG(2) -> ''
ARG(1,'e') -> 0
ARG(1,'O') -> 1

/* following "Call name 'a',,'b';" */
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /* for n>=4 */
ARG(1,'e') -> 1
ARG(2,'E') -> 0
ARG(2,'O') -> 1
ARG(3,'o') -> 0
ARG(4,'o') -> 1

Note:

1. The number of argument strings is the largest number n for which ARG(n,'e') would return 1 or 0 if
there are no explicit argument strings. That is, it is the position of the last explicitly specified argument
string.

2. Programs called as commands can have only 0 or 1 argument strings. The program has 0 argument
strings if it is called with the name only and has 1 argument string if anything else (including blanks) is
included with the command.

3. You can retrieve and directly parse the argument strings to a program or internal routine with the ARG
or PARSE ARG instructions. (See “ARG” on page 29, “PARSE” on page 44, and “Parsing Rules” on page
105.)

Chapter 4. Functions 63

ASSGN
ASSGN is an external function. See page “ASSGN” on page 93 for a description.

BITAND (Bit by Bit AND)

BITAND (string1
,

string2 , pad

)

returns a string composed of the two input strings logically ANDed together, bit by bit. (The encodings of
the strings are used in the logical operation.) The length of the result is the length of the longer of the
two strings. If no pad character is provided, the AND operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out the logical operation.
The default for string2 is the zero length (null) string.

Here are some examples:

BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> 'pqrs' /* EBCDIC */

BITOR (Bit by Bit OR)

BITOR (string1
,

string2 , pad

)

returns a string composed of the two input strings logically inclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the OR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial
result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string. Here are some examples:

BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'F0'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('Fred',,'40'x) -> 'FRED' /* EBCDIC */

BITXOR (Bit by Bit Exclusive OR)

BITXOR (string1
,

string2 , pad

)

returns a string composed of the two input strings logically eXclusive-ORed together, bit by bit. (The
encodings of the strings are used in the logical operation.) The length of the result is the length of the
longer of the two strings. If no pad character is provided, the XOR operation stops when the shorter of
the two strings is exhausted, and the unprocessed portion of the longer string is appended to the partial

64 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

result. If pad is provided, it extends the shorter of the two strings on the right before carrying out the
logical operation. The default for string2 is the zero length (null) string.

Here are some examples:

BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '30'x
BITXOR('1211'x,'22'x) -> '3011'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'40'x) -> '555504'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53362'x /* EBCDIC */

B2X (Binary to Hexadecimal)

B2X (binary_string)

returns a string, in character format, that represents binary_string converted to hexadecimal.

The binary_string is a string of binary (0 or 1) digits. It can be of any length. You can optionally include
blanks in binary_string (at four-digit boundaries only, not leading or trailing) to aid readability; they are
ignored.

The returned string uses uppercase alphabetics for the values A–F, and does not include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary digits in binary_string is
not a multiple of four, then up to three 0 digits are added on the left before the conversion to make a total
that is a multiple of four.

Here are some examples:

B2X('11000011') -> 'C3'
B2X('10111') -> '17'
B2X('101') -> '5'
B2X('1 1111 0000') -> '1F0'

You can combine B2X with the functions X2D and X2C to convert a binary number into other forms. For
example:

X2D(B2X('10111')) -> '23' /* decimal 23 */

CENTER/CENTRE

CENTER (

CENTRE (

string , length

, pad

)

returns a string of length length with string centered in it, with pad characters added as necessary to make
up length. The length must be a positive whole number or zero. The default pad character is blank. If the
string is longer than length, it is truncated at both ends to fit. If an odd number of characters are truncated
or added, the right-hand end loses or gains one more character than the left-hand end.

Here are some examples:

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American spellings, this function can
be called either CENTRE or CENTER.

Chapter 4. Functions 65

COMPARE

COMPARE (string1 , string2

, pad

)

returns 0 if the strings, string1 and string2, are identical. Otherwise, returns the position of the first
character that does not match. The shorter string is padded on the right with pad if necessary. The default
pad character is a blank.

Here are some examples:

COMPARE('abc','abc') -> 0
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> 0
COMPARE('ab ','ab',' ') -> 0
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

CONDITION

CONDITION (

option

)

returns the condition information associated with the current trapped condition. (See Chapter 7,
“Conditions and Condition Traps,” on page 129 for a description of condition traps.) You can request
the following pieces of information:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized and highlighted letter
is needed; all characters following it are ignored.)
Condition name

returns the name of the current trapped condition.
Description

returns any descriptive string associated with the current trapped condition. See “Descriptive Strings”
on page 132 for the list of possible strings. If no description is available, returns a null string.

Instruction
returns either CALL or SIGNAL, the keyword for the instruction processed when the current condition
was trapped. This is the default if you omit option.

Status
returns the status of the current trapped condition. This can change during processing, and is either:

ON - the condition is enabled
OFF - the condition is disabled
DELAY - any new occurrence of the condition is delayed or ignored.

If no condition has been trapped, then the CONDITION function returns a null string in all four cases.

Here are some examples:

CONDITION() -> 'CALL' /* perhaps */
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'

66 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /* perhaps */

Note: The CONDITION function returns condition information that is saved and restored across
subroutine calls (including those a CALL ON condition trap causes). Therefore, after a subroutine called
with CALL ON trapname has returned, the current trapped condition reverts to the condition that was
current before the CALL took place (which may be none). CONDITION returns the values it returned
before the condition was trapped.

COPIES

COPIES (string , n)

returns n concatenated copies of string. The n must be a positive whole number or zero.

Here are some examples:

COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',0) -> ''

C2D (Character to Decimal)

C2D (string
, n

)

returns the decimal value of the binary representation of string. If the result cannot be expressed as a
whole number, an error results. That is, the result must not have more digits than the current setting of
NUMERIC DIGITS. If you do not specify n, string is processed as an unsigned binary number.

If string is null, returns 0.

Here are some examples:

C2D('09'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 65409
C2D('') -> 0
C2D('a') -> 129 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n characters. The number is positive
if the leftmost bit is off, and negative, in two's complement notation, if the leftmost bit is on. In both
cases, it is converted to a whole number, which may, therefore, be negative. The string is padded on
the left with '00'x characters (note, not "sign-extended"), or truncated on the left to n characters. This
padding or truncation is as though RIGHT(string,n,'00'x) had been processed. If n is 0, C2D always
returns 0.

Here are some examples:

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('F081'X,2) -> -3967
C2D('F081'X,1) -> -127
C2D('0031'X,0) -> 0

Implementation maximum: The input string cannot have more than 250 characters that are significant in
forming the final result. Leading sign characters ('00'x and 'FF'x) do not count toward this total.

Chapter 4. Functions 67

C2X (Character to Hexadecimal)

C2X (string)

returns a string, in character format, that represents string converted to hexadecimal. The returned string
contains twice as many bytes as the input string. For example, on an EBCDIC system, C2X(1) returns F1
because the EBCDIC representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A–F and does not include blanks. The string
can be of any length. If string is null, returns a null string.

Here are some examples:

C2X('72s') -> 'F7F2A2' /* 'C6F7C6F2C1F2'X in EBCDIC */
C2X('0123'X) -> '0123' /* 'F0F1F2F3'X in EBCDIC */

DATATYPE

DATATYPE (string

, type

)

returns NUM if you specify only string and if string is a valid REXX number that can be added to 0 without
error; returns CHAR if string is not a valid number.

If you specify type, returns 1 if string matches the type; otherwise returns 0. If string is null, the function
returns 0 (except when type is X, which returns 1 for a null string). The following are valid types. (Only
the capitalized and highlighted letter is needed; all characters following it are ignored. Note that for the
hexadecimal option, you must start your string specifying the name of the option with x rather than h.)
Alphanumeric

returns 1 if string contains only characters from the ranges a–z, A–Z, and 0–9.
Binary

returns 1 if string contains only the characters 0 or 1 or both.
C

returns 1 if string is a mixed SBCS/DBCS string.
Dbcs

returns 1 if string is a DBCS-only string enclosed by SO and SI bytes.
Lowercase

returns 1 if string contains only characters from the range a–z.
Mixed case

returns 1 if string contains only characters from the ranges a–z and A–Z.
Number

returns 1 if string is a valid REXX number.
Symbol

returns 1 if string contains only characters that are valid in REXX symbols. (See “Tokens” on page 9.)
Note that both uppercase and lowercase alphabetics are permitted.

Uppercase
returns 1 if string contains only characters from the range A–Z.

Whole number
returns 1 if string is a REXX whole number under the current setting of NUMERIC DIGITS.

68 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

heXadecimal
returns 1 if string contains only characters from the ranges a–f, A–F, 0–9, and blank (as long as
blanks appear only between pairs of hexadecimal characters). Also returns 1 if string is a null string,
which is a valid hexadecimal string.

Here are some examples:

DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123*') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> 0
DATATYPE('Fred','M') -> 1
DATATYPE('','M') -> 0
DATATYPE('Fred','L') -> 0
DATATYPE('?20K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string, independent of the
encoding of those characters (for example, ASCII or EBCDIC).

DATE

DATE (

output_date_format
1 Group 1

)

Group 1
, input_date

Group 2

, , output_separator_char

Group 2
,

input_date_format Group 3

Group 3
,

output_separator_char ,

input_separator_char

Notes:
1 If the Century or Julian format is specified, then no other options are permitted. These two
formats are provided for compatibility with programs written for releases prior to VSE/ESA Version 2
Release 2.2. It is recommended that they not be used for new programs.

returns, by default, the local date in the format: dd mon yyyy (day, month, year—for example, 25 Dec
1998), with no leading zero or blank on the day. Otherwise, the string input_date is converted to the
format specified by output_date_format. input_date_format can be specified to define the current format
of input_date. The default for input_date_format and output_date_format is Normal.

input_separator_char and output_separator__char can be specified to define the separator character for
the input and output dates, respectively. Any single non-alphanumeric character is valid. See note “3” on
page 71 for more information.

You can use the following options to obtain specific date formats. (Only the bold character is needed; all
characters following it are ignored.)

Chapter 4. Functions 69

Base
the number of complete days (that is, not including the current day) since and including the base date,
1 January 0001, in the format: dddddd (no leading zeros or blanks). The expression DATE('B')//7
returns a number in the range 0–6 that corresponds to the current day of the week, where 0 is
Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week. Note that REXX/VSE supports US
English only.

Note: The base date of 1 January 0001 is determined by extending the current Gregorian calendar
backward (365 days each year, with an extra day every year that is divisible by 4 except century years
that are not divisible by 400). It does not take into account any errors in the calendar system that
created the Gregorian calendar originally.

Century
the number of days, including the current day, since and including January 1 of the last year that
is a multiple of 100 in the form: ddddd (no leading zeros). Example: A call to DATE(C) on March 13
1992 returns 33675, the number of days from 1 January 1900 to 13 March 1992. Similarly, a call to
DATE(C) on 2 January 2000 returns 2, the number of days from 1 January 2000 to 2 January 2000.

Note: When the Century option is used for input, the output may change, depending on the current
century. For example, if DATE('S','1',C) was entered on any day between 1 January 1900 and 31
December 1999, the result would be 19000101. However, if DATE('S','1',C) was entered on any day
between 1 January 2000 and 31 December 2099, the result would be 20000101. It is important to
understand the above, and code accordingly.

Days
the number of days, including the current day, so far in this year in the format: ddd (no leading zeros or
blanks).

European
date in the format: dd/mm/yy

Julian
date in the format: yyddd.

Month
full English name of the current month, for example, August. Only valid for output_date_format.

Normal
date in the format: dd mon yyyy. This is the default. (dd cannot have any leading zeros or blanks;
yyyy must have leading zeros but cannot have any leading blanks). The abbreviated form of the month
name is used (for example, "Jan", "Feb", and so on).

Ordered
date in the format: yy/mm/dd (suitable for sorting, and so forth).

Standard
date in the format: yyyymmdd (suitable for sorting, and so forth).

Usa
date in the format: mm/dd/yy.

Weekday
the English name for the day of the week in mixed case, for example, Tuesday. Only valid for
output_date_format.

Here are some examples, assuming today is 13 March 1992:

DATE() -> '13 Mar 1992'
DATE(,'19960527','S') -> '27 May 1996'
DATE('B') -> '727269'
DATE('B','27 May 1996',) -> '728805'
DATE('B','27*May*1996',,,'*') -> '728805'
DATE('C') -> '33675'
DATE('E') -> '13/03/92'
DATE('E',,,'+') -> '13+03+92'

70 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DATE('E','081698','U',,'') -> '16/08/98'
DATE('J') -> '92073'
DATE('M') -> 'March'
DATE('N') -> '13 Mar 1992'
DATE('N','35488','C') -> '28 Feb 1997'
DATE('O') -> '92/03/13'
DATE('S') -> '19920313'
DATE('S',,) -> '19920313'
DATE('S',,,'-') -> '1992-03-13'
DATE('U') -> '03/13/92'
DATE('U','96/05/27','O') -> '05/27/96'
DATE('U','97059','J') -> '02/28/97'
DATE('U','1.Feb.1998,'N','+','.') -> '02+01+98'
DATE('U','1998-08-16','S','','-') -> '081698'
DATE('W') -> 'Friday'

Note:

1. The first call to DATE or TIME in one clause causes a time stamp to be made that is then used for all
calls to these functions in that clause. Therefore, multiple calls to any of the DATE or TIME functions or
both in a single expression or clause are guaranteed to be consistent with each other.

2. Input dates given in 2-digit year formats are interpreted as being within a 100 year window as
calculated by:

(current_year - 50) = low end of window
(current_year + 49) = high end of window

3. input_separator_char and outputy_separator_char apply to the following formats, and have the
following default values:

Format Name Format Structure Default Separator
Value

European dd/mm/yy '/'

Normal dd mon yyyy ' '

Ordered yy/mm/dd '/'

Standard yyyymmdd ''

Usa mm/dd/yy '/'

Note that Null is a valid value for input_separator_char and output_separator_char.

DBCS (Double-Byte Character Set Functions)
The following are all part of DBCS processing functions. See Chapter 22, “Double-Byte Character Set
(DBCS) Support,” on page 479.

DBADJUST DBRIGHT DBUNBRACKET

DBBRACKET DBRLEFT DBVALIDATE

DBCENTER DBRRIGHT DBWIDTH

DBCJUSTIFY DBTODBCS

DBLEFT DBTOSBCS

DELSTR (Delete String)

DELSTR (string , n

, length

)

Chapter 4. Functions 71

returns string after deleting the substring that begins at the nth character and is of length characters.
If you omit length, or if length is greater than the number of characters from n to the end of string, the
function deletes the rest of string (including the nth character). The length must be The n must be a
positive whole number. If n is greater than the length of string, the function returns string unchanged.

Here are some examples:

DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)

DELWORD (string , n

, length

)

returns string after deleting the substring that starts at the nth word and is of length blank-delimited
words. If you omit length, or if length is greater than the number of words from n to the end of string,
the function deletes the remaining words in string (including the nth word). The length must be a positive
whole number or zero. The n must be a positive whole number. If n is greater than the number of words
in string, the function returns string unchanged. The string deleted includes any blanks following the final
word involved but none of the blanks preceding the first word involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

DIGITS

DIGITS ()

returns the current setting of NUMERIC DIGITS. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

DIGITS() -> 9 /* by default */

D2C (Decimal to Character)

D2C (wholenumber
, n

)

returns a string, in character format, that represents wholenumber, a decimal number, converted to
binary. If you specify n, it is the length of the final result in characters; after conversion, the input string
is sign-extended to the required length. If the number is too big to fit into n characters, then the result is
truncated on the left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the result length is as needed.
Therefore, the returned result has no leading '00'x characters.

72 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

D2C(9) -> ' ' /* '09'x is unprintable in EBCDIC */
D2C(129) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,1) -> 'a' /* '81'x is an EBCDIC 'a' */
D2C(129,2) -> ' a' /* '0081'x is EBCDIC ' a' */
D2C(257,1) -> ' ' /* '01'x is unprintable in EBCDIC */
D2C(-127,1) -> 'a' /* '81'x is EBCDIC 'a' */
D2C(-127,2) -> ' a' /* 'FF'x is unprintable EBCDIC; */
 /* '81'x is EBCDIC 'a' */
D2C(-1,4) -> ' ' /* 'FFFFFFFF'x is unprintable in EBCDIC */
D2C(12,0) -> '' /* '' is a null string */

Implementation maximum: The output string may not have more than 250 significant characters, though
a longer result is possible if it has additional leading sign characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

D2X (wholenumber
, n

)

returns a string, in character format, that represents wholenumber, a decimal number, converted to
hexadecimal. The returned string uses uppercase alphabetics for the values A–F and does not include
blanks.

If you specify n, it is the length of the final result in characters; after conversion the input string is
sign-extended to the required length. If the number is too big to fit into n characters, it is truncated on the
left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the returned result has no
leading zeros.

Here are some examples:

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> '0081'
D2X(257,2) -> '01'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,0) -> ''

Implementation maximum: The output string may not have more than 500 significant hexadecimal
characters, though a longer result is possible if it has additional leading sign characters (0 and F).

ERRORTEXT

ERRORTEXT (n)

returns the REXX error message associated with error number n. The n must be in the range 0–99, and
any other value is an error. Returns the null string if n is in the allowed range but is not a defined REXX
error number. See z/VSE Messages and Codes for a complete description of error numbers and messages.

Here are some examples:

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(60) -> ''

Chapter 4. Functions 73

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

EXTERNALS
This is a non-SAA built-in function. See “EXTERNALS” on page 90 for a description.

FIND
WORDPOS is the preferred built-in function for this type of word search; see page “WORDPOS (Word
Position)” on page 88 for a complete description. FIND is a non-SAA built-in function. See “FIND” on
page 90 for a description.

FORM

FORM ()

returns the current setting of NUMERIC FORM. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

FORM() -> 'SCIENTIFIC' /* by default */

FORMAT

FORMAT (number

,

before ,

after ,
expp , expt

)

returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, just as though the operation number+0
had been carried out. The result is precisely that of this operation if you specify only number. If you
specify any other options, the number is formatted as follows.

The before and after options describe how many characters are used for the integer and decimal parts of
the result, respectively. If you omit either or both of these, the number of characters used for that part is
as needed.

If before is not large enough to contain the integer part of the number (plus the sign for a negative
number), an error results. If before is larger than needed for that part, the number is padded on the left
with blanks. If after is not the same size as the decimal part of the number, the number is rounded (or
extended with zeros) to fit. Specifying 0 causes the number to be rounded to an integer.

Here are some examples:

FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,0) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.730'
FORMAT('-.76',4,1) -> ' -0.8'
FORMAT('3.03',4) -> ' 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('0.000') -> '0'

74 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The first three arguments are as described previously. In addition, expp and expt control the exponent
part of the result, which, by default, is formatted according to the current NUMERIC settings of DIGITS
and FORM. The expp sets the number of places for the exponent part; the default is to use as many as
needed (which may be zero). The expt sets the trigger point for use of exponential notation. The default is
the current setting of NUMERIC DIGITS.

If expp is 0, no exponent is supplied, and the number is expressed in simple form with added zeros as
necessary. If expp is not large enough to contain the exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or twice expt, respectively,
exponential notation is used. If expt is 0, exponential notation is always used unless the exponent would
be 0. (If expp is 0, this overrides a 0 value of expt.) If the exponent would be 0 when a nonzero expp is
specified, then expp+2 blanks are supplied for the exponent part of the result. If the exponent would be 0
and expp is not specified, simple form is used.

Here are some examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+04'
FORMAT('12345.73',,3,,0) -> '1.235E+4'
FORMAT('1.234573',,3,,0) -> '1.235'
FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,0) -> '123456700000.000'

FUZZ

FUZZ ()

returns the current setting of NUMERIC FUZZ. See the NUMERIC instruction on “NUMERIC” on page 42
for more information.

Here is an example:

FUZZ() -> 0 /* by default */

INDEX
POS is the preferred built-in function for obtaining the position of one string in another; see “POS
(Position)” on page 78 for a complete description. INDEX is a non-SAA built-in function. See “INDEX” on
page 91 for a description.

INSERT

INSERT (new , target

,
n ,

length , pad

)

inserts the string new, padded or truncated to length length, into the string target after the nth character.
The default value for n is 0, which means insert before the beginning of the string. If specified, n and
length must be positive whole numbers or zero. If n is greater than the length of the target string, padding
is added before the string new also. The default value for length is the length of new. If length is less than
the length of the string new, then INSERT truncates new to length length. The default pad character is a
blank.

Chapter 4. Functions 75

Here are some examples:

INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

JUSTIFY
This is a non-SAA built-in function. See “JUSTIFY” on page 91 for a description.

LASTPOS (Last Position)

LASTPOS (needle , haystack

, start

)

returns the position of the last occurrence of one string, needle, in another, haystack. (See also the POS
function.) Returns 0 if needle is the null string or is not found. By default the search starts at the last
character of haystack and scans backward. You can override this by specifying start, the point at which
the backward scan starts. start must be a positive whole number and defaults to LENGTH(haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> 0
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

LEFT

LEFT (string , length

, pad

)

returns a string of length length, containing the leftmost length characters of string. The string returned is
padded with pad characters (or truncated) on the right as needed. The default pad character is a blank.
length must be a positive whole number or zero. The LEFT function is exactly equivalent to:

SUBSTR (string , 1 , length

, pad

)

Here are some examples:

LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

LENGTH

LENGTH (string)

returns the length of string.

76 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> 0

LINESIZE
This is a non-SAA built-in function. See “LINESIZE” on page 92 for a description.

MAX (Maximum)

MAX (

,

number)

returns the largest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,MAX(20,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MAX if more
arguments are needed.

MIN (Minimum)

MIN (

,

number)

returns the smallest number from the list specified, formatted according to the current NUMERIC settings.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.03) -> 17.03
MIN(-7,-3,-4.3) -> -7
MIN(21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,MIN(2,1)) -> 1

Implementation maximum: You can specify up to 20 numbers, and can nest calls to MIN if more
arguments are needed.

OUTTRAP
OUTTRAP is an external function. See page “OUTTRAP” on page 94.

Chapter 4. Functions 77

OVERLAY

OVERLAY (new , target

,
n ,

length , pad

)

returns the string target, which, starting at the nth character, is overlaid with the string new, padded or
truncated to length length. (The overlay may extend beyond the end of the original target string.) If you
specify length, it must be a positive whole number or zero. The default value for length is the length of
new. If n is greater than the length of the target string, padding is added before the new string. The default
pad character is a blank, and the default value for n is 1. If you specify n, it must be a positive whole
number.

Here are some examples:

OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

POS (Position)

POS (needle , haystack

, start

)

returns the position of one string, needle, in another, haystack. (See also the INDEX and LASTPOS
functions.) Returns 0 if needle is the null string or is not found or if start is greater than the length of
haystack. By default the search starts at the first character of haystack (that is, the value of start is 1).
You can override this by specifying start (which must be a positive whole number), the point at which the
search starts.

Here are some examples:

POS('day','Saturday') -> 6
POS('x','abc def ghi') -> 0
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

QUEUED

QUEUED ()

returns the number of lines remaining in the external data queue when the function is called.

The REXX/VSE implementation of the external data queue is the data stack.

Here is an example:

QUEUED() -> 5 /* Perhaps */

78 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

RANDOM

RANDOM (
max

min
, max , seed

)

returns a quasi-random nonnegative whole number in the range min to max inclusive. If you specify
max or min or both, max minus min cannot exceed 100000. The min and max default to 0 and 999,
respectively. To start a repeatable sequence of results, use a specific seed as the third argument, as
described in Note “1” on page 79. This seed must be a positive whole number ranging from 0 to
999999999.

Here are some examples:

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> 0 /* 0 to 2 */
RANDOM(,,1983) -> 123 /* reproducible */

Note:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a number of times, but
specify a seed only the first time. For example, to simulate 40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
 /* do for a seed */
do 39
 sequence = sequence RANDOM(1,6)
 end
say sequence

The numbers are generated mathematically, using the initial seed, so that as far as possible they
appear to be random. Running the program again produces the same sequence; using a different
initial seed almost certainly produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program usually gives different results each
time it is run.

2. The random number generator is global for an entire program; the current seed is not saved across
internal routine calls.

REVERSE

REVERSE (string)

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

RIGHT

RIGHT (string , length

, pad

)

Chapter 4. Functions 79

returns a string of length length containing the rightmost length characters of string. The string returned is
padded with pad characters (or truncated) on the left as needed. The default pad character is a blank. The
length must be a positive whole number or zero.

Here are some examples:

RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'0') -> '00012'

REXXIPT
REXXIPT is an external function. See page “REXXIPT” on page 98.

REXXMSG
REXXMSG is an external function. See page “REXXMSG” on page 99.

SETLANG
SETLANG is an external function. See page “SETLANG” on page 99.

SIGN

SIGN (number)

returns a number that indicates the sign of number. The number is first rounded according to standard
REXX rules, just as though the operation number+0 had been carried out. Returns -1 if number is less
than 0; returns 0 if it is 0; and returns 1 if it is greater than 0.

Here are some examples:

SIGN('12.3') -> 1
SIGN(' -0.307') -> -1
SIGN(0.0) -> 0

SLEEP
SLEEP is an external function. See page “SLEEP” on page 100.

SOURCELINE

SOURCELINE (
n

)

returns the line number of the final line in the program if you omit returns the line number of the final line
in the program if you omit n, or returns the nth line in the program if you specify n. If specified, n must be
a positive whole number and must not exceed the number of the final line in the program.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE(1) -> '/* This is a 10-line REXX program */'

80 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SPACE

SPACE (string
,

n , pad

)

returns the blank-delimited words in string with n pad characters between each word. If you specify n, it
must be a positive whole number or zero. If it is 0, all blanks are removed. Leading and trailing blanks are
always removed. The default for n is 1, and the default pad character is a blank.

Here are some examples:

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',0) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

STORAGE
STORAGE is an external function. See page “STORAGE” on page 101.

STRIP

STRIP (string
,

option , char

)

returns string with leading or trailing characters or both removed, based on the option you specify. The
following are valid options. (Only the capitalized and highlighted letter is needed; all characters following
it are ignored.)
Both

removes both leading and trailing characters from string. This is the default.
Leading

removes leading characters from string.
Trailing

removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is a blank. If you specify
char, it must be exactly one character long.

Here are some examples:

STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7000',,0) -> '12.7'
STRIP('0012.700',,0) -> '12.7'

Chapter 4. Functions 81

SUBSTR (Substring)

SUBSTR (string , n
,

length , pad

)

returns the substring of string that begins at the nth character and is of length length, padded with pad if
necessary. The n must be a positive whole number. If n is greater than LENGTH(string), then only pad
characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a blank.

Here are some examples:

SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing templates are more convenient for
selecting substrings, especially if more than one substring is to be extracted from a string. See also the
LEFT and RIGHT functions.

SUBWORD

SUBWORD (string , n

, length

)

returns the substring of string that starts at the nth word, and is up to length blank-delimited words. The
n must be a positive whole number. If you omit length, it defaults to the number of remaining words
in string. The returned string never has leading or trailing blanks, but includes all blanks between the
selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

SYMBOL

SYMBOL (name)

returns the state of the symbol named by name. Returns BAD if name is not a valid REXX symbol. Returns
VAR if it is the name of a variable (that is, a symbol that has been assigned a value). Otherwise returns
LIT, indicating that it is either a constant symbol or a symbol that has not yet been assigned a value (that
is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated to uppercase and
substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an expression) to prevent
substitution before it is passed to the function.

82 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

/* following: Drop A.3; J=3 */
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /* has tested "3" */
SYMBOL('a.j') -> 'LIT' /* has tested A.3 */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*') -> 'BAD' /* not a valid symbol */

SYSVAR
SYSVAR is an external function. See page “SYSVAR” on page 102.

TIME

TIME (

option

)

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and seconds) by default, for
example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to the elapsed-time
clock. (Only the capitalized and highlighted letter is needed; all characters following it are ignored.)
Civil

returns the time in Civil format: hh:mmxx. The hours may take the values 1 through 12, and the
minutes the values 00 through 59. The minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59 a.m.—appearing as 12:00am through
11:59am) from noon and afternoon (12 noon through 11:59 p.m.—appearing as 12:00pm through
11:59pm). The hour has no leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

Elapsed
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset. The number has no leading zeros or blanks, and the setting
of NUMERIC DIGITS does not affect the number. The fractional part always has six digits.

Hours
returns up to two characters giving the number of hours since midnight in the format: hh (no leading
zeros or blanks, except for a result of 0).

Long
returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction of seconds, in microseconds).
The first eight characters of the result follow the same rules as for the Normal form, and the fractional
part is always six digits.

Minutes
returns up to four characters giving the number of minutes since midnight in the format: mmmm (no
leading zeros or blanks, except for a result of 0).

Normal
returns the time in the default format hh:mm:ss, as described previously. The hours can have the
values 00 through 23, and minutes and seconds, 00 through 59. All these are always two digits. Any
fractions of seconds are ignored (times are never rounded up). This is the default.

Reset
returns sssssssss.uuuuuu, the number of seconds.microseconds since the elapsed-time clock
(described later) was started or reset and also resets the elapsed-time clock to zero. The number
has no leading zeros or blanks, and the setting of NUMERIC DIGITS does not affect the number. The
fractional part always has six digits.

Chapter 4. Functions 83

Seconds
returns up to five characters giving the number of seconds since midnight in the format: sssss (no
leading zeros or blanks, except for a result of 0).

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.123456' /* Perhaps */
TIME('M') -> '1014' /* 54 + 60*16 */
TIME('N') -> '16:54:22'
TIME('S') -> '60862' /* 22 + 60*(54+60*16) */

The elapsed-time clock:

You can use the TIME function to measure real (elapsed) time intervals. On the first call in a program to
TIME('E') or TIME('R'), the elapsed-time clock is started, and either call returns 0. From then on,
calls to TIME('E') and to TIME('R') return the elapsed time since that first call or since the last call to
TIME('R').

The clock is saved across internal routine calls, which is to say that an internal routine inherits the time
clock its caller started. Any timing the caller is doing is not affected, even if an internal routine resets the
clock. An example of the elapsed-time clock:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time('R') -> 1.002345 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single clause. The elapsed-time clock
is synchronized to the other calls to TIME and DATE, so multiple calls to the elapsed-time clock in a single
clause always return the same result. For the same reason, the interval between two usual TIME/DATE
results may be calculated exactly using the elapsed-time clock.

Implementation maximum: If the number of seconds in the elapsed time exceeds nine digits (equivalent
to over 31.6 years), an error results.

TRACE

TRACE (

option

)

returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be one of the valid prefixes ? or ! or one of the
alphabetic character options associated with the TRACE instruction (that is, starting with A, C, E, F, I, L,
N, O, R, or S) or both. (See the TRACE instruction on “Alphabetic Character (Word) Options” on page 54 for
full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if interactive debug is
active. Also unlike the TRACE instruction, option cannot be a number.

Here are some examples:

TRACE() -> '?R' /* maybe */
TRACE('O') -> '?R' /* also sets tracing off */
TRACE('?I') -> 'O' /* now in interactive debug */

84 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TRANSLATE

TRANSLATE(string

,

tableo ,

tablei , pad

)

returns string with each character translated to another character or unchanged. You can also use this
function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE searches tablei for each
character in string. If the character is found, then the corresponding character in tableo is used in the
result string; if there are duplicates in tablei, the first (leftmost) occurrence is used. If the character is not
found, the original character in string is used. The result string is always the same length as string.

The tables can be of any length. If you specify neither translation table and omit pad, string is simply
translated to uppercase (that is, lowercase a–z to uppercase A–Z), but, if you include pad, the language
processor translates the entire string to pad characters. tablei defaults to XRANGE('00'x,'FF'x), and
tableo defaults to the null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Here are some examples:

TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b') -> 'a&&c'
TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('00'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to reorder the characters in a string.
In the example, the last character of any four-character string specified as the second argument would be
moved to the beginning of the string.

TRUNC (Truncate)

TRUNC (number
, n

)

returns the integer part of number and n decimal places. The default n is 0 and returns an integer with no
decimal point. If you specify n, it must be a positive whole number or zero. The number is first rounded
according to standard REXX rules, just as though the operation number+0 had been carried out. The
number is then truncated to n decimal places (or trailing zeros are added if needed to make up the
specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3) -> 12
TRUNC(127.09782,3) -> 127.097
TRUNC(127.1,3) -> 127.100
TRUNC(127,2) -> 127.00

Note: The number is rounded according to the current setting of NUMERIC DIGITS if necessary before the
function processes it.

Chapter 4. Functions 85

USERID
USERID is a non-SAA built-in function. See “USERID” on page 92 for a description.

VALUE

VALUE (name
,

newvalue

)

returns the value of the symbol that name (often constructed dynamically) represents and optionally
assigns it a new value. By default, VALUE refers to the current REXX-variables environment. name must be
a valid REXX symbol. (You can confirm this by using the SYMBOL function.) Lowercase characters in name
are translated to uppercase. Substitution in a compound name (see “Compound Symbols” on page 20)
occurs if possible.

If you specify newvalue, then the named variable is assigned this new value. This does not affect the
result returned; that is, the function returns the value of name as it was before the new assignment.

Here are some examples:

/* After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' */
VALUE('a'k) -> 'A3' /* looks up A3 */
VALUE('a'k||k) -> '7' /* looks up A33 */
VALUE('fred') -> 'K' /* looks up FRED */
VALUE(fred) -> '3' /* looks up K */
VALUE(fred,5) -> '3' /* looks up K and */
 /* then sets K=5 */
VALUE(fred) -> '5' /* looks up K */
VALUE('LIST.'k) -> 'Hi' /* looks up LIST.5 */

Note: If the VALUE function refers to an uninitialized REXX variable then the default value of the variable
is always returned; the NOVALUE condition is not raised.

If you specify the name as a single literal string, the symbol is a constant and so the string between
the quotation marks can usually replace the whole function call. (For example, fred=VALUE('k'); is
identical with the assignment fred=k;, unless the NOVALUE condition is being trapped. See Chapter 7,
“Conditions and Condition Traps,” on page 129.)

VERIFY

VERIFY (string , reference
,

option , start

)

returns a number that, by default, indicates whether string is composed only of characters from reference;
returns 0 if all characters in string are in reference, or returns the position of the first character in string not
in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and highlighted letter is
needed. All characters following it are ignored, and it can be in upper- or lowercase, as usual.) If you
specify Match, the function returns the position of the first character in string that is in reference, or
returns 0 if none of the characters are found.

The default for start is 1; thus, the search starts at the first character of string. You can override this by
specifying a different start point, which must be a positive whole number.

86 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If string is null, the function returns 0, regardless of the value of the third argument. Similarly, if start is
greater than LENGTH(string), the function returns 0. If reference is null, the function returns 0 if you
specify Match; otherwise the function returns the start value.

Here are some examples:

VERIFY('123','1234567890') -> 0
VERIFY('1Z3','1234567890') -> 2
VERIFY('AB4T','1234567890') -> 1
VERIFY('AB4T','1234567890','M') -> 3
VERIFY('AB4T','1234567890','N') -> 1
VERIFY('1P3Q4','1234567890',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','',,3) -> 3
VERIFY('AB3CD5','1234567890','M',4) -> 6

WORD

WORD (string , n)

returns the nth blank-delimited word in string or returns the null string if fewer than n words are in string.
The n must be a positive whole number. This function is exactly equivalent to SUBWORD(string,n,1).

Here are some examples:

WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

WORDINDEX

WORDINDEX (string , n)

returns the position of the first character in the nth blank-delimited word in string or returns 0 if fewer
than n words are in string. The n must be a positive whole number.

Here are some examples:

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> 0

WORDLENGTH

WORDLENGTH (string , n)

returns the length of the nth blank-delimited word in string or returns 0 if fewer than n words are in string.
The n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> 0

Chapter 4. Functions 87

WORDPOS (Word Position)

WORDPOS (phrase , string

, start

)

returns the word number of the first word of phrase found in string or returns 0 if phrase contains no
words or if phrase is not found. Multiple blanks between words in either phrase or string are treated as a
single blank for the comparison, but otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by specifying start (which must
be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

WORDS

WORDS (string)

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS(' ') -> 0

XRANGE (Hexadecimal Range)

XRANGE (

start , end

)

returns a string of all valid 1-byte encodings (in ascending order) between and including the values start
and end. The default value for start is '00'x, and the default value for end is 'FF'x. If start is greater
than end, the values wrap from 'FF'x to '00'x. If specified, start and end must be single characters.

Here are some examples:

XRANGE('a','f') -> 'abcdef'
XRANGE('03'x,'07'x) -> '0304050607'x
XRANGE(,'04'x) -> '0001020304'x
XRANGE('i','j') -> '898A8B8C8D8E8F9091'x /* EBCDIC */
XRANGE('FE'x,'02'x) -> 'FEFF000102'x

X2B (Hexadecimal to Binary)

X2B (hexstring)

88 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

returns a string, in character format, that represents hexstring converted to binary. The hexstring is a
string of hexadecimal characters. It can be of any length. Each hexadecimal character is converted to a
string of four binary digits. You can optionally include blanks in hexstring (at byte boundaries only, not
leading or trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any blanks.

If hexstring is null, the function returns a null string.

Here are some examples:

X2B('C3') -> '11000011'
X2B('7') -> '0111'
X2B('1 C1') -> '000111000001'

You can combine X2B with the functions D2X and C2X to convert numbers or character strings into binary
form.

Here are some examples:

X2B(C2X('C3'x)) -> '11000011'
X2B(D2X('129')) -> '10000001'
X2B(D2X('12')) -> '1100'

X2C (Hexadecimal to Character)

X2C (hexstring)

returns a string, in character format, that represents hexstring converted to character. The returned string
is half as many bytes as the original hexstring. hexstring can be of any length. If necessary, it is padded
with a leading 0 to make an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

X2C('F7F2 A2') -> '72s' /* EBCDIC */
X2C('F7f2a2') -> '72s' /* EBCDIC */
X2C('F') -> ' ' /* '0F' is unprintable EBCDIC */

X2D (Hexadecimal to Decimal)

X2D (hexstring
, n

)

returns the decimal representation of hexstring. The hexstring is a string of hexadecimal characters. If the
result cannot be expressed as a whole number, an error results. That is, the result must not have more
digits than the current setting of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not leading or trailing) to aid
readability; they are ignored.

If hexstring is null, the function returns 0.

If you do not specify n, hexstring is processed as an unsigned binary number.

Chapter 4. Functions 89

Here are some examples:

X2D('0E') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 65409
X2D('c6 f0'X) -> 240 /* EBCDIC */

If you specify n, the string is taken as a signed number expressed in n hexadecimal digits. If the leftmost
bit is off, then the number is positive; otherwise, it is a negative number in two's complement notation.
In both cases it is converted to a whole number, which may, therefore, be negative. If n is 0, the function
returns 0.

If necessary, hexstring is padded on the left with 0 characters (note, not "sign-extended"), or truncated on
the left to n characters.

Here are some examples:

X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('F081',4) -> -3967
X2D('F081',3) -> 129
X2D('F081',2) -> -127
X2D('F081',1) -> 1
X2D('0031',0) -> 0

Implementation maximum: The input string may not have more than 500 hexadecimal characters that
will be significant in forming the final result. Leading sign characters (0 and F) do not count towards this
total.

Additional Functions Provided in REXX/VSE
In addition to the SAA-defined built-in functions, REXX/VSE provides the following built-in functions:

EXTERNALS

EXTERNALS ()

always returns a 0. For example:

EXTERNALS() -> 0 /* Always */

The EXTERNALS function returns the number of elements in the terminal input buffer (system external
event queue). In REXX/VSE there is no equivalent buffer. Therefore, the EXTERNALS function always
returns a 0.

FIND
WORDPOS is the preferred built-in function for this type of word search. See page “WORDPOS (Word
Position)” on page 88 for a complete description.

FIND (string , phrase)

returns the word number of the first word of phrase found in string or returns 0 if phrase is not found
or if there are no words in phrase. The phrase is a sequence of blank-delimited words. Multiple blanks
between words in phrase or string are treated as a single blank for the comparison.

REXX/VSE Functions

90 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Here are some examples:

FIND('now is the time','is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> 0

Note that WORDPOS is the preferred built-in function for this type of word search.

For more complete information, see the z/VM REXX/VM Reference.

INDEX
POS is the preferred built-in function for obtaining the position of one string in another. See page “POS
(Position)” on page 78 for a complete description.

INDEX (haystack , needle

, start

)

returns the character position of one string, needle, in another, haystack, or returns 0 if the string needle
is not found or is a null string. By default the search starts at the first character of haystack (start has
the value 1). You can override this by specifying a different start point, which must be a positive whole
number.

Here are some examples:

INDEX('abcdef','cd') -> 3
INDEX('abcdef','xd') -> 0
INDEX('abcdef','bc',3) -> 0
INDEX('abcabc','bc',3) -> 5
INDEX('abcabc','bc',6) -> 0

Note that POS is the preferred built-in function for obtaining the position of one string in another.

For more complete information, see the z/VM REXX/VM Reference.

JUSTIFY

JUSTIFY (string , length

, pad

)

returns string formatted by adding pad characters between blank-delimited words to justify to both
margins. This is done to width length (length must be a positive whole number or zero). The default pad
character is a blank.

The first step is to remove extra blanks as though SPACE(string) had been run (that is, multiple blanks
are converted to single blanks, and leading and trailing blanks are removed). If length is less than the
width of the changed string, the string is then truncated on the right and any trailing blank is removed.
Extra pad characters are then added evenly from left to right to provide the required length, and the pad
character replaces the blanks between words.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9,'+') -> 'The++blue'

For more complete information, see the z/VM REXX/VM Reference.

REXX/VSE Functions

Chapter 4. Functions 91

https://www.vm.ibm.com/library/710pdfs/71631400.pdf
https://www.vm.ibm.com/library/710pdfs/71631400.pdf
https://www.vm.ibm.com/library/710pdfs/71631400.pdf

LINESIZE

LINESIZE ()

returns the width of the current output device. If the current output destination is SYSLOG, LINESIZE
returns 66. If it is SYSLST, LINESIZE returns 120. You can use ASSGN(STDOUT) to return the name of the
current output device.

USERID

USERID ()

returns one of the following values:

1. The last user ID specified on the SETUID command, or, if none,
2. The user ID of the calling REXX program, if one REXX program calls another, or, if none,
3. The user ID under which the job is running, or, if none,
4. The job name.

The USERID function returns the first value that does not have a null value. For example, if the user ID
specified on SETUID is null, USERID returns the user ID under which the job is running.

There are several ways to specify the user ID, not limited to the following:

• On the POWER JOB card
• The logon userid/password passed through the PWRSPL macro when you submit a job from the

interactive interface (ICCF)
• On the REXX/VSE command SETUID. (See page “SETUID” on page 165 for details.)

You can replace the routine (phase) that is called to determine the value the USERID function returns.
This is known as the user ID replaceable routine; and “User ID Routine” on page 465 describes it. See
Chapter 21, “Replaceable Routines and Exits,” on page 439 for details about replaceable routines and any
exceptions to this rule.

For more complete information, see the z/VM REXX/Reference.

External Functions
You can use the following external functions to perform different tasks:

• ASSGN
• LOCKMGR (see note)
• MERGE (see note)
• OPERMSG (see note)
• OUTTRAP
• PAUSEMSG (see note)
• REXXIPT
• REXXMSG
• SETLANG
• SLEEP
• SORTSTEM (see note)

External Functions

92 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

https://www.vm.ibm.com/library/710pdfs/71631400.pdf

• STORAGE.
• SYSVAR

Note: These are functions packaged with REXX Console Automation. Some more functions which allow
a REXX program to work with the REXX console are described in the section “Console-related REXX
Functions” on page 229.

This section describes external functions. For general information about the syntax of function calls, see
“Syntax” on page 59.

Chapter 18, “Customizing Services,” on page 381 describes customization and language processor
environments in more detail.

ASSGN

ASSGN (STDIN

, SYSIPT

, SYSLOG

, filename

STDOUT

, SYSLST

, SYSLOG

, filename

)

ASSGN returns the name of the current input or output stream and, optionally, changes it. You can use
ASSGN(STDIN) or ASSGN(STDOUT) to return the name of the current input or output stream, respectively.
If you specify one of the optional items, ASSGN returns the name of the current stream and changes the
current stream to the value you specified.

If you specify filename, this is the name of the input or output file. The filename must be 1 to 8 characters.

Note:

1. Using SYSLST with STDIN or using SYSIPT with STDOUT results in REXX error 40,
Invalid call to routine.

2. You must provide your own I/O replaceable routine unless you use one of the following file names:

• SYSLOG
• SYSIPT
• SYSLST
• SYSxxx (where xxx is numeric) If you specify a system file SYSxxx you might receive an error by the

I/O replaceable routine ARXINOUT. See “Input/Output Routine” on page 446 for a list of supported
file names.

• Any other 7-character name.

Otherwise, you receive an error. See “Input/Output Routine” on page 446 for information about
supplying a replaceable routine.

You need to open a SAM file (using EXECIO…(OPEN) before reading from or writing to the file. SYSIPT,
SYSLST, and SAM files you have opened use the replaceable routine ARXINOUT.

3. SAM file names can be 1 to 7 characters.

PARSE EXTERNAL, PARSE PULL, PULL, SAY, TRACE, and error messages use the current input and output
streams.

External Functions

Chapter 4. Functions 93

The INDD field in the module name table specifies the default input stream (SYSIPT), and the OUTDD
field specifies the default output stream (SYSLST). Instead of using ASSGN to change the input or output
stream, you can specify the INDD or OUTDD field in the in-storage parameter list during a call to ARXINIT.
See “Module Name Table” on page 398 for a description of the module name table.

Examples:

/************************** REXX ***********************************/
/* This REXX program gets a word from the input stream and sends */
/* it to the output stream. */
/***/

oldin = ASSGN('STDIN','SYSLOG')
oldout = ASSGN('STDOUT','SYSLOG')

say 'Enter the word.'
 PULL word /* Get the word. */
 SAY word

CALL ASSGN 'STDIN',oldin
CALL ASSGN 'STDOUT',oldout
EXIT

LOCKMGR

LOCKMGR (request , name)

The LOCKMGR function allows to serialize REXX programs. See the detailed description on “LOCKMGR”
on page 235.

MERGE

MERGE (string)

The MERGE function creates a new library member using a given skeleton and input variables. See the
detailed description on “MERGE” on page 236.

OPERMSG

OPERMSG (request)

The OPERMSG function adds or removes an operator communication exit. See the detailed description on
“OPERMSG” on page 237.

OUTTRAP

External Functions

94 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

OUTTRAP (

varname

, 999999999 , CONCAT

,
999999999

max

, CONCAT

, NOCONCAT

)

OUTTRAP returns

• OFF (if it has not been previously used)
• the previously used varname

if used with arguments the following is trapped in the specified varname:

• user data provided by ARXOUT. This is only possible from a user program invoked by LINK or LINKPGM.
• job completion information retrieved by QUERYMSG.
• command output and error information from JCL.
• SYSLST output for LIBR and IDCAMS
• error information from PUTQE (page “PUTQE” on page 186). and GETQE (page “GETQE” on page 182)
• command output from VSE/POWER commands (CTL requests) routed back through the VSE/POWER

spool-access services interface, or error information if the command fails.

(See VSE/POWER Application Programming, for a list of POWER commands you can send through a CTL
service request. See VSE/POWER Administration and Operation, for the syntax of these commands.)

varname
is the stem of a compound variable (a stem must end with a period). It has no default value (trapping
is not in effect until activated).

max
is the maximum number of lines to store in the compound variables. You can specify a number, an
asterisk in quotation marks ('*'), or a blank. If you specify '*' or a blank, all the output is stored.
The default is 999999999. Once the maximum number of lines are stored, subsequent lines are not
stored in compound variables.

CONCAT
specifies storing trapped lines from successive commands in consecutive order until the maximum
number of lines is reached. For example, if the first command has three lines of output and the second
command has two lines of output, lines are stored in varname.1 through varname.5, respectively.
CONCAT is the default.

NOCONCAT
specifies overwriting stored lines from successive commands. For example, if the first command has
three lines of output, they are stored in varname.1 through varname.3. Storing two lines of output
from the second command overwrites the lines from the first command in varname.1 and varname.2.
(Varname.3 would no longer contain the third line of the first command's output.) Before OUTTRAP
stores output, varname is dropped (as if a REXX DROP instruction specifying the name of the stem had
been used).

All unused variables have the value of their own names in uppercase. Varname.0 contains the number of
lines that have been stored. For example, if you specify cmdout. as the varname, the number of lines
stored is in cmdout.0.

A program written in REXX cannot turn trapping off. Once trapping is turned on, it remains in effect
until the program is done running. If a second call to a subsequent program is made, trapping is not in

External Functions

Chapter 4. Functions 95

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

effect unless the second program turns trapping on. When the second program ends, the trapping for
that program ends and trapping for the first program is again in effect. (The REXX variables that trapping
affects are in the program that is currently running.)

Additional Variables That OUTTRAP Sets
In addition to the variables that store the lines of output, OUTTRAP stores information in the following
variables:

varname.0
contains the total number of lines stored. The number in this variable cannot be larger than
varname.MAX or varname.TRAPPED.

varname.MAX
contains the maximum number of output lines that the user specified or the default. See example “4”
on page 96.

varname.TRAPPED
contains the total number of lines of command output. The number in this variable can be larger than
varname.0 or varname.MAX.

varname.CON
contains either CONCAT or NOCONCAT.

Examples:

The following are some examples of using OUTTRAP.

Note: You should use quotation marks around the string you specify for varname and around the
keywords CONCAT and NOCONCAT.

1. To determine if trapping is in effect:

y = OUTTRAP()
SAY y /* Produces the variable name being used to */
/* store output or "OFF" if trapping is off */

2. To suppress all command output:

y = OUTTRAP('output.',0)

Note: This form of OUTTRAP is best for suppressing command output.
3. To store output from commands in consecutive order, using the stem output., you can use one of the

following:

y = OUTTRAP('output.','*','CONCAT')

y = OUTTRAP('output.')

y = OUTTRAP('output.',,'CONCAT')

4. This example contrasts CONCAT and NOCONCAT. Suppose you use the following to store output lines
from two commands:

y = OUTTRAP('ABC.',4,'CONCAT')

Command 1 has three lines of output.

ABC.0 --> 3 /* total lines stored */
ABC.1 --> Command 1 output line 1
ABC.2 --> Command 1 output line 2
ABC.3 --> Command 1 output line 3
ABC.4 --> ABC.4 /* uninitialized variable */
ABC.MAX --> 4
ABC.TRAPPED --> 3 /* total output lines */
ABC.CON --> CONCAT

External Functions

96 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Command 2 has two lines of output. They are stored in variables starting after the three lines already
stored.

ABC.0 --> 4 /* total lines stored */
ABC.1 --> Command 1 output line 1
ABC.2 --> Command 1 output line 2
ABC.3 --> Command 1 output line 3
ABC.4 --> Command 2 output line 1
ABC.MAX --> 4
ABC.TRAPPED --> 5 /* total lines output */
ABC.CON --> CONCAT

(The second line from Command 2 is not stored because max is 4.)

However, if you use:

y = OUTTRAP('ABC.',4,'NOCONCAT')

to store the same two commands, this produces different results:

Results after Command 1 are the same (except for ABC.CON):

ABC.0 --> 3 /* total lines stored */
ABC.1 --> Command 1 output line 1
ABC.2 --> Command 1 output line 2
ABC.3 --> Command 1 output line 3
ABC.4 --> ABC.4 /* uninitialized variable */
ABC.MAX --> 4
ABC.TRAPPED --> 3 /* total lines output */
ABC.CON --> NOCONCAT

However, output lines from Command 2 overwrite lines from Command 1.

ABC.0 --> 2 /* total lines stored */
ABC.1 --> Command 2 output line 1
ABC.2 --> Command 2 output line 2
ABC.3 --> ABC.3 /* becomes uninitialized */
ABC.4 --> ABC.4
ABC.MAX --> 4
ABC.TRAPPED --> 2 /* total lines output */
ABC.CON --> NOCONCAT

5. The following example uses OUTTRAP to capture error information from PUTQE:

y = OUTTRAP('mystem.')
ADDRESS POWER "PUTQE RDR MEMBER member1 WAIT 3 CLASS 0"

If Class 0 is busy, so that the three-second interval elapses before the job can be put on the RDR
queue, OUTTRAP stores error information in the compound variables whose names begin with the
stem mystem..

PAUSEMSG

PAUSEMSG (message)

The PAUSEMSG function issues a console message and waits for an operator reply. See the detailed
description on “PAUSEMSG” on page 238.

External Functions

Chapter 4. Functions 97

REXXIPT

REXXIPT (

input_stem.

OFF

)

REXXIPT lets a program (called with ADDRESS JCL, ADDRESS LINK or ADDRESS LINKPGM) read data
stored in compound variables as if it were SYSIPT data. It returns a previously defined input stem or 'OFF'.

REXXIPT cannot be used in a REXX program running in a subtask. If a second call to a subsequent REXX
program is made, REXXIPT is off unless a stem is assigned to REXXIPT. When the second program ends,
REXXIPT data is deleted and REXXIPT for the first program is on again.

The input_stem is the name of a stem (it must end with a period). It is used as the SYSIPT input stream for
the specified host command environment. OFF specifies that no stem contains SYSIPT data.

To use the REXXIPT function:

1. Store the lines of data into compound variables.
2. Store the number of lines in input_stem stem.0.
3. Call the REXXIPT function.
4. Use the ADDRESS instruction to call the program.

In the following example, the ADDRESS instruction specifies the LINK environment and calls the program
MYPHASE:

line.1="Now is the time"
line.2="for all good men"
line.3="to come to the aid of their country."
line.0=3 /* total number of lines of data */
oldstem = REXXIPT(line.)
ADDRESS LINK "MYPHASE"

The REXXIPT function call specifies name of the stem. In this example, line. is the name of the stem.
To use the SYSIPT information provided by a stem, the REXXIPT function call must precede an ADDRESS
instruction that loads and calls another program. You can use REXXIPT for the following environments:

• ADDRESS JCL
• ADDRESS LINK
• ADDRESS LINKPGM.

When MYPHASE reads a record from SYSIPT, it reads the contents of the compound variables in order.
That is, it reads line.1, then line.2, and finally line.3.

The called program uses the VSE/ESA OPEN, GET, and CLOSE macros using a DTFDI-eqivalent from
SYSIPT to read the data. A record containing fewer than 128 bytes is padded with blanks. A record
containing more than 128 bytes is truncated. See z/VSE System Macro Reference for detailed information.

Reading the last record acts as the end of file condition. The input_stem.0 contains the total number of
records. Reading a record whose number is one more than the contents of input_stem.0 indicates the end
of data.

If you call a program a second time and it reads the records again, reading starts at the first record. Each
time you start reading SYSIPT data you start at the first record again.

Note:

1. To have access to SYSIPT data, you need to use the JCL card // EXEC REXX= to call the program that
contains the REXXIPT function call. (Otherwise, you receive error 40.)

2. The called program uses the OPEN, GET, and CLOSE macros using DTFDI from SYSIPT to read the data.

External Functions

98 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

3. The input_stem.0 contains the total number of records.
4. Supported command environments can use REXXIPT from the main task. The REXX program must be

called by the JCL statement // EXEC REXX.

REXXMSG

REXXMSG (

symbol

)

This function is intended for the general user. REXXMSG specifies the output destination where REXX/VSE
messages are routed to. This destination is valid for all REXX programs running under the same
language program environment. REXXMSG also enables the complete supression of REXX/VSE messages.
REXXMSG sets the NOMSGWTO and NOMSGIO flags. These two flags control where REXX error messages
are routed.

symbol can be one of the following:
ON

switches all REXX messages on. This is equal to NOMSGWTO=OFF and NOMSGIO=OFF.
STDOUT

REXX error messages are written to the standard output device STDOUT. The messages are
surpressed if the current output is SYSLOG. This is equal to NOMSGWTO=ON and NOMSGIO=OFF.

SYSLOG
REXX error messages cannot be written to the standard output device STDOUT. Messages are written
to SYSLOG. This is equal to NOMSGWTO=OFF and NOMSGIO=ON.

OFF
all REXX error messages are supressed. This is equal to NOMSGWTO=ON and NOMSGIO=ON.

REXXMSG returns the previous symbol set by REXXMSG. Here is an example

previous = REXXMSG('ON') /* -> returns 'OFF' and sets messages on */
result = REXXMSG(previous)/* -> returns 'ON' and sets msg off */

REXXMSG() just returns the current REXX error message destination without setting anything. REXXMSG()
is set to ON as shipped by IBM. You may, however, have customized your installation to different settings.

Here is an example

 previous = REXXMSG('STDOUT') /* -> returns 'OFF' and sets STDOUT */
 current = REXXMSG() /* -> returns 'STDOUT' */

Return Codes: Any invalid input results in a return code of 40.

Overruling REXXMSG
The REXX administrator can overrule the REXXMSG function and can suppress messages by setting
NOPMSGS=ON and ALTMSGS=OFF in the ARXPARMS parameters module. You may now specify
REXXMSG('ON'), the function is processed, REXXMSG() returns 'ON' but no messages are written.

SETLANG

SETLANG (

langcode

)

External Functions

Chapter 4. Functions 99

SETLANG returns a three-character code that indicates the language in which REXX messages are
currently being displayed. Table 1 on page 100 shows the language codes and the corresponding
languages for each code.

You can optionally specify one of the language codes as an argument on the function. This sets the
language in which REXX messages are displayed. SETLANG returns the code of the language in which
REXX messages are currently displayed and changes the language in which subsequent messages will be
displayed.

Table 1. Language Codes for SETLANG Function

Language Code Language

ENP US English - all uppercase

ENU US English - mixed case (upper and lowercase) (This is the default.)

Here are some examples:

curlang = SETLANG() -> 'ENU' /* Returns current language (ENU) */

oldlang = SETLANG("ENP")-> 'ENU' /* returns current language (ENU)
 and sets language to US English
 uppercase (ENP) */

After a program uses SETLANG to set a specific language, any REXX message the system issues is
displayed in that language. If the program calls another program (either as a function or subroutine
or using the EXEC command), any REXX messages are displayed in the language you specified on
the SETLANG function. The language you specified on SETLANG is the language for displaying REXX
messages until the program processes another call to SETLANG or the environment in which the program
is running terminates.

Note:

1. The default language for REXX messages depends on the language feature that is installed on
your system. The default language is in the language field of the parameters module (see page
“LANGUAGE ” on page 392). You can use the SETLANG function to determine and set the language for
REXX messages.

2. The language codes you can specify on the SETLANG function also depend on the language features
that are installed on your system. If you specify a language code on the SETLANG function and the
corresponding language feature is not installed on your system, SETLANG does not issue an error
message. However, if the system needs to display a REXX message and cannot locate the message for
the particular language you specified, the system issues an error message. The system then tries to
display the REXX message in US English.

SLEEP

SLEEP (n)

Use SLEEP to wait for a number of seconds. n specifies the number of seconds a REXX program is
requested to wait. After this time has elapsed, the REXX program continues processing. The highest
allowed value is 55924. Any invalid input results in return code 40 and message ARX0040I.

Examples: The result of the SLEEP function is zero.

fc = SLEEP(1)

assigns the variable fc the value zero.

CALL SLEEP 1

External Functions

100 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

assigns the variable result the value zero.

SORTSTEM

SORTSTEM (stemname , zone , sortorder)

The SORTSTEM function allows to sort contents of a stem variable. See the detailed description on
“SORTSTEM” on page 240.

STORAGE

STORAGE (address

, 1

,

length ,

data

STORAGE returns length bytes of data from the specified address in storage. The address is a character
string containing the hexadecimal representation of the storage address from which data is retrieved.

Optionally, you can specify length, the decimal number of bytes to be retrieved from address. The default
length is 1 byte. When length is 0, STORAGE returns a null character string.

If you specify data, STORAGE returns the information from address and then overwrites the storage
starting at address with data you specified on the function call. The data is the character string to be
stored at address. The length argument does not affect how much storage is overwritten; the entire data is
written.

If the STORAGE function tries to retrieve or change data beyond the storage limit, only the storage up to
the limit is retrieved or changed.

Note: Virtual storage addresses can be fetch protected or update protected, or they may not be valid
addresses to VSE/ESA. An abend results if STORAGE references a nonexistent address or tries to update
nonexistent storage, retrieve the contents of fetch-protected storage, or update store-protected storage.

The STORAGE function returns a null string if any part of the request fails. Because the STORAGE function
can retrieve and update virtual storage at the same time, it is not evident whether the retrieve or update
caused the null string to be returned. In addition, a request for retrieving or updating storage of a shorter
length might have been successful. When part of a request fails, the failure point is on a decimal 4096
boundary.

Examples

1. To retrieve 25 bytes of data from address 000AAE35, use the STORAGE function as follows:

storret = STORAGE(000AAE35,25)

2. To replace the data at address 0035D41F with REXX/VSE, use the following STORAGE function:

storrep = STORAGE(0035D41F,,'REXX/VSE')

This example first returns 1 byte of information found at address 0035D41F and then replaces the
data beginning at address 0035D41F with the characters REXX/VSE.

Note: Information is retrieved before it is replaced.

External Functions

Chapter 4. Functions 101

SYSVAR

SYSVAR (arg_name)

SYSVAR returns system information about VSE/ESA. This information is stored in a REXX variable. The
information returned depends on the arg_name specified on the function call. Any invalid input results in
return code 40 and message ARX0040I. arg_name can be the following:
SYSMRC

stores the highest return code from VSE JCL in the variable SYSMRC. The return code may be up to 4
characters long.

SYSJOBNAME
the variable SYSJOBNAME returns the VSE JCL jobname (// JOB jobname). jobname may be from 1 to
8 characters long.

SYSJCLPROC
returns the JCL procedure name if the REXX program is invoked from a nested JCL procedure.
Otherwise it will return a null string.

SYSLIBRCODE
returns the Librarian return and reason code of an EXECIO command for Libr members. It is a string
consisting of two words. Each word consists of four digits. The first word shows the return code, the
second word shows the reason code, e.g. '0016 0067'.

SYSPOWJNM
the variable SYSPOWJNM stores the VSE/POWER jobname (* $$ JOB JNM=jobname). jobname may be
from 1 to 8 characters long. This variable may be only used if the VSE/POWER partition control block
is available.

SYSPOWJNUM
the variable SYSPOWJNUM stores the jobnumber of the VSE/POWER job calling the REXX program.
This variable may be only used if the VSE/POWER partition control block is available.

SYSPOWJCLS
the variable SYSPOWJCLS stores the jobclass of the VSE/POWER job calling the REXX program. This
variable may be only used if the VSE/POWER partition control block is available.

SYSPID
the variable SYSPID returns the partition ID. It is 2 bytes long.

SYSVERSION
the variable SYSVERSION returns the VSE/ESA supervisor version (3 digits).

SYSERRCODES
relates to the VSE console environment: this variable contains the return and reason codes (see
“Return and Reason Codes” on page 267) of the VSE system macro (such as MGCRE, MCSOPER, or
WTO) which is used to issue a VSE console command. An example is shown in section “SYSVAR” on
page 242.

SYSCPUID
stores the CPUID of your VSE system in the variable SYSCPUID.

Examples: Return the VSE JCL jobname: if a REXX exec runs under the JCL job with jobcard "// JOB
REXXJOB".

fc=SYSVAR('SYSJOBNAME')
SAY SYSJOBNAME /* Displays REXXJOB */

Return the VSE/ESA supervisor version:

fc=SYSVAR('SYSVERSION')
SAY SYSVERSION /* Displays 610 */

Return the Librarian return and reason code:

External Functions

102 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

" EXECIO * PRD2.PROD.myfile.Z (FINIS "
IF RC=20 THEN
 DO
 CALL SYSVAR|'SYSLIBRCODE'|
 IF (WORD(syslibrcode,1)='0016' &
 (syslibrcode,2)='0067'
 THEN SAY EXECIO failed as member is locking

Return Codes: Table 2 on page 103 shows the return codes for the SYSVAR function.

Table 2. Return Codes for the SYSVAR function

Return Code Description

0 Processing was successful.

4 Processing was not successful. System information could not be retrieved.

8 Processing was not successful. System information could not be stored into a REXX
variable.

40 Any invalid input was entered.

External Functions

Chapter 4. Functions 103

External Functions

104 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 5. Parsing

Parsing Rules
The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 29, “PARSE” on page 44, and
“PULL” on page 48).

The data to parse is a source string. Parsing splits up the data in a source string and assigns pieces of it
into the variables named in a template. A template is a model specifying how to split the source string.
The simplest kind of template consists of only a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More complicated templates
contain patterns in addition to variable names.
String patterns

Match characters in the source string to specify where to split it. (See “Templates Containing String
Patterns” on page 107 for details.)

Positional patterns
Indicate the character positions at which to split the source string. (See “Templates Containing
Positional (Numeric) Patterns” on page 108 for details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to parse is between the keywords PARSE
VALUE and the keyword WITH, the source string time and tide. Parsing divides the source string into
blank-delimited words and assigns them to the variables named in the template as follows:

var1='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the next example, the
source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with var1 var2 var3 /* same results */

(PARSE VALUE does not convert lowercase a–z in the source string to uppercase A–Z. If you want
to convert characters to uppercase, use PARSE UPPER VALUE. See “Using UPPER” on page 111 for a
summary of the effect of parsing instructions on case.)

All of the parsing instructions assign the parts of a source string into the variables named in a template.
There are various parsing instructions because of differences in the nature or origin of source strings. (A
summary of all the parsing instructions is on page “Parsing Instructions Summary” on page 112.)

Parsing

© Copyright IBM Corp. 1988, 2004 105

The PARSE VAR instruction is similar to PARSE VALUE except that the source string to parse is always a
variable. In PARSE VAR, the name of the variable containing the source string follows the keywords PARSE
VAR. In the next example, the variable stars contains the source string. The template is star1 star2
star3.

/* PARSE VAR example */
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /* star1='Sirius' */
 /* star2='Polaris' */
 /* star3='Rigil' */

All variables in a template receive new values. If there are more variables in the template than words in
the source string, the leftover variables receive null (empty) values. This is true for all parsing: for parsing
into words with simple templates and for parsing with templates containing patterns. Here is an example
using parsing into words.

/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon' */
 /* Mercury='' */

If there are more words in the source string than variables in the template, the last variable in the template
receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /* Earth='moon' */
 /* Jupiter='Io Europa Callisto...'*/

Parsing into words removes leading and trailing blanks from each word before it is assigned to a variable.
The exception to this is the word or group of words assigned to the last variable. The last variable in a
template receives leftover data, preserving extra leading and trailing blanks. Here is an example:

/* Preserving extra blanks */
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/* var1 ='Mercury' */
/* var2 ='Venus' */
/* var3 ='Earth' */
/* var4 =' Mars Jupiter ' */

In the source string, Earth has two leading blanks. Parsing removes both of them (the word-separator
blank and the extra blank) before assigning var3='Earth'. Mars has three leading blanks. Parsing
removes one word-separator blank and keeps the other two leading blanks. It also keeps all five blanks
between Mars and Jupiter and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value ' Pluto ' with var1 /* var1=' Pluto '*/

The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name, but it receives no data. It is
useful:

• As a "dummy variable" in a list of variables
• Or to collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent periods with spaces;
otherwise, an error results.

/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /* brightest='Sirius' */

/* Alternative to period as placeholder */

Parsing

106 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns
A string pattern matches characters in the source string to indicate where to split it. A string pattern can
be a:
Literal string pattern

One or more characters within quotation marks.
Variable string pattern

A variable within parentheses with no plus (+) or minus (-) or equal sign (=) before the left
parenthesis. (See “Parsing with Variable Patterns” on page 111 for details.)

Here are two templates: a simple template and a template containing a literal string pattern:

var1 var2 /* simple template */
var1 ', ' var2 /* template with literal string pattern */

The literal string pattern is: ', '. This template:

• Puts characters from the start of the source string up to (but not including) the first character of the
match (the comma) into var1

• Puts characters starting with the character after the last character of the match (the character after the
blank that follows the comma) and ending with the end of the string into var2.

A template with a string pattern can omit some of the data in a source string when assigning data
into variables. The next two examples contrast simple templates with templates containing literal string
patterns.

/* Simple template */
name='Smith, John'
parse var name ln fn /* Assigns: ln='Smith,' */
 /* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the next example the template is
ln ', ' fn. This removes the comma.

/* Template with literal string pattern */
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith' */
 /* fn='John' */

First, the language processor scans the source string for ', '. It splits the source string at that point. The
variable ln receives data starting with the first character of the source string and ending with the last
character before the match. The variable fn receives data starting with the first character after the match
and ending with the end of string.

A template with a string pattern omits data in the source string that matches the pattern. (There is a
special case (on page “Combining String and Positional Patterns: A Special Case” on page 114) in which
a template with a string pattern does not omit matching data in the source string.) We used the pattern
', ' (with a blank) instead of ',' (no blank) because, without the blank in the pattern, the variable fn
receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, then any variables preceding the
unmatched string pattern get all the data in question. Any variables after that pattern receive the null
string.

A null string is never found. It always matches the end of the source string.

Parsing

Chapter 5. Parsing 107

Templates Containing Positional (Numeric) Patterns
A positional pattern is a number that identifies the character position at which to split data in the source
string. The number must be a whole number.

An absolute positional pattern is

• A number with no plus (+) or minus (-) sign preceding it or with an equal sign (=) preceding it
• A variable in parentheses with an equal sign before the left parenthesis. (See “Parsing with Variable

Patterns” on page 111 for details on variable positional patterns.)

The number specifies the absolute character position at which to split the source string.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to the 11th position in the
input string, 21 to the 21st position. This template:

• Puts characters 1 through 10 of the source string into variable1
• Puts characters 11 through 20 into variable2
• Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such as:

The following example uses this record structure.

/* Parsing with absolute positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname 11 firstname 21 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* Says 'By George!' after record 2 */

The source string is first split at character position 11 and at position 21. The language processor assigns
characters 1 to 10 into lastname, characters 11 to 20 into firstname, and characters 21 to 40 into
pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

 lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign is the same as no sign
before a number in a template. The number refers to a particular character position in the source string.
These two templates work the same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

Parsing

108 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding it. (It can also be a
variable within parentheses, with a plus (+) or minus (-) sign preceding the left parenthesis; for details
see “Parsing with Variable Patterns” on page 111.)

The number specifies the relative character position at which to split the source string. The plus or minus
indicates movement right or left, respectively, from the start of the string (for the first pattern) or from the
position of the last match. The position of the last match is the first character of the last match. Here is
the same example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
 parse var record.n lastname +10 firstname + 10 pseudonym
 If lastname='Evans' & firstname='Mary Ann' then say 'By George!'
end /* same results */

Blanks between the sign and the number are insignificant. Therefore, +10 and + 10 have the same
meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special case (on page
“Combining String and Positional Patterns: A Special Case” on page 114) when a string pattern precedes
a variable name and a positional pattern follows the variable name). The templates from the examples of
absolute and relative positional patterns give the same results.

Only with positional patterns can a matching operation back up to an earlier position in the source string.
Here is an example using absolute positional patterns:

/* Backing up to an earlier position (with absolute positional) */
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an earlier position. Here
is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /* same results */

In the previous example, the relative positional pattern -3 backs up to the first character in the source
string.

The templates in the last two examples are equivalent.

Parsing

Chapter 5. Parsing 109

You can use templates with positional patterns to make multiple assignments:

/* Making multiple assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

Combining Patterns and Parsing Into Words
What happens when a template contains patterns that divide the source string into sections containing
multiple words? String and positional patterns divide the source string into substrings. The language
processor then applies a section of the template to each substring, following the rules for parsing into
words.

/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init '.' ln /* Assigns: fn='John' */
 /* init=' Q' */
 /* ln=' Public' */

The pattern divides the template into two sections:

• fn init
• ln

The matching pattern splits the source string into two substrings:

• ' John Q'
• ' Public'

The language processor parses these substrings into words based on the appropriate template section.

John had three leading blanks. All are removed because parsing into words removes leading and trailing
blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the rest because init is
the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln without removing any blanks. This
is because ln is the only variable in this section of the template. (For details about treatment of blanks,
see “Simple Templates for Parsing into Words” on page 105.)

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /* Assigns: var1='R' */
 /* var2='E' */
 /* var3=' X' */
 /* var4=' X' */

The pattern divides the template into three sections:

• var1 var2
• var3
• var4

The matching patterns split the source string into three substrings that are individually parsed into words:

Parsing

110 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• 'R E'
• ' X'
• ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive ' X' (with a blank
before the X) because each is the only variable in its section of the template. (For details on treatment of
blanks, see “Simple Templates for Parsing into Words” on page 105.)

Parsing with Variable Patterns
You may want to specify a pattern by using the value of a variable instead of a fixed string or number.
You do this by placing the name of the variable in parentheses. This is a variable reference. Blanks are not
necessary inside or outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string pattern '. '.

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable name, the value of the
variable is then treated as a string pattern. The variable can be one that has been set earlier in the same
template.

Example:

/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> " /* assume 11/15/90 */
pull date
parse var date month 3 delim +1 day +2 (delim) year
 /* Sets: month='11'; delim='/'; day='15'; year='90' */

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of the variable is treated
as an absolute or relative positional pattern. The value of the variable must be a positive whole number or
zero.

The variable can be one that has been set earlier in the same template. In the following example, the first
two fields specify the starting character positions of the last two fields.

Example:

/* Using a variable as a positional pattern */
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/* Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

Why is the positional pattern 6 needed in the template? Remember that word parsing occurs after the
language processor divides the source string into substrings using patterns. Therefore, the positional
pattern =(pos1) cannot be correctly interpreted as =12 until after the language processor has split the
string at column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2, respectively.

Using UPPER
Specifying UPPER on any of the PARSE instructions converts characters to uppercase (lowercase a–z to
uppercase A–Z) before parsing. The following table summarizes the effect of the parsing instructions on
case.

Parsing

Chapter 5. Parsing 111

Converts alphabetic characters to uppercase
before parsing

Maintains alphabetic characters in case entered

ARG

PARSE UPPER ARG

PARSE ARG

PARSE UPPER EXTERNAL PARSE EXTERNAL

PARSE UPPER NUMERIC PARSE NUMERIC

PULL

PARSE UPPER PULL

PARSE PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL instruction is simply a short
form of PARSE UPPER PULL. If you do not desire uppercase translation, use PARSE ARG (instead of ARG
or PARSE UPPER ARG) and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Parsing Instructions Summary
Remember: All parsing instructions assign parts of the source string into the variables named in the
template. The following table summarizes where the source string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments in the
call to a subroutine or function.

PARSE EXTERNAL Reads from the current input stream. ASSGN(STDIN) returns the
name of the current input stream.

PARSE NUMERIC Numeric control information (from NUMERIC instruction).

PULL

PARSE PULL

The string at the head of the external data queue. (If queue empty,
uses default input, typically the terminal.) input.

PARSE SOURCE REXX/VSE-supplied string giving information about the executing
program.

PARSE VALUE Expression between the keyword VALUE and the keyword WITH in
the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION REXX/VSE-supplied string specifying the language, language level,
and (three-word) date.

Parsing Instructions Examples
All examples in this section parse source strings into words.

Parsing

112 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARG

/* ARG with source string named in REXX program invocation */
/* Program name is PALETTE. Specify 2 primary colors (yellow, */
/* red, blue) on call. Assume call is: palette red blue */
arg var1 var2 /* Assigns: var1='RED'; var2='BLUE' */
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
 When total=7 then new='purple'
 When total=9 then new='orange'
 When total=10 then new='green'
 Otherwise new=var1 /* entered duplicates */
END
Say new; exit /* Displays: "purple" */

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of ARG with the arguments
in the CALL to a subroutine is in “Parsing Multiple Strings” on page 114.

PARSE ARG works the same as ARG except that PARSE ARG does not convert alphabetic characters to
uppercase before parsing.

PARSE EXTERNAL

Say "Enter Yes or No =====> "
parse upper external answer 2 .
If answer='Y'
 then say "You said 'Yes'!"
 else say "You said 'No'!"

PARSE NUMERIC

parse numeric digits fuzz form
say digits fuzz form /* Displays: '9 0 SCIENTIFIC' */
 /* (if defaults are in effect) */

PARSE PULL

PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven /* Assigns: fourscore='80'; seven='7' */
SAY fourscore+seven /* Displays: "87" */

PARSE SOURCE

parse source sysname .
Say sysname /* Displays: "VSE" */

PARSE VALUE example is on “Simple Templates for Parsing into Words” on page 105.

PARSE VAR examples are throughout the chapter, starting on “Simple Templates for Parsing into Words”
on page 105.

PARSE VERSION

parse version . level .
say level /* Displays: "3.48" */

PULL works the same as PARSE PULL except that PULL converts alphabetic characters to uppercase
before parsing.

Advanced Topics in Parsing
This section includes parsing multiple strings and flow charts depicting a conceptual view of parsing.

Parsing

Chapter 5. Parsing 113

Parsing Multiple Strings
Only ARG and PARSE ARG can have more than one source string. To parse multiple strings, you can specify
multiple comma-separated templates. Here is an example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated templates. (For an ARG
instruction, the source strings to parse come from arguments you specify when you call a program or
CALL a subroutine or function.) Each comma is an instruction to the parser to move on to the next string.

Example:

/* Parsing multiple strings in a subroutine */
num='3'
musketeers="Porthos Athos Aramis D'Artagnon"
CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth /* Displays: "4" and " D'Artagnon" */
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument string is recognized. You can
pass multiple argument strings for parsing:

• When one REXX program calls another REXX program with the CALL instruction or a function call.
• When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template receives a null string.
If there are more source strings than templates, the language processor ignores leftover source strings. If
a template is empty (two commas in a row) or contains no variable names, parsing proceeds to the next
template and source string.

Combining String and Positional Patterns: A Special Case
There is a special case in which absolute and relative positional patterns do not work identically. We have
shown how parsing with a template containing a string pattern skips over the data in the source string that
matches the pattern (see “Templates Containing String Patterns” on page 107). But a template containing
the sequence:

• string pattern
• variable name
• relative positional pattern

does not skip over the matching data. A relative positional pattern moves relative to the first character
matching a string pattern. As a result, assignment includes the data in the source string that matches the
string pattern.

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip over any data. */
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /* Concatenates variables; displays: "REXX" */

Here is how this template works:

Parsing

114 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parsing with DBCS Characters
Parsing with DBCS characters generally follows the same rules as parsing with SBCS characters. Literal
strings can contain DBCS characters, but numbers must be in SBCS characters. See “PARSE” on page 482
for examples of DBCS parsing.

Details of Steps in Parsing
The three figures that follow are to help you understand the concept of parsing. Please note that the
figures do not include error cases.

The figures include terms whose definitions are as follows:
string start

is the beginning of the source string (or substring).
string end

is the end of the source string (or substring).
length

is the length of the source string.
match start

is in the source string and is the first character of the match.
match end

is in the source string. For a string pattern, it is the first character after the end of the match. For a
positional pattern, it is the same as match start.

match position
is in the source string. For a string pattern, it is the first matching character. For a positional pattern, it
is the position of the matching character.

token
is a distinct syntactic element in a template, such as a variable, a period, a pattern, or a comma.

value
is the numeric value of a positional pattern. This can be either a constant or the resolved value of a
variable.

Parsing

Chapter 5. Parsing 115

Figure 3. Conceptual Overview of Parsing

Figure 4. Conceptual View of Finding Next Pattern

Parsing

116 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 5. Conceptual View of Word Parsing

Parsing

Chapter 5. Parsing 117

Parsing

118 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 6. Numbers and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication, and division) in
as natural a way as possible. What this really means is that the rules followed are those that are
conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the rules vary considerably
(indeed much more than generally appreciated) from person to person and from application to application
and in ways that are not always predictable. The arithmetic described here is, therefore, a compromise
that (although not the simplest) should provide acceptable results in most applications.

Introduction
Numbers (that is, character strings used as input to REXX arithmetic operations and built-in functions)
can be expressed very flexibly. Leading and trailing blanks are permitted, and exponential notation can be
used. Some valid numbers are:

 12 /* a whole number */
 '-76' /* a signed whole number */
 12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */
 17. /* same as "17" */
 .5 /* same as "0.5" */
 4E9 /* exponential notation */
 0.73e-7 /* exponential notation */

In exponential notation, a number includes an exponent, a power of ten by which the number is multiplied
before use. The exponent indicates how the decimal point is shifted. Thus, in the preceding examples,
4E9 is simply a short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.

The arithmetic operators include addition (+), subtraction (-), multiplication (*), power (**), division (/),
prefix plus (+), and prefix minus (-). In addition, there are two further division operators: integer divide (%)
divides and returns the integer part; remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to definite rules. The
most important of these rules are as follows (see the "Definition" section for full details):

• Results are calculated up to some maximum number of significant digits (the default is 9, but you can
alter this with the NUMERIC DIGITS instruction to give whatever accuracy you need). Thus, if a result
requires more than 9 digits, it would usually be rounded to 9 digits. For example, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of digits for perfect accuracy).

• Except for division and power, trailing zeros are preserved (this is in contrast to most popular
calculators, which remove all trailing zeros in the decimal part of results). So, for example:

2.40 + 2 -> 4.40
2.40 - 2 -> 0.40
2.40 * 2 -> 4.80
2.40 / 2 -> 1.2

This behavior is desirable for most calculations (especially financial calculations).

If necessary, you can remove trailing zeros with the STRIP function (see “STRIP” on page 81), or by
division by 1.

• A zero result is always expressed as the single digit 0.
• Exponential form is used for a result depending on its value and the setting of NUMERIC DIGITS (the

default is 9). If the number of places needed before the decimal point exceeds the NUMERIC DIGITS

Numbers and Arithmetic

© Copyright IBM Corp. 1988, 2004 119

setting, or the number of places after the point exceeds twice the NUMERIC DIGITS setting, the number
is expressed in exponential notation:

1e6 * 1e6 -> 1E+12 /* not 1000000000000 */
1 / 3E10 -> 3.33333333E-11 /* not 0.0000000000333333333 */

Definition
A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers
A number in REXX is a character string that includes one or more decimal digits, with an optional decimal
point. (See “Exponential Notation” on page 124 for an extension of this definition.) The decimal point may
be embedded in the number, or may be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or -) that must come
before any digits or decimal point. The sign can also have leading or trailing blanks.

Therefore, number is defined as:.

blanks sign

blanks

digits

digits . digits

. digits

digits .

blanks

blanks
are one or more spaces

sign
is either + or -

digits
are one or more of the decimal digits 0–9.

Note that a single period alone is not a valid number.

Precision
Precision is the maximum number of significant digits that can result from an operation. This is controlled
by the instruction:

NUMERIC DIGITS

expression

;

The expression is evaluated and must result in a positive whole number. This defines the precision
(number of significant digits) to which calculations are carried out. Results are rounded to that precision, if
necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS instruction has been
processed since the start of a program, the default precision is used. The REXX standard for the default
precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However, use small values with
care—the loss of precision and rounding thus requested affects all REXX computations, including, for
example, the computation of new values for the control variable in DO loops.

Arithmetic Operators
REXX arithmetic is performed by the operators +, -, *, /, %, //, and ** (add, subtract, multiply, divide,
integer divide, remainder, and power), which all act on two terms, and the prefix plus and minus

Numbers and Arithmetic

120 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

operators, which both act on a single term. This section describes the way in which these operations
are carried out.

Before every arithmetic operation, the term or terms being operated upon have leading zeros removed
(noting the position of any decimal point, and leaving only one zero if all the digits in the number are
zeros). They are then truncated (if necessary) to DIGITS + 1 significant digits before being used in the
computation. (The extra digit is a "guard" digit. It improves accuracy because it is inspected at the end
of an operation, when a number is rounded to the required precision.) The operation is then carried out
under up to double that precision, as described under the individual operations that follow. When the
operation is completed, the result is rounded if necessary to the precision specified by the NUMERIC
DIGITS instruction.

Rounding is done in the traditional manner. The digit to the right of the least significant digit in the result
(the "guard digit") is inspected and values of 5 through 9 are rounded up, and values of 0 through 4 are
rounded down. Even/odd rounding would require the ability to calculate to arbitrary precision at all times
and is, therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would be no digit before it.
Significant trailing zeros are retained for addition, subtraction, and multiplication, according to the rules
that follow, except that a result of zero is always expressed as the single digit 0. For division, insignificant
trailing zeros are removed after rounding.

The FORMAT built-in function (see “FORMAT” on page 74) allows a number to be represented in a
particular format if the standard result provided does not meet your requirements.

Arithmetic Operation Rules—Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on numbers as follows.

Addition and Subtraction
If either number is 0, the other number, rounded to NUMERIC DIGITS digits, if necessary, is used as the
result (with sign adjustment as appropriate). Otherwise, the two numbers are extended on the right and
left as necessary, up to a total maximum of DIGITS + 1 digits (the number with the smaller absolute value
may, therefore, lose some or all of its digits on the right) and are then added or subtracted as appropriate.

Example:

 xxx.xxx + yy.yyyyy

becomes:

 xxx.xxx00
 + 0yy.yyyyy

 zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary (taking into account any
extra "carry digit" on the left after addition, but otherwise counting from the position corresponding to the
most significant digit of the terms being added or subtracted). Finally, any insignificant leading zeros are
removed.

The prefix operators are evaluated using the same rules; the operations +number and -number are
calculated as 0+number and 0-number, respectively.

Multiplication
The numbers are multiplied together ("long multiplication") resulting in a number that may be as long as
the sum of the lengths of the two operands.

Example:

 xxx.xxx * yy.yyyyy

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic 121

becomes:

 zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to the current setting of
NUMERIC DIGITS.

Division
For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the right until it is larger
than the number xxxxx (with note being taken of the change in the power of ten that this implies).
Thus, in this example, yyy might become yyy00. Traditional long division then takes place. This might be
written:

 zzzz

 xxxxx | yyy00

The length of the result (zzzz) is such that the rightmost z is at least as far right as the rightmost digit
of the (extended) y number in the example. During the division, the y number is extended further as
necessary. The z number may increase up to NUMERIC DIGITS+1 digits, at which point the division stops
and the result is rounded. Following completion of the division (and rounding if necessary), insignificant
trailing zeros are removed.

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just described.

/* With: Numeric digits 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms being operated upon is
arbitrary. The operations may be carried out as integer operations with the exponent being calculated and
applied afterward. Therefore, the significant digits of a result are not in any way dependent on the position
of the decimal point in either of the terms involved in the operation.

Arithmetic Operation Rules—Additional Operators
The operation rules for the power (**), integer divide (%), and remainder (//) operators follow.

Power
The ** (power) operator raises a number to a power, which may be positive, negative, or 0. The power
must be a whole number. (The second term in the operation must be a whole number and is rounded
to DIGITS digits, if necessary, as described under “Numbers Used Directly by REXX” on page 126.) If
negative, the absolute value of the power is used, and then the result is inverted (divided into 1). For
calculating the power, the number is effectively multiplied by itself for the number of times expressed by
the power, and finally trailing zeros are removed (as though the result were divided by 1).

Numbers and Arithmetic

122 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

In practice (see Note “1” on page 123 for the reasons), the power is calculated by the process of
left-to-right binary reduction. For a**n: n is converted to binary, and a temporary accumulator is set to
1. If n = 0 the initial calculation is complete. (Thus, a**0 = 1 for all a, including 0**0.) Otherwise each
bit (starting at the first nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator
is multiplied by a. If all bits have now been inspected, the initial calculation is complete; otherwise the
accumulator is squared and the next bit is inspected for multiplication. When the initial calculation is
complete, the temporary result is divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using a precision of
DIGITS + L + 1 digits. L is the length in digits of the integer part of the whole number n (that is, excluding
any decimal part, as though the built-in function TRUNC(n) had been used). Finally, the result is rounded
to NUMERIC DIGITS digits, if necessary, and insignificant trailing zeros are removed.

Integer Division
The % (integer divide) operator divides two numbers and returns the integer part of the result. The
result returned is defined to be that which would result from repeatedly subtracting the divisor from the
dividend while the dividend is larger than the divisor. During this subtraction, the absolute values of both
the dividend and the divisor are used: the sign of the final result is the same as that which would result
from regular division.

The result returned has no fractional part (that is, no decimal point or zeros following it). If the result
cannot be expressed as a whole number, the operation is in error and will fail—that is, the result must not
have more digits than the current setting of NUMERIC DIGITS. For example, 10000000000%3 requires 10
digits for the result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in effect. Note
that this operator may not give the same result as truncating regular division (which could be affected by
rounding).

Remainder
The // (remainder) operator returns the remainder from integer division and is defined as being the
residue of the dividend after the operation of calculating integer division as previously described. The sign
of the remainder, if nonzero, is the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer division on the same
two terms would fail, the remainder cannot be calculated).

Additional Operator Examples
Following are some examples using the power, integer divide, and remainder operators:.

/* Again with: Numeric digits 5 */
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1
3.6//1.3 -> 1.0

Note:

1. A particular algorithm for calculating powers is used, because it is efficient (though not optimal)
and considerably reduces the number of actual multiplications performed. It, therefore, gives better
performance than the simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be calculated as a by-product
of the standard division operation. The division process is ended as soon as the integer result is
available; the residue of the dividend is the remainder.

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic 123

Numeric Comparisons
The comparison operators are listed in “Comparison” on page 15. You can use any of these for comparing
numeric strings. However, you should not use ==, \==, ¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing
numbers because leading and trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers (calculating the difference)
and then comparing the result with 0. That is, the operation:.

A ? Z

where ? is any numeric comparison operator, is identical with:.

(A - Z) ? '0'

It is, therefore, the difference between two numbers, when subtracted under REXX subtraction rules, that
determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the amount by which two
numbers may differ before being considered equal for the purpose of comparison. The FUZZ value is set
by the instruction:

NUMERIC FUZZ

expression

;

Here expression must result in a positive whole number or zero. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value for each numeric
comparison. That is, the numbers are subtracted under a precision of DIGITS minus FUZZ digits during
the comparison. Clearly the FUZZ setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant digits, just as though
NUMERIC DIGITS 8 had been put in effect for the duration of the operation.

Example:.

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Exponential Notation
The preceding description of numbers describes "pure" numbers, in the sense that the character strings
that describe numbers can be very long. For example:

10000000000 * 10000000000

would give

100000000000000000000

and

.00000000001 * .00000000001

would give

0.0000000000000000000001

Numbers and Arithmetic

124 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

For both large and small numbers some form of exponential notation is useful, both to make long
numbers more readable, and to make execution possible in extreme cases. In addition, exponential
notation is used whenever the "simple" form would give misleading information.

For example:

numeric digits 5
say 54321*54321

would display 2950800000 in long form. This is clearly misleading, and so the result is expressed as
2.9508E+9 instead.

The definition of numbers is, therefore, extended as:.

blanks sign

blanks

digits

digits . digits

. digits

digits .

E

sign

digits blanks

The integer following the E represents a power of ten that is to be applied to the number. The E can be in
uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be numeric to the user.
Specifically, because of the format of numbers in exponential notation, strings, such as 0E123 (0 raised to
the 123 power) and 1E342 (1 raised to the 342 power), are numeric. In addition, a comparison such as
0E123=0E567 gives a true result of 1 (0 is equal to 0). To prevent problems when comparing nonnumeric
strings, use the strict comparison operators.

Here are some examples:

12E7 = 120000000 /* Displays "1" */
12E-5 = 0.00012 /* Displays "1" */
-12e4 = -120000 /* Displays "1" */
0e123 = 0e456 /* Displays "1" */
0e123 == 0e456 /* Displays "0" */

The preceding numbers are valid for input data at all times. The results of calculations are returned in
either conventional or exponential form, depending on the setting of NUMERIC DIGITS. If the number
of places needed before the decimal point exceeds DIGITS, or the number of places after the point
exceeds twice DIGITS, exponential form is used. The exponential form REXX generates always has a sign
following the E to improve readability. If the exponent is 0, then the exponential part is omitted—that is,
an exponential part of E+0 is never generated.

You can explicitly convert numbers to exponential form, or force them to be displayed in long form, by
using the FORMAT built-in function (see page “FORMAT” on page 74).

Scientific notation is a form of exponential notation that adjusts the power of ten so a single nonzero
digit appears to the left of the decimal point. Engineering notation is a form of exponential notation in
which from one to three digits (but not simply 0) appear before the decimal point, and the power of ten is
always expressed as a multiple of three. The integer part may, therefore, range from 1 through 999. You
can control whether Scientific or Engineering notation is used with the instruction:.

NUMERIC FORM
SCIENTIFIC

ENGINEERING

VALUE

expression

;

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic 125

Scientific notation is the default.

/* after the instruction */
Numeric form scientific

123.45 * 1e11 -> 1.2345E+13

/* after the instruction */
Numeric form engineering

123.45 * 1e11 -> 12.345E+12

Numeric Information
To determine the current settings of the NUMERIC options, use the built-in functions DIGITS, FORM, and
FUZZ. These functions return the current settings of NUMERIC DIGITS, NUMERIC FORM, and NUMERIC
FUZZ, respectively.

Whole Numbers
Within the set of numbers REXX understands, it is useful to distinguish the subset defined as whole
numbers. A whole number in REXX is a number that has a decimal part that is all zeros (or that has
no decimal part). In addition, it must be possible to express its integer part simply as digits within the
precision set by the NUMERIC DIGITS instruction. REXX would express larger numbers in exponential
notation, after rounding, and, therefore, these could no longer be safely described or used as whole
numbers.

Numbers Used Directly by REXX
As discussed, the result of any arithmetic operation is rounded (if necessary) according to the setting of
NUMERIC DIGITS. Similarly, when REXX directly uses a number (which has not necessarily been involved
in an arithmetic operation), the same rounding is also applied. It is just as though the number had been
added to 0.

In the following cases, the number used must be a whole number, and the largest number you can use is
999999999.

• The positional patterns in parsing templates (including variable positional patterns)
• The power value (right hand operand) of the power operator
• The values of exprr and exprf in the DO instruction
• The values given for DIGITS or FUZZ in the NUMERIC instruction
• Any number used in the numeric option in the TRACE instruction.

Errors
Two types of errors may occur during arithmetic:

• Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that the language processor
can handle, when the result is formatted according to the current settings of NUMERIC DIGITS and
NUMERIC FORM. The language defines a minimum capability for the exponential part, namely the
largest number that can be expressed as an exact integer in default precision. Because the default
precision is 9, you can use exponents in the range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated as a syntax error.
• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an arithmetic operation
may fail because of lack of storage. This is considered a terminating error as usual, rather than an
arithmetic error.

Numbers and Arithmetic

126 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic 127

Numbers and Arithmetic

128 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 7. Conditions and Condition Traps

A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A condition trap can
modify the flow of execution in a REXX program. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see “CALL” on page 30 and “SIGNAL” on page 51).

CALL

SIGNAL

OFF condition

ON condition

NAME trapname

;

condition and trapname are single symbols that are taken as constants. Following one of these
instructions, a condition trap is set to either ON (enabled) or OFF (disabled). The initial setting for all
condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to the routine or label
trapname if you have specified trapname. Otherwise, control passes to the routine or label condition.
CALL or SIGNAL is used, depending on whether the most recent trap for the condition was set using CALL
ON or SIGNAL ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function, or an external routine. If
you use SIGNAL, the trapname can be only an internal label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if any command
indicates failure and neither CALL ON FAILURE nor SIGNAL ON FAILURE is active. The condition is
raised at the end of the clause that called the command but is ignored if the ERROR condition trap is
already in the delayed state. The delayed state is the state of a condition trap when the condition has
been raised but the trap has not yet been reset to the enabled (ON) or disabled (OFF) state.

SIGNAL ON ERROR traps all positive return codes, and negative return codes only if CALL ON FAILURE
and SIGNAL ON FAILURE are not set.

Note: See “The VSE Host Command Environment” on page 25 for a definition of host commands.

FAILURE
raised if a command indicates a failure condition upon return. The condition is raised at the end of the
clause that called the command but is ignored if the FAILURE condition trap is already in the delayed
state.

CALL ON FAILURE and SIGNAL ON FAILURE trap all negative return codes from commands.

HALT
raised if an external attempt is made to interrupt and end execution of the program. The condition
is usually raised at the end of the clause that was being processed when the external interruption
occurred.

For example, the immediate command HI (Halt Interpretation) raises a halt condition. The RXHLT exit
(“REXX Exit Data Areas and Parameters” on page 473) also raises a halt condition. See “Interrupting
Program Processing” on page 321.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the VAR subkeyword of a PARSE instruction
• As a variable reference in a parsing template, a PROCEDURE instruction, or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except tails in compound variables.

Conditions and Condition Traps

© Copyright IBM Corp. 1988, 2004 129

/* The following does not raise NOVALUE. */
signal on novalue
a.=0
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is running. This includes all
kinds of processing errors, including true syntax errors and "run-time" errors, such as attempting an
arithmetic operation on nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF, or DELAY, and any
trapname) of that condition trap. Thus, a CALL ON HALT replaces any current SIGNAL ON HALT (and a
SIGNAL ON HALT replaces any current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition occurs, the default action
depends on the condition:

• For HALT and SYNTAX, the processing of the program ends, and a message (see z/VSE Messages and
Codes) describing the nature of the event that occurred usually indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

Action Taken When a Condition Is Trapped
When a condition trap is currently enabled (ON) and the specified condition occurs, instead of the usual
flow of control, a CALL trapname or SIGNAL trapname instruction is processed automatically. You can
specify the trapname after the NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do
not specify a trapname, the name of the condition itself (ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is
used.

For example, the instruction call on error enables the condition trap for the ERROR condition. If the
condition occurred, then a call to the routine identified by the name ERROR is made. The instruction call
on error name commanderror would enable the trap and call the routine COMMANDERROR if the
condition occurred.

Question
At the 9/93 ARB, this wording changed from 'occurred.' to 'occurred, and the caller usually receives an
indication of failure.' Should this change print for VSE?

The sequence of events, after a condition has been trapped, varies depending on whether a SIGNAL or
CALL is processed:

• If the action taken is a SIGNAL, execution of the current instruction ceases immediately, the condition is
disabled (set to OFF), and the SIGNAL takes place in exactly the same way as usual (see page “SIGNAL”
on page 51).

If any new occurrence of the condition is to be trapped, a new CALL ON or SIGNAL ON instruction for
the condition is required to re-enable it when the label is reached. For example, if SIGNAL ON SYNTAX
is enabled when a SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not found, a
usual syntax error termination occurs.

Conditions and Condition Traps

130 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

• If the action taken is a CALL (which can occur only at a clause boundary), the CALL is made in the usual
way (see page “CALL” on page 30) except that the call does not affect the special variable RESULT. If the
routine should RETURN any data, then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during execution of an INTERPRET
instruction, execution of the INTERPRET may be interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is put into a delayed state.
This state persists until the RETURN from the CALL, or until an explicit CALL (or SIGNAL) ON (or OFF)
is made for the condition. This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the delayed state it remains
enabled, but if the condition is raised again, it is either ignored (for ERROR or FAILURE) or (for the other
conditions) any action (including the updating of the condition information) is delayed until one of the
following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is processed. In this case a CALL or SIGNAL
takes place immediately after the new CALL ON or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In this case the condition trap is
disabled and the default action for the condition occurs at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is no longer delayed and the
subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is, the flow is not affected by
the CALL).

Note:

1. You must be extra careful when you write a syntax trap routine. Where possible, put the routine near
the beginning of the program. This is necessary because the trap routine label might not be found if
there are certain scanning errors, such as a missing ending comment. Also, the trap routine should
not contain any statements that might cause more of the program in error to be scanned. Examples
of this are calls to built-in functions with no quotation marks around the name. If the built-in function
name is in uppercase and is enclosed in quotation marks, REXX goes directly to the function, rather
than searching for an internal label.

2. In all cases, the condition is raised immediately upon detection. If SIGNAL ON traps the condition,
the current instruction is ended, if necessary. Therefore, the instruction during which an event
occurs may be only partly processed. For example, if SYNTAX is raised during the evaluation of
the expression in an assignment, the assignment does not take place. Note that the CALL for
ERROR, FAILURE, and HALT traps can occur only at clause boundaries. If these conditions arise
in the middle of an INTERPRET instruction, execution of INTERPRET may be interrupted and later
resumed. Similarly, other instructions, for example, DO or SELECT, may be temporarily interrupted by
a CALL at a clause boundary.

3. The state (ON, OFF, or DELAY, and any trapname) of each condition trap is saved on entry to a
subroutine and is then restored on RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set up by the caller. See
the CALL instruction (page “CALL” on page 30) for details of other information that is saved during a
subroutine call.

4. The state of condition traps is not affected when an external routine is called by a CALL, even if the
external routine is a REXX program. On entry to any REXX program, all condition traps have an initial
setting of OFF.

5. While user input is processed during interactive tracing, all condition traps are temporarily set OFF.
This prevents any unexpected transfer of control—for example, should the user accidentally use
an uninitialized variable while SIGNAL ON NOVALUE is active. For the same reason, a syntax error
during interactive tracing does not cause exit from the program but is trapped specially and then
ignored after a message is given.

6. The system interface detects certain execution errors either before execution of the program starts
or after the program has ended. SIGNAL ON SYNTAX cannot trap these errors.

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps 131

Note that a label is a clause consisting of a single symbol followed by a colon. Any number of successive
clauses can be labels; therefore, multiple labels are allowed before another type of clause.

Condition Information
When any condition is trapped and causes a SIGNAL or CALL, this becomes the current trapped condition,
and certain condition information associated with it is recorded. You can inspect this information by using
the CONDITION built-in function (see page “CONDITION” on page 66).

The condition information includes:

• The name of the current trapped condition
• The name of the instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition
• Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as the result of a condition
trap (CALL ON or SIGNAL ON). Condition information is saved and restored across subroutine or function
calls, including one because of a CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still available after the routine
returns.

Descriptive Strings
The descriptive string varies, depending on the condition trapped.
ERROR

The string that was processed and resulted in the error condition.
FAILURE

The string that was processed and resulted in the failure condition.
HALT

Any string associated with the halt request. This can be the null string if no string was provided.
NOVALUE

The derived name of the variable whose attempted reference caused the NOVALUE condition. The
NOVALUE condition trap can be enabled only using SIGNAL ON.

SYNTAX
Any string the language processor associated with the error. This can be the null string if you did
not provide a specific string. Note that the special variables RC and SIGL provide information on the
nature and position of the processing error. You can enable the SYNTAX condition trap only by using
SIGNAL ON.

Special Variables
A special variable is one that may be set automatically during processing of a REXX program. There are
three special variables: RC, RESULT, and SIGL. None of these has an initial value, but the program may
alter them. (For information about RESULT, see page “RETURN” on page 49.)

The Special Variable RC
For ERROR and FAILURE, the REXX special variable RC is set to the command return code, as usual,
before control is transferred to the condition label. The return code may be the return code from a routine
(such as, a REXX program) that caused the ERROR or FAILURE condition. The return code may also be a
-3, which indicates that the command could not be found. For more information about issuing commands
and their return codes, see “The VSE Host Command Environment” on page 25.

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

Conditions and Condition Traps

132 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program line number of the clause
causing the transfer of control is stored in the special variable SIGL. Where the transfer of control is
because of a condition trap, the line number assigned to SIGL is that of the last clause processed (at the
current subroutine level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL ON
SYNTAX when the number of the line in error can be used, for example, to control a text editor. Typically,
code following the SYNTAX label may PARSE SOURCE to find the source of the data, then call an editor to
edit the source file positioned at the line in error. Note that in this case you may have to run the program
again before any changes made in the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the occasional failure of a
function call) as in the following example:

signal on syntax
a = a + 1 /* This is to create a syntax error */
say 'SYNTAX error not raised'
exit

/* Standard handler for SIGNAL ON SYNTAX */
syntax:
 say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)
 say "SOURCELINE"(sigl)
 trace ?r; nop

This code first displays the error code, line number, and error message. It then displays the line in error,
and finally drops into debug mode to let you inspect the values of the variables used at the line in error.

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps 133

Conditions and Condition Traps

134 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 8. Using REXX

The REXX language consists of keyword instructions and built-in functions that you use in a REXX
program. The keyword instructions and built-in functions are described in Chapter 3, “Keyword
Instructions,” on page 27 and Chapter 4, “Functions,” on page 59, respectively.

You can also use external functions and REXX/VSE commands in a REXX program. The functions are
described in “External Functions” on page 92. The REXX/VSE commands provide additional services that
let you:

• Control I/O processing
• Perform data stack requests
• Change characteristics that control how a REXX program runs
• Check for the existence of a specific host command environment.

See Chapter 10, “REXX/VSE Commands,” on page 143 for details.

See “Writing Programs” on page 137 for information about services you can use in programs.

REXX/VSE is a partial implementation of Level 2 SAA REXX on the VSE/ESA system. By using the keyword
instructions and functions that are defined for the SAA REXX language, you can write REXX programs that
can run in any of the supported SAA environments. See the SAA Common Programming Interface REXX
Level 2 Reference for more information.

Additional REXX Support
REXX/VSE also provides:
programming services

You can use these to interface with REXX and the language processor.
customizing services

These let you customize REXX processing and accessing and using system services.

Programming Services
The REXX/VSE programming services are:
ARXEXCOM – Variable Pool Access

ARXEXCOM lets you access and manipulate the current generation of REXX variables. Commands and
programs can call ARXEXCOM to inspect, set, and drop REXX variables. See page “Variable Pool –
ARXEXCOM” on page 352 for a description.

ARXSUBCM – Maintain Host Command Environments
ARXSUBCM is a programming interface to the host command environment table. This table contains
the names of the environments and routines that handle the processing of host commands. You can
use ARXSUBCM to add, change, delete, and query entries in the table. See page “Maintain Entries in
the Host Command Environment Table – ARXSUBCM” on page 357 for a description.

ARXIC – Trace and Execution Control
ARXIC, the trace and execution control routine, is an interface to the immediate commands HI, HT,
RT, TQ, TS, and TE. A program can call ARXIC to use these commands to affect the processing and
tracing of REXX programs. See page “Trace and Execution Control Routine – ARXIC” on page 361 for a
description.

ARXRLT – Get Result
ARXRLT gets the result from a REXX program. that the ARXEXEC routine called. ARXRLT also allows
a non-REXX program to get an EVALBLOK to return a result to REXX. See page “Get Result Routine –
ARXRLT” on page 363 for a description.

Using REXX

© Copyright IBM Corp. 1988, 2004 135

ARXJCL and ARXEXEC – Exec Processing
The ARXJCL and ARXEXEC routines call a REXX program. These routines are programming interfaces
to the language processor. You can run a program in batch by specifying ARXJCL as the program name
on the JCL EXEC statement. You can call either ARXJCL or ARXEXEC from an application program to
call a REXX program. See page “Calling REXX” on page 328 for descriptions.

External Functions and Subroutines and Function Packages
You can write your own external functions and subroutines to extend the programming capabilities
of the REXX language. You can write external functions or subroutines in REXX. Or you can write
them in any programming language that supports the system-dependent interfaces that the language
processor uses to call a function or subroutine.

You can also group frequently used external functions and subroutines into a package. This allows
quick access to the functions and subroutines. To include an external function or subroutine in a
function package, the function or subroutine must be link-edited into a phase. See page “External
Functions and Subroutines and Function Packages” on page 344 for a description of the system-
dependent interfaces for writing external functions and subroutines and how to define function
packages.

ARXOUT – OUTTRAP Interface Routine
ARXOUT lets programs write a character string to the REXX stem specified by the OUTTRAP external
function. Programs using this interface must have been invoked by the ADDRESS LINK or ADDRESS
LINKPGM host command environment. See page “OUTTRAP Interface Routine – ARXOUT” on page
378 for a description.

ARXSAY – SAY Instruction Routine
ARXSAY lets you write a character string to the same output stream as the REXX SAY instruction. See
page “SAY Instruction Routine – ARXSAY” on page 368 for a description.

ARXHLT – Halt Condition Routine
ARXHLT queries or resets the halt condition. See page “Halt Condition Routine – ARXHLT” on page
370 for a description.

ARXTXT – Text Retrieval Routine
ARXTXT retrieves data from the message repository. This is the same text that the language processor
uses for the ERRORTEXT built-in function and for certain options of the DATE built-in function. For
example, a program can use ARXTXT to retrieve the name of a month or the text of a syntax error
message. See page “Text Retrieval Routine – ARXTXT” on page 372 for a description.

ARXLIN – LINESIZE Function Routine
ARXLIN lets you retrieve the same value that the LINESIZE built-in function returns. See page
“LINESIZE Function Routine – ARXLIN” on page 376 for a description.

Customizing Services
There are services you can use to customize REXX processing. Many services let you change how a
program is processed and how the language processor interfaces with the system to access and use
system services, such as storage and I/O. Customization services for REXX processing include the
following:
Environment Characteristics

Various routines and services allow you to customize the environment in which the language
processor processes a REXX program. This environment is known as the language processor
environment and defines various characteristics relating to program processing and how to access
and use system services. There are default environment characteristics that you can change and also
a routine you can use to define your own environment.

Replaceable Routines
When a REXX program runs, various system services are used, such as services for loading and freeing
a program, I/O, obtaining and freeing storage, and data stack requests. Replaceable routines handle
these types of system services. (They are called replaceable routines because you can provide your
own routine that either replaces the REXX/VSE routine or that performs pre-processing and then calls
the REXX/VSE routine.)

Using REXX

136 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

The chapters Chapter 18, “Customizing Services,” on page 381 through “Installing the Exec Processing,
Exec Initialization, and Exec Termination” on page 477 describe the different ways in which you can
customize REXX processing.

Writing Programs
You can use the following in a program:

• Assignment
• All keyword instructions that are described in Chapter 3, “Keyword Instructions,” on page 27
• All built-in functions that are described in Chapter 4, “Functions,” on page 59
• The external functions ASSGN, OUTTRAP, REXXIPT, REXXMSG, SETLANG, SLEEP, STORAGE, and

SYSVAR. See “External Functions” on page 92 for more information.
• The following REXX/VSE commands:

– DELSTACK - Deletes the most current data stack that was created with NEWSTACK.
– DROPBUF - Drops (discards) a buffer that was previously created on the data stack with MAKEBUF.
– EXEC - runs a REXX program in the active PROC chain. (See “Writing Programs” on page 137 for an

example.)
– EXECIO - Reads data from and writes data to files. You can use EXECIO to read data from and write

data to the data stack or stem variables.
– MAKEBUF - Creates a buffer on the data stack.
– NEWSTACK - Creates a new data stack and effectively isolates the current data stack that the

program is using.
– QBUF - Queries how many buffers are currently on the active data stack.
– QELEM - Queries how many elements are on the data stack above the most recently created buffer.
– QSTACK - Queries the number of data stacks currently in existence.
– SETUID - Lets you specify the user ID and password associated with a request through the VSE/

POWER spool-access services interface.
– SUBCOM - Determines whether a particular host command environment is available to process host

commands.
– TE (Trace End) - Ends tracing of the program.
– TS (Trace Start) - Starts tracing of the program.

See Chapter 10, “REXX/VSE Commands,” on page 143 for details on these commands.
• Instructions to call a program

You can call a REXX program from another REXX program using the following instructions (the examples
assume that the current host command environment is VSE):

"EXEC program_name p1 p2 …"

"EX program_name p1 p2 …"

"program_name p1 p2 …" /* Implicit EXEC command */

• ADDRESS POWER commands:

– GETQE – retrieves an entry from a POWER queue and stores the lines it retrieves.
– PUTQE – places a job on a POWER queue.
– QUERYMSG – returns job completion messages into the stem specified by OUTTRAP.

Using REXX

Chapter 8. Using REXX 137

– CTL service requests to POWER (sent through the VSE/POWER spool-access services interface). See
“Commands to External Environments” on page 23 for more information.

• Instructions that load and call programs

You can use the LINK and LINKPGM host command environments to load and call a phase from the
active PHASE search chain. For example:

ADDRESS LINK "PROGRAM p1 p2 ..."

For more information, see Chapter 13, “Host Command Environments for Loading and Calling
Programs,” on page 205.

• JCL commands

You can use the JCL host command environment to issue JCL commands via a REXX program. For
example:

ADDRESS JCL "jcl_command"

For more information, see “The JCL Host Command Environment” on page 201.
• Console commands

You can use the CONSOLE host command environment to issue console commands via a REXX program.
For example:

ADDRESS CONSOLE "console_command"

For more information, see Chapter 14, “REXX/VSE Console Automation,” on page 217.
• Programming services

See Chapter 17, “Programming Services,” on page 323 for descriptions of programming services such
as ARXEXEC, ARXJCL, ARXEXCOM, and ARXIC.

Running a Program
You can call a REXX program directly by using the JCL EXEC command (see “Calling REXX Directly with
the JCL EXEC Command” on page 329). Or you call a REXX program by using the ARXJCL or ARXEXEC
routine. These routines are programming interfaces to the language processor. See “The ARXEXEC
Routine” on page 334 and “The ARXJCL Routine” on page 331 for details about these programming
interfaces and information about using ARXJCL to run a REXX program.

You can use ARXJCL to call a REXX program from a non-REXX program (for example, a PL/I program).

To call a REXX program from another REXX program, you can use the REXX/VSE EXEC command. Here
are some examples using the ADDRESS command. The environment following the ADDRESS keyword is
POWER. This specifies sending the expression within quotation marks to the POWER environment.

ADDRESS POWER "EXEC program_name p1 p2 …"

ADDRESS POWER "EX program_name p1 p2 …"

See “The VSE Host Command Environment” on page 25 for more information about environments for
issuing host commands.

Communicating with a User Console
With the ECHO parameter in the VSE/POWER $$ JOB statement REXX can communicate with a user
console. In the following example all messages REXX writes to SYSLOG are routed to a user console
named REXX. Replies given on the user console are routed to the REXX exec.

 * $$ JOB JNM=REXXJOB,...,ECHO=(ALL,REXX)
 // JOB REXXJOB

Using REXX

138 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 // EXEC REXX=RXPGM
 /&
 * $$ EOJ

The demo program REXXTRY, which is described on “REXXTRY” on page 262, provides an interactive
testing facility of REXX statements.

Using REXX

Chapter 8. Using REXX 139

Using REXX

140 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 9. Reserved Keywords, Special Variables,
and Command Names

This topic describes reserved keywords, special variables, and reserved command names. Where there is
no ambiguity, you can use keywords as symbols; the precise rules are given here.

REXX has three special variables: RC, RESULT, and SIGL. (The names of the special variables are not
reserved.)

The names of REXX/VSE commands are reserved.

Reserved Keywords
The syntax of REXX implies that some symbols are reserved for the language processor's use in certain
contexts.

Within particular instructions, some symbols may be reserved to separate the parts of the instruction.
These symbols are called keywords. Examples of REXX keywords are the WHILE in a DO instruction, and
the THEN (which ends a clause in this case) following an IF or WHEN clause.

Apart from these cases, the language processor checks only simple symbols that are the first token in a
clause and that are not followed by an equal sign (=) or colon (:) to see if they are instruction keywords.
You can use the symbols freely elsewhere in clauses without their being treated as keywords.

However, you are not recommended to use host commands or subcommands with the same name as
REXX keywords (QUEUE, for example). This can create problems for programmers whose REXX programs
might be used for some time and in circumstances outside their control. You may want to enclose
an entire host command in quotation marks. This ensures that the language processor processes the
expression as a host command.

Special Variables
There are three special variables that the language processor can set automatically:
RC

is the return code from any executed host command (or subcommand). Following the SIGNAL events
SYNTAX, ERROR, or FAILURE, RC is set to the code appropriate to the event: the syntax error number
or the command return code. RC is unchanged following a NOVALUE or HALT event.

Note: Host Commands from input during debug mode do not change the value of RC.

The special variable RC can also be set to a -3 if the host command could not be found. See “The VSE
Host Command Environment” on page 25 for information about issuing commands from a program.

The REXX/VSE commands also return a value in the special variable RC. Some of the commands
return the result from the command. For example, the QBUF command returns the number of buffers
currently on the data stack in the special variable RC. Chapter 10, “REXX/VSE Commands,” on page
143 describes the commands.

RESULT
is set by a RETURN instruction in a called subroutine, if the RETURN instruction specifies an
expression. If the RETURN instruction has no expression, RESULT is dropped (becomes uninitialized.)

SIGL
contains the line number of the clause currently executing when the last transfer of control to a label
took place. (A SIGNAL, a CALL, an internal function call, or a trapped error condition could cause this.)

None of these variables has an initial value. You can change their values, just as with any other variable.
You can access them using the variable pool access interface ARXEXCOM (page “Variable Pool –

Keywords, Variables, and Command Names

© Copyright IBM Corp. 1988, 2004 141

ARXEXCOM” on page 352). The PROCEDURE and DROP instructions also affect these variables in the
usual way.

Certain other information is always available to a REXX program. This includes the name by which
the program was called and the source of the program, which is available using the PARSE SOURCE
instruction. See page “PARSE SOURCE ” on page 45 for details about the information PARSE SOURCE
returns.

PARSE VERSION provides information about the version and date of the language processor code that is
running. (See page “PARSE VERSION ” on page 46.)

The TRACE built-in function returns the current trace setting. The ADDRESS built-in function returns the
name of the host command environment.

Finally, you can obtain the current NUMERIC settings with the DIGITS, FORM, and FUZZ built-in functions.

Reserved Command Names
You can also use REXX/VSE commands in REXX programs. The names of these commands are reserved.
It is recommended that you do not use these names for names of your REXX programs or phases. The
REXX/VSE commands are in the next chapter.

Keywords, Variables, and Command Names

142 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 10. REXX/VSE Commands

REXX/VSE provides commands to perform different services, such as I/O and data stack requests. You
can use the REXX/VSE commands in both the VSE and the POWER environment. “The VSE Host Command
Environment” on page 25 and “The POWER Host Command Environment” on page 25 describe these
environments.

The REXX/VSE commands perform services, such as:

• Performing data stack services (MAKEBUF, DROPBUF, QBUF, QELEM, NEWSTACK, DELSTACK, QSTACK)
• Changing characteristics that control tracing (immediate commands TE and TS)

Note: See “Immediate Commands” on page 143 for details about use of immediate commands.
• Checking for the existence of a host command environment (SUBCOM).

Note: The names of the REXX/VSE commands are reserved. It is recommended that you do not use these
names for names of your REXX programs or phases.

Immediate Commands
The immediate commands are:

• HI – Halt Interpretation
• HT – Halt Typing
• RT – Resume Typing
• TE – Trace End
• TQ – Trace Query.
• TS – Trace Start.

You can use HI, HT, RT, and TQ only by including them on a call from a non-REXX program to the
programming interface ARXIC. You can use TE and TS by including them in a REXX program or specifying
them on a call to ARXIC from a non-REXX program.

The operator can send a message to a particular partition. A partition that is running a REXX program
ignores the message.

For information about the syntax of each immediate command, see the description of the command in
this chapter.

DELSTACK

DELSTACK

DELSTACK deletes the most recent data stack NEWSTACK has created and all elements on it. If a new
data stack was not created, DELSTACK removes all the elements from the original data stack.

You can create a new data stack with NEWSTACK and delete that data stack with DELSTACK. Or your
program can call an external function or subroutine that is written in REXX and includes a DELSTACK
command to delete the data stack.

Examples:

1. To create a new data stack for a called routine and delete the data stack when the routine returns, use
the NEWSTACK and DELSTACK commands as follows:

Immediate Commands

© Copyright IBM Corp. 1988, 2004 143

 ⋮
 "NEWSTACK" /* data stack 2 created */
 CALL sub1
 "DELSTACK" /* data stack 2 deleted */
 ⋮
 EXIT

 sub1:
 PUSH ...
 QUEUE ...
 PULL ...
 RETURN

2. After creating multiple new data stacks, you can find out how many data stacks were created and
delete all but the original data stack using NEWSTACK, QSTACK, and DELSTACK as follows:

 "NEWSTACK" /* data stack 2 created */
 ⋮
 "NEWSTACK" /* data stack 3 created */
 ⋮
 "NEWSTACK" /* data stack 4 created */
 "QSTACK"
 times = RC-1 /* set times to the number of new data stacks created */
 DO times /* delete all but the original data stack */
 "DELSTACK" /* delete one data stack */
 END

DROPBUF

DROPBUF
n

DROPBUF removes the most recently created (with MAKEBUF) data stack buffer and all elements on the
data stack in the buffer. If you specify n, DROPBUF removes a specific data stack buffer and all buffers
created after it.

Operands:

n
specifies the number of the first data stack buffer you want to drop. DROPBUF removes the specified
buffer and all buffers created after it. Any elements that were placed on the data stack after the
specified buffer was created are also removed. If n is not specified, only the most recently created
buffer and its elements are removed.

The data stack initially contains one buffer, which is known as buffer 0. This buffer is never removed
because MAKEBUF does not create it. DROPBUF 0 removes all buffers that were created on the data
stack with MAKEBUF and all elements that were put on the data stack. DROPBUF 0 effectively clears
the data stack including the elements on buffer 0.

The following table shows how DROPBUF sets the REXX special variable RC.

Return Code Meaning

0 DROPBUF was successful.

1 An incorrect number n was specified. For example, n was A1.

2 The specified buffer does not exist. For example, you get a return code of 2 if you try to
drop a buffer that does not exist.

DROPBUF

144 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Examples: A subroutine (sub2) in a REXX program issues MAKEBUF to create four buffers. Before the
subroutine returns, it removes buffers two and above and all elements within the buffers.

/* REXX program */
 ⋮
 CALL sub2
 ⋮

exit
sub2:
 "MAKEBUF" /* buffer 1 created */
 QUEUE A
 "MAKEBUF" /* buffer 2 created */
 QUEUE B
 QUEUE C
 "MAKEBUF" /* buffer 3 created */
 QUEUE D
 "MAKEBUF" /* buffer 4 created */
 QUEUE E
 QUEUE F
 ⋮
 "DROPBUF 2" /* buffers 2 and above deleted */
 RETURN

EXEC

EXec pgm_name

string

EXEC runs a REXX program in the active PROC chain.

Operands:

pgm_name
is the name of the program. It is 8 characters or fewer.

string
is an argument string. The language processor treats this as a single argument. The string is optional.

See “The VSE Host Command Environment” on page 25 for examples.

EXECIO

EXEC

Chapter 10. REXX/VSE Commands 145

EXECIO lines

*

DISKR member_name

linenum
(
1 BYTES  bytesnum

STRTBYTE  strtnum

SYSIPT

linenum
(
1 RECSIZE  n

SAM_filename

linenum
(
1

SAM File Options
2

Read Options

DISKRU member_name

linenum
(
1 BYTES  bytesnum

STRTBYTE  strtnum

SAM_filename

linenum
(
1

SAM File Options
2

Read Options

DISKW member_name

(
1

NODATA
3

DATA STEM  var_name BYTES  bytesnum

SYSLST

(
1

NOCC

CC

MCC

ASA

STEM  var_name RECSIZE  -n

SYSPCH

(
1

NOCC

CC STEM  var_name

SAM_filename

(
1

STEM  var_name
SAM File Options

2

Write Options

Read Options
FIFO

LIFO

STEM  var_name

SKIP OPEN FINIS)

Write Options

OPEN FINIS)

SAM File Options

BLKSIZE  n RECFORM FIXUNB

FIXBLK

VARUNB

VARBLK

UNDEF

RECSIZE
4
 n

Notes:
1 You can enter the options between the parentheses in any order.

EXECIO

146 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

2 SAM files require additional options for opening a file explicitly or implicitly.
3 The default is NODATA for a new member. For a member that already exists, the default is its value from
when it was created.
4 RECSIZE is required with RECFORM FIXUNB or RECFORM FIXBLK; do not use it with other types of record
formats.

EXECIO controls the input and output (I/O) of information to and from a file. Supported operations are
DISKR, DISKW and DISKRU (read and update).

EXECIO can read or write data on the program stack or in REXX variables directly. You can use EXECIO for
I/O tasks such as copying information to and from a file to add, delete, or update information. A program
can read information from a file to the data stack for serialized processing or to a list of variables for
random processing. A program can write information from the data stack or a list of variables to a file.

EXECIO operates on the following types of files:

• Sublibrary members of any type. The REXX program must specify the full name of the member on the
EXECIO command. (The full name consists of a library name, sublibrary name, member name, and
member type, for example: mylib.mysublib.myfile.typea.) An example of reading a sublibrary
member is on “1” on page 154. Usually library members have a logical record format "fixed.". But
some types, for example DUMP, PHASE, have a logical record format "string". In this case the member
consists of 1 record only with arbitrary length.

• SYSIPT , SYSLST, and SYSPCH. These names are reserved words on the EXECIO command. You must
specify DISKR (not DISKRU) with SYSIPT. Note that REXX/VSE reads SYSIPT data until encountering an
end-of-file indicator, such as /*. See “Calling REXX Directly with the JCL EXEC Command” on page 329
for an example of input lines in SYSIPT. If a REXX program is invoked from a nested JCL procedure,
EXECIO from SYSIPT cannot read from the current procedure.

• SAM files. Only SAM files on disk are supported.

Before using EXECIO to perform I/O to or from a SAM file, you need to assign a name to the file. You do
this by using DLBL to associate the file with a file name. Accessing SAM files requires additional options
on the EXECIO command that are not needed for other files. See “Additional Options Required for SAM
Files” on page 152 for details. See “3” on page 154 for an example.

Put quotation marks around any operands, such as DISKW, STEM, FINIS, or LIFO.

Operands:

lines
is the number of lines to be processed. This operand can be an integer or *, which indicates an
arbitrary number. When the operand is * and EXECIO is reading from a file, input is read until EXECIO
reaches the end of the file.

If you specify a value of 0, no I/O operations are performed unless you also specify OPEN or FINIS or
both.

• If you specify OPEN and the file is closed, EXECIO opens the file but does not read or write any lines.
If you specify OPEN and the file is open, EXECIO does not read or write any lines.

In either case, if you are reading from a file and specify a nonzero value for linenum, EXECIO sets
the current record number to the record number linenum indicates.

Note: The current record number is the number of the next record EXECIO will read. By default, the
current record number is set to the first record when a file is opened. However, if you specify OPEN
and a nonzero value for linenum, EXECIO sets the current record number to the record number
linenum indicates.

• If you specify FINIS and the file is open, EXECIO does not read or write any lines, but it closes the
file. If you specify FINIS and the file is not already open, EXECIO does not open the file and then
close it.

• If you specify both OPEN and FINIS, EXECIO processes the OPEN first and then the FINIS.

EXECIO

Chapter 10. REXX/VSE Commands 147

When EXECIO writes an arbitrary number of lines from the data stack, it stops only when it reaches
a null line. If there is no null line on the data stack and the stack becomes empty, EXECIO continues
with the current input stream. ASSGN(STDIN) returns the name of the current input stream. When
end-of-file is reached, EXECIO ends.

When EXECIO writes an arbitrary number of lines from a list of compound variables, it stops when it
reaches a null value or an uninitialized variable (one that has not been assigned a value).

DISKR
opens a file for input (if it is not already open) and reads the specified number of lines from the file
and places them on the data stack.

If you specify the STEM operand, the lines are placed in a list of variables instead of on the data stack.
While a file is open for input, you cannot write information back to the same file.

The file is not automatically closed unless:

• The task, under which the file was opened, ends
• The last language processor environment associated with the task, under which the file was opened,

is terminated. (See Chapter 19, “Language Processor Environments,” on page 387 for information
about language processor environments).

DISKRU
opens a file for update (if it is not already open) and reads the specified number of lines from the file
and places them on the data stack.

If you specify the STEM operand, the lines are placed in a list of variables instead of on the data stack.
While a file is open for update, the last record read can be changed and then written back to the file
with a corresponding EXECIO DISKW command. Typically, you open a file for update when you want to
change information in the file.

The file is not automatically closed unless:

• The task, under which the file was opened, ends
• The last language processor environment associated with the task, under which the file was opened,

is terminated.

After you open a file for update (by issuing a DISKRU as the first operation against the file), you can
use either DISKR or DISKRU to fetch subsequent records for update.

DISKW
opens a file for output (if it is not already open) and writes the specified number of lines to the file. The
lines are from the data stack or, if you specify STEM var_name, from a list of variables.

You can use the DISKW operand to write information to a different file from the one opened for input,
or to update, one line at a time, the same file opened for update.

When you write data to a library member with logical record format "string" and the number specified
with option BYTES is smaller than the length of the string to be written, then the data is truncated and
the return code is set to 1. If the BYTES number is greater than the available string length, only the
available number of bytes is written and the return code is set to zero.

When a file is open for update, you can use DISKW to rewrite the last record read. The lines value
must be 1 when doing an update. For lines values greater than 1, the user receives an error message
and a return code of 20, and the program is ended. Once a line is written, the program cannot rewrite
the line; attempting to do so causes an error.

When a file with logical record format "string" is open for update, you can use DISKW to rewrite
the latest portion read. The new string may have a different length than the one being replaced. No
padding or truncation of the new string takes place. After one portion of the record has been updated,
the attempt to write another portion without a DISKRU operation in between causes an error.

The file is not automatically closed unless:

• The task, under which the file was opened, ends.

EXECIO

148 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• The last language processor environment associated with the task, under which the file was opened,
is terminated.

Note:

1. The length of an updated line is set to the length of the line it replaces. When an updated line is
longer than the line it replaces, information that extends beyond the replaced line is truncated.
When information is shorter than the replaced line, the line is padded with blanks to the original
line length.

2. You can read a DUMP or a PHASE either as a whole or broken up into portions using options BYTES
and STRTBYTE. Writing or reading for update of a PHASE is not possible. The open will fail with
return code 20 and error messages containing LIBRM OPEN feedback (code 236, incorrect phase
handling). When you write a DUMP or other string-type members, use option BYTES. Otherwise,
the library member is defined with fixed logical record format and only 80 bytes of the first record
will be written. You also get a truncation return code of 1.

member_name
SYSIPT
SYSLST
SYSPCH
SAM_filename

The file name is a sublibrary member, SYSIPT, SYSLST, SYSPCH, or the name assigned to a SAM file.
The name of a sublibrary member is in the format: library.sublibrary.member.filetype. For input or
output to a SAM file, you must use DLBL to assign the file a name before using EXECIO. The DLBL
statement can either refer to a SAM-file in VSAM-managed space, or directly to a disk. If you are
processing a file directly on a disk, an ASSGN SYS007,cuu is necessary for DISKW and an ASSGN
SYS006,cuu for DISKR and DISKRU.

linenum
is the line number in the file at which EXECIO is to begin reading. When a file is closed and reopened
because of specifying a record number preceding the current record number, the file is open for:

• input, if you specify DISKR
• update, if you specify DISKRU.

When a file is open for input or update, the current record number is the number of the next record to
be read. When linenum specifies a record number earlier than the current record number in an open
file, you need to close and reopen the file to reposition the current record number at linenum. When
this occurs and the file was not opened at the same task level as that of the program running, trying to
close the file at a different task level causes an EXECIO error. Do not use the linenum operand in this
case.

Specifying a value of 0 for linenum is the same as not specifying the linenum operand. In either case,
EXECIO begins reading the file as follows:

• If the file was already opened, EXECIO begins reading with the line following the last line that was
read

• If the file was just opened, EXECIO begins reading with the first line of the file.

You have to write a user or application I/O replaceable routine to have EXECIO exploit files such as
SYSIN, SYSOUT, SYSRDR, or SYSLOG.

EXECIO DISKW on SYSLST and EXECIO DISKR from SYSIPT are supported. For SYSLST and SYSIPT
you do not need to specify BLKSIZE, RECSIZE, or the RECFORM options.

The following values are used:

File name BLKSIZE RECSIZE RECFORM

SYSLST (option CC) 121 121 FIXUNB

SYSLST (otherwise) 256 256 FIXUNB

EXECIO

Chapter 10. REXX/VSE Commands 149

File name BLKSIZE RECSIZE RECFORM

SYSPCH 81 81 FIXUNB

SYSIPT 128 128 FIXUNB

For SYSLST with CC option specified, a record greater than 121 bytes is truncated with a return code
rc=1. For SYSLST without CC option specified, a record greater than 120 bytes is truncated with a
return code rc=1. If you want to use a different record length for SYSLST, you can specify operand
RECSIZE n with 0<n<=256 (including carriage control character). In this case, you cannot specify
option CC.

For SYSIPT, if a record size smaller than 128 bytes is desired, you can specify operand RECSIZE n with
0<n<=128.

BYTES bytesnum
If you want to process (read or write) a library member of type "string" in separate units, specify
the BYTES operand followed by the number of bytes you want to handle as one unit. Smaller units
require less storage to execute the command. The BYTES operand is only valid for library members
with logical record format "string".

If you store (write) a new library member, the option BYTES implies that logical record format "string"
is used for this library member.

STRTBYTE strtnum
Specifies a byte number within a library member of logical record format "string". STRTBYTE specifies
the byte number where reading is to start. It is only valid together with operand BYTES.

Note that changing the position where reading should continue is always accompanied by an implicit
close and re-open of the file.

Note:

1. You can read a DUMP or a PHASE either as a whole or broken up into portions using options BYTES
and STRTBYTE.

2. Writing or reading for update of a PHASE is not possible. The open will fail with return code 20 and
error messages containing LIBRM OPEN feedback (code 236, incorrect phase handling).

3. When you write a DUMP or other string-type members, use option BYTES. Otherwise, the library
member is defined with fixed logical record format and only 80 bytes of the first record will be
written. You also get a truncation return code of 1.

FINIS
closes the file after EXECIO completes. You can close a file only if it was opened at the same task level
as the program issuing EXECIO.

You can use FINIS with a lines value of 0 to have EXECIO close an open file without first reading or
writing a record.

The language processor environment is terminated after the end of a step in a batch job that called
REXX. Therefore, all files a REXX program opens are typically closed automatically when the top level
program ends. However, it is a good programming practice to explicitly close all files when finished
with them.

OPEN
opens the specified file if it is not already open. For reading from a file, you can use OPEN with a lines
value of 0 to have EXECIO do one of the following:

• Open a file without reading any records
• Set the current record number (that is, the number of the next record EXECIO will read) to the

record number the linenum operand indicates, by specifying a value for linenum.

For writing to a file, you must use OPEN with a lines value of 0 to have EXECIO open a file without
writing any records.

EXECIO

150 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

NODATA
DATA

This option is valid only for DISKW and is required only for opening a member of a sublibrary. (It is
ignored for other types of files.) NODATA indicates the sublibrary member does not contain SYSIPT
DATA. DATA indicates the sublibrary member contains SYSIPT DATA.

The default is NODATA for a new member. For a member that already exists, the default is its value
from when it was created.

CC
NOCC
MCC
ASA

CC, NOCC, MCC, and ASA are valid only with SYSLST. CC, MCC, and ASA indicate treating the first
character as a carriage control character. (The first character must be a valid American Standards
Association (ASA) or machine control character. See the z/VSE System Macro Reference for a list of
valid carriage control characters.)

NOCC indicates that EXECIO provides carriage control for the next line. NOCC is the default.

You can use CC, MCC, ASA, or NOCC for each single I/O request. This means your program can contain
multiple EXECIO commands with different control character options for SYSLST.

STEM var_name
specifies the stem of the list of variables into which to place information or from which to write
information. Compound variables permit indexing. To use compound variables, make sure the
var_name ends with a period, for example, myvar..

If you specify * as the number of lines to write, EXECIO stops writing information to the file when it
finds a null line or an uninitialized compound variable. For example, if the list contains 10 compound
variables, EXECIO stops at myvar.11.

In the following example, the list of compound variables has the stem myvar. and lines of
information (records) are placed in variables myvar.1, myvar.2, myvar.3, and so forth.

"EXECIO * DISKR MYLIB.MYSUB.MYFILE.TYPEA (FINIS STEM MYVAR."

For reading from a file, the number of variables in the list is placed in myvar.0. Suppose 10 lines of
information are read into the myvar. variables. Then myvar.0 contains the number 10 (indicating
that 10 records are read), and myvar.1 contains record 1, myvar.2 contains record 2, and so forth
up to myvar.10, which contains record 10. All stem variables beyond myvar.10 (that is, myvar.11,
myvar.12, and so on) are residual and contain the value that was specified before issuing the EXECIO
command.

To avoid confusion about whether a residual stem variable value is meaningful, you may want to clear
the entire stem variable before issuing the EXECIO command. To clear all compound variables whose
names begin with a particular stem, you can:

• Use the DROP instruction (for example, DROP myvar.) to set all possible compound variables
whose names begin with that stem to the values of their own names in uppercase.

• Use an assignment to set all possible compound variables whose names begin with that stem to
nulls (for example, myvar. = '').

Example “5” on page 154 shows using EXECIO with stem variables, and example “15” on page 157
illustrates the effect of residual data.

When writing an arbitrary number of lines from a file, var_name.0 has no effect on controlling the
number of lines written.

Note: For reading from a file, if var_name does not end with a period, the variable names must be
appended with numbers, but an index in a loop cannot access them. For writing to a file, if var_name
does not end with a period, the variable names must be appended with consecutive numbers, such as
myvar1, myvar2, myvar3.

EXECIO

Chapter 10. REXX/VSE Commands 151

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

Read Options

FIFO
places information on the data stack in FIFO (first in first out) order. FIFO is the default.

LIFO
places information on the data stack in LIFO (last in first out) order.

SKIP
reads the specified number of lines but does not place them on the data stack or in variables. When
the number of lines is *, EXECIO skips to the end of the file.

Additional Options Required for SAM Files
Accessing SAM files requires additional information that is not needed for other files. Block size, record
format, and (for certain record formats) record size are necessary for opening a file explicitly or implicitly
(for example, to perform positioning within a file). You specify this information in the following additional
options on the EXECIO command. These options are required whenever a file is opened. A file is opened
explicitly if you specify the OPEN option. It is opened implicitly if:

• The file is not currently open.
• You switch from input processing (DISKR) to outprocessing (DISKRU or DISKW) or from output

processing to input processing.
• linenum specifies a record number that precedes the current record number.

BLKSIZE n
specifies the block size of the file. The maximum size is 32761. See z/VSE System Macros User's
Guide for details about the block size.

RECFORM FIXUNB
RECFORM FIXBLK
RECFORM VARUNB
RECFORM VARBLK
RECFORM UNDEF

specifies whether the record format is fixed unblocked, fixed blocked, variable unblocked, variable
blocked, or undefined.

RECSIZE n
specifies the record size. This is required for FIXUNB and FIXBLK format records. Do not use RECSIZE
for other record formats. Records are blank-extended if they are too short. If the records are too long,
EXECIO ends with an error.

Closing Files
If you specify FINIS on EXECIO, the file is closed after EXECIO completes processing. If you do not
specify FINIS, the file is closed:

• When the task, under which the file was opened, is terminated, or
• When the last language processor environment associated with the task, under which the file was

opened, is terminated (even if the task itself is not terminated).
• Before a file is implicitly opened.

Whenever the file in VSAM-managed space is closed or opened (explicitly or implicitly) the file is
processed according the open and close disposition on the DLBL statement, that is, the file may be
defined, allocated, reset, or deleted. The initial positioning is handled according to the open disposition.

In general, when a REXX program is called, any files that the program opens are closed when the
top-level program completes. For example, suppose you are running a program (top-level program) that
calls another program. The second program uses EXECIO to open a file and then returns control to the
first program without closing the file. The file is still open when the top-level program regains control.
The top-level program can then read the same file continuing from the point where the nested program

EXECIO

152 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmge41.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmge41.pdf

finished EXECIO processing. When the top-level program ends, the file is automatically closed. (Example
“12” on page 156 illustrates this.)

EXECIO Input Checking

The EXECIO options CC, NOCC, DATA, NODATA, BLKSIZE, RECFORM, and RECSIZE are ignored if they are
specified differently than described in the EXECIO syntax diagram. For example, if you specify

EXECIO * DISKR SYSIPT 5 (CC

the CC option is ignored.

EXECIO only does a minimum of input checking. It is your reponsibility to correctly set up the input
parameters. EXECIO uses the DTFDI, the DTFCP, or the DTFPR for SYSIPT, SYSLST, and SYSPCH, and
the DTFSD for all other SAM filenames. Refer to the manuals VSE/ESA System Macros User's Guide and
VSE/ESA System Macros Reference for details about DTFSD and DTFDI. EXECIO takes care of the 8 extra
bytes required for output by the DTFSD macro for the BLKSIZE parameter. For example, if you use
BLKSIZE 4096 to write a record you use BLKSIZE 4096 to read the record.

The largest size you can specify with the RECSIZE or BLKSIZE parameter in REXX/VSE is 32761.

REXX procedures using EXECIO to access library members may cause unusable library blocks if they are
canceled. Use the librarian TEST command to restore those blocks.

An EXECIO return code rc=20 may have various reasons, for example

1. partition storage may be exhausted. Try a failing procedure in a larger partition.
2. a library member which is not accessible may be already opened by another partition.
3. end of extent has been reached.
4. a WRITE was issued for a file opened for READ.

Message ARX0565I may provide you with additional information why the EXECIO command failed.

Return Codes
The following table shows how EXECIO sets the REXX special variable RC.

Return Code Meaning

0 Successful completion of requested operation

1 Data was truncated during DISKW operation

2 End-of-file reached before the specified number of lines were read during a DISKR
or DISKRU operation. This does not occur if you use * for number of lines because
the remainder of the file is always read. For a member of a sublibrary, this return
code may indicate the file is empty.

20 Severe error. EXECIO completed unsuccessfully and a message is issued. For a SAM
file:

• The file may not exist
• You may have specified a record format, block size, or record size that does not

match the file
• A new file could not be defined.

Examples:

EXECIO

Chapter 10. REXX/VSE Commands 153

1. This example reads from a sublibrary member. The EXECIO command reads an entire PROC member
into INPUT.1, INPUT.2, and so on, and closes the file when done.

'EXECIO * DISKR LIBNAME.SUBLIB.MEMBER.PROC (STEM INPUT. FINIS'

2. This example reads one line from SYSIPT and puts it on the stack in LIFO order. The EXECIO
command does not close the file.

'EXECIO 1 DISKR SYSIPT (LIFO'

3. This example writes to a SAM file. You must previously use DLBL, for example

// DLBL FILE01,'MY.OUTPUT.FILE'
// EXTENT ,SYSWK1,,,13260,15
// ASSGN SYS007,231

to assign a name (FILE01) to the file:

'EXECIO * DISKW FILE01 (STEM SAMFILE. BLKSIZE 64 RECFORM FIXBLK' ,
'RECSIZE 64'

The file definition above refers to a specific disk location.

Or you can specify the DLBL within your REXX procedure:

ADDRESS JCL "//DLBL FILE01,'MY.OUTPUT.FILE',,VSAM,CAT=VSESPUC," || ,
 "RECSIZE=65,RECORDS=(10,5),DISP=(NEW,KEEP)"
ADDRESS JCL "/*"
'EXECIO * DISKW FILE01 (STEM SAMFILE. BLKSIZE 64 RECFORM FIXBLK' ,
'RECSIZE 64'

Here the file definition refers to a SAM-file in VSAM-managed space.
4. This example copies an entire existing SAM file named USERID.MY.INPUT into a member

of an existing library named DEPT5.MEMO.MAR2.TEXT. You must previously use DLBL (for
example, // DLBL MYIPT,'USERID.MY.INPUT') to assign a name (MYINPUT) to the file
USERID.MY.INPUT. The library member DEPT5.MEMO.MAR22.TEXT does not need any previous
DLBL.

 "NEWSTACK" /* Create a new data stack for input only */

 "EXECIO * DISKR MYINPUT (FINIS BLKSIZE 64 RECFORM FIXUNB RECSIZE 64"
 QUEUE '' /* Add a null line to indicate the end of information */
 "EXECIO * DISKW DEPT5.MEMO.MAR22.TEXT (FINIS"

 "DELSTACK" /* Delete the new data stack */

5. This example copies an arbitrary number of lines from an existing SAM file,
USERID.TOTAL.DATA, into a list of compound variables. DATA. is the stem. You must previously
use // DLBL ALLDATA,'USERID.TOTAL.DATA' to assign the name ALLDATA to the file
USERID.TOTAL.DATA.)

 ARG lines
 "EXECIO" lines "DISKR ALLDATA (STEM data. BLKSIZE 64 RECFORM FIXUNB
RECSIZE 64"
 SAY data.0 'records were read.'

6. This example updates the second line in file DEPT5.EMPLOYEE.LIST. (You must previously use //
DLBL EMPLIST,'DEPT5.EMPLOYEE.LIST') to assign the name EMPLIST to the file.

 "EXECIO 1 DISKRU EMPLIST 2 (BLKSIZE 400 RECFORM FIXBLK RECSIZE 80"
 PULL line
 PUSH 'Crandall, Amy AMY 5500'
 "EXECIO 1 DISKW EMPLIST (FINIS"

7. This example reads from a SAM file to find the first occurrence of the string "Jones". (You must
previously use DLBL to associate the sequential file with the file name, INPUT.) The program ignores
upper and lowercase distinctions. The example demonstrates how to read and search one record at a

EXECIO

154 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

time. For better performance, you can read all records to the data stack or to a list of variables, search
them, and then return the updated records.

done = 'no'
lineno = 0
DO WHILE done = 'no'
 "EXECIO 1 DISKR INPUT (BLKSIZE 100 RECFORM FIXBLK RECSIZE 100"
 IF RC = 0 THEN /* Record was read */
 DO
 PULL record
 lineno = lineno + 1 /* Count the record */
 IF INDEX(record,'JONES') ¬= 0 THEN
 DO
 SAY 'Found in record' lineno
 done = 'yes'
 SAY 'Record = ' record
 END
 ELSE NOP
 END
 ELSE
 done = 'yes'
END
"EXECIO 0 DISKR INPUT (FINIS"
EXIT 0

8. This program copies records from the SAM file MY.INPUT.DATA to MY.OUT.DATA. (You must
previously use DLBL to assign MY.INPUT.DATA the name INFILE and assign MY.OUT.DATA the name
OUTFILE.) The program assumes that the input file has no null lines.

SAY 'Copying ...'

"EXECIO * DISKR INFILE (FINIS BLKSIZE 64 RECFORM VARBLK"
QUEUE '' /* Insert a null line at the end to indicate end of file */
"EXECIO * DISKW OUTFILE (FINIS BLKSIZE 64 RECFORM VARBLK"

SAY 'Copy complete.'

EXIT 0

9. This program starts at the third record and reads five records from a SAM file to which you have
assigned the name MYINPUT. It strips trailing blanks from the records and then writes any record that
is longer than 20 characters. The file is not closed when the program is finished.

"EXECIO 5 DISKR MYINPUT 3 (BLKSIZE 64 RECFORM VARBLK"

DO i = 1 to 5
 PARSE PULL line
 stripline = STRIP(line,t)
 len = LENGTH(stripline)

 IF len > 20 THEN
 SAY 'Line' stripline 'is long.'
 ELSE NOP
END

/* The file is still open for processing */

EXIT 0

10. This program reads the first 100 records (or until EOF) of the SAM file assigned the name INVNTOR.
It places records on the data stack in LIFO order. It issues a message about the result of the EXECIO
operation.

eofflag = 2 /* Return code to indicate end of file */

"EXECIO 100 DISKR INVNTOR (LIFO BLKSIZE 80 RECFORM VARBLK FINIS"
return_code = RC

IF return_code = eofflag THEN
 SAY 'Premature end of file.'
ELSE
 SAY '100 Records read.'
DROPBUF 0
EXIT return_code

EXECIO

Chapter 10. REXX/VSE Commands 155

11. This program erases any existing data from the SAM file FRED.WORKSET.FILE by opening the file and
then closing it without writing any records. Doing this means EXECIO simply writes an end-of-file
marker, which erases any existing records in the file. (You must previously use DLBL to assign
FRED.WORKSET.FILE the name NAMES.)

/* Open the file for writing, but do not write a record. */
"EXECIO 0 DISKW NAMES (OPEN BLKSIZE 64 RECFORM VARBLK"

/* Close the file. This completes erasing any existing records */
"EXECIO 0 DISKW NAMES (FINIS"

Note that in this example, EXECIO ... (OPEN followed by the EXECIO ... (FINIS is equivalent
to:

"EXECIO 0 DISKW NAMES (OPEN FINIS BLKSIZE 64 RECFORM VARBLK"

12. The next example includes two programs. The first (top-level) program, PROG1, calls PROG2. PROG2
opens the file, reads the first three records, and then returns control to PROG1. Note that PROG2
does not specify FINIS on EXECIO, so the file remains open.

When the PROG1 regains control, it issues EXECIO and gets the fourth record because the file is
still open. If PROG2 had specified FINIS on EXECIO, PROG1 would have read the first record. In the
example, both programs run at the same task level.

/* PROG1 -- This program calls PROG2 to open a file. */
/* The file is a SAM file, and you must use DLBL to */
/* assign it a name before using EXECIO; for example: */
/* // DLBL myinput,'userid.my.input' */
/* PROG1 then continues reading the same file. */
say 'Executing the first program PROG1'
/* */
/* Now call PROG2 to open the file. */
/* This program uses a CALL instrucion to call the second program. */
/* The REXX/VSE EXEC command would have the same result. */
/* */
/* If PROG2 opens a file and does not close the file before */
/* returning control to PROG1, the file remains open when */
/* control is returned to PROG1. */
/* */
say 'Calling the second program PROG2'
call prog2 /* Call PROG2 to open file */
say 'Now back from the second program PROG2. Issue another EXECIO.'
"EXECIO 1 DISKR MYINPUT (STEM Z. /* EXECIO reads record 4 */
say z.1
say 'Now close the file'
"EXECIO 0 DISKR MYINPUT (FINIS" /* Close file so it can be freed */
EXIT 0

/* PROG2 -- This program opens the file MYINPUT, reads 3 records, */
/* and returns control to PROG1 without closing the file. */
/* */
say "Now in the second program PROG2"
DO I = 1 to 3 /* Read and produce first 3 records */
 "EXECIO 1 DISKR MYINPUT (STEM Y. BLKSIZE 120 RECFORM VARUNB"
 say y.1
END
Say 'Leaving second program PROG2. Three records were read from file.'
RETURN

13. This program opens the SAM file MY.INVNTORY without reading any records. The program then uses
a main loop to read records from the file and process the records. (You must have previously used
DLBL to assign the file the name INPUT and to assign MY.AVAIL.FILE the name OUTPUT.)

/* Open INPUT file for input, but do not read any records */
"EXECIO 0 DISKR INPUT (OPEN BLKSIZE 100 RECFORM FIXBLK RECSIZE 100"

eof = 'NO' /* Initialize end-of-file flag */
avail_count = 0 /* Initialize counter */

DO WHILE eof = 'NO' /* Loop till EOF of input file */
 "EXECIO 1 DISKR INPUT (STEM LINE." /* Read a line */
 IF RC = 2 THEN /* If end of file is reached, */

EXECIO

156 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 eof = 'YES' /* set end-of-file (eof) flag; */
 ELSE /* otherwise, a record is read. */
 DO
 IF INDEX(line.1,'AVAILABLE') THEN /* Look for records */
 /* marked "available" */
 DO /* "Available" record found */

 /* Write record to available file */
 "EXECIO 1 DISKW OUTPUT (STEM LINE. BLKSIZE 100 RECFORM FIXBLK
 RECSIZE 100"
 avail_count = avail_count + 1 /* Increment "available"
 counter */

 END
 END
END

"EXECIO 0 DISKR INPUT (FINIS" /* Close currently open INPUT file. */

"EXECIO 0 DISKW OUTPUT (FINIS" /* Close OUTPUT file if currently open. */
 /* If OUTPUT file is not open, */
 /* EXECIO has no effect. */

EXIT 0

14. This program opens SYSIPT and sets the current record number to record 8 so that the next EXECIO
DISKR command begins reading at the eighth record.

"EXECIO 0 DISKR SYSIPT 8 (OPEN" /* Open file SYSIPT for input and
 set current record number to 8. */
CALL READ_NEXT_RECORD /* Call subroutine to read record on
 to the data stack. The next
 record EXECIO reads is record 8
 because the previous EXECIO set
 the current record number to 8. */
"EXECIO 0 DISKR SYSIPT (FINIS" /* Close the SYSIPT file. */
EXIT

read_next_record:
 "EXECIO 1 DISKR SYSIPT (STEM Z."
 say z.1
 return

15. This program uses EXECIO to successively append the records from SAMPLE1.DATA and then from
SAMPLE2.DATA to the end of the file ALL.SAMPLE.DATA. It illustrates the effect of residual data in
STEM variables. SAMPLE1.DATA contains 20 records; SAMPLE2.DATA contains 10 records. (You must
previously use DLBL to assign SAMPLE1.DATA the name IN1, SAMPLE2.DATA the name IN2, and
ALL.SAMPLE.DATA the name OUT.)

/***/
/* Read all records from IN1 and append them to the */
/* end of OUT. */
/***/

program_RC = 0 /* Initialize exec return code */

/* Read all records */
"EXECIO * DISKR IN1 (STEM NEWVAR. FINIS BLKSIZE 80 RECFORM VARBLK"

if rc = 0 then /* If read was successful */
 do
 /***/
 /* At this point, newvar.0 should be 20, indicating 20 records */
 /* have been read. Stem variables newvar.1, newvar.2, and so on */
 /* through newvar.20 contain the 20 records that were read. */
 /***/
 say "---"
 say newvar.0 "records have been read from first input file."
 say
 do i = 1 to newvar.0 /* Loop through all records */
 say newvar.i /* Produce the ith record */
 end

 /* Write exactly the number of records read */
 "EXECIO" newvar.0 "DISKW OUT (STEM NEWVAR. BLKSIZE 80 RECFORM VARBLK"
 if rc = 0 then /* If write was successful */
 do

EXECIO

Chapter 10. REXX/VSE Commands 157

 say
 say newvar.0 "records were written to the output file."
 end
 else
 do
 program_RC = RC /* Save program_return code */
 say
 say "Error during 1st EXECIO ... DISKW, return code is " RC
 say
 end
 end
else
 do
 program_RC = RC /* Save program_return code */
 say
 say "Error during 1st EXECIO ... DISKR, return code is " RC
 say
 end

 If program_RC = 0 then /* If no errors so far... continue */
 do
 /***/
 /* At this time, the stem variables newvar.0 through newvar.20 */
 /* contain residual data from the previous EXECIO. */
 /* The "DROP newvar." instruction clears these residual */
 /* values from the stem. */
 /***/
 DROP newvar. /* Set all stems variables to their */
 /* uninitialized state */
 /***/
 /* Read all records from IN2 and append them to the */
 /* end of OUTPUT. */
 /***/
 /*Read all records*/
 "EXECIO * DISKR IN2 (STEM NEWVAR. FINIS BLKSIZE 80 RECFORM VARBLK"
 if rc = 0 then /* If read was successful */
 do
 /***/
 /* Now newvar.0 should be 10, indicating 10 records have */
 /* been read. Stem variables newvar.1 through newvar.10 */
 /* contain the 10 records. If we had not cleared */
 /* the stem newvar. with the previous DROP instruction, */
 /* variables newvar.11 through newvar.20 would still */
 /* contain records 11 through 20 from the first file. */
 /* However, we would know that the last EXECIO DISKR did */
 /* not read these values because the current newvar.0 */
 /* variable indicates the last EXECIO read only 10 records. */
 /***/
 say
 say
 say "---"
 say newvar.0 "records have been read from second input file."
 say
 do i = 1 to newvar.0 /* Loop through all records */
 say newvar.i /* Produce the ith record */
 end

 /* Write exactly the number of records read */
 "EXECIO" newvar.0 "DISKW OUT (STEM NEWVAR. BLKSIZE 80 RECFORM VARBLK"
 if rc = 0 then /* If write was successful */
 do
 say
 say newvar.0 "records were written to output file."
 end
 else
 do
 program_RC = RC /* Save exec_return code */
 say
 say "Error during 2nd EXECIO ...DISKW, return code is " RC
 say
 end
 end
 else
 do
 program_RC = RC /* Save program_return code */
 say
 say "Error during 2nd EXECIO ... DISKR, return code is " RC
 say
 end
 end

/* Close output file */

EXECIO

158 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

"EXECIO 0 DISKW OUT (FINIS BLKSIZE 80 RECFORM VARBLK"

 exit 0

16. This example reads bytes 100 to 199 from a dump file, inserts string "REXX_CHANGE", and rewrites
the dump.

'EXECIO 1 DISKRU SYSDUMP.BG.DBG00000.DUMP (STEM DUMP. BYTES 100',
 'STRBYTE 100 OPEN'
dump.1 = 'REXX_CHANGE' || dump.1
'EXECIO 1 DISKW SYSDUMP.BG.DBG00000.DUMP (STEM dump. BYTES 111',
 'FINIS'

HI

HI

Note: This immediate command is available only from an application program. You specify HI on a call to
ARXIC (see page “Trace and Execution Control Routine – ARXIC” on page 361) from a non-REXX program.

HI (Halt Interpretation) is an immediate command that halts the interpretation of all currently running
programs. HI is available only if a program is running.

After HI, program processing ends or control passes to a routine or label if the halt condition trap has
been turned on in the program. For example, if the program contains a SIGNAL ON HALT instruction and
HI interrupts processing, control passes to the HALT: label in the program. See Chapter 7, “Conditions
and Condition Traps,” on page 129 for information about the HALT condition.

HT

HT

Note: This immediate command is available only from an application program. You specify it in a call to
ARXIC (see page “Trace and Execution Control Routine – ARXIC” on page 361) from a non-REXX program.

HT (Halt Typing) is an immediate command that suppresses output that a program generates. The HT
immediate command is available only if a program is running.

After HT, the program that is running continues processing, but the only output written to the current
output device is output from commands that the program issues. All other output from the program is
suppressed.

MAKEBUF

MAKEBUF

MAKEBUF creates a new buffer on the data stack.

Initially, the data stack contains one buffer, which is known as buffer 0. You can create additional buffers
by using MAKEBUF. MAKEBUF returns the number of the buffer it has created in the REXX special variable
RC. For example, the first time a program issues MAKEBUF, it creates the first buffer and returns a 1 in the
special variable RC. The second time a program issues MAKEBUF, it creates another buffer and returns a 2
in the special variable RC.

HI

Chapter 10. REXX/VSE Commands 159

The following table shows how MAKEBUF sets the REXX special variable RC.

Return Code Meaning

1 A single additional buffer after the original buffer 0 now exists on the data stack.

2 A second additional buffer after the original buffer 0 now exists on the data stack.

3 A third additional buffer after the original buffer 0 now exists on the data stack.

n An nth additional buffer after the original buffer 0 now exists on the data stack.

To remove buffers created with MAKEBUF from the data stack, use the DROPBUF command (see
“DROPBUF” on page 144).

Example: A program places two elements, elem1 and elem2, on the data stack. The program calls a
subroutine (sub3) that also places an element, elem3, on the data stack. The program and the subroutine
(sub3) each create a buffer on the data stack so they do not share their data stack information. Before the
subroutine returns, it uses DROPBUF to remove the buffer it created.

/* REXX program to ... */
 ⋮
 "MAKEBUF" /* Creates buffer. */
 SAY 'The number of buffers created is' RC /* RC = 1 */
 PUSH elem1
 PUSH elem2
 CALL sub3
 ⋮

exit
sub3:
 "MAKEBUF" /* Creates second buffer. */
 buffnum=RC
 PUSH elem3
 ⋮
 "DROPBUF" buffnum /* Deletes second buffer created */
 ⋮
 RETURN

NEWSTACK

NEWSTACK

NEWSTACK creates a new data stack and hides or isolates the current data stack. A program cannot
access elements on the previous data stack until it issues a DELSTACK command to delete the new data
stack and any elements remaining in it.

After a program issues NEWSTACK, any element placed on the data stack with a PUSH or QUEUE
instruction is placed on the new data stack. If a program calls a routine (function or subroutine) after
issuing NEWSTACK, that routine also uses the new data stack and cannot access elements on the
previous data stack, unless it issues a DELSTACK command. If you use a NEWSTACK command, you
must use a corresponding DELSTACK command to delete the data stack NEWSTACK created.

When there are no more elements on the new data stack, PULL obtains information from the input stream
even though elements remain in the previous data stack. ASSGN(STDIN) returns the name of the current
input device. (By default, this is SYSIPT.) To access elements on the previous data stack, use a DELSTACK
command. If a new data stack was not created, DELSTACK removes all elements from the original data
stack.

You can create multiple new data stacks but can access only elements on the most recently created data
stack. To find out how many data stacks you have created, use the QSTACK command (page “QSTACK”
on page 163). To find out the number of elements on the most recently created stack, use the QUEUED
built-in function (page “QUEUED” on page 78).

NEWSTACK

160 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If multiple language processor environments are chained together and you create a new data stack
with NEWSTACK, the new data stack is available only to programs that run in the language processor
environment in which the new data stack was created. The other environments in the chain cannot access
the new data stack.

Examples:

1. To protect elements placed on the data stack from a subroutine that might also use the data stack, you
can use NEWSTACK and DELSTACK as follows:

 PUSH element1
 PUSH element2
 ⋮
 "NEWSTACK" /* Creates data stack 2. */
 CALL sub
 "DELSTACK" /* Deletes data stack 2. */
 ⋮
 PULL stackelem
 ⋮
 PULL stackelem
 EXIT

2. To run a program named ABC that is a member in REXXLIB.SAMPLES.PROGRAM1.PROC specify
REXX=program_name on the JCL EXEC statement.

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC REXX=PROGRAM1

Alternately, you could use the ARXJCL routine to run a REXX program. Specify ARXJCL on the JCL EXEC
statement and specify in the PARM field the member name of the program and arguments:

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC ARXJCL,PARM='PROGRAM1'

This creates a new data stack. You can then put two elements on the new data stack for the program
PROGRAM2.

 "NEWSTACK" /* Creates data stack 2. */
 PUSH elem1
 PUSH elem2
 ADDRESS LINK "PROGRAM2"
 ⋮
 "DELSTACK" /* Deletes data stack 2. */
 ⋮

QBUF

QBUF

QBUF queries the number of buffers that have been created on the data stack with the MAKEBUF
command. QBUF returns the number of buffers in the REXX special variable RC. If you have not used
MAKEBUF to create any buffers on the data stack, QBUF sets the special variable RC to 0. This is the only
buffer the data stack initially contains.

QBUF returns the current number of data stack buffers created by a program and other routines
(functions and subroutines) the program calls. You can issue QBUF from the calling program or from
a called routine. For example, if a program issues two MAKEBUF commands and then calls a routine that
issues another MAKEBUF command, QBUF returns 3 in the REXX special variable RC.

The following table shows how QBUF sets the REXX special variable RC.

Return Code Meaning

0 Only buffer 0 exists on the data stack.

QBUF

Chapter 10. REXX/VSE Commands 161

Return Code Meaning

1 One additional buffer exists on the data stack.

2 Two additional buffers exist on the data stack.

n n additional buffers exist on the data stack.

Examples:

1. If a program creates two buffers on the data stack using MAKEBUF, deletes one buffer using
DROPBUF, and then issues QBUF, RC is set to 1.

"MAKEBUF" /* Creates buffer. */
⋮
"MAKEBUF" /* Creates second buffer. */
⋮
"DROPBUF" /* Deletes second buffer created. */
"QBUF"
SAY 'The number of buffers created is' RC /* RC = 1 */

2. Suppose a program uses MAKEBUF to create a buffer and then calls a routine that also issues
MAKEBUF. The called routine then calls another routine that issues two MAKEBUF commands to
create two buffers. If either of the called routines or the original program issues QBUF, this sets the
REXX special variable RC to 4.

"DROPBUF 0" /* Delete any buffers MAKEBUF created. */
"MAKEBUF" /* Create one buffer. */
SAY 'Buffers created = ' RC /* RC = 1 */
CALL sub1
"QBUF"
SAY 'Buffers created = ' RC /* RC = 4 */
EXIT

sub1:
"MAKEBUF" /* Create second buffer. */
SAY 'Buffers created = ' RC /* RC = 2 */
CALL sub2
"QBUF"
SAY 'Buffers created = ' RC /* RC = 4 */
RETURN

sub2:
"MAKEBUF" /* Create third buffer. */
SAY 'Buffers created = ' RC /* RC = 3 */
⋮
"MAKEBUF" /* Create fourth buffer. */
SAY 'Buffers created = ' RC /* RC = 4 */
RETURN

QELEM

QELEM

QELEM returns the number of elements in the buffer that MAKEBUF most recently created. QELEM
returns the number of elements in the REXX special variable RC. If MAKEBUF has not created any buffers,
QELEM returns 0 in RC, regardless of the number of elements on the data stack. Thus, when QBUF returns
0, QELEM also returns 0.

You can use QELEM to coordinate the use of MAKEBUF. Knowing how many elements are in a data
stack buffer can also be useful before a program issues DROPBUF, because DROPBUF removes the most
recently created buffer and all elements in it.

The QUEUED built-in function (see page “QUEUED” on page 78) returns the total number of elements in
the data stack, not including buffers.

QELEM

162 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The following table shows how QELEM sets the REXX special variable RC.

Return Code Meaning

0 Either the MAKEBUF command has not been issued or the buffer that MAKEBUF
most recently created contains no elements.

1 MAKEBUF has been issued, and there is one element in the current buffer.

2 MAKEBUF has been issued, and there are two elements in the current buffer.

3 MAKEBUF has been issued, and there are three elements in the current buffer.

n MAKEBUF has been issued, and there are n elements in the current buffer.

Examples:

1. If a program creates a buffer on the data stack using MAKEBUF and then puts three elements on the
data stack, QELEM returns the number 3.

 "MAKEBUF" /* Creates buffer. */
 PUSH one
 PUSH two
 PUSH three
 "QELEM"
 SAY 'The number of elements in the buffer is' RC /* RC = 3 */

2. Suppose a program creates a buffer on the data stack, puts two elements on the data stack, creates
another buffer, and then puts one element on the data stack. If the program issues QELEM, it returns
the number 1. The QUEUED function, however, which returns the total number of elements on the data
stack, returns the number 3.

 "MAKEBUF" /* Creates buffer. */
 QUEUE one
 PUSH two
 "MAKEBUF" /* Creates second buffer. */
 PUSH one
 "QELEM"
 SAY 'The number of elements in the most recent buffer is' RC /* 1 */
 SAY 'The total number of elements is' QUEUED() /* returns 3 */

3. To check whether a data stack buffer contains elements before you remove the buffer, use the result
from QELEM and QBUF in an IF…THEN…ELSE instruction.

"MAKEBUF"
PUSH a
"QELEM"
numelem = RC /* Assigns value of RC to variable NUMELEM */
"QBUF"
numbuf = RC /* Assigns value of RC to variable NUMBUF */
IF (numelem = 0) & (numbuf > 0) THEN
 "DROPBUF" /* Deletes most recently created buffer */
ELSE
 DO numelem
 PULL elem
 SAY elem
 END

QSTACK

QSTACK

QSTACK queries the number of data stacks in existence for a program that is running. QSTACK returns the
number of data stacks in the REXX special variable RC. The value QSTACK returns is the total number of

QSTACK

Chapter 10. REXX/VSE Commands 163

data stacks, including the original data stack. If you have not used NEWSTACK to create a new data stack,
QSTACK returns 1 in the special variable RC.

QSTACK returns the current number of data stacks created by a program and by other routines (functions
and subroutines) the program calls. You can issue QSTACK from the calling program or from a called
routine. Suppose a program issues one NEWSTACK command and then calls a routine that issues another
NEWSTACK command; if none of the new data stacks is deleted with DELSTACK, QSTACK returns 3 in the
REXX special variable RC.

The following table shows how QSTACK sets the REXX special variable RC.

Return Code Meaning

0 No data stack exists. See “Data Stack Routine” on page 459.

1 Only the original data stack exists.

2 The original data stack and one new data stack exist.

3 The original data stack and two new data stacks exist.

n The original data stack and n - 1 new data stacks exist.

Examples:

1. Suppose a program creates two new data stacks using NEWSTACK and then deletes one data stack
using DELSTACK. If the program issues QSTACK, QSTACK returns 2 in the REXX special variable RC.

"NEWSTACK" /* Creates data stack 2. */
⋮
"NEWSTACK" /* Creates data stack 3. */
⋮
"DELSTACK" /* Deletes data stack 3. */
"QSTACK"
SAY 'The number of data stacks is' RC /* RC = 2 */

2. Suppose a program creates one new data stack and then calls a routine that also creates a new data
stack. The called routine then calls another routine that creates two new data stacks. When either of
the called routines or the original program issues QSTACK, it returns 5 in the REXX special variable RC.
The data stack that is active is data stack 5.

"NEWSTACK" /* Creates data stack 2. */
CALL sub1
"QSTACK"
SAY 'Data stacks =' RC /* RC = 5 */
EXIT

sub1:
"NEWSTACK" /* Creates data stack 3. */
CALL sub2
"QSTACK"
SAY 'Data stacks =' RC /* RC = 5 */
RETURN

sub2:
"NEWSTACK" /* Creates data stack 4. */
⋮
"NEWSTACK" /* Creates data stack 5. */
"QSTACK"
SAY 'Data stacks =' RC /* RC = 5 */
RETURN

RT

RT

RT

164 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Note: This immediate command is available only from an application program. You specify it on a call to
ARXIC (see page “Trace and Execution Control Routine – ARXIC” on page 361) from a non-REXX program.

The RT (Resume Typing) immediate command resumes producing output that was previously suppressed.
The RT immediate command is available only if a program is running. Output that the program generated
after the HT command and before the RT command is lost.

SETUID

SETUID userid

password

SETUID lets you specify the user ID and password to be associated with an ADDRESS POWER command.
You can set the user ID for the life of a REXX program or can modify it at any time during a REXX program.

Operands:

userid
is the user ID to use on subsequent requests to POWER. The userid must be from 1 to 8 characters. If
you omit the userid or specify a userid of more than 8 characters, you receive return code -6.

password
is the password to associate with the given userid and subsystem communication request. The
password must be from 1 to 8 characters. Supply a password when an ADDRESS POWER command
would require it, for example when a VSE/POWER master password is needed for unlimited access
(refer to the MPWD operand of the POWER generation macro described in the VSE/POWER Application
Programming, SC33-6736 manual) or when a password protects a POWER queue entry. If master
password has been specified, POWER does no longer use the userid for access checking; userid can
be any string from 1 to 8 characters in this case.

The userid and password combination are associated with each subsequent POWER command (VSE/
POWER spool-access services CTL request), PUTQE command (VSE/POWER spool-access services PUT
request), or GETQE command (VSE/POWER spool-access services GET request). The initial value of the
userid is what the USERID built-in function would return (see “USERID” on page 92). If one REXX program
calls another, the user ID in the calling REXX program is the initial user ID in the called program. The initial
password is all blanks, or, if one REXX program calls another, the initial password is that of the calling
REXX program. If you invoke SETUID without specifying a password, then the password is reset to the
default of blanks.

Some ADDRESS POWER commands check the userid and the password and do not permit processing to
continue if these do not match. See VSE/POWER Application Programming, for details about the scope
of access. Any information you specify after the password causes a return code of -4. In this case, REXX
does not change the userid and password values.

Examples:

"SETUID MYNAME1A" /* Sets the user ID to MYNAME1A */
"SETUID MYNAME1B" /* Sets the user ID to MYNAME1B */
"SETUID MYNAME1C MYPASSWD" /* Sets the user ID to MYNAME1C */
 /* and specifies password MYPASSWD */

SUBCOM

SUBCOM envname

SETUID

Chapter 10. REXX/VSE Commands 165

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

SUBCOM queries the existence of a specified host command environment. SUBCOM searches the host
command environment table for the named environment and sets the REXX special variable RC to 0 or 1.
If RC contains 0, the environment exists. If RC contains 1, the environment does not exist.

Before a program runs, a default host command environment is defined to process the commands that
the program issues. You can use the ADDRESS keyword instruction (page “ADDRESS” on page 27) to
change this environment to another environment if the environment is defined in the host command
environment table. Use SUBCOM to determine whether the environment is defined in the host command
environment table for the current language processor environment. You can use the ADDRESS built-in
function (page “ADDRESS” on page 62) to determine the name of the environment to which host
commands are currently being submitted.

Operands:

envname
is the name of the host command environment for which SUBCOM is to search.

REXX/VSE provides the following host command environments:

• VSE
• POWER
• LINK
• LINKPGM
• JCL
• CONSOLE

When you call a program, the default host command environment is VSE.

The following table shows how SUBCOM sets the REXX special variable RC.

RC Value Description

0 The host command environment exists.

1 The host command environment does not exist.

Examples: To check whether the POWER environment is available before using the ADDRESS instruction
to change the environment, use the SUBCOM command as follows:

 "SUBCOM power"
 IF RC = 0 THEN
 ADDRESS power
 ELSE NOP

TE

TE

Note: You can use TE in a REXX program or specify it in a call to ARXIC from a non-REXX program.

TE (Trace End) is an immediate command that ends tracing REXX programs. The TE immediate command
is available if a program is running. The program continues processing, but tracing is off.

If you are running in interactive debug, you can also use TE in the current input stream to end tracing.

Example: A program calls an internal subroutine. The subroutine is not processing correctly and you want
to trace it. At the beginning of the subroutine, you can insert a TS command to start tracing. At the end
of the subroutine, before the RETURN instruction, insert the TE command to end tracing before control
returns to the main program.

TE

166 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

TQ

TQ

Note: You can use TQ to test if tracing in a REXX program was set on or off.

TQ (Trace Query) is an immediate command available only from an application program. The program
continues processing.

The following table shows how TQ sets the REXX special variable RC.

RC Value Description

0 Processing was successful. REXX trace was set OFF by TE.

4 Processing was successful. REXX trace was set ON by TS.

TS

TS

Note: You can use TS in a REXX program or specify it on a call to ARXIC from a non-REXX program.

TS (Trace Start) is an immediate command that starts tracing REXX programs. Tracing lets you control
the execution of a program and debug problems. The TS immediate command is available if a program
is running. The language processor writes trace output to the current output stream. ASSGN(STDOUT)
returns the name of the current output stream.

To end tracing, you can use the TRACE OFF instruction or the TE immediate command. You can also use
TE in the program to stop tracing at a specific point. If you are running in interactive debug, you can use
TE to end tracing.

For more information about tracing, see the TRACE instruction on “TRACE” on page 53 and Chapter 16,
“Debug Aids,” on page 319.

VSAMIO

TQ

Chapter 10. REXX/VSE Commands 167

VSAMIO READ

WRITE

DELETE

UPDATE

FILENAME fnam

RECORDS numrec

STARTREC recnum

STARTKEY key

STEM stemvar OPEN_READ

OPEN_WRITE

OPEN_UPDATE

CLOSE PASSWORD pwd

CICS_APPLID applid

FILETYPE typvar

RECLEN rlenvar KEYPOS kposvar KEYLEN klenvar

PROCESSED recvar

VSAMIO controls the input and output (I/O) of information to and from a VSAM file. Supported operations
are READ, WRITE, DELETE, and UPDATE.

VSAMIO can read or write data in REXX stem variables. If you use VSAMIO to read information from a
VSAM file to a list of variables, the first file line is stored in variable.1, the second file line is stored in
variable.2, and so on.

The various operands and combination of operands of the VSAMIO command permit you to do many
types of I/O. For example, you can use the VSAMIO command to:

• Read information from a VSAM file
• Write information to a VSAM file
• Open a VSAM file without reading or writing any records.
• Empty a VSAM file
• Copy information from one VSAM file to another
• Copy information to and from a list of compound variables (REXX stem)
• Add information to a VSAM file
• Update information in a VSAM file
• Delete information in a VSAM file

There are three types of VSAM data sets supported by VSAMIO:
Key-Sequenced Data Set (KSDS)

is used when a record is accessed through a key field within the record. Every record in a KSDS must
have a unique key value. An additional alternate index (AIX) via an additional unique or non-unique
key field is possible.

Entry-Sequenced Data Set (ESDS)
is used for data that is primarily accessed in the order it was created. An additional alternate index
(AIX) via an extra unique or non-unique key field is possible.

Relative Record Data Set (RRDS)
is used for data in which every item has a particular number, called Relative Record Number (RRN).

RRDS records in REXX/VSE consist of a prefix containing the RRN as the first word followed by the
record data itself. When reading RRDS records, REXX/VSE returns them with a 12 character prefix
starting with a blank, followed by a 10-digit-representation of the RRN, followed by another blank, for
instance:

VSAMIO

168 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 ' 0000000022 data...data...data...'

When writing or updating a RRDS record, you have to specify the RRN-number as the first word of
arbitrary length within the first 12 bytes of the record, for instance:

 '22 data...data...data...data...'
 ' 00022 data...data...data...'

VSAM data sets can either be defined and used only via batch applications or they can be defined
and used via one of the installed CICSes. VSAMIO can handle both: pure batch VSAM data sets, and
CICS-defined data sets.

Besides the usual batch interface, an alternative processing is provided for CICS-defined VSAM files via
cross partition communication with a CICS partition. This is especially useful, if read/write access is
necessary for both, CICS and the REXX program. Due to access through CICS, the VSAM cluster must only
be opened once by CICS; thus there is no need for defining the VSAM data set with shareoption 4.

Before VSAMIO can perform I/O to or from a VSAM file in batch mode, you have to use DLBL to associate
the file with the file name. The following example associates USERID.MY.INPUT of catalog MYCAT with the
file MYINP:

 ADDRESS JCL "// DLBL MYINP,'USERID.MY.INPUT',,VSAM,CAT=MYCAT"
 ADDRESS JCL "/*"

Operands:

READ
Copy records from a VSAM data set into a REXX stem variable starting with stemvar.1, stemvar.2, ...
Variable stemvar.0 contains the number of really copied records. The number of records copied are
determined by operand RECORDS. Default is 1 record.

For VSAM data sets of types KSDS, KSDS AIX, and ESDS AIX, records are retrieved according to the
key sequence. For ESDS data sets records are retrieved according to the sequence they were written,
and RRDS data sets according to their relative record number sequence.

If data set is already opened and neither STARTREC / STARTKEY nor one of the options OPEN_READ,
OPEN_WRITE, or OPEN_UPDATE are specified, reading starts at the current position. Reading
increases the current position in the VSAM data set accordingly.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is READ,
the data set is automatically opened for reading first.

WRITE
Copy a REXX stem variable to a VSAM data set. Every variable is copied, starting with stemvar.1
and finishing with stemvar.nnn, where nnn is either the numrec-value (if operand RECORDS has been
specified as a number), or the value of stemvar.0 (if set to a whole number), or the predecessor of the
first uninitialized stem variable (if RECORDS is specified as '*' and stemvar.0 is not set), or the default
value 1.

For VSAM data sets of types KSDS, and KSDS AIX, records are written according to the value
contained in the key field. You can write in any key order, but it is most efficient to do it in key
sequence. For ESDS and ESDS AIX data sets records are written to the end of the file, and RRDS data
set records are written according to their value in the relative record number field.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is WRITE,
the data set is automatically opened for updating first.

UPDATE
Replace records within a VSAM data set by new values provided in a REXX stem variable. Every
variable is copied, starting with stemvar.1 and finishing with stemvar.nnn, where nnn is either the
numrec-value (if operand RECORDS has been specified as a number), or the value of stemvar.0 (if set
to a whole number), or the predecessor of the first uninitialized stem variable (if RECORDS is specified
as '*' and stemvar.0 is not set), or the default value 1.

VSAMIO

Chapter 10. REXX/VSE Commands 169

For VSAM data sets of types KSDS and KSDS AIX, you can change the length of the record being
updated. Stem values longer than the maximum size are truncated and RC is set to -1. You cannot
change the key field of a record.

For ESDS and ESDS AIX data sets you cannot change the length of the record being updated. For ESDS
AIX files you cannot change the reference key, too. If the updating stem value is smaller than the
current record size, the initial part is changed and the rest remains the same as before. Stem values
longer than the current record size are truncated and RC is set to -1.

RRDS files have fixed record length, thus the same record length rules apply as for ESDS files.

If an ESDS data set is already opened and neither STARTREC nor one of the options OPEN_READ,
OPEN_WRITE, or OPEN_UPDATE are specified, updating starts at the current position. Updating
increases the current position in the VSAM data set accordingly.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is
UPDATE, the data set is automatically opened for updating first.

DELETE
Delete records from a non-ESDS VSAM data set. If data set is already opened for updating and neither
STARTREC / STARTKEY nor one of the options OPEN_READ, OPEN_WRITE, or OPEN_UPDATE are
specified, deleting starts at the current position in the VSAM data set.

If none of the keywords OPEN_xxxx are specified for a closed VSAM data set and operation is DELETE,
the data set is automatically opened for updating first.

FILENAME fnam
refers to a DLBL name for the VSAM data set to be processed in batch mode, or the CICS-defined
filename for the VSAM data set if processed through CICS.

For batch-processed data sets before using VSAMIO to perform I/O to or from a VSAM file, you need
to assign a name to the file. You do this by using DLBL to associate the file with a file name.

RECORDS numrec
specifies the number of VSAM data set records to be processed.

Use '*' to read or delete the starting record together with all following records in the data set. Default
for reading and deleting is 1 record, if operand RECORDS is not given.

For writing and updating, the default is the value specified in stemvar.0, if operand RECORDS is not
mentioned. If even stemvar.0 is not set, the default for writing and updating is 1 record. If RECORDS is
specified as '*' and stemvar.0 is not set, writing and updating stops when it reaches a null value or an
uninitialized variable (one that has not been assigned a value).

If you specify a RECORDS value of 0, no I/O operations are performed unless you also specify
OPEN_READ, OPEN_WRITE, OPEN_UPDATE, or CLOSE:

• If you specify OPEN_xxxx and the file is closed, VSAMIO opens the file in the given mode, but does
not read, write, update, or delete any records. If you specify OPEN and the file is open in a different
mode, VSAMIO reopens the file in the given mode.

In either case, if you are processing a file and specify operand STARTREC or STARTKEY, VSAMIO
sets the current record to the record indicated by STARTREC or STARTKEY. The current record is the
record VSAMIO is to be read next without repositioning. By default, the current record is set to the
first record when a file is opened.

• If you specify CLOSE and the file is open, VSAMIO does not process any records, but it closes the
file.

STARTREC recnum
Positions to record number recnum for ESDS-filetype data sets and to the first record with a relative
record number greater than or equal to recnum for RRDS-filetype data sets. (Re-)positioning always
starts with a reset to the first record.

VSAMIO

170 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

STARTKEY key
Positions to the first record with a key greater than or equal to the specified key for KSDS-filetype
data sets or AIX-filetype data sets. (Re-)positioning always starts with a reset to the record with the
smallest key.

If the key contains blanks, enclose it in single quotation marks. You can also specify a key in
hexadecimal format, for example: X'C1C2C3'. If you specify a key smaller than the defined key length,
only the initial part of the key is used for positioning (a "generic key search").

STEM stemvar
Specifies a REXX stem variable used to copy data from a VSAM data set to REXX (READ) or from REXX
to a VSAM data set (WRITE, UPDATE).

OPEN_READ
Opens the VSAM data set only for reading. You can open a closed file without further processing, if you
use OPEN_READ with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for reading. If the data
set is already open for reading, the current record is reset to the record defined with STARTREC or
STARTKEY if specified, otherwise it is reset to the first record.

If you process the VSAM data set via CICS, the CICS file definitions determine whether reading is
allowed. CICS authorizations for Browsing, and Reading should be set to YES.

OPEN_WRITE
Opens the VSAM data set for (re-)writing. You can open a closed file without further processing, if you
use OPEN_WRITE with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for writing.

If you process the VSAM data set via CICS, the CICS file definitions determine whether writing is
allowed. CICS authorizations for Adding, Browsing, Deleting, Reading, and Updating should be set to
YES. In this case there is no difference between OPEN_WRITE and OPEN_UPDATE.

OPEN_UPDATE
Opens the VSAM data set for updating and appending. You can open a closed file without further
processing, if you use OPEN_WRITE with a numrec value of 0.

If the data set is currently open in a different mode, the data set is reopened for updating and
appending. If operation is READ, DELETE, or UPDATE, the current record is reset to the record defined
with STARTREC or STARTKEY if specified, otherwise it is reset to the first record.

If you process the VSAM data set via CICS, the CICS file definitions determine whether writing
and updating is allowed. CICS authorizations for Adding, Browsing, Deleting, Reading, and Updating
should be set to YES. In this case there is no difference between OPEN_WRITE and OPEN_UPDATE.

CLOSE
Closes the VSAM data set after VSAMIO completes. You can close an open file without further
processing, if you use CLOSE with a numrec value of 0.

The language processor environment is terminated after the end of a step in a batch job calling REXX.
Within this termination all still open files are closed automatically. However, it is good programming
practice to explicitly close files no longer needed.

If you process the VSAM data set via CICS, this data set is only removed from the REXX internal
administration, but it is kept open within the CICS partition.

PASSWORD pwd
Specifies the password for the VSAM data set. It consists of one through eight characters.

Password specification is not supported for CICS-processed VSAM files.

CICS_APPLID applid
Specifies the CICS Applid of the CICS used to process the operation on the VSAM data set. It consists
of one through eight characters.

VSAMIO

Chapter 10. REXX/VSE Commands 171

Specify this operand when "opening" a VSAM data set that should be processed via CICS. REXX/VSE
saves attributes of opened data sets till they are closed; thus if CICS_APPLID has been specified
at open time, succeeding operations are always performed via the given CICS even without extra
specification of CICS_APPLID on the following VSAMIO commands.

A specific server task must be running within CICS to handle CICS-processed access to VSAM files.
This corresponding CICS server task is usually started automatically within CICS. If not, it can be
started explicitly invoking transaction ICVA. The CICS server task can be stopped explicitly using
transaction ICVP.

The status of the file in CICS should be ENABLED.

FILETYPE typvar
returns one of the values ESDS, KSDS, RRDS, ESDP (ESDS_Path), KSDP (KSDS_Path), NOTV
(NotVSAM), or UNKN (Unknown)

RECLEN rlenvar
returns the maximum length of a record of the given VSAM data set.

KEYPOS kposvar
returns position of the VSAM key within records of the given VSAM data set.

KEYLEN klenvar
returns the length of the VSAM key.

PROCESSED recvar
returns the number of processed (read, written, updated, deleted) records.

Return Codes
Command VSAMIO returns one of the following return codes in the REXX special variable RC:

Return Code Meaning

0 Successful processing

1 Successful processing, but at least one of the written or updated records has been
truncated.

2 End-of-file has been reached.

3 A key problem has been detected. Possible reasons are:

• A KSDS file is to be updated, but there exists no record with the given key value.
• A RRDS file is to be updated, but there exists no record with the given Relative

Record Number.
• For KSDS files is the given STARTKEY higher than all existing keys in the file.
• For RRDS files is the given STARTREC higher than all existing Relative Record

Numbers in the file.

4 An empty data set is tried to be opened for reading only (VSAM RC 8, VSAM error
code 110 from OPEN).

7 The VSE/VSAM file cannot be opened, since it is currently in use by another program
(VSAM RC 8, VSAM error code 168 from OPEN).

8 An error occurred during a VSE/VSAM I/O operation. Messages ARX0690E and
ARX0691E contain more information.

9 The record to be written contains a key that already exists in the file (VSAM RC 8,
VSAM error code 8).

12 One of the VSAMIO functions WRITE, UPDATE, or DELETE is specified, but the file is
opened only for reading.

VSAMIO

172 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Code Meaning

16 VSAMIO fails because of a storage problem. Use a partition with more GETVIS
space to run the REXX program.

20 A syntax error is detected in the VSAMIO command. One of the operand keywords
may have a typing error.

21 None of the possible VSAMIO functions READ, WRITE, DELETE, or UPDATE is
specified.

22 Specification of operand STEM is invalid due to one of the reasons:

• For functions READ, WRITE, or UPDATE operand STEM is not specified.
• Keyword STEM is specified without a token following.
• Stem name is specified without a dot '.' at the end.

23 Operand FILENAME specifies an invalid filename:

• FILENAME is not specified.
• Keyword FILENAME is specified without a token following.
• The length of the given filename is greater than 7.

24 Specification of operand PASSWORD or operand CICS_APPLID is invalid:

• Operand PASSWORD specifies an invalid password, i.e. its length is greater than 8,
or keyword PASSWORD is specified without a token following.

• Operand CICS_APPLID specifies an invalid CICS application, i.e. its length is
greater than 8, or keyword CICS_APPLID is specified without a token following.

25 Specification of operand STARTKEY is invalid due to one of the reasons:

• STARTKEY is specified together with VSAM function WRITE.
• STARTKEY is specified for a non-KSDS file.
• STARTKEY is specified for function UPDATE of a KSDS-file.
• Length of the STARTKEY value is greater than the keylength defined for the given

KSDS file.

26 Specification of operand STARTREC is invalid due to one of the reasons:

• STARTREC is specified together with VSAM function WRITE.
• STARTREC is specified for a KSDS file.
• STARTREC is specified for function UPDATE of a RRDS file.

27 Operand RECORDS specifies an invalid number of records.

28 Specification of the opening mode is invalid due to one of the reasons:

• More than one of the keywords OPEN_READ, OPEN_WRITE, and OPEN_UPDATE
are specified.

• OPEN_READ is specified together with one of the functions WRITE, UPDATE, or
DELETE.

• OPEN_WRITE is specified together with one of the functions UPDATE, or DELETE.

VSAMIO

Chapter 10. REXX/VSE Commands 173

Return Code Meaning

29 Specification of a Relative Record Number as the first word of an RRDS record is
invalid due to one of the reasons:

• All the first 12 characters are blanks.
• The first word in the record does not start with a digit.
• The first word starts with more than 10 digits.

30 Function DELETE is specified for an ESDS file.

44 CEEPIPI invocation returns with an error. Message ARX0693 contains more
information.

48 Invocation of ARXENTRY fails. This is usually an internal error. Messages contain
more information.

52 A problem occurred with the Variable Pool Access Interface (ARXEXCOM) of REXX.
Possible reasons are:

• The value of a variable should be fetched, but the buffer for the copy is too small.
• A variable name is not valid.
• A variable value is not valid; it is may be too long.

99 Internal error, which should not occur. Please contact IBM.

Using the VSAMIO Command

Reading Information from a VSAM file
To read information from a VSAM file to a list of variables, use VSAMIO with the READ operand. To read all
records from the VSAM file MYINP, you could use:

 "VSAMIO READ FILENAME MYINP CICS_APPLID DBDCCICS",
 "RECORDS * STEM newvar. OPEN_READ CLOSE"

VSAMIO READ places records from the file in compound variables. The name after keyword STEM must
end with a period. If 10 lines of information are read, newvar.1 contains record 1, newvar.2 contains
record 2, and so forth, up to newvar.10, which contains record 10. The number of items in the list of
compound variables is in the special variable newvar.0. Thus, if 10 lines of information a read into the
newvar. variables, newvar.0 contains the number 10. Every stem variable beyond newvar.10 is dropped,
i.e. reset to its initial variable name value.

If MYINP is an RRDS file, the Relative Record Number of every record is stored within a 12-character
prefix of newvar.1, newvar.2, and so on.

 ' 0000000004 Crandall, Amy AMY 5421'

How to specify the number of records to read: In the preceding example, the asterisk after RECORDS
specifies reading the entire file. To read a specific number of lines, put the number immediately after
RECORDS:

 "VSAMIO READ FILENAME MYINP RECORDS 25 STEM newvar. OPEN_READ CLOSE"

To read just one record, you can omit specification of RECORDS, since reading 1 record is the default.

 "VSAMIO READ FILENAME MYINP STEM newvar."

To open a file without reading any records, specify 0 immediately after RECORDS and specify the
OPEN_READ or OPEN_UPDATE operand.

VSAMIO

174 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 "VSAMIO READ FILENAME RECORDS 0 OPEN_READ"

Using OPEN_READ or OPEN_UPDATE: Depending on the purpose you have for the input file, use either
the OPEN_READ or OPEN_UPDATE operand.

• OPEN_READ - Reading Only

To start I/O from a file that you want only to read, use the OPEN_READ operand. The CLOSE option
closes the file after the information is read.

 "VSAMIO READ FILENAME ... RECORDS * ... CLOSE"

Note: Do not use the CLOSE option if you want the next VSAMIO in your program to continue reading at
the record immediately following the last record read.

• OPEN_UPDATE - Reading and Updating

To start I/O to a file that you want to read and update, use the OPEN_UPDATE operand without the
CLOSE option.

More about using OPEN_UPDATE appears in "Updating Information...".

Option of specifying a starting record: If you want to start reading at a record other than the beginning of
the file, specify operand STARTKEY for KSDS or AIX-files and operand STARTREC for ESDS/RRDS-files. For
example, to read all the records of an ESDS- or RRDS-file starting at record 100, you could use:

 "VSAMIO READ FILENAME MYINP RECORDS * STEM newvar. STARTREC 100 CLOSE"

To start at record 100 and read only 5 records, use:

 "VSAMIO READ FILENAME MYINP RECORDS 5 STEM newvar. STARTREC 100 CLOSE"

To open a file at record 100 without reading any records, use:

 "VSAMIO READ FILENAME MYINP RECORDS 0 STARTREC 100 OPEN_READ"

To read all the records of a KSDS-file starting with record "Smith ", you could use:

 "VSAMIO READ FILENAME MYINP RECORDS * STEM newvar. STARTKEY 'Smith '"

Writing Information to a VSAM File: To write information to a VSAM file from a list of variables, use
VSAMIO with the WRITE operand. To write from the compound variables newvar.1, newvar.2, newvar.3,
and so on to the VSAM file MYINP, you could use:

 "VSAMIO WRITE FILENAME MYINP RECORDS * STEM newvar. CLOSE"

To write records to a VSAM RRDS file, specify the Relative Record Number as first word in newvar.1,
newvar.2, and so on.

 '0004 Crandall, Amy AMY 5421'

How to specify the number of records to write: There exist several ways to define the number of records
to write. You can specifiy a number immediately after VSAMIO:

 "VSAMIO WRITE FILENAME MYINP RECORDS 25 STEM newvar."

You can assign a numeric value to stemvar.0

 newvar.0 = 25
 "VSAMIO WRITE FILENAME MYINP STEM newvar."

VSAMIO

Chapter 10. REXX/VSE Commands 175

An asterisk after RECORDS means to write all stem variables starting with stemvar.1, stemvar.2, ... until a
null value or an uninitialized compound variable is reached:

 Drop newvar.
 Do i=1 to 25; newvar.i = 'some data'; End
 "VSAMIO WRITE FILENAME MYINP STEM newvar. RECORDS *"

If neither RECORDS, nor stemvar.0 is specified, only data in stemvar.1 is written.

To open a file without writing records to it, specify 0 after RECORDS and specify the OPEN_WRITE or
OPEN_UPDATE operand.

 "VSAMIO WRITE FILENAME MYINP RECORDS 0 OPEN_WRITE"

Note: To empty a batch-processed file, you can use the VSAMIO command:

 "VSAMIO WRITE FILENAME MYINP RECORDS 0 OPEN_WRITE CLOSE"

Copying Information from One File to Another::

Copying an entire file: To copy the entire VSAM file MYINP to file JOESINP, you could use the following
instructions:

 "VSAMIO READ FILENAME MYINP RECORDS * OPEN_READ CLOSE STEM newvar."
 "VSAMIO WRITE FILENAME JOESINP RECORDS * OPEN_WRITE CLOSE STEM newvar."

Copying a specified number of lines to a new file: To copy 10 lines of data from the VSAM file MYINP to
the file JOESINP, you could use:

 "VSAMIO READ FILENAME MYINP RECORDS 10 CLOSE STEM newvar."
 "VSAMIO WRITE FILENAME JOESINP RECORDS 10 OPEN_WRITE CLOSE STEM newvar."

Adding lines to a file: To add 5 records from the VSAM file MYINP to the file JOESINP, you could use:

 "VSAMIO READ FILENAME MYINP RECORDS 5 CLOSE STEM newvar."
 "VSAMIO WRITE FILENAME JOESINP RECORDS 5 OPEN_UPDATE CLOSE STEM newvar."

Updating Information in a VSAM File:

Updating a KSDS file: Suppose you have a VSAM KSDS file named MYKSDS that contains a list of
employee names, user IDs, and phone extensions. Its key starts at position 0 with a length of 24 bytes.
One record is this one:

 Crandall, Amy AMY 5421

You can change this information. For example, to change phone extension to 5500, you could use:

 "VSAMIO READ FILENAME MYKSDS STARTKEY 'Crandall, Amy' RECORDS 1",
 "STEM newvar. OPEN_UPDATE"
 newvar.1 = Substr(newvar.1,1,WORDINDEX(newvar.1,4)-1) || '5500'
 "VSAMIO UPDATE FILENAME MYKSDS RECORDS 1 STEM newvar. CLOSE"

Updating an ESDS file: Suppose you have a CICS-defined VSAM ESDS file named MYESDS that contains a
list of employee names, user IDs, and phone extensions. The 5th record is this one:

 Crandall, Amy AMY 5421

You can change this information. For example, to change phone extension to 5500, you could use:

.
 "VSAMIO READ CICS_APPLID DBDCCICS FILENAME MYESDS STARTREC 5 RECORDS 1",
 "STEM newvar. OPEN_UPDATE"
 newvar.1 = Substr(newvar.1,1,WORDINDEX(newvar.1,4)-1) || '5500'
 "VSAMIO UPDATE FILENAME MYESDS STARTREC 5 RECORDS 1 STEM newvar. CLOSE"

VSAMIO

176 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Updating an RRDS file: Suppose you have a VSAM RRDS file named MYRRDS that contains a list of
employee names, user IDs, and phone extensions. The record with Relative Record Number 5 is this one:

 Crandall, Amy AMY 5421

You can change this information. For example, to change phone extension to 5500, you could use:

 "VSAMIO READ FILENAME MYRRDS STARTREC 5 RECORDS 1",
 "STEM newvar. OPEN_UPDATE"
 newvar.1 = Substr(newvar.1,1,WORDINDEX(newvar.1,5)-1) || '5500'
 "VSAMIO UPDATE FILENAME MYRRDS RECORDS 1 STEM newvar. CLOSE"

The VSAMIO READ returns in newvar.1:

 ' 0000000005 Crandall, Amy AMY 5421 '

Deleting Information in a VSAM File:

Deleting records in a KSDS file: Suppose you have a VSAM KSDS file named MYKSDS that contains a list
of employee names, user IDs, and phone extensions. Its key starts at position 0 with a length of 24 bytes.
One record is this one:

 Crandall, Amy AMY 5421

You can change this information. For example, to change phone extension to 5500, you could use:

 "VSAMIO DELETE FILENAME MYKSDS STARTKEY 'Crandall, Amy' RECORDS 1"

Deleting Information in an ESDS file: It is not possible to delete ESDS file records!

Deleting Information in an RRDS file: Suppose you have a VSAM RRDS file named MYRRDS that contains
a list of employee names, user IDs, and phone extensions. The record with Relative Record Number 5 is
this one:

 Crandall, Amy AMY 5421

To delete this record, you could use:

 "VSAMIO DELETE FILENAME MYRRDS STARTREC 5 RECORDS 1"

Examples:

1. This example reads an entire VSAM file into input.1, input.2, and so on, and closes the file when done.
As always, you must previously use DLBL:

ADDRESS JCL "// DLBL VSMFILE,'VSAM.CLUSTER1',,VSAM,CAT=VSESPUC"
ADDRESS JCL "/*"
'VSAMIO READ FILENAME VSMFILE STEM input. RECORDS * PASSWORD THISPW CLOSE'
SAY input.0 'records have been read.'

2. This example creates a VSAM ESDS file with 10 records.

input.0 = 10
Do i=1 to 10
 input.i = right(i,i,'0') || ' this is record ' i
End
'VSAMIO WRITE FILENAME VSMESDS STEM input. OPEN_WRITE CLOSE' ,
 'FILETYPE ftyp RECLEN recl'

Three records are updated.

Do i=1 to 3
 update_input.i = right(i+3,i+3,'0') || ' this is update ' i+3
End
'VSAMIO UPDATE FILENAME VSMESDS STEM update_input. RECORDS 3 STARTREC 4'

The file is closed.

VSAMIO

Chapter 10. REXX/VSE Commands 177

'VSAMIO READ FILENAME VSMESDS RECORDS 0 CLOSE'

3. This example creates a VSAM KSDS file with 10 records. Key consists of the first 8 bytes in the record.

input.0 = 10
Do i=1 to 10
 input.i = right(i,8,'0') || ' this is record ' i
End
'VSAMIO WRITE FILENAME VSMKSDS STEM input. OPEN_WRITE CLOSE' ,
 'FILETYPE ftyp RECLEN recl KEYLEN keyl KEYPOS keyp'

Then records with keys 00000009 and 00000010 are deleted.

'VSAMIO DELETE FILENAME VSMKSDS RECORDS 2 STARTKEY 00000009'

Three other records are updated.

Do i=1 to 3
 update_input.i = right(2*i,8,'0') || ' this is updated record ' 2*i
End
'VSAMIO UPDATE FILENAME VSMKSDS STEM update_input. RECORDS 3'

The file is closed.

'VSAMIO DELETE FILENAME VSMKSDS RECORDS 0 CLOSE'

4. This example creates a VSAM RRDS file with 10 records.

input.0 = 10
Do i=1 to 10
 input.i = right(i,3,'0') || ' this is record ' i
End
'VSAMIO WRITE FILENAME VSMRRDS STEM input. OPEN_WRITE CLOSE' ,
 'FILETYPE ftyp RECLEN recl'

Then records 9 and 10 are deleted.

'VSAMIO DELETE FILENAME VSMRRDS RECORDS 2 STARTREC 9'

Three other records are updated.

Do i=1 to 3
 update_input.i = right(2*i,8,'0') || ' this is updated record ' 2*i
End
'VSAMIO UPDATE FILENAME VSMRRDS STEM update_input. RECORDS 3'

The file is closed.

'VSAMIO DELETE FILENAME VSMRRDS RECORDS 0 CLOSE'

5. This example copies VSAM file VSMESDA into file VSMESDS, and appends another VSAM file VSMESDB
to this file VSMESDS.

'VSAMIO READ FILENAME VSMESDA STEM content. RECORDS * CLOSE'
'VSAMIO WRITE FILENAME VSMESDS STEM content. OPEN_WRITE'
'VSAMIO READ FILENAME VSMESDB STEM content. RECORDS * CLOSE'
'VSAMIO WRITE FILENAME VSMESDS STEM content. CLOSE'

6. This example copies again VSAM file VSMESDA into file VSMESDS, and appends another VSAM file
VSMESDB to this file VSMESDS. Only 10 records are copied at once.

records_at_once = 10

Files VSMESDA and VSMESDS are opened.

'VSAMIO READ FILENAME VSMESDA RECORDS 0 OPEN_READ'
'VSAMIO WRITE FILENAME VSMESDS RECORDS 0 OPEN_WRITE'

VSMESDS is copied into VSMESDA.

VSAMIO

178 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

recnum_A = records_at_once
Do Until recnum_A < records_at_once
 'VSAMIO READ FILENAME VSMESDA STEM content. RECORDS ' records_at_once ,
 'PROCESSED recnum_A'
 'VSAMIO WRITE FILENAME VSMESDS STEM content.'
End

File VSMESDA is closed.

'VSAMIO READ FILENAME VSMESDA RECORDS 0 CLOSE'

File VSMESDB is opened.

recnum_B = records_at_once
'VSAMIO READ FILENAME VSMESDB RECORDS 0 OPEN_READ'

File VSMESDB is appended to VSMESDS.

Do Until recnum_B < records_at_once
 'VSAMIO READ FILENAME VSMESDB STEM content. RECORDS ' records_at_once ,
 'PROCESSED recnum_B'
 'VSAMIO WRITE FILENAME VSMESDS STEM content.'
End

Files VSMESDB and VSMESDS are closed.

'VSAMIO READ FILENAME VSMESDB RECORDS 0 CLOSE'
'VSAMIO WRITE FILENAME VSMESDS RECORDS 0 CLOSE'

VSAMIO

Chapter 10. REXX/VSE Commands 179

VSAMIO

180 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 11. ADDRESS POWER Commands

The POWER host command environment exploits VSE/POWER spool-access services requests, GET, PUT,
and CTL. (See “The POWER Host Command Environment” on page 25 for details about the POWER
environment.)

ADDRESS POWER commands include.

• GETQE command, which performs the GET function. This retrieves an entry from a POWER queue.
• PUTQE command, which performs the PUT function. This places a job on a POWER queue.
• QUERYMSG command, which returns job completion message(s) into the stem specified by OUTTRAP.
• POWER commands that you can issue through a CTL service request. You can use ADDRESS POWER

to send these commands to VSE/POWER. “CTL” on page 196 lists these commands. You can also
find them in VSE/POWER Application Programming, SC33-6736. The documentation VSE/POWER
Administration and Operation, SC33-6733 contains their syntax.

Output for these commands or error information is trapped by the OUTTRAP function. Please refer to the
description of this function on “OUTTRAP” on page 94.

Accessing Entries in VSE/POWER Queues
When using GETQE or a CTL command, follow the programming interface rules for the VSE/POWER
spool-access services interface GET/CTL Service. That is, provide a user ID and password when needed.
(See VSE/POWER Application Programming, for details.) The user ID associated with the GETQE request
is the one determined according to the rules described for function USERID on page “USERID” on page
92. It must match the user ID associated with the queue entry (the job) being retrieved. The password
associated with the GETQE/CTL request is the last one specified in a SETUID command.

Access is possible to the following job entries in the VSE/POWER RDR queue and to the following output
entries in the VSE/POWER LST or PUN queue:

• Job or output entries with the same node and user ID as origin
• output entries with the same node and user ID as destination
• Jobs and their output entries which contained the FROM parameter specifying the origin user ID in the *

$$ JOB statement
• For GETQE only: output entries with destination user ID ANY

If an installation specific POWER master password has been defined in the system, unlimited access is
available by specifying this POWER master password with the SETUID command (see “SETUID” on page
165). It provides access to all queue entries even if the user ID does not match. This is the only way to
access queue entries without a specified FROM/TO user ID.

See also the VSE/POWER Application Programming, for information about the scope of access to queue
entries and how POWER sets the user ID for a job. See page “USERID” on page 92 for information about
the USERID function.

ADDRESS POWER Commands

© Copyright IBM Corp. 1988, 2004 181

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

GETQE

GETQE

RDR

PUN

LST

FCB fcb_var UCS ucb_var FORMAT formatvar

CTRLREC ASATOMCC

Common Operands

Common Operands
JOBNAME jobn

CLASS
1

A

class

JOBNUM jnum

JOBSUF
2

jsuf

QNUM qn

CRE
OPTB

2
ostem

STARTREC rpos RECORDS rnum

STARTPAG
3

ppos PAGES
3

pnum
STEM

GETQE.

stem

RECORDS rnumvar

PAGES
3

pnumvar

Notes:
1 You can include optional parameters in any order.
2 LST, PUN Queue only.
3 LST Queue only.

GETQE retrieves an entry from a POWER queue (RDR, LST, or PUN) and stores the lines it retrieves in
compound variables.

Note:

1. If GETQE is not successful stem.0 is not set.
2. If you use an operand but do not specify a corresponding value, no default is assumed. But

• if you do not specify the STEM operand it defaults to GETQE
• If you do not specify the CLASS operand it defaults to A.

3. Carriage control (CC) characters are only processed if the FORMAT parameter is specified.
4. When you retrieve an entry from the LST or PUN queue that you put on the queue with PUTQE, the

record format of the entry is MCC. This applies if FORMAT is not specified or FORMAT=MCC (default).
5. For VSE/POWER there are 2 types of records within a LST queue entry:

• logical records containing user data, also often named 'lines'
• immediate control records like 'Skip to Channel immediately', or 'Space 1 line immediately'

If the CTRLREC operand has not been specified, only the logical records (the 'lines') are considered. If
the CTRLREC operand has been specified, both types of records are taken into account.

Operands

ADDRESS POWER Commands

182 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

RDR
LST
PUN

is the queue from which to obtain the specified entry.
FCB fcb_var

specifies a variable where you want to receive the name of the FCB-image phase VSE/POWER is to use
for printing the related LST output.

UCS ucb_var
specifies a variable, where you want to receive the UCB (universal character set buffer) information
assigned to a LST queue entry. The information is returned in the format (<phasenam>,<op>), where
<phasenam> is the name of the UCB-image phase loaded into the UCB of the printer, and <op>
is either 'F ', 'C ', or 'FC'. An 'F' indicates that the UCB is to be loaded with the folding operation
code causing lowercase letters to be printed in uppercase, and 'C' prevents data checks from being
generated because of print-line mismatches with the UCB. If none of the two options are set, two
blanks are set. If no UCB-image phase has been defined for a LST queue entry, <phasenam> consists
of 8 blanks.

FORMAT formatvar
specifies a variable where you want to receive the type of printer output the LST queue entry contains.
formatvar stores one of the following values:

• SCS
• MAP
• T3270
• CPDS
• ESC
• MCC
• ASA

If a FORMAT operand has been specified, the print record will have a one byte prefix containing the
print control character followed by at least one byte containing the data.

CTRLREC
requests delivery of immediate control records. If CTRLREC has not been specified, those records are
skipped.

Especially if output of GETQE is used later on to generate another entry in the VSE/POWER LST queue
with command PUTQE, carriage control characters might be important because they determine the
page count maintained by VSE/POWER for formats like MCC and ASA.

ASATOMCC
Usually GETQE offers ASA-controlled data records unchanged. But you can request ASA to matching
control conversion using this keyword. Then you get for every ASA data record two machine control
records:

• a first one doing the forms control operation.
• a second one writing the actual data immediately.

JOBNAME jobn
jobn is the job name of the queue entry to retrieve.

CLASS class
class is the class of the queue entry to retrieve. If you do not specify the class, it defaults to A.

JOBNUM jnum
jnum is the number VSE/POWER has assigned to the queue entry you want to retrieve. If you omit this,
REXX does not pass a number to VSE/POWER.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 183

JOBSUF jsuf
jsuf specifies the segment number to be retrieved (provided you use VSE/POWER output
segmentation for LST and PUN queue entries). jsuf is a number between 1 and 127. If JOBSUF is
omitted, GETQE retrieves the first segment.

QNUM qn
qn specifies a POWER queue entry via its queue record number.

CRE
indicates that an in-creation entry is to be read.

OPTB ostem
ostem specifies the REXX stem to receive settings of user-defined output operands. The values
are retrieved in the form: KEYWORDID={value|(value,...)} in ostem.n, for example, OPTBSTEM.1 =
'001F=ABC'.

STARTREC rpos
rpos specifies the record number where retrieval is to start, if you want to have only part of the
queue entry retrieved. If CTRLREC is not specified record numbering is based on logical records only.
Otherwise record numbering is based on all records including the immediate control records.

RECORDS rnum
rnum specifies the number of records to be retrieved, if you want to have only part of a queue entry
retrieved. Record numbering is depended on the existence of the CTRLREC operand. If CTRLREC has
not been specified, record numbering is based on logical records only. Otherwise both logical records
and immediate control records are counted.

STARTPAG ppos
ppos specifies the page number where retrieval is to start, if you want to have only part of a LST queue
entry retrieved. If the LST queue entry does not start with a printer control record to start a new page,
specify STARTPAG 0 to get the first records within this entry.

PAGES pnum
pnum specifies the number of pages to be retrieved, if you want to have only part of a LST queue entry
retrieved.

STEM GETQE.
STEM stem

specifies the name of a stem. (A stem must end in a period.) GETQE stores lines into compound
variables whose names begin with this stem. GETQE. is the default stem. The stem must be valid
according to REXX rules for naming stems. (See “Stems” on page 21.) If a stem is not valid, the return
code in the special variable RC is -22.

RECORDS rnumvar
rnumvar specifies a variable where you want to receive the number of records of a queue entry. With
this request, you may not specify STARTREC or STEM. Only the number of records is returned, but
queue entry data will not be copied. Record numbering is depended on the existence of the CTRLREC
operand. If CTRLREC has not been specified, the number of the logical records is returned. Otherwise
the number of logical records plus the number of immediate control records is returned.

PAGES pnumvar
pnumvar specifies a variable where you want to receive the number of pages of a LST queue entry.
With this request, you may not specify STARTPAG or STEM. Only the number of pages is returned, but
queue entry data will not be copied.

The stem is first dropped (as if the REXX instruction DROP stem had been used) before the retrieval.
Then, when the entry is returned, each line of it is stored into the variable stem.n, where n is the record
number of the entry. Stem.0 contains the number of lines in the entry. Error information is written to
the current output file. ASSGN(STDOUT) returns the name of the current output file. If trapping is active,
error information is also stored in the compound variables that the user specifies on OUTTRAP. The
error information contains decimal numbers identifying the VSE/POWER spool-access services return and
feedback codes describing the failure. REXX/VSE error message ARX0950E contains the return code from
the VSE/POWER spool-access services interface. (See page “OUTTRAP” on page 94 for details about
using OUTTRAP.)

ADDRESS POWER Commands

184 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The queue element disposition is unchanged because REXX uses a MODE of BROWSE. For the GETQE
command the POWER access rules apply as described on “Accessing Entries in VSE/POWER Queues” on
page 181. See the VSE/POWER Application Programming, for more details.

Security Considerations
GETQE allows retrieval of VSE/POWER queue elements for all user IDs set by the SETUID command.
However, if the VSE system is secured (VSE IPL statement SYS SEC=YES), REXX introduces the following
security checking for the GETQE command:

1. If you specified a VSE/POWER user ID and password via SETUID, then the password and user ID are
passed to VSE/POWER for further security checking. If VSE/POWER refuses access, a RC=-13 with
message ARX0950E occurs.

2. If you specified no VSE/POWER password via SETUID and the VSE security user ID of the executing
job is authorized as administrator, then ADDRESS POWER GETQE is allowed to retrieve all queue
elements.

3. If you specified no VSE/POWER password via SETUID and the VSE security user ID of the executing job
is not authorized as administrator, then only the queue elements owned by the VSE security user ID
can be retrieved, otherwise a security violation occurs with RC=-26. The REXX user ID set by SETUID
must be equal to the VSE security user ID.

A VSE security ID can be set, for example, by the ID statement (see z/VSE System Control Statements)
or by the SEC parameter of the VSE/POWER job statement (see VSE/POWER Application Programming)
Return Codes

When the VSE/POWER spool-access services interface encounters an error, the REXX special variable RC
is set. Error information is written to the current output stream. You can use ASSGN(STDOUT) to return
the name of the current output stream. The following table shows how GETQE sets the REXX special
variable RC.

Return Code Meaning

0 Successful processing.

-13 A severe XPCC or POWER error.

-14 General use storage could not be obtained.

-16 Storage problem occurred during set up to get connection to VSE/POWER spool-
access services interface.

-17 Connection to VSE/POWER spool-access services failed.

-19 Incorrect input from parameter list.

-20 Error in STEM variable.

-22 The stem was not valid.

-26 Security violation.

-29 Invalid combination of operands defining the part of the VSE/POWER queue to be
retrived, for example:

• PAGES are specified, but POWER queue is not LST.
• Starting record or page number is specified, but not the number of records or

pages to be retrieved.
• As well the starting record number as the starting page number are specified.
• The number of records or pages is specified, but also STEM.
• Some of the operands STARTREC, PAGES, or RECORDS are zero.

-32 Operand QNUM is invalid.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 185

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf

Return Code Meaning

-33 Operand CRE can only be specified together with operand QNUM.

-36 Operand UCS is invalid.

Note: OUTTRAP (page “OUTTRAP” on page 94) can trap error information from GETQE. If trapping is
active, error information is also written to the stem that you specify on the OUTTRAP function.

Example

The following example retrieves the job with name MAKEJCL from the RDR queue. The job is class B and
has job number 3450. GETQE stores the lines it retrieves in compound variables beginning with the stem
FORJCL..

"GETQE RDR JOBNAME MAKEJCL CLASS B JOBNUM 3450 STEM FORJCL."

PUTQE
PUTQE RDR RDR Operands

1

PUN

LST

FORMAT  format

PUN/LST Operands

RDR Operands

WAIT
2
 time

MEMBER  memname

STEM  stem CLASS  classvar
2

JOBNAME  jnamevar JOBNUM  jnumvar

GENCM

NOGENCM

LONGREC

PUN/LST Operands

ADDRESS POWER Commands

186 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

1
MEMBER  memname

STEM  stem

JOBNAME  jname JOBNUM  jnumvar

FIRST JOBNAME  jname JOBNUM  jnumvar
NEWSEGM  segmvar

NEXT JOBNAME  jname JOBNUM  jnum

JOBSUF  jsuf NEWSEGM  segmvar

LAST JOBNAME  jname JOBNUM  jnum

JOBSUF  jsuf

CLASS  class DISP D

K

H

L

PRIORITY  prio

DESTUSER  user DESTNODE  node COPIES  cop

JSEP  jsep_pages USERINFO  userinf OPTB  ostem

FCB
3
 phasename UCS phasenam

( phasenam
,F

,C

,FC

)

FLASH_COUNT
3
 fnum FLASH_NAME

3
 fnam

SYSID  n

FNO
3
 formnam

Notes:
1 You can include RDR operands and LST and PUN operands in any order.
2 If you omit the WAIT operand or specify WAIT 0, the language processor ignores the CLASS operand. The
contents of classvar is only considered if the WAIT option was specified.
3 LST Queue only.

PUTQE places a job on a VSE/POWER queue (RDR, LST, or PUN). This job can be one that already exists in
the VSE librarian or one the currently running REXX program created (through EXECIO) and stored into a
stem.

Note:

1. For rules about naming jobs and classes, see VSE/POWER Application Programming, and VSE/POWER
Administration and Operation.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 187

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

2. No carriage control characters are processed if the FORMAT parameter has not been specified or
FORMAT=NOCC.

3. If you specify PUN, the record format of the entry is Machine Control Character (MCC). For each
supplied data record, the carriage control character X'01' is used for PUN queue elements.

4. If the characteristics of a VSE/POWER job change during the time interval for the PUTQE RDR WAIT
option, the results are unpredicatble.

5. For PUTQE PUN and PUTQE LST a null line causes end of data.

Operands

RDR
the PUT RDR command generates a job completion message if the job submission was successful.
This does not require that the WAIT option is specified. The job completion message is saved in a
VSE/POWER message queue which can contain up to 99 messages for each user ID. If you retrieve a
job completion message it is erased from the VSE/POWER message queue.

If the VSE/POWER message queue is full the latest message overwrites the oldest message. It is
therefore possible that job completion messages generated by PUTQE RDR are lost. If a WAIT option
was specified, PUTQE RDR waits until timeout occurs and returns on of the following return codes:
-1, -2, -6, or -9. See the 'Examples' for job completion messages of a job transmitted to another VSE
node.

LST
PUN

is the name of the VSE/POWER queue into which to place the data.
FORMAT format

specifies the type of the record format for all output records. You can specify format for the LST
operand only. format is a value and used as input.

One of the following values is valid:

• MCC
• ASA
• NOCC
• CDPS

If FORMAT NOCC or no FORMAT operand has been specified, the input record consists of the data
only. REXX adds the MCC carriage control character X'09'. If a FORMAT operand has been specified,
the print record must have a one byte prefix containing the print control character followed by at least
one byte containing the data. If the print record is not two bytes long, return code -25 occurs. There is
no check if the one byte prefix contains the print control character.

WAIT time
specifies a number of seconds to wait for the execution of the job to complete. If time is 0, no wait
occurs and no job completion message is available.

Specifying this option causes the program to wait for the job to be executed so that the calling
program can examine its results. A job completion message, ARX0970I, may be available through
OUTTRAP.

The maximum return code from the job is placed in the REXX special variable RC. RC contains 0 if the
job completes with a return code of 0 or if the completed job specifies no return code.

MEMBER memname
STEM stem

indicates where the file containing the job or output data resides. If you specify MEMBER memname,
memname must be one of the following.

• A fully qualified name in the format library.sublibrary.member.type.

ADDRESS POWER Commands

188 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• A member name and member type in the format member.type. To use this form, the type on the
LIBDEF statement must be either SOURCE or *. Otherwise, the member is not found, and you
receive return code -23.

• The member name only. In this case, the default member type applies; this is PROC.

If you use STEM stem, the stem must be a valid REXX stem (it must end with a period). The stem
indicates the compound variables containing the records for the queue entry. stem.0 contains a
number indicating the number of records. The records are contained in stem.1 through stem.n. Data
records are input to the queue; no checkpoints are taken.

CLASS classvar
is a variable to which you have previously assigned a string that is one or more characters
representing VSE/POWER classes that exist in your VSE system. The class is whichever of the
following is available first.

1. the class from the job stream
2. class A
3. the class you specify

Each successive class is tried until one in which the job can run is found. That class is stored in
classvar as output. If you omit classvar, the job runs only in the class from the job stream. In this case
if you have not specified the class in the job stream, the VSE/POWER default class A applies. See note
“2” on page 188.

JOBNAME jnamevar
specifies the name of a REXX variable in which the job name for the job you created is returned. See
note “1” on page 187. Example “5” on page 194 uses this parameter.

JOBNAME jname
is the name of the job for which to create data records.

JOBNUM jnumvar
specifies the name of a REXX variable. Into this variable, VSE/POWER stores the number of the job or
of the output queue entry you created.

JOBNUM jnum
is the number VSE/POWER has assigned to the queue entry to which you want to add further data
records.

GENCM
NOGENCM

GENCM (which is the default) requests that the VSE/POWER job that had been put into the RDR queue
issues a job completion message after end-of-job. NOGENCM causes suppression of the VSE/POWER
job completion messages.

LONGREC
indicates that the record length of a POWER RDR queue entry is 128 bytes. If not specified, the
default length is 80 bytes.

FIRST
indicates that the given data is only the first portion of the entire data that will make up the output
queue entry. More data will later be appended to this first portion. jnumvar of JOBNUM must be a
variable that contains the job number.

The resulting disposition of the output queue entry is A.

NEXT
indicates that the given data is appended at the end of the specified output queue entry, and that
more data can be appended later on. This option is only valid if the output queue entry was created by
a previous PUTQE with option FIRST (or NEXT). The resulting disposition of the output queue entry is
A.

If you specified the FORMAT operand for PUTQE FIRST, you must repeat it for PUTQE NEXT. Other
operands describing output queue entry characteristics (such as USERINFO, COPIES, PRIORITY,
DISP, DESTUSER, DESTNODE) are not allowed in this case.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 189

LAST
indicates that the given data is appended at the end of the specified output queue entry, and that
more data cannot be appended later on. This option is only valid if the output queue entry was
created by a previous PUTQE with option FIRST (or NEXT).

If you specified the FORMAT operand for PUTQE FIRST and NEXT, you must repeat it for PUTQE
LAST. Other operands describing output queue entry characteristics (such as USERINFO, COPIES,
PRIORITY, DISP, DESTUSER, DESTNODE) are not allowed in this case.

JOBSUF jsuf
specifies the segment number of the POWER output queue entry where the given data is to be
appended.

NEWSEGM segmvar
indicates that after appending of the given data to the specified output queue entry a new segment is
to be started. segmvar specifies a variable used to return the number of the old segment where the
given data was appended.

CLASS class
is a single character specifying the class of the LST or PUN queue element. If you specify more than
one character, only the first character is used. If you omit this option, the VSE/POWER default is used.
Operand CLASS is required together with option FIRST, NEXT, and LAST. See note “1” on page 187.

DISP
specifies the desired disposition of the output entry. Valid dispositions are D, K, H, and L.

PRIORITY prio
is the desired priority of the output queue entry. prio is a number between 0 and 9.

DESTUSER user
specifies the name of the destination user.

DESTNODE node
specifies the name of the destination node.

COPIES cop
is the number of desired copies. cop is a number between 1 and 125.

JSEP jsep_pages
is the number of desired job separator pages. jsep_pages is a number between 0 and 9.

USERINFO userinf
specifies user information appearing on job separator pages and in the list or punch account record for
the job. userinf is a string of up to 16 characters.

Note:

1. As VSE/POWER uses the OR operation with an X'40'value for all characters (not only letters),
to perform an uppercase translation, some non-letter characters may change to non-printable
characters (see VSE/POWER Administration and Operation, for more details).

2. The USERINFO string is padded with blanks at the end. Use X'00' to specify blanks at the beginning
or in the middle of the string. VSE/POWER converts X'00' to X'40'.

OPTB ostem
specifies the REXX stem which contains the keyword-value-pairs of the output operands defined by
the user. ostem must end with a period to be a valid REXX stem. ostem.0 contains a number indicating
the number of keywords. stem.1 through stem.n contain the keyword-value-pairs. To be able to use
OPTB, the automatic startup of VSE/POWER requires the corresponding definitions of additional JECL
output operands (see the description of the DEFINE statement in the VSE/POWER Administration
and Operation, SC33-6733, manual). To pass a user keyword and its values to VSE/POWER, assign
a string KEYWORD={value|(value,...)} to ostem.n, for example, OPTBSTEM.1 = 'PAGEDEF=HUGO'. VSE/
POWER matches the received keyword with the specifications of the corresponding DEFINE autostart
statement. If two or more keyword OPTBs specify the same user keyword, only the last specification
becomes effective. It is also possible to specify the keyword id instead of the keyword for a user-
defined output operand, for example OPTBSTEM.1 = '001F=HUGO'. In this case all following output
operand specifications in ostem must use this keyword ID description and not the keyword.

ADDRESS POWER Commands

190 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

FCB phasename
specifies the name of the FCB-image phase VSE/POWER is to use for printing the related job output.

UCS phasenam
UCS (phasenam,<op>)

specifies the name of the UCB-image phase loaded into the UCB (universal character set buffer) of the
printer. The following options <op> are available:
F

to indicate that the UCB is to be loaded with the folding operation code causing lowercase letters
to be printed in uppercase.

C
to prevent data checks from being generated because of print-line mismatches with the UCB.

FLASH_COUNT fnum
This operand applies to IBM 3800 only. fnum is a number from 0 to 255. It specifies the number
of copies to be flashed with the overlay. If you specify a count without a FLASH_NAME, the forms-
overlay frame loaded at the time of printing is used. If you specify a count of 0, then the operator is
prompted to load the requested forms-overlay frame, but the overlay is not flashed.

FLASH_NAME fnam
This operand applies to IBM 3800 only. fnam is the one-to-four-character name of the forms-overlay
frame to be used by the printer. If you specify an overlay name without a count, all copies are flashed.

SYSID n
This operand applies to shared spooling. n is either the character N or a number between 1 and
9. Specify SYSID N if the output is to be available on any of the sharing systems. Specify a digit
between 1 and 9, if your output is to be available on a certain one of your sharing systems. For n,
give the number with which the systems VSE/POWER was initialized (by SYSID=n in the VSE/POWER
generation macro).

FNO formnam
specifies the form name. formnam consists of one to four alphameric characters.

When VSE/POWER is to place a job on the RDR queue or create an output queue entry, the user ID for this
entry is determined according to the rules described for function USERID on page “USERID” on page 92.
A password for output queue entries is the one last specified in a SETUID command (see hä“SETUID” on
page 165).

When the VSE/POWER spool-access services interface encounters an error, the REXX special variable RC
is set to -13. Error information is written to the current output stream. You can use ASSGN(STDOUT) to
return the name of the current output stream.

If the return code from PUTQE is greater than -11, classvar, jnamevar, and jnumvar contain respectively
the VSE/POWER class, job name, and job number of the job that was put into the reader queue.

If classvar includes incorrect VSE/POWER classes, for example, % or ' ', return code -13 is set.

The following table shows how PUTQE sets the REXX special variable RC. Return codes -1 through -12
and n occur only for the RDR queue.

Return Codes:

Return Code Meaning

0 Successful processing.

-1 Job has been started. Timeout occurred; no job completion message has been
retrieved.

-2 Job has been started. VSE/POWER Get Completion Message service (GCM service)
is not active. No message can be retrieved.

-4 Job has been started but has been canceled.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 191

Return Code Meaning

-5 Job has been submitted but cannot be started. The job is in a hold state, that is,
DISP=L or H, or the time event scheduling has not expired.

-6 A timeout occurred. The job has been submitted, but was not found in the RDR
queue and a job completion message could not be retrieved. It is not known
whether the job has been started or completed.

-7 Job has been submitted but not started because the specified class is busy. (This is
returned only if you do not specify class.)

-8 Job has been submitted but not started because class is not defined or is disabled.
(This is returned only if you do not specify class.)

-9 Job has been submitted. It was not found in the RDR queue and a job completion
message could not be retrieved because VSE/POWER Get Completion Message
(GCM) service is not active. It is not known whether the job has been started or
completed.

-10 Job has been submitted but not started because of a scheduling error. Possible
reasons are.

• The class or classes are busy
• The class or classes are disabled
• The class or classes are not defined
• A job entry is not found in the RDR queue.

(This return code is issued only if class had at least one character.)

-11 An error occurred while submitting the job. Information messages are retrieved.
Possible reason is: Power * $$ JOB JECL statements include invalid parameters
(DISP, PRI, CLASS etc. values specified may be incorrect).

-12 An error occurred while submitting the job. No information message is available.

-13 A severe XPCC or VSE/POWER error or incorrect class specification.

-14 General use storage could not be obtained.

-15 No job statements are available.

-16 A storage problem occurred during the set up to get a connection to the VSE/
POWER spool-access services interface.

-17 Connection to VSE/POWER spool-access services failed.

-18 Record is larger than 32K

-19 Error in an operand. Possible reasons are.

• The job name you specified may be longer than a valid VSE/POWER job name
• The job number may be larger than a valid VSE/POWER job number
• A required operand is missing
• A keyword is misspelled.

-20 Error in an internal call to ARXEXCOM to fetch or set a variable name. This could
be because the variable name did not follow the rules for naming variables. (See
“Tokens” on page 9 and “Compound Symbols” on page 20.)

-21 Error from MEMBER.

-22 The stem was not valid

ADDRESS POWER Commands

192 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Code Meaning

-23 The member was not found

-24 The member name was not valid

-25 Invalid length of input record

-27 Operand NOGENCM is specified together with a WAIT time greater than zero.

-28 One of the append keywords FIRST, NEXT, or LAST is specified and at least one of
the following conditions is true:

• The POWER queue is neither LST nor PUN.
• The operands JOBNAME, JOBNUM, or CLASS, which must be specified when

appending DATA to an output queue, are missing.
• Operand DESTNODE is specified. This is invalid as it is not possible to append

anything to an entry in the POWER XMT queue.
• The operands COPIES, PRIORITY, DISP, FORMAT, USERINFO, FCB, or DESTUSER

are specified, which is invalid together with the kewords NEXT and LAST.

-29 No data is specified together with NEWSEGM. This does not work.

-30 The stem variable for ADDRESS POWER PUTQE RDR contains empty lines.

-31 FLASH_COUNT or FLASH_NAME invalid.

-34 Operand SYSID is invalid.

-35 Operand FNO is invalid.

-36 Operand UCS is invalid.

n This is the maximum return code from the job.

Note: OUTTRAP (page “OUTTRAP” on page 94) can trap error information from PUTQE. If trapping is
active, error information is also written to the stem that you specify on the OUTTRAP function. This
error information can include VSE/POWER messages. See z/VSE Messages and Codes, for descriptions of
VSE/POWER messages. Examples

1. This example places the sublibrary member MYJOB.PROC on the RDR queue. (Note that REXX/VSE
supplies the default member type, PROC.)

ADDRESS POWER "PUTQE RDR MEMBER MYJOB"

2. This example does the same, but the memname includes the library.sublibrary specification.

ADDRESS POWER "PUTQE RDR MEMBER MYLIB.MYSUB.MYJOB.PROC"

3. This example includes the CLASS option for a job you are putting on the RDR queue. Assume that the
original class is B and that classes A and B are busy, disabled, or not defined but that class D can
be used. First use an assignment statement to initialize a variable to the class or classes you want to
specify on PUTQE. Then specify the name of this variable after the keyword CLASS.

myclass="AD9"
ADDRESS POWER "PUTQE RDR MEMBER MYPROG.PROC WAIT 5 CLASS myclass"

REXX puts the job on the RDR queue with class D and returns D in the variable myclass.
4. This example includes the CLASS option for a job you are putting on a LST queue. After the keyword

CLASS, you specify a single character that is the class of the LST queue entry.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 193

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

ADDRESS POWER "PUTQE LST MEMBER MYPROG.PROC CLASS A"

5. This example shows the result when you use the jnamevar. Assume MYPROG.PROC contains the
following JCL.

* $$ JOB JNM=GOODJOB,DISP=D,PRI=3,CLASS=B
// JOB LIZDIR EXECUTE PROGRAM LISTDIR
// LIBDEF PHASE,SEARCH=IJSYSRS.SYSLIB
// EXEC LIBR,SIZE=(AUTO,64K)
LISTDIR LIB=LIZH
/*
/&
* $$ EOJ

If you use the following PUTQE command.

ADDRESS POWER "PUTQE RDR MEMBER MYPROG.PROC JOBNAME mine CLASS class"

REXX puts GOODJOB into the variable mine and the class B into the variable class, and the entry on
the RDR queue has the job name GOODJOB.

6. This example includes the OPTB option.

ostem.0 = 2
ostem.1 = 'PAGEDEF=HUGO'
ostem.2 = 'CICSDATA=xyz'
ostem.3 = '0021=(PPP,QQQ,RR,SS)'
ADDRESS POWER "PUTQE LST STEM ltfile. OPTB ostem."

7. This example creates a LST queue entry consisting of 2 segments in 3 steps.

ADDRESS POWER
 'PUTQE LST JOBNAME PUTQTEST JOBNUM jn FIRST' ,
 'CLASS Q STEM file1.'
 'PUTQE LST JOBNAME PUTQTEST JOBNUM' jn 'NEXT' ,
 'CLASS Q STEM file2. NEWSEGM segment_var'
 jobsuf_num = segment_var + 1
 /* start of new segment */
 'PUTQE LST JOBNAME PUTQTEST JOBNUM' jn ' LAST' ,
 'CLASS Q STEM file3. JOBSUF ' jobsuf_num

QUERYMSG

QUERYMSG
DELETE

KEEP JOBNAME jname

JOBNUM jnum

WAIT seconds

Notes:

QUERYMSG returns job completion message(s) into the stem specified by OUTTRAP. Seconds, jname,
and jnum serve as input parameters only. The output reflects the specified search arguments. Search
arguments can be Userid as given by the USERID() function, JOBNAME jname, and JOBNUM jnum.

Note:

1. QUERYMSG only retrieves job completion messages of jobs submitted to VSE/POWER via PUTQE RDR.
2. QUERYMSG retrieves all messages available at the time the command is issued. The maximum value

of the OUTTRAP function does not limit the number of messages deleted by QUERYMSG DELETE. It
only limits the number of messages stored into the OUTTRAP stem.

ADDRESS POWER Commands

194 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Operands

DELETE
specifies that the messages are deleted after retrieval. This is the default.

KEEP
the messages are kept in the VSE/POWER message queue and can be retrieved again.

JOBNAME jname
the name of the job you want completion messages from.

JOBNUM jnum
the number of the job you want completion messages from. If you specify JOBNUM, JOBNAME must
be specified, too.

WAIT
specifies the maximum amount of time in seconds until the messages are returned.

The following table shows how QUERYMSG sets the REXX special variable RC.

Return Code Meaning

0 Messages are available.

-1 Timeout occurred and/or no job completion message has been retrieved.

-2 VSE/POWER Get completion Message service (GCM) is not available.

-13 VSE/POWER error.

-19 Error in an operand.

QUERYMSG Examples:

1. This example returns all job completion messages for USERID() and deletes them from the VSE/
POWER message queue.

QUERYMSG

2. This example returns all job completion messages for USERID() and leaves them in the VSE/POWER
message queue.

QUERYMSG KEEP

3. This example returns all job completion messages for USERID() and JOBNAME jname and leaves them
in the VSE/POWER message queue.

QUERYMSG KEEP JOBNAME jname

4. This example returns all job completion messages for USERID(), JOBNAME jname, and JOBNUM jnum,
and leaves them in the VSE/POWER message queue.

QUERYMSG KEEP JOBNAME jname JOBNUM jnum

5. This example shows job completion messages of a job transmitted to another VSE node. For example,
job TSTSUB3 was submitted to VSE node BOEVSE02 via PUTQE and the variable jnumvar returned the
value '05097'.

ADDRESS POWER "PUTQE RDR MEMBER PRD2.REXX.TESTSUB3.Z" ,
 " WAIT 20 CLASS class JOBNAME jobname JOBNUM jobnum"

Executing this job on the VSE node BOEVSE03 leads to the following job completion message:

ARX0970I JOB TESTSUB3 00346 EXECUTED NODE=BOEVSE03 DATE=08/12/94
 TIME=7:31:20 MAXRC=0008 LASTRC=0008 ORG=05097

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 195

ORG=05097 specifies the job number on the original node BOEVSE02 and 00346 is the job number on
the executing node BOEVSE03.

However, if the job is executed on the same node BOEVSE02, it generates the following job completion
message:

ARX0970I JOB TESTSUB3 05097 EXECUTED NODE=BOEVSE02 DATE=08/12/94
 TIME=7:31:20 MAXRC=0008 LASTRC=0008

Rules for Issuing Job Completion Messages
There are two cases where job completion messages are generated:

• ADDRESS POWER PRELEASE The message generated by this command is called the message for the
releaser.

• ADDRESS POWER PUTQE RDR The message generated by this command is called the message for the
submitter.

The following applies:

1. The releaser gets a completion message if the PRELEASE command has been successfully processed.
If more than one PRELEASE command has been issued, the releaser gets the completion message of
the last successfully processed command.

2. If the PRELEASE command does not achieve a successfully starting of the mentioned POWER job,
message 1R88I NOTHING TO RELEASE is issued. There will be no completion message in this case.

3. If releaser and submitter are identical only one completion message is issued. Otherwise two
completion messages are issued. The releaser and submitter are identical if they use the same
partition ID, REXX user ID, node ID, and system ID.

4. There will be no job completion message if

a. a job is being executed a second time without having been released by REXX. This can be a job
which is scheduled to run repeatedly because of time scheduling operands (DUEDAY, for example).

b. the POFFLOAD command has been used to write the job to tape
c. a child job has been created by a parent job via the DISP=I operand within the * $$ PUN statement.

5. In a shared environment a completion message for the releaser is routed back to the system on which
the PRELEASE had been issued.

6. In a network a completion message for the releaser is routed back to the node on which the PRELEASE
had been issued.

7. The original jobnumber of a message for the submitter may not be same as the original jobnumber for
the releaser, if the job has been submitted on a node A, sent to a node B, and has then been released
on node B. The original jobnumber of a message for a submitter is the jobnumber on node A where the
job has been submitted. The original jobnumber of a message for a releaser is the jobnumber on node
B where the job has been released.

The VSE/POWER Diagnosis Reference, LY33-9163, describes how VSE/POWER generates completion
messages caused by a PRELEASE command.

CTL
The CTL (control) service is part of the VSE/POWER access services. Through a CTL service request you
can send commands to VSE/POWER. Use ADDRESS POWER to send the following commands:
PALTER

Alter attributes of a queue entry

4 These commands are for authorized users only, for example a REXX procedure specifying the POWER
master password in the SETUID command.

ADDRESS POWER Commands

196 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PBRDCST
Transmit a message

PCANCEL
Cancel a job that is being executed

PDELETE
Delete a reader or an output queue entry

PDISPLAY
Display status information about a reader or an output queue entry or a group of entries

PFLUSH DEV4

Cancel device
PGO4

Reactivate a task or partition
PHOLD

Place a reader or an output queue entry into the hold status
PINQUIRE

Display various kinds of job- and resource-status information, status information about queue entries
on tape or network related information, status information of the active Dynamic Class Table.

PLOAD DYNC4

Load the Dynamic Class Table
PRELEASE

Release a job or an output queue entry. If you are not interested in POWER-generated job completion
messages, add string (NOGENCM to your PRELEASE RDR command (for example: ADDRESS POWER
"R RDR,MYJOB (NOGENCM")

PSEGMENT
Segment an output queue entry

PSETUP
Print the page layout of one or more pages

PSTART4

Start a device driving system like PSF, LANRES, or CICS Report Controller
PSTOP4

Stop a device driving system
PVARY DYNC4

Dis/enable dynamic classes.
PXMIT

Pass a command for processing by VSE/POWER to another node.
For the commands PALTER, PCANCEL, PDELETE, PHOLD, and PRELEASE the POWER access rules apply as
described on “Accessing Entries in VSE/POWER Queues” on page 181.

The following table shows how a CTL service request sets the REXX special variable RC.

Return Code Meaning

0 Successful processing.

-13 A severe XPCC or POWER error.

-14 General use storage could not be obtained.

-16 A storage problem occurred during the set up to get a connection to the VSE/
POWER spool-access services interface.

-17 Connection to VSE/POWER spool-access services failed.

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 197

Note: OUTTRAP (page “OUTTRAP” on page 94) can trap error information from CTL. If trapping is active,
error information is also written to the stem that you specify on the OUTTRAP function. This error
information can include VSE/POWER messages. See z/VSE Messages and Codes, for descriptions of VSE/
POWER messages.

The following shows an example of a CTL service request:

jobname = MYJOB
'SETUID PAUL' /* POWER FROM/TO user */
oldtrap = OUTTRAP(pwr_ret.) /* POWER return info */
ADDRESS POWER
'PDISPLAY LST,'|| jobname ||',CCLASS=X' /* POWER command */
If RC = 0 Then
 Do i=1 To pwr_ret.0
 Say pwr_ret.i
 End

Submitting and Controlling Power Jobs
REXX offers various types of job management:

1. Submitting VSE/POWER jobs: A job taken from a VSE library or REXX stem is placed into the VSE/
POWER RDR queue via PUTQE RDR command. Here is an example:

ADDRESS POWER "PUTQE RDR MEMBER MYJOB"

PUTQE does not wait and REXX continues with the next instruction. PUTQE has no information if
the job has started or completed. If the job has completed, VSE/POWER generates a job completion
message .

2. Waiting for synchronously running jobs: A VSE/POWER job is scheduled in a different partition via
PUTQE RDR WAIT. The REXX program waits and continues execution if one of the following occurs:

• the job has completed
• a scheduling error has occurred
• the time has expired

Here is an example:

/**/
/* */
/* The REXX program is submitting a job and awaiting its */
/* execution. */
/* The job resides in the library member A.B.MYJOB.JCL */
/* and runs an utility program. It's output is retrieved. */
/* Subroutine CHECK_JOB_OUTPUT scans the job output for */
/* the argument NAME. The class of the LST queue entry */
/* will be the default class. */
/* */
/**/
ARG name .
CALL OUTTRAP out.
ADDRESS POWER
class = 'ABC'
'PUTQE RDR WAIT 60 MEMBER A.B.MYJOB.JCL',
 'JOBNAME jobname JOBNUM jobnum CLASS class'
IF rc = 0
 THEN DO
 'GETQE LST STEM job_output.' ,
 'JOBNAME' jobname 'JOBNUM' jobnum
 IF Check_Job_Output(name)
 THEN SAY 'We found the' name
 END
 ELSE IF rc > 0
 THEN SAY 'Return code of MYJOB is:' rc
 ELSE SAY 'Job submission failed'
EXIT
/* Check_Job_Output: Check each line of the job output for the */
/* blank delimited word passed via the first argument. */
/* Return 1 if found, otherwise return 0. */
Check_Job_Output:
 arg looking_for

ADDRESS POWER Commands

198 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

 do line = 1 to job_output.0
 if wordpos(looking_for,translate(job_output.line))¬=0
 then return 1
 end
 return 0

See also the demo program REXXWAIT described on page “REXXWAIT” on page 263.
3. Managing asychchronously running jobs: REXX is assumed to be running in partition F5. Several

VSE/POWER jobs submitted or released by REXX are running in different partitions. After the jobs
have ended, VSE/POWER generates job completion messages held in the message repositories
F5.USER_1 and F5.USER_2. If at least one job completion message is available, QUERYMSG retrieves
job completion messages.

Figure 6. Job Management Using the QUERYMSG Function

Here is an example: Note that for simplicity only one job completion message repository and the job
naming convention MYJOBnnn is assumed here.

/**/
/* REXX code that shows the management of asynchronously */
/* running jobs. VSE/POWER jobs with name MYJOBnnn, */
/* nnn=1,2,3,.., are submitted. */
/**/
ARG number_of_jobs
SETUID 'USER'
CALL OUTTRAP msg.,,NOCONCAT
ADDRESS POWER
DO i=1 TO number_of_jobs
 'PUTQE RDR MEMBER A.B.MYJOB'i'.JCL'
END
DO WHILE number_of_jobs ¬= 0
 CALL SLEEP 5 /* Wait for messages */
 'QUERYMSG KEEP' /* Query for messages */
 IF rc=0 THEN /* Check completion */
 DO i=1 TO msg.0 while number_of_jobs ¬= 0

ADDRESS POWER Commands

Chapter 11. ADDRESS POWER Commands 199

 IF WORD(msg.i,1) = 'ARX0970I' THEN DO
 PARSE VAR msg.i . . jname jnumber maxrc .
 IF SUBSTR(jname,1,5) = 'MYJOB' THEN DO
 'QUERYMSG DELETE JOBNAME' jname ,
 'JOBNUM' jnumber
 IF maxrc = 'MAXRC=0000'
 THEN SAY 'JOB' jname 'run successfully'
 ELSE SAY 'JOB' jname 'failed with' maxrc
 number_of_jobs = number_of_jobs -1
 END
 END
 END
END

See also the demo program REXXJMGR described on page “REXXJMGR” on page 262.

ADDRESS POWER Commands

200 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 12. JCL Command Environment

The JCL Host Command Environment
The JCL command environment lets you isssue JCL commands via a REXX program.

The syntax of the JCL host command environment is

ADDRESS JCL

jcl_command

Note: Address JCL can only be used if the REXX program has been invoked by // EXEC REXX.

In case you only want to enter one JCL command, you can use this format:

ADDRESS JCL "jcl_command"

If you want to issue several JCL commands, you can use the following format:

ADDRESS JCL
"jcl_command_1"
"jcl_command_2"
⋮
"jcl_command_n"

In case a JCL command requires SYSIPT data as, for example, SET SDL, use the REXXIPT function. With
REXXIPT you determine the name of the stem used to specify the SYSIPT input data.

The following example loads all required REXX/VSE phases into the SVA:

ADDRESS JCL
CALL REXXIPT input.

input.0 = 4
input.1 = 'USERPGM1,SVA'
input.2 = 'USERPGM2,SVA'
input.3 = 'USERPGM3,SVA'
input.4 = '/*'

'SET SDL'

You can keep the input_stem and at the same time control whether a JCL command reads data from
REXXIPT:

input.0 = 0
'SET SDL' /* <= Does not read from input stem */
 /* No phases are loaded into SVA */
input.0 = 1
'SET SDL' /* <= Reads one record from input stem */
 /* Phase ARXINIT is loaded into SVA */

If you issue JCL commands which do not read data from SYSIPT, either do not specify a call to REXXIPT
before the ADDRESS JCL command, or make sure that input stem.0 is set to 0.

The following example shows a REXX program which defines five DLBL/EXTENTs for VSAM files and writes
data from the program stack on a file:

ADDRESS JCL
DO i=1 TO 5
"// DLBL RXTEST"|| i ||",'REXXVSE.TEST."|| i ||"',,VSAM"
"// EXTENT ,CTS220"
END
"/*" /* Gives an indication for JCL that the */

JCL Command Environment

© Copyright IBM Corp. 1988, 2004 201

 /* last label (RXTEST5) together with its */
 /* extents can be written into the label area */

Format of Address JCL Commands
ADDRESS JCL can issue a JCL command of up to 407 characters. REXX/VSE breaks the command string
into appropriate pieces to match the JCL rules. ADDRESS JCL supports up to 6 continuation lines. No
continuation character is required and the continuation line need not start at a specified column. The
following example shows a long LIBDEF chain which does not fit into one JCL line:

ADDRESS JCL

user_lib = 'USERLIB.SUB1,USERLIB.SUB2,USERLIB.SUB3'
system_lib = 'PRD2.PROD,PRD2.BASE,IJSYSRS.SYSLIB'

'LIBDEF *,SEARCH=('||user_lib||system_lib||')'

VSE JCL ON Conditions
VSE JCL deactivates ON $RC conditions set by job control during // EXEC REXX processing. After the REXX
exec has finished, ON $RC is reset to active. Any non zero return code from the REXX exec sets the $RC
condition to ON. The ON $ABEND and ON $CANCEL conditions remain active. These conditions cannot be
set within the REXX exec. Options ACANCEL, JCANCEL, and SCANCEL are deactivated as long as REXX is
running. When REXX has ended they are set to ACTIVE again.

Unsupported JCL Commands
ADDRESS JCL does not support the following JCL commands:

"/." "JOB"

"/+" "ON"

"/&" "OVEND"

"ALLOC" "PAUSE"

"EXEC"5 "PROC"

"GOTO" "ROD"

"IF" "RSTRT"

"UNBATCH"

Invoking these commands results in return code -7.

VSE JCL Output Trapping
VSE JCL traps all information and decision messages normally written to SYSLOG. Use the OUTTRAP
function to retrieve these messages. Note that these messages are not shown at the operator's console.
An exception are messages causing a job cancellation. The job is cancelled and JCL does not return to
REXX.

Messages written to SYSLST and action messages written to SYSLOG are not trapped.

Return codes from the JCL Host Command Environment

5 Instead EXEC PGM,PARM you may use ADDRESS LINK. See “The LINK Host Command Environment” on
page 206

JCL Command Environment

202 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Code Meaning

0 JCL command completes with return code 0 or with no return code (a JCL command
returns either 0 or no return code).

-1 The REXXIPT input stem specifies an invalid number of input records.

-2 Error from ARXEXCOM while working with the REXXIPT input stem.

-3 JCL command not found.

-4 JCL command processing failed, an appropriate VSE error message may be
retrieved via the OUTTRAP function.

-5 A Rexx program issues ADDRESS JCL but was not invoked by '// EXEC REXX=' or
does not run under the main task.

-6 No more GETVIS storage available by ADDRESS JCL

-7 Restricted JCL command, not allowed by ADDRESS JCL.

-8 Error while ARXOUT was opened to accept OUTTRAP data records.

JCL Command Environment

Chapter 12. JCL Command Environment 203

JCL Command Environment

204 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 13. Host Command Environments for Loading
and Calling Programs

Host Commands
REXX/VSE provides the LINK and LINKPGM host command environments to let you load and call a phase
from the active PHASE search chain.

To load and call a program, specify the name of the program followed by any parameters you want to pass
to the program. For example:

ADDRESS LINKPGM "PROGRAM p1 p2 ... pn"

Enclose the name of the program and any parameters in single or double quotation marks.

The LINK and LINKPGM environments all support programs of any AMODE or RMODE.

These environments differ in:

• the format of the parameter list that the program receives
• the capability of passing multiple parameters
• variable substitution for the parameters
• the ability of the called program to update the parameters.

The LINK environment offers an alternative to the job control statement EXEC PGM. The parameter list is
the same as if you specify the PARM parameter in the EXEC PGM statement. For details see “The LINK
Host Command Environment” on page 206 and “The LINKPGM Host Command Environment” on page
208

For the LINK environment, you can specify only a single character string to pass to the program. The LINK
environment does not evaluate the character string and does not perform variable substitution. It simply
passes the string to the called program. The program can use the character string it receives. However,
the program cannot return an updated string to the REXX program.

For the LINKPGM environment, you can pass multiple parameters to the called program. The environment
performs variable substitution on the parameters you specify. That is, the environment determines the
value of each variable. When the environment calls a program, it passes the value of each variable to the
program. The program can update the parameters it receives and return the updated values to the REXX
program.

If you want to have a called program read input from REXX compound variables instead of reading from
SYSIPT, use the REXXIPT external function. You specify a stem on the REXXIPT external function and call
REXXIPT before calling the program. See “REXXIPT” on page 98 for details.

The table of authorized programs (ARXEOJTB) allows programs using the EOJ macro to return to REXX
rather than terminating the jobstep.

After you load and call a program, the host command environment sets a return code in the REXX special
variable RC. For the LINK and LINKPGM environments, the return code can be -3 if the host command
environment could not locate the program you specified.

For the LINK and LINKPGM environments, the return code set in RC can also be -2. For the LINKPGM
environment, this indicates unsuccessful processing of variables. This may have been because the host
command environment could not:

• Perform variable substitution before loading and calling the program
• Update the variables after the program completed.

LINK and LINKPGM Host Command Environment

© Copyright IBM Corp. 1988, 2004 205

For the LINK environment, you can also receive an RC value of -2 if the length of the value of the
parameter you pass is larger than the length that can be specified in the signed halfword length field in
the parameter list. The maximum value of the halfword length field is 32,767. On exit from the called
program, register 15 contains the return code from this program.

Note that the value that can be set in the RC special variable for the LINK environments is a signed 31 bit
number in the range -2,147,483,648 to +2,147,483,647.

The following topics describe how to load and call programs using these host command environments.

The LINK Host Command Environment
The LINK environment lets you load and call a non-REXX program in the same partition under the same
task where the REXX program is running. For the LINK environment, you can pass only a single character
string to the program. The LINK host command environment calls programs with the same parameter list
convention as the JCL parameter list:

// EXEC PGM=pgmname,PARM='character_string'

When you use the LINK environment, enclose the name of the program and the character string in single
or double quotation marks. This prevents the language processor from performing variable substitution.
Here are two examples:

ADDRESS LINK 'TESTPGMA varid'
ADDRESS LINK 'TESTMODA this is a parameter string'

If you want to pass the value of a variable, do not enclose it in quotation marks. In this case, the language
processor performs the variable substitution before passing the string to the host command environment.
The following excerpts from a REXX program would have the same results as the previous examples:

parm_value = 'varid'
ADDRESS LINK 'TESTPGMA' parm_value

parm_value = 'this is a parameter string'
ADDRESS LINK 'TESTMODA' parm_value

The host command environment routines for LINK do not evaluate the character string you specify. The
routine simply passes the character string to the program that it loads and calls. The program can use the
character string it receives. However, the program cannot return an updated string to the REXX program.

Figure 7 on page 207 shows how the LINK host command environment routine passes a character string
to a program. Register 0 points to the ENVBLOCK under which the REXX program issuing the ADDRESS
LINK is running. Register 1 points to a parameter consisting of:

• A length (of a character string). This is a halfword.
• A character string.

If you specify no parameters when loading and calling a program with ADDRESS LINK, then register 1
contains the same value as register 15. If you specify parameters, the high-order bit of the parameter
register 1 points to is on. The halfword length field contains the length of the parameter you pass. The
maximum value of the halfword length field is 32,767.

LINK and LINKPGM Host Command Environment

206 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 7. Parameters for the LINK Environment

For example, suppose you use the following instruction:

ADDRESS LINK 'TESTMODA numberid payid'

When the LINK host command environment routine loads and calls the TESTMODA program, the address
of the character string points to the string:

numberid payid

The length of the character string is 14. In this example, if numberid and payid are REXX variables, the
LINK host command environment performs no substitution.

You can use the LINK environment without specifying a character string. For example:

ADDRESS LINK "PROGA"

Return Codes from the LINK Environment
On return from the called program the contents of Register 15 is stored into the REXX special variable.
The following table lists return codes from the LINK environment that are stored in the REXX special
variable RC.

Return Code Meaning

-1 The contents of stem.0 is not a positive number or 0. (Calling the REXXIPT function
specifies a stem name; stem.0 specifies the number of data records available for
reading, and this number must be positive or 0.)

-2 The parameter length exceeded 32,767. See “Host Commands” on page 205 for
details.

-3 The host command environment could not find the program you specified. You may
get message ARX0565I showing the failing return code of the LOAD or CDLOAD
macro.

-4 The host command environment could not find the phase ARXEOJTB or the phase
resides in the SVA.

-5 Usage of this program is restricted to the main task only.

-6 Not enough partition GETVIS storage available to successfully process the
command.

LINK and LINKPGM Host Command Environment

Chapter 13. Host Command Environments for Loading and Calling Programs 207

Return Code Meaning

-8 One of the following:

• REXX tried to open ARXOUT to accept OUTTRAP data records before it gives
control to the program specified in ADDRESS LINK. This open failed.

• There are problems filling the OUTTRAP variable during an invocation of ADDRESS
LINK LIBR. Check if your startup procedure contains the statement "// EXEC
ARXLINK" and add it. This statement is contained in the startup procedure
USRBG.PROC in library IJSYSRS.SYSLIB and in the skeleton SKUSERBG in the
ICCF library 59. See also the description of SKUSERBG in the VSE/ESA Planning
manual.

• Insufficient storage.

-9 This occurs if you call LNKEDT for one of the following reasons:

• SYSLNK was not opened. The invocation of LNKEDT is out of sequence because
the VSE JCL statement CATAL or LINK did not precede the LNKEDT call.

• Error during the attempt to write end-of-file marker on SYSLNK.

-10 The user program was not authorized to issue SVC 14 (EOJ macro) when it was
called by ADDRESS LINK. See also message ARX0980E.

-11 Program does not fit into program area (SIZE too small).

The LINKPGM Host Command Environment
The LINKPGM environment lets you load and call a non-REXX program in the same partition under the
same task where the REXX program is running. Using the LINKPGM environment, you can pass multiple
parameters to the program. The parameters do not have a length field. Upon return from the called
program, the value of the passed parameters are updated, and the length of each parameter is the same
as when the parameter list was created. To use the LINKPGM environment, specify the name of the
program followed by variable names for each of the parameters. Separate the variable names with one or
more blanks. For example:

ADDRESS LINKPGM "WKSTATS var1 var2"

For the parameters, specify variable names instead of the actual values. Enclose the name of the
program and the variable names in single or double quotation marks. When you use the quotation
marks, the language processor does not evaluate any variables. It simply passes the expression to the
host command environment for processing. The LINKPGM environment itself evaluates the variables and
performs variable substitution. If you do not use a variable for each parameter and enclose the expression
in quotation marks, you may have problems with variable substitution and receive unexpected results.

After the LINKPGM environment routine evaluates the value of each variable, it builds a parameter list
pointing to the values. The routine then loads and calls the program and passes the parameter list to the
program.

Figure 8 on page 209 shows how the LINKPGM host command environment routine passes the
parameters to the program. Register 0 points to the ENVBLOCK under which the REXX program issuing
the ADDRESS LINKPGM is running. Register 1 contains the address of a parameter list, which consists of
a list of addresses. Each address in the parameter list points to a parameter. The high-order bit of the last
address in the parameter list is 1 to indicate the end of the parameter list.

LINK and LINKPGM Host Command Environment

208 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 8. Parameters for the LINKPGM Environment

On output from the called routine, the value of the parameter is updated and the length of each parameter
is considered to be the same as when the parameter list was created. The called routine cannot increase
the length of the value of a variable that it receives. However, you can pad the length of the value of a
variable with blanks to increase its length before you load and call a program.

The following example loads and calls the phase TESTMODA, passing the parameters 123456 and
ABCdef. Before using ADDRESS LINKPGM, assign the values to variables. Suppose you expect the called
program to pass back values with a length that is greater than 6 (for example, 20). You can pad the
parameter with blanks on the right before passing it. One way to do this is to use the LEFT built-in function
in the assignment statement.

var1=left('123456',20)
var2=left('ABCdef',20)

ADDRESS LINKPGM 'TESTMODA var1 var2'

Here is another example. Suppose you want to load and call to the RESLINE program, passing one
parameter, a reservation code of WK007816. When you use the ADDRESS LINKPGM instruction, specify
a variable name for the parameter, for example, revcode for the reservation code WK007816. Assign the
value to revcode before using ADDRESS LINKPGM:

/* REXX program that loads and calls RESLINE program */
⋮
revcode = 'WK007816'
⋮
ADDRESS LINKPGM 'RESLINE revcode'
⋮
EXIT

In the example, you assign the variable revcode the value WK007816. On the ADDRESS LINKPGM
instruction, you use the variable name for the parameter. The LINKPGM host command environment
evaluates the variable and passes the value of the variable to the RESLINE program. The length of the
parameter (variable revcode) is 8. If the RESLINE program wanted to update the value of the variable
and return the updated value to the REXX program, the RESLINE program could not return a value that
is greater than 8 bytes. To let the called program return a larger value, you could pad the value of the
original variable to the right with blanks. For example, in the REXX program you could add seven blanks

LINK and LINKPGM Host Command Environment

Chapter 13. Host Command Environments for Loading and Calling Programs 209

and assign the value "WK007816 " to the revcode variable. The length would then be 15 and the called
program could return an updated value of up to 15 bytes.

You can use the LINKPGM environment and not specify any parameters. For example:

ADDRESS LINKPGM "MONBILL"

If you do not specify any parameters, then register 1 is equal to register 15.

Return Codes from the LINKPGM Environment
On return from called program the contents of Register 15 is stored into the REXX special variable. The
following table lists return codes from the and LINKPGM environment that are stored in the REXX special
variable RC.

Return Code Meaning

-1 The contents of stem.0 is not a positive number or 0. (Calling the REXXIPT function
specifies a stem name; stem.0 specifies the number of data records available for
reading, and this number must be positive or 0.)

-2 Processing the variables of LINKPGM or REXXIPT was not successful. See “Host
Commands” on page 205 for details.

-3 The host command environment could not find the program you specified. You may
get message ARX0565I showing the failing return code of the LOAD or CDLOAD
macro.

-4 The host command environment could not find the phase ARXEOJTB or the phase
resides in the SVA.

-5 Usage of this program is restricted to the maintask only.

-6 Not enough partition GETVIS storage available to successfully process the
command.

-8 REXX tried to open ARXOUT to accept OUTTRAP data records before it gives control
to the program specified in ADDRESS LINKPGM. This open failed.

-9 This occurs if you call LNKEDT for one of the following reasons:

• SYSLNK was not opened. The invocation of LNKEDT is out of sequence because
the VSE JCL statement CATAL or LINK did not precede the LNKEDT call.

• Error during the attempt to write end-of-file marker on SYSLNK.

-10 The user program was not authorized to issue SVC 14 (EOJ macro) when it was
called by ADDRESS LINKPGM. See also message ARX0980E.

-11 Program does not fit into program area (SIZE too small)

Table of Authorized Programs
If you call a program using the EOJ macro by ADDRESS LINK or ADDRESS LINKPGM, you have to code an
entry in the table of authorized programs ARXEOJTB if you want the EOJ macro to return to the calling
REXX program. It also ensures that the programs having an entry in the ARXEOJTB table can only be
invoked from a REXX program running under the main task.

If a user program uses the EOJ macro, and no entry exists in table ARXEOJTB, message ARX0980E is
issued and the REXX program is terminated.

LINK and LINKPGM Host Command Environment

210 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

IMPORTANT
1. If an entry exists in table ARXEOJTB, the EOJ macro (SVC 14) does not end the jobstep and does not

clean up any task related resources. It is your responsibility to make sure that your program does not
hold any system resources, e.g. LOCK or GETVIS.

2. The completion of the // EXEC REXX jobstep cleans up task related resources.

PRD1.BASE contains a sample job named ARXEOJTB.Z. When adding or deleting entries from the
ARXEOJTB table the ARXEOJTB_TOTAL and ARXEOJTB_USED fields must be updated. This entry specifies
the name of the linked phase. In addition, you may specify if REXX is to load the user program into
the program area via LOAD or into GETVIS storage via CDLOAD. If LOAD is to be used, you can choose
between 2 options of space checking within the program area: Either all phases are to be considered
that start with the first 4 bytes of the given phasename (option'A' or blank, for instance overlay program
MSHP), or only the size of the single given phasename is checked (option 'S'). Also you may define an 8
byte synonym for the user program. For example, entry 1 in Figure 11 on page 213 specifies that issuing
ADDRESS LINK LIBR actually calls phase ARXLIBR.

$$$$ JOB JNM=ARXEOJTB,CLASS=0,DISP=L
$$$$ LST DISP=D,CLASS=A
// JOB ARXEOJTB ASSEMBLE & LINK
/. X THIS JOB ASSEMBLES AND LINKS THE REXX/VSE MODULE ARXEOJTB
/. X USING THE HIGH LEVEL ASSEMBLER.
/. X BEFORE YOU SUBMIT THE JOB UPDATE THE LIBDEF CHAIN TO YOUR NEE
// LIBDEF *,SEARCH=PRD1.BASE
// LIBDEF PHASE,CATALOG=PRD2.CONFIG
// OPTION ERRS,SYM,CATAL,NODECK,SXREF
 PHASE ARXEOJTB,*
// EXEC ASMA90,SIZE=(ASMA90,50K)
*/***START OF SPECIFICATIONS**/
/ */
*/*01* MODULE-NAME = ARXEOJTB */
/ */
*/*01* DESCRIPTIVE-NAME = REXX EOJ Return Table */
/ */
/ ** */
/ * * */
/ * LICENSED MATERIALS - PROPERTY OF IBM * */
/ * THIS MODULE IS "RESTRICTED MATERIALS OF IBM" * */
/ * 5686-066 (C) COPYRIGHT IBM CORP. 1995 * */
/ * SEE COPYRIGHT INSTRUCTIONS * */
/ * * */
/ ** */
/ */
/ */
/ */
*/*01* FUNCTION = Declare the REXX EOJ Return table used by */
/ LINKxxx Host Command Environments. */
/ */
/ */
/ DESCRIPTION = Each entry of this table represents */
/ a phase to be loaded by ADDRESS LINK */
/ or ADDRESS LINKPGM. */
/ You may assign a synonym under which */
/ the phase is to be invoked by the LINK */
/ and LINKPGM environment. You can also */
/ determin whether the phase can be CDLOADed */
/ into the partition getvis or LOADed into the */
/ program area of the partition. */
/ */
/ An entry in ARXEOJTB allows a program */
/ called by ADDRESS LINK/LINKPGM to use the */
/ EOJ macro (SVC 14) to pass control back */
/ to REXX. */
/ */
/ An entry in ARXEOJTB ensures that a program */
/ called by ADDRESS LINK/LINKPGM is processed */
/ under the maintask only. */
/ */
/ */
/ */
/ .--. */
/ | NOTE: This phase must not be loaded into the SVA | */
/ '--' */

Figure 9. Table of Authorized Programs - Part 1 of 3

LINK and LINKPGM Host Command Environment

Chapter 13. Host Command Environments for Loading and Calling Programs 211

/ */
/ */
*/*02* CHANGE-ACTIVITY = */
/ */
/ */
*/***END OF SPECIFICATIONS**/
ARXEOJTB CSECT
ARXEOJTB AMODE 31
ARXEOJTB RMODE ANY
 TITLE 'ARXEOJTB - REXX EOJ Return Table'
ARXEOJTB_HEADER DS 0F /* Set up the ARXEOJTB Header */
 DC CL8'ARXEOJTB'
* /* Addr of first ARXEOJTB entry */
ARXEOJTB_FIRST DC A(ARXEOJTB_ENTRIES)
ARXEOJTB_TOTAL DC F'9' /* Total # of entries */
ARXEOJTB_USED DC F'6' /* # of entries used */
ARXEOJTB_LENGTH DC F'28' /* Length of each entry */
ARXEOJTB_FFFF DC X'FFFFFFFFFFFFFFFF' /* Set Header end marker */
* /* START OF TABLE ENTRIES */
ARXEOJTB_ENTRIES EQU * /* Start of entries is here */
*/**/
/ Do not change the entries below */
*/**/
ARXEOJTB_ENTRY_1 EQU * /* ARXLIBR Entry 1 */
 DC CL8'LIBR ' /* Synonym used in ADDRESS LINK */
 DC CL8'ARXLIBR ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_2 EQU * /* ARXIDCMS Entry 2 */
 DC CL8'IDCAMS ' /* Synonym used in ADDRESS LINK */
 DC CL8'ARXIDCAM' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_3 EQU * /* ARXEOJTB Entry 3 */
 DC CL8'MSHP ' /* Synonym used in ADDRESS LINK */
 DC CL8'MSHP ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'YES' /* Phase Loaded in program area */
 DC CL1'ALL' /* Consider all phases @56301UB */
 DC CL6' ' /* Reserved @56301UB */
ARXEOJTB_ENTRY_4 EQU * /* ARXEOJTB Entry 4 */
 DC CL8'ASSEMBLY' /* Synonym used in ADDRESS LINK */
 DC CL8'ASMA90 ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_5 EQU * /* ARXEOJTB Entry 5 */
 DC CL8'LNKEDT ' /* Synonym used in ADDRESS LINK */
 DC CL8'$LNKEDT ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_6 EQU * /* ARXEOJTB Entry 6 */
 DC CL8'DITTO ' /* Synonym used in ADDRESS LINK */
 DC CL8'DITTO ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'YES' /* Phase Loaded in program area */
 DC CL1'SINGLE' /* Consider this phase @56301UB */
 DC CL6' ' /* Reserved @56301UB */

Figure 10. Table of Authorized Programs - Part 2 of 3

LINK and LINKPGM Host Command Environment

212 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

*/**/
/ Do not change the entries above */
*/**/
ARXEOJTB_ENTRY_7 EQU * /* ARXEOJTB Entry 7 */
 DC CL8' ' /* Synonym used in ADDRESS LINK */
 DC CL8' ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_8 EQU * /* ARXEOJTB Entry 8 */
 DC CL8' ' /* Synonym used in ADDRESS LINK */
 DC CL8' ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
ARXEOJTB_ENTRY_9 EQU * /* ARXEOJTB Entry 9 */
 DC CL8' ' /* Synonym used in ADDRESS LINK */
 DC CL8' ' /* Name of phase */
 DC AL4(0) /* Must be Zero */
 DC CL1'NO' /* Phase Loaded in program area */
 DC CL7' ' /* Reserved */
*
 DC C'PATCH AREA - ARXEOJTB'
 DS 32F Patch area
 END ARXEOJTB
$$/*
// EXEC LNKEDT,PARM='MSHP,AMODE=31,RMODE=ANY'
$$/&
$$$$ EOJ

Figure 11. Table of Authorized Programs - Part 3 of 3

Invoking VSE Utilities
You can use the ADDRESS LINK command environment to invoke VSE utilities such as LIBR, IDCAMS,
Assembler, DITTO and MSHP. Note that only LIBR and IDCAMS are able to write output into OUTTRAP.

Invoking LIBR using ADDRESS LINK

ADDRESS LINK 'LIBR option_list'

option_list can only be MSHP.

Use SYSIPT or REXXIPT to supply input statements to ADDRESS LINK LIBR. Here is an example:

ARG sublib

ADDRESS LINK

CALL OUTTRAP libr_output.
CALL REXXIPT libr_input.

libr_input.0 = 2
libr_input.1 = 'ACC S='||sublib
libr_input.2 = 'LD ARX*.PHASE'

'LIBR'

IF word_found('ARXINIT')
 THEN SAY 'REXX/VSE was installed into' sublib
 ELSE SAY 'REXX/VSE is not installed into' sublib
EXIT

word_found:
ARG search_for
DO line = 1 to libr_output.0
IF WORDPOS(search_for,translate(libr_output.line))¬=0
 THEN RETURN 1
END
RETURN 0

See also demo program SETSDL described on page “REXXSSDL” on page 263.

LINK and LINKPGM Host Command Environment

Chapter 13. Host Command Environments for Loading and Calling Programs 213

Invoking IDCAMS using ADDRESS LINK
Invoke IDCAMS via

ADDRESS LINK 'IDCAMS option_list'

option_list corresponds to the options of the PARM command. See VSE/VSAM Commands for a
description of the PARM command.

Use SYSIPT or REXXIPT to supply input statements to ADDRESS LINK IDCAMS. Here is an example:

ARG file_name
CALL OUTTRAP idcams_output.
CALL REXXIPT idcams_input.

idcams_input.0 = 1
idcams_input.1 = 'LISTCAT CLUSTER'

ADDRESS LINK 'IDCAMS MARGINS(1 80)'

IF rc = 0
 THEN CALL Print_Only_Lines_Including file_name
 ELSE SAY 'IDCAMS LISTCAT fails with RC='rc
EXIT

Print_Only_Lines_Including:
 ARG search_name
 DO line = 1 to idcams_output.0
 IF WORDPOS(search_name,translate(idcams_output.line))¬=0
 THEN SAY idcams_output.line
 END
 RETURN

Invoking ASSEMBLE and LNKEDT
This program assembles the source program, linkedits the phase and executes it.

CALL REXXIPT rexx_sysipt.
rexx_sysipt.0 = 5
rexx_sysipt.1 = " PUNCH ' PHASE EXAMPLE,* '"
rexx_sysipt.2 = 'EXAMPLE START 0'
rexx_sysipt.3 = ' SR 15,15'
rexx_sysipt.4 = ' BR 14'
rexx_sysipt.5 = ' END ,'

ADDRESS JCL '// OPTION CATAL'

ADDRESS LINK

 'ASSEMBLY'

IF rc = 0 THEN
 DO
 ADDRESS JCL
 '// LIBDEF PHASE,CATALOG=DEVLIB.TEST'

 ADDRESS LINK

 'LNKEDT MSHP,AMODE=31,RMODE=24'

 IF rc = 0 THEN
 DO
 ADDRESS JCL
 '// LIBDEF PHASE,SEARCH=DEVLIB.TEST'
 ADDRESS LINK
 'EXAMPLE'
 END
 END
EXIT rc

See also demo program REXXASM described on page “REXXASM” on page 263.

LINK and LINKPGM Host Command Environment

214 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesvoe71.pdf

Invoking DITTO
/* This exec copies tapes and compares them */
/* Parameters: */
/* in: cuu of input tape unit */
/* out: cuu of output tape unit */
/* nfiles: number of files to be copied */

ARG in out nfiles .

input.1 = '$$DITTO TT INPUT='in',OUTPUT='out',NFILES='nfiles
input.2 = '$$DITTO REW OUTPUT='in
input.3 = '$$DITTO REW OUTPUT='out
input.4 = '$$DITTO TTC INPUT='in',OUTPUT='out',NFILES='nfiles
input.5 = '$$DITTO REW OUTPUT='in
input.6 = '$$DITTO REW OUTPUT='out
input.7 = '$$DITTO RUN OUTPUT='out
input.8 = '$$DITTO EOJ'
input.0 = 8

CALL REXXIPT input.
ADDRESS JCL '// UPSI 1'
ADDRESS LINK 'DITTO'
EXIT

LINK and LINKPGM Host Command Environment

Chapter 13. Host Command Environments for Loading and Calling Programs 215

LINK and LINKPGM Host Command Environment

216 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 14. REXX/VSE Console Automation

Benefits of a Programmable REXX Console
REXX/VSE Console Automation enables you to automate and make more productive the operation of
your VSE/ESA console.

REXX/VSE Console Automation is centered around a REXX VSE/ESA programmable console. It provides
an easy-to-use VSE/ESA console command environment that allows to activate and deactivate one or
more VSE/ESA console sessions. VSE/ESA console commands may be imbedded into a REXX program. A
GETMSG function receives command responses and console messages.

There is also a rich set of REXX external functions that make it easy to write REXX console applications.
Thereby, a REXX program can retrieve and process console commands and react on events.

VSE/ESA Console Automation: By having a REXX VSE/ESA programmable console you can

• Write a REXX program that issues VSE console commands and retrieves the command responses. These
commands include

– VSE AR commands
– Console redisplay commands
– VSE/POWER, VSE/ICCF, CICS, VTAM, SQL commands.

• Program VSE console operator (inter)actions
• Monitor programs and subsystems running in VSE/ESA partitions and react on messages by giving

appropriate replies.
• Control batch job processing.

A Look at VSE/ESA's Console Support
REXX Console Automation has to do with the data flow from and to consoles. The following text gives an
overview of VSE/ESA's handling of console traffic and how REXX/VSE console automation fits in.

The entire console traffic is managed by the Console Router:

• A message

written by a program is queued in the Console Router and then routed to the appropriate console(s).
• A command

entered at a console is queued and routed to the responsible command processor.
• A command response

issued by a command processor is queued and routed to the console that issued the command.
• A reply

entered at a console is queued and routed to the program that is waiting for the reply.

The following figure serves as an illustration. Please keep in mind that "consoles" (on the right hand
side) does not necessarily mean physical consoles, but rather console programs. For example, behind
every CICS terminal there is a console program. A REXX procedure that uses the console command
environment is also is a console program.

The figure shows the names of macros (such as WTO, MCSOPER) that are associated with a given activity.
These macros are important elements of REXX/VSE Console Automation. They are discussed after the
figure.

© Copyright IBM Corp. 1988, 2004 217

Figure 12. Console Data Flow

On each side of the Console Router there is a set of interfaces:

• I/O interfaces for the system and for applications to communicate with consoles.
• General-use console interfaces for the console programs to interface with the system.

The interfaces are briefly described in the following. Together with each individual element, a reference to
an equivalent REXX Console Automation function is given.

Console I/O Interfaces
Any program can perform I/O to and from a console: it can write a message to a console, or read the input
that was entered at the console. It can also delete a message from the console.

For these purposes three macros are available which are presented in the following. For detailed
descriptions refer to the IBM manual VSE/ESA System Macros Reference.

218 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

WTO - Write to Operator
The WTO macro is used to write a (single or multi-line) message to one or more consoles.

In REXX Console Automation, the SENDMSG function uses the WTO macro.

Because REXX Console Automation is able to maintain one or more console sessions of its own, the
SENDMSG function allows for console-to-console communication.

WTOR - Write to Operator with Reply
This macro works much like the WTO macro, but additionally requests a reply from the operator.

In REXX, PULL from SYSLOG uses the WTOR macro.

DOM - Delete Operator Message
Some messages are displayed with highlighting. They do not disappear from the screen, rather remain
in HOLD state. For example, a message written via the WTOR macro is displayed in highlighted form to
permanently draw attention to the fact that a reply is needed.

When a program recognizes that the reason for the highlighting does no longer exist, it issues a DOM
macro. This removes the highlighting, and the message usually disappears from the screen.

Likewise, the operator may request "deletion" (dehighlighting, to be exact) of a highlighted message.
Again, this causes the DOM macro to be activated.

In REXX Console Automation this task is performed by the DELMSG function.

General-Use Console Interfaces
These privileged macro interfaces are intended for system programs. A portion of their functionality is
generally available to REXX programs through REXX Console Automation.

To understand the concept and possible error messages, a brief overview of the general-use console
interfaces follows.

MCSOPER - Activate Console
This macro is used to activate (or deactivate) a console session. A console session is required for
communicating with the system. Communication means retrieving messages from the system and/or
passing input like commands or replies to the system.

In REXX Console Automation a console session is established through the ADDRESS CONSOLE
'ACTIVATE...' command. Along with this command, a console profile can be specified which determines
the subset of message traffic to be handled.

A console session is terminated through the ADDRESS CONSOLE 'DEACTIVATE...' command.

MCSOPMSG - Retrieve Message
This macro is used to retrieve a message from the system.

In REXX Console Automation, the GETMSG function and, for retrieval by special search criteria, the
FINDMSG function use the MCSOPMSG macro.

A command response that the system sends to the console is a special type of message. The GETMSG
allows to select only the command responses from the entire collection of console messages.

MGCRE - Create Command or Reply
This macro is used to pass input like a command or a reply to the system.

In REXX Console Automation,

Chapter 14. REXX/VSE Console Automation 219

• the command ADDRESS CONSOLE 'command_or_reply_string' and
• the SENDCMD function

use the MGCRE macro.

The MGCRE macro allows to pass a command and response correlation token (CART). The CART can later
be used to select, from a heterogeneous collection of console messages coming from all kinds of sources,
just the right command response.

REXX Console Automation has a special console command (the CART command) that establishes a CART
for the current console session. This CART is then attached to any command that is issued from the
current console session.

Master Console versus User Console
Master console and user console are distinguished by the level of command authorization.

Master Console
A master console has unrestricted authorization to reply to all outstanding messages and to issue any
kind of system command. One or more master consoles can be active at the same time. The system
console is one such master console, mainly used to IPL the system or as backup when no other master
console is active.

User Console
A user console can only issue a restricted set of system commands, just enough to perform operation
tasks within its own scope and without impacting system wide operation. It can only respond to messages
that are directed to it.

A user console receives only those messages that are specifically directed to it. They are messages that
relate to its own activities. For example,

• The system response to the REPLID command is sent only to the console that issued the command.
• Job-related messages are sent to the console that is designated as the recipient of those messages,

very often the console that submitted the job.

Redisplay from the hardcopy file is only possible for messages that were originally routed to this user
console.

Message routing to user consoles can be controlled by the ECHO/ECHOU=user-id option of the VSE/
POWER JOB statement. When this option is included in a submitted job, all messages related to the
execution of that job are routed to the console of the ECHO/ECHOU user-id.

Routing Codes
There are two sides to the routing code. On the one side, the originator of a message indicates, in terms
of routing code(s), the console type where the message is to be delivered. On the other side is the
console which has routing codes defined to indicate which messages it wants to have delivered. When
both routing codes match, a message is delivered at that console.

Examples of routing codes are:
2

The message indicates a change of the system status that requires action by an operator with master
authority.

7
A message gives information to the unit record pool about a unit record device, for example a request
to mount a printer train.

220 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

11
The message is intended for the problem programmer and is to be routed to the console identified by
an ECHO/ECHOU option or to a terminal of the Interactive Interface.

In REXX Console Automation, routing codes of a console are defined in its console profile (see “Activating
a Console Session” on page 222). For example,
REXALLRC

means "receive all routing codes," or in other words: a master console that receives all messages.
REXNORC

means "receive no routing codes," or in other words: a master console that does not want to see any
messages. This is useful when your REXX program is primarily concerned with issuing commands and
reacting on the corresponding command responses.

Service Offerings

Console Command Environment
REXX Console Automation allows you to establish (activate) one or more VSE console sessions from your
REXX program. After you have activated a console session, you can issue VSE system and subsystem
commands and retrieve the corresponding responses.

You can only work with one console at a time. By default, this is the console that has been activated as
the most recent one. This is referred to as the current console. You can switch from one active console to
another which becomes the new current console.

The VSE system and subsystem commands that you may issue during a console session depend on the
authorization of the userid associated with the job that starts your REXX program. Please refer also to
section “Security Considerations” on page 223.

Console Commands
At the REXX console, you can issue either

• REXX console commands, or
• VSE console commands.

REXX Console Commands
The REXX console command environment provides unique REXX console commands. Using ADDRESS
CONSOLE, you may issue one of the following commands:

• ACTIVATE
• CART
• CONSTATE
• CONSWITCH
• DEACTIVATE

VSE Console Commands
Commands that are not REXX console commands get passed to the VSE console command processor.
This is also true for replies to messages.

Note: To be able to issue VSE console commands, you need to have a current console.

Console Commands

Chapter 14. REXX/VSE Console Automation 221

Activating a Console Session
You activate a VSE console session via the command:

ADDRESS CONSOLE ' ACTIVATE

NAME cons_name

PROFILE prof_name

'

where:
cons_name

Specifies the name of the console that you want to activate. The name is an alphanumeric character
string of between 4 and 8 bytes. You choose the name.

If the NAME parameter is not specified, cons_name defaults to REXX.

prof_name
Specifies the profile name you want to use for the console that you are about to activate. You must
name one out of a set of predefined REXX profiles (tailored to the master or the user console). A set
of predefined console profiles is shipped as object code. Their names and purpose are shown in the
table below.

If the PROFILE parameter is not specified, prof_name defaults to REXX which is one of the predefined
console profiles.

Name Master/User Description

REXX User Receives only messages that are specifically routed to this console.
These are: 1. Messages issued from a job that names this console in
the VSE/POWER JECL parameter ECHO. 2. Messages directed to this
console from the WTO macro. 3. Responses to commands that were
issued from this console.

REXALLRC Master Receives command responses and all routing codes.

REXNORC Master Receives command responses but no routing codes.

REXAUTO Master Receives messages from an automated message handling program
such as VSE/OCCF.

Example: As an example, you activate a VSE console session with console name myecho via

ADDRESS CONSOLE 'ACTIVATE NAME myecho'

or via

ADDRESS CONSOLE
'ACTIVATE NAME myecho'

Because the default profile name REXX applies, this command establishes a user console and, therefore,
gives only limited command authority.

The console name (myecho in this example) is significant for routing messages issued by a VSE/POWER
job to this REXX console. This is illustrated in “Routing Messages From and Replies To a Specific Partition”
on page 227.

Return Codes: For return codes of the ACTIVATE command and their explanations, please refer to
“ARXCONAD Return Codes” on page 228.

Console Commands

222 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Security Considerations
To what extent you can establish a master console or a user console depends on whether security is
active in your system.

If your system runs with security not active, there are no limitations. But be aware that your system
resources may not be adequately protected against unauthorized accessing.

If your system runs with security active (IPLed with SEC=YES in the SYS command), a VSE security
user-id must be supplied in the job that calls the REXX program. It is supplied either in the job control
statement

// ID USER=user-id,...

or in the VSE/POWER JECL statement

* $$ JOB... SEC=user-id,...

If no VSE security user-id is given, the ACTIVATE command fails with return code -12 (security violation).

The VSE security user-id is checked against a user profile in the Access Control Table (DTSECTAB). The
profile's parameters MCONS and AUTH are of significance, as shown in the diagram below.

MCONS=YES gives master console authorization. AUTH=YES indicates that the user is the security
administrator (this implies master console authorization, or MCONS=YES).

As shown in the following table, the security administrator is free to choose any cons_name. Other users
must specify the VSE security user-id in order to get access to the desired console.

DTSECTAB Parameters cons_name of REXX Master
Console

cons_name of REXX User
Console

AUTH=YES any any

MCONS=YES,AUTH=NO VSE security user-id VSE security user-id

MCONS=NO,AUTH=NO none VSE security user-id

Receiving Messages from VSE/OCCF
You may have the VSE/ESA optional program VSE/OCCF (Operator Communication and Control Facility)
installed. VSE/OCCF is an operator automation program by itself and is in no way required for using REXX
Console Automation.

Through VSE/OCCF, messages can automatically be routed to a NetView console. In REXX Console
Automation you may request that these messages are routed to a REXX console, instead of to a NetView
console.

Rerouting to the REXX console is achieved by going through the following steps.

1. Install VSE/OCCF

VSE/OCCF is a VSE/ESA optional program. To install it, you are encouraged to use the Install Programs
dialog of the VSE/ESA Interactive Interface.

2. Build a VSE/OCCF Message Automation Table

Library 59 contains job skeleton SKOCCF that builds the VSE/OCCF message automation table for the
VSE/ESA Unattended Node Support. You can use it as a model for your own coding.

3. Start VSE/OCCF

To start VSE/OCCF issue the command

QSTART matab

Console Commands

Chapter 14. REXX/VSE Console Automation 223

where matab is the name of the message automation table.
4. Request rerouting by VSE/OCCF

Issue the REXX command SYSDEF

rc = SYSDEF('CONNECT OCCF')

This causes VSE/OCCF to route messages that are designated to be routed to NetView to the REXX
console, instead. The command is described in section “SYSDEF” on page 240.

5. Activate a REXX console with profile REXAUTO.

Issue the command

ACTIVATE CONSOLE ... PROFILE REXAUTO

This defines the REXX console as a type that receives messages from an automated message handling
program such as VSE/OCCF.

When your REXX program has finished its work, it should reset the above functions through the following
commands:

QSTOP (to suspend VSE/OCCF functions)
rc = SYSDEF('DISCONNECT OCCF')
QEND (to terminate VSE/OCCF processing)

Creating a Command and Response Correlation Token (CART)
You define a CART for the current console via the command

ADDRESS CONSOLE ' CART cart '

The operand specification is as follows:
cart

Specifies the value of the CART as a string of up to 8 bytes (a larger string will be truncated down to 8
bytes). You are free to choose any value. The string must not contain any blank.

The CART is associated with every command that is issued from the current console. The CART serves
to distinguish between heterogeneous command responses, each coming from a different command.
The GETMSG function will then not pick up any command output that has accumulated, but rather in a
selective manner.

This is illustrated in the following example. (The GETMSG function is described in “GETMSG” on page
232.)

mask1= 'FF0000000000000'X /* compare CARTs on first byte */
mask2= 'FFFFFF000000000'X /* compare CARTs on first 3 bytes */
zero = '000000000000000'X /* no checking */
'CART AttenRtn'
'MAP' /* VSE AR command */
'CART RED'
'RED 10L,F5' /* REDisplay command */
'CART' zero
'REPLID' /* Console Router command */
rc = GETMSG('MSG.','RESP','A',mask1,5) /* get MAP output */
rc = GETMSG('MSG.','RESP','RED',mask2,5) /* get REDisplay output */
rc = GETMSG('MSG.','RESP',,,5) /* get REPLID output */

Note: When having multiple commands processed at the same time, their output could very well be
intermixed. Always use CARTs to get the outputs separated from each other.

The direct succession of the three commands shown above is only possible because the commands
are each handled by a different command processor. Outstanding responses from one VSE command
(processor) must first be retrieved before you can start another command belonging to the same

Console Commands

224 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

command processor. This subject is discussed further in section “Having Command Responses
Outstanding in Parallel” on page 226.

Return Codes: For return codes of the CART command and their explanations, please refer to “ARXCONAD
Return Codes” on page 228.

Querying the Current Console Setting
You can enquire about the current console settings via the CONSTATE command. The command has the
following format:

ADDRESS CONSOLE 'CONSTATE NAME  varname
1

CART  varcart
1

PROFILE  varprof
1

'

Notes:
1 The variables may be entered in any order, but at least one of them must be specified.

where
varname

Is the name of a variable that returns the name of the current console.
varcart

Is the name of a variable that returns the setting of the current cart.
varprof

Is the name of a variable that returns the name of the profile that is associated with the current
console.

Return Codes: For return codes of the CONSTATE command and their explanations, please refer to
“ARXCONAD Return Codes” on page 228.

Switching to a Console Session
You can only work with one console at a time. By default, this is the console that has been activated as
the most recent one. This is referred to as the current console.

Via the CONSWITCH command you can switch to another console and make it the current console. The
CONSWITCH command resets the CART.

The command has the following format:

ADDRESS CONSOLE ' CONSWITCH cons_name '

where
cons_name

Specifies the name of the console you want to switch to.

Return Codes: For return codes of the CONSWITCH command and their explanations, please refer to
“ARXCONAD Return Codes” on page 228.

Deactivating a Console Session
You deactivate a VSE console session via

Console Commands

Chapter 14. REXX/VSE Console Automation 225

ADDRESS CONSOLE ' DEACTIVATE
cons_name

'

where:
cons_name

Specifies the name of the console to be deactivated. It is the name of the console that you activated
with an ACTIVATE command. The default name is REXX.

Return Codes: For return codes of the DEACTIVATE command and their explanations, please refer to
“ARXCONAD Return Codes” on page 228.

Note: If you deactivate the current console, no console is current. To make another console the current
console, you have to use the CONSWITCH command.

Temporarily Shutting off an (Unknown) Console
It can sometimes happen that you want to open a REXX console but you don't know from where your
program was called and whether another console is active out there.

The following example shows how you could proceed (it is assumed that there is already a current
console).

ADDRESS CONSOLE
'CONSTATE NAME oldcons CART oldcart' /* save state of current console*/

'ACTIVATE MYCONS' /* activate my own console */
 /* which now becomes the */
 /* current console
 ... doing my thing ...

 */
'DEACTIVATE MYCONS' /* deactivate my own console */
'CONSWITCH' oldcons 'CART' oldcart /* make the previously current */
 /* console current again */

Examples of REXX and VSE Console Commands
ADDRESS CONSOLE
'ACTIVATE NAME master PROFILE rexnorc' /* Activate master console. No */
 /* routing codes are received */

'ACTIVATE NAME rexx' /* Activate user console */

'CONSWITCH master' /* Switch to the master console*/

'CART syscmd' /* Specify a user defined cart */

'D NET,APPLS' /* Issue VTAM command */

'DEACTIVATE master' /* Deactivate console */
'CONSWITCH rexx' /* Switch to the user console */

'CONSTATE NAME consname', /* Query for the current */
 'CART cart PROFILE consprof' /* console settings */

'MAP' /* Issue AR command */

'DEACTIVATE rexx' /* Deactivate console */

Having Command Responses Outstanding in Parallel
The VSE/ESA console support requires that you retrieve the outstanding responses for one VSE system
command before you send the next VSE system command. Therefore, only one VSE system command per
console can be sent at a time.

Console Commands

226 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

After sending a VSE system command to the console, you need to wait until the response is complete.
You must retrieve the response before you send the next VSE system command. This is illustrated in the
following scenario:

ADDRESS CONSOLE

"system_cmd_1"
fc = GETMSG(msg.,'RESP',,,30)
 ...
 ...
"system_cmd_2"
fc = GETMSG(msg.,'RESP',,,30)

You may get return code -10 if you send a second VSE system command before you retrieve the response
via the GETMSG function.

There are different "types" of VSE console command processors (each of which is able to process one
command in parallel to the others):

1. AR commands

This includes VSE/POWER, CICS and VTAM commands.
2. VSE Redisplay commands
3. VSE Console Router commands, such as REPLID or CANCEL AR.

Although you may have for each of these console command processors one command response
outstanding in parallel, it is strongly recommended that you retrieve the response for one command
before you issue the next command.

Routing Messages From and Replies To a Specific Partition
The ECHO/ECHOU parameter of the VSE/POWER JECL statement * $$ JOB relates to the NAME keyword
of the ACTIVATE CONSOLE command. Consider, for example, the following VSE job.

* $$ JOB JNM=MYJOB ECHO=(ALL,MYECHO)
// JOB MYJOB

/&
* $$ EOJ

All messages issued by job MYJOB are routed to the REXX console which was activated under the name
'MYECHO' by a REXX program. In order to retrieve the message, the REXX program issues the GETMSG
function. The REXX program replies to the outstanding reply by just enclosing the reply in quotes:

ADDRESS CONSOLE 'ACTIVATE NAME myecho'

fc = GETMSG(msg.,'MSG',,,5) /* retrieve next message */
 /* and wait max. 5 seconds*/

GetReplyId(msg.1) '...reply text...' /* reply to message */

GetReplyId:
 ARG message
 position = POS('-',WORD(message,1)) /* did we get something like: */
 IF position > 0 /* R1-47 // PAUSE */
 THEN /* extract from message... */
 replyid = SUBSTR(WORD(message,1),position+1) /* reply ID */
 ELSE
 replyid= WORD(message,2) /* reply ID */
RETURN replyid
END

Console Commands

Chapter 14. REXX/VSE Console Automation 227

The above example shows how to handle console messages that are "fresh," that is, messages that have
just been delivered at the console. Another example (see “Scan the Hardcopy File” on page 264) shows
how to retrieve messages that had appeared earlier and are now stored on the hardcopy file.

Tracking of Operator Communication
Responses to operator-given commands are only routed to the console the operator is using for his
communication, not to other defined master consoles. Thus it is not possible to track ongoing operator
communication via a REXX console program. Since operator dialogs are logged in the hardcopy file, they
can be scanned using the REDISPLAY command.

Console Host Command Replaceable Routine
Module ARXCONAD processes all host commands requested by ADDRESS CONSOLE. It uses the
REXX/VSE interface for host command environment routines as described elsewhere in this manual,
beginning in section “Host Commands and Host Command Environments.” on page 24.

Entry for ARXCONAD in Table SUBCOMTB
The Host Command Environment Table (SUBCOMTB) contains an entry for the CONSOLE host command
environment. Via this table entry, you can control whether or not your REXX programmers have access
to console automation functions. To invalidate the access, make a copy of ARXPARMS, blank out the
constants NAME and ROUTINE, and catalog the copy into a separate sublibrary. Through different LIBDEF
chains, you make the console automation functions available to one group of programmers and deny
them to another group.

ARXCONAD Return Codes
ARXCONAD may issue the following return codes:
-1

Console has already been activated.
-2

Either the console name is not found in the list of activated consoles, or there is no current console.
-5

Syntax error, for example invalid token, or invalid profile.
-6

Error in ARXEXCOM.
-7

Console profile table ARXCPROF.PHASE not found.
-8

Console profile not found in table ARXCPROF.PHASE.
-9

No more storage.
-10

A VSE system macro failed. REXX message ARX0565I shows the macro name. You can call the
SYSVAR function to receive the return and reason code. Refer to “Return and Reason Codes” on page
267 for explanations of those codes.

-11
Error in console table service routine.

-12
Security violation.

Console Commands

228 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Console-related REXX Functions
REXX Console Automation has several REXX functions that allow a REXX program to work with the REXX
console.

These functions are described in the following sections. They are presented in alphabetical order.

DELMSG
FINDMSG
GETMSG
LOCKMGR
MERGE
OPERMSG
SENDCMD
SENDMSG
SYSDEF

Some functions return a function code. Function codes are listed and explained together with the
function descriptions.

Many error conditions lead to messages

REXX syntax error 40 - invalid call to routine... plus

ARX0960E ERROR Running Function xxxxxxxx, RC=nn

You find explanations for each error code RC in section “Error Codes of Failing Functions” on page 242.

Some error conditions are detected by VSE console support macros. These macros give return and reason
codes which you can retrieve by calling the SYSVAR function. The return and reason codes are explained
in “Return and Reason Codes” on page 267.

DELMSG
The DELMSG function removes the HOLD state from a message. On a real console screen, the HOLD state
is visible from the highlighted display toward the top of the screen to indicate that an action or reply
is pending. DELMSG does not truly delete a message, rather resets the intensity attribute from high to
normal and positions the message at its proper place within the entire set of console messages.

The DELMSG function comes into play when the condition that caused a message to be displayed does
not exist anymore, for example when a device became ready.

DELMSG has the following format:

DELMSG (msgid)

where
msgid

Is the ID of the message to be deleted. This ID can be obtained from the Message Data Block (MDB)
variable MDBGMID that the GETMSG function returns (see “Message Data Block (MDB) Variables” on
page 234).

A REXX procedure (see “REXXDOM” on page 261) is included in your system for demonstration purposes.
It uses the DELMSG function and shows how, under REXX Console Automation, you can change the
physical message presentation.

FINDMSG
This function retrieves VSE console messages until the find criteria is fulfilled. It can be used to monitor
applications that issue console messages.

DELMSG Function

Chapter 14. REXX/VSE Console Automation 229

FINDMSG searches for 'findstr' in all VSE console messages that have accumulated at the REXX console
since the console had been activated (plus earlier messages that are in HOLD state). If successful,
FINDMSG returns the first matching console message, otherwise a null string.

The FINDMSG function sets special REXX variables as output. If FINDMSG cannot find a matching
'findstr', these variables are set to null strings.

Name Description

MDBCPNUM 5-digit job number of the VSE/POWER job that issued the message.

MDBCRET Command processor return and reason codeWORD(mdbcret,1) is the 4-digit
return code. WORD(mdbcret,2) is the 4-digit reason code. Please refer to
“Command Processor Return and Reason Codes” on page 270.

MDBGDOM One character with a value of '1' or '0'. A '1' indicates that a message whose
ID is stored in MDBGMID is to be deleted, for example due to a preceding
DOM (Delete Operator Message) macro or a delete request from the operator.

MDBGHOLD One character indicating whether the message is a highlighted message to
be held on the console ('1') or not ('0'). If the message is a response to the
REDISPLAY command issued with the HOLD option, MDBGHOLD has a value
of '0'.

MDBGJBNM 8-character job name of the VSE/POWER job that issued the message.

MDBGMID Message ID as an 8-character representation for a 4-byte field of 8
hexadecimal values. If the message is a response to the REDISPLAY
command and is not a highlighted ("HOLD") message, MDBGHOLD contains
a null string; a valid MDBGMID is only returned if that message is a HOLD
message.

MDBGDSTP Year concatenated by day of the year, for example 1995131

MDBGTIME Time of the day, for example 14:07:26.65

SYSTBLENTRY Matching table entry if findstr specifies a table.

FINDMSG has the following format:

FINDMSG (findstr , maxtime , zone , option)

Arguments are
findstr

character string to be found as substring within a console message.

findstr can be specified in the format lib.sublib.mn.mt. The specified library member is then
considered as a table. Its entries, from the second word through position 71, serve as search
argument. Assuming that your message action table contains three entries

AnyWord Enter Y to bypass verification
another new data
and_a_3rd Enter

and among the console messages the following message appears

BG 0000 Enter new data set name

then the second entry would yield a match (also the third if the second entry were not there).
In case of a match, the corresponding table entry is returned in its entirety in the REXX variable
SYSTBLENTRY. In the above example, SYSTBLENTRY would contain the string

FINDMSG Function

230 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

another new data

A later section shows the practical use of the table (see Figure 13 on page 250). There the first word
of a table entry indicates an action to be taken in case of a match. The table is therefore called REXX
message action table.

If you do not specify the 'findstr' parameter, FINDMSG uses the REXX message action table previously
loaded into main storage. If not available, message ARX0960E is raised together with error code 48.

Note: If the search string happens to be of the format lib.sublib.mn.mt, you must use the "table
approach," that is, place the string into a table entry. Placed directly into the function call, it would be
interpreted as name of a message action table instead of a search string.

When using the "table approach," be aware that I/O takes place when the message action table is
being read. In the example below, the first coding sequence would yield a better performance than
the second because only one read operation is needed.

call FINDMSG 'prd1.base.rexxtabl.z',,,'LOADACTN' /* Load message
 action table into main storage */
do forever

 message = FINDMSG(,10)

end

do forever

 message = FINDMSG('prd1.base.rexxtabl.z',10)

end

maxtime
maximum number of seconds to run. Default is 5 seconds.

zone
specifies, after the keyword ZONE, a beginning position and an ending position within the message
where a match with 'findstr' is searched for: 'ZONE mm nn' If not specified, the entire message is
searched.

option
is either a concatenation option with keywords CONCAT or NOCONCAT (NOCONCAT is the default), or
a load-table option with keyword LOADACTN.

CONCAT requests that multiple text lines of a message are treated as one long message string for the
purpose of searching. See also the section below, “Handling of Multi-line Messages” on page 232.

LOADACTN requests that a message action table gets loaded into main storage in a format that can be
used by the FINDMSG function. As an example of the layout of the message action table, you may use
the table contained in member REXXTABL.Z. Please refer to section Figure 13 on page 250.

With the LOADACTN keyword, only the first parameter of the function call is relevant. It is the member
name of the source, that is, the message action table in the format lib.sublib.mn.mt.

Note: The non-matching console messages are no longer available after FINDMSG has looked through
them. In other words, a subsequent function call of FINDMSG would not be able to access those
messages once more.

Examples of Functions Calls
message = FINDMSG('ENTER DATA',60)
message = FINDMSG('PRD2.PROD.MSG.TABLE',60,'ZONE 1 20')

FINDMSG Function

Chapter 14. REXX/VSE Console Automation 231

Handling of Multi-line Messages
Messages that are longer than 80 characters appear in the REXX console as text lines of up to 80 bytes.
When option NOCONCAT is set, the FINDMSG function searches, with a given 'findstr,' against every text
line as if this were a complete message by itself. A ZONE specification would be valid for every text line. A
string that continues from one text line into the next will not yield a match with 'findstr.'

When the concatenation option is set to CONCAT, FINDMSG treats all text lines as one long message for
the purpose of searching. In this situation it could be cumbersome to determine the proper ZONE value.

If a match comes true, FINDMSG connects the individual text lines into one long string and returns the
string as its value. It returns the matching table row in variable SYSTBLENTRY. This is valid for both
options, CONCAT or NOCONCAT.

Note that when 'findstr' comes from a table, the concatenation option can lead to different matches. Be
aware that with option NOCONCAT each text line (beginning with the first, then the second, and so on) is
checked against the entire table. Consider the following example:

Your REXX console program issues the VSE/POWER command d rdr,rexx* In this case VSE/POWER sends
a multi-line message.

F1 0001 1R46I READER QUEUE P D C S CARDS
F1 0001 1R46I REXXTRY 08089 3 L 0 6 FROM=(REXXLOAD)
F1 0001 1R46I REXXASM 08090 8 L Y 6 FROM=(REXXLOAD)
F1 0001 1R46I REXXWAIT 08070 3 L Y 6 FROM=(REXXLOAD)

Assume that a message action table had been loaded via FINDMSG(.....,'LOADACTN')

Action_1 REXXWAIT
Action_2 REXXASM
Action_3 REXXTRY

FINDMSG(,10,,'NOCONCAT') leads to Action_3 FINDMSG(,10,,'CONCAT') leads to Action_1

This result is due to the particular sequence of table entries. Both options would lead to Action_1 if the
table had been arranged like so:

Action_1 REXXTRY
Action_2 REXXASM
Action_3 REXXWAIT

Error codes of FINDMSG are listed under “Error Codes of Failing Functions” on page 242.

GETMSG
The GETMSG function retrieves a message (which can be a command response) depending on a msgtype
parameter, as shown in the function format, below. It returns a function code that replaces the function
call.

Msgtype 'RESP':

The GETMSG function, with msgtype 'RESP' specified, retrieves, in variables, all command responses that
have accumulated for the console session. The command response consists of one or more messages.

The GETMSG function retrieves the response(s) and stores the text into successive variables until the last
message of the response is found and no more responses are available, or until a timeout occurs.

Msgtype 'MSG':

The GETMSG function, with msgtype 'MSG' specified, retrieves only one message at a time. The message
itself may have more than one line. Each line of the message text is stored into successive variables.

Function Format
GETMSG has the following format:

GETMSG Function

232 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

GETMSG (msgstem , msgtype , cart , mask , time)

where

msgstem
is the stem into which GETMSG places the message text. For example, if 'msg.' is specified as
msgstem and GETMSG retrieves three lines of message text, GETMSG places these lines into the stem
consisting of msg.1, msg.2 and msg.3. GETMSG stores the number of lines retrieved into the variable
msg.0.

msgtype
is the type of message to be retrieved
MSG

requests retrieval of any next message from the console. Messages are retrieved on first-in-first-
out basis. If you do not specify any msgtype, 'MSG' is the default.

RESP
requests retrieval of all command responses that have accumulated for the console session.

In addition to the message itself, a block of MDB variables (for msgtype MSG) or an array of MDB
variables (for msgtype RESP) is returned; see below under “Message Data Block (MDB) Variables” on
page 234.

cart
applies only to msgtype RESP: command and response correlation token (CART) specifies which
command responses are to be retrieved. A command may have a CART associated with it (see also
“Creating a Command and Response Correlation Token (CART)” on page 224). By matching this CART
against the CART specified here in GETMSG, only specific command responses can be selected for
retrieval.

The cart is a value of up to 8 bytes. If you do not specify a cart, then the default cart of 8 bytes with
hexadecimal zeroes (XL8'0') is used.

mask
acts as a filter for the comparison on the two CART values. Only the bit position where the mask
contains a '1' takes part in the comparison.

The mask is specified as a value of 16 hexadecimal digits, enclosed in quotes and terminated by an X.
A value of 'FFFF000000000000'X, for example, requests that only the first two bytes of the cart are
to be compared. If you do not specify a mask, the default of '0000000000000000'X is used, in other
words: no comparison takes place and GETMSG retrieves all available responses.

time
is the maximum number of seconds the REXX program waits for the message or the response to
arrive. The default is one second.

GETMSG Function Codes
The GETMSG function issues the following function codes:
0

GETMSG processing was successful. GETMSG retrieves a message (if msgtype is 'MSG') or the
complete response (if MSGTYPE is 'RESP').

4
GETMSG processing was successful. However, GETMSG did not retrieve a message (when msgtype
is 'MSG') or a response (when msgtype is 'RESP'). GETMSG returns function code 4 if one of the
following occurs:

• No message available
• Search criteria did not match

GETMSG Function

Chapter 14. REXX/VSE Console Automation 233

• Time limit expired.

5
Applies only to msgtype 'RESP': search criteria did not match but there is at least one other message
queued for the console.

8
GETMSG function failed due to the failure of a VSE macro. REXX message ARX0565I shows the macro
name. You can call the SYSVAR function to receive the return and reason code. Refer to “Return and
Reason Codes” on page 267 for explanations of those codes.

12
GETMSG processing failed. A console session is not active.

16
GETMSG processing failed. A console session was being deactivated during GETMSG processing.

20
GETMSG processing failed due to ARXEXCOM error or stem count error.

Message Data Block (MDB) Variables
The GETMSG function sets the following REXX variables, either as one block (for msgtype MSG) or (for
msgtype RESP) as multiple blocks thus giving an array of variables.

Name Description

MDBCPNUM 5-digit job number of the VSE/POWER job that issued the message.

MDBCRET Command processor return and reason code. WORD(mdbcret,1) is the 4-digit
return code. WORD(mdbcret,2) is the 4-digit reason code. Please refer to
“Command Processor Return and Reason Codes” on page 270.

MDBGDOM One character with a value of '1' or '0'. A '1' indicates that a message whose
ID is stored in MDBGMID is to be deleted, for example due to a preceding DOM
(Delete Operator Message) macro or a delete request from the operator.

MDBGHOLD One character indicating whether the message is a highlighted message to
be held on the console ('1') or not ('0'). If the message is a response to the
REDISPLAY command issued with the HOLD option, MDBGHOLD has a value of
'0'.

MDBGJBNM 8-character job name of the VSE/POWER job that issued the message.

MDBGMID Message ID as an 8-character representation for a 4-byte field of 8 hexadecimal
values. If the message is a response to the REDISPLAY command and is not
a highlighted ("HOLD") message, MDBGHOLD contains a null string; a valid
MDBGMID is only returned if that message is a HOLD message.

MDBGDSTP Year concatenated by day of the year, for example 1995131

MDBGTIME Time of the day, for example 14:07:26.65

There are situations where the MDB variables are reset to null values. Most often, this happens when
variable msgstem.0 has a value of zero.

Examples:

1. Assume you want to find out whether CICS is up and running and, if not, restart it using REXX console
automation. Key to this task are retrieval and analysis of the responses to the VTAM command

D NET,APPLS

You also want to wait up to 30 seconds for the complete response.

ADDRESS CONSOLE /* Establish Console Env */

GETMSG Function

234 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

'ACTIVATE NAME REXX PROFILE REXNORC ' /* Activate Console session */
 /* Must be master console to be */
 /* able to issue the following */
 /* VTAM command */
 /* */
'D NET,APPLS' /* VTAM command shows APPLIDs */

IF GETMSG(vtam_msg.,'RESP',,,30) = 0 /* Wait for VTAM messages */

 THEN /* Analyse the VTAM messages */
 DO i=1 TO vtam_msg.0
 pos = INDEX(vtam_msg.i,'PRODCICS')

 IF pos > zero THEN

 IF WORD(SUBSTR(vtam_msg.i,pos),2) ¬= 'ACTIV' /* CICS down ? */

 THEN 'R RDR,PRODCICS' /* Release CICS*/
 END

'DEACTIVATE REXX' /* Deactivate console session */

2. This example shows how you access an array of MDB variables. Notice that one and the same index is
used for the msgstem and for the MDB variables.

 ...
'map'
fc = GETMSG(msg.,'RESP')
DO i=1 TO msg.0
 SAY msg.i
 SAY mdbgtime.i
END
 ...

LOCKMGR
The LOCKMGR function allows to serialize a REXX program (or part of a REXX program) by means of a
lock/unlock mechanism. Serialization is system wide at task level.

If several REXX programs running under different tasks want to execute the same REXX program, but only
one task is allowed at the same time, then you must lock a resource via LOCKMGR('LOCK',name). This
causes all other REXX programs that also issue a lock-resource to be set into the wait state until the REXX
program unlocks the resource via LOCKMGR('UNLOCK',name).

LOCKMGR has the following format:

LOCKMGR (request , name)

request
'LOCK' or 'UNLOCK'

name
8-byte character string that defines the name of the resource to be locked or unlocked. A name that
is longer than 8 characters will be truncated to 8 characters. A name that is shorter than 8 characters
will be filled with blanks.

Function Codes: The LOCKMGR function returns a function code.

0 Resource was successfully locked/unlocked.
2 The resource is locked already.
4 Resource not available.
8 Some error during lock/unlock. Also, message ARX0565E will be issued.

Invalid input or any other error causes REXX syntax error 40.

Example:

rc = LOCKMGR('LOCK',name) /* Obtain a lock or wait until somebody */
if rc <= 2 then /* unlocks the resource name. */

LOCKMGR Function

Chapter 14. REXX/VSE Console Automation 235

 do /* We locked the resource and can be sure */
 /* that the DO block of this REXX program */
 /* is executed ONCE in the VSE system. */

 call LOCKMGR 'UNLOCK',name/* Unlock the resource and wake up all */
 end /* REXX programs waiting for the */
 /* resource to be unlocked */

MERGE
The MERGE function creates a new library member using a skeleton and input variables. The skeleton is a
template and contains user-defined variables (placeholders) that are to be filled in with actual data. The
MERGE function returns the new library member name.

MERGE has the following format:

MERGE (string)

where
string

Is a character string that consists of blank-delimited tokens.

string = 'token_1 token_2 ... token_n' ['DATA=YES']

Each token represents the assignment of a variable. A token is of type varname=value. There are user-
defined variables and system variables.

• A value must not contain blanks.
• A user variable can have any variable name.
• System variables have reserved variable names.

System Variables:
INNAME

Library member of type lib.sublib.mn.mt that is to be used as template to create a new job (skeleton).
OUTNAME

Library member of type lib.sublib.mn.mt that will contain the newly created job.
DATA=YES

Library member specified with OUTNAME, which contains SYSIPT data.

User-Defined Variables: They are identified by two leading and two trailing hyphens. The format is
--varName-- When specifying the variable name for the MERGE function, do not include the hyphens (just
say varName=).

If a user-defined variable does not receive a value, it will be dropped. This is useful for defining optional
operands in JCL.

The MERGE function recognizes continuation characters at position 72 of the skeleton. Continuation lines
have to follow JCL conventions.

If the merged text is longer than 71 bytes, the next line begins at position 16. Output lines are thus
formatted according to the rules of job control (JCL). However, continued lines may, for formatting
reasons, loose blanks in the merge process.

Example: Assume your library DEVLIB.EXEC contains in member SKJOB.Z the following job skeleton.

$$$$ JOB JNM=--var001--,CLASS=Y,PRI=8,DISP=D
$$$$ LST CLASS=Q,DISP=D
// JOB --var001-- Job for REXX Console Event Processing
// LIBDEF *,SEARCH=--var002--
// EXEC REXX=--var001--,PARM='REXXCOF5,00780,--var003--,--msg--'
$$/&
$$$$ EOJ

MERGE Function

236 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

After your REXX program has processed the following two statements

string = "INNAME=devlib.exec.skjob.z OUTNAME=devlib.exec.myjob.z",
 "var001=eventest var002=prd1.base var003=prd1.base.skrcjcl.z",
 "msg=HALT_EXIT_REACHED,PRESS_ENTER_TO_END"

CALL MERGE string

four variables will have been merged into the skeleton, and library member MYJOB.Z in library
DEVLIB.EXEC will contain this job:

* $$ JOB JNM=EVENTEST,CLASS=Y,PRI=8,DISP=D
* $$ LST CLASS=Q,DISP=D
// JOB EVENTEST Job for REXX Console Event Processing
// LIBDEF *,SEARCH=PRD1.BASE
// EXEC REXX=EVENTEST,PARM='REXXCOF5,00780,PRD1.BASE.SKRXJCL.Z,HALT_EXIX
 T_REACHED,PRESS_ENTER_TO_END'
/&
* $$ EOJ

Notice that the conventions of the VSE utility DTRIINIT have been used to mask leading characters

* $$
/*
/&

Error Codes: MERGE does not issue any error codes. Invalid input or any other error causes REXX syntax
error 40.

OPERMSG
This function adds or removes an operator communication exit. This exit allows the VSE operator to
communicate asynchronously with the REXX program by entering the VSE attention routine command
MSG.

OPERMSG has the following format:

OPERMSG (request)

The request can be one of the following:
ON

Returns the current state and then activates support for the operator communication exit (OC exit)
that is used by a VSE attention routine command

MSG nn,DATA=msgdata

The following 2-character values of 'msgdata' have a special significance for the processing of
the OPERMSG function. When activated, the exit checks for the occurrence of a command MSG
nn,DATA=xx where
HI

Halt Interpretation

DATA=HI is interpreted as an external interrupt. By preceding the OPERMSG command with the
SIGNAL ON HALT command, the REXX program can provide a label to branch to when the HI
request is detected.

This setup is useful for controlling a program that is at risk of going into a loop.

TS
Trace Start

DATA=TS simulates the REXX immediate command TS. TS puts the REXX program into interactive
debug. This is helpful if a program is looping.

OPERMSG Function

Chapter 14. REXX/VSE Console Automation 237

TE
Trace End

HT
Halt Typing

DATA=HT simulates the REXX immediate command HT. This command suppresses output that a
program generates.

RT
Resume Typing

For detailed information on the above facilities, please refer to Chapter 10, “REXX/VSE Commands,”
on page 143

OFF
Returns the current state and then removes the operator communication exit.

()
Returns the current state (ON or OFF).

MSGDATA
Returns the last msgdata which the operator entered via the MSG command. OPERMSG returns the
null string if no OC exit request was entered at the VSE console. OPERMSG returns one blank if the
"MSG nn" was entered without any message data. Any other string that OPERMSG returns is the
message data.

Examples

SAY OPERMSG('ON') /* returns 'OFF' first time called */
 /* and sets the OC exit support ON */
SAY OPERMSG('MSGDATA') /* returns the message data */
SAY OPERMSG() /* returns 'ON' and keeps it as ON */
SAY OPERMSG('OFF') /* returns 'ON' and switches to OFF*/
SAY OPERMSG() /* returns 'OFF' */

PAUSEMSG

This function issues a console message and waits for an operator reply. If successful, PAUSEMSG returns
the operator reply, otherwise a null string.

PAUSEMSG has the following format:

PAUSEMSG (message)

message
Any string of 1 to 122 bytes. A string longer than that will be truncated to 122 bytes.

Examples

reply = PAUSEMSG(message)
SAY PAUSEMSG('Please enter your name')

SENDCMD
This function complements the standard VSE console command processing. It allows to issue a VSE
console command or a reply. SENDCMD can be used to give a single reply, for example the reply to a //
PAUSE statement.

The SENDCMD function does not require an active console session. On the other hand, the target console
with the specified (or default) consname must not be active when the SENDCMD function is issued.

PAUSEMSG Function

238 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Command output is sent to all master consoles that are defined to receive all messages ("all routing
codes"). There is one exception, however: if the job that started the REXX program specifies an ECHOU
user ID, the command output is sent only to the console of that user ID.

SENDCMD has the following format:

SENDCMD (message , consname)

message
Any string of 1 to 125 bytes. A string longer than that will be truncated to 125 bytes.

consname
VSE console name.

The default name is 'REXREPLY'.

Note that the consname parameter does not determine which console would receive command output.
It is only used to identify the command in the hardcopy file and, consequently, in any redisplay output.
If your system runs with security active (IPLed with SEC=YES in the SYS command), SENDCMD uses as
consname the VSE security user-id. Any other consname is ignored.

Function Codes: The SENDCMD issues the following function codes:
0

SENDCMD processing was successful.
8

SENDCMD function failed due to the failure of a VSE macro. REXX message ARX0565I shows the
macro name. Call the SYSVAR function to receive the return and reason code. Refer to “Return and
Reason Codes” on page 267 for explanation of these codes.

SENDMSG
This function sends a message to a specific VSE console. No other VSE console will receive the message.
Exception: If you specify 'ALL' as consname, the message is sent to all active master consoles.

SENDMSG has the following format:

SENDMSG (message , consname , cart , type)

message
Any string of 1 to 125 bytes. A string longer than that will be truncated to 125 bytes.

consname
VSE console name to be used as destination for the message.

The default name is 'REXX'. Specify 'ALL' to send the message to all master consoles active in your
VSE/ESA system.

cart
Command and response correlation token. Default is XL8'0'.

The Command And Response Token (CART) provides a selection criteria for the GETMSG function to
retrieve one or more particular messages from the set of console messages. Please refer also back to
section “Creating a Command and Response Correlation Token (CART)” on page 224.

The 'cart' specification in SENDMSG is only applicable when the message to be sent is a command
response. It has no meaning for an "ordinary" message such as a notification message. Sending a
command response comes into play when you write a command processor in REXX.

type
If HIGH, the message is displayed in highlighted form. If omitted, the message is displayed in non-
highlighted form.

SENDMSG Function

Chapter 14. REXX/VSE Console Automation 239

Examples: In the following example, the SENDMSG function serves to find out whether the other partition
is already active.

do while SENDMSG('Hello World','REXX')
 call SLEEP 5
end

Sending a highlighted message to all active master consoles is done in the following example:

fc = SENDMSG('Hello','ALL',,'HIGH')

Function Codes: The SENDMSG function returns a function code:
0

SENDMSG processing was successful.
1

The console that was intended as receiver of the message is not active.

Invalid input or any other error causes REXX syntax error 40.

SORTSTEM
This function sorts a stem variable. Sort criteria is the standard "<" -function applied to EBCDIC-strings.
SORTSTEM returns function code 0 that replaces the function call.

SORTSTEM has the following format:

SORTSTEM (stemname , zone , sortorder , range)

stemname
is the stem to be sorted. For example, if 'svar.' is specified as stemname, variable svar.0 has to contain
the number n of strings to be sorted, and svar.1, svar.2, ... svar.n have to contain the strings to be
sorted.

zone
specifies, after the keyword ZONE, a beginning and an ending position within the strings to be sorted
identifying the sort criteria. Due to the implemented sort algorithm ("heapsort") the order of "equal"
strings may be changed. If not specified, the entire strings are used during comparison. If string
lengths do not match, the shorter string is padded with blanks.

sortorder
defines the order of sorting
ASCENDING

means sorting in ascending order. This is the default.
DESCENDING

means sorting in descending order.
range

specifies, after the keyword RANGE, a beginning and an ending index, identifying the part of the stem
to be sorted.

Examples of Function Calls
fc = SORTSTEM('input.')
fc = SORTSTEM('svar.','ZONE 9 14','DESCENDING','RANGE 11 24')

See “Error Codes of Failing Functions” on page 242 for error codes returned by the SORTSTEM function.

SYSDEF

SORTSTEM Function

240 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

This function is used for two different purposes.

1. It tells the VSE/REXX CPU Monitor which elements of system activity are to be checked. It also sets
the limits which, when having been exceeded, lead to a console message.

The SYSDEF function has the following format:

SYSDEF (' SYSACTIVITY ' , cputime , cpurate , elaptime ,

iocount , iorate , partids)

where the 5 variables set the limits:
cputime

CPU time, in 1/100 seconds, that has accumulated in a partition. A value of 1000, for example,
indicates that a partition after having used up 10 seconds of CPU time has reached its limit.

cpurate
CPU time as a percentage of elapsed time of the specified interval

elaptime
Elapsed time, in seconds, that has accumulated in a partition

iocount
number of I/Os that have accumulated in a partition

iorate
number of I/Os per second, during the specified interval

partids
a string of 2-character partition IDs. It indicates those partitions that are to be excluded from
monitoring. Generic notation is allowed: by specifying an '*' in the second position you exclude the
entire dynamic partition class from being monitored. For example,

'F1F2F3Y*'

says that partitions F1, F2, F3, and all partitions of class Y should not be monitored.
A value of zero for any of the numeric parameters indicates that the corresponding system activity
should not be checked.

If a parameter is specified as nullstring or not specified at all, the corresponding value remains
unchanged.

2. Request rerouting from NetView to the REXX console

This function is of primary interest in the context of REXX Console Automation.

Through the console profile REXAUTO, a REXX console can be defined as receiver of messages that are
sent from an automated message handling program such as VSE/OCCF. The SYSDEF function requests
that VSE/OCCF reroutes messages that are designated (in the VSE/OCCF message automation table) to
be routed to NetView to the REXX console, instead.

Issue the SYSDEF command as follows:

rc = SYSDEF('CONNECT OCCF')

To reset the above definition, you have to disconnect the REXX console from VSE/OCCF:

rc = SYSDEF('DISCONNECT OCCF')

If your system runs with security active (IPLed with SEC=YES in the SYS command), you can use the
SYSDEF function only if the user-id of the VSE security administrator was supplied in the job that called
the REXX program.

The SYSDEF function returns either of the following:

SYSDEF Function

Chapter 14. REXX/VSE Console Automation 241

0
if no values have been set so far and you invoked the function with only the first keyword
('SYSACTIVITY') specified.

values
a string consisting of 6 words. These words contain the values (limits and partition IDs) that were
input to the SYSDEF function:

1. CPU time
2. Elapsed time
3. I/O count
4. I/O rate
5. CPU rate
6. String of partition IDs.

2
Applicable only to CONNECT: VSE/OCCF was already connected. This could be a connection to
NetView but remember that you should not use REXX Console Automation and NetView at the
same time.

4
VSE/OCCF has not been started.

If a parameter was excluded in the function call, the corresponding word contains a null value.

SYSVAR
The SYSVAR function described on page “SYSVAR” on page 102 has an argument, SYSERRCODES, that
specifically relates to the console environment. SYSERRCODES contains the return and reason code of the
VSE system macro (such as MGCRE, MCSOPER, or WTO) which is used to issue a VSE console command.

The following example demonstrates that you cannot call for the service of a command processor while
the response to the preceding command has not been retrieved.

ADDRESS CONSOLE
'ACTIVATE NAME REXX PROFILE REXNORC'
'RED'
'RED' /* REDISPLAY command a second time */
CALL SYSVAR 'syserrcodes'
IF syserrcodes = '0008 0001'
 THEN SAY 'Command not accepted because command processor is busy'

Return and reason codes are returned as decimal values.

Please refer to “Return and Reason Codes” on page 267 for explanations of all return and reason codes
issued from VSE/ESA system macros.

Error Codes of Failing Functions
The following message indicates an error

ARX0960E ERROR Running Function xxxxxxxx, RC=nn

RC=nn points to a specific error. Possible error codes, together with an explanation, are shown in the
following table.

Function Name Error Code RC Explanation

DELMSG 04 Invalid number of arguments, or nullstring as argument

12 Invalid parameter list

SYSVAR Function

242 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Function Name Error Code RC Explanation

FINDMSG 08 Failure of VSE macro. REXX message ARX0565I shows the macro
name. Call SYSVAR to determine return and reason code. Refer to
“Return and Reason Codes” on page 267.

12 No active console session.

16 Console session deactivated during FINDMSG processing

20 ARXEXCOM error or stem count error

24 Unused

28 Invalid library member in connection with LOADACTN option

29 Unused

32 Invalid parameter list

36 Invalid TIME

40 Invalid ZONE

44 Unused

48 Message action table not loaded

52 Problem loading library member

56 Library member not found

60 Storage problem

64 Invalid OPTION

68 Format error within message action table

GETMSG 04 Invalid number of arguments

12 Invalid parameter list

LOCKMGR 04 Invalid number of arguments

12 Invalid parameter list

20 EXECIO error

MERGE 24 Empty input string

28 EXECIO DISKR error

30 Invalid parameter list (invalid filename for INNAME or OUTNAME)

32 Invalid parameter list (either no parameter or more than one
parameter)

34 Invalid token

36 EXECIO DISKW open error

40 EXECIO DISKW error (unable to write)

44 EXECIO DISKW close error

OPERMSG 04 Invalid number of arguments

08 STXIT macro failed

12 Invalid parameter list

SYSVAR Function

Chapter 14. REXX/VSE Console Automation 243

Function Name Error Code RC Explanation

16 Storage problem

24 CDLOAD failed

28 STXIT OC not activated

PAUSEMSG 04 Invalid number of arguments

08 WTOR error

12 nullstring as argument

SENDCMD 04 Invalid number of arguments

12 Invalid parameter list

SENDMSG 04 Invalid number of arguments

08 WTO macro failed

12 Invalid parameter list

SORTSTEM 04 Invalid number of arguments.

08 Invalid ZONE.

12 Invalid STEM variable.

16 Storage problem.

20 Stem handling problem.

24 Invalid STEM.0 setting.

28 Invalid sort order

32 Invalid range

SYSDEF 04 Invalid number of arguments

12 Invalid parameter list

16 REXX not initialized

20 Security violation

It may happen that module ARXEFPLX issues an RC=4. Most likely, this indicates a shortage of GETVIS
storage. In rare cases, the setting of variable pools failed.

For error return codes issued by VSE system macros, please refer to

• Section “Return and Reason Codes” on page 267 -- for macros MCSOPER, MCSOPMSG, MGCRE,
• z/VSE System Macros Reference -- for other macros such as CDLOAD or WTO.

Always Keep in Mind...
This section contains important hints and tips that you should always be aware of when working with
REXX Console Automation.

The entire message traffic between programs and consoles goes through the Console Router queue.
When a message enters the Console Router queue, the target console(s) are posted to retrieve the
message. Only after all target consoles have retrieved the message, the queue space occupied by this
message is eligible to be reused for a new message.

Space for the Console Router queue is not unlimited. Therefore, if messages are not retrieved at the
target consoles, the queue can become flooded. In the worst case, this could lead to a complete

Hints and Tips

244 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmfe81.pdf

standstill of the system. To take precautions against this, a console is suspended if no message is
retrieved within the next 15 seconds after arrival of a message at this console. If a console is suspended,
no more messages are routed to this console. A REXX console procedure would have to DEACTIVATE and
re-ACTIVATE the console in this case, but incoming messages during suspend are lost.

By observing the following rules, you will be able to avoid such critical situation.

Note that the CORCMD debugging command is available for situations where your console functions do
not work as they are supposed to. Please refer to “CORCMD Command for Problem Solving” on page 271.

Make Frequent Use of the GETMSG Function
A prominent task of a console program is to retrieve the messages that are sent to the console. The
console program can be a console presentation program such as the system console, or it can be a
programmed operator.

In REXX Console Automation, you retrieve messages by using the GETMSG function. You are urged to
frequently call this function. This helps to have message items disappear from the Console Router queue.

Do not Send Messages to "Yourself"
After your REXX program has activated a REXX console with profile REXALLRC ("receive all routing
codes"), it should not send messages to this console. Specifically, it should not issue

SAY to SYSLOG
REXX TRACE to SYSLOG

A sequence like the following is deadly.

ADDRESS CONSOLE 'ACTIVATE ... PROFILE REXALLRC'
 DO FOREVER

 GETMSG...
 SAY...

 SAY...

 END

Your program is not able to retrieve messages as fast as it sends them.

Redirect Some Output to SYSLST
A way to avoid the above situation is to direct SAY output and trace output to SYSLST:

CALL ASSGN 'STDOUT','SYSLST'

Direct Messages to Only One Console (ECHOU Option)
Another way of directing high-volume message traffic away from the REXX console is to make sure that it
is not routed to all consoles. This is accomplished by including the VSE/POWER option ECHOU in the job
that calls your REXX program.

The ECHOU option prevents the job's console output from being delivered to all master consoles (one of
them being the REXX console which had been activated with the REXALLRC profile). Instead, the output
is sent to the console that is associated with the ECHOU user-id. Your REXX console is thus freed from
debug and tracing messages; it receives only its own, very specific traffic of commands and command
responses.

An effect similar to the ECHOU option is achieved by starting your REXX program at a master console via a

r rdr,pausexx

job. An ECHOU option for this master console has been made effective automatically by the VSE system.

Hints and Tips

Chapter 14. REXX/VSE Console Automation 245

Remember the REXNORC Profile
The discussion so far had assumed that the REXX console is activated with profile REXALLRC ("receive all
routing codes"). This profile is useful for global systemwide monitoring.

You should ask yourself whether the REXX console, at a particular place in your REXX program, would do
better with the REXNORC ("receive no routing codes") profile. A console which needs to receive only its
command responses should be defined with that profile. For example, in a scenario like the following

 ACTIVATE ... PROFILE REXNORC
 ...
 REDISPLAY...

 DEACTIVATE ...

the REXX console is reserved for receiving only the REDISPLAY output. If instead it is activated with
profile REXALLRC, a lot of other messages can pile up at this console while the REDISPLAY command
processor is still searching through the hardcopy file.

Split off a Time-consuming Task into a Separate Job
Ask yourself how much synchronous processing you can afford between two incidents of message
retrieval.

If there is a good chance that this processing may last a long time (for example waiting for a certain event
to happen, or a fair amount of I/O operations), you might be better off if you let a separate job perform
asynchronously that piece of processing.

You either use the PUTQE command directly. Or you use an approach that is shown in one of the demo
applications (see “REXXSPCE” on page 256) where the REXXCO application triggers a job via the REXX
Message Action Table. In doing so, REXXCO also issues the PUTQE command.

Finish All Preparatory Work Prior to ACTIVATE CONSOLE
This is a similar line of thought as in the preceding section. Your preparatory work might involve time-
consuming tasks such as reading and processing of files.

Place these tasks ahead of ACTIVATEing your REXX console. If, instead, these tasks are started after
ACTIVATE and take a long time to finish, they might hold up your REXX program and prevent it from
retrieving all other messages that keep accumulating.

Similarly, DEACTIVATE your REXX console before you start time-consuming cleanup tasks.

Handle One Command at a Time
It is advisable to finish processing of one command prior to issuing the next command. You should thus
adhere to the following sequence:

. . .
issue command
retrieve and process response
issue command
retrieve and process response
. . .

If you fail to do that, you run the risk of getting a 'COMMAND PROCESSOR BUSY' condition. This is
indicated by a return code of -10 from the REXX host command routine plus return and reason codes 8 / 1
from the MGCRE macro.

Start Testing on a Small Scale
This involves two rules:

Hints and Tips

246 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

1. Start testing your REXX console automation program in a test environment before you release it to
your production system.

2. At the earlier stages of testing, let a REXX master console run with profile REXNORC ("receive no
routing codes"). This helps to isolate the automated handling of commands and associated responses.

The Most Important Rule...
At the end of this section, the two most important rules are summarized for you to remember:

• Let your REXX program retrieve the messages that were delivered at the REXX console.
• Deactivate a REXX console that is no longer being used.

Also check the priority of the partition running your REXX console program. Keep in mind that the Console
Router program, whose queue space may soon be exhausted, could bring the entire system to a standstill.

REXX/VSE CPU Monitor
The VSE/REXX CPU Monitor is a CICS program that checks for critical performance values in VSE
partitions. It issues a console message when it detects that user-defined limits have been exceeded.
The user sets these limits using the SYSDEF function described on “SYSDEF” on page 240.

The CPU Monitor is called as a user exit from CICS transaction IEXM, a CICS background transaction.
This is described in the IBM CICS Transaction Server for z/VSE Enhancements Guide. The CPU monitor
analyzes the data that the CICS transaction recorded up to the last measurement interval. It checks
whether in any partition any of the limits set by function SYSDEF have been exceeded. If this is the case,
the program sends message ARX0998I to the console, for example

 ARX0998I PID Y1 JOB TEST EXCEEDS THE LIMITS: CPUTIME=10.15

Note that the message may show more than one critical value. This depends on how many of the five
system activity items exceeded their limits.

The entire message can appear more than once within a measurement interval: for each partition that
went over its limit you get one such message.

Using the REXX Console Automation function, you can provide automated actions in response to the
above message. For example, you may cancel a critical partition that is using up system resources.
The REXX Console Automation function includes an application example that provides a mechanism for
capturing an event as indicated by the above message. You find statements for handling the event in
member REXXEVNT.Z at label FLUSHCPU.

The REXXCO application framework is described in the following section “REXX Console Application
Framework” on page 247.

REXX program REXXCPUM is an example of how to make best use of transaction IEXM in conjunction with
the SYSDEF function and the CPU Monitor. See “REXXCPUM” on page 259 for a description of REXXCPUM.

REXX Console Application Framework
An example application framework (its name is REXXCO) is available to demonstrate how you can exploit
REXX Console Automation to your best advantage. First some typical operation scenarios are described
which are addressed with this framework. Then its concept is briefly discussed. The examples are
presented in detail further below, in section “Automated Operation Demos (Examples)” on page 253.

Operation Scenarios
• Suppose the operator has to flush jobs that misbehave, for example jobs that produce too much output.

The operator would notice this through VSE/POWER message

1Q52I OUTPUT LIMIT EXCEEDED...

This task can be automated. Job REXXFLSH demonstrates this; see “REXXFLSH” on page 255.

REXX/VSE CPU Monitor

Chapter 14. REXX/VSE Console Automation 247

http://publibfp.dhe.ibm.com/epubs/pdf/iescte01.pdf

• Suppose the operator has to conduct a defined dialog with an application. For example the operator
enters some data via the operator communication facility or answers an outstanding reply.

This task can be automated. Job REXXCXIT demonstrates this; see “REXXCXIT” on page 255.
• Suppose the operator has to schedule a job sequence according to clues taken from console messages.

A more complex example is given with REXXSPCE; see “REXXSPCE” on page 256. Jobs request work
file space via messages to the console. These requests are met in an automated way through the
REXXCO application framework.

Concept
The REXXCO application framework maintains an active REXX console. It is designed to monitor all
messages that are available at this console.

Jobs issue messages for various purposes. In a given installation, some of these messages may trigger a
request to perform a certain function. These messages are recognizable by given character strings within
the message text. This can be the message ID up front, but also any substring inside the message text.

The REXXCO application framework is a programmed operator who finds those messages and
automatically initiates a predefined action.

The application is designed to be highly tailorable so that it can be adapted to various needs. The tailoring
is done on two levels:

1. Definition of message - action pairs

A message is identified by a search string, the action by a name. This definition has the form of a table
and is called Message Action Table. You can build your own table, but you may also work with the
IBM-supplied table which you find in your system under the name REXXTABL.Z.

2. The actions can be one of three programmed responses:

• Internal REXX program
• External REXX program
• VSE job.

This is described below, in section “Actions” on page 249.

Message Action Table Entries
An entry in this table contains the following information:
Find_String

This string extends from the second word through position 71 (trailing blanks are not considered).
It serves as search argument to select from the set of console messages those that represent a
functional request.

Action
This is written in the first word of an entry. It may be used to initiate an action (function) to be taken
after a match of Find_String has been found in a console message.

Data
This can be any character string and is (optional) additional information for the function that performs
Action. It is recognizable in the Message Action Table as continuation line (the preceding line has a
continuation character in position 72).

Note: In this context, a match between an entry in the Message Action Table and a console message is
called an event.

The interplay between messages coming in at the console and entries in the Message Action Table is
illustrated in the following figure.

Console Application Framework

248 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Actions
As you can see from the above figure, in the REXXCO application Action can be performed by three kinds
of units:

• Internal REXX Program

This is one out of a set of REXX programs (also called REXX procedures) each of which is capable of
providing the appropriate action for an event.

None of these programs is a complete self-contained program. Instead, this type of program consists of
just a sequence of REXX statements. These sequences (procedures) are collected together into a larger
REXX program. The procedure is uniquely identified by a label. The label corresponds to the first word
(Action) in a Message Action Table entry.

• External REXX program

In the Message Action Table, this is indicated by an ampersand (&) in position 1. Behind the &,
beginning in column 2, is the name of the program. It will be called as (external) function:

rc = progname(..parameters..)

• A VSE job

This is indicated by just an asterisk (*) in position 1, without any name following. The REXXCO
application creates a new batch job using a given job skeleton and submits this job to the VSE/POWER
reader queue.

Console Application Framework

Chapter 14. REXX/VSE Console Automation 249

To create the job, the application uses the MERGE function (see “MERGE” on page 94). The input string
for MERGE consists of continuation lines (also called data lines) in the table entry. These lines must at
least supply values for the system variables INNAME and OUTNAME of the MERGE function. In addition,
these data lines can assign values to user-supplied variables in the skeleton.

For an illustration of the three types of action specification, you find below the Message Action Table that
is supplied by default in your system.

/* REXXTABL REXX/VSE Message-Action-Table for Demonstration Purposes */
/* Action FindString(2nd word..pos 71) Data,in continuation lines */
FLUSH1Q52I 1Q52I
FLUSHCPU ARX0998I
REPLY HIT ENTER TO CLOSE THE FILE
REPLY HALT EXIT REACHED, PRESS ENTER TO END
&REXXSTOP THIS LOOP CAN BE STOPPED
* REXXCO<< VSAM WORKFILE: X
 INNAME=PRD1.BASE.SKRXVSAM.Z OUTNAME=PRD1.BASE.REXXSPCE.JOB X
 VAR001=REXXSPCE VAR002=PRD1.BASE VAR003=PRD1.BASE.SKRXJCL.Z
* 0D20E X
 INNAME=PRD1.BASE.SKRXPTLG.Z OUTNAME=PRD1.BASE.REXXPTLG.JOB X
 VAR001=REXXPTLG

Figure 13. Example of a Message Action Table

How to Use the REXX Console Application REXXCO

Loading
The REXXCO application must first be loaded as a member of type PROC. You do this by using the
REXXLOAD program. This program is described in section “REXXLOAD” on page 253.

Invocation
You start the application from a job by supplying the statement

// EXEC REXX=REXXCO,PARM='p1 p2...pn'

Your system includes job REXXCONS which activates a console session and then starts the REXXCO
application.

The PARM operand allows you to override several names that are used by the REXXCO application (there
is no checking for valid names). PARM has the following parameters. Everyone of them is coded as
p=value.
MSGTABLE=

Fully qualified library member name (lib.sublib.mn.mt) of the Message Action Table. The REXXCO
application uses PRD1.BASE.REXXTABL.Z as default.

EVENTPROC=
Name of a REXX program that is called when Action is provided by an internal REXX program (Action
in the Message Action Table has neither an '&' nor an '*' in postion 1, but rather the label of that
internal REXX program).

The REXX program named by EVENTPROC has one or more of internal REXX programs bundled
together. Each of them is uniquely identified by a label, and this label corresponds to an Action in the
Message Action Table.

The REXXCO application uses PRD1.BASE.REXXEVNT.PROC as default. Please refer also to “User-
Supplied REXX Action Program” on page 251.

CONSNAME=
The 8-byte unique console name. If not specified it defaults to REXXCOnn, where nn is the partition id.

PROFNAME=
The 8-byte console profile name. If not specified it defaults to REXALLRC.

Console Application Framework

250 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

LOCKID=
An 8-byte name to be used by the LOCKMGR function. It will be passed to an Action job or to an
event-handling REXX program. If not specified it defaults to REXXCOnn, where nn is the partition id.

Note that you may call REXXCO in multiple partitions. This would allow you to supply different tables,
event-handling Action programs etc.

Termination
You terminate the REXXCO application by entering at the console the command

MSG part_ID,DATA=EXIT or MSG part_ID,DATA=HI

Event
An event takes place if a console message retrieved by the REXXCO application contains the Find_String
(as substring) specified in a REXX Message Action Table.

User-Supplied REXX Action Program
As was described earlier, the REXXCO application calls a REXX program to perform an action (unless
Action in the Message Action Table shows an '*'). The program is either a complete REXX program, as
indicated by an '&' in the first position in the table. Or it is the REXX program you had specified in the
parameter EVENTPROC. This is a set of internal REXX programs each of them uniquely identified by a
label.

You might access REXX statements at the given label as shown below (an excerpt from member
REXXEVNT.PROC).

The first statement, ARG, serves as interface between REXXCO and the REXX program defined in the
EVENTPROC parameter. Also, any external Action program has to apply this interface.

ARG lockid,message,tblentry
/*
lockid is the lockid you should use for the LOCKMGR function.
message is the VSE console message
tblentry is the matching table entry of REXX console message table

Your REXX program may proceed as follows:
*/
 ...
action = WORD(tblentry,1) /* Extract Action from table entry */
SIGNAL action
 ...
 ...
LABEL1: /* This code will get control if action='LABEL1' */
 ... /* Here you process the VSE console message */
RETURN

User-supplied Job Skeletons
You can create your own job skeleton. This is a VSE library member whose name you supply in the
INNAME= parameter of the message action table. It may contain variables to be resolved.

Here is an example of a job skeleton that contains variables to be resolved by the MERGE function.

$$$$ JOB JNM=--var001--,CLASS=Y,PRI=8,DISP=D
$$$$ LST CLASS=Q,DISP=D
// JOB --var001-- Job for REXX Console Event Processing
// LIBDEF *,SEARCH=--var002--
// EXEC REXX=--var001--,PARM='--rexxlock--,--rexxjnum--,--var003--,--reX
 xxmsg--'
$$/&
$$$$ EOJ
/+

Figure 14. Example of a Job Skeleton

Console Application Framework

Chapter 14. REXX/VSE Console Automation 251

Variable Resolution within Job Skeletons
Values for user-supplied variables in a job skeleton are represented as

--varNNN--

In order to have the variables resolved by the REXXCO application, you have to assign data to the
variables. You do this via the continuation lines (data lines) in the REXX Message Action Table entry. For
example,

 * any substring of a console message to be found X
 INNAME=PRD1.BASE.SKRXVSAM.Z OUTNAME=PRD1.BASE.NEWJOB.Z X
 VAR001=EVENTEST VAR002=PRD1.BASE VAR003=PRD1.BASE.SKRXJCL.Z

The INNAME parameter specifies the fully qualified name of the job skeleton. The OUTNAME parameter
specifies the fully qualified name of the output library member. After the variables are merged into the
skeleton, the output library member PRD1.BASE.NEWJOB.Z looks as shown below.

* $$ JOB JNM=EVENTEST,CLASS=Y,PRI=8,DISP=D
* $$ LST CLASS=Q,DISP=D
// JOB EVENTEST Job for REXX Console Event Processing
// LIBDEF *,SEARCH=PRD1.BASE
// EXEC REXX=EVENTEST,PARM='REXXCOF5,00780,PRD1.BASE.SKRXJCL.Z,F5 0005 X
 * REXXCO<< VSAM WORKFILE: TRACKS=5'
/&
* $$ EOJ

Please note that the following variables are generated by the REXXCO application and are concatenated
implicitly to the data line.

Reserved Variables Examples

REXXPID F5

REXXRPLY 0005

REXXLOCK REXXCOF5

REXXJNUM 00780

REXXMSG F5 0005 * REXXCO<< VSAM WORKFILE: TRACKS=5 (the first 76 characters)

Error Handling
The REXXCO application provides only limited error handling. Two execution phases must be
distinguished:

1. Initialization

This phase lasts until a console is activated. Error conditions during this phases are reported via error
codes 12, 16, 24 and 28 (see below) and cause the program to be terminated.

2. Message Monitoring

If an Action program fails and returns a nonzero error code, REXXCO goes into a controlled termination
with error code 8.

Syntax errors are not trapped. Any syntax error causes immediate termination at the point where the
syntax error occurred, for example when SENDCMD gives a reply where there is no outstanding reply
("REXX syntax error 40 - invalid call to routine... ").

Any other error conditions are not handled. Proper error handling can only come from the Action
program itself.

REXXCO returns the following

Console Application Framework

252 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Error Codes:

8
An (internal or external) Action terminated with a nonzero return code.

12
Invalid message ID.

16
Invalid parameter format.

24
SYSVAR failed.

28
ADDRESS CONSOLE failed.

Automated Operation Demos (Examples)
REXX Console Automation, as delivered to you, has several ready-to-run jobs and REXX programs that
demonstrate the versatility and simplicity of implementing an automated, or programmed, VSE/ESA
console.

Three of these demo programs

REXXFLSH
REXXCXIT
REXXSPCE

are practical applications of the concept presented in the preceding sections. They are described below
with some detail. The other programs address a great variety of operation tasks:
REXXCPUM

Shows how to make best use of transaction IEXM in conjunction with the SYSDEF function and the
CPU monitor

REXXDOM
Shows the manipulation of messages

REXXTRY
Provides a dialog with the operator to issue REXX commands

REXXJMGR
(this and the following) Manages VSE/POWER jobs

REXXWAIT
(this and the preceding one) Manages VSE/POWER jobs

REXXASM
(this and the following) Controls the interplay between JCL, Assembler, Linkage Editor and Librarian

SETSDL
(this and the preceding one) Controls the interplay between JCL, Assembler, Linkage Editor and
Librarian

This group of programs will be presented more or less in an overview fashion. For detailed information
you are advised to look at the actual source code which has ample commentary on the use and
functionality of the particular program.

Before you start using any of the demo units, you have to load them into a predefined place using the
REXXLOAD program. This is described in the following section.

REXXLOAD
This REXX program phase copies library members that are shipped to you into

• A member of type PROC - if the library member contains a REXX procedure

REXXLOAD

Chapter 14. REXX/VSE Console Automation 253

• The VSE/POWER reader queue - if the library member contains a job.

The program is driven by a special member which specifies the source library member as first word of
each record. The second word of the record specifies the target where the library member should be
copied to: either

• The keyword RDRCLASS=x to indicate that the library member contains a job to be transferred into the
VSE/POWER reader queue, or

• The name of a PROC type member.

The special member might contain records like the following:

PRD1.BASE.REXXCXIT.Z RDRCLASS=Y
PRD1.BASE.REXXFLSH.Z RDRCLASS=Y
PRD1.BASE.REXXDOM.Z PRD1.BASE.DOM.PROC
PRD1.BASE.SETSDL.Z PRD1.BASE.SETSDL.PROC
PRD1.BASE.REXXSAA.Z PRD1.BASE.REXXTRY.PROC
PRD1.BASE.REXXCO.Z PRD1.BASE.REXXCO.PROC

Your system already has such a member ready to be processed, its name is PRD1.BASE.REXXZBK.Z. You
may create your own member. If you give it a different name, you have to pass this name as a PARM
argument when you call REXXLOAD.

Invocation
You start the program from a PAUSExx job, for example PAUSEBG. The partition must have 1MB of
GETVIS storage available. The GETVIS requirement can even be higher if very large members are to be
copied.

r rdr,pausebg

Then enter at the console

0 // LIBDEF *,SEARCH=PRD1.BASE
0 // EXEC REXXLOAD[,PARM='l.s.mn.mt']

The program now copies the library members one by one to their targets, according to the specifications
given in the special member. After each successful copy operation, a message is issued telling which
member has just been processed.

Error Conditions
All error conditions are handled via routine ARXERROR which issues message ARX0960E. The following
error codes may show up:
100+RC

where RC was returned from EXECIO
200+ABS(RC)

where RC was returned from PUTQE (can be negative)
7

Invalid member specification in PARM.
8

* $$ JOB statement is missing in source VSE/POWER job.
9

Incorrect member specification in special member.
If REXX has not been initialized, REXXLOAD fails with RC 4094.

Note: Running REXXLOAD multiple times results in duplicate job entries in the VSE/POWER reader queue.
You might want to delete the superfluous jobs.

REXXLOAD

254 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXXFLSH
This demo addresses the first operation scenario that was presented in section “Operation Scenarios” on
page 247. It contains the implementation of an Action Job and an internal Action program.

Scenario
Suppose the operator has to flush jobs that misbehave, for example jobs that produce too much output.
The operator would notice this through VSE/POWER message

1Q52I OUTPUT LIMIT EXCEEDED...

This task can be automated. Job REXXFLSH demonstrates this.

Running the Demo
(Before you start make sure that you loaded the necessary jobs and program modules using REXXLOAD;
see “REXXLOAD” on page 253.)

The first step is to start the REXXCO application which activates a REXX console. You do this by entering
the VSE/POWER command

r rdr,REXXCONS

The job REXXCONS calls the REXXCO application by using an EXEC statement as described in section
“Invocation” on page 250. Now REXXCO starts watching out for message 1Q52I.

As a second step you start the job REXXFLSH

r rdr,rexxflsh

REXXFLSH is a job that issues (simulates the occurrence of) the VSE/POWER messages

0D20E HARDCOPY FILE SHOULD BE PRINTED
1Q52I OUTPUT LIMIT EXCEEDED FOR REXXFLSH 00987 xx, 180

A PRINTLOG is started automatically. The partition xx where the job runs is then PFLUSHed by the console
application.

Background Information
The Message Action Table has entries

FLUSH1Q52I 1Q52I
* 0D20E X
 INNAME=PRD1.BASE.SKRXPTLG.Z OUTNAME=PRD1.BASE.REXXPTLG.JOB X
 VAR001=REXXPTLG

When REXXFLSH issues its message 0D20E, REXXCO builds job REXXPRTL by using job skeleton
SKRXPTLG (please refer to the INNAME parameter in the Message Action Table). The job name REXXPRTL
is taken from variable VAR001 in the Message Action Table. REXXCO submits job REXXPRTL to the
VSE/POWER reader queue to invoke the PRINTLOG utility. When REXXFLSH issues its message 1Q52I,
REXXCO calls the REXX program REXXEVNT.PROC which has an internal REXX procedure at label
FLUSH1Q52I. This procedure initiates the PFLUSH command.

REXXCXIT
This demo addresses the second operation scenario that was presented in section “Operation Scenarios”
on page 247. It contains the implementation of an external Action program.

Scenario
Suppose the operator has to lead a defined dialog with an application. For example the operator enters
some data via the operator communication facility or answers an outstanding reply.

REXXFLSH

Chapter 14. REXX/VSE Console Automation 255

This task can be automated as demonstrated by job REXXCXIT.

Running the Demo
(Before you start make sure that you loaded the necessary jobs and program modules using REXXLOAD;
see “REXXLOAD” on page 253.)

The first step is to start the REXXCO application which activates a REXX console. You do this by entering
the VSE/POWER command

r rdr,REXXCONS

The job REXXCONS calls the REXXCO application by using an EXEC statement as described in section
“Invocation” on page 250. Now REXXCO starts watching out for, among several other strings, for the
string 'THIS LOOP CAN BE STOPPED'.

As a second step you start the job REXXCXIT

r rdr,rexxcxit

The job REXXCXIT issues the message

THIS LOOP CAN BE STOPPED BY: MSG 'SYSPID', DATA=HI

The message indicates that the REXX program is in a loop and that the loop can be interrupted by an
operator communication exit.

The string 'THIS LOOP CAN BE STOPPED' triggers the REXXCO application to stop the loop. REXXCXIT
then issues a message with an open reply

***** HALT EXIT REACHED, PRESS ENTER TO END

The REXXCO application gives the reply.

Background information
REXXCXIT starts the operator communication exit via OPERMSG(ON). It defines a trap for the HALT
condition (SIGNAL ON HALT). The REXXCO application recognizes the message

THIS LOOP CAN BE STOPPED BY: MSG 'SYSPID', DATA=HI

in the Message Action Table and calls an external REXX Action program. This program issues the operator
command

MSG xx,DATA=HI

HI ("Halt Interpretation") causes REXXCXIT to end its loop and to issue the open reply message. Again,
the REXXCO application recognizes the message. Via the Message Action Table, an internal REXX program
at label REPLY in REXXEVNT.PROC gets control and gives a reply (any reply will do). This leads to a normal
EXIT from REXXCXIT.

REXXSPCE
This is another, more elaborate demo of what the REXXCO console application is able to achieve. It
contains the implementation of an Action Job.

Scenario
In this demo, the REXXCO application monitors incoming messages of three jobs: REXXVSM1, REXXVSM2
and REXXVSM3. Each job attempts to write 5 tracks worth of data into VSAM work files. The jobs do not
know if and where this workfile space is available, and they don't care. All they know is the amount of
space they need. They communicate this need by way of a message.

REXXSPCE

256 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

A real-life operator normally would be able to determine how much, and where workfile space is
available, and then enter the necessary JCL information. The REXXSPCE application shows how this task
can be automated.

Before Starting...
Remember that before you invoke the program you should have loaded the necessary jobs and program
modules using the REXX program REXXLOAD (see “REXXLOAD” on page 253). Also, in order to run
the demo with REXXVSM1/2/3, you need at least 7 dynamic partitions of class Y. The class Y needs a
minimum of 1M allocation space. Approximately 800K of this allocation are needed as GETVIS storage.

Running the Application
The first step in starting the REXXCO application is to activate a REXX console. You do this by entering the
VSE/POWER command

r rdr,REXXCONS

The job REXXCONS calls the REXXCO application by using an EXEC statement as described in section
“Invocation” on page 250. Now REXXCO starts watching out for specific messages issued by REXXVSMn
jobs.

You now start these REXXVSMn jobs by entering

r rdr,rexxvsm*

Make sure that you have only one copy of each job REXXVMS1/2/3 in the reader queue. Delete duplicate
job entries if there are any. Otherwise the demo would not function properly because very likely partition
class Y has not enough partitions available.

Please note that you could start only one of the REXXVSMn jobs and still get the benefit of the demo.

Handling REXXVSMn Messages
Any one of the REXXVSMn jobs calls the REXX program REXXVSAM. This program stops itself by issuing
the statement

Y2-0046 // PAUSE REXXCO<< VSAM WORKFILE: WRQST=ALLOC TRACKS=5

(Partition ID and reply ID 'Y2-0046' are arbitrary example values.) By looking at the Message Action Table
shown in Figure 13 on page 250 you will find the substring within the above message

REXXCO<< VSAM WORKFILE:

as a Find_String in the table. The corresponding Action column shows an *. This indicates that a job is to
be built and submitted to VSE/POWER.

REXXCO does just that: it builds job REXXSPCE by using the job skeleton SKRXVSAM (please refer to the
INNAME parameter in the Message Action Table). The job name REXXSPCE and the name of the program
to be invoked, again REXXSPCE, are taken from variable VAR001 in the Message Action Table.

REXXCO submits job REXXSPCE to the VSE/POWER reader queue. When the job starts running, it calls
program REXXSPCE.

Creating DLBL/EXTENT Statements
The REXXSPCE program finds out whether a workfile of required size is available. It uses information from
the given message (WRQST=ALLOC and TRACKS=5) and also from member REXXCNTL.Z.

For each system resource used by the job(s), for example a work file, there is an entry in member
REXXCNTL.Z. It records system-dependent information like VSAM master catalog or volume and
maximum number of tracks. The master catalog is assumed to reside on the indicated volume.

REXXSPCE

Chapter 14. REXX/VSE Console Automation 257

Here is an example entry:

/* -- */
/* Resouce Id Used System related info */
/* -- */
VSAM_WORKFILE * CAT=REXX.VSAM.CAT VOL=SYSWK1 MAXTRACKS=7

Assuming for example that at the beginning 7 tracks are available (MAXTRACKS=7), the request of job
REXXVMS1 can be satisfied.

Note: This demo uses an oversimplified method of computing and bookkeeping of available workfile
space. It is there for demo purposes only and should not be considered as applicable for real-life
production systems.

If not enough work space is available, the job has to wait until a free resource is available. Otherwise
the REXXSPCE program builds appropriate JCL statements by using skeleton SKRXJCL.Z as a base. The
skeleton's name was supplied via VAR003 in the Message Action Table (see Figure 13 on page 250) and
passed as a parameter (see Figure 14 on page 251). Program REXXSPCE also uses information from
member REXXCNTL.Z to merge into the skeleton.

As a result, REXXSPCE creates a JCL procedure that contains the necessary DLBL and EXTENT
information. The name of the procedure is ALLOCnn where nn is the reply ID of the waiting job, for
example ALLOC46. The JCL procedure is started by sending a (programmed) reply to the REXXVSMn job:

46 // EXEC PROC=ALLOC46

Writing into and Freeing up Work Space
Job REXXVSM1 ends its pause and writes something into the work file. When done, it issues the message

Y2 0046 REXXVSM1 HIT ENTER TO CLOSE THE FILE

By looking at the Message Action Table shown in Figure 13 on page 250 you will find the substring within
the above message

HIT ENTER TO CLOSE THE FILE

as a Find_String in the table. The corresponding Action column says REPLY which points to a REXX
procedure within member REXXEVNT.Z. Job REXXVSM1 continues and requests that the workfile space
should be freed:

Y2 0046 * REXXCO<<VSAM WORKFILE: WRQST=FREE TRACKS=5

Again, a new REXXSPCE job is built and submitted to VSE/POWER. The job frees up 5 tracks of workfile
space. It also computes and records the new value of available tracks.

The flow of events that was shown for one job should really be thought as a process of multiple jobs
running or waiting. Assuming for example that the original amount of available tracks is 7, job REXXVSM2
has to wait until REXXVSM1 frees its 5 tracks.

Summary Listing of Demo Parts

The demo consists of the following parts:

-- Demo Jobs --

REXXVSMx.Z, x=1,2,3
"Customer's" batch job. Calls REXXVSAM.PROC. This is the source of what will be loaded into the
VSE/POWER reader queue by REXXLOAD.

REXXCONS.Z
Starts the REXX console application REXXCO.PROC. This is the source of what will be loaded into the
VSE/POWER reader queue by REXXLOAD.

REXXSPCE

258 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

-- Demo REXX Programs --

REXXSPCE.PROC
REXX program that executes the ALLOC and FREE work requests.

REXXEVNT.PROC
REXX program that contains internal REXX Action programs.

REXXVSAM.PROC
REXX program that is the batch application accessing VSAM files.

-- Demo Library Members --

REXXCNTL.Z
Job Resource Control File that contains VSAM file information

Please be aware that this member has a reference to volume SYSWK1. Also, the master catalog is
assumed to reside on SYSWK1. If you use different volumes you have to adjust the reference.

REXXTABL.Z
Message Action Table that contains strings of message text for which the REXX console is sensitive in
order to schedule the workfile request.

SKRXJCL.Z
JCL PROC skeleton that supplies JCL statements for REXXVSMx. Will be used by REXXSPCE.PROC.

SKRXVSAM.Z
Skeleton to create REXXSPCE job which is used by the REXXCO application framework.

REXXCPUM
This function is an example of how you can make optimum use of the measurement facilities described in
“REXX/VSE CPU Monitor” on page 247.

The function has three main parts

1. Verifying that CICS is active
2. Setting a system activity limit
3. Starting CICS transaction IEXM.

It also allows to terminate the CPU monitor function.

If the REXXCO application is active in another partition, it can monitor the ARX0998I messages generated
by transaction IEXM in combination with user exit ARXITCPU.

Scenario
Suppose the operator has to flush jobs that consume too much CPU time. Using the REXX CPU Monitor,
the operator would notice this through message

 ARX0998I PID Y1 JOB TEST EXCEEDS THE LIMITS: CPUTIME=10.15

This task can be automated. REXX procedure REXXCPUM demonstrates this.

Invocation
The REXXCPUM function is called according to the following format:

CALL REXXCPUM CICS_prompt,CPU_Time_Limit,Elapsed_Time_Limit,
 I/O_Count_Limit,I/O_Rate_Limit,CPU_Rate_Limit,Interval,runMonitor

where
CICS_prompt

Identifies the CICS partition, for example 'F2-0002' (which is also the default).

REXXCPUM

Chapter 14. REXX/VSE Console Automation 259

CPU_Time_Limit
Limit of accumulated CPU time, in 1/100 seconds, that should not be exceeded. The default is 0.

A value of 0 causes REXXCPUM not to set the CPU time limit, that is, the current limit remains
unchanged.

This parameter can have a special value: STOP. This tells REXXCPUM to terminate CPU monitoring;
message ARX0998I will no longer appear. You code the REXXCPUM call as follows:

CALL REXXCPUM ,'STOP'

Elapsed_Time_Limit
Limit of elapsed time a job is running, in seconds, that should not be exceeded. The default is 0.

A value of 0 causes REXXCPUM not to set the elapsed time limit, that is, the current limit remains
unchanged.

I/O_Count_Limit
Limit of job I/Os, as an absolute number, that should not be exceeded. The default is 0.

A value of 0 causes REXXCPUM not to set the I/O count limit, that is, the current limit remains
unchanged.

I/O_Rate_Limit
Limit of job I/Os, in numbers per second, that should not be exceeded within a measurement interval.
The default is 0.

A value of 0 causes REXXCPUM not to set the I/O rate limit, that is, the current limit remains
unchanged.

CPU_Rate_Limit
Limit of job CPU time, in percent of total CPU time, that should not be exceeded within a measurement
interval. The default is 0.

A value of 0 causes REXXCPUM not to set the CPU rate limit, that is, the current limit remains
unchanged.

Interval
The time between two measurement activities in the format hhmmss. For example '000015' is 15
seconds '001230' is 12 minutes and 30 seconds.

The smallest value is 10 seconds, the default is 15 seconds.

runMonitor
The duration of how long the CPU monitor is to run, starting from the current time. The format is
'hh:mm:ss' The program uses this value to compute the STOptime which it passes to CICS transaction
IEXM. The default is 12:00:00, i.e. 12 hours.

The REXXCPUM function is intended to be called as subroutine or as function from another REXX
program, for example

 CALL REXXCPUM 'F2,1000' or x = (REXXCPUM 'F2')

If you want to invoke REXXCPUM via

 // EXEC REXX=REXXCPUM... or EXEC REXXCPUM...

within a REXX program (for example REXXTRY), then you must remove the comment around the PARSE
ARG instruction and put the following ARG instruction inside a comment. This is also described in the
source code.

Also note that you may want to modify the first instruction

 partIds = 'F1F2F3' /*<==== Modify here to your needs */

which sets some default values for partitions to be excluded from monitoring.

REXXCPUM

260 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Error Codes
REXXCPUM issues the following error codes:
40

CICS not active
48

Activate console failed
52

ADDRESS CONSOLE cons_cmd failed
56

Invalid runMonitor argument
60

Invalid cpu_time_limit argument
64

Invalid elapsed_time_limit argument
68

Invalid io_count_limit argument
72

Invalid io_rate_limit argument
76

Invalid cpu_rate_limit argument
80

Invalid interval argument

REXXDOM
This demo shows at a real console how under REXX Console Automation the presentation characteristics
(highlighting, in this case) of messages can be changed. REXXDOM is an example for scanning the
hardcopy file from a REXX program.

Running the Demo
It takes three steps to run the demo:

1. Generate a phase with name REXXWTO. This program writes highlighted messages. You generate the
phase by submitting the following JCL statement:

// EXEC REXX=REXXDOM,SIZE=(ASMA90,50K),PARM='LINK'

2. Create 10 highlighted messages by invoking the above program, either

• from a PAUSE job:

// EXEC REXXWTO

or
• in a REXX procedure:

ADDRESS LINK REXXWTO

3. Invoke REXXDOM again, this time to remove one or more highlighted messages from the HOLD state
(that is: dehighlight it). Submit the instruction

EXEC REXXDOM n

REXXDOM

Chapter 14. REXX/VSE Console Automation 261

where n is the number of messages (between 1 and 10) to be dehighlighted. You place this statement
either in a REXX procedure, or you enter it from a REXXTRY prompt (REXXTRY is presented in the
following section).

When you run the demo again, you can start with step 2 and leave out the first step.

Background Information
REXXDOM uses the command

REDISPLAY ...,HOLD

to retrieve from the hardcopy file messages that are in HOLD state. It counts these messages (excluding
messages about outstanding replies which will not be deleted). It then uses the MDBGMID variable(s) to
initiate the DELMSG function as often as requested by the user.

Other Examples (Not Related to Console Functions)

REXXTRY
Before you start using any of the demo units, you have to load them into a predefined place using the
REXXLOAD program. This is described in section “REXXLOAD” on page 253.

This job calls REXX program REXXTRY which prompts you to interactively try REXX statements, possibly
including REXX commands that you developed yourself.

If you run REXXTRY with no parameter, or with a question mark as a parameter, it will briefly describe
itself. You may also enter a REXX statement directly on the command line for immediate execution, for
example

4 call sysdef 'connect occf'

or, to utilize REXXTRY as an interactive execution environment,

4 exec rexxasm

or one of your own REXX programs.

REXXJMGR
This program implements a simple job manager. VSE/POWER jobs with name MYJOBnnn, nnn=1,2,3,..,
are submitted. When starting REXXJMGR, you specify in PARM how many jobs are to be submitted (the
default is 2).

Asynchronous execution will be controlled. This subject is discussed at some detail in section “Submitting
and Controlling Power Jobs” on page 198.

REXXJMGR writes a report, an example is shown below:

0 exec rexxjmgr
Y3 0001 1Q47I Y3 MYJOB2 08172 FROM BOEVSE16(REXXJMGR) , TIME=12:10:56
Y3 0047 // JOB MYJOB2
 DATE 08/30/95,CLOCK 12/10/56
Y2 0001 1Q47I Y2 MYJOB1 08171 FROM BOEVSE16(REXXJMGR) , TIME=12:10:56
Y2 0046 // JOB MYJOB1
 DATE 08/30/95,CLOCK 12/10/56
Y3 0047 EOJ MYJOB2 MAX.RETURN CODE=0004
 DATE 08/30/95,CLOCK 12/10/58,DURATION 00/00/01
Y2 0046 EOJ MYJOB1 MAX.RETURN CODE=0000
 DATE 08/30/95,CLOCK 12/10/58,DURATION 00/00/01
BG 0000 ****** JOB REPORT ***************************
BG 0000 ****** MYJOB2 failed MAXRC=0004 TIME=12:10:58
BG 0000 ****** MYJOB1 run successfully TIME=12:10:58
BG 0000 ****** END OF REPORT ************************
BG 0000 rc = 0 .. REXXTRY on VSE
BG-0000

REXXTRY

262 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

REXXWAIT
This program submits a job and awaits its execution.

The job runs a utility program in another partition. It issues a List Directory command. Its output is
retrieved and scanned for a user-supplied string (the default is ARXINIT).

An example of console output is shown below.

45 exec rexxwait
Y2 0001 1Q47I Y2 MYJOB 04584 FROM BOEVSE16(REXX) , TIME=12:05:18
Y2 0046 // JOB MYJOB
 DATE 07/13/95,CLOCK 12/05/18
Y2 0046 EOJ MYJOB MAX.RETURN CODE=0000
 DATE 07/13/95,CLOCK 12/05/19,DURATION 00/00/00
Y1 0045 *--*
Y1 0045 Job output was analysed. Match found at line 40
Y1 0045 *--*
Y1 0045 ARXINIT PHASE 95-05-09 95-07-11 303032 B 307 NO YES 31 ANY
Y1 0045 rc = 0 .. REXXTRY on VSE

REXXASM
This program works with VSE JCL and VSE utilities. A small assembler program will be compiled, linked
and executed. Its name can be supplied in PARM (the default is DEMOSVA).

The size of the program will be shown via a LIBR LD SDL excerpt.

You may invoke the program from a REXXTRY prompt. An example of console output is shown below.

45 exec rexxasm
Y1 0045 *--*
Y1 0045 (1) Module DEMOSVA assembled
Y1 0045 (2) Module DEMOSVA linked
Y1 0045 (3) Module DEMOSVA executed: RC= 0
Y1 0045 (4) Module DEMOSVA found in library PRD1.BASE:
Y1 0045 DEMOSVA PHASE 95-07-03 95-07-13 6 B 1 YES YES 31 24
Y1 0045 *--*
Y1 0045 rc = 0 .. REXXTRY on VSE
Y1-0045

REXXSSDL
This program communicates with the VSE Librarian to either

• load a phase into the SVA (using the JCL function SET SDL) and to show the phase's address in the SVA,
or to

• just show the address. In this case, you invoke the program via

exec rexxssdl demosva (noload

The phase name can be supplied as a parameter (the default is DEMOSVA).

An example of a REXXSSDL output is shown below.

0 exec rexxssdl demosva
BG 0000 --
BG 0000 M E M B E R ORIGIN SVA/MOVE LOADED PHASE ADDRESS ENTRY POINT
BG 0000 NAME TYPE SYSLIB MODE INTO SVA SIZE IN SVA IN SVA
BG 0000 --
BG 0000 DEMOSVA PHASE NO YES YES 6 001E68F8 001E68F8
BG 0000 rc = 0 .. REXXTRY on VSE
BG-0000

Miscellaneous Examples of Using the REXX Console

REXXWAIT

Chapter 14. REXX/VSE Console Automation 263

Retrieve Messages using Filter and Timestamp
ADDRESS CONSOLE
'ACTIVATE NAME REXX PROFILE REXNORC' /* Activate console session */

'RED 10L,'0S03I' /* VSE console REDisplay command */
 /* to get message(s) 0S03I */
'RED E' /* End redisplay */

rc = GETMSG(consmsg.,'RESP',,,30) /*Retrieve response of redisplay */

'DEACTIVATE REXX' /* Deactivate console session */
EXIT

Scan the Hardcopy File
The VSE system command REDISPLAY allows to retrieve messages from a specific partition.

ADDRESS CONSOLE
'ACTIVATE NAME REXX PROFILE REXNORC' /* Activate console session */

'RED 34L,F5,E' /* VSE console REDisplay command */
 /* to get message from partition F5 */

rc = GETMSG(consmsg.,'RESP',,,30) /*Retrieve response of redisplay */

'DEACTIVATE REXX' /* Deactivate console session */
EXIT

Just like the VSE utility PRINTLOG, the REDISPLAY command allows to view records from the hardcopy
file in a selective manner. You can specify a filter so you will see only messages from a particular partition,
or messages with a particular message ID.

Scan Job Messages for One Partition
REXX program REXXSCAN, by utilizing the VSE command REDISPLAY and the GETMSG function of REXX
Console Automation, creates a report covering all jobs that have been running in a given partition since a
given date. The partition ID and the date are passed as PARM information when invoking the program:

// EXEC REXX=REXXSCAN,PARM='partid date'

REXXSCAN

264 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

/***/
/***** REXXSCAN: ******/
/***** Scan Job Messages REXX program for REXX Console Automation */
/***** Demo Purposes. */
/***** */
/***** Test VSE console REDISPLAY command together with the REXX */
/***** Console GETMSG function. Create a job report of all jobs */
/***** that have been running in a given partition since a given */
/***** date. Job report is contained in the POWER LST queue and */
/***** displays POWER jobname, POWER jobnumber, POWER starttime, */
/***** VSE jobname, startdate, starttime, endtime, enddate, */
/***** duration, and the maximum return code of a VSE job. */
/***** */
/***** INVOCATION: // EXEC REXX=REXXSCAN,PARM='partid date' */
/***** Scans all messages written for partition or class */
/***** 'partid' starting with date */
/***** partid BG,F1...F9,FA,FB,partition ids of dynamic classes */
/***** date mm/dd/yy */
/***** */
/***** Example: // EXEC REXX=REXXSCAN,PARM='BG 08/31/95' */
/***** */
/***** RETURN CODES of the REXXSCAN program: */
/***** */
/***** 0 All messages for partition scanned */
/***** 999 Invalid parameters */
/***** 1000+x Problems with GETMSG */
/***** */
/***/

PARSE ARG partid date . /* Pass as argument partition id and date */
/***/
/* check partid */
/***/

/***/
/* check date */
/***/

ADDRESS CONSOLE
CALL SYSVAR(syspid) /* Get the Partition the PROC is running in */
retcode = 0 /* initialize return code */
 /* initialize end of redisplay condition */
end_line = '------------------------ E N D O F F I L E ---'

/***/
/* Put heading line to output stream */
/***/
SAY 'PWR_jobn jobnr PWRstart VSE_jobn startdate starttim enddate' ||,
 ' endtime duration rc'

Figure 15. Job Message Scanner REXXSCAN - Part 1 of 3

REXXSCAN

Chapter 14. REXX/VSE Console Automation 265

SAY '==' ||,
 '======================='

/***/
/* Activate console session */
/***/
ACTIVATE 'name REXX'SYSPID 'profile REXNORC'

/***/
/* Start REDISPLAY for partition partid */
/***/
'RED F,' || date || ',' || partid /* start redisplay */
IF RC > 0 THEN
DO
 retcode = RC
 SIGNAL end_label
END

/***/
/* Analyze messages from REDISPLAY */
/***/
DO FOREVER /* Forever - until end of messages */
 rc=GETMSG(t.,'msg',,,10) /* Retrieve response of redisplay */
 IF rc>0 THEN /* show problems with MSG retrieval*/
 DO
 retcode = 1000+rc
 LEAVE
 END
 IF (SUBSTR(t.1,1,LENGTH(end_line)) = end_line) THEN
 DO /* no more messages */
 LEAVE
 END

 message = SUBSTR(t.1,1,48) /* Find the msg ID */
 first = WORD(message,3) /* first word of message */
 second = WORD(message,4) /* second word of message */

 SELECT
 WHEN (first='1Q47I' |, /* start of POWER JOB found */
 first='//' & second='JOB' |, /* start of VSE JOB found */
 first='EOJ') THEN /* end of VSE JOB found */
 DO /* concatenate message parts */
 total_msg = ''
 DO I=1 TO t.0
 total_msg = total_msg || t.I
 END
 END
 OTHERWISE /* do nothing */
 END /* select */

Figure 16. Job Message Scanner REXXSCAN - Part 2 of 3

REXXSCAN

266 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 SELECT /* do message analysis */
 WHEN(first='1Q47I') THEN /* start of POWER job found */
 DO
 /* save POWER jobname job_number and starttime */
 PARSE VAR total_msg,
 power_jobname job_number nil1 ', TIME=' power_starttime nil2
 END
 WHEN(first='//' & second='JOB') THEN /* start of VSE job found */
 DO
 /* save VSE jobname startdate and starttime */
 PARSE VAR total_msg,
 VSE_jobname nil ' DATE ' start_date ', CLOCK ' start_time
 END
 WHEN(first='EOJ') THEN /* end of VSE job found */
 DO
 /* save VSE jobname returncode enddate endtime and duration */
 PARSE VAR total_msg,
 . . . VSE_jobname2 nil1 ' MAX.RETURN CODE=' job_rc nil2,
 ' DATE ' end_date ',CLOCK ' end_time ',DURATION ' job_time nil
 /* put info into the current output stream, i.e. LST output */
 SAY SUBSTR(power_jobname,1,8) job_number,
 RIGHT(power_starttime,8),
 SUBSTR(VSE_jobname,1,8),
 start_date SUBSTR(start_time,1,8) end_date end_time,
 RIGHT(STRIP(job_time),9) job_rc
 END
 OTHERWISE /* accepted messages */
 END /* select */

'RED' /* continue redisplay */
 IF RC > 0 THEN
 DO
 retcode = RC
 SIGNAL stop_label
 END
END /* do forever */

stop_label:
/***/
/* Stop REDISPLAY for partition partid */
/***/
'RED END' /* stop redisplay mode */
IF RC > 0 THEN
DO
 retcode = RC
 SIGNAL end_label
END

end_label:
/***/
/* Deactivate console session */
/***/
DEACTIVATE 'REXX'SYSPID

EXIT retcode

Figure 17. Job Message Scanner REXXSCAN - Part 3 of 3

Return and Reason Codes
This section lists return and reason codes, together with explanations, as issued by the

MCSOPER macro
MCSOPMSG macro
MCSCRE macro
Command processors.

Note: Return and reason codes are given in decimal format.

MCSOPER Macro

REXXSCAN

Chapter 14. REXX/VSE Console Automation 267

00 00
Successful completion.

04 00
Console with specified name is already active (ACTIVATE) or not active (DEACTIVATE).

16 00
Invalid input: The address of the parameter list or of an input parameter is invalid.

16 02
Invalid input: The specified console was not activated by this task (DEACTIVATE).

16 04
Invalid input: The requested function is invalid (not ACTIVATE nor DEACTIVATE).

16 08
Invalid input: The specified name contains invalid characters, or is none of the predefined values nor a
valid VSE/ESA userid (ACTIVATE).

16 16
Invalid input: The specified MSGDLVRY option is invalid (ACTIVATE).

16 24
Invalid input: The specified authority level (OPERPARM area) is invalid.

16 32
Invalid input: The specified message level (OPERPARM area) is invalid.

16 44
Invalid input: The macro acronym or version indicator in the parameter list is invalid.

20 00
Service routine failure.

24 00
The caller is not in supervisor state or not in primary ASC mode or not in 31-bit addressing mode.

MCSOPMSG Macro

00 00
Successful completion. For REQUEST=GETMSG, reason code 00 also indicates that no more
messages nor DOMs are currently queued for this console.

00 01
REQUEST=GETMSG completed successfully, and at least one more message is queued for this
console.

00 02
REQUEST=GETMSG completed successfully, and at least one DOM is queued for this console.

00 03
REQUEST=GETMSG completed successfully, and at least one message and one DOM are queued for
this console.

04 00
Console was not suspended (only applicable for REQUEST=RESUME).

08 00
No message available for the specified REQUEST=GETMSG search criteria (if any), and no more
messages nor DOMs are currently queued for this console.

08 01
No message available for the specified REQUEST=GETMSG search criteria, but there are is at least
one other message queued for this console.

08 02
No message available for the specified REQUEST=GETMSG search criteria, but there are is at least
one DOM queued for this console.

REXXSCAN

268 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

08 03
No message available for the specified REQUEST=GETMSG search criteria, but there are is at least
one message and one DOM queued for this console.

12 00
Console is suspended (applicable only for REQUEST=GETMSG). REQUEST=RESUME must be issued
before messages can be retrieved again for this console.

16 00
Invalid input: The requested function is invalid (not GETMSG or RESUME).

16 01
Invalid console ID: The console is not active.

16 02
Invalid console ID: The console was not activated by this task.

20 00
The address of the parameter list or of an input parameter is invalid.

20 01
The parameter list contains an incorrect macro acronym or version indicator.

20 04
The console was activated with MSGDLVRY=NONE, or with MSGDLVRY=FIFO but CMDRESP=YES was
specified.

20 05
The caller is not in supervisor state or not in primary ASC mode or not in 31-bit addressing mode.

24 00
Service routine failure.

MGCRE Macro

00 00
Processing completed successfully, input is accepted.

00 01
Input is accepted, but was recognized as sensitive, like a Job Control // ID statement possibly
containing a password. The input text is logged with an overlay '(PARAMETERS SUPPRESSED)' and
the modified text is returned in the CSA, allowing consoles to echo it instead of the original input text.

04 00
Console with specified name is already active.

08 01
Command not accepted because a previous command from the same console and for the same
command processor is not yet completed.

08 02
Invalid reply ID. Either no message is pending for the specified reply ID or the console is not
authorized to reply to the pending message.

08 03
The console is not authorized for the specified command.

08 04
The Attention command processor is not active.

08 05
The Redisplay command processor is not active.

08 06
Input from system console is inhibited due to REMOTE operating mode (there is a relation to the
OPERATOR command).

REXXSCAN

Chapter 14. REXX/VSE Console Automation 269

08 07
Redisplay mode is already active for another user. This condition is only possible for consoles that
operate on behalf of multiple users by means of the UTOKEN parameter.

08 08
The input was rejected by an exit routine.

08 09
REDISPLAY C or E is rejected because redisplay mode is not active.

08 10
REDISPLAY command rejected due to shortage of 24-bit system GETVIS storage.

08 11
A command was issued at a user console while this console was still in redisplay mode, explanation
mode, or help mode.

08 16
Command not accepted because the specified console is suspended.

08 17
The specified command (e.g. REDISPLAY or EXPLAIN) is not supported for an inactive console (only
possible when CONSNAME was specified).

08 18
No dummy console is available to process input for an inactive console (only possible when
CONSNAME was specified).

12 00
The input text is all blanks.

12 01
The input length is 0 or larger than 126 (not EXPLAIN), or different from 0 and 12 for EXPLAIN
requests.

12 02
The input starts with a numeric character, but there is no leading token of 1 to 4 numeric characters
that can be interpreted as a reply ID.

16 01
Invalid console ID: The console is not active.

16 02
Invalid console ID: The console was not activated by this task.

16 08
Invalid console name: The name is shorter than 4 characters or contains invalid characters.

20 00
Service routine failure.

Command Processor Return and Reason Codes
The table below shows the return codes (RC) and reason codes (RS) of the three command processors

• Console Router
• Attention Routine
• Hardcopy File (HCF).

Table 3. Return and Reason Codes from Command Processors

RC RS Console Router Attention Routine HCF Processor

0 0 okay okay okay

0 1 not used not used okay, response is caused by
RED E,xL

REXXSCAN

270 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 3. Return and Reason Codes from Command Processors (continued)

RC RS Console Router Attention Routine HCF Processor

4 0 last message of command
response

not used last message of command
response

4 1 not used not used last message of command
response, caused by RED

E,xL

4 2 not used not used last message of command
response, top of HCF

4 3 not used not used last message of command
response, bottom of HCF

8 0 not used end of command response,
command was processed by

attention routine.

not used

8 1 not used end of command response,
command was passed to a

subsystem.

not used

8 >8 MDB contains an information
or error message (English

version); could indicate end
of command response.

not used MDB contains an information
or error message (English

version); could indicate end
of command response.

CORCMD Command for Problem Solving
An unsupported debug command is available which gives information about the internal status of the
console router. In case of a problem, IBM service personnel might ask you to enter this command. In
some situations you might even be able to analyze the command output yourself to solve a specific
problem.

Just enter CORCMD plus one of the following keywords. For example

CORCMD STATUS=CONS

Please note that command parsing is not very fancy. Therefore, type a keyword exactly as shown. In
particular, no blanks are allowed before or after the = sign.
STATUS=CONS

returns status information about the consoles known to the console router. Number of consoles shows
the number consoles that are active, suspended, accept undeliverable messages, or can be alerted.
Then a list of all consoles follows, showing the console name, the console ID, and the status of a
console. A console ID with the high-order bit on, as shown with console name HAUS, indicates a user
console. Otherwise it is a master console.

Note: This command can only display 10 lines of data. Therefore, only the first 30 consoles are
displayed.

corcmd status=cons
Number of consoles: Act=00000003 Sus=00000000 Ud=00000001 Al=00000001
SYS 00000002 A--- VMC 00000003 A--- IC 00000004 A--U
REXX 00000023 A--- HAUS 80000125 A---
End of STATUS=CONS

CORCMD Command

Chapter 14. REXX/VSE Console Automation 271

Explanation:

Numer of consoles: ACTive, SUSpended, accepts UD msgs, accepts ALerts
Status: Active, Suspended, Netview(automa.), Undel. msgs

CONS=console_name
returns status information about a specific console.

corcmd cons=sys
Name=SYS ID=001BD3A4 Date=1995072 Time=09:14:24.63 Stat=Nrm
RtCd=FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF MLvl=FE00 Ud=N Al=Y Aut=N DOM=Def
EC=0000 RCS=08000000 CmdPnd=----- MsgDlv=Srch CSAFl=---
QFrst=00000000 QSrch=00000000 QDOM=00000000
MsgCt=00000000 DOMCt=00000000 SusCt=00000000
End of STATUS=CONS

Explanation:

Date & Time of last activate, suspend or resume
Stat ACTive, SUSpended, RESumed, INItializing, NoRMal
RtCd enabled routing codes
MLvl enabled message level
Ud undeliverable messages accepted: Y or N
Al alert ECB specified: Y or N
Aut automatable messages accepted: Y or N
DOM DOM option: ALL, DEFault, NONe
EC unique error code for specific return codes
RCS last return and reason code passed via MCSOPMSG
CmdPnd command pending:
 A: AR cmd, H: HCF cmd, C: Console router cmd
 M: HCF cancel/end msg, X: explanation request
MsgDlv message delivery option: SeaRCH, FIFO, NONe
CSAFl Console Status Area flags
 A: alerted, U: suspended, X: explain response
MsgCt number of undelivered messages
DOMCt number of undelivered DOms
SusCt number of suspends since last activate
QFrst, QSrch, QDOM debug information

FORCE
this command checks whether the oldest queue item of the console router main queue is blocked by
a console and, because of this, the reusage of such a queue item is prevented. When this is the case,
then such a console is suspended, no matter what console it is. The system responds with:

Number of consoles suspended due to CORCMD FORCE : 01

STATUS=QUEUE
returns status information about the console router queues and queue space management.

corcmd status=queue
GETVIS for RI: Lim=0010 Cur=0000 ML: Lim=0028 Cur=0000
Non-returnable: RI=0000007F ML=000001F3 QMGEmpty: TIK=0021 Code=0001
Returnable RI: Lim=0064 Hi=0000 Cur=0000
Returnable ML: Lim=0064 Hi=0000 Cur=0000
Alert : Pct=0032 RI-Base=00000071 RI-Pct=00000038
CRQ: Cur=001B Hi=001B MRQ: Cur=0001 Hi=0001 DYQ: Cur=0000 Hi=0000
LRQ: Cur=0019 Hi=0019 DHQ: Cur=0000 Hi=0000
ARQ: Cur=0000 Hi=0001 HCQ: Cur=0000 Hi=0000
FRQ: Cur=0037 Hi=0044 YRQ: Cur=000A Hi=000A XRQ: Cur=0022 Hi=0031
DOQ: Cur=0002 Hi=0002 XTQ: Cur=0000 Hi=0000 MOQ: Cur=000B Hi=0000
MLQ: Cur=000E Hi=0048 YMQ: Cur=000A Hi=000A XMQ: Cur=0168 Hi=01A1
End of STATUS=QUEUE

Explanation:

RI (routing) queue item
ML message line
Lim maximum number (e.g. GETVIS)
Cur current number
Hi highest number ever (can exceed LIM for returnable RI and ML)
QMGEmpty: TIK task ID of last unsuccessful request to get an
 empty queue item
 Code Code of last unsuccessful request:
 00 no free RI or ML found

CORCMD Command

272 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 01 RI requ for APNormal: too many undeliver. msgs for task (RI
 NOTE: This is the typical case when a task wrote messages,
 but such messages were not retrieved from all consoles
 02 QMEXMLSP: no GETVIS in IPL stage 2
 03 QMEXMLSP: GETVIS failed
 04 QMEXRISP: no GETVIS in IPL stage 2
 05 QMEXRISP: max number of expansions reached
 06 QMEXRISP: GETVIS failed
 07 QMFREE1: CRQ is empty
 08 QMFREE1: cannot be reused since not logged yet
 09 QMFREE1: cannot be reused, blocked by a console
 NOTE: A console that cannot be suspended prevents reusage of
 a queue item. CORCMD FORCE drops such a console.
 0A QMFREE1: no more RIs in CRQ
 0B QMGETSRI: GETVIS for single RI failed
 0C QMGETSML: GETVIS for single ML failed
 0D PROCRIML: Did not get a ML
 0E PROCRIML: Did not get a ML
 0F PROCRIML: invalid condition
 10 ML requ for APNormal: too many undeliver. msgs for task (ML
 NOTE: see note of code=01
 11 QMFREE1: cannot be reused, blocked by console, RCSUSPND
 NOTE: see note of code=09

Note: The output of the STATUS=QUEUE command can only be interpreted with deep system
knowledge and is therefore not very useful for the general user. To help you to determine whether
a console router queue space problem exists, check the following:
GETVIS for RI (ML)

During IPL, the console router allocates an initial amount of queue space. This space can be
expanded when heavy message traffic occurs. Expansion is done via 31-bit system GETVIS
requests. Today, the size of such a GETVIS request is about 4 KB. This space will never be
returned. As long as Cur shows a value below Lim, the console router has no general space
problem, except if 31-bit system GETVIS is generally exhausted. The number of queue items
(RI) and message lines (ML) that were built from this permanent space is displayed under Non-
returnable RI (ML)

Returnable RI (ML)
displays the number of queue items and message lines that are returnable to system GETVIS
space. Returnable queue space is requested in 31-bit system GETVIS space in emergency
situations and if the permanent space is not sufficient. Cur shows the number of allocated
queue items or message lines that will be returned as soon as possible. In very rare cases, Cur
might even exceed Lim to prevent system hangups. Over the long run, Cur should return to zero.
However, this can take some time.

Alert
shows numbers needed for debug.

CRQ, etc.
shows the number of queue items in the different queues managed by the console router. CRQ
is the console router main queue. Problems might soon arise if the Cur number is very low, for
example, below 5. These actions might give relief to the system:

1. Reply as many outstanding replies as possible.
2. Terminate as many jobs (tasks) as possible.
3. Terminate as many consoles as possible.

The numbers shown in all the other queues are for debug purpose.
QMGEmpty: TIK= Code=

gives information about the last failing request of an application for an empty queue item to build
a new queue item. This state is temporary and the information given in this field might no longer
be true. However, if the information is true, the STATUS command shows WAITING FOR ROUTER
BUFFER SPACE. Code gives a reason why the request for the task indicated by TIK failed.

TRACE
returns the current trace setting (ON or OFF)

CORCMD Command

Chapter 14. REXX/VSE Console Automation 273

TRACE=ON
sets the console router trace to on. If no trace area exists, a trace area with the default size is
allocated (8 KB).

Note: The DEBUG command also turns on and off the console router trace. Only if a console router
trace during IPL is needed, the CORCMD TRACE=ON must be used.

TRACE=OFF
sets the console router trace to off.

TRACE=END
returns the storage of the trace area to the system.

TRACE=n
changes the size of the trace area. n is the value in KBytes.

CORCMD Command

274 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 15. REXX Sockets Application Program
Interface

The REXX Sockets application program interface (API) allows you to write socket applications in REXX for
the TCP/IP environment. It follows the standard TCP/IP Socket API available on multiple platforms and
therefore enables porting of socket programs from other platforms to REXX/VSE.

The REXX socket program external uses the LE/VSE Support to access the TCP/IP Socket interface. The
program maps the socket calls from the C programming language to the REXX programming language.
This allows you to use REXX to implement and test TCP/IP applications. Examples of the corresponding C
socket call are included where they apply.

For general information about sockets see the TCP/IP Support.

Subtopics:

• “Programming Hints and Tips for Using REXX Sockets” on page 275
• “SOCKET External Function” on page 276
• “Tasks You Can Perform Using REXX Sockets” on page 276
• “REXX Socket Functions” on page 279
• “REXX Sockets System Messages” on page 307
• “REXX Sockets Return Codes” on page 307
• “Sample Programs” on page 309
• “Installation of REXX/VSE SOCKET Function” on page 317

REXX Socket SSL Support

TCP/IP for VSE/ESA 1.4 provides SSL (Secure Sockets Layer) support. SSL is a security protocol and allows
Internet servers and clients to authenticate each other and to encrypt the data flowing between them.
Based on this SSL support, the REXX/VSE Socket function has been enhanced with VSE/ESA 2.7 to enable
you to write SSL-enabled socket applications in REXX.

To use SSL functions in general, the VSE/ESA host must first be configured for SSL support. This is
described in detail in the z/VSE e-business Connectors User's Guide.

The following Socket sub-functions have been enhanced for the SSL support:

• Initialize
• Accept
• Connect
• Takesocket

Programming Hints and Tips for Using REXX Sockets
This section contains some information that you might find useful if you plan to use REXX Sockets.

• To use the socket functions contained in this interface, a socket set must be active. The Initialize
function creates a socket set and can be used to create as many socket sets as required. The subtaskid
for a socket set identifies the socket set and should be set to a string value that resembles the
application's purpose.

• The socketname parameter on a socket function contains values for domain, portid, and ipaddress. If
socketname is specified as an input parameter on a socket call, you can specify ipaddress as a name to
be resolved by a name server. For example, you can enter 'CUNYVM' or 'CUNYVM.CUNY.EDU'.

© Copyright IBM Corp. 1988, 2004 275

http://publibfp.dhe.ibm.com/epubs/pdf/iestce61.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iescue80.pdf

• A socket can be in blocking or nonblocking mode. In blocking mode, functions such as Send and Recv
block the caller until the operation completes successfully or an error occurs. In nonblocking mode, the
caller is not blocked, but the operation ends immediately with the return code 1102 (EWOULDBLOCK)
or 1103 (EINPROGRESS. You can use the Fcntl or Ioctl function to switch between blocking and
nonblocking mode.

• When a socket is in nonblocking mode, you can use the Select function to wait for socket events, such
as data arriving at a socket for a Read or Recv function. If the socket is not ready to send data because
buffer space for the transmitted message is not available at the receiving socket, your REXX program
can wait until the socket is ready for sending data.

SOCKET External Function

SOCKET (subfunction

, arg

)

The first parameter in the SOCKET function, subfunction, identifies a REXX socket function. The REXX
socket function may have additional arguments. REXX socket functions are provided for:

• Processing socket sets
• Creating, connecting, changing, and closing sockets
• Exchanging data
• Resolving names and other identifiers for sockets
• Managing configurations, options, and modes for sockets

See “Tasks You Can Perform Using REXX Sockets” on page 276 and “REXX Socket Functions” on page
279.

SOCKET returns a character string that contains several values separated by blanks, so the string can be
parsed using REXX. The first value in the string is the return code. If the return code is zero, the values
following the return code are returned by the socket function (subfunction). If the return code is not zero,
the second value is the name of an error, and the rest of the string is the corresponding error message.

For example:
Call

Return Values
Socket('GetHostId')

'0 9.4.3.2'
Socket('Recv',socket)

'1102 EWOULDBLOCK Operation would block'

For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on page 307.

During initialization of the REXX Sockets module or when doing certain REXX socket functions, system
messages may also be issued. See “REXX Sockets System Messages” on page 307.

The description of each REXX socket function in this topic provides at least one example of the call and
return value string, and also includes an example of the corresponding C socket call, where applicable.

Tasks You Can Perform Using REXX Sockets
You can use REXX Sockets to perform the following tasks:

• Processing socket sets

276 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

A socket set is a number of preallocated sockets available to a single application. You can define
multiple socket sets for one session, but only one socket set can be active.

The functions included in this task group are shown in Table 4 on page 277.

Table 4. REXX socket functions for processing socket sets

Function Purpose

Initialize Defines a socket set

Terminate Closes all the sockets in a socket set and releases the socket set

SocketSet Gets the name of the active socket set

SocketSetList Gets the names of all the available socket sets

SocketSetStatus Gets the status of a socket set

• Creating, connecting, changing, and closing sockets

A socket is an endpoint for communication that can be named and addressed in a network. A socket
is represented by a socket identifier (socketid). A socket ID used in a Socket call must be in the active
socket set.

The functions included in this task group are shown in Table 5 on page 277.

Table 5. REXX socket functions for creating, connecting, changing, and closing sockets

Function Purpose

Socket Creates a socket in the active socket set

Bind Assigns a unique local name (network address) to a socket

Listen Converts an active stream socket to a passive socket

Connect Establishes a connection between two stream sockets

Accept Accepts a connection from a client to a server

Shutdown Shuts down a duplex connection

Close Shuts down a socket

GiveSocket Transfers a socket to another application

TakeSocket Acquires a socket from another application

• Exchanging data

You can send and receive data on connected stream sockets and on datagram sockets.

The functions included in this task group are shown in Table 6 on page 277.

Table 6. REXX socket functions for exchanging data

Function Purpose

Read Reads data on a connected socket

Write Writes data on a connected socket

Recv Receives data on a connected socket

Send Sends data on a connected socket

RecvFrom Receives data on a socket and gets the sender's address

Chapter 15. REXX Sockets Application Program Interface 277

Table 6. REXX socket functions for exchanging data (continued)

Function Purpose

SendTo Sends data on a socket, and optionally specifies a destination
address

• Resolving names and other identifiers

You can get information such as name, address, client identification, and host name. You can also
resolve an Internet Protocol address (IP address) to a symbolic name or a symbolic name to an IP
address.

The functions included in this task group are shown in Table 7 on page 278.

Table 7. REXX socket functions for resolving names and other identifiers

Function Purpose

GetClientId Gets the calling program's TCP/IP identifier

GetHostId Gets the IP address for the host processor

GetHostName Gets the name of the host processor

GetPeerName Gets the name of the peer connected to a socket

GetSockName Gets the local name to which a socket was bound

GetHostByAddr Gets the host name for an IP address

GetHostByName Gets the IP address for a host name

Resolve Resolves the host name through a name server

• Managing configurations, options, and modes

You can obtain the version number of the REXX Sockets function package, get socket options, set socket
options, and set the mode of operation. You can also determine the network configuration.

The functions included in this task group are shown in Table 8 on page 278.

Table 8. REXX socket functions for managing configurations, options, and modes

Function Purpose

Version Gets the version and date of the REXX Sockets function package

Select Monitors activity on selected sockets

GetSockOpt Gets the status of options for a socket

SetSockOpt Sets options for a socket

Fcntl Sets or queries the mode of a socket

Ioctl Controls the operating characteristics of a socket

• Translating data and doing tracing

You can translate data from one type of notation to another. You can also enable or disable tracing
facilities.

The functions included in this task group are shown in Table 9 on page 279.

278 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 9. REXX socket functions for translating data and doing tracing

Function Purpose

Translate Translates data from one type of notation to another

REXX Socket Functions
This section describes the REXX socket functions, which are listed alphabetically.

Subtopics:

• Accept
• Bind
• Close
• Connect
• Fcntl
• GetClientId
• GetHostByAddr
• GetHostByName
• GetHostId
• GetHostName
• GetPeerName
• GetSockName
• GetSockOpt
• GiveSocket
• Initialize
• Ioctl
• Listen
• Read
• Recv
• RecvFrom
• Resolve
• Select
• Send
• SendTo
• SetSockOpt
• ShutDown
• Socket
• SocketSet
• SocketSetList
• SocketSetStatus
• TakeSocket
• Terminate
• Translate
• Version
• Write

Chapter 15. REXX Sockets Application Program Interface 279

Accept
Format

SOCKET ('ACCEPT' , socketid

1
, SECURE

SECURE_WITH_CLIENT_AUTH , dname

)

Notes:
1 The third and fourth operand are only allowed if the socketset has been initialized for SSL support.

Use the Accept function on a server to accept a connection request from a client. It is used only with
stream sockets.

The Accept function accepts the first connection on the listening (passive) socket's queue of pending
connections. Accept creates a new socket with the same properties as the listening socket and returns
the new socket ID to the caller. If the queue has no pending connection requests, Accept blocks the caller
unless the listening socket is in nonblocking mode. If no connection requests are queued and the listening
socket is in nonblocking mode, Accept ends with return code 1102 (EWOULDBLOCK). The new socket is in
active mode and cannot be used to accept new connections. The original socket remains in passive mode
and is available to accept more connection requests.

Operands

socketid
is the identifier of the passive socket on which connections are to be accepted. This is a socket that
was previously placed into passive mode (listening mode) by calling the Listen function.

SECURE | SECURE_WITH_CLIENT_AUTH
specifies to perform the SSL handshake. With SECURE the SSL server handshake is performed,
with SECURE_WITH_CLIENT_AUTH the SSL handshake is performed as a server that requires client
authentication.

dname
specifies a character string that is the member name of the desired entry (certificate) in the keyring
library. If nothing is specified, the first keyring entry is used.

fc = SOCKET('ACCEPT',newsocketid,'SECURE_WITH_CLIENT_AUTH','SAMPLE')

If option SECURE_WITH_CLIENT_AUTH has been chosen for ACCEPT or TAKESOCKET, information from
the client's certificate is stored into REXX variables. The following REXX variables are set:

Table 10. REXX Variables

Name Description

GSK_CERT_BODY Base64 certificate body

GSK_SESSIONID Session ID for the connection

GSK_NEW_SESSION_ID Flag to indicate if new session ID. If it is a new
session ID, GSK_NEW_SESSION_ID is set to 1,
otherwise it is set to 0.

GSK_SERIAL_NUM Certificate Serial number

GSK_COMMON_NAME Common name of client

GSK_LOCALITY Locality

REXX Sockets - Accept

280 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 10. REXX Variables (continued)

Name Description

GSK_STATE_OR_PROVINCE State or Province

GSK_COUNTRY Country

GSK_ORG Organization

GSK_ORG_UNIT Organizational unit

GSK_ISSUER_COMMON_NAME Issuer's common name

GSK_ISSUER_LOCALITY Issuer's locality

GSK_ISSUER_STATE_OR_PROVINCE Issuer's state or province

GSK_ISSUER_COUNTRY Issuer's country

GSK_ISSUER_ORG Issuer's organization

GSK_ISSUER_ORG_UNIT Issuer's organizational unit

Responses If successful, this function returns a string containing return code 0, the new socket ID, and
the socket name. (The socket name is the socket's network address, which consists of the domain, port
ID, and the IP address.) If unsuccessful, this function returns a string containing a nonzero return code, an
error name, and an error message.

Call Return Values

Socket('Accept',5) '0 6 AF_INET 5678 9.4.3.2'

Socket('Accept',5 ,'SECURE_WITH_CLIENT_AUTH','SAMP
LE')

'0 6 AF_INET 5678 9.4.3.2'

Examples
Call

Return Values
Socket('Accept',5)

'0 6 AF_INET 5678 9.4.3.2'

The C socket call is: accept(s, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Bind
Format

SOCKET (' BIND ' , socketid , socketname)

Use the Bind function to assign a unique local name (network address) to a socket. When you create a
socket with the Socket function, the socket does not have a name associated with it, but it does belong to
an addressing family. The form of the name you assign to the socket with the Bind function depends on
the addressing family. The Bind function also allows servers to specify the network interfaces from which
they want to receive UDP packets and TCP connection requests.

Operands

REXX Sockets - Bind

Chapter 15. REXX Sockets Application Program Interface 281

socketid
is the identifier of the socket.

socketname
is the local name (network address) to be assigned to the socket. The name consists of three parts:
domain

The addressing family of the socket. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number to which the socket must bind.
ipaddress

The IP address of the socket. This must be one of the following:

• Dotted decimal address of the local network interface
• INADDR_BROADCAST
• INADDR_ANY

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('Bind',5,'AF_INET 1234 128.228.1.2') '0'

The C socket call is: bind(s, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Close
Format

SOCKET (' CLOSE ' , socketid)

Use the Close function to shut down a socket and free the resources allocated to it. If the socket ID refers
to an open TCP connection, the connection is closed. If a stream socket is closed when there is input data
queued, the TCP connection is reset rather than closed.

Operands

socketid
is the identifier of the socket to be closed.

Usage Notes The SO_LINGER socket option, which is set by the SetSockOpt function, can be used to
control how unsent output data is handled when a stream socket is closed. See “SetSockOpt” on page
299.

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('Close',6) '0'

The C socket call is: close(s)

REXX Sockets - Close

282 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Connect
Format

SOCKET ('CONNECT' , socketid , socketname

1
, SECURE

, dname

)

Notes:
1 The fourth and fifth operand are only allowed if the socketset has been initialized for SSL support.

Use the Connect function to establish a connection between two stream sockets or to specify the default
peer for a datagram socket.

When called for a stream socket, Connect performs two tasks:

1. If the Bind function has not been called for the socket used to originate the request, Connect
completes the bind.

2. Connect then attempts to establish a connection to the other socket.

If the originating stream socket is in blocking mode, Connect blocks the caller until the connection is
established or an error is received. If the originating socket is in nonblocking mode, Connect ends with
return code 1102 (EINPROGRESS) or another return code indicating an error

Operands

socketid
is the identifier of the socket originating the connection request.

socketname
is the name (network address) of the socket to which a connection will be attempted. The name
consists of three parts:
domain

The addressing family of the socket. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number of the socket.
ipaddress

The IP address of the socket.
SECURE

specifies to perform the SSL handshake. It is performed as a client with or without client
authentication.

dname
specifies a character string that is the member name of the desired entry (certificate) in the keyring
library. If nothing is specified, the first key ring entry is used.

fc = SOCKET('CONNECT',newsocketid,'AF_INET 5678 9.164.111.11', ,
 'SECURE','SAMPLE')

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

REXX Sockets - Connect

Chapter 15. REXX Sockets Application Program Interface 283

Call Return Values

Socket('Connect',5,'AF_INET 1234 128.228.1.2') '0'

Socket('Connect',5,'AF_INET 1234 CUNYVM') '0'

Socket('Connect',5,'AF_INET 1234 CUNYVM.CUNY.EDU') '0'

Socket('Connect',5,'AF_INET 1234
128.228.1.2','SECURE','SAMPLE')

'0'

The C socket call is: connect(s, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Fcntl
Format

SOCKET (' FCNTL ' , socketid , ' F_SETFL ' , fvalue

' F_GETFL '

)

Use the Fcntl function to set blocking or nonblocking mode for a socket, or to get the setting for the
socket.

Operands

socketid
is the identifier of the socket.

F_SETFL
sets the status flags for the socket. One flag, FNDELAY, can be set.

F_GETFL
gets the flag status for the socket. One flag, FNDELAY, can be retrieved.

fvalue
is the operating characteristic. The following values are valid:
NON-BLOCKING or FNDELAY

Turns the FNDELAY flag on, which marks the socket as being in nonblocking mode. If data is
not present on calls that can block, such as Read and Recv, Fcntl returns error code 1102
(EWOULDBLOCK).

Responses If successful, this function returns a string containing return code 0. If F_GETFL is specified,
the operating characteristic status is also returned. If unsuccessful, this function returns a string
containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('Fcntl',5,'F_SETFL','NON-BLOCKING') '0'

Socket('Fcntl',5,'F_GETFL') '0 NON-BLOCKING'

The C socket call is: fcntl(s, cmd, data)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - Fcntl

284 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

GetClientId
Format

SOCKET (' GETCLIENTID '

, domain

)

Use the GetClientId function to get the identifier by which the calling program is known to the TCP/IP
virtual machine.

Operands

domain
is the addressing family. This must be one of the following:

• AF_INET (or the equivalent decimal value 2); AF_INET is the default.

Responses If successful, this function returns a string containing return code 0 and the TCP/IP identifier.
If unsuccessful, this function returns a string containing a nonzero return code, an error name, and an
error message.

Examples
Call

Return Values
Socket('GetClientId')

'0 AF_INET USERID1 myId'

The C socket call is: getclientid(domain, clientid)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GetHostByAddr

SOCKET (' GETHOSTBYADDR ' , ipaddress)

Use the GetHostByAddr function to get the host name for a specified IP address. The name is resolved
through a name server, if one is present.

Operands

ipaddress
is the IP address of the host, in dotted-decimal notation.

Responses If successful, this function returns a string containing return code 0 and the full host name. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples

Call Return Values

Socket('GetHostByAddr','128.228.1.2') '0 CUNYVM.CUNY.EDU'

The C socket call is: gethostbyaddr(addr, addrlen, domain)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - GetClientId

Chapter 15. REXX Sockets Application Program Interface 285

GetHostByName

SOCKET (' GETHOSTBYNAME ' , hostname

fullhostname

)

Use the GetHostByName function to get the IP address for a specified host name. The name is resolved
through a name server, if one is present. GetHostByName returns all the IP addresses for a multihome
host.

Operands

hostname
is the host processor name as a character string.

fullhostname
is the fully qualified host name in the form hostname.domainname.

Responses If successful, this function returns a string containing return code 0 and an IP address list. The
addresses in the list are separated by blanks. If unsuccessful, this function returns a string containing a
nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('GetHostByName','CUNYVM') '0 128.228.1.2'

Socket('GetHostByName','CUNYVM.CUNY.EDU') '0 128.228.1.2'

The C socket call is: gethostbyname(name)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GetHostId

SOCKET (' GETHOSTID ')

Use the GetHostId function to get the IP address for the current host. This address is the default home IP
address.

Responses If successful, this function returns a string containing return code 0 and the IP address for the
host. If unsuccessful, this function returns a string containing a nonzero return code, an error name, and
an error message.

Examples
Call

Return Values
Socket('GetHostId')

'0 9.4.3.2'

The C socket call is: gethostid()

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - GetHostByName

286 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

GetHostName

SOCKET (' GETHOSTNAME ')

Use the GetHostName function to get the name of the host processor on which the program is running.

Responses If successful, this function returns a string containing return code 0 and the name of the host
processor. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples
Call

Return Values
Socket('GetHostName')

'0 ZURLVM1'

The C socket call is: gethostname(name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GetPeerName

SOCKET (' GETPEERNAME ' , socketid)

Use the GetPeerName function to get the name of the peer connected to a socket.

Operands

socketid
is the identifier of the socket.

Responses If successful, this function returns a string containing return code 0 and the name of the peer.
If unsuccessful, this function returns a string containing a nonzero return code, an error name, and an
error message.

Examples
Call

Return Values
Socket('GetPeerName',6)

'0 AF_INET 1234 128.228.1.2'

The C socket call is: getpeername(s, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GetSockName

SOCKET (' GETSOCKNAME ' , socketid)

Use the GetSockName function to get the name to which a socket was bound. Stream sockets are not
assigned a name until after a successful call to the Bind, Connect, or Accept function.

REXX Sockets - GetHostName

Chapter 15. REXX Sockets Application Program Interface 287

Operands

socketid
is the identifier of the socket.

Responses If successful, this function returns a string containing return code 0 and the socket name
(network address, consisting of domain, port ID, and IP address). If unsuccessful, this function returns a
string containing a nonzero return code, an error name, and an error message.

Examples
Call

Return Values
Socket('GetSockName',7)

'0 AF_INET 5678 9.4.3.2'

The C socket call is: getsockname(s, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GetSockOpt

SOCKET (' GETSOCKOPT ' , socketid , level , optname)

Use the GetSockOpt function to get the status of options and other data associated with an AF_INET
socket. Most socket options are set with the SetSockOpt function. Multiple options can be associated with
each socket. You must specify each option or other item you want to query on a separate call.

Operands

socketid
is the identifier of the socket.

level
is the protocol level for which the socket option or other data is being queried. SOL_SOCKET is
supported.

optname
is a value that indicates the type of information requested:
Value

Description
SO_LINGER

Gets the status of the SO_LINGER option, which controls whether the Close function will linger if
data is present. The setting can be On or Off.

• If SO_LINGER is On and there is unsent data present when Close is called, the calling
application is blocked until the data transmission is complete or the connection has timed out.

• If SO_LINGER is Off, a call to Close returns without blocking the caller. TCP/IP still tries to send
the data. Although the data transfer is usually successful, it cannot be guaranteed, because
TCP/IP repeats the Send request for only a specified period of time.

In the return string, an On setting is followed by the number of seconds that TCP/IP continues
trying to send the data after Close is called.

Responses If successful, this function returns a string containing return code 0 and the option status or
other requested value. If unsuccessful, this function returns a string containing a nonzero return code, an
error name, and an error message.

Examples

REXX Sockets - GetSockOpt

288 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Call Return Values

Socket('GetSockOpt',5,'Sol_Socket','So_Linger') '0 On 60'

The C socket call is: getsockopt(s, level, optname, optval, optlen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

GiveSocket

SOCKET (' GIVESOCKET ' , socketid , clientid)

Use the GiveSocket function to transfer a socket to another application. GiveSocket makes the socket
available to a TakeSocket call issued by another application using the same TCP/IP server. Any connected
stream socket can be given. GiveSocket is typically used by a concurrent server program that obtains
sockets using the Accept function and then gives them to child server programs that handle one socket at
a time.

Operands

socketid
is the identifier of the socket to be given.

clientid
is the identifier for the application that will be taking the socket. This consists of three parts:
domain

The addressing family. This must be AF_INET (or the equivalent decimal value 2).
userid

The VM/ESA user ID of the virtual machine in which the taking application is running.
subtaskid

The subtask ID used on the taking application. This is optional.

The method for obtaining the taking application's client ID is not defined by TCP/IP.

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('GiveSocket',6,'AF_INET USERID2 hisId') '0'

The C socket call is: givesocket(s, clientid)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - GiveSocket

Chapter 15. REXX Sockets Application Program Interface 289

Initialize

SOCKET ('INITIALIZE' , socketsetname

,
40

maxdesc

,

TCP/IP

TCP/IP_userid Secure_Operands

)

Secure_Operands
, SSLV3

SSL
,

lib. sublib

, 86400

, timeout

Notes:

Use the Initialize function to define a socket set. If the function is successful, this socket set becomes the
active socket set.

Operands

socketsetname
is the name of the socket set. The name can be up to eight printable characters; it cannot contain
blanks.

maxdesc
is the maximum number of preallocated sockets in the socket set. The number can be between 1 and
the maximum number supported by TCP/IP for VM. The default is 40.

TCP/IP_userid
is the user ID of the TCP/IP server machine. If not specified, a value of 'TCPIP' is used.

SSLV3 | SSL
enables usage of the SSL support and identifies the security protocols that are to be used. A secure
socket communication is only possible, if the VSE/ESA host has been configured for SSL support (see
topic "Configuring Your VSE/ESA Host for SSL" in the z/VSE e-business Connectors User's Guide).

lib.sublib
identifies the sublibrary used for keys and certificates (the VSE Keyring Library, see skeleton
SKSSLKEY in ICCF library 59). If nothing is specified, the private key and certificates are read from the
default sequential disk files.

timeout
specifies the number of seconds for the SSLV3 session identifier to expire. The range is 0-86400
seconds (1 day). Default is 86400 seconds.

fc = SOCKET('INITIALIZE','SERVMIRR',,,'SSLV3','CRYPTO.KEYRING',86400)

Responses If successful, this function returns a string containing return code 0, the name (subtask ID) of
the initialized socket set, the maximum number of preallocated sockets in the socket set, and the user ID
of the TCP/IP server machine. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

Examples

REXX Sockets - Initialize

290 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iescue80.pdf

Call Return Values

Socket('Initialize','myId') '0 myId 40 TCPIP'

Socket('Initialize','myId'),,,'SSLV3','CRYPTO,KEYRING',8640
0)

'0 myId 40 TCPIP'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Ioctl

SOCKET (' IOCTL ' , socketid , icmd

, ivalue

)

Use the Ioctl function to control the operating characteristics of a socket.

Operands

socketid
is the identifier of the socket.

icmd
is the operating characteristics command to be issued:
Command

Description
FIONBIO

Sets or clears nonblocking for socket I/O. You specify On or Off in ivalue.
ivalue

is the operating characteristics value. This value depends on the value specified for icmd. The ivalue
parameter can be used as input or output or both on the same call.

Responses If successful, this function returns a string containing return code 0 and operating
characteristics information. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

Examples

Call Return Values

Socket('Ioctl',5,'FionBio','On') '0'

The C socket call is: ioctl(s, cmd, data)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Listen

SOCKET (' LISTEN ' , socketid

, 10

, backlog

)

REXX Sockets - Ioctl

Chapter 15. REXX Sockets Application Program Interface 291

Use the Listen function to transform an active stream socket into a passive socket. Listen performs two
tasks:

1. If the Bind function has not been called for the socket, Listen completes the bind. (The domain, port
ID, and IP address are set to AF_INET, INPORT_ANY, and INADDR_ANY.)

2. Listen creates a connection request queue for incoming connection requests. After the queue is full,
additional connection requests are ignored.

Calling the Listen function indicates a readiness to accept client connection requests. After Listen is
called, the socket can never be used as an active socket to initiate connection requests. Calling Listen is
the third of four steps that a server performs to accept a connection. It is called after allocating a stream
socket with the Socket function, and after binding a name to the socket with the Bind function, but before
calling the Accept function.

Operands

socketid
is the identifier of the socket.

backlog
is the number of pending connection requests. This number is an integer between 0 and 10. The
default is 10.

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples
Call

Return Values
Socket('Listen',5,10)

'0'

The C socket call is: listen(s, backlog)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Read

SOCKET (' READ ' , socketid

, 10000

, maxlength

)

Use the Read function to read data on a connected socket, up to a specified maximum number of bytes.
This is the conventional TCP/IP read data operation. If less than the requested number of bytes is
available, Read returns the number currently available. If data is not available at the socket, Read waits
for data to arrive and blocks the caller, unless the socket is in nonblocking mode.

For datagram sockets, Read returns the entire datagram that was sent, providing that the datagram fits
into the specified buffer.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket, and program A sends 1000 bytes,
each call to this function can return any number of bytes, up to the entire 1000 bytes. The number of
bytes returned is contained in the return values string. Therefore, programs using stream sockets should
place this call in a loop that repeats until all the data has been received. If the length in the return values
string is zero, the other side of the call has closed the stream socket.

Operands

REXX Sockets - Read

292 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be read. This is a number of bytes between 1 and 100000. The
default is 10000.

Responses If successful, this function returns a string containing return code 0, the length of the data
read, and the data read. If unsuccessful, this function returns a string containing a nonzero return code,
an error name, and an error message.

Examples
Call

Return Values
Socket('Read',6)

'0 21 This is the data line'

The C socket call is: read(s, buf, len)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Recv

SOCKET (' RECV ' , socketid

, 10000 , ' '

,
10000

maxlength

, ' '

, recvflags

)

Use the Recv function to receive data on a connected socket, up to a specified maximum number of bytes.
By specifying option flags, you can also:

On a datagram socket, if more than the number of bytes requested is available, Recv discards the excess
bytes. If less than the number of bytes requested is available, Recv returns the number of bytes currently
available. If data is not available at the socket, Recv waits for data to arrive and blocks the caller, unless
the socket is in nonblocking mode.

On a stream socket, if the data length in the return string is zero, the other side has closed the socket.

Operands

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be received. This is a number of bytes between 1 and 100000. The
default is 10000.

recvflags
are flags that control the Recv operation:
''

Receive the data. No flag is set. This is the default.

Responses If successful, this function returns a string containing return code 0, the length of the data
received, and the data received. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

REXX Sockets - Recv

Chapter 15. REXX Sockets Application Program Interface 293

Examples

Call Return Values

Socket('Recv',6) '0 21 This is the data line'

Socket('Recv',6,,'PEEK OOB') '0 24 This is out-of-band data'

The C socket call is: recv(s, buf, len, flags)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

RecvFrom

SOCKET (' RECVFROM ' , socketid

, 10000 , ' '

,
10000

maxlength

, ' '

, recvflags

)

Use the RecvFrom function to receive data on a socket, up to a specified maximum number of bytes, and
get the sender's address.

On a datagram socket, if more than the number of bytes requested is available, RecvFrom discards the
excess bytes. If less than the number of bytes requested is available, RecvFrom returns the number of
bytes available.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if programs A and B are connected with a stream socket, and program A sends 1000 bytes,
each call to RecvFrom can return any number of bytes, up to the entire 1000 bytes. The number of bytes
returned is specified in the return values string. Therefore, programs using stream sockets should place
RecvFrom in a loop that repeats until all the data has been received. If a data length of zero is returned in
the return values string, the socket has been closed by the other side.

If data is not available at the socket, RecvFrom waits for data to arrive and blocks the caller, unless the
socket is in nonblocking mode.

Operands

socketid
is the identifier of the socket.

maxlength
is the maximum length of data to be received. This is a number of bytes between 1 and 100000. The
default is 10000.

recvflags
are flags that control the RecvFrom operation:
''

Receive the data. No flag is set. This is the default.

Responses If successful, this function returns a string containing return code 0, the network address
(domain, remote port, and remote IP address) of the sender, the length of the data received, and the data
received. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples

REXX Sockets - RecvFrom

294 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Call
Return Values

Socket('RecvFrom',6)
'0 AF_INET 5678 9.4.3.2 9 Data line'

The C socket call is: recvfrom(s, buf, len, flags, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Resolve

SOCKET (' RESOLVE ' , ipaddress

hostname

fullhostname

)

Use the Resolve function to resolve the host name through a name server, if one is present.

Operands

ipaddress
is the IP address of the host, in dotted-decimal notation.

hostname
is the host processor name as a character string.

fullhostname
is the fully qualified host name in the form hostname.domainname.

Responses If successful, this function returns a string containing return code 0, the IP address of the
host, and the full host name. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

Examples

Call Return Values

Socket('Resolve','128.228.1.2') '0 128.228.1.2 CUNYVM.CUNY.EDU'

Socket('Resolve','CUNYVM') '0 128.228.1.2 CUNYVM.CUNY.EDU'

Socket('Resolve','CUNYVM.CUNY.EDU') '0 128.228.1.2 CUNYVM.CUNY.EDU'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Select

SOCKET (' SELECT '
,

Mask

,

timeout

)

Mask

REXX Sockets - Resolve

Chapter 15. REXX Sockets Application Program Interface 295

1

' READ '

read_socketlist

' WRITE '

write_socketlist

' EXCEPTION '

exception_socketlist

Notes:
1 You can specify the lists of socket descriptors in any order.

Use the Select function to monitor activity on specified socket IDs to see if any of them are ready for
reading or writing or have an exception condition pending. Select does not check for the order of event
completion.

A Close on the other side of a socket connection is not reported as an exception, but as a Read event that
returns zero bytes of data.

When Connect is called with a socket in nonblocking mode, the Connect call ends and returns code 1102
(EWOULDBLOCK). The completion of the connection setup is then reported as a Write event on the socket.

When Accept is called with a socket in nonblocking mode, the Accept call ends and returns code 1102
(EWOULDBLOCK). The availability of the connection request is reported as a Read event on the original
socket, and Accept should be called only after the Read has been reported.

Operands

READ read_socketidlist
specifies a list of socket descriptors to be checked to see if they are ready for reading. A socket is
ready for reading when incoming data is buffered for it or, for a listening socket, when a connection
request is pending. Select returns the socket ID in the return value string if a call to read from that
socket will not block. If you do not need to test any sockets for reading, you can pass a null for the list.

WRITE write_socketidlist
specifies a list of socket descriptors to be checked to see if they are ready for writing. A socket is
ready for writing when there is buffer space for outgoing data. Select returns the socket ID in the
return value string if a call to write to that socket will not block. If you do not need to test any sockets
for writing, you can pass a null for the list.

EXCEPTION exception_socketidlist
specifies a list of socket descriptors to be checked to see if they have an exception condition pending.
A socket has an exception condition pending if it has received out-of-band data or if another program
has successfully taken the socket using the TakeSocket function. If you do not need to test any
sockets for exceptions pending, you can pass a null for the list.

timeout
is a positive integer indicating the maximum wait time in seconds. The default is FOREVER.

Responses If successful, this function returns a string containing return code 0, the number of sockets
that have completed events, the list of socket IDs that are ready for reading, the list of socket IDs that are
ready for writing, and the list of socket IDs that have an exception pending. If unsuccessful, this function
returns a string containing a nonzero return code, an error name, and an error message.

Examples

REXX Sockets - Select

296 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Call Return Values

Socket('Select','Read 5 Write Exception',10) '0 1 READ 5 WRITE EXCEPTION'

The C socket call is: select(nfds, readfds, writefds, exceptfds, timeout)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Send

SOCKET (' SEND ' , socketid , data

, ' '

, sendflags

)

Use the Send function to send data on a connected socket.

If Send cannot send the number of bytes of data that is requested, it waits until sending is possible. This
blocks the caller, unless the socket is in nonblocking mode. For datagram sockets, the socket should not
be in blocking mode.

Operands

socketid
is the identifier of the socket.

data
is the message string to be sent.

sendflags
are flags that control the Send operation:
''

Send the data. No flag is set. This is the default.

Responses If successful, this function returns a string containing return code 0 and the length of the data
sent. If unsuccessful, this function returns a string containing a nonzero return code, an error name, and
an error message.

Examples

Call Return Values

Socket('Send',6,'Some text') '0 9'

The C socket call is: send(s, buf, len, flags)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - Send

Chapter 15. REXX Sockets Application Program Interface 297

SendTo

SOCKET (' SENDTO ' , socketid , data

, ' '

,
' '

sendflags , destination_name

)

Use the SendTo function to send data on a socket. This function is similar to the Send function, except
that you can specify a destination address to send datagrams on a UDP socket, whether the socket is
connected or unconnected.

For datagram sockets, the socket should not be in blocking mode.

For stream sockets, data is processed as streams of information with no boundaries separating the data.
For example, if a program is required to send 1000 bytes, each call to the SendTo function can send any
number of bytes, up to the entire 1000 bytes, with the number of bytes sent returned in the return values
string. Therefore, programs using stream sockets should place SendTo in a loop that repeats the call until
all the data has been sent.

Operands

socketid
is the identifier of the socket.

data
is the message string to be sent.

sendflags
are flags that control the SendTo operation:
''

Send the data. No flag is set. This is the default.
destination_name

is the destination network address, which consists of three parts:
domain

The addressing family. This must be AF_INET (or the equivalent decimal value 2).
portid

The port number.
ipaddress

The IP address.

Responses If successful, this function returns a string containing return code 0 and the length of the data
sent. If unsuccessful, this function returns a string containing a nonzero return code, an error name, and
an error message.

Examples

Call Return Values

Socket('SendTo',6,'some text',,'AF_INET 5678 9.4.3.2') '0 9'

The C socket call is: sendto(s, buf, len, flags, name, namelen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - SendTo

298 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SetSockOpt

SOCKET (' SETSOCKOPT ' , socketid , level , optname ,

optvalue)

Use the SetSockOpt function to set the options associated with an AF_INET socket.

The optvalue parameter is used to pass data used by the particular set command. The optvalue parameter
points to a buffer containing the data needed by the set command. The optvalue parameter is optional
and can be set to 0, if data is not needed by the command.

Operands

socketid
is the identifier of the socket.

level
is the protocol level for which the socket option is being set. SOL_SOCKET and IPPROTO_TCP are
supported. All optname values beginning with "SO_" are for protocol level SOL_SOCKET and are
interpreted by the general socket code. All optname values beginning with "TCP_" are for protocol
level IPPROTO_TCP and are interpreted by the TCP/IP internal code.

optname
is the socket option to be set:
Option

Description
SO_LINGER

Controls whether the Close function will linger if data is present:

• If SO_LINGER is On and there is unsent data present when Close is called, the calling
application is blocked until the data transmission completes or the connection times out.

• If SO_LINGER is Off, a call to Close returns without blocking the caller. TCP/IP still tries to send
the data. Although this transfer is usually successful, it cannot be guaranteed, because TCP/IP
repeats the Send request for only a specified period of time.

optvalue
is the option setting.

For the SO_LINGER option, you can specify On n, n, or Off. If you specify only n, On is implied. The
value n is the number of seconds that TCP/IP should continue trying to send the data after the Close
function is called. If On is selected, the default number is 120.

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('SetSockOpt',5,'Sol_Socket','So_Linger',60) '0'

The C socket call is: setsockopt(s, level, optname, optval, optlen)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - SetSockOpt

Chapter 15. REXX Sockets Application Program Interface 299

ShutDown

SOCKET (' SHUTDOWN ' , socketid

, ' BOTH '

, how

)

Use the ShutDown function to shut down all or part of a duplex connection.

Operands

socketid
is the identifier of the socket.

how
sets the communication direction to be shut down:
BOTH

Disables further receive-type and send-type operations on the socket, ending communication
from and to the socket. This is the default.

Responses If successful, this function returns a string containing only return code 0. If unsuccessful, this
function returns a string containing a nonzero return code, an error name, and an error message.

Examples
Call

Return Values
Socket('ShutDown',6,'BOTH')

'0'

The C socket call is: shutdown(s, how)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Socket

SOCKET (' SOCKET '

, ' AF_INET ' , ' SOCK_STREAM ' , ' IPPROTO_TCP '

,

' AF_INET '

domain

Type and Protocol

)

Type and Protocol

REXX Sockets - ShutDown

300 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

, ' SOCK_STREAM ' , ' IPPROTO_TCP '

,

' SOCK_STREAM '

type

,
1

,

1

protocol

Notes:
1 The default protocol depends on the domain and socket type.

Use the Socket function to create a socket in the active socket set. Different types of sockets provide
different communication services.

Operands

domain
is the communications domain in which communication is to take place. This parameter specifies the
addressing family (format of addresses within a domain) being used. This value must be AF_INET (or
the equivalent integer value 2), which indicates the internet domain. This is also the default.

type
is type of socket to be created. The supported types are:
Type

Description
SOCK_STREAM

The abbreviated form STREAM is also permitted (or the equivalent integer value 1). This type
of socket provides sequenced, two-way byte streams that are reliable and connection-oriented.
Bytes are guaranteed to arrive, arrive only once, and arrive in the order sent. AF_INET stream
sockets also support a mechanism for sending and receiving out-of-band data.

SOCK_DGRAM
The abbreviated form DATAGRAM is also permitted (or the equivalent integer value 2). This type of
socket provides datagrams, which are connectionless messages of a fixed maximum length whose
reliability is not guaranteed. Datagrams can be corrupted, received out of order, lost, or delivered
multiple times.

The default type is SOCK_STREAM.

protocol
is the protocol to be used with the socket.

For stream and datagram sockets, you should set this field to 0 to allow TCP/IP to assign the default
protocol for the domain and socket type selected. For the AF_INET domain, the default protocols are:

• IPPROTO_TCP for stream sockets
• IPPROTO_UDP for datagram sockets

Responses If successful, this function returns a string containing return code 0 and the identifier (socket
ID) of the new socket. If unsuccessful, this function returns a string containing a nonzero return code, an
error name, and an error message.

Examples
Call

Return Values
Socket('Socket')

'0 5'

The C socket call is: socket(domain, type, protocol)

REXX Sockets - Socket

Chapter 15. REXX Sockets Application Program Interface 301

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

SocketSet

SOCKET ('SOCKETSET'

, subtaskid

)

Use the SocketSet function to get the name (subtask ID) of the active socket set. If you specify a subtask
ID on the call, that socket set becomes the active socket set.

Operands

subtaskid
is the name of a socket set. The name can be up to eight printable characters; it cannot contain
blanks.

Responses If successful, this function returns a string containing return code 0 and the subtask ID of the
active socket set. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples

Call Return Values

Socket('SocketSet','firstId') '0 firstId'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

SocketSetList

SOCKET (' SOCKETSETLIST ')

Use the SocketSetList function to get a list of the names (subtask IDs) of all the available socket sets in
the current order of the stack.

Responses If successful, this function returns a string containing return code 0, the subtask ID of the
active socket set, and the subtask IDs of all the other available socket sets (if any) in the current order of
the stack. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples
Call

Return Values
Socket('SocketSetList')

'0 myId firstId'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets - SocketSet

302 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SocketSetStatus

SOCKET (' SOCKETSETSTATUS '

, subtaskid

)

Use the SocketSetStatus function to get the status of a socket set. If you do not specify the name (subtask
ID) of the socket set, the active socket set is used. If the socket set is connected, this function returns the
number of free sockets and the number of allocated sockets in the socket set. If the socket set is severed,
the reason for the TCP/IP sever is also returned. Initialized socket sets should be in connected status, and
uninitialized socket sets should be in free status.

A socket set that is initialized but is not in connected status must be terminated before the subtask ID can
be reused.

Operands

socketsetname
is the name of a socket set. The name can be up to eight printable characters; it cannot contain
blanks.

Responses If successful, this function returns a string containing return code 0, the subtask ID of the
socket set, and the status of the socket set. Connect and sever information may also be returned. If
unsuccessful, this function returns a string containing a nonzero return code, an error name, and an error
message.

Examples
Call

Return Values
Socket('SocketSetStatus')

'0 myId Connected Free 17 Used 23'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

TakeSocket

SOCKET ('TAKESOCKET' , clientid , socketid

1
, SECURE

SECURE_WITH_CLIENT_AUTH , dname

)

Notes:
1 The fourth and fifth operand are only allowed if the socketset has been initialized for SSL support.

Use the TakeSocket function to acquire a socket from another application. The giving application must
have already issued a GiveSocket call. After Takesocket completes successfully, the giving application
must close the socket.

Operands

clientid
is the identifier for the application that is giving the socket. This consists of three parts:

REXX Sockets - SocketSetStatus

Chapter 15. REXX Sockets Application Program Interface 303

domain
The addressing family. This must be AF_INET (or the equivalent integer value 2).

userid
The VM/ESA user ID of the virtual machine in which the giving application is running.

subtaskid
The subtask ID used on the giving application.

The method for obtaining the giving application's client ID is not defined by TCP/IP.

socketid
is the identifier of the socket on the giving application. The method for obtaining this value is not
defined by TCP/IP.

SECURE | SECURE_WITH_CLIENT_AUTH
specifies to perform the SSL handshake. With SECURE the SSL server handshake is performed,
with SECURE_WITH_CLIENT_AUTH the SSL handshake is performed as a server that requires client
authentication.

dname
specifies a character string that is the member name of the desired entry (certificate) in the keyring
library. If nothing is specified, the first keyring entry is used.

fc = Socket('Takesocket',ClientId,SocketNr,'SECURE_WITH_CLIENT_AUTH','SAMPLE')

See Table 10 on page 280.

Responses If successful, this function returns a string containing return code 0 and a new socket ID (the
identifier assigned to the socket on the taking application). If unsuccessful, this function returns a string
containing a nonzero return code, an error name, and an error message.

Examples

Call Return Values

Socket('TakeSocket','AF_INET USERID1 myId',6) '0 7'

Socket('TakeSocket','AF_INET USERID1 myId',6, ,
 'SECURE_WITH_CLIENT_AUTH','SAMPLE')

'0 7'

The C socket call is: takesocket(clientid, hisdesc)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Terminate

SOCKET (' TERMINATE '

, subtaskid

)

Use the Terminate function to close all the sockets in a socket set and release the socket set. If you do
not specify a socket set, the active socket set is terminated. If the active socket set is terminated, the next
socket set in the stack (if available) becomes the active socket set.

Operands

subtaskid
is the name of the socket set. The name can be up to eight printable characters; it cannot contain
blanks.

REXX Sockets - Terminate

304 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Responses If successful, this function returns a string containing return code 0 and the name (subtask ID)
of the terminated socket set. If unsuccessful, this function returns a string containing a nonzero return
code, an error name, and an error message.

Examples
Call

Return Values
Socket('Terminate','myId')

'0 myId'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Translate

SOCKET (' TRANSLATE ' , string , how)

Use the Translate function to translate data from one type of notation to another.

Operands

string
is a character string that contains the data to be translated.

how
indicates the type of translation to be done. The supported types are (case is not significant in these
values):
Type

Description
To_Ascii or Ascii

Translates the specified REXX character string to ASCII
To_Ebcdic or Ebcdic

Translates the specified REXX hexadecimal string to EBCDIC
To_IP_Address or To_IPaddress or IPaddress

Translates the specified dotted-decimal IP address into a 4-byte hexadecimal notation, or the
specified 4-byte hexadecimal IP address into dotted-decimal notation

To_SockAddr_In or SockAddr_In
Translates the specified sockaddr_in structure from human-readable notation (a three-part
character string containing AF_INET, the decimal port value, and either an IP address or a
partially- or fully-qualified host name) into a 16-byte hexadecimal notation, or from 16-byte
hexadecimal notation into a human-readable notation

Responses If successful, this function returns a string containing return code 0, the length of the
translated string, and the translated string. If unsuccessful, this function returns a string containing a
nonzero return code, an error name, and an error message.

Usage Notes

1. In addition to the blanks between the three parts of the return string, the translated string may contain
leading or trailing blanks. You must use caution when parsing the return string with the REXX Parse
statement in order to preserve the possible leading or trailing blanks.

2. The length value returned should be used as an indication of the actual length of the translated string.
The length value includes any leading or trailing blanks.

3. ASCII/EBCDIC translation tables INWPETOA and INWPATOE are used for ASCII/EBCDIC translation.
See VSE/ESA Programming and Workstation Guide for modifying a table.

REXX Sockets - Translate

Chapter 15. REXX Sockets Application Program Interface 305

http://publibfp.dhe.ibm.com/epubs/pdf/ieswge10.pdf

Examples

Call:Socket('Translate','Hello ','To_Ascii')
Return Values: '0 6 xxxxx' (xxxxx is X'48656C6C6F20')

Call: Socket('Translate','48656C6C6F20'X,'To_Ebcdic')
Return Values: '0 6 Hello ' (Note the trailing blank.)

Call: Socket('Translate','128.228.1.2','To_IP_Address')
Return Values: '0 4 xxxx' (xxxx is X'80E40102')

Call: Socket('Translate','80E40102'X,'To_IP_Address')
Return Values: '0 11 128.228.1.2'

Call: Socket('Translate','64.64.64.64','To_IP_Address')
Return Values: '0 4 xxxx' (xxxx is X'40404040', four EBCDIC blanks)

Call:Socket('Translate',' ','To_IP_Address')
Return Values: '0 11 64.64.64.64'

Call: Socket('Translate','AF_INET 123 CUNYVM.CUNY.EDU','To_SockAddr_In')
Return Values: '0 16 xxxxxxxxxxxxxxxx' (xxxxxxxxxxxxxxxx is X'0002 007B 80E40102
0000000000000000')

Call: Socket('Translate','0002007B80E401020000000000000000'X,'To_SockAddr_In')
Return Values: '0 23 AF_INET 123 128.228.1.2'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Version

SOCKET (' VERSION ')

Use the Version function to get the version number and date for the REXX Sockets function package.

Responses If successful, this function returns a string containing return code 0 and the REXX Sockets
version and date. If unsuccessful, this function returns a string containing a nonzero return code, an error
name, and an error message.

Examples
Call

Return Values
Socket('Version')

'0 REXX/SOCKETS 1.00 30 November 1999'

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

Write

SOCKET (' WRITE ' , socketid , data)

Use the Write function to write data on a connected socket. This function is similar to the Send function,
except that it lacks the control flags available with Send. If it is not possible to write the data, Write waits
until conditions are suitable for writing data. This blocks the caller, unless the socket is in nonblocking
mode. For datagram sockets, the socket should not be in blocking mode.

Operands

REXX Sockets - Version

306 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

socketid
is the identifier of the socket.

data
is the data to be written.

Responses If successful, this function returns a string containing return code 0 and the length of the data
written. If unsuccessful, this function returns a string containing a nonzero return code, an error name,
and an error message.

Examples

Call Return Values

Socket('Write',6,'some text') '0 9'

The C socket call is: write(s, buf, len)

Messages and Return Codes For a list of REXX Sockets system messages, see “REXX Sockets System
Messages” on page 307. For a list of REXX Sockets return codes, see “REXX Sockets Return Codes” on
page 307.

REXX Sockets System Messages
The following message indicates an error

ARX0960E ERROR Running Function SOCKET, RC=nnnnn

Code Error Name

00008 CEEPIPI.PHASE not found (usually in PRD2.SCEEBASE, check your LIBDEF chain)

00009 CEEPIPI called from active LE-Environment(internal error, contact IBM)

00016 Storage problem (use a partition with more GETVIS space)

00020 Invocation of CEEPIPI-routine failed (internal error, contact IBM)

00024 Locking Problem (retry later on)

00028 REXX not initialized (invoke //EXEC ARXLINK)

00032 SECURE errorSecurity operands are specified with ACCEPT, CONNECT, or TAKESOCKET, but
the preceding INITIALIZE has been invoked without security protocol.

00096 Internal Error (contact IBM)

REXX Sockets Return Codes
A REXX Sockets call returns a return code as the first token of the result string. If the return code is not
zero, the second and third tokens in the result string are the error name and the corresponding error
message. The following table lists the return code values defined for all REXX socket functions.

Code Error Name Error Message

2 ERANGE Range error

111 EACCES Permission denied

112 EAGAIN Resource temporarily unavailable

113 EBADF Bad file descriptor

114 EBUSY Resource busy

REXX Sockets - System Messages

Chapter 15. REXX Sockets Application Program Interface 307

Code Error Name Error Message

118 EFAULT Bad address

119 EFBIG File too large

120 EINTR Interrupted function call

121 EINVAL Invalid argument

122 EIO Input/output error

124 EMFILE Too many open files

127 ENFILE Too many open files in system

129 ENOENT No such file or directory

134 ENOSYS Function not implemented

138 ENXIO No such device or address

139 EPERM Operation not permitted

140 EPIPE Broken pipe

158 EMVSPARM Bad parameters were passed to the service

1102 EWOULDBLOCK Problem on non-blocking socket

1103 EINPROGRESS Connection in progress

1104 EALREADY Connection already in progress

1105 ENOTSTOCK Descriptor does not refer to a socket

1106 EDESTADDRREQ Destination address required

1107 EMSGSIZE Message too long

1108 EPROTOTYPE The socket type is not supported by the
protocol

1109 ENOPROTOOPT Protocol not available

1110 EPROTONOSUPPORT Protocol not supported

1112 EOPNOTSUPPORT Address family not supported

1115 EADDRINUSE Address in use

1116 EADDRENOTAVAIL Address not available

1118 ENETUNREACH Network unreachable

1121 ECONNRESET Connection reset

1122 ENOBUFS No buffer space available

1123 EISCONN Socket is already connected

1124 ENOTCONN Socket not connected

35 ETIMEDOUT Connection timed out

1128 ECONNREFUSED Connection refused

2001 EINVALIDRXSOCKETCALL Syntax error in RXSOCKET parameter list

2003 ESUBTASKINVALID Subtask ID invalid

2004 ESUBTASKALREADYACTIVE Subtsk already active

REXX Sockets - Return Codes

308 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Code Error Name Error Message

2005 ESUBTASKNOTACTIVE Subtask not active

2007 EMAXSOCKETSREACHED Maximum number of sockets reached

2009 ESOCKETNOTDEFINED Socket not defined

2016 EHOSTNOTFOUND Host not found

2017 EIPADDRNOTFOUND IP address not found

2018 ETRYAGAIN Try again

2019 ENORECOVERY No recovery

2020 ENODATA No data

2021 ESOCKETNOTGIVEN No Socket available to acquire

Sample Programs
This section describes two sample pairs of REXX socket programs:

1. Using a non-secured connection

• REXX-EXEC RSCLIENT — a client sample program
• REXX-EXEC RSSERVER — a server sample program

2. Using a secured connection via TCP/IP SSL support

Before you start the client program, you must start the server program in another address space. The two
programs can run on different hosts, but the internet address of the host running the server program must
be entered with the command starting the client program, and the hosts must be connected on the same
network using TCP/IP.

REXX-EXEC RSCLIENT Sample Program
The client sample program (RSCLIENT EXEC) is a REXX socket program that shows you how to use the
calls provided by REXX Sockets. The program connects to the server sample program and receives data,
which is displayed on the screen. It uses sockets in blocking mode.

After parsing and testing the input parameters, RSCLIENT obtains a socket set using the Initialize function
and a socket using the Socket function. The program then connects to the server and writes the user
ID, the node ID, and the number of lines requested on the connection to the server. It reads data in a
loop and displays it on the screen until the data length is zero, indicating that the server has closed the
connection. If an error occurs, the client program displays the return code, determines the status of the
socket set, and ends the socket set.

The server adds the EBCDIC new line character to the end of each record, and the client uses this
character to determine the start of a new record. If the connection is abnormally closed, the client does
not display partially received records.

trace o
signal on syntax

/* Set error code values */
ecpref = 'RXS'
ecname = 'CLI'
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '

REXX Sockets - Sample Programs

Chapter 15. REXX Sockets Application Program Interface 309

 say ' '
 say 'The RSSERVER program runs in its own dedicated partition '
 say 'and returns a number of data lines as requested to the client.'
 say 'It is started with the JCL command: '
 say ' // EXEC REXX=RSSERVER '
 say 'and terminated with the console command: '
 say ' MSG <pid>, DATA=H1 '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server and can be run concurrently any'
 say 'number of times by different clients until the server is'
 say 'terminated. It is started with the command: '
 say ' // EXEC REXX=RSCLIENT,PARM="number <server>" '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

/* Parse the parameters */
parse var parameters lines server rest
if ^datatype(lines,'W') then call error 'E', 24, 'Invalid number'
lines = lines + 0
if rest^='' then call error 'E', 24, 'Invalid parameters'

/* Parse the options */
do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
end

/* Initialize control information */
port = '1952' /* The port used by the server */
userid = USERID()
call Sysvar('SYSPID')
locnode = SYSPID

/* Initialize */
call Socket 'Initialize', 'RSCLIENT'
if src=0 then initialized = 1
else call error 'E', 200, 'Unable to initialize RXSOCKET MODULE'
if server='' then do
 server = Socket('GetHostId')
 if src^=0 then call error 'E', 200, 'Cannot get the local ipaddress'
end
ipaddress = server

/* Initialize for receiving lines sent by the server */
s = Socket('Socket')
if src^=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src
call Socket 'Connect', s, 'AF_INET' port ipaddress
if src^=0 then call error 'E', 32, 'SOCKET(CONNECT) rc='src
call Socket 'Write', s, locnode userid lines
if src^=0 then call error 'E', 32, 'SOCKET(WRITE) rc='src

/* Wait for lines sent by the server */
dataline = ''
num = 0
do forever

 /* Receive a line and display it */
 parse value Socket('Read', s) with len newline
 if src^=0 | len<=0'' then leave
 dataline = dataline || newline
 do forever
 if pos('15'x,dataline)=0 then leave
 parse var dataline nextline '15'x dataline
 num = num + 1
 say right(num,5)':' nextline
 end
end

/* Terminate and exit */
call Socket 'Terminate'
exit 0

REXX Sockets - Sample Programs

310 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

/* Calling the real SOCKET function */
socket: procedure expose initialized src
 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:
 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Error message and exit routine */
error: procedure expose ecpref ecname initialized
 type = arg(1)
 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = ecpref || ecname || ecretc || ectype
 say 'ecfull text'
 if type^='E' then return
 if initialized then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status^='Connected' then do
 say 'The status of the socket set is' status severreason
 end
 call Socket 'Terminate'
 end
exit retc

REXX-EXEC RSSERVER Sample Program
The server sample program (RSSERVER EXEC) shows an example of how to use sockets in nonblocking
mode. The program waits for connect requests from client programs, accepts the requests, and then
sends data. The sample can handle multiple client requests in parallel processing.

The server program sets up a socket to accept connection requests from clients and waits in a loop for
events reported by the select call. If a socket event occurs, it is processed. A read event can occur on the
original socket for accepting connection requests and on sockets for accepted socket requests. A write
event can occur only on sockets for accepted socket requests.

A read event on the original socket for connection requests means that a connection request from a client
occurred. Read events on other sockets indicate either that there is data to receive or that the client has
closed the socket. Write events indicate that the server can send more data. The server program sends
only one line of data in response to a write event.

The server program keeps a list of sockets to which it wants to write. It keeps this list to avoid unwanted
socket events. The TCP/IP protocol is not designed for one single-threaded program communicating on
many different sockets, but for multithread applications where one thread processes only events from a
single socket.

trace o
signal on syntax
signal on halt

/* Set error code values */
initialized = 0

parse arg argstring
argstring = strip(argstring)
if substr(argstring,1,1) = '?' then do
 say 'RSSERVER and RSCLIENT are a pair of programs which provide an'
 say 'example of how to use REXX/SOCKETS to implement a service. The'
 say 'server must be started before the clients get started. '

REXX Sockets - Sample Programs

Chapter 15. REXX Sockets Application Program Interface 311

 say ' '
 say 'The RSSERVER program runs in its own partition. '
 say 'It returns a number of data lines as requested to the client. '
 say 'It is started with the command: // EXEC REXX=RSSERVER '
 say 'and terminated by issuing "MSG <pid>,DATA=HI" at the console. '
 say ' '
 say 'The RSCLIENT program is used to request a number of arbitrary'
 say 'data lines from the server. One or more clients can access '
 say 'the server until it is terminated. '
 say 'It is started with the command: '
 say ' // EXEC REXX=RSCLIENT,PARM="number <server>" '
 say 'where "number" is the number of data lines to be requested and'
 say '"server" is the ipaddress of the service virtual machine. (The'
 say 'default ipaddress is the one of the host on which RSCLIENT is'
 say 'running, assuming that RSSERVER runs on the same host.) '
 say ' '
 exit 100
end

/* Split arguments into parameters and options */
parse upper var argstring parameters '(' options ')' rest

/* Parse the parameters */
parse var parameters rest
if rest^='' then call error 'E', 24, 'Invalid parameters specified'

/* Parse the options */
do forever
 parse var options token options
 select
 when token='' then leave
 otherwise call error 'E', 20, 'Invalid option "'token'"'
 end
end

/* Initialize control information */
port = '1952' /* The port used for the service */

/* Initialize */
say 'RSSERVER: Initializing'
call Socket 'Initialize', 'RSSERVER'
if src=0 then initialized = 1
else call error 'E', 200, 'Unable to initialize SOCKET'
ipaddress = Socket('GetHostId')
if src^=0 then call error 'E', 200, 'Unable to get the local ipaddress'
say 'RSSERVER: Initialized: ipaddress='ipaddress 'port='port

/* Initialize for accepting connection requests */
s = Socket('Socket')
if src^=0 then call error 'E', 32, 'SOCKET(SOCKET) rc='src
call Socket 'Bind', s, 'AF_INET' port ipaddress
if src^=0 then call error 'E', 32, 'SOCKET(BIND) rc='src
call Socket 'Listen', s, 10
if src^=0 then call error 'E', 32, 'SOCKET(LISTEN) rc='src
call Socket 'Ioctl', s, 'FIONBIO', 'ON'
if src^=0 then call error 'E', 36, 'Cannot set mode of socket' s
/* Server can be stopped via "MSG <pid>,DATA=HI" */
/* call opermsg('ON') */
/* Wait for new connections and send lines */
timeout = 60
linecount. = 0
wlist = ''
do forever

 /* Wait for an event */
 if wlist^='' then sockevtlist = 'Write'wlist 'Read * Exception'
 else sockevtlist = 'Write Read * Exception'
 sellist = Socket('Select',sockevtlist,timeout)
 if src^=0 then call error 'E', 36, 'SOCKET(SELECT) rc='src
 parse upper var sellist . 'READ' orlist 'WRITE' owlist 'EXCEPTION' .
 if orlist^='' | owlist^='' then do
 event = 'SOCKET'
 if orlist^='' then do
 parse var orlist orsocket .
 rest = 'READ' orsocket
 end
 else do
 parse var owlist owsocket .
 rest = 'WRITE' owsocket
 end
 end
 else event = 'TIME'

REXX Sockets - Sample Programs

312 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 select

 /* Accept connections from clients, receive and send messages */
 when event='SOCKET' then do
 parse var rest keyword ts .

 /* Accept new connections from clients */
 if keyword='READ' . ts=s then do
 nsn = Socket('Accept',s)
 if src=0 then do
 parse var nsn ns . np nia .
 say 'RSSERVER: Connected by' nia 'on port' np 'and socket' ns
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='READ' . ts^=s then do
 parse value Socket('Recv',ts) with len nid uid count .
 if src=0 . len>0 . datatype(count,'W') then do
 if count<0 then count = 0
 if count>5000 then count = 5000
 ra = 'by' uid 'at' nid
 say 'RSSERVER: Request for' count 'lines on socket' ts ra
 linecount.ts = linecount.ts + count
 call addsock(ts)
 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts
 end
 end

 /* Get nodeid, userid and number of lines to be sent */
 if keyword='WRITE' then do
 if linecount.ts>0 then do
 num = random(1,sourceline()) /* Return random-selected */
 msg = sourceline(num) || '15'x /* line of this program */
 call Socket 'Send',ts,msg
 if src=0 then linecount.ts = linecount.ts - 1
 else linecount.ts = 0
 end
 else do
 call Socket 'Close',ts
 linecount.ts = 0
 call delsock(ts)
 say 'RSSERVER: Disconnected socket' ts
 end
 end

 end

 /* Unknown event (should not occur) */
 otherwise nop
 end
end

/* Terminate and exit */
call Socket 'Terminate'
say 'RSSERVER: Terminated'
exit 0

/* Procedure to add a socket to the write socket list */
addsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p=0 then wlist = wlist s
return

/* Procedure to del a socket from the write socket list */
delsock: procedure expose wlist
 s = arg(1)
 p = wordpos(s,wlist)
 if p>0 then do
 templist = ''
 do i=1 to words(wlist)
 if i^=p then templist = templist word(wlist,i)
 end
 wlist = templist
 end

REXX Sockets - Sample Programs

Chapter 15. REXX Sockets Application Program Interface 313

return

/* Calling the real SOCKET function */
socket: procedure expose initialized src
 a0 = arg(1)
 a1 = arg(2)
 a2 = arg(3)
 a3 = arg(4)
 a4 = arg(5)
 a5 = arg(6)
 a6 = arg(7)
 a7 = arg(8)
 a8 = arg(9)
 a9 = arg(10)
 parse value 'SOCKET'(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9) with src res
return res

/* Syntax error routine */
syntax:
 call error 'E', rc, '==> REXX Error No.' 20000+rc
return

/* Halt exit routine */
halt:
 call error 'E', 4, '==> REXX Interrupted'
return

/* Error message and exit routine */
error:
 type = arg(1)
 retc = arg(2)
 text = arg(3)
 ecretc = right(retc,3,'0')
 ectype = translate(type)
 ecfull = 'RXSSRV' || ecretc || ectype
 say '===> Error:' ecfull text
 if type^='E' then return
 if initialized
 then do
 parse value Socket('SocketSetStatus') with . status severreason
 if status^='Connected'
 then say 'The status of the socket set is' status severreason
 end
 call Socket 'Terminate'
exit retc

Sample Programs Using the TCP/IP SSL Support with the REXX/VSE Socket
Function

Server Program:
This procedure waits for a client to connect, receives a portion of data, reverses the data string and sends
the reverse string back.

/* rexx procedure: socket server procedure */
rc = 0

/* initialize socketset */
fc = SOCKET('INITIALIZE','SERVMIRR',,,'SSLV3','CRYPTO.KEYRING',86400)
parse var fc socket_rc .
if socket_rc ¬= 0
then do
 say 'INITIALIZE failed with return info ' fc
 exit 99
end

/* create a TCP socket for client connection requests */
fc = SOCKET('SOCKET','AF_INET','SOCK_STREAM','IPPROTO_TCP')
parse var fc socket_rc newsocketid
if socket_rc ¬= 0
then do
 say 'SOCKET failed with return info ' fc
 fc = SOCKET('TERMINATE')
 exit 99
end

REXX Sockets - Sample Programs

314 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

/* bind socket to well known port 5678 */
parse value Socket('GetHostId') with rc IpAddr
Host = "AF_INET 5678" IpAddr
fc = SOCKET('BIND',newsocketid,Host)
parse var fc bind_rc rest
if bind_rc ¬= 0
then do
 say 'BIND failed with return info ' fc
 fc = SOCKET('CLOSE',newsocketid)
 fc = SOCKET('TERMINATE')
 exit 99
end

/* create a connection queue for 1 client */
fc = SOCKET('LISTEN',newsocketid,'10')
parse var fc listen_rc rest
if listen_rc ¬= 0
then do
 say 'LISTEN failed with return info ' fc
 fc = SOCKET('CLOSE',newsocketid)
 fc = SOCKET('TERMINATE')
 exit 99
end

/* wait for a client to connect */
fc = SOCKET('ACCEPT',newsocketid,'SECURE','SAMPLE')
parse var fc accept_rc rest
if accept_rc ¬= 0
then do
 say 'ACCEPT failed with return info ' fc
 fc = SOCKET('CLOSE',newsocketid)
 fc = SOCKET('TERMINATE')
 exit 99
end
parse var rest accept_socket accept_socket_address
say "Client has established connection."

/* we don't want any more clients, close request socket */
fc = SOCKET('CLOSE',newsocketid)
parse var fc close_rc rest
if close_rc ¬= 0
then do
 say 'CLOSE failed with return info ' fc
 exit 99
end

/* read string from client, reverse it and send it back */
fc = SOCKET('READ',accept_socket,'10000')
parse var fc read_rc num_read_bytes read_string
if read_rc ¬= 0
then do
 say 'READ failed with return info ' fc
 rc = 99
 signal SHUTDOWN_LABEL
end
say "String read from client: '" read_string "'"
send_string = Reverse(read_string)
fc = SOCKET('SEND',accept_socket,send_string,'')
parse var fc send_rc num_sent_bytes
if send_rc ¬= 0
then do
 say 'SEND failed with return info ' fc
 rc = 99
 signal SHUTDOWN_LABEL
end
if num_read_bytes ¬= num_sent_bytes
then do
 say 'number of sent bytes does not match number of read bytes'
 rc = 99
 signal SHUTDOWN_LABEL
end

/* close client socket */
SHUTDOWN_LABEL:
fc = SOCKET('CLOSE',accept_socket)
parse var fc close_rc rest
if close_rc ¬= 0
then do
 say 'CLOSE failed with return info ' fc
 fc = SOCKET('TERMINATE')
 exit 99

REXX Sockets - Sample Programs

Chapter 15. REXX Sockets Application Program Interface 315

end

fc = SOCKET('TERMINATE')
exit
rc

Client Program:
This procedure connects to a "mirror server", sends a string to this mirror server and receives the
manipulated string again from the mirror server.

/* rexx procedure: socket client procedure */
rc = 0

/* ask user for string to send to the mirror server */
arg read_string

/* create a TCP socket */
fc = SOCKET('INITIALIZE','CLIEMIRR',,,'SSLV3','CRYPTO.KEYRING')
parse var fc socket_rc .
if socket_rc ¬= 0
then do
 say 'INITIALIZE failed with return info ' fc
 exit 99
end

/* create a TCP socket */
fc = SOCKET('SOCKET','AF_INET','STREAM','TCP')
parse var fc socket_rc newsocketid
if socket_rc ¬= 0
then do
 say 'SOCKET failed with return info ' fc
 fc = SOCKET('TERMINATE')
 exit 99
end

/* connect new socket to the specified server */
fc = SOCKET('CONNECT',newsocketid,'AF_INET 5678 9.164.155.71', ,
 'SECURE','SAMPLE')
parse var fc connect_rc rest
if connect_rc ¬= 0
then do
 say 'CONNECT failed with return info ' fc
 rc = 99
 signal SHUTDOWN_LABEL
end

/* send string to the mirror server */
fc = SOCKET('SEND',newsocketid,read_string,'')
parse var fc send_rc num_sent_bytes
if send_rc ¬= 0
then do
 say 'SEND failed with return info ' fc
 rc = 99
 signal SHUTDOWN_LABEL
end
if length(read_string) ¬= num_sent_bytes
then do
 say 'number of sent bytes does not match number of read bytes'
 rc = 99
 signal SHUTDOWN_LABEL
end

/* receive answer from mirror server */
fc = SOCKET('READ',newsocketid,'10000')
parse var fc read_rc num_read_bytes received_string
if read_rc ¬= 0
then do
 say 'READ failed with return info ' fc
 rc = 99
 signal SHUTDOWN_LABEL
end
say "String '" read_string "' was mirrored to: '" received_string "'"

SHUTDOWN_LABEL:
fc = SOCKET('CLOSE',newsocketid)
parse var fc close_rc rest
if close_rc ¬= 0

REXX Sockets - Sample Programs

316 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

then do
 say 'CLOSE failed with return info ' fc
 fc = SOCKET('TERMINATE')
 exit 99
end

fc = SOCKET('TERMINATE')
exit
rc

Installation of REXX/VSE SOCKET Function
If you want to make use of the REXX/VSE Socket Function provided with REXX/VSE, you have to activate
the REXX/VSE SOCKET Function Package ARXEFSO. This package is not contained in the default REXX
environment initialization member ARXPARMS, but it can be easily made active using the customization
job ARXPARMS.Z of library PRD1.BASE.

Here are the steps to be done:

1. Copy ARXPARMS.Z from PRD1.BASE into your primary ICCF library with

 LIBRP PRD1.BASE ARXPARMS.Z ARXPARMS [(REPLACE]

You may also use DTRIINIT to move the member into the RDR queue and then move the RDR queue
entry into your primary library. In this case the masked strings of POWER JECL and VSE JCL are
automatically replaced and the next step can be omitted.

2. Edit member ARXPARMS in your primary library:

Remove first line and the two lines at the end. Replace $$$$ by * $$,$$/* by /*, and $$/& by /&.
3. Choose the sublibrary for this new ARXPARMS.PHASE and insert it into the job. Default is

PRD2.CONFIG, but you can use another sublibrary
4. Increase variable PACKTB_SYSTEM_USED by 1 as described in a comment of this member.
5. Run job ARXPARMS (option 7 within your primary library dialog).
6. To run a REXX SOCKET program make sure that the chosen sublibrary for ARXPARMS.PHASE precedes

PRD1.BASE in the active PHASE chain. In this case system function package ARXEFSO, i.e. REXX/VSE
function SOCKET, is available to your REXX programs.

For more information, see “Changing the Default Values for Initializing an Environment” on page 412.

Notes:

1. If more than one implementation of the REXX SOCKET function is installed on your system, the
following search order applies:

• search in function packages before search in sublibraries
• search in user packages before search in local packages
• search in local packages before search in system packages
• If the same function is defined in more than one function package of the same level, the latest

mentioned version in ARXPARMS is taken.

Make sure that ARXPARMS and your LIBDEF phase chain are setup appropriately. Otherwise your
desired SOCKET implementation is not executed.

2. To support coexistence and simultaneous usage of this SOCKET API with a different SOCKET function
that might be established in your system, an extra function package ARXEFSN is provided. The only
difference to ARXEFSO is the name of the function. SOCKEN is used instead of SOCKET. Thus, you can
invoke within one REXX program the SOCKET functions described here via string SOCKEN, for example:

ipaddress = Socken ('GETHOSTID')

and another implementation of a SOCKET function available as an extra function package or an extra
member SOCKET.PHASE via string SOCKET.

REXX Sockets - Sample Programs

Chapter 15. REXX Sockets Application Program Interface 317

The TCP/IP PTF UQ38659 for instance provides an extra SOCKET.PHASE providing a proprietary
Socket Applicaton Programming Interface for the VSE/ESA platform.

If you want to make use of name SOCKEN, change ARXEFSO into ARXEFSN within ARXPARMS.

REXX Sockets - Sample Programs

318 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 16. Debug Aids

In addition to the TRACE instruction, described on “TRACE” on page 53, there are the following debug
aids:

• The interactive debug facility
• The immediate commands TS (Trace Start) and TE (Trace End).

A REXX program must be running to use the immediate commands. HI halts interpretation of a REXX
program. You specify it in a call to ARXIC from a non-REXX program. ARXIC is the trace and execution
control routine.

You can use TE and TS in a REXX program or call them through the ARXIC programming interface. (See
“Immediate Commands” on page 143 for more information about the immediate commands.)

• The trace and execution control routine ARXIC. You can call ARXIC from a non-REXX program to use the
following immediate commands:

HI — Halt Interpretation
TS — Trace Start
TE — Trace End
TQ — Trace Query
HT — Halt Typing
RT — Resume Typing.

See “Trace and Execution Control Routine – ARXIC” on page 361 for more information.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a REXX program. The operator's console
can be used for input and output during interactive debug. Otherwise, the current input and output
streams are used. ASSGN(STDIN) returns the name of the current input and ASSGN(STDOUT) returns the
name of the current output. When interactive debug is first entered, a message indicating this is written.
Changing the TRACE action to one with a prefix ? (for example, TRACE ?A or the TRACE built-in function)
turns on interactive debug and writes a message indicating it is on.

The language processor ignores further TRACE instructions in the program. If running from the operator's
console, interactive debug pauses after nearly all instructions that are traced at the terminal—see the
following for exceptions. If using the currently defined input and output streams, interactive debug reads
the next line from the input stream at each pause point. Either way, the user can provide one of the
following three inputs:

1. A null line (with no characters, including no blanks). This causes the language processor to continue
execution until the next pause for debug input. Repeated input of a null line, therefore, steps from
pause point to pause point. For TRACE ?A, for example, this is equivalent to single-stepping through
the program.

2. An equal sign (=), with no blanks. This causes the language processor to re-execute the clause last
traced.

Once the clause has been re-executed, the language processor pauses again.
3. Anything else entered is treated as a line of one or more clauses, and processed immediately (that

is, as though DO; line ; END; had been inserted in the program). The same rules apply as in
the INTERPRET instruction—for example, DO-END constructs must be complete. (The instruction you
provide could be an assignment. For example, if an IF clause is about to take the wrong branch,
you could change the value of the variable(s) on which it depends, and then re-execute it.) If an
instruction has a syntax error in it, a standard message is produced. From the operator's console, you
are prompted for input again; otherwise, the language processor reads the next line from the current

Debug Aids

© Copyright IBM Corp. 1988, 2004 319

input. Similarly, all the other SIGNAL conditions are disabled while the string is processed to prevent
unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero return codes from host
commands are sent to the output stream. Host Commands are always executed (that is, they are not
affected by the prefix ! on TRACE instructions), but the variable RC is not set.

Once the string has been processed, the language processor pauses again for further debug input,
unless the last input was a TRACE instruction. In this latter case, the language processor immediately
alters the tracing action (if necessary) and then continues executing until the next pause point (if
any). Therefore, to alter the tracing action (from All to Results, for example) and then re-execute the
instruction, you must use the built-in function TRACE (see “TRACE” on page 84). For example, CALL
TRACE I changes the trace action to "I" and allows re-execution of the statement after which the
pause was made. Interactive debug is turned off, when it is in effect, if a TRACE instruction includes a
prefix, or if the input is TRACE O or TRACE with no options.

With the numeric form of the TRACE instruction (TRACE n) sections of the program run without pauses
for debug input. If n is a positive number, interactive debug skips the next n pauses. If n is a negative
number, this inhibits tracing for n clauses that would otherwise be traced.

The trace action specified on a TRACE instruction is saved and restored across subroutine calls. This
means you can selectively trace the main routine or a subroutine. Suppose TRACE ?R (traces Results) is
in effect and you enter a subroutine in which you have no interest. The input TRACE O would turn tracing
off. No more instructions in the subroutine would be traced, but, on return to the main program, tracing
would be restored.

If you are interested only in a subroutine, you can put TRACE ?R at its start. After tracing the subroutine,
the language processor restores the original status of tracing. Therefore (if tracing was off on entry to the
subroutine), tracing (and interactive debug) are off until the next entry to the subroutine.

You can switch tracing on or off asynchronously, (that is, while a program is running) using the TS and TE
immediate commands. See “Interrupting Program Processing” on page 321 for the description of these
facilities.

The ability to execute any instructions in interactive debug gives you considerable control over execution.
Here are some examples of instructions you can enter in interactive debug.

Say expr /* Produces the result of evaluating the */
 /* expression. */

name=expr /* Changes the value of a variable. */

Trace O /* (Or Trace with no options) turns off */
 /* interactive debug and all tracing. */

Trace ?A /* Turns off interactive debug but continues */
 /* tracing all clauses. */

Trace L /* Makes the language processor pause at labels */
 /* only. This is similar to the traditional */
 /* "breakpoint" function, except that you */
 /* do not have to know the exact name and */
 /* spelling of the labels in the program. */

exit /* Ends execution of the program. */

Do i=1 to 10; say stem.i; end /* Produces 10 elements of */
 /* array stem. */

Exceptions: Some clauses cannot safely be re-executed, and, therefore, the language processor does not
pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop
• All END clauses (not a useful place to pause in any case)
• All THEN, ELSE, OTHERWISE, or null clauses
• All RETURN and EXIT clauses
• All SIGNAL and CALL clauses (the language processor pauses after tracing the target label)

Debug Aids

320 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• Any clause that raises a condition that CALL ON or SIGNAL ON traps (the pause takes place after the
target label for the CALL or SIGNAL has been traced)

• Any clause that causes a syntax error. (SIGNAL ON SYNTAX can trap these, but they cannot be re-
executed.)

Interrupting Program Processing
HI (Halt Interpretation) interrupts the language processor during processing. To use HI, you include HI
in a call to ARXIC from a non-REXX program. HI halts the interpretation of all REXX programs that are
currently running as though a halt condition had been raised. This is especially useful when a program
gets into a loop and you want to end processing.

When an HI interrupt halts the interpretation of a program, the data stack is cleared. You can trap an
HI interrupt by enabling the halt condition using either the CALL ON or the SIGNAL ON instruction (see
Chapter 7, “Conditions and Condition Traps,” on page 129).

The HI immediate command is processed as soon as control returns to the program, but before the next
statement in the program is processed.

If the program is processing an external function or subroutine written in a programming language other
than REXX or the program is processing a host command, when you halt program interpretation using HI,
the halt is not processed until the function, subroutine, or command returns to the calling program. That
is, the function, subroutine, or command completes processing before program processing is interrupted.
HI cannot halt the program in all cases, such as the following:

• A program calls an external function or subroutine not written in REXX and the function or subroutine
cannot return to the calling program (for example, it goes into a loop).

• Processing does not return to the program from a host command.

In these cases, HI cannot halt the program because it is not processed until the function, subroutine, or
command returns to the program.

Starting and Stopping Tracing
The following describes how to start and stop tracing a program. You can start tracing REXX programs in
several ways:

• You can use the TRACE instruction to start tracing. For more information, see “TRACE” on page 53.

• You can use the TS (Trace Start) immediate command in a REXX program to start tracing. TS puts the
REXX program into interactive debug. You can then execute REXX instructions, for example, to SAY
variables or to EXIT. Interactive debug is helpful if a program is looping. You can inspect the program
and step through the execution before deciding whether or not to continue execution. The trace output
is written to the current output stream. ASSGN(STDOUT) returns the name of the current output stream.

You can use TS in a REXX program or include it in a call to ARXIC from a non-REXX program.

You can end tracing in several ways:

• You can use the TRACE OFF instruction to end tracing. For more information, see “TRACE” on page 53.
• You can use TE to end tracing. Use TE in a REXX program or include it in a call to ARXIC from a

non-REXX program.

See Chapter 10, “REXX/VSE Commands,” on page 143 for more information about the HI, TS, and TE
immediate commands.

For more information about the trace and execution control routine ARXIC, see “Trace and Execution
Control Routine – ARXIC” on page 361.

Debug Aids

Chapter 16. Debug Aids 321

Debug Aids

322 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 17. Programming Services

Programming services for REXX processing let you interface with REXX and the language processor.
Whenever you call a REXX/VSE routine, there are general conventions relating to registers that are passed
on the call, parameter lists, and return codes the routines return. See “General Considerations for Calling
REXX/VSE Routines” on page 324 for more information.

This topic summarizes the REXX programming services and then describes individual topics in detail.

Note: No applications or VSE services that call REXX should do so in an authorized state.

Calling REXX: You can call REXX directly through the JCL EXEC command. You specify
REXX=program_name on the JCL EXEC statement. (See “Calling REXX Directly with the JCL EXEC
Command” on page 329.)

ARXEXEC and ARXJCL are routines you can use to run a REXX program. They are programming interfaces
to the language processor. (You can use ARXJCL to run a REXX program by specifying ARXJCL on the JCL
EXEC statement; see “The ARXJCL Routine” on page 331 for details.) You can call ARXEXEC or ARXJCL
to run a REXX program from a non-REXX program. (See “The ARXEXEC Routine” on page 334 or “The
ARXJCL Routine” on page 331.)

External Functions and Subroutines and Function Packages: You can extend the capabilities of the REXX
programming language by writing your own external functions and subroutines that you can then use in
REXX programs. You can write an external function or subroutine in assembler or in REXX or another
high-level programming language and store them in a sublibrary. You can also group frequently used
external functions and subroutines into a function package. This provides quick access to the packaged
functions and subroutines. When a REXX program calls an external function or subroutine, the function
packages are searched before the active PROC or PHASE chain. (See “Search Order” on page 60 for a
description of the search order.)

If you write external functions and subroutines, the language you use must support the system-
dependent interfaces that the language processor uses to call the function or subroutine. To include
an external function or subroutine in a function package, you must link-edit the function or subroutine into
a phase. See “External Functions and Subroutines and Function Packages” on page 344 for a description
of the system-dependent interfaces for writing external functions and subroutines and how to create
function packages.

Variable Pool Access: The ARXEXCOM variable pool access interface lets commands and programs access
and manipulate REXX variables. You can use ARXEXCOM to inspect, set, or drop variables. See “Variable
Pool – ARXEXCOM” on page 352 for details about ARXEXCOM.

Maintain Host Command Environments: When a REXX program runs, there is at least one host command
environment available for processing host commands. When a program begins running, there is an
initial environment. You can change the host command environment with the ADDRESS instruction (see
“ADDRESS” on page 27).

When the language processor processes an instruction that is a host command, it first evaluates the
expression and then passes the command to the active host command environment for processing.
A specific routine defined for the host command environment handles command processing. See
“Commands to External Environments” on page 23 for information about host command environments.

A host command environment table defines:

• the valid host command environments
• the routines that are called to handle command processing within each environment
• the initial environment that is available to a REXX program when the program begins running.

You can customize REXX processing to define your own host command environment and provide a routine
that handles command processing for that environment (see Chapter 18, “Customizing Services,” on page
381).

© Copyright IBM Corp. 1988, 2004 323

The ARXSUBCM routine lets you access the entries in the host command environment table. You can
use ARXSUBCM to add, change, or delete entries in the table and query the values for a particular
host command environment entry. See “Maintain Entries in the Host Command Environment Table –
ARXSUBCM” on page 357 for details about ARXSUBCM.

Trace and Execution Control: ARXIC is the trace and execution control routine. This lets you use the HI,
HT, RT, TQ, TS, and TE commands to control the processing of REXX programs. For example, you can call
ARXIC from a program written in assembler or a high-level language to control the tracing and execution
of programs. See “Trace and Execution Control Routine – ARXIC” on page 361 for details about ARXIC.

Get Result Routine: ARXRLT is the get result routine. This lets you obtain the result from a REXX program
that was called using ARXEXEC. You can also use ARXRLT if you write external functions and subroutines
in a programming language other than REXX. ARXRLT lets your function or subroutine code get a large
enough area of storage (EVALBLOK) to return the result to the calling program. ARXRLT also lets a
compiler runtime processor obtain an evaluation block to handle the result from a compiled REXX
program. See “Get Result Routine – ARXRLT” on page 363 for details about ARXRLT.

OUTTRAP Interface Routine: ARXOUT is the OUTTRAP interface routine. This lets programs write a
character string to the REXX stem specified by the OUTTRAP external function. Only programs which have
been invoked by the LINK or LINKPGM host command environment can use this interface. See “OUTTRAP
Interface Routine – ARXOUT” on page 378 for details about ARXOUT.

SAY Instruction Routine: ARXSAY is the SAY instruction routine. ARXSAY lets you write a character
string to the same output stream as the REXX SAY keyword instruction. See “SAY Instruction Routine –
ARXSAY” on page 368 for details about ARXSAY.

Halt Condition Routine: ARXHLT is the halt condition routine. ARXHLT lets you query or reset the halt
condition. See “Halt Condition Routine – ARXHLT” on page 370 for details about ARXHLT.

Text Retrieval Routine: ARXTXT is the text retrieval routine. ARXTXT lets you retrieve the same text that
the language processor uses for the ERRORTEXT built-in function and for certain options of the DATE
built-in function. For example, you can use ARXTXT in a program to retrieve the name of a month or the
text of a syntax error message. See “Text Retrieval Routine – ARXTXT” on page 372 for details about
ARXTXT.

LINESIZE Function Routine: ARXLIN is the LINESIZE function routine. ARXLIN lets you retrieve the same
value that the LINESIZE built-in function returns. See “LINESIZE Function Routine – ARXLIN” on page
376 for details about ARXLIN.

General Considerations for Calling REXX/VSE Routines
Each description of a REXX/VSE routine explains how to use the routine, including entry and return
specifications and parameter lists. The following topics provide general information about calling
REXX/VSE routines.

All REXX/VSE routines, except for ARXINIT, the initialization routine, need a language processor
environment. A language processor environment is the environment in which REXX operates, that is, in
which the language processor processes a REXX program. REXX programs and routines run in a language
processor environment.

REXX/VSE automatically initializes a language processor environment when one is needed. When you use
the JCL EXEC command or call ARXEXEC or ARXJCL to run a program, REXX/VSE automatically initializes
an environment if an environment does not already exist. The program then runs in that environment. The
program can then call a REXX/VSE routine, such as ARXIC, and the routine runs in the same environment
in which the program is running. See Chapter 19, “Language Processor Environments,” on page 387 for
details about environments, when they are initialized, and the different characteristics that make up an
environment.

You can explicitly call the initialization routine, ARXINIT, to initialize language processor environments.
Calling ARXINIT lets you customize the environment and how programs and services are processed
and used. Using ARXINIT, you can create several different environments in a partition. See Chapter 18,
“Customizing Services,” on page 381 for details about customization.

324 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If you explicitly call ARXINIT to initialize environments, whenever you call a REXX/VSE routine, you can
specify the language processor environment in which you want the routine to run. During initialization,
ARXINIT creates several control blocks that contain information about the environment. The main
control block is the environment block, which represents the language processor environment. If you
use ARXINIT and initialize several environments and then want to call a REXX/VSE routine to run in a
specific environment, you can pass the address of the environment block for the environment on the
call. When you call the REXX/VSE routine, you can pass the address of the environment block either in
register 0 or in the environment block address parameter in the parameter list if the routine supports the
parameter. By using customizing services and the environment block, you can customize REXX processing
and also control the environment in which you want REXX/VSE routines to run. For more information, see
“Specifying the Address of the Environment Block” on page 326.

The following describes some general conventions for calling REXX/VSE routines:

• The REXX vector of external entry points is a control block that contains the addresses of the REXX/VSE
routines and the REXX/VSE-supplied and user-supplied replaceable routines. The vector lets you easily
access the address of a specific routine for calling the routine. See “Control Blocks Created for a
Language Processor Environment” on page 414 for more information about the vector.

• All calls must be in 31 bit addressing mode.
• All data areas may be above 16 megabytes in virtual storage.
• On entry to an external function or subroutine, register 0 contains the address of the environment

block. This address should be passed to any REXX/VSE programming service called from the external
function or subroutine. Passing the address of the environment block is particularly important if
the environment is reentrant because programming services cannot automatically locate a reentrant
environment. For more information on reentrant environments, see “Using the Environment Block for
Reentrant Environments” on page 327.

• For most REXX/VSE routines, you pass a parameter list on the call. Register 1 contains the address of
the parameter list, which consists of a list of addresses. Each address in the parameter list points to
a parameter. The high-order bit of the last parameter address must be a binary 1. If you do not use a
parameter, you must pass either binary zeros (for numeric data or addresses) or blanks (for character
data). For more information, see “Parameter Lists for REXX/VSE Routines” on page 325.

• On calls to the REXX/VSE routines, you can pass the address of an environment block to specify the
particular language processor environment in which you want the routine to run. For more information,
see “Specifying the Address of the Environment Block” on page 326.

• Specific return codes are defined for each REXX/VSE routine. Some common return codes include 0, 20,
28, and 32. For more information, see “Return Codes for REXX/VSE Routines” on page 328.

Parameter Lists for REXX/VSE Routines
Most of the REXX/VSE routines have parameter lists. The parameters provide information to the routine
about what type of processing you want to perform. They also provide a way for the routine to return
information to the program that called it. All the parameter lists are passed to the routines in the same
manner. Figure 18 on page 326 shows the format of the parameter lists for the REXX/VSE routines. A
description of the parameter list follows the figure.

Chapter 17. Programming Services 325

Figure 18. Overview of Parameter Lists for REXX/VSE Routines

Register 1 contains an address that points to a parameter list. The parameter list consists of a list of
addresses. Each address in the parameter list points to a parameter. This is illustrated on the left side of
the diagram in Figure 18 on page 326. The end of the parameter list (the list of addresses) is indicated by
the high-order bit of the last address being set to a binary 1.

The parameters themselves are shown on the right side of the diagram in Figure 18 on page 326. The
parameter value can be the data itself or it can be an address that points to the data.

All of the parameters for a specific routine may not be required. That is, some parameters may be
optional. Because of this, the parameter lists are of variable length. Indicate the end of the parameter list
by setting on the high-order bit in the last address.

If there is an optional parameter you do not want to use and there are parameters after it you want to
use, you can specify the address of the optional parameter in the parameter list, but set the optional
parameter itself to either binary zeros (for numeric data or addresses) or to blanks (for character data).
Otherwise, you can simply end the parameter list at the parameter before the optional parameter by
setting the high-order bit on in the preceding parameter's address.

For example, suppose a routine has 7 parameters and parameters 6 and 7 are optional. You do not
want to use parameter 6, but you want to use parameter 7. In the parameter list, specify the address of
parameter 6 and set the high-order bit on in the address of parameter 7. For parameter 6, specify 0 or
blanks, depending on whether the data is numeric or character data.

Suppose the routine has 7 parameters, parameters 6 and 7 are optional, and you do not want to use these
optional parameters. You can end the parameter list at parameter 5 by setting on the high-order bit of the
address for parameter 5.

The individual descriptions of each routine in this book describe the parameters, the values you can
specify for each parameter, and whether a parameter is optional.

Specifying the Address of the Environment Block
You can explicitly call the initialization routine, ARXINIT, to initialize a language processor environment
in a partition. If you explicitly call ARXINIT to initialize an environment, you can optionally specify
this environment when you call any of the REXX/VSE routines. The environment block represents the
environment in which you want the routine to run. Generally, you can specify the address of the
environment block:

• Using the environment block address parameter in the routine's parameter list
• In register 0.

326 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

For information about specifying the environment block address in the parameter list, see “Using the
Environment Block Address Parameter” on page 327.

If you do not specify an address in the environment block address parameter, REXX/VSE checks register
0 for the address of an environment block. If register 0 contains the address of a valid environment block,
the routine runs in that environment block. If the address is not valid, the routine locates the current
non-reentrant environment and runs in that environment. If register 0 contains 0, the routine searches
for the last non-reentrant environment created, without checking whether register 0 contains a valid
environment block address.

If you use ARXINIT to initialize reentrant environments, see “Using the Environment Block for Reentrant
Environments” on page 327 for information about running in reentrant environments.

Using the Environment Block Address Parameter
The parameter lists of most of the REXX/VSE routines contain the environment block address parameter.
This parameter lets you specify the address of the environment block that represents the environment
in which you want the routine to run. If you use the environment block address parameter, the routine
uses the address you specify and ignores the contents of register 0. Also, the routine does not check the
address you specify. Therefore, you must ensure that you pass a correct environment block address or
unpredictable results may occur. For example, if you specify an incorrect address, the routine may return
with a return code of 28, which indicates a language processor environment could not be located. In other
cases, processing could abend.

You might specify the address of an existing environment that is not the one you want to use. In this case,
the routine may run successfully, but the results will not be what you expected. For example, suppose
you have four environments initialized in a partition; environments 1, 2, 3, and 4. You want to call the
trace and execution control routine, ARXIC, to halt the processing of programs in environment 2. However,
when you call ARXIC, you specify the address of the environment block for environment 4, instead of
environment 2. ARXIC completes successfully, but the processing of programs is halted in environment 4,
rather than in environment 2. This is a subtle problem that may be difficult to identify. Therefore, if you
use the environment block address parameter, ensure the address you specify is correct.

If you do not want to pass an address in the environment block address parameter, specify a value of
0. The parameter lists for the REXX/VSE routines are of variable length. That is, register 1 points to a
list of addresses, and each address in the list points to a parameter. The end of the parameter list is
indicated by setting on the high-order bit in the last address in the parameter list. If you do not want to
use the environment block address parameter or any parameters after it, you can end the parameter list
at a preceding parameter. For more information about parameter lists, see “Parameter Lists for REXX/VSE
Routines” on page 325.

If you are using the environment block address parameter and you are having problems debugging an
application, you may want to set the parameter to 0 for debugging purposes. This lets you determine
whether any problems are a result of specifying this parameter incorrectly.

Using the Environment Block for Reentrant Environments
If you want to use a reentrant environment, you must explicitly call the initialization routine, ARXINIT, to
initialize the environment. REXX/VSE automatically initializes non-reentrant environments only. When you
call ARXINIT to initialize a reentrant environment, you must set the RENTRANT flag on (see page “Flags
and Corresponding Masks” on page 393).

An application program would use a reentrant environment when it wants to isolate itself and its
characteristics from other application programs. For example, an application program may provide a
storage management routine that it does not want any other program to use. To ensure this, you would
use ARXINIT to initialize the environment and set the RENTRANT flag on. When the RENTRANT flag is
on, the environment is not added to the existing chain of environments. Instead, the environment is an
independent entry isolated from all other environments.

REXX/VSE routines do not locate reentrant environments. Additionally, if you use ARXINIT to find an
environment, ARXINIT finds non-reentrant environments only, not reentrant environments. You can use a

Chapter 17. Programming Services 327

reentrant environment that you have initialized only by explicitly passing the address of the environment
block for the reentrant environment when you call a REXX/VSE programming routine. If you want to call a
REXX/VSE routine to run in a reentrant environment, you must pass the address of the environment block
for the reentrant environment on the call to the routine. You can pass the address either in the parameter
list (in the environment block address parameter) or in register 0.

If you do not explicitly pass an environment block address, the routine locates the current non-reentrant
environment and runs in that environment.

Each task that is using REXX must have its own language processor environment. Two tasks cannot
simultaneously use the same language processor environment for REXX processing.

Return Codes for REXX/VSE Routines
REXX routines return a return code in register 15 that indicates whether processing was successful. The
parameter lists for most of the routines also have a return code parameter that lets you specify a fullword
field in which to receive the return code. The return code parameter lets high-level languages obtain
return code information more easily. If you provide this parameter, the routine returns the return code
in both the return code parameter and in register 15. If the parameter list you pass to the routine is
incorrect, the return code is returned in register 15 only.

Each REXX/VSE routine has specific return codes. The individual topics in this book describe the return
codes for each routine. The common return codes that most of the REXX/VSE routines use are in Table 11
on page 328.

Table 11. Common Return Codes for REXX/VSE Routines

Return Code Description

0 Successful processing.

20 Error occurred. Processing was unsuccessful. The requested service was either
partially completed or was terminated. An error message may be written to the
error message field in the environment block. If the NOPMSGS flag is off for the
environment, the message is also written to the current output that is defined for
the environment.

For some errors, an alternate message may also be issued. Alternate messages
are printed only if the ALTMSGS flag is on for the environment. The NOPMSGS and
ALTMSGS flags are described in “Flags and Corresponding Masks” on page 393.

If multiple errors occurred and multiple error messages were issued, all error
messages are written to the current output. Additionally, the first error message
is stored in the environment block.

28 A service was requested, but a valid language processor environment could not be
located. The requested service is not performed.

32 Processing was not successful. The parameter list is not valid. The parameter list
contains either too few or too many parameters, or the high-order bit of the last
address in the parameter list is not set to 1 to indicate the end of the parameter list.

Calling REXX
You can call REXX by using the JCL EXEC command or by calling ARXEXEC or ARXJCL. Calling REXX by
using the JCL EXEC command lets you leave JCL statements on the stack. VSE/ESA can then process the
JCL statements left on the stack. Thus, you can insert JCL statements or data into the current job stream.

JCL statements must be 80 characters. If a stack entry has fewer than 80 characters, it is padded with
trailing blanks. If it has more than 80 characters, only the first 80 are used; the rest are ignored. After
program processing is done, these 80-character entries are passed to VSE/ESA if the exit return code

Calling REXX

328 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

is zero. VSE/ESA treats the statements that remain on the stack as a JCL procedure. See z/VSE System
Control Statements for rules about the contents of a JCL procedure. See “Using the Data Stack” on page
422 for more information about the data stack.

ARXEXEC has more flexibility than ARXJCL. ARXEXEC permits you to pass more than one argument on the
call and to preload a program in storage.

Note: To permit FORTRAN programs to call ARXEXEC, REXX/VSE provides an alternate entry point for the
ARXEXEC routine. The alternate entry point name is ARXEX.

Calling REXX Directly with the JCL EXEC Command
You can use the JCL EXEC command to run a REXX program in batch. On the JCL EXEC statement, specify
REXX=program_name; for example:

// EXEC REXX=MYPROG,SIZE=size

The program_name can be up to 8 characters. This is a member of a sublibrary in the active PROC chain.
The SIZE parameter enables you to specify the size of the program area that may be used by REXX to load
the user programs. As VSE JCL is already loaded at the beginning of the program area, 80 KB are added to
the size specified in the SIZE parameter. See z/VSE System Control Statements for a full description of the
SIZE parameter.

To include optional parameters, specify PARM=parameters in the format:

// EXEC REXX=program_name,PARM=parameters

You can specify a list of parameters in the PARM field of the EXEC statement.

Figure 19 on page 329 shows an example of JCL to run the program MYPROG.

*
// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC REXX=MYPROG,PARM='a b c d'

Figure 19. Example of Calling a REXX Program from a JCL EXEC Statement

If you omit the program_name, specify blanks, or specify a name of more than 8 characters, JCL reports
an error and stops processing. REXX assumes the program_name is the name of a member of type PROC.
REXX calls the Librarian services to search the active PROC chain for the PROC myprog. REXX accesses
this program through the Librarian services. You can pass only one argument to the program being called,
but the argument can consist of more than one token. In the example, the argument passed to the
program is: a b c d.

The program being called needs to include a PARSE ARG keyword instruction such as PARSE ARG
exvars. This instruction assigns a b c d (from the JCL EXEC statement) into the variable exvars.

The following example includes additional lines of SYSIPT data after the JCL EXEC statement.

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC REXX=NEWPROG,PARM='a b c d'
input line 1
input line 2
/*

PULL (see “PULL” on page 48), PARSE EXTERNAL (see “PARSE” on page 44), or EXECIO (see “EXECIO”
on page 145) can read the lines of input until encountering an end-of-file indicator, such as /*. When
REXX/VSE does not read all input lines from SYSIPT, VSE JCL treats remaining SYSIPT data as JCL
statements.

Note that reading inline SYSIPT data from nested JCL procedures is not possible.

Calling REXX

Chapter 17. Programming Services 329

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

If the REXX program runs successfully, the result that RETURN or EXIT returns is converted to binary and
placed in the conditional JCL variable $RC. This permits conditional JCL to determine if the job should
continue processing. If the result is greater than 4096, then the language processor applies modulo 4096
arithmetic to convert the result to a number in the range 0–4095.

If a REXX syntax error occurs, $RC contains 4095. In this case, the current output stream contains the
REXX error code. See z/VSE Messages and Codes for details about REXX error messages.

Return Codes
REXX sets return codes when it detects an error in creating a language processor environment. When this
occurs, JCL issues the message:

R002I REXX/VSE INITIALIZATION FAILED, RETURN CODE rr REASON CODE nn

The rr is the return code from the internal call to ARXINIT. If the return code is 20, the reason code nn is
the ARXINIT reason code associated with the failure. If the return code is not 20, then the reason code is
0.

See Table 67 on page 435 for a complete list of reason codes and their meanings.

REXX sets return codes when it detects an error in the internal call to ARXEXEC. When this occurs, JCL
issues the message:

R003I REXX/VSE EXEC PROCESSING FAILED, RETURN CODE rr

The rr is the return code from the internal call to ARXEXEC. If the return code is 40, an error occurred
while processing the stack. An attempt to obtain SVA storage may have failed or the REXX/VSE stack
service may have failed. See page Table 20 on page 343 for information about ARXEXEC return codes.

The ARXREXX Program
Job control calls the ARXREXX program when it detects the REXX= operand on the EXEC statement/
command to invoke REXX/VSE. The list below describes the status of the registers for the ARXREXX
program on entry.
Register

Contents
0

Address of an 8-byte field containing the name of the REXX program.
1

Address of the parameter field containing the arguments to be passed to the REXX program. The
parameter field is a half-word field containing the length of the parameter data. The parameter data
immediately follows the length. If there are no arguments to be passed to the program, register 1 is
zero.

2-12
Reserved.

13
Address of an 18-word register save area.

14
Return address.

15
ARXREXX entry point address.

The list below describes the status of the registers at the time the ARXREXX program returns control.
Register

Contents

Calling REXX

330 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

0
Reason code.

1
If the stack is empty, register 1 is zero.

Otherwise, register 1 contains an 8-byte field specifying the address and length of the stack storage
(these are the same 8 bytes to which register 0 points on entry). The first word is the address of the
stack storage. The second word specifies the length of storage. Each stack entry is 80 bytes long.
A stack entry of less than 80 bytes is padded with trailing blanks. If a stack entry is longer than 80
bytes, only the first 80 bytes are used. The stack storage is located in the SVA.

Job control frees the stack storage after it completes processing of the stack entries.

2-14
Same as on entry.

15
Return code.

• User return codes are in the range of 0 to 4095. The use of the value of 4095 is not recommended
since it is used by REXX (see below). If the user does not supply a value, zero is used. ARXREXX
changes (modulo 4096) any user return code to bring it into the range of 0-4095.

• In case of a REXX syntax error, register 15 contains 4095.
• In case of an ARXINIT failure, register 15 contains 5000 plus the return code of ARXINIT. This

indicates an initialization failure. Register 0 contains the reason code of the call to ARXINIT if the
return code is 5020. Otherwise, it is zero.

If the contents of register 15 is between 5000 and 5999, job control sets the return code of the last
job step to 4095 and issues message R002 in addition.

• In case of an ARXEXEC failure, register 15 contains 6000 plus the return code of ARXEXEC. This
indicates a failure when processing a REXX program. Register 0 has no meaning.

If an error occurs during stack processing, register 15 contains 6040.

If the contents of register 15 is between 6000 and 6999, job control sets the return code of the last
job step to 4095 and issues message R003 in addition.

Note: Failures that occur during termination processing (ARXTERM) will not terminate the job stream
and no error information is returned.

Calling REXX with ARXEXEC or ARXJCL
You can use ARXEXEC or ARXJCL to call REXX from a non-REXX program.

The ARXJCL Routine
ARXJCL is the simplest routine for calling REXX.

You can use ARXJCL to run a REXX program in two ways:

• Call ARXJCL from a non-REXX program
• Specify ARXJCL on the JCL EXEC statement.

To specify ARXJCL on the JCL EXEC statement, specify the name of the program and any arguments in the
PARM field. For example, to run a REXX program named MYPROG and pass two arguments, you could use
the following:

// LIBDEF *,SEARCH=(PRD1.BASE,REXXLIB.SAMPLES)
// EXEC ARXJCL,PARM='MYPROG arg1 arg2'

Calling REXX

Chapter 17. Programming Services 331

The remainder of this discussion about ARXJCL concerns calling ARXJCL from a non-REXX program.

On the call to ARXJCL, you pass the address of a parameter list in register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXJCL to run. On the call to ARXJCL, you can optionally specify the
address of the environment block for the environment in register 0.

If you do not pass an environment block address or if ARXJCL determines the address is not valid,
ARXJCL locates the current environment and runs in that environment. “Chains of Environments and
How Environments Are Located” on page 410 describes how environments are located. If a current
environment does not exist, or the current environment was initialized on a different task, a new language
processor environment is initialized. The program runs in the new environment. Before ARXJCL returns,
the language processor environment that was created is terminated. Otherwise, it runs in the located
current environment.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXJCL routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: In register 1, you pass the address of a parameter list, which consists of one address. To
indicate the end of the parameter list, set the high-order bit of the last address in the parameter list to 1.
Table 12 on page 332 describes the parameter for ARXJCL.

Table 12. Parameter for Calling the ARXJCL Routine

Parameter Number of Bytes Description

Parameter 1 variable A buffer, which consists of a halfword length field followed by a
data field. The length field contains the length of the data field that
follows. (This length does not include the 2 bytes that specify the
length itself.)

The data field contains the name of the program, followed by one
or more blanks, followed by the argument (if any) to be passed to
the program. You can pass only one argument on the call, but the
argument can consist of more than one token.

The following example shows an assembler program that calls ARXJCL to run a REXX program.

APISAMP AMODE 31
APISAMP RMODE ANY
APISAMP CSECT
 STM 14,12,12(13)
 BALR 12,0
 USING *,12

Calling REXX

332 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 ST 13,SAVE+4
 LA 13,SAVE
 CDLOAD ARXJCL Load ARXJCL into storage
 LR 15,1
 OI PARM@,X'80' Indicate the end of the Plist
 LA 1,PARM@ Load R1 with address of Plist
 BALR 14,15
 C 15,EXPECTED Verify the program return code
 BNE FAILURE Handle failure
 WTO 'Exec called successfully',ROUTCDE=(2),DESC=(7)
 B EXIT
FAILURE WTO 'Exec return code incorrect',ROUTCDE=(2),DESC=(7)
*
EXIT EQU *
 L 13,SAVE+4
 LM 14,12,12(13)
 BR 14
*
EXPECTED DC F'1'
SAVE DS 18F
 DS 0F
PARM@ DC A(*+4)
PARMLEN DC H'15'
PARMCMD DC CL15'APIEXEC 123 456' Program called with 2 arguments
 LTORG
 END

Return Specifications: For the ARXJCL routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: If ARXJCL encounters an error, it returns a return code. If you call ARXJCL from a program,
ARXJCL returns the return code in register 15. Table 13 on page 333 describes the return codes.

Table 13. Return Codes for ARXJCL Routine

Return Code Description

0 Processing was successful. Program processing completed.

20 Processing was not successful. The program was not processed. One possible reason is
a missing or failing REXX/VSE initialization. The execution of // EXEC ARXLINK has either
been missing or failed.

20021 The JCL EXEC statement contained an incorrect parameter or the parameter list passed
on the call to ARXJCL was incorrect. A parameter may have been blank or null or the
name of the program may have been incorrect (longer than 8 characters).

Other Any other return code is the return code from the REXX program on the RETURN or EXIT
keyword instruction.

Note:

1. No distinction is made between the REXX program returning a value of 0, 20, or
20021 on the RETURN or EXIT instruction and ARXJCL returning one of these return
codes.

2. ARXJCL returns a return code as the step completion code. However, the step
completion code is limited to a maximum of 4095, in decimal. If the return code
is greater than 4095 (decimal), VSE/ESA uses the rightmost three digits of the
hexadecimal representation of the return code and converts it to decimal for use as
the step completion code. For example, suppose the program returns a return code
of 8002, in decimal, on the RETURN or EXIT instruction. The value 8002 (decimal) is
X'1F42' in hexadecimal. VSE/ESA takes the rightmost three digits of the hexadecimal
value (X'F42') and converts it to decimal (3906) to use as the step completion code.
The step completion code that is returned is 3906, in decimal.

Calling REXX

Chapter 17. Programming Services 333

The ARXEXEC Routine
You can use the ARXEXEC routine to call REXX from a non-REXX a program in any partition. ARXEXEC
offers more flexibility:

• You can preload the REXX program in storage and pass the address of the preloaded program to
ARXEXEC. This is useful if you want to run a program multiple times; the program is not loaded and
freed each time you call it.

• With ARXEXEC, you can use your own load routine to load and free the program.
• The EXEC command and ARXJCL permit you to pass only one argument to the program (the argument

can consist of several tokens). ARXEXEC lets you pass multiple arguments to the program, and each
argument can consist of multiple tokens. (If you pass multiple arguments, you must not set bit 0 (the
command bit) in parameter 3.)

• With ARXEXEC, one parameter on the call is the user field. You can use this field for your own
processing.

Note: To permit FORTRAN programs to call ARXEXEC, REXX/VSE provides an alternate entry point for the
ARXEXEC routine. The alternate entry point name is ARXEX.

If you use the EXEC command (page “EXEC” on page 145), you can pass only one argument to the
program. The argument can consist of several tokens. Similarly, if you call ARXJCL, you can only pass one
argument. Using ARXEXEC allows you to pass multiple arguments to the program, and each argument can
consist of multiple tokens. If you pass multiple arguments, you must not set bit 0 (the command bit) in
parameter 3.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXEXEC to run. On the call to ARXEXEC, you can optionally specify
the address of the environment block for the environment in either the parameter list or in register 0.

If you do not pass an environment block address or ARXEXEC determines the address is not valid,
ARXEXEC locates the current environment and runs in that environment. “Chains of Environments and
How Environments Are Located” on page 410 describes how environments are located. If a current
environment does not exist, or the current environment was initialized on a different task, a new language
processor environment is initialized. The program runs in the new environment. Before ARXEXEC returns,
the language processor environment that was created is terminated. Otherwise, it runs in the located
current environment.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXEXEC routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. To indicate the end of the parameter list, set

Calling REXX

334 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

the high-order bit of the last address in the parameter list to 1. For general information about passing
parameters, see “Parameter Lists for REXX/VSE Routines” on page 325.

Table 14 on page 335 describes the parameters for ARXEXEC.

Table 14. Parameters for ARXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 1 4 Specifies the address of the exec block (EXECBLK). This is a control
block that describes the program to load. It contains information
needed to process the program, such as the member from which
the program is to be loaded and the name of the initial host
command environment when the program starts running. “The Exec
Block (EXECBLK)” on page 337 describes the format of the exec
block.

If the program is preloaded and you pass the address of the
preloaded program in parameter 4, specify an address of 0 for
this parameter. If you specify both parameter 1 and parameter 4,
ARXEXEC uses the value in parameter 4 and ignores parameter 1.

Parameter 2 4 Specifies the address of the first entry in a table that contains
the arguments for the program. The arguments are arranged as a
vector of address/length pairs followed by X'FFFFFFFFFFFFFFFF'.
“Format of Argument List” on page 338 describes the format of the
arguments.

Parameter 3 4 Flags describing the REXX program. ARXEXEC uses only bits 0, 1, 2,
and 3. The remaining bits are reserved.

Bits 0, 1, and 2 are mutually exclusive. PARSE SOURCE returns a
token indicating how a program was called. The bit you set on in
bit positions 0, 1, or 2 indicates the token (COMMAND, FUNCTION, or
SUBROUTINE, respectively) that PARSE SOURCE uses. For example,
if you set bit 2 on, PARSE SOURCE returns the token SUBROUTINE.

The description of each bit follows:

• Bit 0 - Set this bit on if the program is being called as a
"command" (not from another program as an external function
or subroutine). The program can optionally return a result. Do not
set bit 0 on if you pass more than one argument to the program.

• Bit 1 - Set this bit on if the program is being called as an external
function (a function call). The program must return a result.

• Bit 2 - Set this bit on if the program is being called as a
subroutine, for example, using the CALL keyword instruction. The
program can optionally return a result.

• Bit 3 - Set this bit on if you want ARXEXEC to return extended
return codes in the range 20001–20099.

If a syntax error occurs, ARXEXEC returns a value in the range
20001–20099 in the evaluation block, regardless of the setting of
bit 3. If a syntax error occurs and bit 3 is on, ARXEXEC returns
with a return code in the range 20001–20099 that matches
the value returned in the evaluation block. If a syntax error
occurs and bit 3 is off, ARXEXEC returns with return code 0. For
more information, see “How ARXEXEC Returns Information about
Syntax Errors” on page 342.

Calling REXX

Chapter 17. Programming Services 335

Table 14. Parameters for ARXEXEC Routine (continued)

Parameter Number of
Bytes

Description

Parameter 4 4 Specifies the address of the in-storage control block (INSTBLK),
which defines the structure of a preloaded program in storage.
The INSTBLK contains pointers to each statement in the program
and the length of each statement. “The In-Storage Control Block
(INSTBLK)” on page 339 describes the control block.

This parameter is required if the caller of ARXEXEC has preloaded
the program. Otherwise, this parameter must be 0. If you specify
this parameter, ARXEXEC ignores parameter 1 (address of the exec
block).

Parameter 5 4 This parameter is reserved.

Parameter 6 4 Specifies the address of an evaluation block (EVALBLOCK).
ARXEXEC uses the evaluation block to return the result from
the program that was specified on either the RETURN or EXIT
instruction. “The Evaluation Block (EVALBLOCK)” on page 341
describes the format of the evaluation block, how ARXEXEC
uses the parameter, and whether or not you should provide an
EVALBLOCK on the call.

If you do not want to provide an evaluation block, specify an
address of 0. If you do not provide an evaluation block or if the
evaluation block is too small, you can use the get result routine,
ARXRLT, to obtain the result from the program.

Parameter 7 4 Specifies the address of an 8-byte field (the work-area header) that
defines a work area for the ARXEXEC routine. In the 8-byte field,
the:

• The first 4 bytes contain the address of the work area
• The last 4 bytes contain the length of the work area.

The work area contains the storage for control blocks. The work
area is passed to the language processor to use for processing the
program. If the work area is too small, ARXEXEC returns with a
return code of 20 and a message indicates an error. The minimum
length required for the work area is X'1800' bytes.

If you do not want to pass a work area, specify an address of 0.
In this case, ARXEXEC obtains storage for its work area or calls the
replaceable storage routine specified in the GETFREER field for the
environment, if you provided a storage routine.

Parameter 8 4 Specifies the address of a user field. ARXEXEC does not use or
check this pointer or the user field. You can use this field for your
own processing.

If you do not want to use a user field, specify an address of 0.

Calling REXX

336 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 14. Parameters for ARXEXEC Routine (continued)

Parameter Number of
Bytes

Description

Parameter 9 4 This parameter is optional. It is the address of the environment
block to use when performing the requested service.

If you specify a nonzero value for the environment block address
parameter, ARXEXEC uses the value you specify and ignores
register 0. However, ARXEXEC does not check whether the address
is valid. Therefore, ensure that the address you specify is correct
or unpredictable results can occur. For more information, see
“Specifying the Address of the Environment Block” on page 326.

Parameter 10 4 This parameter is optional. ARXEXEC uses this field for the return
code.

If you use this parameter, ARXEXEC returns the return code in the
parameter and also in register 15. Otherwise, ARXEXEC uses only
register 15. If the parameter list is incorrect, the return code is
returned in register 15 only. "Return Codes" describes the return
codes.

The Exec Block (EXECBLK)
Parameter 1 specifies the address of the exec block (EXECBLK). This is a control block that describes the
program to load. If the program is not preloaded, you must build the exec block and pass the address in
parameter 1 on the call to ARXEXEC. You need not pass an exec block if the program is preloaded.

Note: If you want to preload the program, you can use the supplied exec load routine ARXLOAD or your
own exec load replaceable routine (see “Exec Load Routine” on page 442).

A mapping macro for the exec block, ARXEXECB, is in PRD1.BASE. The following table shows the format
of the exec block.

Note: In the following table, the field names ACRYN and LENGTH must include the prefix EXEC_BLK_. All
other fields must include the prefix EXEC_.

Table 15. Format of the Exec Block (EXECBLK)

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ACRYN Identifies the exec block. This field must contain the
character string ARXEXECB.

8 4 LENGTH Specifies the length of the exec block in bytes.

12 4 — Reserved.

16 8 MEMBER Specifies the member name of the program if the
program is in a sublibrary in the active PROC chain. A
LIBDEF specifying the sublibrary must precede loading
a member.

24 8 DDNAME Reserved.

Calling REXX

Chapter 17. Programming Services 337

Table 15. Format of the Exec Block (EXECBLK) (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

32 8 SUBCOM Specifies the name of the initial host command
environment when the program starts running.

If this field is blank, the environment specified in
the INITIAL field of the host command environment
table is used. The default is VSE. “Host Command
Environment Table” on page 401 describes the table.

40 4 DSNPTR Specifies the address of a sublibrary from which the
member was loaded. The PARSE SOURCE instruction
returns a string to which this address points. The name
usually represents the name of the exec load member.
The name can be up to 34 characters for the fully
qualified sublibrary name (7 characters for the library
name, 8 for the sublibrary name, 8 for the member
name, and 8 for the type).

If you do not want to specify a sublibrary name, specify
an address of 0.

44 4 DSNLEN Specifies the length of the sublibrary name to which the
address at offset +40 points. The length can be 0–34. If
no name is specified, the length is 0.

REXX programs are kept in PROC sublibraries. Programs must consist of fixed length, 80-byte records.
(This is a Librarian restriction.) REXX programs are loaded from sublibraries. The interpreter uses
Librarian services to locate, open, and read REXX programs.

A LIBDEF specifying the sublibrary must precede loading the member that the member at offset +16
specifies.

The fields at offset +40 and +44 in the exec block are only for input to the PARSE SOURCE instruction and
are for informational purposes only.

If the program is preloaded, loading is not performed. Otherwise, the program is loaded using the
member name in the active PROC chain.

Format of Argument List
Parameter 2 points to the arguments for the program. The arguments are arranged as a vector of
address/length pairs, one for each argument. The first four bytes are the address of the argument
string. The second four bytes are the length of the argument string, in bytes. The vector must end in
X'FFFFFFFFFFFFFFFF'. There is no limit on the number of arguments you can pass. Table 16 on page 338
shows the format of the argument list. REXX/VSE provides a mapping macro ARXARGTB for the vector.
The mapping macro is in PRD1.BASE.

Note: Each field name in the following table must include the prefix ARGTABLE_.

Table 16. Format of the Argument List

Offset
(Dec)

Number of
Bytes

Field Name Description

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

Calling REXX

338 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 16. Format of the Argument List (continued)

Offset
(Dec)

Number of
Bytes

Field Name Description

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING_LENGTH Length of argument 3

⋮ ⋮

x 4 ARGSTRING_PTR Address of argument n

x+4 4 ARGSTRING_LENGTH Length of argument n

x+8 8 --- X'FFFFFFFFFFFFFFFF'

The In-Storage Control Block (INSTBLK)
Parameter 4 points to the in-storage control block (INSTBLK). The in-storage control block defines the
structure of a preloaded program in storage. The INSTBLK contains pointers to each record in the program
and the length of each record.

If you preload the program in storage, you must pass the address of the in-storage control block
(parameter 4). You must provide the storage, format the control block, and free the storage after
ARXEXEC returns. ARXEXEC simply reads information from the in-storage control block. It does not
change any of the information.

To preload a program into storage, you can use the exec load replaceable routine ARXLOAD. Or you
can provide your own routine to preload the program. “Exec Load Routine” on page 442 describes the
replaceable routine.

If you are not preloading the program, specify an address of 0 for the in-storage control block parameter
(parameter 4).

The in-storage control block consists of a header and the records in the program, which are arranged
as a vector of address/length pairs. Table 17 on page 339 shows the format of the in-storage control
block header. Table 18 on page 340 shows the format of the vector of records. A mapping macro for the
in-storage control block, ARXINSTB, is in PRD1.BASE.

Note: Each field name in the following table must include the prefix INSTBLK_.

Table 17. Format of the Header for the In-Storage Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ACRONYM Identifies the control block. This field must contain the
characters ARXINSTB.

8 4 HDRLEN Specifies the length of the in-storage control block header
only. The value must be 128 bytes.

12 4 --- Reserved.

16 4 ADDRESS Specifies the address of the vector of records. See Table 18
on page 340 for the format of the address/length pairs.

If this field is 0, the program contains no records.

Calling REXX

Chapter 17. Programming Services 339

Table 17. Format of the Header for the In-Storage Control Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

20 4 USEDLEN Specifies the length of the address/length vector of records
in bytes. This is not the number of records. The value is the
number of records multiplied by 8.

If this field is 0, the program contains no records.

24 8 MEMBER Specifies the name of the sublibrary from which the
member was loaded. The PARSE SOURCE instruction
returns the member name you specify. If this field is blank,
PARSE SOURCE returns a question mark (?).

32 8 DDNAME Reserved.

40 8 SUBCOM Specifies the name of the initial host command
environment when the program starts running.

48 4 --- Reserved.

52 4 DSNLEN Specifies the length of the sublibrary name (from which the
member was loaded) that is specified at offset +56. If a
sublibrary name is not specified, this field must be 0.

56 72 DSNAME This field contains the name of the sublibrary, if known,
from which the program was loaded. The name can be up
to 34 characters for the fully qualified sublibrary name (7
characters for the library name, 8 for the sublibrary name,
8 for the member name, and 8 for the type). The remaining
bytes of the field (2 bytes plus 9 fullwords) are not used.
They are reserved and contain binary zeros.

At offset +16 in the in-storage control block header, the field points to the vector of records that are in the
program. The records are arranged as a vector of address/length pairs. Table 18 on page 340 shows the
format of the address/length pairs.

The addresses point to the text of the record to be processed. This can be one or more REXX clauses,
parts of a clause that are continued with the REXX continuation character (the continuation character is
a comma), or a combination of these. The address is the actual address of the record. The length is the
length of the record in bytes.

Note: Each field name in the following table must include the prefix INSTBLK_.

Table 18. Vector of Records for the In-Storage Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 STMT@ Address of record 1

4 4 STMTLEN Length of record 1

8 4 STMT@ Address of record 2

12 4 STMTLEN Length of record 2

16 4 STMT@ Address of record 3

20 4 STMTLEN Length of record 3

⋮

x 4 STMT@ Address of record n

Calling REXX

340 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 18. Vector of Records for the In-Storage Control Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

x+4 4 STMTLEN Length of record n

The Evaluation Block (EVALBLOCK)
Parameter 6 specifies the address of an evaluation block (EVALBLOCK). This is a control block that
ARXEXEC uses to return the result from the program. The program can return a result on either the
RETURN or EXIT instruction. For example, the REXX instruction

RETURN var1

returns the value of the variable var1. ARXEXEC returns the value of var1 in the evaluation block.

If the program you are running will return a result, specify the address of an evaluation block when you
call ARXEXEC (parameter 6). You must obtain the storage for the control block yourself.

If the program does not return a result or you want to ignore the result, you need not allocate an
evaluation block. In this case, specify an address of 0 for the evaluation block.

If the result from the program fits into the evaluation block, the data is placed into the block (EVDATA
field) and the length of the block is updated (EVLEN field). See "Using an Evaluation Block to Return a
Result" for details about how to use ARXRLT to obtain the result if it does not fit in the area provided or if
you did not allocate an evaluation block.

Note: The language processor environment is the environment in which the language processor processes
the program. See Chapter 19, “Language Processor Environments,” on page 387 for more information
about the initialization and termination of environments and customization services.

The evaluation block consists of a header and data, which contains the result. Table 19 on page 341
shows the format of the evaluation block. Additional information about each field follows the table.

REXX/VSE provides a mapping macro ARXEVALB for the evaluation block. The mapping macro is in
PRD1.BASE.

Note: Each field name in the following table must include the prefix EVALBLOCK_.

Table 19. Format of the Evaluation Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 EVPAD1 A fullword that must contain X'00'. This field is
reserved and is not used.

4 4 EVSIZE Specifies the total size of the evaluation block in
doublewords.

8 4 EVLEN On entry, this field is not used and must be set to X'00'.
On return, it specifies the length of the result, in bytes,
that is returned. The result is returned in the EVDATA
field at offset +16.

12 4 EVPAD2 A fullword that must contain X'00'. This field is
reserved and is not used.

Calling REXX

Chapter 17. Programming Services 341

Table 19. Format of the Evaluation Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

16 n EVDATA The field in which ARXEXEC returns the result from the
program. The length of the field depends on the total
size specified for the control block in the EVSIZE field.
The total size of the EVDATA field is: EVSIZE * 8 - 16.

It is recommended that you use 250 bytes for the
EVDATA field.

For information about the values ARXEXEC returns
if the language processor detects a syntax error in
the program, see “How ARXEXEC Returns Information
about Syntax Errors” on page 342.

If the result does not fit into the EVDATA field, ARXEXEC stores as much of the result as it can into the
field and sets the length field (EVLEN) to the negative of the required length for the result. You can then
use the ARXRLT routine to obtain the result. See “Get Result Routine – ARXRLT” on page 363 for more
information.

On return, if the result has a length of 0, the length field (EVLEN) is 0, which means the result is null. If no
result is returned on the EXIT or RETURN instruction, the length field contains X'80000000'.

If you call the program as a "command" (bit 0 is set on in parameter 3), the result the program returns
must be a numeric value. The result can be from -2,147,483,648 through +2,147,483,647. If the result
is not numeric or is greater than or less than the valid values, this indicates a syntax error and the value
20026 is returned in the EVDATA field.

How ARXEXEC Returns Information about Syntax Errors
If the language processor detects a syntax error in the program, ARXEXEC returns the following:

• A value of 20000 plus the REXX error number in the EVDATA field of the evaluation block.
• A value of 5 for the length of the result in the EVLEN field of the evaluation block.

The REXX error numbers are between 1 and 99. Therefore, the range of values that ARXEXEC can return
for a syntax error are 20001–20099. The REXX error numbers correspond to the REXX message numbers.
For example, error 26 corresponds to the REXX message ARX0026I. For error 26, ARXEXEC returns the
value 20026 in the EVDATA field. The REXX error messages are described in VSE/ESA Messages and
Codes.

The program may also return a value on the RETURN or EXIT instruction in the range 20001–20099.
ARXEXEC returns the value from the program in the EVDATA field of the evaluation block. To determine
whether the value in the EVDATA field is the value from the program or the value related to a syntax error,
use bit 3 in parameter 3 of the parameter list. Bit 3 lets you enable the extended return codes in the range
20001–20099.

If you set bit 3 off and the program processes successfully but the language processor detects a syntax
error, the following occurs. ARXEXEC returns a return code of 0 in register 15. (ARXEXEC also places
this return code in parameter 10 of the ARXEXEC routine.) ARXEXEC also returns a value of 20000 plus
the REXX error number in the EVDATA field of the evaluation block. In this case, you cannot determine
whether the program returned the 200xx value or the value represents a syntax error.

If you set bit 3 on and the program processes successfully but the language processor detects a syntax
error, the following occurs. ARXEXEC sets a return code in register 15 equal to 20000 plus the REXX error
message. That is, the return code in register 15 is in the range 20001–20099. ARXEXEC also returns the
200xx value in the EVDATA field of the evaluation block. If you set bit 3 on and the program processes
without a syntax error, ARXEXEC returns with a return code of 0 in register 15. If ARXEXEC returns a

Calling REXX

342 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

value of 20001–20099 in the EVDATA field of the evaluation block, that value must be the value that the
program returned on the RETURN or EXIT instruction.

By setting bit 3 on in parameter 3 of the parameter list, you can check the return code from ARXEXEC to
determine whether a syntax error occurred.

Return Specifications: For the ARXEXEC routine, the contents of the registers on return are:
Register 0

Address of the environment block
Registers 1-14

Same as on entry
Register 15

Return code

Return Codes: Table 20 on page 343 shows the return codes for the ARXEXEC routine. ARXEXEC returns
the return code in register 15. If you specify the return code parameter (parameter 10), ARXEXEC also
returns the return code in the parameter.

Table 20. ARXEXEC Return Codes

Return Code Description

0 Processing was successful. The program has completed processing.

If the program returns a result, the result may or may not fit into the evaluation
block. You must check the length field (EVLEN).

On the call to ARXEXEC, you can set bit 3 in parameter 3 of the parameter
list to indicate how ARXEXEC should handle information about syntax errors. If
ARXEXEC returns with return code 0 and bit 3 is on, the language processor did
not detect a syntax error. In this case, the value ARXEXEC returns in the EVDATA
field of the evaluation block is the value the program returned.

If ARXEXEC returns with return code 0 and bit 3 is off, the language processor
may or may not have detected a syntax error. If ARXEXEC returns a value of
20001–20099 in the evaluation block, you cannot determine whether the value
represents a syntax error or the value the program returned.

For more information, see “How ARXEXEC Returns Information about Syntax
Errors” on page 342.

20 Processing was not successful. An error occurred. The program has not been
processed. REXX/VSE issues an error message that describes the error.

32 Processing was not successful. The parameter list is not valid. The parameter
list contains either too few or too many parameters, or the high-order bit of
the last address in the parameter list is not set to 1 to indicate the end of the
parameter list.

20001–20099 Processing was successful. The program completed processing, but the
language processor detected a syntax error. The return code that ARXEXEC
returns in register 15 is the value 20000 plus the REXX error number. See “How
ARXEXEC Returns Information about Syntax Errors” on page 342.

Note: The language processor environment is the environment in which the program runs. If ARXEXEC
cannot locate an environment in which to process the program, an environment is automatically
initialized. If an environment was being initialized and an error occurred during the initialization process,
ARXEXEC returns with return code 20, but an error message is not issued.

Calling REXX

Chapter 17. Programming Services 343

External Functions and Subroutines and Function Packages
You can write your own external functions and subroutines, which allow you to extend the capabilities of
the REXX language. You can write external functions or subroutines that supplement the built-in functions
or external functions that are provided. You can also write a function to replace one of the functions that
is provided. For example, if you want a new substring function that performs differently from the SUBSTR
built-in function, you can write your own substring function and name it STRING. Users at your installation
can then use the STRING function in their programs.

You can write external functions or subroutines in REXX. You can store the program containing the
function or subroutine in a sublibrary of member type PROC.

You can also write an external function or subroutine in assembler or a high-level programming language.
You can then store the function or subroutine in a sublibrary of type PHASE. The language in which you
write the program must support the system-dependent interfaces that the language processor uses to
call the function or subroutine.

For faster access of a function or subroutine, and, therefore, better performance, you can group frequently
used external functions and subroutines in a function package. A function package is a group of external
functions and subroutines that are packaged together. To include an external function or subroutine in
a function package, you must link-edit the function or subroutine into a phase. You can link-edit only
a compiled program into a phase. If you write a function or subroutine as a REXX program and the
program is interpreted (that is, the interpreter executes the program), you cannot include the function or
subroutine in a function package. However, if you write the function or subroutine in REXX and the REXX
program is compiled, you can include the program in a function package because the compiled program
can be link-edited into a phase. See “Compiler Publications” on page 500 for a list of books for the IBM
Compiler and Library for REXX/370.

Interface for Writing External Function and Subroutine Code
You can use the same interface to call a subroutine or function. The only difference is how the language
processor handles the result after your code completes and returns control to the language processor.
Before your code gets control, the language processor allocates a control block called the evaluation
block (EVALBLOCK). The address of the evaluation block is passed to the function or subroutine code. The
function or subroutine code places the result into the evaluation block, which is returned to the language
processor. If the code was called as a subroutine, the result in the evaluation block is placed into the
REXX special variable RESULT. If the code was called as a function, the result in the evaluation block is
used in the interpretation of the REXX instruction that contained the function.

An external function or subroutine receives the address of an environment block in register 0. This
environment block address should be passed on any REXX/VSE programming services called from the
external function or subroutine. This is particularly important if the environment is reentrant because
programming services cannot automatically locate a reentrant environment. For more information about
reentrant environments, see “Using the Environment Block for Reentrant Environments” on page 327.

The following topics describe the contents of the registers when the function or subroutine code gets
control and the parameters the code receives.

Entry Specifications: The code for the external function or subroutine receives control in an unauthorized
state. The contents of the registers are:
Register 0

Address of the environment block of the program that called the external function or subroutine
Register 1

Address of the external function parameter list (EFPL)
Registers 2-12

Unpredictable
Register 13

Address of a register save area

Functions, Subroutines, Function Packages

344 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 14
Return address

Register 15
Entry point address

Parameters: When the external function or subroutine gets control, register 1 points to the external
function parameter list (EFPL). Table 21 on page 345 describes the parameter list. A mapping macro for
the external function parameter list, ARXEFPL, is in PRD1.BASE.

Table 21. External Function Parameter List

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 EFPLCOM Reserved.

4 4 EFPLBARG Reserved.

8 4 EFPLEARG Reserved.

12 4 EFPLFB Reserved.

16 4 EFPLARG An address that points to the parsed argument list.
Each argument is represented by an address/length
pair. X'FFFFFFFFFFFFFFFF' ends the argument list.
(See Table 16 on page 338 for the format of the
argument list.)

If the function or subroutine call includes
no arguments, the address points to
X'FFFFFFFFFFFFFFFF'.

20 4 EFPLEVAL An address that points to a fullword. The fullword
contains the address of an evaluation block
(EVALBLOCK). You use the evaluation block to return
the result of the function or subroutine. Table 22 on
page 346 describes the evaluation block.

Argument List: See Table 16 on page 338 for the format of the argument list the function or subroutine
code receives at offset +16 (decimal) in the external function parameter list. A mapping macro for the
argument list, ARXARGTB, is in PRD1.BASE.

Evaluation Block:

Before the function or subroutine code is called, the language processor allocates a control block called
the evaluation block (EVALBLOCK). The address of a fullword containing the address of the evaluation
block is passed to your function or subroutine code at offset +20 in the external function parameter list.
The function or subroutine code computes the result and returns the result in the evaluation block.

The evaluation block consists of a header and data, in which you place the result from your function or
subroutine code. Table 22 on page 346 shows the format of the evaluation block.

A mapping macro for the evaluation block, ARXEVALB, is in PRD1.BASE.

Note:

1. The ARXEXEC routine also uses an evaluation block to return the result from a program that is
specified on either the RETURN or EXIT instruction. The format of the evaluation block that ARXEXEC
uses is identical to the format of the evaluation block passed to your function or subroutine code. “The
Evaluation Block (EVALBLOCK)” on page 341 describes the control block for ARXEXEC.

2. Each field name in the following table must include the prefix EVALBLOCK_.

Functions, Subroutines, Function Packages

Chapter 17. Programming Services 345

Table 22. Format of the Evaluation Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 EVPAD1 A fullword that contains X'00'. This field is reserved and
is not used.

4 4 EVSIZE Specifies the total size of the evaluation block in
doublewords.

8 4 EVLEN On entry, this field is set to X'80000000'. This indicates
no result is currently stored in the evaluation block. On
return, specify the length of the result, in bytes, that
your code is returning. The result is returned in the
EVDATA field at offset +16.

12 4 EVPAD2 A fullword that contains X'00'. This field is reserved and
is not used.

16 n EVDATA The field in which you place the result from the function
or subroutine code. The length of the field depends
on the total size specified for the control block in the
EVSIZE field. The total size of the EVDATA field is:

EVSIZE * 8 - 16

The function or subroutine code must compute the result, move the result into the EVDATA field (at offset
+16), and update the EVLEN field (at offset +8). The EVDATA field of the evaluation block that REXX/VSE
passes to your code is 250 bytes. Because the evaluation block is passed to the function or subroutine
code, the EVDATA field in the evaluation block may be too small to hold the complete result. If the
evaluation block is too small, you can call the ARXRLT (get result) routine to get a larger evaluation block.
Call ARXRLT using the GETBLOCK function. ARXRLT creates the new evaluation block and returns the
address of the new block. Your code can then place the result in the new evaluation block. You must also
change the parameter at offset +20 in the external function parameter list to point to the new evaluation
block. For information about using ARXRLT, see “Get Result Routine – ARXRLT” on page 363.

Functions must return a result. Subroutines may optionally return a result. If a subroutine does not return
a result, it must return a data length of X'80000000' in the EVLEN field in the evaluation block.

Return Specifications: When your function or subroutine code returns control, the contents of the
registers must be:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: Your function or subroutine code must return a return code in register 15. Table 23 on page
347 shows the return codes.

Functions, Subroutines, Function Packages

346 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 23. Return Codes from Function or Subroutine Code (in Register 15)

Return Code Description

0 Function or subroutine code processing was successful.

If the called routine is a function, the function must return a value in the EVDATA
field of the evaluation block. The value replaces the function call. If the function
does not return a result in the evaluation block, syntax error 44 occurs. See z/VSE
Messages and Codes for information about error numbers and their corresponding
messages.

If the called routine is a subroutine, the subroutine can optionally return a value in
the EVDATA field of the evaluation block. The REXX special variable RESULT is set to
the returned value.

Nonzero Function or subroutine code processing was not successful. The language processor
stops processing the REXX program that called your function or subroutine with an
error code of 40, unless you trap the error with a SYNTAX trap. See z/VSE Messages
and Codes for information about error numbers and their corresponding messages.

Function Packages
Function packages are groups of external functions and subroutines that are packaged together. When the
language processor encounters a function call or call to a subroutine, the language processor searches
the function packages before searching sublibraries. Grouping frequently used external functions and
subroutines in a function package permits faster access to the function or subroutine. “Search Order” on
page 60 describes the complete search order. There are three types of function packages:

• User packages are function packages that an individual user can write to replace or supplement certain
supplied functions.

• Local packages are function packages that a system support or application group can write. Local
packages may contain functions and subroutines that are available to a specific group of users or to the
entire installation.

• System packages are function packages that an installation can write for system-wide use or for use in a
particular language processor environment.

It is important to consider the search order when assigning a function to a particular type of package. The
search order for the types of function packages is:

1. User packages
2. Local packages
3. System packages.

To provide function packages, there are several steps:

1. First write the individual external functions and subroutines you want to include in a function package.
You can write an external function or subroutine in REXX or in any language that supports the
interfaces the language processor uses to call the function or subroutine. “Interface for Writing
External Function and Subroutine Code” on page 344 describes the interfaces. To add an external
function or subroutine to a function package, you must link-edit the function or subroutine into a
phase. You can link-edit only a compiled program into a phase. For information about compiled REXX
programs, see “Compiler Publications” on page 500 for a list of books for the IBM Compiler and Library
for REXX/370.

2. Write the directory for the function package. Each function package must contain a directory. The
function package directory is contained in a phase. The directory contains a header followed by
individual entries that define the names and/or the addresses of the entry points of your function or
subroutine code. “Directory for Function Packages” on page 348 describes the directory for function
packages.

Functions, Subroutines, Function Packages

Chapter 17. Programming Services 347

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

3. Specify the function package name (the name of the entry point at the beginning of the directory) in
the function package table for a language processor environment. “Function Package Table” on page
403 describes the format of this table. There are several ways to do this, depending on the type of
function package (user, local, or system) and whether you are providing only one or several user and
local function packages.

If you are providing a local or user function package, you can name the function package directory
ARXFLOC (local package) or ARXFUSER (user package). These two "dummy" directory names are in
the default parameters module ARXPARMS. By naming your local function package directory ARXFLOC
and your user function package directory ARXFUSER, the external functions and subroutines in the
packages are automatically available to REXX programs.

If you write your own system function package or more than one local or user function package, you
must provide a function package table containing the name of your directory. You must also provide
your own parameters module that points to your function package table. Your parameters module then
replaces the default parameters module that REXX/VSE uses to initialize a default language processor
environment. “Specifying Directory Names in the Function Package Table” on page 352 describes how
to define directory names in the function package table.

Note: If you explicitly call the ARXINIT routine, you can pass the address of a function package table
containing your directory names on the call.

REXX/VSE provides the ARXEFVSE system function package. The function package provides the external
functions ASSGN, REXXIPT, REXXMSG. SETLANG, SLEEP, STORAGE, SYSVAR, and OUTTRAP. (“External
Functions” on page 92 describes these.) The default parameters module defines the ARXEFVSE function
package. (See “Values in the ARXPARMS Default Parameters Module” on page 406.)

Other IBM products may also provide system function packages that you can use for REXX processing.
If you install a product that provides a system function package for REXX/VSE, you must change
the function package table and provide your own parameters module. The product itself supplies the
individual functions in the function package and the directory for their function package. To use the
functions, you must do the following:

1. Change the function package table. The function package table contains information about the user,
local, and system function packages for a particular language processor environment. Table 57 on
page 404 shows the format of the table. Add the name of the function package directory to the entries
in the table. You must also change the SYSTEM_TOTAL and SYSTEM_USED fields in the table header
(offsets +28 and +32). Increment the value in each field by 1 to indicate the additional function
package supplied.

2. Provide your own ARXPARMS parameters module. The function package table is part of the
parameters module that REXX/VSE uses to initialize language processor environments.

Chapter 19, “Language Processor Environments,” on page 387 describes environments, their
characteristics, and the format of the parameters module. In the same chapter, “Changing the Default
Values for Initializing an Environment” on page 412 describes how to provide your own parameters
module.

Directory for Function Packages
After you write the code for the functions and subroutines you want to group in a function package, you
must write a directory for the function package. You need a directory for each individual function package.

The function package directory is contained in a phase. The function package directory name is the name
of the entry point at the beginning of the directory. The name of the directory is specified only on the
CSECT. The function package directory also defines each entry point for the individual functions and
subroutines that are part of the function package. The directory consists of two parts: a header followed
by individual entries for each function and subroutine included in the function package. Table 24 on page
349 shows the format of the directory header. Table 25 on page 349 illustrates the rows of entries in
the function package directory. A mapping macro for the function package directory header and entries,
ARXFPDIR, is in PRD1.BASE.

Note: Each field name in the following table must include the prefix FPCKDIR_.

Functions, Subroutines, Function Packages

348 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 24. Format of the Function Package Directory Header

Offset (Decimal) Number of Bytes Description

0 8 A character field that must contain the character string
ARXFPACK.

8 4 Specifies the length, in bytes, of the header. This is the offset
from the beginning of the header to the first entry in the
directory. This must be a fullword binary number equivalent to
decimal 24.

12 4 The number of functions and subroutines defined in the function
package (the number of rows in the directory). The format is a
fullword binary number.

16 4 A fullword of X'00'.

20 4 The length, in bytes, of an entry in the directory (length of a row).
This must be a fullword binary number equivalent to decimal 32.

As stated earlier, the function package table for the default parameters module ARXPARMS contains two
"dummy" function package directory names: ARXFLOC for a local function package and ARXFUSER for a
user function package.

If you create a local or user function package, you can name the directory ARXFLOC and ARXFUSER,
respectively. By using ARXFLOC and ARXFUSER, you need not create a new function package table
containing your directory names.

If you are creating a system function package or several local or user packages, you must define the
directory names in a function package table. “Specifying Directory Names in the Function Package Table”
on page 352 describes how to do this in more detail.

You must link-edit the external function or subroutine code and the directory for the function package into
a phase. You can link-edit the code and directory into separate phases or into the same phase. Place the
sublibrary with the phases in the search sequence for a CDLOAD. The sublibrary must be in the active
PHASE chain.

Note: For best performance, link-edit the code for individual functions or subroutines in the same phase
as the function package directory. Because the function package directory is always loaded during REXX
environment initialization and remains in storage, the functions and subroutines are loaded once and are
in storage when you need them. If the code for your external function or subroutine is link-edited into a
phase separate from the function package directory, that phase is loaded prior to each call of the function
or subroutine and then deleted after that function or subroutine has completed.

Format of Entries in the Directory
Table 25 on page 349 shows two rows (two entries) in a function package directory. The first entry
starts immediately after the directory header. Each entry defines a function or subroutine in the function
package. The individual fields are described following the table.

Table 25. Format of Entries in Function Package Directory

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 FUNCNAME The name of the first function or subroutine (entry) in
the directory.

8 4 FUNCADDR The address of the entry point of the function or
subroutine code (for the first entry).

12 4 --- Reserved.

Functions, Subroutines, Function Packages

Chapter 17. Programming Services 349

Table 25. Format of Entries in Function Package Directory (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

16 8 SYSNAME The name of the entry point in a phase that
corresponds to the function or subroutine code (for the
first entry).

24 8 SYSDD Reserved.

32 8 FUNCNAME The name of the second function or subroutine (entry)
in the directory.

40 4 FUNCADDR The address of the entry point of the function or
subroutine code (for the second entry).

44 4 --- Reserved.

48 8 SYSNAME The name of the entry point in a phase that
corresponds to the function or subroutine code (for the
second entry).

56 8 SYSDD Reserved.

The following describes each entry (row) in the directory.
FUNCNAME

The 8-character name of the external function or subroutine. This is the name that is used in the REXX
program. The name must be in uppercase, left justified, and padded to the right with blanks.

If this field is blank, the entry is ignored.

FUNCADDR
A 4-byte field containing the address, in storage, of the entry point of the function or subroutine code.
This address is used only if the code has already been loaded.

If the address is 0, REXX/VSE uses the SYSNAME. REXX/VSE issues a CDLOAD for the entry point
SYSNAME specifies. If the address is present, REXX/VSE ignores the SYSNAME field.

SYSNAME
An 8-byte character name of the entry point in a phase that corresponds to the function or subroutine
code to be called for the FUNCNAME. The name must be in uppercase, left justified, and padded to the
right with blanks.

If the address is present, this field can be blank. If the address is 0 and this field is blank, REXX/VSE
ignores the entry.

Example of a Function Package Directory
Figure 20 on page 351 shows an example of a function package directory. The example is explained after
the figure.

Functions, Subroutines, Function Packages

350 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARXFUSER CSECT
 DC CL8'ARXFPACK' String identifying directory
 DC FL4'24' Length of header
 DC FL4'4' Number of rows in directory
 DC FL4'0' Word of zeros
 DC FL4'32' Length of directory entry
* Start of definition of first entry
 DC CL8'MYF1 ' Name used in program
 DC FL4'0' Address of preloaded code
 DC FL4'0' Reserved field
 DC CL8'ABCFUN1 ' Name of entry point
 DC CL8' ' Reserved
* Start of definition of second entry
 DC CL8'MYF2 ' Name used in program
 DC FL4'0' Address of preloaded code
 DC FL4'0' Reserved field
 DC CL8'ABCFUN2 ' Name of entry point
 DC CL8' ' Reserved
* Start of definition of third entry
 DC CL8'MYS3 ' Name used in program
 DC AL4(ABCSUB3) Address of preloaded code
 DC FL4'0' Reserved field
 DC CL8'ABCFUN3 ' Name of entry point
 DC CL8' ' Reserved
* Start of definition of fourth entry
 DC CL8'MYF4 ' Name used in program
 DC VL4(ABCFUNC4) Address of preloaded code
 DC FL4'0' Reserved field
 DC CL8'ABCFUN4 ' Name of entry point
 DC CL8' ' Reserved
 SPACE 2
ABCSUB3 EQU *
* Subroutine code for subroutine MYS3
*
* End of subroutine code
 END ARXFUSER

 - - - - - New Object Module - - - - -

ABCFUNC4 CSECT
* Function code for function MYF4
*
* End of function code
 END ABCFUNC4

Figure 20. Example of a Function Package Directory

In Figure 20 on page 351, the name of the function package directory is ARXFUSER, which is one of
the "dummy" function package directory names in the default parameters module. This function package
defines four entries:

• MYF1, which is an external function
• MYF2, which is an external function
• MYS3, which is an external subroutine
• MYF4, which is an external function

If a program calls the external function MYF1, REXX/VSE loads the phase with entry point ABCFUN1. If a
program calls MYF2, REXX/VSE loads the phase with entry point ABCFUN2 from the active phase chain or
the SVA because the ADDRESS is 0.

The phases for MYS3 and MYF4 do not have to be loaded. The MYS3 subroutine has been assembled
as part of the same object module as the function package directory. The MYF4 function has been
assembled in a different object module, but has been link-edited as part of the same phase as the
directory. The assembler, linkage editor, and loader have resolved the addresses.

Functions, Subroutines, Function Packages

Chapter 17. Programming Services 351

If the name of the directory is not ARXFLOC or ARXFUSER, you must specify the directory name in the
function package table for an environment. “Specifying Directory Names in the Function Package Table”
on page 352 describes how you can do this.

When a language processor environment is initialized, either by default or when ARXINIT is explicitly
called, the phases containing the function package directories for the environment are automatically
loaded. External functions or subroutines that are link-edited as separate, stand-alone phases and are not
defined in any function package are loaded prior to each invocation and then deleted after completion.

For best performance, link-edit the code for individual functions or subroutines in the same phase as
the function package directory. Because the function package directory is always loaded during REXX
environment initialization, the functions and subroutines are loaded once and are in storage when you
need them.

Specifying Directory Names in the Function Package Table
After you write the function and subroutine code and the directory, you must define the directory name
in the function package table. The function package table contains information about the user, local, and
system function packages that are available to REXX programs running in a specific language processor
environment. Each environment that is initialized has its own function package table. “Function Package
Table” on page 403 describes the format of the table.

The parameters module (and the PARMBLOCK that is created) defines the characteristics for a language
processor environment and contains the address of the function package table (in the PACKTB field).

Variable Pool – ARXEXCOM
The language processor provides an interface that commands and programs can use to easily access and
manipulate the current generation of REXX variables. Any variable can be inspected, set, or dropped. If
required, all active variables can be inspected in turn. The interface code checks names for validity and
optionally does substitution into compound symbols according to REXX rules. The interface also makes
available certain other information about the program that is running.

You can use the variable pool access interface ARXEXCOM to access and manipulate REXX program
variables. ARXEXCOM can be used only if a REXX program has been enabled for variable pool access in
the language processor environment. That is, a program must have been called, but is not currently being
processed. For example, you can call a REXX program that calls a routine and the routine can then call
ARXEXCOM. When the routine calls ARXEXCOM, the REXX program is enabled for variable pool access, but
it is not being processed. If a routine calls ARXEXCOM and a program has not been enabled, ARXEXCOM
returns with an error.

Note: To permit FORTRAN programs to call ARXEXCOM, there is an alternate entry point for the
ARXEXCOM routine. The alternate entry point name is ARXEXC.

You can obtain the address of the ARXEXCOM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can
also access ARXEXCOM by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXEXCOM, it must create a parameter list and pass the address of the parameter list
in register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXEXCOM to run. On the call to ARXEXCOM, you can optionally
specify the address of the environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXEXCOM routine, the contents of the registers on entry are:

Variable Pool. (ARXEXCOM)

352 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 0
Address of an environment block (optional)

Register 1
Address of the parameter list the caller passes

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. To indicate the end of the parameter list, set
the high-order bit of the last address in the parameter list to 1. For more information about passing
parameters, see “Parameter Lists for REXX/VSE Routines” on page 325.

Table 26 on page 353 describes the parameters for ARXEXCOM.

Table 26. Parameters for ARXEXCOM

Parameter Number of
Bytes

Description

Parameter 1 8 This field that must contain the character string 'ARXEXCOM'.

Parameter 2 4 Parameter 2 and parameter 3 must be identical, that is, they must be
at the same location in storage. This means that in the parameter list
register 1 points to the address at offset +4 and the address at offset +8
must be the same. Both addresses in the parameter list may be set to 0.

Parameter 3 4 Same as Parameter 2.

Parameter 4 32 The first shared variable (request) block (SHVBLOCK) in a chain of one
or more request blocks. The format of the SHVBLOCK is described in
"SHVBLOCK".

Parameter 5 4 The address of the environment block of the environment in which you
want ARXEXCOM to run. This parameter is optional.

If you specify a nonzero value for the environment block address
parameter, ARXEXCOM uses the value you specify and ignores register
0. However, ARXEXCOM does not check whether the address is valid.
Therefore, you must ensure the address you specify is correct or
unpredictable results can occur. For more information, see “Specifying
the Address of the Environment Block” on page 326.

Parameter 6 4 A field that ARXEXCOM uses to return the return code.

This is optional. If you use this parameter, ARXEXCOM returns the
return code in the parameter and also in register 15. Otherwise,
ARXEXCOM uses register 15 only. If the parameter list is incorrect, the
return code is returned in register 15 only. "Return Codes" describes the
return codes.

The Shared Variable (Request) Block - SHVBLOCK: Parameter 4 is the address of the first shared
variable (request) block in a chain of one or more blocks. Each SHVBLOCK in the chain must have the
structure shown in Figure 21 on page 354.

Variable Pool. (ARXEXCOM)

Chapter 17. Programming Services 353

**
* SHVBLOCK: Layout of shared-variable PLIST element
**
SHVBLOCK DSECT SHARED VARIABLE REQUEST BLOCK
SHVNEXT DS A Chain pointer to next SHVBLOCK
* (0 if last block)
SHVUSER DS F Available for private use, except during
* "Fetch Next" when it identifies the
* length of the buffer SHVNAMA points to.
SHVCODES DS 0F
SHVCODE DS CL1 Individual function code indicating
* the type of variable pool access request
* (S,F,D,s,f,d,N, or P)
SHVRET DS XL1 Individual return code flags
 DS H'0' Reserved, should be 0
SHVBUFL DS F Length of 'fetch' value buffer
SHVNAMA DS A Address of variable name
SHVNAML DS F Length of variable name
SHVVALA DS A Address of value buffer
SHVVALL DS F Length of value buffer
* (Set on fetch)
SHVBLEN EQU *-SHVBLOCK Length of SHVBLOCK
* (length of this block = 32)
 SPACE 1
*
* Function Codes (Placed in SHVCODE):
*
* (Note that the symbolic name codes are lowercase)
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVSTORE EQU C'S' Set variable from given value
SHVDROPV EQU C'D' Drop variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYSET EQU C's' Symbolic name Set variable
SHVSYDRO EQU C'd' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch "next" variable
SHVPRIV EQU C'P' Fetch private information
 SPACE 1
*
* Return Code Flags (Stored in SHVRET):
*
SHVCLEAN EQU X'00' Execution was successful
SHVNEWV EQU X'01' Variable did not exist
SHVLVAR EQU X'02' Last variable transferred (for "N")
SHVTRUNC EQU X'04' Truncation occurred during "Fetch"
SHVBADN EQU X'08' Variable name not valid
SHVBADV EQU X'10' Value not valid, may be too long
SHVBADF EQU X'80' Function code (SHVCODE) not valid
 SPACE 1
*
* R15 return codes
*
 SPACE 1
SHVRCOK EQU 0 Entire Plist chain processed
SHVRCINV EQU -1 Entry conditions not valid
SHVRCIST EQU -2 Insufficient storage available
 SPACE
 MEND

Figure 21. Request Block (SHVBLOCK)

Table 27 on page 355 describes the SHVBLOCK. A mapping macro for the SHVBLOCK, ARXSHVB, is in
PRD1.BASE. The services you can perform using ARXEXCOM are specified in the SHVCODE field of each
SHVBLOCK. "SHVCODE" describes the values you can use.

"Return Codes" describes the return codes from the ARXEXCOM routine.

Variable Pool. (ARXEXCOM)

354 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 27. Format of the SHVBLOCK

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 SHVNEXT Specifies the address of the next SHVBLOCK in the
chain. If this is the only SHVBLOCK in the chain or the
last one in a chain, this field is 0.

4 4 SHVUSER Specifies the length of a buffer pointed to by the
SHVNAMA field. This field is available for the user's
own use, except for a "FETCH NEXT" request. A FETCH
NEXT request uses this field.

8 1 SHVCODE A 1-byte character field that specifies the function
code, which indicates the type of variable pool access
request. "SHVCODE" describes the valid codes.

9 1 SHVRET Specifies the return code flag, whose values are shown
in Figure 21 on page 354.

10 2 --- Reserved.

12 4 SHVBUFL Specifies the length of the "Fetch" value buffer.

16 4 SHVNAMA Specifies the address of the variable name.

20 4 SHVNAML Specifies the length of the variable name. The
maximum length of a variable name is 250 characters.

24 4 SHVVALA Specifies the address of the value buffer.

28 4 SHVVALL Specifies the length of the value buffer. This is set for a
"Fetch".

Function Codes (SHVCODE): The function code is specified in the SHVCODE field in the SHVBLOCK.

Three function codes (S, F, and D) can be in either lowercase or uppercase.
Lowercase

(The Symbolic interface). The names must be valid REXX symbols (in mixed case if desired). REXX
substitution occurs in compound variables.

Uppercase
(The Direct interface). No substitution or case translation takes place. Simple symbols must be valid
REXX variable names (that is, in uppercase and not starting with a digit or a period), but in compound
symbols any characters (including lowercase, blanks, and so on) are permitted following a valid REXX
stem.

Note: If you want generality, use the Direct interface rather than the Symbolic interface.

The other function codes, N and P, must always be uppercase. The specific actions for each function code
are as follows:
S and s

Set variable. The SHVNAMA/SHVNAML address/length pair describes the name of the variable to
set. SHVVALA/SHVVALL describes the value to be assigned to it. The name is validated to ensure it
contains only characters that can appear in names. The variable is then set. If the name is a stem, all
variables with that stem are set, just as for a REXX assignment. SHVNEWV is set if the variable did not
exist before the operation.

F and f
Fetch variable. The SHVNAMA/SHVNAML address/length pair describes the name of the variable to
fetch. SHVVALA specifies the address of a buffer into which the data is copied. SHVBUFL contains the
length of the buffer. The name is validated to ensure that it contains only characters that can appear
in names. The variable is then located and copied to the buffer. The total length of the variable is put

Variable Pool. (ARXEXCOM)

Chapter 17. Programming Services 355

into SHVVALL; if the value was truncated (because the buffer was not big enough), the SHVTRUNC bit
is set. If the variable is shorter than the length of the buffer, no padding takes place. If the name is a
stem, the initial value of that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the operation. In this case, the value copied to the
buffer is the derived name of the variable, after substitution, and so on. (See “Compound Symbols” on
page 20.)

D and d
Drop variable. The SHVNAMA/SHVNAML address/length pair describes the name of the variable
to drop. SHVVALA/SHVVALL are not used. The name is validated to ensure that it contains only
characters that can appear in names. The variable is then dropped, if it exists. If the name given is a
stem, all variables starting with that stem are dropped.

N
Fetch Next variable. This function searches through all the variables known to the language processor
(that is, all those of the current generation except those "hidden" with PROCEDURE instructions). The
order in which the variables are revealed is not specified.

The language processor maintains a pointer to its list of variables. This is reset to point to the first
variable in the list whenever:

• A host command is issued, or
• Any function other than "N" is processed using the ARXEXCOM interface.

Whenever an N (Next) function is processed, the name and value of the next variable available are
copied to two buffers the caller supplies.

SHVNAMA specifies the address of a buffer into which the name is to be copied, and SHVUSER
contains the length of that buffer. The total length of the name is put into SHVNAML; if the name was
truncated (because the buffer was not big enough) the SHVTRUNC bit is set. If the name is shorter
than the length of the buffer, no padding takes place. The value of the variable is copied to the user's
buffer area using exactly the same protocol as for the Fetch operation.

If SHVRET has SHVLVAR set, the end of the list of known variables has been found, the internal
pointers have been reset, and no valid data has been copied to the user buffers. If SHVTRUNC is set,
either the name or the value has been truncated.

By repeatedly executing the N function (until the SHVLVAR flag is set), a program can locate all the
REXX variables of the current generation.

P
Fetch private information. This interface is identical to the F fetch interface, except that the name
refers to certain fixed information items that are available. Only the first letter of each name is
checked (though callers should supply the whole name). The following names are recognized:
ARG

Fetch primary argument string. Copies to the user's buffer area the first argument string that ARG
would parse.

SOURCE
Fetch source string. Copies to the user's buffer the source string, as described for PARSE SOURCE
on page “PARSE SOURCE ” on page 45.

VERSION
Fetch version string. Copies to the user's buffer the version string, as described for PARSE
VERSION on page “PARSE VERSION ” on page 46.

Return Specifications: For the ARXEXCOM routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code

The output from ARXEXCOM is stored in each SHVBLOCK.

Variable Pool. (ARXEXCOM)

356 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Codes: Table 28 on page 357 shows the return codes for the ARXEXCOM routine. ARXEXCOM
returns the return code in register 15. If you specify the return code parameter (parameter 6), ARXEXCOM
also returns the return code in the parameter.

Figure 21 on page 354 shows the return code flags that are stored in the SHVRET field in the SHVBLOCK.

Table 28. Return Codes from ARXEXCOM (in Register 15)

Return Code Description

-2 Processing was not successful. Insufficient storage was available for a requested SET.
Processing was terminated. Some of the request blocks (SHVBLOCKs) may not have
been processed; their SHVRET bytes are unchanged.

-1 Processing was not successful. The parameter list was incorrect or the environment was
not valid. Entry conditions were not valid for one of the following reasons:

• The values in the parameter list may have been incorrect, for example, parameter 2
and parameter 3 may not have been identical

• A REXX program was not currently running
• Another task is accessing the variable pool
• A REXX program is currently running but is not enabled for variable pool access.

0 Processing was successful.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is incorrect. The parameter list
contains either too few or too many parameters, or the high-order bit of the last address
in the parameter list is not set to 1 to indicate the end of the parameter list.

n Any other return code is a composite formed by the logical OR of SHVRETs, excluding
SHVNEWV and SHVLVAR.

Maintain Entries in the Host Command Environment Table –
ARXSUBCM

Use the ARXSUBCM routine to maintain entries in the host command environment table. The table
contains the names of the valid host command environments that REXX programs can use to process host
commands. In a program, you can use the ADDRESS instruction to direct a host command to a specific
environment for processing. The host command environment table also contains the name of the routine
that is called to handle the processing of commands for each specific environment. “Host Command
Environment Table” on page 401 describes the table in more detail.

Note: To permit FORTRAN programs to call ARXSUBCM, there is an alternate entry point for the
ARXSUBCM routine. The alternate entry point name is ARXSUB.

Using ARXSUBCM, you can add, delete, update, or query entries in the table. (You can also use
ARXSUBCM to dynamically update the host command environment table while a REXX program is
running.)

You can obtain the address of the ARXSUBCM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can
also access ARXSUBCM by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXSUBCM, it must create a parameter list and pass the address of the parameter list
in register 1.

ARXSUBCM changes or queries the host command environment table for the current language processor
environment, that is, for the environment in which it runs (see “General Considerations for Calling
REXX/VSE Routines” on page 324 for information). ARXSUBCM affects only the environment in which

ARXSUBCM Routine

Chapter 17. Programming Services 357

it runs. Changes to the table take effect immediately and remain in effect until the language processor
environment is terminated.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXSUBCM to run. On the call to ARXSUBCM, you can optionally
specify the address of the environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

If the environment in which ARXSUBCM runs is part of a chain of environments and you use ARXSUBCM to
change the host command environment table, the following applies:

• The changes do not affect the environments that are higher in the chain or existing environments that
are lower in the chain.

• The changes are propagated to any language processor environment that is created on the chain after
ARXSUBCM updates the table.

Entry Specifications: For the ARXSUBCM routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. To indicate the end of the parameter list, set
the high-order bit of the last address in the parameter list to 1. For more information about passing
parameters, see “Parameter Lists for REXX/VSE Routines” on page 325.

Table 29 on page 359 describes the parameters for ARXSUBCM.

ARXSUBCM Routine

358 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 29. Parameters for ARXSUBCM

Parameter Number of Bytes Description

Parameter 1 8 The function to be performed. The name of the function must
be left justified and padded to the right with blanks. The valid
functions are:

• ADD
• DELETE
• UPDATE
• QUERY.

If the function is ADD, UPDATE, or QUERY, then parameter 3,
the string length, must be the length of a SUBCOMTB entry. If
the function is DELETE, parameter 2, the string address, and
parameter 3, the string length, must be 0.

See "Functions" for descriptions of each function.

Parameter 2 4 The address of a string. On both input and output, the string has
the same format as an entry in the host command environment
table. "Format of a Host Command Environment Table Entry"
describes the entry in more detail.

Parameter 3 4 The length of the string (entry) to which parameter 2 points.

Parameter 4 8 The name of the subcommand. The name must be left justified
and padded to the right with blanks. The host command
environment name can contain alphabetic (a-z, A-Z), national
(@, $, #), or numeric (0-9) characters and is translated to
uppercase before it is stored in the host command table.

Parameter 5 4 The address of the environment block for the environment in
which you want ARXSUBCM to run. This parameter is optional.

If you specify a nonzero value for the environment block
address parameter, ARXSUBCM uses the value you specify
and ignores register 0. However, ARXSUBCM does not check
whether the address is valid. Therefore, you must ensure the
address you specify is correct or unpredictable results can
occur. For more information, see “Specifying the Address of the
Environment Block” on page 326.

Parameter 6 4 A 4-byte field that ARXSUBCM uses to return the return code.

The return code parameter is optional. If you use this
parameter, ARXSUBCM returns the return code in the
parameter and also in register 15. Otherwise, ARXSUBCM uses
register 15 only. If the parameter list is incorrect, the return
code is returned in register 15 only. "Return Codes" describes
the return codes.

Functions: Parameter 1 contains the name of the function ARXSUBCM is to perform. The functions are:

ADD
Adds an entry to the table using the values that the call specifies. ARXSUBCM does not check
for duplicate entries. If you add a duplicate entry and then call ARXSUBCM to delete the entry,
ARXSUBCM deletes the duplicate entry and leaves the original one.

DELETE
Deletes the last occurrence of the specified entry from the table.

ARXSUBCM Routine

Chapter 17. Programming Services 359

UPDATE
Updates the specified entry with the new values the call specifies. ARXSUBCM does not change the
entry name (the name of the host command environment).

QUERY
Returns the values associated with the last occurrence of the entry the call specifies.

Format of a Host Command Environment Table Entry: Parameter 2 points to a string that has the same
format as an entry (row) in the host command environment table. Table 30 on page 360 shows the
format of an entry. A mapping macro for the table entries, ARXSUBCT, is in PRD1.BASE. “Host Command
Environment Table” on page 401 describes the table in more detail.

Note: Each field name in the following table must include the prefix SUBCOMTB_.

Table 30. Format of an Entry in the Host Command Environment Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 NAME The name of the host command environment. The
name must contain alphabetic (a-z, A-Z), national (@,
$, #), or numeric (0-9) characters and is translated
to uppercase before it is stored in the host command
table.

8 8 ROUTINE The name of the host command environment
routine that is called to handle the processing of
host commands in the specified environment. The
host command environment routine is one of the
replaceable routines. See “Host Command Environment
Routine” on page 456 for information about writing the
routine. The routine must contain alphabetic (a-z, A-Z),
national (@, $, #), or numeric (0-9) characters, must
begin with an alphabetic or national character, and is
translated to uppercase before it is stored in the host
command table.

16 16 TOKEN A user token that is passed to the routine when it is
called.

Return Specifications: The contents of the registers on return from ARXSUBCT are:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: Table 31 on page 360 shows the return codes, which ARXSUBCM puts in register 15. If you
specify parameter 6, the return code parameter, ARXSUBCM also puts the return code in this parameter.

Table 31. Return Codes for ARXSUBCM

Return Code Description

0 Processing was successful.

4 Entry was not found (for FIND and DELETE functions only).

8 Processing was not successful. The specified entry was not found in the table. A return
code of 8 is used only for the DELETE, UPDATE, and QUERY functions.

20 Processing was not successful. An error occurred. A message that explains the error is
also issued.

ARXSUBCM Routine

360 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 31. Return Codes for ARXSUBCM (continued)

Return Code Description

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list was incorrect. The parameter list
contains too few or too many parameters, or the high-order bit of the last address is not
set to 1 to indicate the end of the parameter list.

Note: ARXSUBCM does not support the use of DBCS characters in host command environment names.

Trace and Execution Control Routine – ARXIC
Use the ARXIC routine to control the tracing and execution of REXX programs. A program can call ARXIC
to use the following REXX immediate commands:

• HI (Halt Interpretation) — to halt the interpretation of REXX programs
• HT (Halt Typing) — to suppress output that REXX programs generate
• RT (Resume Typing) — to restore output you previously suppressed
• TQ (Trace Query) — to test if tracing of REXX programs is set on or off by TS or TE.
• TS (Trace Start) — to start tracing of REXX programs
• TE (Trace End) — to end tracing of REXX programs.

The immediate commands are described in Chapter 10, “REXX/VSE Commands,” on page 143.

You can obtain the address of the ARXIC routine from the REXX vector of external entry points. “Format
of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can also access
ARXIC by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXIC, the program must create a parameter list and pass the address of the parameter
list in register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXIC to run. On the call to ARXIC, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

ARXIC affects only the language processor environment in which it runs.

Entry Specifications: For the ARXIC routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address.

ARXIC Routine

Chapter 17. Programming Services 361

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325. Table 32 on page 362 describes the parameters for ARXIC.

Table 32. Parameters for ARXIC

Parameter Number of Bytes Description

Parameter 1 4 The address of the name of the command you want ARXIC
to process. The valid command names are HI, HT, RT, TQ,
TS, and TE. Descriptions of the command names follow the
table.

Parameter 2 4 The length of the command name to which parameter 1
points.

Parameter 3 4 This parameter is optional. It is the address of the
environment block to use when performing the requested
service.

If you specify a nonzero value for the environment block
address parameter, ARXIC uses the value you specify and
ignores register 0. However, ARXIC does not check whether
the address is valid. Therefore, you must ensure the
address you specify is correct or unpredictable results can
occur. For more information, see “Specifying the Address of
the Environment Block” on page 326.

Parameter 4 4 This parameter is optional. It is a field that ARXIC uses to
return the return code. If you use this parameter, ARXIC
returns the return code in the parameter and also in
register 15. Otherwise, ARXIC uses register 15 only. If the
parameter list is incorrect, the return code is returned in
register 15 only. "Return Codes" describes return codes.

The valid command names that you can specify are:
HI (Halt Interpretation)

The halt condition is set. Between instructions, the language processor checks whether it should halt
the processing of REXX programs. If HI has been issued, the language processor stops processing
REXX programs. HI is reset if a halt condition is enabled or when no programs are running in the
environment.

Note: The RXHLT exit can also raise the halt condition. See “REXX Exit Data Areas and Parameters” on
page 473.

HT (Halt Typing)
This suppresses output from REXX programs (for example, the SAY instruction does not produce
its output). HT does not affect output from any other part of REXX/VSE and does not affect error
messages. HT is reset when the last program running in the environment ends.

RT (Resume Typing)
Resets the halt typing condition, restoring the production of output from REXX programs.

TQ (Trace Query)
Checks if tracing of REXX programs is set on or off.

TS (Trace Start)
Starts tracing of REXX programs.

TE (Trace End)
Ends tracing of REXX programs.

Return Specifications: For the ARXIC routine, the contents of the registers on return are:

ARXIC Routine

362 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Registers 0-14
Same as on entry

Register 15
Return code.

Return Codes: Table 33 on page 363 shows the return codes for the ARXIC routine. ARXIC returns the
return code in register 15. If you specify the return code parameter (parameter 4), ARXIC also returns the
return code in the parameter.

Table 33. Return Codes for ARXIC

Return Code Description

0 Processing was successful. For TQ, it indicates REXX trace was set OFF.

4 Processing was successful. REXX trace is set ON. This return code only applies for the
TQ (Trace Query) command.

20 Processing was not successful. An error occurred. REXX/VSE issues a message that
explains the error.

28 Processing was not successful. A language processor environment could not be found.

32 Processing was not successful. The parameter list is incorrect. The parameter list
contains either too few or too many parameters, or the high-order bit of the last address
is not set to 1 to indicate the end of the parameter list.

Get Result Routine – ARXRLT
Use the ARXRLT (get result) routine to obtain:

• The result from a program that was processed by calling the ARXEXEC routine.
• A larger evaluation block to return the result from an external function or subroutine that you have

written in a programming language that supports the parameter interface.
• An evaluation block that a compiler runtime processor can use to handle the result from a compiled

REXX program.

See page "Using an Evaluation Block to Return a Result" for details about obtaining the result or a larger
evaluation block.

You can access ARXRLT through the REXX vector of external entry points. “Format of the REXX Vector of
External Entry Points” on page 418 describes this vector. A program can also access ARXRLT by using a
VSE CDLOAD macro to obtain the entry point address.

A compiler runtime processor can also use ARXRLT to obtain an evaluation block to handle the result from
a compiled REXX program that is currently running. The evaluation block that ARXRLT returns has the
same format as the evaluation block for ARXEXEC or for external functions or subroutines. For information
about when a compiler runtime processor might require an evaluation block, see Chapter 24, “Support for
the Library for REXX/370 in REXX/VSE,” on page 499. For information about the format of the evaluation
block, see “The ARXEXEC Routine” on page 334 and "Evaluation Block".

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXRLT to run. On the call to ARXRLT, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXRLT routine, the contents of the registers on entry are:

Get Result Routine - ARXRLT

Chapter 17. Programming Services 363

Register 0
Address of an environment block (optional)

Register 1
Address of the parameter list the caller passes

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return point address

Register 15
Entry point address.

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 34 on page 364 describes the parameters for ARXRLT.

Table 34. Parameters for ARXRLT

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the function must be
left justified, in uppercase, and padded to the right with blanks.
"Functions" describes the valid functions.

Parameter 2 4 The address of the evaluation block. On input, this parameter is
used only for the GETRLT and GETRLTE functions but not for the
GETBLOCK and GETEVAL functions. On input, specify the address of
an evaluation block that is large enough to hold the result from the
program.

On output, this parameter is used only for the GETBLOCK and
GETEVAL functions.

• On output for the GETBLOCK function, the parameter returns
the address of a larger evaluation block that the function or
subroutine code can use to return a result.

• On output for the GETEVAL function, the parameter returns
the address of an evaluation block that the compiler runtime
processor can use for the compiled program that is currently
running.

Parameter 3 4 The length, in bytes, of the data area in the evaluation block.
This parameter is used on input for the GETBLOCK and GETEVAL
functions only. Specify the size needed to store the result from the
program that is currently running.

This parameter is not used for the GETRLT and GETRLTE functions.

Get Result Routine - ARXRLT

364 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 34. Parameters for ARXRLT (continued)

Parameter Number of
Bytes

Description

Parameter 4 4 This parameter is optional. It is the address of the environment
block to use when performing the requested service.

If you specify a nonzero value for the environment block address
parameter, ARXRLT uses the value you specify and ignores
register 0. However, ARXRLT does not check whether the address
is valid. Therefore, ensure the address you specify is correct,
or unpredictable results can occur. For more information, see
“Specifying the Address of the Environment Block” on page 326.

Parameter 5 4 This code parameter is optional. It is a field that ARXRLT uses to
return the return code.

If you use this parameter, ARXRLT returns the return code in
the parameter and also in register 15. Otherwise, ARXRLT uses
register 15 only. If the parameter list is incorrect, the return code
is returned only in register 15. "Return Codes" describes the return
codes.

Using an Evaluation Block to Return a Result: The REXX instructions RETURN and EXIT can return a
result from a REXX program. When the program you are running does not return a result or you want
to ignore the result, you need not allocate an evaluation block. If you want to return a result, when you
call ARXEXEC you can allocate an evaluation block and pass its address to ARXEXEC for use in returning
the result in the evaluation block. If the result from the program fits into the evaluation block, the data
is placed in the EVDATA field of the block (padded with blanks on the right), and the length of the block
(EVLEN field) is updated. Even if you did not specify an evaluation block, or if the evaluation block is
too small to contain the result, the result is not lost. REXX/VSE stores the result in its own evaluation
block. ARXEXEC also places as much of the result as fits into the EVDATA field of the evaluation block and
returns (in EVLEN) the negative of the length needed. You can get the result as follows:

1. Obtain an evaluation block that is large enough to contain the result. Call ARXRLT (GETBLOCK
function), specifying the length of the data area you require in parameter 3. ARXRLT returns the
address of the new evaluation block in parameter 2. (It also frees the original evaluation block, which
was too small to contain the result.)

2. Call ARXRLT (GETRLT or GETRLTE function) to return the result. (You pass the address of the new
evaluation block in parameter 2.)

ARXRLT copies the result from the program that was stored in the REXX's evaluation block into your
evaluation block and returns. (If the evaluation block you specify on a call to ARXRLT is too small, you can
use the same technique to get the result.)

The result is available until one of the following occurs:

• You call ARXRLT to obtain the result and this is successful
• Another REXX program runs in the same language processor environment, or
• The language processor environment is terminated.

Note: The language processor environment is the environment in which REXX programs and routines
run. See “General Considerations for Calling REXX/VSE Routines” on page 324 for information. Chapter
19, “Language Processor Environments,” on page 387 provides more details about environments and
customization services. See "Evaluation Block" for more information about the format of the evaluation
block.

Functions: Parameter 1 contains the name of the function ARXRLT is to perform:

Get Result Routine - ARXRLT

Chapter 17. Programming Services 365

GETBLOCK
Use the GETBLOCK function to obtain an evaluation block if you did not do so before or if a larger one
is needed for the external function or subroutine that is running. The GETBLOCK function is valid only
when a program is currently running.

You can write external functions and subroutines in REXX or in any programming language that
VSE/ESA supports and that can follow the REXX conventions for passing parameters. If your external
function or subroutine is not in REXX, when your code is called, it receives the address of an
evaluation block. Your code can use the evaluation block to return the result.

GETRLT and GETRLTE
These functions obtain the result from the last REXX program that was processed in the language
processor environment. If you use the ARXEXEC routine to run a program and then need to call
ARXRLT to obtain the result from the program, call ARXRLT with the GETRLT or GETRLTE function. You
can use GETRLT only if a program is not currently running in the language processor environment. You
can use GETRLTE regardless of whether or not a program is currently running in the environment; this
provides support for nested REXX programs.

For example, suppose you use the ARXEXEC routine to run a program and the result from the program
does not fit into the evaluation block. After ARXEXEC returns control, you can call the ARXRLT routine
with the GETRLT function to get the result from the program. At this point, the REXX program is no
longer running in the environment.

For example, suppose you have a program that calls an external function that is written in assembler.
The external function (assembler program) uses the ARXEXEC routine to call a REXX program.
However, the result from the called program is too large to be returned to the external function in
the evaluation block. The external function can allocate a larger evaluation block and then use ARXRLT
with the GETRLTE function to obtain the result from the program. At this point, the original program
that called the external function is still running in the language processor environment. GETRLTE
obtains the result from the last program that completed in the environment, which, in this case, is the
program the external function called.

For more information about running a program using the ARXEXEC routine and the evaluation block,
see “The ARXEXEC Routine” on page 334.

GETEVAL
The GETEVAL function is intended for use by a compiler runtime processor. GETEVAL lets a compiler
runtime processor obtain an evaluation block whenever it has to handle the result from a compiled
REXX program that is currently running. The GETEVAL function is supported only when a compiled
program is currently running in the language processor environment.

Note that if you write an external function or subroutine in a programming language other than
REXX and your function or subroutine code requires a larger evaluation block, you should use the
GETBLOCK function, not the GETEVAL function.

Return Specifications: For the ARXRLT get result routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes: ARXRLT returns a return code in register 15. If you specify the return code parameter
(parameter 5), ARXRLT also returns the return code in the parameter.

Table 35 on page 366 shows the return codes if you call ARXRLT with the GETBLOCK function or GETEVAL
function.

Table 35. ARXRLT Return Codes for GETBLOCK or GETEVAL

Return Code Description

0 Processing was successful. ARXRLT allocated a new evaluation block and returned the
address of the evaluation block.

Get Result Routine - ARXRLT

366 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 35. ARXRLT Return Codes for GETBLOCK or GETEVAL (continued)

Return Code Description

20 Processing was not successful. A new evaluation block was not allocated. This could be
because:

• The length you specified (in parameter 3) was incorrect. The length may have been
negative or exceeded the maximum value of 16 megabytes minus the length of the
evaluation block header.

• REXX/VSE could not obtain the storage.
• The function was requested at an incorrect time. (Perhaps a program was not running

in the language processor environment.)
• You specified the function name incorrectly in parameter 1.

The evaluation block is set to all blanks and the length field is set to 0.

28 Processing was not successful. A valid language processor environment could not be
located.

32 Processing was not successful. The parameter list is not valid. The parameter list
contains either too few or too many parameters, or the high-order bit of the last address
in the parameter list is not set to 1 to indicate the end of the parameter list.

Table 36 on page 367 shows the return codes if you call ARXRLT with the GETRLT or GETRLTE function.

Table 36. ARXRLT Return Codes for the GETRLT and GETRLTE Functions

Return Code Description

0 Processing was successful. A return code of 0 indicates that ARXRLT completed
successfully. You receive this return code when:

• ARXRLT copied the entire result and set the length field to the length of the data.
• The complete result was not returned. In this case, the evaluation block was too

small. ARXRLT sets the length field to the negative of the length needed.
• No result was available (ARXRLT could not find an evaluation block).

20 Processing was not successful. This could be because:

• You specified parameter 2, the pointer to the evaluation block, as 0
• The evaluation block was incorrect (for example, the value in the EVLEN field was less

than 0).
• ARXRLT could not locate a valid REXX environment under the current task. (You may

have called GETRLT or GETEVAL when a program was not running in the language
processor environment. Or you may have called GETEVAL when a compiled program
was not running in the language processor environment)

• You specified the function name incorrectly in parameter 1.

28 Processing was not successful. A valid language processor environment could not be
located.

32 Processing was not successful. The parameter list is not valid. The parameter list
contains either too few or too many parameters, or the high-order bit of the last address
in the parameter list is not set to 1 to indicate the end of the parameter list.

Get Result Routine - ARXRLT

Chapter 17. Programming Services 367

SAY Instruction Routine – ARXSAY
The SAY instruction routine, ARXSAY, lets you write a character string to the same output stream as the
REXX keyword instruction SAY. For example, you can write a string to the default output stream SYSLST.
“SAY” on page 50 describes the SAY keyword instruction.

You can obtain the address of the ARXSAY routine from the REXX vector of external entry points. “Format
of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can also access
ARXSAY by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXSAY, it must create a parameter list and pass the address of the parameter list in
register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXSAY to run. On the call to ARXSAY, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXSAY routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address.

Parameters: In register 1, you pass can the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. Set the high-order bit of the last
address to 1 to indicate the end of the parameter list. For more information about passing parameters,
see “Parameter Lists for REXX/VSE Routines” on page 325.

Table 37 on page 368 describes the parameters for ARXSAY.

Table 37. Parameters for ARXSAY

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. This must be in uppercase, left
justified, and padded to the right with blanks. The valid functions
are:

• WRITE
• WRITEERR.

"Functions" describes the functions in more detail.

ARXSAY Routine

368 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 37. Parameters for ARXSAY (continued)

Parameter Number of
Bytes

Description

Parameter 2 4 The address of a fullword in storage that points to an input buffer
containing a string. The caller supplies the string, which is a string
of bytes that you want ARXSAY to write to the output stream.

There are no restrictions on the contents of the string. However, the
target device for producing the data may limit the characters you
can specify.

Parameter 3 4 The length, in bytes, of the string to which parameter 2 points.

Parameter 4 4 This parameter is optional. It is address of the environment block
that represents the environment to use when performing the
requested service.

If you specify a nonzero value for the environment block address
parameter, ARXSAY uses the value you specify and ignores
register 0. However, ARXSAY does not check whether the address
is valid. Therefore, ensure the address you specify is correct,
or unpredictable results can occur. For more information, see
“Specifying the Address of the Environment Block” on page 326.

Parameter 5 4 This parameter is optional. It is a field that ARXSAY uses to return
the return code.

If you use this parameter, ARXSAY returns the return code in
the parameter and also in register 15. Otherwise, ARXSAY uses
register 15 only. If the parameter list is incorrect, the return code
is returned in register 15 only. "Return Codes" describes the return
codes.

Functions: Parameter 1 contains the name of the function ARXSAY is to perform:

WRITE
Specifies that you want ARXSAY to write the input string you provide to the output stream. Output
is directed to the current output stream. ASSGN(STDOUT) returns the name of the current output
stream.

WRITEERR
Specifies that you want ARXSAY to write the input string you provide to the output stream to which
error messages are written.

The settings for the NOMSGWTO and NOMSGIO flags control message processing in a language
processor environment. “Flags and Corresponding Masks” on page 393 describes the flags.

Return Specifications: For the ARXSAY routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes: Table 38 on page 370 shows the return codes for the ARXSAY routine. ARXSAY returns the
return code in register 15. If you specify the return code parameter (parameter 5), ARXSAY also returns
the return code in the parameter.

ARXSAY Routine

Chapter 17. Programming Services 369

Table 38. Return Codes for ARXSAY

Return Code Description

0 Processing was successful. The input string was written to the output stream.

8 Processing was successful. However, the input string was not written to the output
stream because Halt Typing (HT) is in effect.

20 Processing was not successful. One of the parameters is incorrect. An error occurred
and the requested function is not performed. REXX/VSE may issue a message that
describes the error.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The format of the parameter list is incorrect. The
parameter list has too few or too many parameters, or the high-order bit of the last
address is not set to 1 to indicate the end of the parameter list.

Halt Condition Routine – ARXHLT
The halt condition routine, ARXHLT, lets you query or reset the halt condition. Using ARXHLT, you can
determine whether a halt condition has been set, for example, with the HI immediate command. You can
also reset the halt condition.

You can obtain the address of the ARXHLT routine from the REXX vector of external entry points. “Format
of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can also access
ARXHLT by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXHLT, it must create a parameter list and pass the address of the parameter list in
register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXHLT to run. On the call to ARXHLT, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXHLT routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address.

Parameters: In register 1, you can pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. Set the high-order bit of the last
address to 1 to indicate the end of the parameter list. For more information about passing parameters,
see “Parameter Lists for REXX/VSE Routines” on page 325.

ARXHLT Routine

370 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 39 on page 371 describes the parameters for ARXHLT.

Table 39. Parameters for ARXHLT

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. This must be in uppercase, left
justified, and padded to the right with blanks. Valid functions are:

• TESTHLT
• CLEARHLT.

"Functions" describes the functions.

Parameter 2 4 This parameter is optional. It is the address of the environment
block that represents the environment in which you want ARXHLT
to run.

If you specify an environment block address, ARXHLT uses the
value you specify and ignores register 0. However, ARXHLT does not
check whether the address is valid. Therefore, ensure the address
you specify is correct, or unpredictable results can occur.

You can also use register 0 to specify the address of an
environment block. If you use register 0, ARXHLT checks whether
the address is valid. For more information, see “Specifying the
Address of the Environment Block” on page 326.

Parameter 3 4 This parameter is optional. It is a field that ARXHLT uses to return
the return code.

If you use this parameter, ARXHLT returns the return code in the
parameter and also in register 15. Otherwise, ARXHLT uses only
register 15. "Return Codes" describes the return codes.

Functions: Parameter 1 contains the name of the function ARXHLT is to perform:

TESTHLT
Determines whether the halt condition has been set. For example, the HI immediate command or
ARXIC (the trace and execution control routine) can set the halt condition.

Return codes 0 and 4 from ARXHLT indicate whether or not the halt condition has been set. See
"Return Codes" for more information.

CLEARHLT
Resets the halt condition.

Return Specifications: For the ARXHLT routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes: Table 40 on page 372 shows the return codes for the ARXHLT routine. ARXHLT returns the
return code in register 15. If you specify the return code parameter (parameter 3), ARXHLT also returns
the return code in the parameter.

ARXHLT Routine

Chapter 17. Programming Services 371

Table 40. Return Codes for ARXHLT

Return Code Description

0 Processing was successful. For TESTHLT, this indicates the halt condition was tested
and is not set. This means that REXX program processing continues. For CLEARHLT, it
indicates successfully resetting the halt condition.

4 Processing was successful. A return code of 4 is used only for the TESTHLT function. It
indicates the halt condition was tested and is set. This means that REXX processing will
be halted, for example, just as if HI were processed.

20 Processing was not successful. One of the parameters was incorrect. An error occurred,
and the requested function is not performed. ARXHLT returns a return code of 20 if the
function name you specify in parameter 1 is incorrect.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The format of the parameter list is incorrect. It contains
too few or too many parameters, or the high-order bit of the last address is not set to 1
to indicate the end of the parameter list.

Note: The ARXHLT routine also calls the RXHLT exit, if one exists. See “REXX Exit Data
Areas and Parameters” on page 473 for more information.

Text Retrieval Routine – ARXTXT
The text retrieval routine, ARXTXT, lets you retrieve data from the message repository. Besides error
messages (ERRORTEXT built-in function output), this data includes information that the DATE built-in
function could return. Using ARXTXT, you can retrieve the:

• English names for the days of the week, in mixed case (for example, Thursday)
• English names for the months of the year, in mixed case (for example, August)
• Abbreviated English names for the months of the year, in mixed case (for example, Aug)
• Text of a REXX syntax error message. For example, for error number 26 (message ARX0026I), the

message text is:

Invalid whole number

You can obtain the address of the ARXTXT routine from the REXX vector of external entry points. “Format
of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can also access
ARXTXT by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXTXT, it must create a parameter list and pass the address of the parameter list in
register 1.

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXTXT to run. On the call to ARXTXT, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXTXT routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)

ARXTXT Routine

372 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 1
Address of the parameter list the caller passes

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address.

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 41 on page 373 describes the parameters for ARXTXT.

Table 41. Parameters for ARXTXT

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the function must be in
uppercase, left justified, and padded to the right with blanks. Valid
functions are:

• DAY
• MTHLONG
• MTHSHORT
• SYNTXMSG.

"Functions and Text Units" describes the functions.

Parameter 2 4 A fullword binary field that contains the text unit corresponding to
the function in parameter 1. The text unit you specify depends on
the function you use in parameter 1 and the corresponding value
you want ARXTXT to return. "Functions and Text Units" describes
the text units in more detail.

Parameter 3 4 The address of an area in storage to hold the text that ARXTXT
retrieves.

Parameter 4 4 The length of the area in storage to which parameter 3 points.
You are recommended to provide a large buffer area to hold the
result, for example, 250 bytes. If the buffer is too small to hold the
returned text, ARXTXT returns with return code 20.

On output, ARXTXT updates parameter 4 to contain the length of
the actual text it returns.

ARXTXT Routine

Chapter 17. Programming Services 373

Table 41. Parameters for ARXTXT (continued)

Parameter Number of
Bytes

Description

Parameter 5 4 This parameter is optional. It is the address of the environment
block that represents the environment in which you want ARXTXT
to run.

If you specify a nonzero value for the environment block address
parameter, ARXTXT uses the value you specify and ignores
register 0. However, ARXTXT does not check whether the address
is valid. Therefore, ensure the address you specify is correct
or unpredictable results can occur. For more information, see
“Specifying the Address of the Environment Block” on page 326.

Parameter 6 4 This parameter is optional. It is a field that ARXTXT uses to return
the return code.

If you use this parameter, ARXTXT returns the return code in the
parameter and also in register 15. Otherwise, ARXTXT uses only
register 15. If the parameter list is incorrect, the return code is
returned only in register 15. "Return Codes" describes the return
codes.

Functions and Text Units: Parameter 1 contains the name of the function ARXTXT is to perform.
Parameter 2 specifies the text unit you want ARXTXT to retrieve for the particular function. The functions
and their corresponding text units you can request are:

DAY
returns the English name of a day of the week in mixed case. The names that ARXTXT retrieves are the
same values the language processor uses for the DATE(Weekday) function.

The name of the day that ARXTXT retrieves depends on the text unit you specify in parameter 2. Table
42 on page 374 shows the text units for parameter 2 and the corresponding day ARXTXT retrieves for
each text unit. For example, if you want ARXTXT to return the value Saturday, you specify text unit 3.

Table 42. Text Unit and Day Returned - DAY Function

Text Unit Name of Day Returned

1 Thursday

2 Friday

3 Saturday

4 Sunday

5 Monday

6 Tuesday

7 Wednesday

MTHLONG
returns the English name of a month, in mixed case. The names that ARXTXT retrieves are the same
values the language processor uses for the DATE(Month) function.

The name of the month that ARXTXT retrieves depends on the text unit you specify in parameter 2.
Table 43 on page 375 shows the text units for parameter 2 and the corresponding name of the month
ARXTXT retrieves for each text unit. For example, if you want ARXTXT to return the value April, you
specify text unit 4.

ARXTXT Routine

374 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 43. Text Unit and Month Returned - MTHLONG Function

Text Unit Name of Month Returned

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

MTHSHORT
returns the first three characters of the English name of a month in mixed case. ARXTXT retrieves the
same values that the language processor uses for the month in the DATE(Normal) function.

The abbreviated name of the month that ARXTXT retrieves depends on the text unit you specify in
parameter 2. Table 44 on page 375 shows the text units for parameter 2 and the corresponding
abbreviated names of the month that ARXTXT retrieves for each text unit. For example, if you want
ARXTXT to return the value Sep, you specify text unit 9.

Table 44. Text Unit and Abbreviated Month Returned - MTHSHORT Function

Text Unit Abbreviated Name of Month Returned

1 Jan

2 Feb

3 Mar

4 Apr

5 May

6 Jun

7 Jul

8 Aug

9 Sep

10 Oct

11 Nov

12 Dec

SYNTXMSG
The SYNTXMSG function returns the message text for a specific REXX syntax error message. ARXTXT
retrieves the same text that the ERRORTEXT function returns.

ARXTXT Routine

Chapter 17. Programming Services 375

The message text that ARXTXT retrieves depends on the text unit you specify in parameter 2. For the
text unit, specify the error number corresponding to the error message. For example, error number 26
corresponds to message ARX0026I. The message text for ARX0026I is:

Invalid whole number

The SYNTXMSG function returns this value if you specify text unit 26.

REXX reserves the values 1–99 for error numbers. However, REXX does not use all these values for
syntax error messages. See z/VSE Messages and Codes for REXX error numbers and messages. If you
specify a text unit in the range 1-99 and the value is not supported, ARXTXT returns a string of length
0.

Return Specifications: For the ARXTXT routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes: Table 45 on page 376 shows the return codes for the ARXTXT routine. ARXTXT returns the
return code in register 15. If you specify the return code parameter (parameter 6), ARXTXT also returns
the return code in the parameter.

Table 45. Return Codes for ARXTXT

Return Code Description

0 Processing was successful. ARXTXT retrieved the text you requested and placed the text
into the buffer area.

20 Processing was not successful. An error occurred and the requested function is not
performed. ARXTXT does not retrieve the text. You may receive a return code of 20 if
the:

• Buffer is too small to hold the complete text
• Function name you specified for parameter 1 is incorrect
• Text unit you specified for parameter 2 is incorrect for the particular function you

requested in parameter 1.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is incorrect. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

LINESIZE Function Routine – ARXLIN
The LINESIZE function routine, ARXLIN, lets you obtain the same value that the LINESIZE built-in
function returns. “LINESIZE” on page 92 describes the built-in function.

You can obtain the address of the ARXLIN routine from the REXX vector of external entry points. “Format
of the REXX Vector of External Entry Points” on page 418 describes the vector. A program can also access
ARXLIN by using a VSE CDLOAD macro to obtain the entry point address.

If a program uses ARXLIN, it must create a parameter list and pass the address of the parameter list in
register 1.

ARXLIN Routine

376 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

Environment Customization Considerations
If you use the ARXINIT initialization routine to initialize language processor environments, you can specify
the environment in which you want ARXLIN to run. On the call to ARXLIN, you can optionally specify the
address of the environment block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications: For the ARXLIN routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address.

Parameters: In register 1, you pass the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 46 on page 377 describes the parameters for ARXLIN.

Table 46. Parameters for ARXLIN

Parameter Number of
Bytes

Description

Parameter 1 8 The name of the function to be performed. This must be in
uppercase, left justified, and padded to the right with blanks. The
only valid function name is LINESIZE. ARXLIN returns the same
value that the LINESIZE built-in function returns.

Parameter 2 4 ARXLIN returns the LINESIZE value in this parameter. ARXLIN
returns the same value that the LINESIZE built-in function returns.
“LINESIZE” on page 92 describes the built-in function.

The value ARXLIN returns in this parameter is valid only if the
return code is 0.

Parameter 3 4 This parameter is optional. It is the address of the environment
block that represents the environment in which you want ARXLIN to
run.

If you specify an environment block address, ARXLIN uses the
value you specify and ignores register 0. However, ARXLIN does not
check whether the address is valid. Therefore, ensure the address
you specify is correct or unpredictable results can occur.

You can also use register 0 to specify the address of an
environment block. If you use register 0, ARXLIN checks whether
the address is valid. For more information, see “Specifying the
Address of the Environment Block” on page 326.

ARXLIN Routine

Chapter 17. Programming Services 377

Table 46. Parameters for ARXLIN (continued)

Parameter Number of
Bytes

Description

Parameter 4 4 This parameter is optional. It is a field that ARXLIN uses to return
the return code.

If you use this parameter, ARXLIN returns the return code in the
parameter and also in register 15. Otherwise, ARXLIN uses only
register 15. "Return Codes" describes the return codes.

Return Specifications: For the ARXLIN routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: Table 47 on page 378 shows the return codes for the ARXLIN routine. ARXLIN returns the
return code in register 15. If you specify the return code parameter (parameter 4), ARXLIN also returns
the return code in the parameter.

Table 47. Return Codes for ARXLIN

Return Code Description

0 Processing was successful. ARXLIN returned the LINESIZE value in parameter 2.

20 Processing was not successful. You may have specified an incorrect function name in
parameter 1. The only valid function is LINESIZE.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is incorrect. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

OUTTRAP Interface Routine – ARXOUT
Use the OUTTRAP interface routine, ARXOUT, to allow programs to write a character string to the REXX
stem specified by the OUTTRAP external function. Only programs can use this interface which have been
invoked by the LINK or LINKPGM host command environment. ARXOUT writes into the OUTTRAP stem
specified by the REXX program which calls one of these two ADRESS LINK environments.

Environment Customization Considerations
On the call to the OUTTRAP interface routine you pass the address of the parameter list in register 1.
On the call to ARXOUT you can optionally specify the address of the environment block in either the
parameter list or in register 0. If you specify a nonzero value as environment block in the parameter list,
ARXOUT uses the value and ignores register 0. However, ARXOUT does not check whether the address is
valid. If you do not specify an environment block or the specified value is not valid ARXOUT locates the
current environment and runs in that environment. If a current environment does not exist, or the current
environment was initialized on a different task, ARXOUT returns with return code 28.

For more information about specifying environments and how routines determine the environment in
which to run, see “Specifying the Address of the Environment Block” on page 326.

Entry Specifications:

ARXOUT has RMODE 24 and AMODE ANY.

ARXOUT Routine

378 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARXOUT returns in the mode of the calling program which can have any AMODE.

For the ARXOUT routine, the contents of the registers on entry are:
Register 0

unpredictable
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of the save area
Register 14

Return address
Register 15

Entry point address.

Parameters: In register 1, you can pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The first two parameters are
mandatory. Parameters 3 and 4 are optional. Set the high-order bit of the last address to 1 to indicate
the end of the parameter list. For more information about passing parameters, see “Parameter Lists for
REXX/VSE Routines” on page 325.

Table 48 on page 379 describes the parameters for ARXOUT.

Table 48. Parameters for ARXOUT

Parameter Number of
Bytes

Description

Parameter 1 Specifies the address of a fullword in storage that points to an input
buffer containing the character string. The caller supplies the string
you want ARXOUT to write into OUTTRAP.

Parameter 2 Specifies the length in bytes of the string parameter 1 points to.

Parameter 3 This parameter is optional. It is the address of the environment
ARXOUT uses. If you specify a zero value for parameter 3, ARXOUT
uses the environment block address specified in register 0.

Parameter 4 This parameter is optional. It is the field ARXOUT uses to return the
return code. If you use this parameter, ARXOUT returns the return
code in this parameter and register 15, else only in register 15.

If the caller is in AMODE 24, all specified addresses are interpreted as 24 bit addresses.

If the caller is in AMODE 31, all specified addresses are interpreted as 31 bit addresses.

Return Codes: Table 49 on page 379 shows the return codes for the ARXOUT routine. ARXOUT returns the
return code in register 15. If you specify the return code parameter (parameter 4), ARXOUT also returns
the return code in the parameter.

Table 49. Return Codes for ARXOUT

Return Code Description

0 Processing was successful. The input string was accepted and written to OUTTRAP if the
maximum number of output records are not exceeded. Input records are ignored with a
return code of 0 if

• OUTTRAP is full (maximum number of output records are exceeded).
• OUTTRAP is OFF.

ARXOUT Routine

Chapter 17. Programming Services 379

Table 49. Return Codes for ARXOUT (continued)

Return Code Description

8 Processing was not successful. GETVIS cannot be obtained.

20 Processing was not successful. An error occurred, and the requested function is not
performed.

24 Processing was not successful. The caller was not authorized to use ARXOUT, it was
either not called by ADDRESS LINK or LINKPGM or the REXX tables were not initialized.

28 Processing was not successful. The current environment does not exist, or the current
environment was initalized with a different task.

32 Processing was not successful. Invalid parameter list.

ARXOUT Routine

380 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 18. Customizing Services

REXX/VSE provides customizing services for REXX processing to let you change how REXX programs are
processed and how the language processor accesses and uses system services.

Customizing services include the following:
Environment Characteristics

These routines and services let you customize the environment in which the language processor runs
a REXX program. This environment is known as the language processor environment. It defines various
characteristics relating to how programs are processed and how the language processor accesses and
uses system services. REXX/VSE provides default environment characteristics that you can change
and also provides a routine you can use to define your own environment.

Replaceable Routines
When a REXX program runs, the language processor uses various system services, such as services
for loading and freeing a program, performing I/O, obtaining and freeing storage, and handling data
stack requests. Routines that handle these types of system services are known as replaceable
routines because you can provide your own routine to replace the one REXX/VSE provides.

Exit Routines
You can provide exit routines to customize various aspects of REXX processing.

The topics in this chapter introduce the major interfaces and customizing services. The following chapters
describe the customizing services in more detail:

• Chapter 19, “Language Processor Environments,” on page 387 describes how you can customize the
environment in which the language processor executes a REXX program and accesses and uses system
services.

• Chapter 20, “Initialization and Termination Routines,” on page 427 describes the ARXINIT and
ARXTERM routines for initializing and terminating language processor environments.

• Chapter 21, “Replaceable Routines and Exits,” on page 439 describes the routines you can provide
that access system services, such as I/O and storage, and the exits you can use to customize REXX
processing.

Flow of REXX Program Processing
Figure 22 on page 382 shows the processing of a REXX program.

Customizing Services

© Copyright IBM Corp. 1988, 2004 381

Figure 22. Overview of REXX Program Processing

As the figure shows, before the language processor runs a REXX program, a language processor
environment must exist. After an environment is located or initialized, the program is loaded into
storage and is then run. While a program is running, the language processor may need to access
different system services, for example, to handle data stack requests or for I/O processing. Routines
known as replaceable routines handle these services. The following topics describe the initialization
and termination of language processor environments, the loading and freeing of a program, and the
replaceable routines. There are also several exits you can provide to customize REXX processing. See
“REXX Exit Routines” on page 468 for a summary of these exits.

Language Processor Environment Initialization and Termination
Before the language processor can process a REXX program, a language processor environment must
exist. A language processor environment is the environment in which the language processor processes
the program. This environment defines characteristics concerning how the program is processed and how
the language processor accesses system services.

A language processor environment defines various characteristics, such as:

• The search order for locating commands and external functions and subroutines
• The member names for reading and writing data and from which REXX programs are loaded
• The host command environments you can use in a program to process host commands (that is, the

environments you can specify using the ADDRESS instruction)
• The function packages (user, local, and system) that are available to programs that run in the

environment and the entries in each package
• Whether programs that run in the environment can use the data stack or can perform I/O operations
• The names of routines that handle system services, such as I/O operations, loading of a program,

obtaining and freeing storage, and data stack requests. These routines are known as replaceable
routines.

Note: The concept of a language processor environment is different from that of a host command
environment. The language processor environment is the environment in which a REXX program runs.
This includes how a program is loaded, how commands, functions, and subroutines are located, and how
requests for system services are handled. A host command environment is the environment to which
the language processor passes commands for execution. The host command environment handles the
execution of host commands. The host command environments that are available to a REXX program

Customizing Services

382 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

are one characteristic of a language processor environment. For more information about executing host
commands from a REXX program, see “Commands to External Environments” on page 23.

When you use the JCL EXEC command to call a batch job or call ARXEXEX or ARXJCL to run a
program, REXX/VSE automatically initializes an environment (if one does not already exist) by calling
the initialization routine ARXINIT. (REXX/VSE terminates a language processor environment by calling the
termination routine ARXTERM.)

As previously described, many language processor environments can exist in one partition. A language
processor environment is associated with a task and environments can be chained together. Chapter 19,
“Language Processor Environments,” on page 387 discusses this in more detail.

Whenever a REXX program is called, REXX/VSE first determines whether or not a language processor
environment exists. If an environment does exist, the REXX program runs in that environment. If an
environment does not exist, REXX/VSE automatically initializes one by calling the ARXINIT routine.
When the program completes, REXX/VSE terminates the environment. “Chains of Environments and How
Environments Are Located” on page 410 describes how REXX/VSE locates a previous environment.

The parameters module ARXPARMS contains the default values that define a language processor
environment. To change the default values for initializing a language processor environment, you can
provide your own parameters module. Your phase is then used instead of the default module. Chapter 19,
“Language Processor Environments,” on page 387 describes the parameters module in detail.

You can also explicitly call ARXINIT to initialize a language processor environment and define the
environment characteristics on the call. When you call ARXINIT, you specify any or all of the
characteristics you want defined for the language processor environment. Using ARXINIT gives you
the flexibility to define your own environment. This lets you customize how REXX programs run within
the environment and the handling of system services. If you explicitly call ARXINIT, you must use
the ARXTERM routine to terminate that environment. REXX/VSE does not automatically terminate
an environment that you initialized by explicitly calling ARXINIT. See Chapter 20, “Initialization and
Termination Routines,” on page 427 for descriptions of ARXINIT and ARXTERM.

Loading and Freeing a REXX Program
After a language processor environment has been located or initialized, the program must be loaded into
storage for the language processor to process it. After the program runs, storage must be freed. The exec
load routine loads and frees REXX programs. The default exec load routine is ARXLOAD.

The exec load routine is one of the replaceable routines that you can provide to customize REXX
processing. You can provide your own exec load routine that either replaces the default or that performs
pre-processing and then calls the default routine ARXLOAD. The name of the load routine is defined for
each language processor environment.

Note: If you use ARXEXEC to run a REXX program, you can preload the program in storage and pass
the address of the preloaded program on the call to ARXEXEC. In this case, the exec load routine is not
called to load the program. “Calling REXX” on page 328 describes the ARXEXEC routine and how you can
preload a program.

Processing of the REXX Program
After the REXX program is loaded into storage, the language processor is called to process the program.
During processing, the program can issue commands, call external functions and subroutines, and
request various system services. When the language processor processes a command, it first evaluates
the expression and then passes the command to the host for execution. The specific host command
environment handles command execution. When the program calls an external function or subroutine,
the language processor searches for the function or subroutine. This includes searching any function
packages that are defined for the language processor environment in which the program is running.

Customizing Services

Chapter 18. Customizing Services 383

Overview of Replaceable Routines
When a REXX program runs, specific routines are called to perform requested services (for example,
obtaining and freeing storage, I/O, data stack requests, and so on). These routines are called replaceable
routines because you can provide your own routines to replace the ones REXX/VSE provides.

Your routine can check the request for a system service, change the request if needed, and then call the
supplied routine to actually perform the service. Your routine can also terminate the request for a system
service or perform the request itself instead of calling the REXX/VSE routine.

Replaceable routines are defined on a language processor environment basis and are specified in the
parameters module for an environment (see “Characteristics of a Language Processor Environment” on
page 390).

Table 50 on page 384 provides a brief description of the functions your replaceable routine must perform.
Chapter 21, “Replaceable Routines and Exits,” on page 439 describes each replaceable routine in detail,
its input and output parameters, and return codes.

Table 50. Overview of Replaceable Routines

Replaceable Routine Description

Exec load The exec load routine loads a REXX program into storage and frees the
program when it is no longer needed.

Read input and write output
(I/O)

The I/O routine reads a record from or writes a record to a file. (The
file can be a member of a sublibrary, a SAM file, SYSIPT, or SYSLST.)
For example, this routine is called for the SAY instruction, for the
PULL instruction (when the data stack is empty), and for the EXECIO
command. The routine is also called to open and close a file.

Data stack This routine handles any requests for data stack services. For example,
it is called for the PULL, PUSH, and QUEUE instructions and for the
MAKEBUF and DROPBUF commands.

Storage management This routine obtains and frees storage.

User ID This routine obtains the user ID. You can use the USERID built-in
function to obtain this result.

Message identifier This routine determines if the message identifier (message ID)
accompanies a REXX error message.

Host command environment This routine is called to handle the execution of a host command for a
particular host command environment.

To provide your own replaceable routine, you must do the following:

• Write the code for the routine. Chapter 21, “Replaceable Routines and Exits,” on page 439 describes
each routine in detail.

• Define the routine name to a language processor environment.

If you use ARXINIT to initialize a new environment, you can pass the names of your routines on the call.

Chapter 19, “Language Processor Environments,” on page 387 describes the concepts of replaceable
routines and their relationship to language processor environments in more detail.

The replaceable routines are external interfaces that you can call from a program. For example, a program
can call the supplied data stack routine to perform data stack operations. If you provide your own
replaceable data stack routine, a program can call your routine to perform data stack operations. You can
call your replaceable routine or a supplied replaceable routine only if a language processor environment
exists in which the routine can run.

Customizing Services

384 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Exit Routines
There are several exit routines you can use to customize REXX processing. Several exits have fixed
names. Other exits do not. You supply the name of these exits on the call to ARXINIT or by changing
the ARXPARMS default parameters module. Chapter 21, “Replaceable Routines and Exits,” on page 439
describes the exits in more detail. A summary of each exit follows.

• ARXINITX—Pre-environment initialization exit routine. The exit receives control whenever ARXINIT is
called to initialize a new language processor environment. It gets control before ARXINIT evaluates any
parameters.

• ARXITMV—Post-environment initialization exit routine. This exit receives control whenever ARXINIT is
called to initialize a new language processor environment. It receives control after ARXINIT initializes a
new environment but before ARXINIT completes.

• ARXTERMX—Environment termination exit routine. The exit receives control whenever ARXTERM
is called to terminate a language processor environment. It gets control before ARXTERM starts
termination processing.

• Exec Initialization — The exit receives control after the variable pool for a REXX program has been
initialized but before the language processor processes the first clause in the program.

• Exec Termination — The exit receives control after a REXX program has completed processing but
before the variable pool has been terminated.

• Exec processing exit (exit for the ARXEXEC routine)—This exit receives control whenever the ARXEXEC
routine is called to run a REXX program. REXX/VSE or a user can explicitly call ARXEXEC to run a
program. REXX/VSE always calls ARXEXEC to handle program execution. For example, if you use the
JCL EXEC command or ARXJCL to call a program, REXX/VSE calls ARXEXEC to run the program. If you
provide an exit for ARXEXEC, the exit is called.

• RXHLT—This is the halt processing exit.

Customizing Services

Chapter 18. Customizing Services 385

Customizing Services

386 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 19. Language Processor Environments

As described in Chapter 18, “Customizing Services,” on page 381, a language processor environment is
the environment in which the language processor processes a REXX program. Such an environment must
exist before a program can run.

The topics in this chapter explain language processor environments and the default parameters module in
more detail. They explain the various tasks you can perform to customize the environment in which REXX
programs run. This chapter describes:

• Different aspects of a language processor environment and the characteristics that make up such an
environment. The topic explains when REXX/VSE calls the initialization routine, ARXINIT, to initialize an
environment and the values ARXINIT uses to define the environment. The topic describes the values in
the default parameters module and how to change the values. It also describes what values you can
and cannot specify.

• The various control blocks that are defined when a language processor environment is initialized and
how you can use the control blocks for REXX processing.

• How to chain language processor environments together.
• How to use the data stack in different language processor environments.

Note: The control blocks for a language processor environment provide information about the
environment. You can obtain information from the control blocks. However, you must not change any
of the control blocks. If you do, unpredictable results may occur.

Overview of Language Processor Environments
The language processor environment defines various characteristics that relate to the processing of
programs and the access and use of system services. Some of the environment characteristics include the
following:

• The language in which REXX/VSE produces REXX messages
• The names of several replaceable routines that you can provide for system services, such as I/O

processing, loading REXX programs, and processing data stack requests
• The names of exit routines that REXX/VSE calls at different points in REXX processing, such as when the

ARXEXEC routine is called
• The names of host command environments and the corresponding routines that process commands for

each host command environment
• The function packages that are available to programs that run in the environment
• The name of the partition (the default is VSE)
• Bit settings (flags) that define many characteristics, such as:

– The search order for commands, functions, and subroutines
– Whether REXX/VSE produces primary and alternate messages.

“Characteristics of a Language Processor Environment” on page 390 describes the environment
characteristics.

When a language processor environment is initialized, you can define different routines that REXX/VSE
calls for system services, such as obtaining and freeing storage and handling I/O requests. The language
processor environment provides for consistency by ensuring that REXX programs run independently of the
way in which REXX/VSE accesses system services. At the same time, the language processor environment
provides flexibility to handle the differences between the partitions and lets you customize how REXX
programs are processed and how REXX/VSE accesses and uses system services.

© Copyright IBM Corp. 1988, 2004 387

Initialization of an Environment: The initialization routine, ARXINIT, initializes language processor
environments. When you use the JCL EXEC command or call ARXEXEC or ARXJCL to run a REXX
program, REXX/VSE calls ARXINIT to automatically initialize an environment. Because REXX/VSE
automatically initializes language processor environments, you need not be concerned with setting up
such an environment, changing any values, or even that the environment exists. The language processor
environment allows application programmers and system programmers to customize the system
interfaces between the language processor and host services. “When Environments Are Automatically
Initialized” on page 390 describes when REXX/VSE initializes environments.

When REXX/VSE calls ARXINIT to automatically initialize an environment, REXX/VSE uses default values.
The default parameters module (phase) ARXPARMS contains the parameter values ARXINIT uses to
initialize the language processor environment.

“Characteristics of a Language Processor Environment” on page 390 describes the parameters module
that contains all of the characteristics for defining a language processor environment. “Values in the
ARXPARMS Default Parameters Module” on page 406 describes the defaults in ARXPARMS. You can
change the default parameters by providing your own phase. “Changing the Default Values for Initializing
an Environment” on page 412 describes how to change the parameters.

You can also explicitly call ARXINIT and pass the parameter values for ARXINIT to use in initializing the
environment. Using ARXINIT lets you customize the environment in which REXX programs run and how
REXX/VSE accesses and uses system services.

Chains of Environments: Many language processor environments can exist in a particular partition. Each
language processor environment is associated with a single task. More than one environment can be
associated with a particular task. Language processor environments are chained together in a hierarchical
structure to form a chain of environments to supply a default environment if one is not specified. Each
environment on a chain is related to the other environments on that chain. Environments on a particular
chain may share various resources, such as files and the data stack. (“Chains of Environments and How
Environments Are Located” on page 410 provides more information about the relationship between
language processor environments and tasks and how environments are chained together.) A single
partition can contain multiple chains of language processor environments

Maximum Number of Environments: Although many language processor environments can be initialized
in a single partition, there is a maximum. ARXANCHR is a non-reentrant phase that anchors the chains
of language processor environments. It contains an environment table that defines the maximum number
of environments for one partition. The maximum is not a set number of environments. It depends on the
number of chains of environments and the number of environments defined on each chain. The default
maximum should be sufficient for any partition. However, if ARXINIT is initializing a new environment and
this exceeds the maximum, ARXINIT completes unsuccessfully and returns with a return code of 20 and
a reason code of 24. If this error occurs, you can change the maximum by providing a new ARXANCHR
phase. “Changing the Maximum Number of Environments in a Partition” on page 421 describes the
ARXANCHR phase and how to provide a new one.

Control Blocks: When ARXINIT initializes a new language processor environment, ARXINIT creates
a number of control blocks that contain information about the environment. The main control block
that ARXINIT creates is called the environment block (ENVBLOCK). There is an environment block for
each language processor environment. The environment block contains pointers to other control blocks
that contain information about the parameters that define the environment, the resources within the
environment, and the program currently running in the environment. “Control Blocks Created for a
Language Processor Environment” on page 414 describes all of the control blocks that ARXINIT creates.
ARXINIT creates an environment block for each language processor environment that it creates. Except
for ARXINIT, no REXX program or service can operate without an environment being available.

Note about Changing Any Control Blocks
You can obtain information from the control blocks. However, you must not change any of the control
blocks. If you do, unpredictable results may occur.

388 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Using the Environment Block
The main control block that ARXINIT creates for a language processor environment is the environment
block. The environment block represents the language processor environment and points to other control
blocks that contain information about the environment.

The environment block is known as the anchor that all callable interfaces to REXX use. Except for
the ARXINIT initialization routine, no REXX routine can run unless an environment block exists, that
is, a language processor environment must exist. When ARXINIT initializes a new language processor
environment, ARXINIT always returns the address of the environment block in register 0. (If you
explicitly call the ARXINIT routine, ARXINIT also returns the address of the environment block in the
parameter list.) You can also use ARXINIT to obtain the address of the environment block for the current
non-reentrant environment (see “Initialization Routine – ARXINIT” on page 427). ARXINIT returns the
address in register 0 and also in Parameter 6 in the parameter list.

The address of the environment block is useful for calling a REXX routine or for obtaining information from
the control blocks that ARXINIT created for the environment. If you call any of the REXX/VSE routines
(for example, ARXEXEC to process a program or the variable pool access interface ARXEXCOM), you can
optionally pass the address of an environment block to the routine in register 0. By passing the address of
an environment block, you can specify in which specific environment you want either the program or the
service to run. This is particularly useful if you use the ARXINIT routine to initialize several environments
on a chain and then want to process a REXX/VSE routine in a specific environment. When you call the
routine, you can pass the address of the environment block in register 0.

An external function or subroutine receives the address of an environment block in register 0. All calls
to any programming service should pass this environment block address. Passing the environment block
address is particularly important when the environment is a reentrant environment because programming
services cannot automatically locate a reentrant environment. For more information about reentrant
environments, see “Using the Environment Block for Reentrant Environments” on page 327.

If you call a REXX/VSE routine and do not pass the address of an environment block in register 0 or the
environment block parameter, the routine runs in the current non-reentrant environment on the chain
under the current task.

If you call ARXEXEC or ARXJCL and a language processor environment does not exist, REXX/VSE calls
ARXINIT to initialize an environment in which the program runs. When the program completes processing,
REXX/VSE terminates the newly created environment.

If you are running separate tasks simultaneously and two or more tasks are running REXX, each task must
have its own environment block. That is, you must initialize a language processor environment for each of
the tasks.

The environment block points to several other control blocks that contain the parameters ARXINIT used
in defining the environment and the addresses of REXX/VSE routines, such as ARXINIT, ARXEXEC, and
ARXTERM, and replaceable routines. You can access these control blocks to obtain this information. The
control blocks are described in “Control Blocks Created for a Language Processor Environment” on page
414.

Note about Changing Any Control Blocks
You can obtain information from the control blocks. However, you must not change any of the control
blocks. If you do, unpredictable results may occur.

The following topics in this chapter describe the characteristics of a language processor environment,
the different types of environments, and the default parameters module. Chapter 20, “Initialization and
Termination Routines,” on page 427 describes the initialization and termination routines ARXINIT and
ARXTERM.

Using the Environment Block

Chapter 19. Language Processor Environments 389

When Environments Are Automatically Initialized
If a language processor environment does not already exist on the current task, REXX/VSE automatically
initializes one whenever:

• You use the JCL EXEC command to call a batch job
• A program calls ARXEXEC or ARXJCL to call a REXX program.

“Calling REXX with ARXEXEC or ARXJCL” on page 331 describes these routines in detail. When ARXEXEC
or ARXJCL is called, it determines whether a language processor environment already exists. (As
discussed previously, more than one environment can be initialized in a single partition. The environments
are chained together in a hierarchical structure). ARXEXEC and ARXJCL do not invoke ARXINIT to initialize
an environment if one already exists. The routines use the current environment to run the program.
“Chains of Environments and How Environments Are Located” on page 410 describes how language
processor environments are chained together and how environments are located.

If ARXEXEC or ARXJCL invokes the ARXINIT routine to initialize an environment, after the REXX program
completes processing, REXX/VSE calls the ARXTERM routine to terminate the environment that ARXINIT
initialized.

Note: If several language processor environments already exist, you can pass the address of an
environment block in register 0 on the call to ARXEXEC or ARXJCL. This indicates the environment in
which the program should run. See “Using the Environment Block” on page 389 for more information.
Chapter 21, “Replaceable Routines and Exits,” on page 439 describes the replaceable routines and exits
in more detail.

“Specifying Values for Different Environments” on page 413 describes the environment characteristics
you can specify for language processor environments.

Characteristics of a Language Processor Environment
When ARXINIT initializes a language processor environment, ARXINIT creates several control blocks
that contain information about the environment. One of the control blocks is the parameter block
(PARMBLOCK). The parameter block contains the parameter values that ARXINIT used to define the
environment. The parameter block also contains the addresses of the module name table, the host
command environment table, and the function package table, which contain additional characteristics for
the environment.

REXX/VSE provides a default parameters module ARXPARMS. This is a phase that contains the values for
initializing language processor environments. “Values in the ARXPARMS Default Parameters Module” on
page 406 shows the default values for this module. A parameters module consists of the parameter block
(PARMBLOCK), the module name table, the host command environment table, and the function package
table. Figure 23 on page 391 shows the format of the parameters module.

Environments Initialized

390 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 23. Overview of Parameters Module

Table 51 on page 391 shows the format of PARMBLOCK. Each field is described in more detail after
the table. Indicate the end of the PARMBLOCK with X'FFFFFFFFFFFFFFFF'. Subsequent topics describe
the format of the module name table, host command environment table, and function package table. A
mapping macro for the parameter block, ARXPARMB, is in PRD1.BASE.

Note: Each field name in the following table must include the prefix PARMBLOCK_.

Table 51. Format of the Parameter Block (PARMBLOCK)

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID Identifies the parameter block (PARMBLOCK).

8 4 VERSION Identifies the version of the parameter block.

12 3 LANGUAGE Language code for REXX messages.

15 1 RESERVED Reserved.

16 4 MODNAMET Address of module name table.

20 4 SUBCOMTB Address of host command environment table.

Environment Characteristics

Chapter 19. Language Processor Environments 391

Table 51. Format of the Parameter Block (PARMBLOCK) (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

24 4 PACKTB Address of function package table.

28 8 PARSETOK Token for PARSE SOURCE instruction.

36 4 FLAGS A fullword of bits that ARXINIT uses as flags to
define characteristics for the environment.

40 4 MASKS A fullword of bits that ARXINIT uses as a mask for
the setting of the flag bits.

44 4 SUBPOOL This field is reserved.

48 8 ADDRSPN Name of the partition.

56 8 — The end of the PARMBLOCK must be indicated by
X'FFFFFFFFFFFFFFFF'.

The following information describes each field in the PARMBLOCK. If you change the default parameters
module or use ARXINIT to initialize a language processor environment, read “Changing the Default Values
for Initializing an Environment” on page 412 for information about changing the values that define an
environment.

ID
This field identifies the parameter block that ARXINIT creates. The value for ID is ARXPARMS. Do not
change this value.

VERSION
This field identifies the version of the parameter block for a particular release and level of REXX/VSE.

The value for VERSION is 0001. Do not change this value.

LANGUAGE
This field contains a language code that identifies the language for producing REXX messages. The
only valid values are:

• ENU—the language code for US English in mixed case (upper and lowercase)
• ENP (US English in upper case).

Reserved
This field is reserved.

MODNAMET
This field contains the address of the module name table. The table contains the file names for
reading and writing data and the names of several replaceable routines and exit routines. “Module
Name Table” on page 398 describes the table in detail.

SUBCOMTB
This field contains the address of the host command environment table.

This table contains the names of the host command environments for processing host commands.
These are the environments that REXX programs can specify using the ADDRESS instruction.
“Commands to External Environments” on page 23 describes how to issue host commands from a
REXX program and the different environments for command processing.

The table also contains the names of the routines that are called to handle the processing of
commands that are issued in each host command environment. “Host Command Environment Table”
on page 401 describes the table in detail.

PACKTB
This field contains the address of the function package table for function packages. “Function Package
Table” on page 403 describes the table in detail.

Environment Characteristics

392 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

PARSETOK
This field is a character string containing the value of a token that the PARSE SOURCE instruction uses.
This token is the last token of the string that PARSE SOURCE returns.

FLAGS
The FLAGS field is a fullword of bits that ARXINIT uses as flags. The flags define certain
characteristics for the new language processor environment and how the environment and programs
running in the environment operate.

See “Flags and Corresponding Masks” on page 393 for details about each flag. The mapping of the
parameter block (PARMBLOCK) includes the mapping of the flags. REXX/VSE provides a mapping
macro ARXPARMB for the parameter block. The mapping macro is in PRD1.BASE. The parameter after
the flags is a mask field that works with the flags.

MASKS
This field is a fullword of bits that ARXINIT uses as a mask for setting the flag bits. See the preceding
field for details about the flags field. The mask field is a string that has the same length as the flags
field. Each bit position in the mask field corresponds to a bit in the same position in the flags field.
ARXINIT uses the mask field to determine whether it should use or ignore the corresponding flag bit.
For a given bit position, if the value in the mask field is 1 the corresponding bit in the flags field is
used. If it is 0, the corresponding bit in the flags field is ignored (that is, the bit is considered null).

SUBPOOL
This field is reserved.

ADDRSPN
This field specifies the name of the partition. This value is VSE.

X'FFFFFFFFFFFFFFFF'
X'FFFFFFFFFFFFFFFF' indicates the end of the parameter block.

Flags and Corresponding Masks
The following table summarizes the flags field.

Table 52. Summary of Each Flag Bit in the Parameters Module

Bit Position
Number

Flag Name Description

0 TSOFL This bit is reserved and must be off.

1 Reserved This bit is reserved.

2 CMDSOFL Specifies the search order REXX/VSE uses for locating a command.

3 FUNCSOFL Specifies the search order REXX/VSE uses for locating functions
and subroutines.

4 NOSTKFL Specifies whether REXX programs running in the environment can
use data stack operations.

5 NOREADFL Specifies whether REXX programs running in the environment can
read from input files.

6 NOWRTFL Specifies whether REXX programs running in the environment can
write to output files.

7 NEWSTKFL Indicates whether a new data stack is initialized for the new
environment.

8 USERPKFL Indicates whether the user function packages that are defined for
the previous language processor environment are also available in
the new environment.

Flags and Masks

Chapter 19. Language Processor Environments 393

Table 52. Summary of Each Flag Bit in the Parameters Module (continued)

Bit Position
Number

Flag Name Description

9 LOCPKFL Indicates whether the local function packages that are defined for
the previous language processor environment are also available in
the new environment.

10 SYSPKFL Indicates whether the system function packages that are defined
for the previous language processor environment are also available
in the new environment.

11 NEWSCFL Indicates whether the host command environments (as specified
in the host command environment table) that are defined for the
previous language processor environment are also available in the
new environment.

12 CLOSEXFL Indicates whether the member from which REXX programs are
obtained is closed after a program is loaded or remains open.

13 NOESTAE This bit is reserved.

14 RENTRANT Indicates whether the environment is initialized as either reentrant
or non-reentrant.

15 NOPMSGS Indicates whether primary messages are printed.

16 ALTMSGS Indicates whether alternate messages are printed.

17 SPSHARE This bit is reserved.

18 STORFL Indicates whether REXX programs running in the environment can
use the STORAGE function.

19 NOLOADDD This bit is reserved.

20 NOMSGWTO Indicates whether REXX error messages are issued.

21 NOMSGIO Indicates whether REXX error messages with I/O are issued to the
current output.

22 Reserved The remaining bits are reserved.

TSOFL
This field is reserved and must be 0.

CMDSOFL
The CMDSOFL flag specifies the search order REXX/VSE uses for locating a command that is issued
from a program.
0

Indicates searching for a phase in the active PHASE chain, then for a program in the active PROC
chain.

1
Indicates searching the PROC chain for a program first, then search for a phase in the active
PHASE chain.

FUNCSOFL
The FUNCSOFL flag specifies the search order REXX/VSE uses for locating external functions and
subroutines that a program calls.
0

Indicates searching for a phase in the active PHASE chain, then for a program in the active PROC
chain.

Flags and Masks

394 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

1
Indicates searching the PROC chain for a program first, then search for a phase in the active
PHASE chain.

NOSTKFL
The NOSTKFL flag specifies whether REXX programs running in the environment can use the data
stack.
0

A REXX program can use the data stack.
1

Attempts to use the data stack are processed as though the data stack were empty. Any data
that is pushed (PUSH) or queued (QUEUE) is lost. A PULL operates as though the data stack were
empty. The QSTACK command returns a 0. The NEWSTACK command seems to work, but a new
data stack is not created and any subsequent data stack operations operate as if the data stack is
permanently empty.

NOREADFL
The NOREADFL flag specifies whether REXX programs can read input files using the EXECIO
command or the I/O replaceable routine ARXINOUT.
0

Permits reading from input files.
1

Prohibits reading from input files.
NOWRTFL

The NOWRTFL flag specifies whether REXX programs can write to output files using the EXECIO
command or the supplied I/O replaceable routine ARXINOUT.
0

Permits writing to output files.
1

Prohibits writing to output files.
NEWSTKFL

The NEWSTKFL flag specifies whether ARXINIT should initialize a new data stack for the language
processor environment. If ARXINIT creates a new data stack, any REXX program or other program
that runs in the new environment cannot access any data stacks for previous environments. Any
subsequent environments that are initialized under this environment accesses the data stack the
NEWSTKFL flag most recently created. The first environment that is initialized on any chain of
environments is always initialized as though the NEWSTKFL flag is on, that is, ARXINIT automatically
creates a new data stack.

When you terminate the environment that is initialized, the data stack that was created at the time
of initialization is deleted regardless of whether the data stack contains any elements. All data on
that data stack is lost. (“Using the Data Stack” on page 422 describes the data stack in different
environments. Note that NOSTKFL overrides the setting of the NEWSTKFL.)
0

ARXINIT does not create a new data stack. However, if this is the first environment being
initialized on a chain, ARXINIT automatically initializes a data stack.

1
ARXINIT creates a new data stack during the initialization of the new language processor
environment. The data stack is deleted when the environment is terminated.

USERPKFL
The USERPKFL flag specifies whether the user function packages that are defined for the previous
language processor environment are also available to the new environment.

Flags and Masks

Chapter 19. Language Processor Environments 395

0
User function packages from the previous environment are added to the user function packages
for the new environment.

1
The user function packages from the previous environment are not added to the user function
packages for the new environment.

LOCPKFL
The LOCPKFL flag specifies whether local function packages defined for the previous language
processor environment are also available to the new environment.
0

The local function packages from the previous environment are added to the local function
packages for the new environment.

1
The local function packages from the previous environment are not added to the local function
packages for the new environment.

SYSPKFL
The SYSPKFL flag specifies whether the system function packages defined for the previous language
processor environment are also available to the new environment.
0

The system function packages from the previous environment are added to the system function
packages for the new environment.

1
The system function packages from the previous environment are not added to the system
function packages for the new environment.

NEWSCFL
The NEWSCFL flag specifies whether the environments for issuing host commands that are defined
for the previous language processor environment are also available to programs running in the new
environment.
0

The host command environments from the previous environment are added to the host command
environment table for the new environment.

1
The host command environments from the previous environment are not added to the host
command environment table for the new environment.

CLOSEXFL
The CLOSEXFL flag specifies whether the member from which REXX programs are fetched is closed
after the program is loaded or remains open.

You need to close the member if you are editing REXX programs and then running the changed
programs under the same language processor environment. If you do not close the member, results
may be unpredictable.
0

The member is opened once and remains open.
1

The member is opened for each load and then closed.

NOESTAE
This bit is reserved.

RENTRANT
The RENTRANT flag specifies whether ARXINIT initializes the new environment as a reentrant
or a non-reentrant environment. (For information about reentrant environments, see “Using the
Environment Block for Reentrant Environments” on page 327.)

Flags and Masks

396 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

0
ARXINIT initializes a non-reentrant language processor environment.

1
ARXINIT initializes a reentrant language processor environment.

NOPMSGS
The NOPMSGS flag specifies whether REXX primary messages are printed in the environment.
0

Primary messages are printed.
1

Primary messages are not printed.
ALTMSGS

The ALTMSGS flag specifies whether REXX alternate messages are printed in the environment.
(Alternate messages are also known as secondary messages.)
0

Alternate messages are not printed.
1

Alternate messages are printed.
SPSHARE

This bit is reserved.
STORFL

The STORFL flag specifies whether REXX programs running in the environment can use the STORAGE
external function.
0

Programs can use the STORAGE external function.
1

Programs cannot use the STORAGE external function.
NOLOADDD

This bit is reserved.
NOMSGWTO and NOMSGIO

Together, these two flags control where REXX error messages are routed.

Table 53. Flag Settings for NOMSGWTO and NOMSGIO

NOMSGWTO NOMSGIO

0 0 ASSGN(STDOUT) returns the name of the current output
stream. Error messages are written to the current output
stream and SYSLOG. If the current output is SYSLOG,
messages are written to SYSLOG only. This happens
regardless of whether tracing is active.

1 0 REXX error messages are written to the current output. If
the current output is SYSLOG, messages are suppressed. This
happens regardless of whether REXX tracing is active.

0 1 REXX error messages cannot be written to the current
output. Instead, error messages are written to SYSLOG. This
happens regardless of whether REXX tracing is active.

1 1 REXX error messages are suppressed, regardless of whether
REXX tracing is active.

The default flag settings are off (0) for both NOMSGWTO and NOMSGIO.

Flags and Masks

Chapter 19. Language Processor Environments 397

REXX error messages include all of the REXX messages numbered ARXnnnnE or ARXnnnnI, where
nnnn is the message number. Error messages also include any text written to the error message
output stream using the 'WRITEERR' function of ARXSAY.

Module Name Table
The module name table contains the names of:

• The file or device for reading and writing data
• Replaceable routines
• Several exit routines.

In the parameter block, the MODNAMET field points to the module name table (see “Characteristics of a
Language Processor Environment” on page 390).

Table 54 on page 398 shows the format of the module name table. Each field is described in detail
following the table. Indicate the end of the table with X'FFFFFFFFFFFFFFFF'. REXX/VSE provides a
mapping macro ARXMODNT for the module name table. The mapping macro is in PRD1.BASE.

Note: Each field name in the following table must include the prefix MODNAMET_.

Table 54. Format of the Module Name Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 INDD The file or device from which PARSE EXTERNAL,
PULL, PARSE PULL, and interactive debug pause
read input data.

Note: You receive an error if you do not provide
your own I/O replaceable routine and are using a
file name other than:

• SYSLOG
• SYSIPT
• SYSLST
• SYSxxx (where xxx is numeric)
• Any other 7-character name.

See “Input/Output Routine” on page 446 for details
about supplying a replaceable routine.

You need to open a SAM file (using EXECIO…
(OPEN) before reading from or writing to the file.
SYSIPT, SYSLST, and SAM files you have opened
use the replaceable routine ARXINOUT.

Module Name Table

398 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 54. Format of the Module Name Table (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

8 8 OUTDD The file or device to which data is written for either
a SAY instruction, for REXX error messages, or
when tracing is started.

Note: You receive an error if you do not provide
your own I/O replaceable routine and are using a
file name other than:

• SYSLOG
• SYSIPT
• SYSLST
• SYSxxx (where xxx is numeric)
• Any other 7-character name.

See “Input/Output Routine” on page 446 for details
about supplying a replaceable routine.

You need to open a SAM file (using EXECIO…
(OPEN) before reading from or writing to the file.
SYSIPT, SYSLST, and SAM files you have opened
use the replaceable routine ARXINOUT.

16 8 LOADDD Reserved.

24 8 IOROUT The name of the input/output (I/O) replaceable
routine.

32 8 EXROUT The name of the exec load replaceable routine.

40 8 GETFREER The name of the storage management replaceable
routine.

48 8 EXECINIT The name of the exec initialization exit routine.

56 8 ATTNROUT Reserved.

64 8 STACKRT The name of the data stack replaceable routine.

72 8 IRXEXECX The name of the exit routine for the ARXEXEC
routine.

80 8 IDROUT The name of the user ID replaceable routine.

88 8 MSGIDRT The name of the message identifier replaceable
routine.

96 8 EXECTERM The name of the exec termination exit routine.

104 8 RXHLT Name of the REXX halt exit.

112 8 — The end of the module name table must be
indicated by X'FFFFFFFFFFFFFFFF'.

Each field in the module name table is described in the following.

INDD
Specifies the name of the file or device from which PARSE EXTERNAL, PULL, PARSE PULL, and
interactive debug pause read input data. ASSGN(STDIN) returns the name of the current input stream.

Module Name Table

Chapter 19. Language Processor Environments 399

OUTDD
Specifies the name of the file or device to which data is written for a SAY instruction, for REXX error
messages, or when tracing is started. ASSGN(STDOUT) returns the name of the current output stream.

LOADDD
This field is reserved.

IOROUT
Specifies the name of the routine that is called for input and output operations. The routine is called
for:

• The PARSE EXTERNAL, SAY, and TRACE instructions
• The PULL instruction
• Requests from the EXECIO command
• Issuing REXX error messages

For more information, see “Input/Output Routine” on page 446.
EXROUT

Specifies the name of the routine that is called to load and free a REXX program. The routine
returns the structure that is described in “The In-Storage Control Block (INSTBLK)” on page 339.
The specified routine is called to load and free this structure. For more information, see “Exec Load
Routine” on page 442.

GETFREER
Specifies the name of the routine that is called when storage is to be obtained or freed. If this field is
blank, storage routines handle storage requests and use the GETVIS and FREEVIS macros when larger
amounts of storage must be handled. For more information, see “Storage Management Routine” on
page 463.

EXECINIT
Specifies the name of an exit routine that gets control after REXX/VSE initializes the REXX variable
pool for a REXX program, but before the language processor processes the first clause in the program.
You provide the exit and specify the routine's name in the EXECINIT field. “REXX Exit Routines” on
page 468 describes the exec initialization exit.

ATTNROUT
This field is reserved.

STACKRT
Specifies the name of the routine that REXX/VSE calls to handle all data stack requests. For more
information, see “Data Stack Routine” on page 459.

IRXEXECX
Specifies the name of an exit routine that is invoked whenever the ARXEXEC routine is called to run a
program. You can use the exit to check the parameters specified on the call to ARXEXEC, change the
parameters, or decide whether or not ARXEXEC processing should continue.

You provide the exit and specify the routine's name in the IRXEXECX field. For more information, see
“REXX Exit Routines” on page 468.

IDROUT
Specifies the name of a replaceable routine that REXX/VSE calls to obtain the user ID. The USERID
built-in function returns the result that the replaceable routine obtains. For more information, see
“User ID Routine” on page 465.

MSGIDRT
Specifies the name of a replaceable routine that determines whether REXX/VSE should include the
message identifier (message ID) with a REXX error message. For more information, see “Message
Identifier Routine” on page 467.

EXECTERM
Specifies the name of an exit routine that gets control after the language processor processes a REXX
program, but before REXX/VSE terminates the REXX variable pool. You provide the exit and specify

Module Name Table

400 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

the routine's name in the EXECTERM field. “REXX Exit Routines” on page 468 describes the exit in
more detail.

RXHLT
Specifies the name of the halt exit. See “Halt Exit” on page 472 for more information about the halt
exit.

X'FFFFFFFFFFFFFFFF'
Indicate the end of the module name table with X'FFFFFFFFFFFFFFFF'.

Host Command Environment Table
The host command environment table contains the names of environments for processing commands.
The table contains the names you can specify on the ADDRESS instruction. In the parameter block, the
SUBCOMTB field points to the host command environment table (see “Characteristics of a Language
Processor Environment” on page 390).

The table contains the environment names (for example, VSE, POWER, LINK, LINKPGM, JCL, and
CONSOLE) that are valid for programs that run in the language processor environment. The table also
contains the names of the routines that REXX/VSE calls to handle "commands" for each host command
environment.

You can add, delete, update, and query entries in the host command environment table using the
ARXSUBCM routine. For more information, see “Maintain Entries in the Host Command Environment Table
– ARXSUBCM” on page 357.

When a REXX program runs, the program has at least one active host command environment that
processes host commands. When the REXX program begins processing, a default environment is
available. The default is specified in the host command environment table. In the REXX program, you can
use the ADDRESS instruction to change the host command environment. When the language processor
processes a command, the language processor first evaluates the expression and then passes the
command to the host command environment for processing. A specific routine that is defined for that host
command environment then handles the command processing. “Commands to External Environments”
on page 23 describes how to issue commands to the host.

In the PARMBLOCK, the SUBCOMTB field points to the host command environment table. The table
consists of two parts; the table header and the individual entries in the table. Table 55 on page 401
shows the format of the host command environment table header. The first field in the header points
to the first host command environment entry in the table. One row in the table defines each host
command environment entry. Each row contains the environment name, corresponding routine to handle
the commands, and a user token. Table 56 on page 402 illustrates the rows of entries in the table. A
mapping macro for the host command environment table, ARXSUBCT, is in PRD1.BASE.

Note: Each field name in the following table must include the prefix SUBCOMTB_.

Table 55. Format of the Host Command Environment Table Header

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 FIRST Specifies the address of the first entry in the table.
The address is a fullword binary number. Table
56 on page 402 illustrates each row of entries in
the table. Each row of entries in the table has an
8-byte field (NAME) that contains the name of the
environment, another 8-byte field (ROUTINE) that
contains the name of the corresponding routine,
followed by a 16-byte field (TOKEN) that is a user
token.

Host Command Environment Table

Chapter 19. Language Processor Environments 401

Table 55. Format of the Host Command Environment Table Header (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

4 4 TOTAL Specifies the total number of entries in the table.
This number is the total of the used and unused
entries in the table and is a fullword binary number.

8 4 USED Specifies the number of used entries in the table.
The number is a fullword binary number. All valid
entries begin at the top of the table. Any unused
entries follow these. The unused entries must be
on the bottom of the table.

12 4 LENGTH Specifies the length of each entry in the table. This
is a fullword binary number.

16 4 INITIAL Specifies the name of the initial host command
environment. The default is VSE. This is the default
environment for any REXX program that is not
called as a function or subroutine. The INITIAL
field is used only if you call the exec processing
routine ARXEXEC to run a REXX program and you
do not pass an initial host command environment
on the call. “Calling REXX” on page 328 describes
the ARXEXEC routine and its parameters.

20 8 — Reserved. The field is set to blanks.

28 8 — Indicate the end of the table header with
X'FFFFFFFFFFFFFFFF'.

Table 56 on page 402 shows three rows (three entries) in the host command environment table. The
NAME, ROUTINE, and TOKEN fields are described in more detail after the table.

Note: Each field name in the following table must include the prefix SUBCOMTB_.

Table 56. Format of Entries in Host Command Environment Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 NAME The name of the first environment (entry) in the
table.

8 8 ROUTINE The name of the routine that REXX/VSE calls to
handle the processing of host commands in the
environment specified at offset +0.

16 16 TOKEN A user token that is passed to the routine (at offset
+8) when the routine is invoked.

32 8 NAME The name of the second environment (entry) in the
table.

40 8 ROUTINE The name of the routine that REXX/VSE calls to
handle the processing of host commands in the
environment specified at offset +32.

48 16 TOKEN A user token that is passed to the routine (at offset
+40) when the routine is invoked.

Host Command Environment Table

402 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 56. Format of Entries in Host Command Environment Table (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

64 8 NAME The name of the third environment (entry) in the
table.

72 8 ROUTINE The name of the routine that REXX/VSE calls to
handle the processing of host commands in the
environment specified at offset +64.

80 16 TOKEN A user token that is passed to the routine (at offset
+72) when the routine is invoked.

The following describes each entry (row) in the table.

NAME
An 8-byte field that specifies the name of the host command environment this row in the table
defines. The string is 8 characters long, left justified, and padded with blanks.

If the REXX program uses the

ADDRESS name

instruction, and the value name in not in the table, no error is detected. However, when the language
processor tries to locate the entry in the table to pass a command and no corresponding entry is
found, the language processor returns with a return code of -3, which indicates an error condition.

ROUTINE
An 8-byte field that specifies the name of a routine for the entry in the NAME field in the same row in
the table. This is the routine to which a string is passed for this environment. The field is 8 characters
long, left justified, and padded with blanks.

If the language processor locates the entry in the table, but finds this field blank or cannot locate the
routine specified, the language processor returns with a return code of -3. This is equivalent to the
language processor being unable to locate the host command environment name in the table.

TOKEN
A 16-byte field that is stored in the table for the user's use (a user token). The value in the field is
passed to the routine specified in the ROUTINE field when REXX/VSE calls the routine to process a
command. The field is for the user's own use. The language processor does not use or examine this
token field.

When a REXX program is running in the language processor environment and a host command
environment must be located, REXX/VSE searches the entire host command environment table from
bottom to top. The first occurrence of the host command environment in the table is used. If the name of
the host command environment that is being searched for matches the name specified in the table (in the
NAME field), REXX/VSE calls the corresponding routine specified in the ROUTINE field of the table.

Function Package Table
The function package table contains information about the function packages that are available for the
language processor environment.

An individual user or an installation can write external functions and subroutines. For faster access of
a function or subroutine, you can group frequently used external functions and subroutines in function
packages. A function package is a number of external functions and subroutines that are grouped
together. Function packages are searched before the active PHASE chain and active PROC chain (see
“Search Order” on page 60).

There are three types of function packages:

• User function packages

Function Package Table

Chapter 19. Language Processor Environments 403

• Local function packages
• System function packages.

User function packages are searched before local packages. Local function packages are searched before
any system packages.

To provide a function package, there are several steps you must perform, including writing the code for
the external function or subroutine, providing a function package directory for each function package,
and defining the function package directory name in the function package table. “External Functions and
Subroutines and Function Packages” on page 344 describes function packages in more detail and how
you can provide user, local, and system function packages.

In the parameter block, the PACKTB field points to the function package table (see “Characteristics of
a Language Processor Environment” on page 390). The table contains information about the user, local,
and system function packages that are available for the language processor environment. The function
package table consists of two parts; the table header and table entries. Table 57 on page 404 shows the
format of the function package table header. The header contains the total number of user, local, and
system packages, the number of user, local, and system packages that are used, and the length of each
function package name, which is always 8. The header also contains three addresses that point to the first
table entry for user, local, and system function packages. The table entries specify the individual names of
the function packages.

The table entries are a series of 8-character fields that are contiguous. Each 8-character field contains
the name of a function package, which is the name of a phase containing the directory for that function
package. The function package directory specifies the individual external functions and subroutines that
make up one function package. “Directory for Function Packages” on page 348 describes the format of
the function package directory in detail.

Figure 24 on page 406 illustrates the 8-character fields that contain the function package directory names
for user, local, and system function packages.

REXX/VSE provides a mapping macro for the function package table. The name of the mapping macro is
ARXPACKT. The mapping macro is in PRD1.BASE.

Note: Each field name in the following table must include the prefix PACKTB_.

Table 57. Function Package Table Header

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 USER_FIRST Specifies the address of the first user function
package entry. The address points to the first field
in a series of 8-character fields that contain the
names of the function package directories for user
packages. Figure 24 on page 406 shows the series
of directory names.

4 4 USER_TOTAL Specifies the total number of user package table
entries. This is the total number of function
package directory names that are pointed to by the
address at offset +0.

You can use the USER_TOTAL field to specify the
maximum number of user function packages that
can be defined for the environment. You can then
use the USER_USED field at offset +8 to specify the
actual number of packages that are available.

Function Package Table

404 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 57. Function Package Table Header (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

8 4 USER_USED Specifies the total number of user package table
entries in use. You can specify a maximum number
(total) in the USER_TOTAL field at offset +4
and specify the actual number of user function
packages that are used in the USER_USED field.

12 4 LOCAL_FIRST Specifies the address of the first local function
package entry. The address points to the first field
in a series of 8-character fields that contain the
names of the function package directories for local
packages. Figure 24 on page 406 shows the series
of directory names.

16 4 LOCAL_TOTAL Specifies the total number of local package table
entries. This is the total number of function
package directory names that are pointed to by the
address at offset +12.

You can use the LOCAL_TOTAL field to specify the
maximum number of local function packages that
can be defined for the environment. You can then
use the LOCAL_USED field at offset +20 to specify
the actual number of packages that are available.

20 4 LOCAL_USED Specifies the total number of local package table
entries that are used. You can specify a maximum
number (total) in the LOCAL_TOTAL field at offset
+16 and specify the actual number of local function
packages that are used in the LOCAL_USED field.

24 4 SYSTEM_FIRST Specifies the address of the first system function
package entry. The address points to the first
field in a series of 8-character fields that contain
the names of the function package directories for
system packages. Figure 24 on page 406 shows the
series of directory names.

28 4 SYSTEM_TOTAL Specifies the total number of system package
table entries. This is the total number of function
package directory names that are pointed to by the
address at offset +24.

You can use the SYSTEM_TOTAL field to specify
the maximum number of system function packages
that can be defined for the environment. You can
then use the SYSTEM_USED field at offset +32 to
specify the actual number of packages that are
available.

32 4 SYSTEM_USED Specifies the total number of system package
table entries that are used. You can specify a
maximum number (total) in the SYSTEM_TOTAL
field at offset +28 and specify the actual number
of system function packages that are used in the
SYSTEM_USED field.

Function Package Table

Chapter 19. Language Processor Environments 405

Table 57. Function Package Table Header (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

36 4 LENGTH Specifies the length of each table entry, that is, the
length of each function package directory name.
The length is always 8.

40 8 — Indicate the end of the table with
X'FFFFFFFFFFFFFFFF'.

Figure 24 on page 406 shows the function package table entries that are the names of the directories for
user, local, and system function packages.

Figure 24. Function Package Table Entries – Function Package Directories

The table entries are a series of 8-character fields. Each field contains the name of a function package
directory. The directory is a phase that, when loaded, contains information about each external function
and subroutine in the function package. “Directory for Function Packages” on page 348 describes the
format of the function package directory in detail.

The function package directory names in each 8-character field must be left justified and padded with
blanks.

Values in the ARXPARMS Default Parameters Module
Table 58 on page 407 shows the default values in ARXPARMS. “Characteristics of a Language Processor
Environment” on page 390 describes the structure of the parameters module in detail.

In the figure, the LANGUAGE field contains the language code ENU for US English in mixed case (upper
and lowercase). The default parameters module may contain a different language code depending on
whether one of the language features has been installed. See page “LANGUAGE ” on page 392 for
information about the different language codes.

In the figure, the value of each flag setting is followed by the value of its corresponding mask setting, in
parentheses.

Note: Table 58 on page 407 shows the default values in the parameters module. It is not a mapping of
a parameters module. For information about the format of a parameters module, see “Characteristics of
a Language Processor Environment” on page 390. The ARXPARMB mapping macro is for the parameter
block and the ARXMODNT, ARXSUBCT, and ARXPACKT mapping macros are for the module name table,
host command environment table, and function package table respectively.

Default Parameters Module

406 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 58. Values in ARXPARMS Default Parameters Module (1)

Field Name ARXPARMS

ID ARXPARMS

VERSION 0001

LANGUAGE ENU

PARSETOK

FLAGS (MASKS)

TSOFL 0 (1) (This field is reserved.)

CMDSOFL 0 (1)

FUNCSOFL 0 (1)

NOSTKFL 0 (1)

NOREADFL 0 (1)

NOWRTFL 0 (1)

NEWSTKFL 0 (1)

USERPKFL 0 (1)

LOCPKFL 0 (1)

SYSPKFL 0 (1)

NEWSCFL 0 (1)

CLOSEXFL 0 (1)

NOESTAE 0 (1) (This field is reserved.)

RENTRANT 0 (1)

NOPMSGS 0 (1)

ALTMSGS 1 (1)

SPSHARE 0 (1) (This field is reserved.)

STORFL 0 (1)

NOLOADDD 0 (1) (This field is reserved.)

NOMSGWTO 0 (1)

NOMSGIO 0 (1)

SUBPOOL 0 (This field is reserved.)

ADDRSPN VSE

— FFFFFFFFFFFFFFFF

Table 59. Values in ARXPARMS Default Parameters Module (2)

Field Name in Module Name Table ARXPARMS

INDD SYSIPT

OUTDD SYSLST

LOADDD Reserved

IOROUT

Default Parameters Module

Chapter 19. Language Processor Environments 407

Table 59. Values in ARXPARMS Default Parameters Module (2) (continued)

Field Name in Module Name Table ARXPARMS

EXROUT

GETFREER

EXECINIT

ATTNROUT Reserved

STACKRT

IRXEXECX

IDROUT

MSGIDRT

EXECTERM

RXHLT

— FFFFFFFFFFFFFFFF

Table 60. Values in ARXPARMS Default Parameters Module (3)

Field Name in Host Command Environment Table ARXPARMS

TOTAL 10

USED 6

LENGTH 32

INITIAL VSE

— FFFFFFFFFFFFFFFF

Entry 1

NAME VSE

ROUTINE ARXSTAM

TOKEN

Entry 2

NAME POWER

ROUTINE ARXSTAM

TOKEN

Entry 3

NAME LINK

ROUTINE ARXSTAM

TOKEN

Entry 4

NAME LINKPGM

ROUTINE ARXSTAM

TOKEN

Entry 5

Default Parameters Module

408 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 60. Values in ARXPARMS Default Parameters Module (3) (continued)

Field Name in Host Command Environment Table ARXPARMS

NAME JCL

ROUTINE ARXJCLAD

TOKEN

Entry 6

NAME CONSOLE

ROUTINE ARXCONAD

TOKEN

How ARXINIT Determines What Values to Use for the Environment
When REXX/VSE calls ARXINIT to automatically initialize a language processor environment, ARXINIT
must first determine what values to use for the environment. The following topics describe how ARXINIT
determines the values for a new environment. “Chains of Environments and How Environments Are
Located” on page 410 describes how a routine locates a previous environment.

Values ARXINIT Uses to Initialize Environments
When JCL or an application program needs to call a REXX program, ARXINIT automatically initializes an
environment for the REXX program. (See also “Initialization Routine – ARXINIT” on page 427.) ARXINIT
determines the values to use for defining the environment from:

1. The in-storage parameter list specified on the call to ARXINIT (On the call to ARXINIT, you can pass
parameters that define the values for the environment. ARXINIT evaluates these.)

2. The parameters module specified on the call to ARXINIT
3. The previous language processing environment (“Chains of Environments and How Environments Are

Located” on page 410 describes in detail how ARXINIT locates a previous environment.)
4. The ARXPARMS parameter module.

ARXINIT first checks the values in the in-storage parameter list specified on the call to ARXINIT. If the
value is not null, ARXINIT uses that value. ARXINIT considers the following types of parameter values to
be null:

• A character string containing only blanks or of length 0
• An address of 0
• A binary number with the value X'80000000'
• A bit setting with a corresponding mask of 0.

If the value in the parameters module is null, ARXINIT uses the value from the parameter module
specified on the call to ARXINIT. If this value is null, ARXINIT uses the value from the previous language
processor environment. If an environment does not exist, ARXINIT uses the value from the ARXPARMS
parameters module. ARXINIT computes each individual value using this method and then initializes the
environment.

For example, if the in-storage parameter list does not include a value for ADDRSPN, ARXINIT uses the
value from the parameter module specified on the call to ARXINIT. Suppose the parameter module is
not ARXPARMS. In this case, the value can be null, and ARXINIT would check the previous language
processor environment. If there is no previous environment, ARXINIT checks ARXPARMS, finding the
value VSE.

After ARXINIT determines all of the values, ARXINIT initializes the new environment.

Environment Values Used

Chapter 19. Language Processor Environments 409

Chains of Environments and How Environments Are Located
As described in previous topics, many language processor environments can be initialized in one partition.
A language processor environment is associated with a task. Several language processor environments
can be associated with a single task. This topic describes how non-reentrant environments are chained
together in a partition.

Language processor environments are chained together in a hierarchical structure to form a chain of
environments. The environments on one chain are interrelated and share system resources. For example,
several language processor environments can share the same data stack. However, separate chains
within a single partition are independent.

Figure 25 on page 410 illustrates three language processor environments that form one chain.

Figure 25. Three Language Processor Environments in a Chain

The first environment initialized was environment 1. When ARXINIT initializes the second environment,
the first environment is considered to be the previous environment (the parent environment).
Environment 2 is chained to environment 1. Similarly, when ARXINIT initializes the third environment,
environment 2 is considered to be the previous environment. Environment 2 is the parent environment for
environment 3.

Different chains can exist in one partition. Figure 26 on page 410 illustrates two separate tasks, task
1 and task 2. Each task has a chain of environments. For task 1, the chain consists of two language
processor environments. For task 2, the chain has only one language processor environment. The two
environments on task 1 are interrelated and share system resources. The two chains are completely
separate and independent.

Figure 26. Separate Chains on Two Different Tasks

Chains of Environments

410 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

As discussed previously, language processor environments are associated with a task. Under a task,
ARXINIT can initialize one or more language processor environments. The task can then attach another
task. ARXINIT can be called under the second task to initialize a language processor environment.
The new environment is chained to the last environment under the first task. Figure 27 on page 411
illustrates a task that has attached another task and how the language processor environments are
chained together.

Figure 27. One Chain of Environments for Attached Tasks

As shown in Figure 27 on page 411, task 1 is started and ARXINIT initializes an environment
(environment 1). ARXINIT is called again to initialize a second language processor environment under
task 1 (environment 2). Environment 2 is chained to environment 1. If you invoke a REXX program within
task 1, the program runs in environment 2.

Task 1 then attaches another task, task 2. ARXINIT is called to initialize an environment. ARXINIT locates
the previous environment, which is environment 2, and chains the new environment (environment 3)
to its parent (environment 2). When ARXINIT is called again, ARXINIT chains the fourth environment
(environment 4) to its parent (environment 3). At this point, four language processor environments exist
on the chain.

Locating a Language Processor Environment
Whenever you invoke a REXX program or routine, the program or routine must run in a language processor
environment. The one exception is the initialization routine, ARXINIT, which initializes environments.

If you call a program using ARXEXEC or ARXJCL, a language processor environment may or may not
already exist. If an environment does not exist on the current task, REXX/VSE calls the ARXINIT
routine to initialize an environment before the program runs. Otherwise, REXX/VSE locates the current
non-reentrant environment and the program runs in that environment.

ARXINIT always tries to locate a previous language processor environment. If an environment does not
exist on the current task or on a parent task, ARXINIT uses the values in the ARXPARMS parameters
module as the previous environment.

A language processor environment must already exist if you call any of the programming routines
or replaceable routines. These routines do not invoke ARXINIT to initialize a new environment. If
an environment does not already exist and you call one of these routines, the routine completes
unsuccessfully with a return code. See Chapter 17, “Programming Services,” on page 323 for information
about the programming routines and Chapter 21, “Replaceable Routines and Exits,” on page 439 for
information about the replaceable routines.

Chains of Environments

Chapter 19. Language Processor Environments 411

When ARXINIT initializes a new language processor environment, ARXINIT creates a number of control
blocks that contain information about the environment and any REXX program currently running in
the environment. The main control block is the environment block (ENVBLOCK), which points to other
control blocks, such as the parameter block (PARMBLOCK) and the work block extension. “Control Blocks
Created for a Language Processor Environment” on page 414 describes the control blocks that ARXINIT
creates for each language processor environment.

The environment block represents its language processor environment and is the anchor that REXX/VSE
uses on calls to all REXX programming service routines. Whenever you call a REXX programming service
routine, you can pass the address of an environment block in register 0 on the call. By passing the
address, you can specify the language processor environment in which you want the routine to run. For
example, suppose you call the initialization routine, ARXINIT. On return, ARXINIT returns the address of
the environment block for the new environment in register 0. You can store that address for future use.
Suppose you call ARXINIT several times to initialize a total of four environments in that partition. If you
then want to call a programming service routine and have the routine run in the first environment on the
chain, you can pass the address of the first environment's environment block on the call.

You can also pass the address of the environment block in register 0 to all REXX replaceable routines and
exit routines.

When a programming service routine is called, the programming service routine must determine in which
environment to run. The routine checks register 0 to determine whether the address of an environment
block was passed on the call. If an address was passed, the routine determines whether the address
points to a valid environment block. The environment block is valid if the environment is either a reentrant
or non-reentrant environment on the current task. If register 0 does not contain the address of a valid
environment block, the routine that is called searches for a non-reentrant environment on the current
task. If the routine could not find an environment using the previous steps, the next step depends on what
routine was called.

• If one of the REXX programming routines or the replaceable routines was called, a language processor
environment is required in order for the routine to run. The routine ends in error. The same occurs for
the termination routine, ARXTERM.

• If ARXEXEC or ARXJCL was called, the routine invokes ARXINIT to initialize a new environment.
• If ARXINIT was called, ARXINIT uses the ARXPARMS parameters module as the previous environment.

The ARXINIT routine initializes a new language processor environment. Therefore, ARXINIT does not
need to locate an environment in which to run. However, ARXINIT does locate a previous environment to
determine what values to use when defining the new environment. The following summarizes the steps
ARXINIT takes to locate the previous environment:

1. If register 0 contains the address of a valid environment block, ARXINIT uses that environment as the
previous environment.

2. If a non-reentrant environment exists on the current task, ARXINIT uses the last non-reentrant
environment on the task as the previous environment.

3. Otherwise, ARXINIT locates the parent task. If a non-reentrant environment exists on any of
the parent tasks, ARXINIT uses the last non-reentrant environment on the task as the previous
environment.

4. If ARXINIT cannot find an environment, ARXINIT uses the values in the default parameters module
ARXPARMS as the previous environment.

“Initialization Routine – ARXINIT” on page 427 describes how the ARXINIT routine determines what
values to use when you explicitly call ARXINIT.

Changing the Default Values for Initializing an Environment
The parameters module (phase) contains default values for initializing language processor environments.
In most cases, your installation probably need not change the default values. However, if you want to
change one or more parameter values, you can provide your own phase that contains your values.

Changing Default Values

412 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Note: You can also call the initialization routine, ARXINIT, to initialize a new environment. On the call,
you can pass the parameters whose values you want to be different from the previous environment. If
you do not specifically pass a parameter, ARXINIT uses the value from the previous environment. See
“Initialization Routine – ARXINIT” on page 427 for more information.

This topic describes how to create a phase containing parameter values for initializing an environment.
You should also refer to “Characteristics of a Language Processor Environment” on page 390 for
information about the format of the parameters module.

To change one or more default values that ARXINIT uses to initialize a language processor environment,
you can provide a phase containing the values you want. You must first write the code for a parameters
module. PRD1.BASE contains a sample that is assembler code for the default parameters module. The
member name of the sample is: ARXPARMS.Z (for ARXPARMS).

When you write the code, be sure to include the correct default values for any parameters you are not
changing. For example, suppose you are adding several function packages to the ARXPARMS module.
In addition to coding the function package table, you must also provide all of the other fields in the
parameters module and their default values. “Values in the ARXPARMS Default Parameters Module” on
page 406 shows the default parameter values for ARXPARMS.

After you create the code, you must assemble the code and then link-edit the object code. The output
is a member of a sublibrary with a member type of PHASE. You must then place the member in the
active PHASE chain. The default parameters module is in PRD1.BASE. ARXPARMS.Z suggests putting the
changed parameters module into PRD2.CONFIG. However, you may also place your phase somewhere
ahead of the default parameters module in the active PHASE chain by using a LIBDEF statement.

The new values you specify in your own phase are not available until the current language processor
environment is terminated and a new environment is initialized. For example, if you provide a phase
(ARXPARMS), you must reinitialize the environment.

Providing Your Own Parameters Module
The sample ARXPARMS.Z is in PRD1.BASE. You can use this to code your own phases.

Changing Values
If you want to change a default parameter value, code a new ARXPARMS module. In the code, you must
specify the new values you want for the parameters you are changing and the default values for all of
the other fields. See “Values in the ARXPARMS Default Parameters Module” on page 406 to review the
defaults in the ARXPARMS parameters module. When you assemble the code and link-edit the object
code, you must name the output member ARXPARMS. You must then place the phase with ARXPARMS in
PRD2.CONFIG or in a sublibrary with type PHASE that precedes PRD1.BASE in the active PHASE chain.
You can do this using JCL.

If you provide your own ARXPARMS module, ARXINIT locates the module when initializing a language
processor environment. The values for the replaceable routines in the default parameters module are
null. You can code your own ARXPARMS phase and specify the names of one or more replaceable
routines.

For more information about the parameters you can use in different language processor environments,
see “Specifying Values for Different Environments” on page 413.

Specifying Values for Different Environments
You can also call the initialization routine, ARXINIT, to initialize a new environment. When you call
ARXINIT, you can pass parameter values on the call. Chapter 20, “Initialization and Termination
Routines,” on page 427 describes ARXINIT and its parameters and return codes.

Whether you provide your own phase or call ARXINIT directly you cannot change some parameters. There
are also some restrictions on parameter values based on the values of other parameters in the same
environment and parameters in the previous environment. This topic describes considerations for using

Values for Different Environments

Chapter 19. Language Processor Environments 413

the parameters. For more information about the parameters and their descriptions, see “Characteristics
of a Language Processor Environment” on page 390.

Parameters You Cannot Change
The following parameters have fixed values that you cannot change.
ID

The value must be ARXPARMS. If you provide your own phase, you must specify ARXPARMS for the
ID. If you call ARXINIT, ARXINIT ignores any value you pass and uses the default ARXPARMS.

VERSION
The value must be 0001. If you provide your own phase or call ARXINIT, specify 0001 for the version.

The following parameters are reserved, and you should not attempt to change them:

• TSOFL
• NOLOADDD
• SPSHARE
• NOESTAE.

Control Blocks Created for a Language Processor Environment
When ARXINIT initializes a new language processor environment, ARXINIT creates a number of control
blocks that contain information about the environment. The main control block is the environment block
(ENVBLOCK). The environment block contains pointers to:

• The parameter block (PARMBLOCK), which is a control block containing the parameters ARXINIT
used to define the environment. The parameter block ARXINIT creates has the same format as the
parameters module.

• The user field that was passed on the call to ARXINIT if a user explicitly called ARXINIT
• The work block extension, which is a control block that contains information about the REXX program

that is currently running
• The REXX vector of external entry points, which contains the addresses of the REXX routines, such as

ARXINIT, ARXTERM, REXX programming routines, and replaceable routines. For replaceable routines,
the vector contains the addresses of both the routines that REXX/VSE supplies and any routines that
users provide.

• The routine that encountered the first error and issued the first error message in the environment.
• The compiler programming table, which identifies compiler runtime processors and corresponding

compiler interface routines.

Note About Changing Any Control Blocks
You can obtain information from the control blocks. However, you must not change any of the control
blocks. If you do, unpredictable results may occur.

Format of the Environment Block (ENVBLOCK)
Table 61 on page 415 shows the format of the environment block. A mapping macro for the environment
block, ARXENVB, is in PRD1.BASE.

When ARXINIT initializes a new language processor environment, ARXINIT returns the address of
the new environment block in register 0 and in parameter 6 in the parameter list. You can use the
environment block to locate information about a specific environment. For example, the environment
block points to the REXX vector of external entry points that contains the addresses of routines that
perform system services, such as I/O, data stack, and exec load. Using the control blocks lets you easily
call one of the routines.

Control Blocks

414 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Note: The following field names in the table must include the prefix ENVBLOCK_: ID, VERSION, LENGTH,
PARMBLOCK, USERFIELD, WORKBLOK_EXT, IRXEXTE, COMPGMTB, ATTNROUT_PARMPTR, ECPTR.

Table 61. Format of the Environment Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID An 8-character field that identifies the
environment block. The field contains the
characters 'ENVBLOCK'.

8 4 VERSION A field that contains the character
representation of the version number of the
environment block. The version number is
0001.

12 4 LENGTH The length of the environment block.

16 4 PARMBLOCK The address of the parameter block
(PARMBLOCK). See “Format of the
Parameter Block (PARMBLOCK)” on page
416 for more information.

20 4 USERFIELD The address of the user field that is passed
to ARXINIT if you explicitly call ARXINIT.
You pass the user field in parameter 4
(see “Initialization Routine – ARXINIT”
on page 427 for information about the
parameters). You can use this field for your
own processing. The REXX/VSE services do
not use this field.

24 4 WORKBLOK_EXT The address of the current work block
extension. If a program is not currently
running in the environment, the address
is 0. See “Format of the Work Block
Extension” on page 416 for details about
the work block extension.

28 4 IRXEXTE The address of the REXX vector of external
entry points. See “Format of the REXX
Vector of External Entry Points” on page
418 for details about the vector.

32 4 ERROR_CALL@ The address of the routine that
encountered the first error in the language
processor environment and that issued the
first error message. The error could have
occurred while a program was running or
when a particular service was requested in
the environment.

36 4 — Reserved.

40 8 ERROR_MSGID An 8-character field that contains the
message ID of the first error message
REXX/VSE issued in the language processor
environment. The message relates to the
error the routine encountered and to which
offset +32 points.

Control Blocks

Chapter 19. Language Processor Environments 415

Table 61. Format of the Environment Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

48 80 PRIMARY_ERROR_MESSAGE An 80-character field that contains the
primary error message (the message text)
for the message ID at offset +40.

128 160 ALTERNATE_ERROR_MESSAGE A 160-character field that contains the
alternate error message (the message text)
for the message ID at offset +40.

288 4 COMPGMTB This field is a product-sensitive
programming interface.

The address of the compiler programming
table for the language processor
environment. The table identifies
a compiler runtime processor and
corresponding compiler interface routines.
If a compiler programming table is
not available to the language processor
environment, this field is 0. For information
about the compiler programming table,
see “The Compiler Programming Table” on
page 501.

292 4 ATTNROUT_PARMPTR This field is reserved.

296 4 ECTPTR This field is reserved.

300 4 — A fullword of bits that gives status of this
environment block. Bit 0 is the only bit that
is used. Bits 1 through 31 are reserved.

• Bit 0 (TERMA_CLEANUP). This bit is
on if the environment is undergoing
abnormal termination. (See Chapter 23,
“ARXTERMA Routine,” on page 495 for
information about abnormal termination.)

Format of the Parameter Block (PARMBLOCK)
The parameter block (PARMBLOCK) contains information about the parameters that ARXINIT uses to
define the environment. The environment block points to the parameter block. Table 51 on page 391
shows the format of the parameter block.

Format of the Work Block Extension
The work block extension contains information about the REXX program that is currently running. The
environment block points to the work block extension.

When ARXINIT first initializes a new environment and creates the environment block, the address of the
work block extension in the environment block is 0. The address is 0 because a REXX program is not yet
running in the environment. At this point, ARXINIT is only initializing the environment.

When a program starts running in the environment, the environment block is updated to point to the
work block extension describing the program. If a program is running and calls another program, the
environment block is updated to point to the work block extension for the second program. The work
block extension for the first program still exists, but the environment block does not point to it. When the

Control Blocks

416 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

second program completes and returns control to the first program, the environment block is changed
again to point to the work block extension for the original program.

The work block extension contains the parameters that are passed to the ARXEXEC routine to invoke the
program. You can call ARXEXEC explicitly to invoke a program and pass the parameters on the call. If you
use ARXJCL and invoke a program, the ARXEXEC routine always gets control to run the program. “The
ARXEXEC Routine” on page 334 describes the ARXEXEC routine in detail.

Table 62 on page 417 shows the format of the work block extension. A mapping macro for the work block
extension, ARXWORKB, is in PRD1.BASE.

Note: Each field name in the following table must include the prefix WORKEXT_.

Table 62. Format of the Work Block Extension

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 EXECBLK The address of the exec block (EXECBLK). See
“The Exec Block (EXECBLK)” on page 337 for a
description of the control block.

4 4 ARGTABLE The address of the arguments for the program.
The arguments are arranged as a vector of address/
length pairs followed by X'FFFFFFFFFFFFFFFF'.
See “Format of Argument List” on page 338 for a
description of the argument list.

8 4 FLAGS A fullword of bits that ARXEXEC uses as flags. See
“The ARXEXEC Routine” on page 334 for details.

12 4 INSTBLK The address of the in-storage control block
(INSTBLK). See “The In-Storage Control Block
(INSTBLK)” on page 339 for a description of the
control block.

16 4 CPPLPTR This field is reserved.

20 4 EVALBLOCK The address of the evaluation block (EVALBLOCK).
See “The Evaluation Block (EVALBLOCK)” on page
341 for a description of the control block.

24 4 WORKAREA The address of an 8-byte field that defines a work
area for the ARXEXEC routine. See Table 14 on
page 335 for more information about the work
area.

28 4 USERFIELD The address of the user field that is passed to
ARXEXEC if you explicitly called ARXEXEC. You
pass the address of the user field in parameter
8 (see “The ARXEXEC Routine” on page 334 for
information about the parameters). You can use
this field for your own processing. None of the
REXX services use this field.

Control Blocks

Chapter 19. Language Processor Environments 417

Table 62. Format of the Work Block Extension (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

32 4 RTPROC This field is a product-sensitive programming
interface.

A fullword that is available for a REXX compiler
runtime processor to use. This field lets a compiler
runtime processor have an anchor that is unique
for each compiled REXX program that runs within
a language processor environment. A compiler
runtime processor can use this field for its own
purpose. The language processor does not check or
change this field.

36 4 SOURCE_ADDRES
S

The address of the PARSE SOURCE string for the
program currently processing. This is the string that
the PARSE SOURCE instruction would return.

40 4 SOURCE_LENGTH The length of the PARSE SOURCE string to which
the SOURCE_ADDRESS field at offset +36 (decimal)
points.

44 4 -- This field is reserved.

Format of the REXX Vector of External Entry Points
The REXX vector of external entry points is a control block that contains the addresses of REXX
programming routines and replaceable routines. The environment block points to the vector. Table 63
on page 419 shows the format of the vector of external entry points. A mapping macro for the vector,
ARXEXTE, is in PRD1.BASE.

The vector allows you to easily access the address of a particular REXX/VSE routine to call the routine.
The table contains the number of entries in the table followed by the entry points (addresses) of the
routines.

Each REXX external entry point has an alternate entry point to permit FORTRAN programs to call the entry
point. The external entry points and their alternates are:

Primary Entry Point Name Alternate Entry Point Name

ARXINIT ARXINT

ARXLOAD ARXLD

ARXSUBCM ARXSUB

ARXEXEC ARXEX

ARXINOUT ARXIO

ARXJCL ARXJCL (same)

ARXRLT ARXRLT (same)

ARXSTK ARXSTK (same)

ARXTERM ARXTRM

ARXIC ARXIC (same)

ARXUID ARXUID (same)

Control Blocks

418 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Primary Entry Point Name Alternate Entry Point Name

ARXTERMA ARXTMA

ARXMSGID ARXMID

ARXEXCOM ARXEXC

ARXSAY ARXSAY (same)

ARXERS ARXERS (same)

ARXHST ARXHST (same)

ARXHLT ARXHLT (same)

ARXTXT ARXTXT (same)

ARXLIN ARXLIN (same)

ARXRTE ARXRTE (same)

For the replaceable routines, the vector provides two addresses for each routine. The first address is the
address of the replaceable routine the user provided for the language processor environment. If a user
did not provide a replaceable routine, the address points to the default routine REXX/VSE supplies. The
second address points to the default REXX/VSE routine. Chapter 21, “Replaceable Routines and Exits,” on
page 439 describes replaceable routines in detail.

Note:

1. For compatibility with MVS, you can use IRX instead of ARX for the first three characters of field names
in the following table that begin with ARX.

2. The ENTRY_COUNT field must include the prefix IRXEXTE_.

Table 63. Format of REXX Vector of External Entry Points

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 ENTRY_COUNT The total number of entry points included in
the vector. The number is 26.

4 4 ARXINIT The address of the initialization routine,
ARXINIT.

8 4 LOAD_ROUTINE The address of the user-supplied exec load
replaceable routine for the language processor
environment. This is the routine that the
EXROUT field of the module name table
specifies. If EXROUT does not specify a
replaceable routine, the address points to the
exec load routine that REXX/VSE supplies,
ARXLOAD.

12 4 ARXLOAD The address of the exec load routine REXX/VSE
supplies, ARXLOAD.

16 4 ARXEXCOM The address of the variable pool access
interface, ARXEXCOM.

20 4 ARXEXEC The address of the exec processing routine,
ARXEXEC.

Control Blocks

Chapter 19. Language Processor Environments 419

Table 63. Format of REXX Vector of External Entry Points (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

24 4 IO_ROUTINE The address of the user-supplied I/O
replaceable routine for the language processor
environment. This is the routine that is
specified in the IOROUT field of the module
name table. If IO_ROUTINE does not specify a
replaceable routine, the address points to the
I/O routine REXX/VSE supplies, ARXINOUT.

28 4 ARXINOUT The address of the I/O routine REXX/VSE
supplies, ARXINOUT.

32 4 ARXJCL The address of the ARXJCL routine.

36 4 ARXRLT The address of the ARXRLT (get result) routine.

40 4 STACK_ROUTINE The address of the user-supplied data stack
replaceable routine for the language processor
environment. This is the routine that the
STACKRT field of the module name table
specifies. If STACKRT does not specify a
replaceable routine, the address points to
the data stack routine REXX/VSE supplies,
ARXSTK.

44 4 ARXSTK The address of the data stack handling routine
REXX/VSE supplies, ARXSTK.

48 4 ARXSUBCM The address of the host command environment
routine, ARXSUBCM.

52 4 ARXTERM The address of the termination routine,
ARXTERM.

56 4 ARXIC The address of the trace and execution control
routine, ARXIC.

60 4 MSGID_ROUTINE The address of the user-supplied message ID
replaceable routine for the language processor
environment. This is the routine that the
MSGIDRT field of the module name table
specifies. If MSGID_ROUTINE does not specify
a replaceable routine, the address points to
the message ID routine REXX/VSE supplies,
ARXMSGID.

64 4 ARXMSGID The address of the message ID routine
REXX/VSE supplies, ARXMSGID.

68 4 USERID_ROUTINE The address of the user-supplied user ID
replaceable routine for the language processor
environment. This is the routine that the
IDROUT field of the module name table
specifies. If USERID_ROUTINE does not
specify a replaceable routine, the address
points to the user ID routine REXX/VSE
supplies, ARXUID.

Control Blocks

420 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 63. Format of REXX Vector of External Entry Points (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

72 4 ARXUID The address of the user ID routine REXX/VSE
supplies, ARXUID.

76 4 ARXTERMA The address of the termination routine,
ARXTERMA.

80 4 ARXSAY The address of the SAY instruction routine,
ARXSAY.

84 4 ARXERS This field is a product-sensitive programming
interface.

The address of the external routine search
routine, ARXERS. The ARXERS routine is
a REXX compiler programming routine. See
“External Routine Search Routine (ARXERS)”
on page 517 for a description.

88 4 ARXHST This field is a product-sensitive programming
interface.

The address of the host command search
routine, ARXHST. ARXHST is a REXX compiler
programming routine. See “Host Command
Search Routine (ARXHST)” on page 521 for a
description.

92 4 ARXHLT The address of the halt condition routine,
ARXHLT.

96 4 ARXTXT The address of the text retrieval routine,
ARXTXT.

100 4 ARXLIN The address of the LINESIZE built-in function
routine, ARXLIN.

104 4 ARXRTE This field is a product-sensitive programming
interface.

The address of the exit routing routine,
ARXRTE. ARXRTE is a REXX compiler
programming routine. See “Exit Routing
Routine (ARXRTE)” on page 523 for a
description.

Changing the Maximum Number of Environments in a Partition
Within a partition, language processor environments are chained together to form a chain of
environments. There can be many environments on a single chain. You can also have more than one chain
of environments in a single partition. There is a maximum number of environments that can be initialized
at one time in a partition. The maximum is not a set number of environments. It depends on the number
of chains of environments and the number of environments on each chain. The default maximum should
be sufficient for any partition. However, if ARXINIT is initializing a new environment and this exceeds the
maximum, ARXINIT completes unsuccessfully and returns with a return code of 20 and a reason code of
24. If this error occurs, you can change the maximum.

Maximum Number of Environments

Chapter 19. Language Processor Environments 421

The maximum number of environments REXX/VSE can initialize in a partition is defined in an environment
table known as ARXANCHR. To change the number of environment table entries, you can use the
ARXANCHR.Z sample in PRD1.BASE or you can create your own ARXANCHR phase.

If you create your own ARXANCHR phase, you must assemble the code and then link-edit the module
as non-SVA eligible. You can place the phase in PRD2.CONFIG or in a sublibrary with type PHASE that
precedes PRD1.BASE in the active PHASE chain. The phase cannot be in the SVA.

Table 64 on page 422 describes the environment table. A mapping macro for the environment table,
ARXENVT, is in PRD1.BASE.

The environment table consists of a table header followed by table entries. The header contains the ID,
version, total number of entries, number of used entries, and the length of each entry. Following the
header, each entry is 40 bytes long.

Note: Each field name in the following table must include the prefix ENVTABLE_.

Table 64. Format of the Environment Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID An 8-character field that identifies the environment
table. The field contains the characters
'ARXANCHR'.

8 4 VERSION The version of the environment table. The value
must be 0001 in EBCDIC.

12 4 TOTAL Specifies the total number of entries in the
environment table.

16 4 USED Specifies the total number of entries in the
environment table that are used.

20 4 LENGTH Specifies the length of each entry in the
environment table. The length of each entry is 40
bytes.

24 8 — Reserved.

32 40 FIRST The first environment table entry. Each entry is 40
bytes long. The remaining entries follow.

Using the Data Stack
The data stack is a repository for storing data for use by a REXX program. You can place elements on
the data stack using the PUSH and QUEUE instructions, and take elements off of the data stack using the
PULL instruction. You can also use REXX/VSE commands to manipulate the data stack. For example, you
can use the MAKEBUF command to create a buffer on the data stack and then add elements to the data
stack. You can use the QELEM command to query how many elements are currently on the data stack
above the most recently created buffer. Chapter 10, “REXX/VSE Commands,” on page 143 describes the
REXX commands for manipulating the data stack. REXX/VSE User's Guide, SC33-6641, describes how to
use the data stack and associated commands.

The data stack is associated with one or more language processor environments. The data stack is shared
among all REXX programs that run within a specific language processor environment.

A data stack may or may not be available to REXX programs that run in a particular language processor
environment. Whether or not a data stack is available depends on the setting of the NOSTKFL flag
(see page “NOSTKFL ” on page 395). When ARXINIT initializes an environment and the NOSTKFL flag
is on, ARXINIT does not create a data stack or make a data stack available to the language processor
environment. Programs that run in the environment cannot use a data stack.

Using the Data Stack

422 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If the NOSTKFL flag is off, either ARXINIT initializes a new data stack for the new environment or the
new environment shares a data stack that was initialized for a previous environment. Whether ARXINIT
initializes a new data stack for the new environment depends on:

• The setting of the NEWSTKFL (new data stack) flag, and
• Whether the environment is the first environment that ARXINIT is initializing on a chain.

Note: The NOSTKFL flag takes precedence over the NEWSTKFL flag. If the NOSTKFL flag is on, ARXINIT
does not create a data stack or make a data stack available to the new environment regardless of the
setting of the NEWSTKFL flag.

If the environment is the first environment on a chain, ARXINIT automatically initializes a new data stack,
regardless of the setting of the NEWSTKFL flag.

If the environment is not the first one on the chain, ARXINIT determines the setting of the NEWSTKFL
flag. If the NEWSTKFL flag is off, ARXINIT does not create a new data stack for the new environment.
The language processor environment shares the data stack that was most recently created for one of the
parent environments. If the NEWSTKFL flag is on, ARXINIT creates a new data stack for the language
processor environment. Any REXX programs that run in the new environment can access only the new
data stack for this environment. Programs cannot access any data stacks that ARXINIT created for any
parent environment on the chain.

Environments can share only data stacks that environments higher on the chain initialized.

If ARXJCL calls ARXINIT to create a data stack when initializing an environment, REXX/VSE deletes the
data stack when that environment is terminated. This occurs regardless of whether any elements are on
the data stack. All elements on the data stack are lost.

Note: If you use the JCL EXEC command to call a REXX program, and the exit return code of the REXX
program is zero when it is done, the language processor passes the data stack to Job Control before
terminating the environment.

Figure 28 on page 423 shows three environments that are initialized on one chain. Each environment has
its own data stack, that is, the environments do not share a data stack.

Figure 28. Separate Data Stacks for Each Environment

Using the Data Stack

Chapter 19. Language Processor Environments 423

Environment 1 was the first environment on the chain. Therefore, REXX/VSE automatically created a data
stack for environment 1. Any REXX programs that run in environment 1 access the data stack associated
with environment 1.

When environment 2 and environment 3 were initialized, the NEWSTKFL flag was set on, indicating
that a data stack was to be created for the new environment. The data stack associated with each
environment is a different stack than for any of the other environments. A program runs in the most
current environment (environment 3) and has access only to the data stack for environment 3.

Figure 29 on page 424 shows two environments that are initialized on one chain. The two environments
share one data stack.

Figure 29. Sharing of the Data Stack between Environments

Environment 1 was the first environment on the chain. Therefore, REXX/VSE automatically created a data
stack. The NEWSTKFL flag was off for initialization of environment 2. This indicates that a new data stack
should not be created. Environment 2 shares the data stack that was created for environment 1. Any
REXX programs that execute in either environment use the same data stack.

Suppose a third language processor environment was initialized and chained to environment 2. If the
NEWSTKFL flag is off for the third environment, it would use the data stack that was most recently created
on the chain. That is, it would use the data stack that was created when environment 1 was initialized. All
three environments would share the same data stack.

As described, several language processor environments can share one data stack. On a single chain
of environments, one environment can have its own data stack and other environments can share a
data stack. Figure 30 on page 425 shows three environments on one chain. When environment 1 was
initialized, a data stack was automatically created because it is the first environment on the chain.
Environment 2 was initialized with the NEWSTKFL flag on, which means a new data stack was created for
environment 2. Environment 3 was initialized with the NEWSTKFL flag off, so it uses the data stack that
was created for environment 2.

Using the Data Stack

424 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 30. Separate Data Stack and Sharing of a Data Stack

Environments can be created without having a data stack, that is, the NOSTKFL flag is on. Referring to
Figure 30 on page 425, suppose environment 2 was initialized with the NOSTKFL flag on, which means a
new data stack was not created and the environment does not share the first environment's (environment
1) data stack. If environment 3 is initialized with the NOSTKFL flag off (meaning a data stack should be
available to the environment), and the NEWSTKFL flag is off (meaning a new data stack is not created for
the new environment), environment 3 shares the data stack created for environment 1.

When a data stack is shared between multiple language processor environments, any REXX programs that
execute in any of the environments use the same data stack. This sharing can be useful for applications
where a parent environment needs to share information with another environment that is lower on the
environment chain. At other times, a particular program may need to use a data stack that is not shared
with any other programs that are executing in different language processor environments. The NEWSTACK
command creates a new data stack and basically hides or isolates the original data stack. Suppose two
language processor environments are initialized on one chain and the second environment shares the
data stack with the first environment. If a REXX exec executes in the second environment, it shares the
data stack with any programs that are running in the first environment. The program in environment 2 may
need to access its own data stack that is private. In the program, you can use the NEWSTACK command
to create a new data stack. The NEWSTACK command creates a new data stack and hides all previous
data stacks that were originally accessible and all data that is on the original stacks. The original data
stack is referred to as the primary stack. The new data stack that NEWSTACK created is known as the
secondary stack. Secondary data stacks are private to the language processor environment in which they
were created. That is, they are not shared between two different environments.

Figure 31 on page 426 shows two language processor environments that share one primary data stack.
When environment 2 was initialized, the NEWSTKFL flag was off indicating that it shares the data stack
created for environment 1. When a program was executing in environment 2, it issued the NEWSTACK
command to create a secondary data stack. After NEWSTACK is issued, any data stack requests are
only performed against the new secondary data stack. The primary stack is isolated from any programs
executing in environment 2.

Using the Data Stack

Chapter 19. Language Processor Environments 425

Figure 31. Creating a New Data Stack with the NEWSTACK Command

If a program executing in environment 1 issues the NEWSTACK command to create a secondary data
stack, the secondary data stack is available only to REXX programs that execute in environment 1. Any
programs that execute in environment 2 cannot access the new data stack created for environment 1.

You can use the DELSTACK command to delete any secondary data stacks that NEWSTACK created. When
the secondary data stack is no longer required, the program can issue DELSTACK to delete the secondary
stack. At this point, the primary data stack that is shared with environment 1 is accessible.

Several other commands perform data stack functions. For example, the QSTACK command finds out
the number of data stacks that exist for the language processor environment. Chapter 10, “REXX/VSE
Commands,” on page 143 describes stack-oriented commands, such as NEWSTACK and DELSTACK.

Using the Data Stack

426 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 20. Initialization and Termination Routines

This topic provides information about how to use the initialization routine, ARXINIT, and the termination
routine, ARXTERM. ARXINIT, the initialization routine, initializes a language processor environment or
obtains the address of the environment block for the current non-reentrant environment. ARXTERM, the
termination routine, terminates a language processor environment. Chapter 8, “Using REXX,” on page 135
provides general information about how the initialization and termination of environments relates to REXX
processing. Chapter 19, “Language Processor Environments,” on page 387 describes the concept of a
language processor environment in detail. This includes the various characteristics you can specify when
initializing an environment, the default parameters module, and information about the environment block
and its format.

Language processor environments are created when they are needed. They are terminated when they are
no longer needed, that is, when the job step is done.

Initialization Routine – ARXINIT
Use ARXINIT to initialize a new language processor environment or to obtain the address of the
environment block for the current non-reentrant environment.

Note: To permit FORTRAN programs to call ARXINIT, there is an alternate entry point for the ARXINIT
routine. The alternate entry point name is ARXINT.

If you use ARXINIT to obtain the address of the current environment block, ARXINIT returns the address
in register 0 and also in the sixth parameter.

If you use ARXINIT to initialize a language processor environment, the characteristics for the new
environment are based on parameters that you pass on the call and values that are defined for the
previous environment. Generally, if you do not pass a specific parameter on the call, ARXINIT uses the
value from the previous environment.

ARXINIT always locates a previous environment as follows. On the call to ARXINIT, you can pass the
address of an environment block in register 0. ARXINIT then uses this environment as the previous
environment if the environment is valid. If register 0 does not contain the address of an environment
block, ARXINIT locates the previous environment. If ARXINIT locates a previous environment, ARXINIT
uses that environment as the previous environment. If ARXINIT cannot locate an environment,
ARXINIT uses the phase ARXPARMS as the previous environment. (“Values ARXINIT Uses to Initialize
Environments” on page 409 describes in detail how ARXINIT locates a previous environment.)

A previous environment is always identified regardless of the parameters you specify on the call to
ARXINIT.

Using ARXINIT, you can initialize a reentrant or a non-reentrant environment, as determined by the
setting of the RENTRANT flag bit. If you use ARXINIT to initialize a reentrant environment and you want
to chain the new environment to a previous reentrant environment, you must pass the address of the
environment block for the previous reentrant environment in register 0.

If you use ARXINIT to locate a previous environment, you can locate only the current non-reentrant
environment. ARXINIT does not locate a reentrant environment.

Entry Specifications
For the ARXINIT initialization routine, the contents of the registers on entry are:
Register 0

Address of the current environment block (optional)
Register 1

Address of the parameter list the caller passes

Initialization Routine

© Copyright IBM Corp. 1988, 2004 427

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address

Parameters
You can pass the address of an environment block in register 0. In register 1, you pass the address of
a parameter list, which consists of a list of addresses. Each address in the parameter list points to a
parameter.

The first seven parameters are required. Parameter 8 and parameter 9 are optional. To indicate the end of
the parameter list, set the high-order bit of the last address to 1. If ARXINIT does not find the high-order
bit set on in either the address for parameter 7 or the address for parameter 8 or 9, ARXINIT does not
initialize the environment but returns with a return code of 20 and a reason code of 27. See "Output
Parameters" for more information.

Table 65 on page 428 describes the parameters for ARXINIT. For general information about passing
parameters, see “Parameter Lists for REXX/VSE Routines” on page 325.

Table 65. Parameters for ARXINIT

Parameter Number of
Bytes

Description

Parameter 1 8 The function ARXINIT is to perform, which can be:
INITENVB

To initialize a new environment.
FINDENVB

To obtain the address of the environment block for the current
non-reentrant environment. ARXINIT does not initialize a new
environment. ARXINIT returns the address of the environment
block in register 0 and in parameter 6.

Parameter 2 8 The name of a parameters module that contains the values for
initializing the new environment. (“Parameters Module and In-Storage
Parameter List” on page 432 describes the module.)

If the name of the parameters module is blank, ARXINIT assumes that
all fields in the parameters module are null.

ARXINIT provides two ways to pass parameter values: the parameters
module and the address of an in-storage parameter list, which is
parameter 3. “How ARXINIT Determines What Values to Use for the
Environment” on page 432 describes how ARXINIT computes each
parameter value and the flexibility of passing parameters.

Initialization Routine

428 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 65. Parameters for ARXINIT (continued)

Parameter Number of
Bytes

Description

Parameter 3 4 The address of the in-storage parameter list, which is an area in storage
containing parameters equivalent to those in the parameters module.
The format of the in-storage list is identical to the format of the
parameters module. “Parameters Module and In-Storage Parameter
List” on page 432 describes the parameters module and in-storage
parameter list.

For parameter 3, you can specify an address of 0 for the address of the
in-storage parameter list. However, the address in the address list that
points to this parameter cannot be 0.

If the address of parameter 3 is 0, ARXINIT assumes that all fields in
the in-storage parameter list are null.

Parameter 4 4 The address of a user field. ARXINIT does not use or check this pointer
or the field. You can use this field for your own processing.

Parameter 5 4 Reserved. This parameter must be set to 0, but the address that points
to this parameter cannot be 0.

Parameter 6 4 The address of the environment block. ARXINIT uses this parameter for
output only. If you use the FINDENVB function (parameter 1) to locate
an environment, parameter 6 contains the address of the environment
block for the current non-reentrant environment. If you use the
INITENVB function (parameter 1) to initialize a new environment,
ARXINIT returns the address of the environment block for the newly
created environment in parameter 6.

For either FINDENVB or INITENVB, ARXINIT also returns the address
of the environment block in register 0. Parameter 6 lets high-
level languages obtain the environment block address to examine
information in the environment block.

Parameter 7 4 ARXINIT uses this parameter for output only. ARXINIT returns a reason
code that indicates why processing was unsuccessful. Table 67 on page
435 describes the reason codes that ARXINIT returns.

Parameter 8 4 This parameter is optional. It lets you specify how REXX obtains storage
in the language processor environment. Specify 0 if you want REXX/VSE
to reserve a default amount of storage work area.

If you want to pass a storage work area to ARXINIT, specify the address
of an extended parameter list. The extended parameter list consists of
the address (a fullword) of the storage work area and the length (a
fullword) of the work area, followed by X'FFFFFFFFFFFFFFFF'. For more
information about parameter 8 and storage, see “Specifying How REXX
Obtains Storage in the Environment” on page 430.

Although parameter 8 is optional, it is recommended that you specify
an address of 0 if you do not want to pass a storage work area to
ARXINIT.

Initialization Routine

Chapter 20. Initialization and Termination Routines 429

Table 65. Parameters for ARXINIT (continued)

Parameter Number of
Bytes

Description

Parameter 9 4 This parameter is for output only, and it is optional. ARXINIT uses this
for the return code.

If you use this parameter, ARXINIT places the return code in the
parameter and also in register 15. Otherwise, ARXINIT uses register 15
only. If the parameter list is incorrect, the return code is only in register
15. "Return Codes" describes the return codes.

Specifying How REXX Obtains Storage in the Environment
On the call to ARXINIT, parameter 8 is optional. You can use it to specify how REXX obtains storage in
the language processor environment for the processing of REXX programs. If you specify 0 for parameter
8, during the initialization of the environment, REXX/VSE reserves a default amount of storage for the
storage work area. If you have provided your own storage management replaceable routine, REXX/VSE
calls your routine to obtain this storage work area. Otherwise, REXX/VSE obtains storage using GETVIS.
When the environment that ARXINIT is initializing is terminated, REXX/VSE automatically frees the
storage. REXX/VSE frees the storage by either calling your storage management replaceable routine or
using FREEVIS, depending on how the storage was obtained.

You can also pass a storage work area to ARXINIT. For parameter 8, specify an address that points to an
extended parameter list.

The extended parameter list is an address/length pair that contains the address (a fullword) of the storage
work area and the length (a fullword) of the storage area, in bytes. The address/length pair must be
followed by X'FFFFFFFFFFFFFFFF' to indicate the end of the extended parameter list. Figure 32 on page
431 shows the extended parameter list.

Initialization Routine

430 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Figure 32. Extended Parameter List – Parameter 8

The storage work area you pass to ARXINIT is then available for REXX processing in the environment
that you are initializing. The storage work area must remain available to the environment until the
environment is terminated. After you terminate the language processor environment, you must also free
the storage work area. REXX/VSE does not free the storage you pass to ARXINIT when you terminate the
environment.

You can also specify that a reserved storage work area should not be initialized for the environment.
REXX/VSE then obtains and frees storage whenever storage is required. To specify that a storage work
area should not be initialized, for parameter 8, specify the address of the extended parameter list as
previously described. In the extended parameter list, specify 0 for the address of the storage work area
and 0 for the length of the storage work area. Again, X'FFFFFFFFFFFFFFFF' must follow the address/
length pair to indicate the end of the extended parameter list. Specifying that REXX should run without a
reserved storage work area is not recommended because of possible performance degradation. However,
this option may be useful if available storage is low and you want to initialize a language processor
environment with a minimal amount of storage at initialization time.

In the extended parameter list, you can also specify 0 for the address of the storage work area and -1 for
the length of the work area. This is considered a null entry and ARXINIT ignores the extended parameter
list entry. This is equivalent to specifying an address of 0 for parameter 8, and REXX/VSE reserves a
default amount of work area storage.

In general, 3 pages (12K) of storage are needed for the storage work area for regular program processing,
for each level of program nesting. If there is insufficient storage available in the storage work area, REXX
calls the storage management routine to obtain additional storage if you provided a storage management
replaceable routine. Otherwise, REXX/VSE uses GETVIS and FREEVIS to obtain and free storage. For more
information about the replaceable routine, see “Storage Management Routine” on page 463.

Initialization Routine

Chapter 20. Initialization and Termination Routines 431

How ARXINIT Determines What Values to Use for the Environment
ARXINIT first determines the values to use to initialize the environment. After all of the values are
determined, ARXINIT initializes the new environment using the values.

On the call to ARXINIT, you can pass parameters that define the environment in two ways. You can
specify the name of a parameters module (a phase) that contains the values ARXINIT uses to initialize
the environment. In addition to the parameters module, you can also pass an address of an area in
storage that contains the parameters. This area in storage is called an in-storage parameter list and the
parameters it contains are equivalent to the parameters in the parameters module.

The two methods of passing parameter values give you flexibility when calling ARXINIT. You can store
the values on disk or build the parameter structure in storage dynamically. The format of the parameters
module and the in-storage parameter list is the same. You can pass a value for the same parameter in
both the parameters module and the in-storage parameter list.

When ARXINIT computes the values to use to initialize the environment, ARXINIT takes values from four
sources using the following hierarchical search order:

1. The in-storage list of parameters that you pass on the call to ARXINIT.

If you pass an in-storage parameter list and the value in the list is not null, ARXINIT uses this value.
Otherwise, ARXINIT continues.

2. The parameters module whose name you pass on the call to ARXINIT.

If you pass a parameters module and the value in the module is not null, ARXINIT uses this value.
Otherwise, ARXINIT continues.

3. The previous language processor environment.

ARXINIT copies the value from the previous environment.
4. The ARXPARMS parameters module if a previous environment does not exist.

If a parameter has a null value, ARXINIT continues to search until it finds a non-null value. The following
types of parameters are defined to be null:

• A character string containing only blanks or having a length of 0
• An address if its value is 0
• A binary number with the value X'80000000'
• A bit setting with a corresponding mask of 0.

On the call to ARXINIT, if the address of the in-storage parameter list is 0, all values in the list are defined
as null. Similarly, if the name of the parameters module is blank, all values in the parameters module are
defined as null.

You need not specify a value for every parameter in the parameters module or the in-storage parameter
list. If you do not specify a value, ARXINIT uses the value defined for the previous environment. You need
only specify the parameters whose values you want to be different from the previous environment.

Parameters Module and In-Storage Parameter List
The parameters module is a phase that contains the values you want ARXINIT to use to initialize
a new language processor environment. The default parameters module for initializing environments
is ARXPARMS. “Characteristics of a Language Processor Environment” on page 390 describes the
parameters module.

On the call to the ARXINIT, you can optionally pass the name of a parameters module that you have
created. The parameters module contains the values you want ARXINIT to use to initialize the new
language processor environment. On the call, you can also optionally pass the address of an in-storage
parameter list. The format of the parameters module and the in-storage parameter list is identical.

Table 66 on page 433 shows the format of a parameters module and in-storage list. The format of
the parameters module is identical to the default module. “Characteristics of a Language Processor

Initialization Routine

432 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Environment” on page 390 describes the parameters module and each field in detail. Indicate the end of
the table with X'FFFFFFFFFFFFFFFF'.

Table 66. Parameters Module and In-Storage Parameter List

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID Identifies the parameter block (PARMBLOCK).

8 4 VERSION Identifies the version of the parameter block. The
value must be 0001.

12 3 LANGUAGE Language code for REXX messages.

15 1 RESERVED Reserved.

16 4 MODNAMET Address of module name table. The module name
table contains the names of files or devices
for reading and writing data, the names of the
replaceable routines, and the names of several exit
routines.

20 4 SUBCOMTB Address of host command environment table. The
table contains the names of the host command
environments that are available and the names of
the routines that process commands for each host
command environment.

24 4 PACKTB Address of function package table. The table
defines the user, local, and system function
packages that are available to REXX programs
running in the environment.

28 8 PARSETOK Token for PARSE SOURCE instruction.

36 4 FLAGS A fullword of bits used as flags to define
characteristics for the environment.

40 4 MASKS A fullword of bits used as a mask for the setting of
the flag bits.

44 4 SUBPOOL This field is reserved.

48 8 ADDRSPN Name of the partition (VSE).

56 8 — The end of the parameter block must be
X'FFFFFFFFFFFFFFFF'.

Specifying Values for the New Environment
For more information about parameters, see “Specifying Values for Different Environments” on page 413.

When you call ARXINIT, you cannot specify the ID and VERSION. If you pass values for the ID or VERSION
parameters, ARXINIT ignores the value and uses the default.

At offset +36 in the parameters module, the field is a fullword of bits that ARXINIT uses as flags. The
flags define certain characteristics for the new language processor environment and how the environment
and programs running in the environment operate. The parameter following the flags is a mask field that
works with the flags. The mask field is a string that has the same length as the flags field. Each bit position
in the mask field corresponds to a bit in the same position in the flags field. ARXINIT uses the mask field
to determine whether it should use or ignore the corresponding flag bit.

Initialization Routine

Chapter 20. Initialization and Termination Routines 433

See page “MASKS ” on page 393 for details about the bit settings for the mask field. Table 52 on page 393
summarizes each flag. “Flags and Corresponding Masks” on page 393 describes each of the flags in more
detail and the bit settings for each flag.

For a given bit position, if the value in the mask field is:

• 0 — ARXINIT ignores the corresponding bit in the flags field (that is, ARXINIT considers the bit to be
null)

• 1 – ARXINIT uses the corresponding bit in the flags field.

When you call ARXINIT, the flag settings that ARXINIT uses depend on the:

• Bit settings in the flag and mask fields you pass in the in-storage parameter list
• Bit settings in the flag and mask fields you pass in the parameters module
• Flags defined for the previous environment
• Flags defined in ARXPARMS if a previous environment does not exist.

ARXINIT uses the following order to determine what value to use for each flag bit:

• ARXINIT first checks the mask setting in the in-storage parameter list. If the mask is 1, ARXINIT uses
the flag value from the in-storage parameter list.

• If the mask in the in-storage parameter list is 0, ARXINIT then checks the mask setting in the
parameters module. If the mask in the parameters module is 1, ARXINIT uses the flag value from
the parameters module.

• If the mask in the parameters module is 0, ARXINIT uses the flag value defined for the previous
environment.

• If a previous environment does not exist, ARXINIT uses the flag setting from ARXPARMS.

For detailed information about the parameters you can specify for initializing a language processor
environment, see “Specifying Values for Different Environments” on page 413.

Indicate the end of the parameter block with X'FFFFFFFFFFFFFFFF'.

Return Specifications: For the ARXINIT initialization routine, the contents of the registers on return are:
Register 0

Contains the address of the new environment block if ARXINIT initialized a new environment, or the
address of the environment block for the current non-reentrant environment that ARXINIT located.

If you call ARXINIT to initialize a new REXX environment and this is successful, register 0 and
Parameter 6 contain the address of the new environment block (ENVBLOCK). Otherwise, register 0 is
restored, and Parameter 6 contains 0.

If you call ARXINIT to find the current non-reentrant REXX environment and this is successful, then
register 0 and Parameter 6 contain the address of the current, non-reentrant environment block
(ENVBLOCK). Otherwise, register 0 and Parameter 6 contain 0.

Register 1
Address of the parameter list.

ARXINIT uses three parameters (parameters 6, 7, and 9) for output only (see Table 65 on page 428).
"Output Parameters" describes the three output parameters.

Registers 2-14
Same as on entry

Register 15
Return code

Output Parameters: The parameter list for ARXINIT contains three parameters that ARXINIT uses for
output only (parameters 6, 7, and 9). Parameter 6 contains the address of the environment block. If you
called ARXINIT to locate an environment, parameter 6 contains the address of the environment block for
the current non-reentrant environment. If you called ARXINIT to initialize an environment, parameter 6
contains the address of the environment block for the new environment.

Initialization Routine

434 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Parameter 6 lets high-level programming languages obtain the address of the environment block to
examine information in the environment block.

Parameter 9 is an optional parameter you can use to obtain the return code. If you specify parameter 9,
ARXINIT returns the return code in parameter 9 and also in register 15.

Parameter 7 contains a reason code for ARXINIT processing. The reason code indicates whether or not
ARXINIT completed successfully. If ARXINIT processing was not successful, the reason code indicates
the error. Table 67 on page 435 describes the reason codes ARXINIT returns.

Table 67. Reason Codes for ARXINIT Processing

Reason Code Description

0 Successful processing.

1 Unsuccessful processing. The type of function (Parameter 1) was not valid. Valid
functions are INITENVB and FINDENVB.

2 Unsuccessful processing. Attempted to use TSOFL flag.

3 Reserved

4 Reserved

5 Unsuccessful processing. The value specified in the MODNAMET_GETFREER field in the
module name table does not match the MODNAMET_GETFREER value in the current
REXX environment under the current task.

If more than one environment is initialized on the same task and the environments
specify a storage management replaceable routine (GETFREER field), the name of the
routine must be the same for the environments.

6 Unsuccessful processing. The value specified for the length of each entry in the host
command environment table is incorrect. This is the value specified in the SUBCOMTB
entry length field in the table. See “Host Command Environment Table” on page 401 for
information about the table.

7 Reserved

8 Reserved

9 Reserved

10 Unsuccessful processing. The ARXINITX exit routine returned a nonzero return code.
ARXINIT stops initialization.

11 Reserved

12 Unsuccessful processing. REXX/VSE initialization was unsuccessful. The ARXITMV exit
routine returned a nonzero return code. ARXINIT stops initialization.

13 Unsuccessful processing. The REXX I/O routine or the replaceable I/O routine is called
to initialize I/O when ARXINIT is initializing a new language processor environment. The
I/O routine returned a nonzero return code.

14 Unsuccessful processing. The REXX data stack routine or the replaceable data stack
routine is called to initialize the data stack when ARXINIT is initializing a new language
processor environment. The data stack routine returned a nonzero return code.

15 Unsuccessful processing. The REXX exec load routine or the replaceable exec load
routine is called to initialize exec loading when ARXINIT is initializing a new language
processor environment. The exec load routine returned a nonzero return code.

16 Reserved

17 Reserved

Initialization Routine

Chapter 20. Initialization and Termination Routines 435

Table 67. Reason Codes for ARXINIT Processing (continued)

Reason Code Description

20 Unsuccessful processing. Storage could not be obtained.

21 Unsuccessful processing. A module could not be loaded into storage.

22 Unsuccessful processing. A lock could not be obtained.

23 Reserved

24 Unsuccessful processing. The environment table (ENVTABLE) is full. The maximum
number of environments has already been initialized. See “Changing the Maximum
Number of Environments in a Partition” on page 421 for more information about the
environment table.

25 Unsuccessful processing. The extended parameter list (parameter 8) passed to
ARXINIT is incorrect. The end of the extended parameter list must be indicated with
X'FFFFFFFFFFFFFFFF'.

26 Unsuccessful processing. The values specified in the extended parameter list
(parameter 8) are incorrect. Either the address or the length of the storage work area
(but not both) was 0, or the length was negative.

Reason code 26 is not returned if:

• Both the address and length of the storage work area are 0, which are valid values.
• The address of the storage work area is 0 and the length is -1, which is considered a

valid null entry.

27 Unsuccessful processing. An incorrect number of parameters was passed to ARXINIT.
Setting on the high-order bit in parameter 7 or in optional parameters 8 or 9 marks
the end of the parameter list. ARXINIT returns reason code 27 if it cannot find the
high-order bit on in the last address of the parameter list. ARXINIT does not return
reason code 27 if the caller passes fewer than seven parameters (that is, sets on the
high-order bit in a parameter prior to parameter 7). If ARXINIT detects the end of the
parameter list before parameter 7, it cannot return a reason code because parameter 7
is the reason code parameter. In this case, ARXINIT returns only a return code of 20 in
register 15 to indicate an error.

28 Unsuccessful processing. Attempted use of SPSHARE flag.

29 Unsuccessful processing. Attempted use of NOLOADDD flag.

30 Unsuccessful processing. REXX is not installed in the SVA.

31 Reserved

Return Codes: ARXINIT returns different return codes for finding an environment and for initializing an
environment. ARXINIT returns the return code in register 15. If you specify the return code parameter
(parameter 9), ARXINIT also returns the return code in the parameter.

Table 68 on page 436 shows the return codes if you call ARXINIT to find an environment (FINDENVB
function).

Table 68. ARXINIT Return Codes for Finding an Environment (FINDENVB)

Return Code Description

0 Processing was successful. ARXINIT located and initialized the current non-reentrant
REXX environment under the current task.

4 Processing was successful. ARXINIT located and initialized the current non-reentrant
REXX environment under a previous task.

Initialization Routine

436 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 68. ARXINIT Return Codes for Finding an Environment (FINDENVB) (continued)

Return Code Description

20 Processing was not successful. An error occurred. Check the reason code that ARXINIT
returns in parameter 7.

28 Processing was successful. There is no current non-reentrant REXX environment.

Table 69 on page 437 shows the return codes if you call ARXINIT to initialize an environment (INITENVB
function).

Table 69. ARXINIT Return Codes for Initializing an Environment (INITENVB)

Return Code Description

0 Processing was successful. ARXINIT initialized a new language processor environment.
The new environment is not the first REXX environment under the current task.

4 Processing was successful. ARXINIT initialized a new REXX language processor
environment, which is the first environment under the current task.

20 Processing was not successful. An error occurred. Check the reason code that ARXINIT
returns in the parameter list.

Termination Routine – ARXTERM
When an application is done with a language processor environment, the application is responsible for
terminating the language processor environment. Only the application that called ARXINIT to create the
language processor environment should terminate the language processor environment.

The ARXTERM routine terminates a language processor environment.

Note: To permit FORTRAN programs to call ARXTERM, there is an alternate entry point for the ARXTERM
routine. The alternate entry point name is ARXTRM.

Note: Another way to terminate a language processor environment is calling ARXTERMA, which is for
abnormal terminations but works in the general case as well. ARXTERMA terminates language processor
environments that still contain active programs; ARXTERM does not do this.

In register 0, you can optionally pass the address of the environment block (ENVBLOCK) for the
environment you want to terminate. ARXTERM then terminates the language processor environment
register 0 points to. The environment must have been initialized on the current task.

If you do not specify an environment block address in register 0, ARXTERM locates the last environment
that was created under the current task and terminates that environment.

When ARXTERM terminates the environment, ARXTERM closes all open members and files that were
opened under that environment. ARXTERM also deletes any data stacks that you created under the
environment using the NEWSTACK command.

ARXTERM does not terminate an environment under any one of the following conditions:

• The environment was not initialized under the current task
• An active program is currently running in the environment
• The environment was the first environment initialized under the task and other environments are still

initialized under the task.

The first environment initialized on a task must be the last environment terminated on that task. The
first environment is the anchor environment because all subsequent environments that are initialized
on the same task share information from the first environment. Therefore, all other environments on a
task must be terminated before you terminate the first environment. If you use ARXTERM to terminate

Termination Routine

Chapter 20. Initialization and Termination Routines 437

the first environment and other environments on the task still exist, ARXTERM does not terminate the
environment and returns with a return code of 20.

Entry Specifications: For the ARXTERM termination routine, the contents of the registers on entry are:
Register 0

Address of an environment block (ENVBLOCK). (optional)
Registers 1-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: You can optionally pass the address of the environment block for the language processor
environment you want to terminate in register 0. There is no parameter list for ARXTERM.

Return Specifications: For the ARXTERM termination routine, the contents of the registers on return are:
Register 0

If you pass the address of an environment block and ARXTERM terminates the environment,
ARXTERM returns the address of the environment block for the previous environment or 0 if there
is no previous environment. If you do not pass an address, register 0 contains the same value as on
entry.

Registers 1-14
Same as on entry

Register 15
Return code

Return Codes: Table 70 on page 438 shows the return codes for the ARXTERM routine.

Table 70. Return Codes for ARXTERM

Return Code Description

0 ARXTERM successfully terminated the environment. The terminated environment was
not the last REXX environment on the task.

4 ARXTERM successfully terminated the environment. The terminated environment was
the last REXX environment on the task.

20 ARXTERM could not terminate the environment.

28 The environment could not be found.

Termination Routine

438 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 21. Replaceable Routines and Exits

When a REXX program runs, various system services obtain and free storage, handle data stack requests,
load and free the program, and perform I/O. REXX/VSE provides routines for these system services. The
routines are called replaceable routines because you can provide your own routines that replace the
REXX/VSE routines.

Besides defining your own replaceable routines to replace the routines that REXX/VSE provides, you can
use the interfaces as described in this chapter to call any of the supplied routines to perform system
services. You can also write your own routine to perform a system service using the interfaces described
for the routine. A program can then call your own routine to perform that particular service.

REXX/VSE also provides several exits you can use to customize REXX processing. The exits let you
customize the initialization and termination of language processor environments and exec processing
itself.

This topic describes each of the replaceable routines and the exits.

Replaceable Routines: If you replace the REXX/VSE-supplied routine, your routine can perform some pre-
processing and then call the REXX/VSE routine to actually perform the service request. If the replaceable
routine you provide calls the REXX/VSE routine, your replaceable routine must act as a filter between the
call to your routine and its call to the REXX/VSE routine. Pre-processing can include checking the request
for the specific service, changing the request, or terminating the request. Your routine can also perform
the requested service itself without calling the REXX/VSE routine.

The following summarizes the routines you can replace and the functions your routine must perform, if
you replace the REXX/VSE routine. “Replaceable Routines” on page 440 describes each routine in more
detail.
Exec Load

Called to load a program into storage and free a program when the program completes processing.
The exec load routine is also called to determine whether a program is currently loaded and to close a
specified member.

I/O
Called to read a record from or write a record to a specified file. The I/O routine is also called to open
or close a specified file. For example, the routine is called for the SAY and PULL instructions and for
the EXECIO command.

Host Command Environment
Called to process all host commands for a specific host command environment.

Data Stack
Called to handle any requests for data stack services.

Storage Management
Called to obtain and free storage.

User ID
Called to obtain the user ID. The USERID built-in function returns the result that the user ID routine
obtains.

Message Identifier
Called to determine whether the message identifier (message ID) accompanies a REXX error
message.

Replaceable routines are defined on a language processor environment basis. You define the names of
the routines in the module name table. To define your own replaceable routine to replace the REXX/VSE
routine, you must do the following:

• Write the code for the routine. The individual topics in this chapter describe the interfaces to each
replaceable routine.

© Copyright IBM Corp. 1988, 2004 439

• Define the routine name to a language processor environment. You can provide your own ARXPARMS
parameters module that ARXINIT uses instead of the default ARXPARMS module. In your module,
specify the names of your replaceable routines. You can also call ARXINIT to initialize an environment
and pass the name of your module name table that includes the names of your replaceable routines.

“Changing the Default Values for Initializing an Environment” on page 412 describes how to provide
your own parameters module. “Initialization Routine – ARXINIT” on page 427 describes ARXINIT.

You can also call any of the REXX/VSE replaceable routines from a program to perform a system service.
You can also write your own routine to perform a service. This topic describes the interfaces to the
REXX/VSE routines.

Exit Routines: You can use several exits to customize REXX processing. Some exits have fixed names.
Others do not have fixed names. You name the exit yourself and then specify the name in the module
name table. The following briefly describes exits. “REXX Exit Routines” on page 468 describes each exit in
more detail.

• Pre-environment initialization – customizes processing before the ARXINIT initialization routine
initializes a language processor environment.

• Post-environment initialization – customizes processing after the ARXINIT initialization routine has
initialized an environment, but before ARXINIT completes processing.

• Environment termination – customizes processing when a language processor environment is
terminated.

• Exec Initialization—customizes processing after the variable pool has been created and before the
program begins processing.

• Exec Termination—customizes processing after a program completes processing and before the variable
pool is deleted.

• Exec Processing— customizes exec processing before a program is loaded and runs.
• RXHLT – raises the halt condition (see “REXX Exit Data Areas and Parameters” on page 473).

See “REXX Exit Routines” on page 468 for more information about the exits.

Replaceable Routines
The following topics describe each of the REXX/VSE replaceable routines. The documentation describes
how the REXX/VSE routines work, the input they receive, and the output they return. If you provide your
own routine that replaces the REXX/VSE routine, your routine must handle all of the functions that the
REXX/VSE routine handles.

The replaceable routines are programming routines that you can call from a program. The only
requirement for calling one of the REXX/VSE routines is that a language processor environment must
exist in which the routine runs.

You can also write your own routines to handle different system services. For example, if you write your
own exec load routine, a program can call your routine to load a program before calling ARXEXEC to call
the REXX program. Similarly, if you write your own routine, an application program can call your routine as
long as a language processor environment exists in which the routine can run.

You could also write your own routine that application programs can call to perform a system service and
have your routine call the REXX/VSE routine. Your routine could act as a filter between the call to your
routine and its call to the REXX/VSE routine. For example, you could write your own exec load routine that
verifies a request and then calls the REXX/VSE exec load routine to actually load the program.

General Considerations
This topic provides general information about the replaceable routines.

• If you provide your own replaceable routine, your routine is called in 31 bit addressing mode. Your
routine may perform the requested service itself and not call the REXX/VSE routine. Your routine can
perform pre-processing, such as checking or changing the request or parameters, and then call the

440 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

corresponding REXX/VSE routine. If your routine calls the REXX/VSE routine to actually perform the
request, your routine must call the system routine in 31 bit addressing mode also.

• When REXX/VSE calls your replaceable routine, your routine can use any of the REXX/VSE replaceable
routines to request system services.

• The addresses of the REXX/VSE-supplied replaceable routines and any replaceable routines you provide
are stored in the REXX vector of external entry points (see page “Format of the REXX Vector of External
Entry Points” on page 418). This allows a caller external to REXX to call any of the replaceable routines,
either your routines or the supplied ones. For example, if you want to preload a REXX program in storage
before using the ARXEXEC routine to call the program, you can call the ARXLOAD routine to load the
program. ARXLOAD is the supplied exec load routine. If you provide your own exec load routine, you can
also use your routine to preload the program.

• When REXX/VSE or an application program calls a replaceable routine, the contents of register 0
may or may not contain the address of the environment block. For more information, see “Using the
Environment Block Address” on page 441.

Using the Environment Block Address
If you provide your own routine to replace a supplied one, when REXX/VSE calls your routine, it passes
the address of the environment block for the current environment in register 0. If your routine then calls
the supplied one, it is recommended that you pass the environment block address you received to the
supplied one. When you call the supplied routine, you can pass the environment block address in register
0. Some replaceable routines also have an optional environment block address parameter that you can
use.

If your routine passes the environment block address in the parameter list, the supplied routine uses the
address you specify and ignores register 0. The supplied routine does not validate the address you pass.
Ensure that your routine passes the same address it received in register 0 when it got control.

If your routine does not specify an address in the environment block address parameter or the
replaceable routine does not support the parameter, the supplied routine checks register 0 for the
environment block address. If register 0 contains the address of a valid environment block, the supplied
routine runs in that environment. If the address in register 0 is not valid, the supplied routine locates and
runs in the current non-reentrant environment.

If your routine does not pass the environment block address it received to the supplied routine, the
supplied routine locates the current non-reentrant environment and runs in that environment. This may or
may not be the environment in which you want the routine to run. Therefore, it is recommended that you
pass the environment block address when your routine calls the supplied routine.

An application program can call a supplied replaceable routine or one that you provide to perform a
specific service. On the call, the application program can optionally pass the address of an environment
block that represents the environment in which the routine runs. The application program can pass the
environment block address in register 0 or in the environment block address parameter if the replaceable
routine supports the parameter. Note the following for application programs that call replaceable
routines:

• If an application program calls a supplied replaceable routine and does not pass an environment
block address, the supplied routine locates the current non-reentrant environment and runs in that
environment.

• If an application program calls a routine you provide, either the application program must provide the
environment block address or your routine must locate the current environment in which to run.

Installing Replaceable Routines
If you write your own replaceable routine, you must link-edit the routine as a separate phase. You can
link-edit all your replaceable routines in a separate sublibrary or in an existing library that contains other
routines. The routines can reside in a phase in a sublibrary in the active PHASE chain.

Chapter 21. Replaceable Routines and Exits 441

The replaceable routines must be reentrant, refreshable, and reusable. The characteristics for the
routines are:

• State: Problem program
• Not authorized
• AMODE(31), RMODE(ANY)

Exec Load Routine
REXX/VSE calls the exec load routine to load and free REXX programs and:

• To close any input files from which programs are loaded
• To check whether a program is currently loaded in storage
• When a language processor environment is initialized and terminated.

The name of the supplied exec load routine is ARXLOAD.

Note: To permit FORTRAN programs to call ARXLOAD, REXX/VSE provides an alternate entry point for the
ARXLOAD routine. The alternate entry point name is ARXLD.

When the exec load routine is called to load a program, the routine reads the program from the member
of a sublibrary in the active PROC chain and then places the program into a data structure called the
in-storage control block (INSTBLK). “The In-Storage Control Block” on page 445 describes the format of
the in-storage control block. When the exec load routine is called to free a program, the program frees the
storage that the previously loaded program occupied.

The name of the exec load routine is specified in the EXROUT field in the module name table for a
language processor environment. “Module Name Table” on page 398 describes the format of the module
name table.

REXX/VSE calls the exec load routine when:

• A language processor environment is initialized. During environment initialization, the exec load routine
initializes the REXX program load environment.

• The ARXEXEC routine is called and the program is not preloaded. See “The ARXEXEC Routine” on page
334 for information about using ARXEXEC.

• The program that is currently running calls an external function or subroutine and the function or
subroutine is a REXX program. (This is an internal call to the ARXEXEC routine.)

• A program that was loaded needs to be freed.
• The language processor environment that originally opened the member of the sublibrary from which

programs are loaded is terminating and all files associated with the environment must be closed.
• You use the EXEC command (page “EXEC” on page 145) to run a REXX program.

The supplied load routine, ARXLOAD, tests for numbered records in the file. If the records of a file are
numbered, the routine removes the numbers when it loads the program. A record is considered to be
numbered if the last 8 characters of the first record are numeric.

If the first record of the file is not numbered, the routine loads the program without making any changes.

Any user-written program can call ARXLOAD to perform the functions that ARXLOAD supports. You can
also write your own exec load routine and call the routine from an application program. For example, if
you have an application program that calls the ARXEXEC routine to run a REXX program, you may want
to preload the program into storage before calling ARXEXEC. To preload the program, your application
program can call ARXLOAD. The program can also call your own exec load routine.

If you are writing an exec load routine that will be used in environments in which compiled REXX
programs run, note that your exec load routine may want to call a compiler interface load routine. For
information about the compiler interface load routine and when it can be called, see Chapter 24, “Support
for the Library for REXX/370 in REXX/VSE,” on page 499.

Exec Load Routine

442 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Entry Specifications: For the exec load replaceable routine, the contents of the registers on entry are
described in the following. You can specify the address of the environment block in either register 0 or
in the environment block address parameter in the parameter list. For more information, see “Using the
Environment Block Address” on page 441.
Register 0

Address of the current environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: Register 1 contains the address of a 5-word parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. To indicate the end of the parameter
list, set the high-order bit of the last address to 1. For more information about passing parameters, see
“Parameter Lists for REXX/VSE Routines” on page 325.

Table 71 on page 443 describes the parameters for the exec load routine.

Table 71. Parameters for the Exec Load Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is left justified, in
uppercase, and padded to the end of the field with blanks. The valid
functions are:

• INIT
• LOAD
• FREE
• STATUS
• CLOSEDD
• TERM.

The functions are described in "Functions You Can Specify...".

Parameter 2 4 Specifies the address of the exec block (EXECBLK). The exec block is
a control block that describes the program to load (LOAD) or check
(STATUS) or the member to close (CLOSEDD). “The Exec Block” on page
445 describes the exec block.

For the LOAD, STATUS, and CLOSEDD functions, this parameter must
contain a valid exec block address. For the other functions, this
parameter is ignored.

Exec Load Routine

Chapter 21. Replaceable Routines and Exits 443

Table 71. Parameters for the Exec Load Routine (continued)

Parameter Number of
Bytes

Description

Parameter 3 4 Specifies the address of the in-storage control block (INSTBLK), which
defines the structure of a REXX program in storage. The in-storage
control block contains pointers to each record in the program and the
length of each record. “The In-Storage Control Block” on page 445
describes the control block.

The exec load routine uses this parameter as an input parameter for
the FREE function only. The routine uses the parameter as an output
parameter for the LOAD, STATUS, and FREE functions. The parameter is
ignored for the INIT, TERM, and CLOSEDD functions.

As an input parameter for the FREE function, the parameter contains
the address of the in-storage control block that represents the program
to be freed. As an output parameter for the FREE function, the
parameter contains a 0 indicating the program was freed. If the
program could not be freed, the return code in register 15 or the return
code parameter (parameter 5) or both indicate the error condition.
"Return Codes" describes the return codes.

As an output parameter for the LOAD or STATUS functions, the
parameter returns the address of the in-storage control block that
represents the program that was:

• Just loaded (LOAD function)
• Previously loaded (STATUS function).

For the LOAD and STATUS functions, the routine returns a value of 0 if
the program is not loaded.

Parameter 4 4 This parameter is optional. It is the address of the environment block
that represents the environment in which you want the exec load
replaceable routine to run.

If you specify a nonzero value, the exec load routine uses the value
you specify and ignores register 0. However, the routine does not check
whether the address is valid. Therefore, ensure the address you specify
is correct or unpredictable results can occur. For more information, see
“Using the Environment Block Address” on page 441.

Parameter 5 4 This parameter is optional. It is a field that the exec load replaceable
routine uses to return the return code.

If you use this parameter, the exec load routine returns the return code
in the parameter and also in register 15. Otherwise, the routine uses
register 15 only. If the parameter list is incorrect, the return code is
returned in register 15 only. "Return Codes" describes the return codes.

Functions You Can Specify for Parameter 1: The functions you can specify in parameter 1 are:
INIT

The routine performs any initialization that is required. During the initialization of a language
processor environment, REXX/VSE calls the exec load routine to initialize load processing.

LOAD
The routine loads the specified program in the exec block from the member of a sublibrary specified in
the exec block. “The Exec Block” on page 445 describes the exec block.

Exec Load Routine

444 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The routine returns the address of the in-storage control block (parameter 3) that represents the
loaded program. “The In-Storage Control Block” on page 445 shows the format of the in-storage
control block.

Note: The ARXLOAD routine reuses an existing copy of a previously loaded program if it appears that
the program has not changed. However, if the CLOSEXFL flag is on, indicating the member should be
closed after each program is loaded, ARXLOAD does not reuse a previously loaded program. Instead,
a new copy of the program is read into storage for each load request. For more information about the
CLOSEXFL flag, see page “CLOSEXFL ” on page 396.

FREE
The routine frees the program represented by the in-storage control block to which parameter 3
points.

Note: If a user-written load routine calls ARXLOAD to load a program, the user-written load routine
must also call ARXLOAD to free the program.

STATUS
The routine determines whether the program specified in the exec block is currently loaded in storage
from the member of a sublibrary specified in the exec block. If the program is loaded, the routine
returns the address of the in-storage control block in parameter 3. The address that the routine
returns is the same address that was returned for the LOAD function when the routine originally
loaded the program into storage.

TERM
The routine performs any cleanup prior to termination of the language processor environment.
When the last language processor environment under the task that originally opened the member
terminates, all files associated with the environment are closed. When ARXLOAD is terminating the
last language processor environment under a task, it frees any programs that were loaded by any
language processor environment under the task but were not yet freed.

CLOSEDD
The routine closes the member specified in the exec block. It does not free any programs that have
been loaded.

The Exec Block
The exec block (EXECBLK) is a control block that describes the:

• Member to load (LOAD function)
• Member to check (STATUS function)
• Member to close (CLOSEDD function).

If a user-written program calls ARXLOAD or your own exec load routine, the program must build the
exec block and pass the address of the exec block on the call. REXX/VSE provides a mapping macro,
ARXEXECB, for the exec block. The mapping macro is in PRD1.BASE. See Table 15 on page 337 for the
format of the exec block.

The In-Storage Control Block
The in-storage control block defines the structure of a program in storage. It contains pointers to each
record in the program and the length of each record.

Table 17 on page 339 shows the format of the in-storage control block. Table 18 on page 340 shows the
format of the vector of records.

Return Specifications: For the exec load routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code

Exec Load Routine

Chapter 21. Replaceable Routines and Exits 445

Return Codes: Table 72 on page 446 shows the return codes for the exec load routine. The routine returns
the return code in register 15. If you specify the return code parameter (parameter 5), the exec load
routine also returns the return code in the parameter.

Table 72. Return Codes for the Exec Load Replaceable Routine

Return Code Description

-3 The program could not be located. The program is not loaded.

0 Processing was successful. The requested function completed.

4 The specified program is not currently loaded. A return code of 4 is used for the STATUS
function only.

20 Processing was not successful. The requested function is not performed. A return code
of 20 occurs if:

• A MEMBER was required but not specified (LOAD, STATUS, and CLOSEDD functions).
• The MEMBER was specified, but a LIBDEF specifying the sublibrary did not precede

the attempt to load the member.
• An error occurred during processing.

REXX/VSE also issues an error message that describes the error.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is incorrect. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

Input/Output Routine
REXX/VSE has two kinds of input and output:

• REXX/VSE runs in batch only, so console input and output consists of line mode input from and output
to the default input and output streams.

• EXECIO commands read and write data on disk.

ARXINOUT, the input/output (I/O) replaceable routine, is also called the read input/write output data
routine.

The input/output replaceable routine operates on the following types of files:

• Sublibrary members of any type (use the fully-qualified name)
• SYSIPT or SYSLST
• SAM files. (Only SAM files on disk are supported. You need to use DLBL to associate a SAM file with a file

name.)

The default input/output routine operates only on:

• SYSIPT
• SYSLST
• SYSxxx (where xxx is numeric)
• Any other 7-character name.

REXX/VSE calls the I/O routine to:

• Read a record
• Write a record
• Open a file

I/O Routine

446 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• Close a file. (You can open a file in a user routine and change the DSIB_LRECL field.)

Note: To permit FORTRAN programs to call ARXINOUT, REXX/VSE provides an alternate entry point for
the ARXINOUT routine. The alternate entry point name is ARXIO.

If a read is requested, the routine returns a pointer to the record that was read and the length of the
record. If a write is requested, the caller provides a pointer to the record to be written and the length of
the record. If an open is requested, the routine opens the file if the file is not yet open. The routine also
returns a pointer to an area in storage containing information about the file. You can use the ARXDSIB
mapping macro to map this area. The mapping macro is in PRD1.BASE.

Specify the name of the I/O routine in the IOROUT field in the module name table. “Module Name Table”
on page 398 describes the format of the module name table. I/O processing is based on the Librarian and
SAM access methods.

The I/O routine is called for:

• Initialization. When ARXINIT initializes a language processor environment, REXX/VSE calls the I/O
replaceable routine to initialize I/O processing.

• Open:

– When you use the LINESIZE built-in function in a program
– Before the language processor does any input or output.

• For input, when:

– A PULL or a PARSE PULL instruction is processed, and the data stack is empty
– A PARSE EXTERNAL instruction is processed
– Input during pauses in interactive debug is processed
– The EXECIO command reads data on disk
– A program outside of REXX calls the I/O replaceable routine for input of a record.

• For output, when:

– A SAY instruction is processed
– Error messages must be written
– Trace (interactive debug facility) messages must be written
– The EXECIO command writes data to disk
– A program outside of REXX calls the I/O replaceable routine for output of a record.

• Termination. When REXX/VSE terminates a language processor environment, the I/O replaceable
routine is called to clean up I/O.

Entry Specifications: This section describes the contents of the registers on entry for the I/O replaceable
routine. You can specify the address of the environment block either in register 0 or in the environment
block address parameter in the parameter list. For more information, see “Using the Environment Block
Address” on page 441.
Register 0

Address of the current environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

I/O Routine

Chapter 21. Replaceable Routines and Exits 447

Parameters: Register 1 contains the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 73 on page 448 describes the parameters for the I/O routine.

Table 73. Input Parameters for the I/O Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to perform. The function name is left justified, in
uppercase, and padded to the right with blanks. Valid functions are:

• CLOSE
• INIT
• OPENR
• OPENW
• OPENX
• READ
• READX
• TERM
• WRITE.

“Functions Supported for the I/O Routine” on page 450 describes these
functions.

Parameter 2 4 Specifies the address of the record read, the record to be written,
or the data set information block, which is an area in storage that
contains information about the file (see page “Data Set Information
Block (DSIB)” on page 453). This field is not used as an input parameter
for the CLOSE, INIT, READ, READX, or TERM functions.

Parameter 3 4 Specifies the length of the data in the buffer to which parameter 2
points. On output for an open request, parameter 3 may contain the
length of the data set information block. “Buffer and Buffer Length
Parameters” on page 451 describes the buffer and buffer length in
more detail.

Parameter 4 8 This is the name of a SAM file or SYSIPT or SYSLST. (If you are using
a sublibrary member, this parameter must be blank; see Parameter 8.
The name must be:

• SYSIPT
• SYSLST
• SYSxxx (where xxx is numeric)
• Any other 7-character name.

Otherwise, you receive an error.) The name is uppercase, left justified,
and padded with blanks on the right.

For READ, READX, and WRITE, it is the name of file from which to read
or to which to write the data. For CLOSE, it is the name of the file to
close. For OPEN, OPENX, and OPENW, it is the name of the file to open.
INIT and TERM functions do not use this field.

If the input or output file is not a SAM file or SYSIPT or SYSLST, and if
parameter 8 is also blank, the return code from the I/O routine is 20.

I/O Routine

448 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 73. Input Parameters for the I/O Replaceable Routine (continued)

Parameter Number of
Bytes

Description

Parameter 5 4 For a read operation, this parameter is used on output and specifies the
absolute record number of the last logical record read. For a write to a
file that is opened for update, it provides a record number to verify the
number of the record to update. Specify 0 to bypass verification of the
record number.

This parameter is not used for the CLOSE, INIT, OPENR, OPENW,
OPENX, or TERM functions. See “Line Number Parameter” on page 452
for more information.

Parameter 6 4 This parameter is optional. It is the address of the environment block
that represents the environment in which you want the I/O replaceable
routine to run.

If you specify a nonzero value for the environment block address
parameter, the I/O routine uses the value you specify and ignores
register 0. However, the routine does not check whether the address
is valid. Therefore, ensure the address you specify is correct or
unpredictable results can occur. For more information, see “Using the
Environment Block Address” on page 441.

Parameter 7 4 This parameter is optional. It is a field that the I/O replaceable routine
uses for the return code.

If you use this parameter, the I/O routine puts the return code in the
parameter and also in register 15. Otherwise, the routine uses register
15 only. If the parameter list is incorrect, the return code is returned in
register 15 only. "Return Codes" describes the return codes.

Parameter 8 34 This parameter is optional. It is a fully qualified sublibrary name (7
characters for the library name, 8 for the sublibrary, 8 for the member
name, 8 for the type). The name is uppercase, left justified, and padded
with blanks on the right.

For READ, READX, and WRITE, it is the name of file from which to read
or to which to write the data. For CLOSE, it is the name of the file to
close. For OPEN, OPENX, and OPENW, it is the name of the file to open.
INIT and TERM functions do not use this field.

If this parameter and parameter 4 are both blank, the return code form
the I/O routine is 20.

I/O Routine

Chapter 21. Replaceable Routines and Exits 449

Table 73. Input Parameters for the I/O Replaceable Routine (continued)

Parameter Number of
Bytes

Description

Parameter 9 4 This parameter is optional. It specifies the address of the control block
for ARXINOUT. (Table 74 on page 452 shows the control block.) To
explicitly or implicitly open a SAM file, you must specify Parameter
9. For other types of files, if you do not specify this parameter, the
language processor uses default information.

The control block is used for input and output with all types of files.

For a member of a sublibrary, the control block is needed only for
writing information. It contains an indication of whether the sublibrary
member contains SYSIPT data. The default for a new file indicates no
SYSIPT data. For an old file, the default is the same as specified on
opening the original file.

For SYSLST and SYSIPT, the control block is for reading or writing
information. It contains information about block size, record format,
and record size. It also contains carriage control information for SYSLST.

The defaults for SYSLST are: block size of 120, record format of
FIXUNB, record size of 121, and no carriage control data. The defaults
for SYSIPT are: block size of 80, record format of FIXUNB, record size of
80.

Functions Supported for the I/O Routine
Parameter 1 specifies the function the I/O routine performs. Valid functions are:
INIT

The routine performs any initialization that is required. During the initialization of a language
processor environment, the I/O routine is called to initialize I/O processing.

OPENR
The routine opens the specified file for a read operation if it is not already open. Parameter 4 or
parameter 8 specifies the file name.

The I/O routine returns the address of the data set information block in parameter 2. “Data Set
Information Block (DSIB)” on page 453 describes the block in more detail.

OPENW
The routine opens the specified file for a write operation if it is not already open. Parameter 4 or
parameter 8 specifies the file name.

The I/O routine returns the address of the data set information block in parameter 2. “Data Set
Information Block (DSIB)” on page 453 describes the block in more detail.

OPENX
The routine opens the specified file for update if it is not already open. Parameter 4 or parameter 8
specifies the file name.

The I/O routine returns the address of the data set information block in parameter 2. “Data Set
Information Block (DSIB)” on page 453 describes the block in more detail.

READ
The routine reads data from the file that parameter 4 or parameter 8 specifies. It returns the data in
the buffer to which the address in parameter 2 points. It also returns the number of the record that
was read in the line number parameter (parameter 5).

READ and READX are equivalent, except that the file is opened differently. You can do subsequent
read operations to the same file using either READ or READX because they do not reopen the file.

I/O Routine

450 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

If the file to read from is closed, the routine opens it for input and then performs the read.

READX
The routine reads data from the file that parameter 4 or parameter 8 specifies. It returns the data in
the buffer to which the address in parameter 2 points. It also returns the number of the record that
was read in the line number parameter (parameter 5).

If the file to read from is closed, the routine opens it for update and then performs the read.

READ and READX are equivalent, except that the file is opened differently. You can do subsequent
read operations to the same file using either READ or READX because they do not reopen the file.

WRITE
The routine writes data from the specified buffer to the specified file. The address in parameter 2
points to the buffer. Parameter 4 or parameter 8 specifies the file name.

If the file is closed, the routine first opens it for output and then writes the record. For a member of a
sublibrary, the record is written at the end of the file. For SAM files residing in VSAM-managed space,
a disposition of NEW indicates writing the first record, and a disposition of OLD indicates writing at the
end of the file.

When a file is opened for update, the WRITE function rewrites the last record that READ or READX
retrieved. You can optionally use the line number parameter (parameter 5) to ensure that the number
of the record being updated agrees with the number of the last record that was read.

TERM
The routine performs cleanup and closes any open files.

CLOSE
The routine closes the file that parameter 4 or parameter 8 specifies. The CLOSE function permits files
to be freed.

CLOSE is allowed only from the task under which the file was opened. If CLOSE is requested from a
different task, the request is ignored and a return code of 20 is returned.

Buffer and Buffer Length Parameters
Parameter 2 specifies the address of a buffer and parameter 3 specifies the buffer length. Only the WRITE
function uses these parameters for input. (CLOSE, INIT, OPENR, OPENX, OPENW, READ, READX, and
TERM do not use these parameters for input.) READ, READX, OPENR, OPENX, and OPENW use parameter
2 for output, and the same functions plus WRITE use parameter 3 for output. (CLOSE, INIT, TERM, and
WRITE do not use parameter 2 for output, and CLOSE, INIT, and TERM do not use parameter 3 for output.)

On input for a WRITE function, the buffer address points to a buffer that contains the record to be written.
The buffer length parameter specifies the length of the data to be written from the buffer. The caller must
provide the buffer address and length.

For the WRITE function, if data is truncated during the write operation, the I/O routine returns the length
of the data that was actually written in the buffer length parameter. A return code of 16 is also returned.

On output for a READ or READX function, the buffer address points to a buffer that contains the record
that was read. The buffer length parameter specifies the length of the data being returned in the buffer.

For a READ or READX function, the I/O routine obtains the buffer needed to store the record. The caller
must copy the data that is returned into its own storage before calling the I/O routine again for another
request. The buffers are reused for subsequent I/O requests.

On output for an OPENR, OPENW, or OPENX function, the buffer address points to the data set
information block, which is an area in storage that contains information about the file. “Data Set
Information Block (DSIB)” on page 453 describes the format of this area. REXX/VSE provides a mapping
macro, ARXDSIB, that you can use to map the buffer area returned for an open request.

For an OPENR, OPENW, or OPENX function, all of the information in the data set information block does
not have to be returned. The buffer length must be large enough for all of the information being returned
about the file or unpredictable results can occur. The data set information block buffer must be large

I/O Routine

Chapter 21. Replaceable Routines and Exits 451

enough to contain the flags field and any fields that have been set, as the flags field indicates (see “Data
Set Information Block (DSIB)” on page 453).

REXX does not check the content of the buffer for valid or printable characters. Any hexadecimal
characters may be passed.

The buffers that the I/O routine returns are reserved for use by the environment block (ENVBLOCK) under
which the original I/O request was made. The buffer should not be used again until:

• A subsequent I/O request is made for the same environment block, or
• The I/O routine is called to terminate the environment represented by the environment block (TERM

function). In this case, the I/O buffers are freed and the storage is made available to REXX/VSE.

Any replaceable I/O routine must conform to this procedure to ensure that the program that is currently
running accesses valid data.

If you provide your own replaceable I/O routines, your routine must support all of the functions that
the supplied I/O routine performs. All open requests must open the specified file. However, for an
open request, your replaceable I/O routine need only fill in the data set information block fields for
the logical record length (LRECL) and its corresponding flag bit. These fields are DSIB_LRECL and
DSIB_LRECL_FLAG. The language processor needs these two fields to determine the line length being
used for its write operations. The language processor formats all of its output lines to the width the LRECL
field specifies. If your routine specifies a LRECL (DSIB_LRECL field) of 0, the language processor formats
its output using a width of 80 characters, the default.

When the I/O routine is called with the TERM function, all buffers are freed.

Line Number Parameter
Parameter 5, the line number parameter, is an input parameter for the WRITE function and an output
parameter for the READ and READX functions. (It is not used for input for the CLOSE, INIT, OPENR,
OPENW, OPENX, READ, READX, or TERM functions. It is not used for output for CLOSE, INIT, OPENR,
OPENX, OPENW, or TERM.)

If you are writing to a file that is opened for update, you can use this parameter to verify the record being
updated. The parameter must be either:

• A nonzero number that is checked against the record number of the last record that was read for
update. This ensures that the correct record is updated. If the record numbers are identical, the record
is updated. If not, the record is not written and a return code of 20 is returned.

• 0 -- No record verification is done. The last record that was read is unconditionally updated.

If you are writing to a file that is opened for output, the line number parameter is ignored.

On output for the READ or READX functions, the parameter returns the absolute record number of the last
logical record that was read.

I/O Control Block
You can use the I/O control block to identify the file you want to read or to which you want to write. You
can use this control block only in the I/O replaceable routine (ARXINOUT). A mapping macro for the I/O
control block, ARXIOPTS, is in PRD1.BASE. The following table shows the I/O control block.

Note: Each field name in the table must include the prefix IOPTS_.

Table 74. I/O Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID An 8-character string that identifies the information
block. It contains the characters ARXIOPTS.

8 2 LENGTH Length of the control block.

I/O Routine

452 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 74. I/O Control Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

10 2 LIB_OPTS Library option flags. Only the first 4 bits are used.
The flag bits are:

• LIB_DATA - SYSIPT data
• LIB_NODATA - no SYSIPT data
• LIB_FORMAT_F - fixed record format
• LIB_FORMAT_S - string record format

12 4 DTF_BLKSIZE The block size of the file.

16 4 DTF_RECSIZE The record size of the file.

24 8 DTF_RECFORM The record format of the file. This is one of the
following:

• 'FIXUNB ' - fixed unblocked
• 'FIXBLK ' - fixed blocked
• 'VARUNB ' - variable unblocked
• 'VARBLK ' - variable blocked.

32 2 DTF_FLAGS SAM options flag. Only the first 4 bits are used. The
flag bits are:

• DTF_BLKSIZE_FLAG block size passed
• DTF_RECSIZE_FLAG record size passed
• DTF_RECFORM_FLAG record format passed
• DTF_CC_FLAG carriage control
• DTF_ASA_FLAG carriage control
• DTF_MCC_FLAG carriage control

34 2 (reserved) none

36 4 LIB_BYTES Part length if library members in string record
format are to be read or written in smaller pieces.

Data Set Information Block (DSIB)
The data set information block is a control block that contains information about a file that the I/O
replaceable routine opens. For an OPENR, OPENW, or OPENX function request, the I/O routine returns the
address of the data set information block in parameter 2. REXX/VSE provides a mapping macro ARXDSIB
you can use to map the block. The mapping macro is in PRD1.BASE.

Table 75 on page 453 shows the format of the control block.

Note: Each field name in the following table must include the prefix DSIB_.

Table 75. Format of the Data Set Information Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID An 8-character string that identifies the information
block. It contains the characters ARXDSIB.

I/O Routine

Chapter 21. Replaceable Routines and Exits 453

Table 75. Format of the Data Set Information Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

8 2 LENGTH The length of the data set information block.

10 2 --- Reserved.

12 8 DDNAME An 8-character string that specifies the name of the
file for which REXX/VSE returns information. This is
the file that the I/O routine opened. This is blank
for a member of a sublibrary.

20 4 FLAGS A fullword of bits that are used as flags. Only
the first 8 bits are used. The remaining bits are
reserved.

The flag bits indicate whether or not information
is returned in the fields at offset +26 through
offset +56. Each flag bit corresponds to one
of the remaining fields in the control block.
Information about how to use the flag bits and their
corresponding fields follows the table.

24 2 --- Reserved.

26 2 BLKSZ The block size (BLKSIZE) of the file.

28 2 DSORG The organization of the file:

• '0800' - This is a Librarian file.
• '4000' - This is a SAM file.

30 2 RECFM The record format (RECFM) of the file.

• 'F ' - Fixed
• 'FB' - Fixed blocked
• 'V ' - Variable
• 'VB' - Variable blocked.

32 4 GET_CNT The total number of records read.

36 4 PUT_CNT The total number of records written.

40 1 IO_MODE The mode in which the file was opened.

• 'R' - open for READ
• 'X' - open for READX
• 'W' - open for WRITE
• 'L' - open for exec load.

41 1 CC Carriage control information.

• 'A' - ANSI carriage control
• 'M' - machine carriage control
• ' ' - no carriage control.

42 1 TRC Reserved.

43 1 --- Reserved.

I/O Routine

454 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 75. Format of the Data Set Information Block (continued)

Offset
(Decimal)

Number of
Bytes

Field Name Description

44 12 --- Reserved.

56 4 LRECL The logical record length (LRECL) of the file. This
field is required.

Note: The LRECL field and its corresponding flag
bit (at offset +20) are the last required fields to
be returned in the data set information block. The
remaining fields are not required.

60 20 --- Reserved.

80 34 LIBRNAME A string that specifies the name of sublibrary
member for which REXX/VSE returns information.
This is the member that the I/O routine opened.
This is blank for a SAM file, SYSIPT, or SYSLST.

At offset +20 in the data set information block, there is a fullword of bits that are used as flags. Only
the first eight bits are used. The remaining bits are reserved. The bits indicate whether information is
returned in each field in the control block starting at offset +26. A bit must be on if its corresponding field
is returning a value. If the bit is off, its corresponding field is ignored.

The flag bits are:

• The LRECL flag. This bit must be on and the logical record length must be returned at offset +56. The
logical record length is the only file attribute that is required. The remaining attributes starting at offset
+26 in the control block are optional.

• The BLKSIZE flag. This bit must be set on if you are returning the block size at offset +26.
• The DSORG flag. This bit must be set on if you are returning the file organization at offset +28.
• The RECFM flag. This bit must be set on if you are returning the record format at offset +30.
• The GET flag. This bit must be set on if you are returning the total number of records read at offset +32.
• The PUT flag. This bit must be set on if you are returning the total number of records written at offset

+36.
• The MODE flag. This bit must be set on if you are returning the mode in which the file was opened at

offset +40.
• The CC flag. This bit must be set on if you are returning carriage control information at offset +41.

Return Specifications: For the I/O routine, the contents of the registers on return are:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: Table 76 on page 456 shows the return codes for the I/O routine. The routine returns the
return code in register 15. If you specify the return code parameter (parameter 7), the I/O routine also
returns the return code in the parameter.

I/O Routine

Chapter 21. Replaceable Routines and Exits 455

Table 76. Return Codes for the I/O Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

For an OPENR, OPENW, or OPENX request, the file was successfully opened. The I/O
routine returns the address of an area of storage that contains information about the
file. The address is returned in the buffer address parameter (parameter 2). You can use
the ARXDSIB mapping macro to map this area.

4 Processing was successful. For a READ, READX, or WRITE, the file was opened.

For an OPENR, OPENW, or OPENX, the file was already open in the requested mode. The
I/O routine returns the address of an area of storage that contains information about the
file. The address is returned in the buffer address parameter (parameter 2). You can use
the ARXDSIB mapping macro to map this area.

8 This return code is used only for a READ or READX function. Processing was successful.
However, no record was read because the end-of-file (EOF) was reached.

12 An OPENR, OPENW, or OPENX request was issued and the file was already open, but
not in the requested mode. The I/O routine returns the address of an area of storage
that contains information about the file. The address is returned in the buffer address
parameter (parameter 2). You can use the ARXDSIB mapping macro to map this area.

16 Output data was truncated for a write or update operation (WRITE function). The I/O
routine returns the length of the data that was actually written in parameter 3.

20 Processing was not successful. The requested function is not performed. One possibility
is that you did not specify a file name. An error message that describes the error is also
issued.

24 Processing was not successful. The file was not successfully opened. The requested
function is not performed.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is not valid. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

Host Command Environment Routine
The host command environment replaceable routine is called to process all host commands for a specific
host command environment (see page “The VSE Host Command Environment” on page 25 for the
definition of host commands). A REXX program may contain host commands to be processed. When
the language processor processes an expression that it does not recognize as a keyword instruction or
function, it evaluates the expression and then passes the string to the active host command environment.
A specific environment is in effect when the command is processed. The host command environment
table (SUBCOMTB table) is searched for the name of the active host command environment. The
corresponding routine specified in the table is then called to process the string. For each valid host
command environment, there is a corresponding routine that processes the command.

In a program, you can use the ADDRESS instruction to route a command string to a specific host
command environment and, therefore, to a specific host command environment replaceable routine.

The ROUTINE field of the host command environment table specifies the names of the routines that are
called for each host command environment. (“Host Command Environment Table” on page 401 describes
the table.)

Host Command Environment Routine

456 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

You can provide your own replaceable routine for any one of the default environments provided. You can
also define your own host command environment that handles certain types of host commands and you
can provide a routine that processes the commands for that environment. “Host Command Environment
Table” on page 401 describes the table.

Entry Specifications: For a host command environment routine, the contents of the registers on entry
are described in the following. For more information about register 0, see “Using the Environment Block
Address” on page 441.
Register 0

Address of the current environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: Register 1 contains the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. All parameters are passed on the call. Set the
high-order bit of the last address to 1 to indicate the end of the parameter list. (Table 77 on page 457
describes the parameters for a host command environment replaceable routine.)

Table 77. Parameters for a Host Command Environment Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The name of the host command environment that is to process the
string. The name is left justified, in uppercase, and padded to the right
with blanks.

Parameter 2 4 Specifies the address of the string to be processed. REXX does not
check the contents of the string for valid or printable characters. Any
characters can be passed to the routine. REXX obtains and frees the
storage required to contain the string.

Parameter 3 4 Specifies the length of the string to be processed.

Parameter 4 4 Specifies the address of the user token. The user token is a 16-
byte field in the SUBCOMTB table for the specific host command
environment. “Host Command Environment Table” on page 401
describes the user token field.

Host Command Environment Routine

Chapter 21. Replaceable Routines and Exits 457

Table 77. Parameters for a Host Command Environment Routine (continued)

Parameter Number of
Bytes

Description

Parameter 5 4 Contains the return code of the host command that was processed. This
parameter is used only on output. The value is a signed binary number.

After the host command environment replaceable routine returns the
value, REXX converts it into a character representation of its equivalent
decimal number. The result of this conversion is placed into the
REXX special variable RC and is available to the program that called
the command. Positive binary numbers are represented as unsigned
decimal numbers. Negative binary numbers are represented as signed
decimal numbers. For example:

• If the command's return code is X'FFFFFF3F', the special variable RC
contains -193.

• If the command's return code is X'0000000C', the special variable RC
contains 12.

If you provide your own host command environment routines, you
should establish a standard for the return codes that your routine issues
and the contents of this parameter. If a standard is used, programs that
issue commands to a particular host command environment can check
for errors in command processing using consistent REXX instructions.
With the host command environments that REXX/VSE provides, a return
code of -3 in the REXX special variable RC indicates the environment
could not locate the host command. The -3 return code is a standard
return code for host commands that could not be processed. If your
routine processes a command that is not valid, it is recommended
that you return X'FFFFFFFD' as the return code. This means the REXX
special variable RC contains -3.

Note: If a host command processor abnormally terminates, the entire batch job abends. For information
about what happened to your job, see the description of $ABEND in the VSE/ESA System Control
Statements, SC33-6713.

Return Specifications: For a host command environment routine, the contents of the registers on return
are:
Registers 0-14

Same as on entry
Register 15

Return code. (The return code is also contained in parameter 5.)

Return Codes: Table 78 on page 458 shows the return codes for the host command environment routine.
These are the return codes from the replaceable routine itself, not from the command that the routine
processed. The command's return code is passed back in parameter 5. See Chapter 7, “Conditions and
Condition Traps,” on page 129 for information about ERROR and FAILURE conditions and condition traps.

Table 78. Return Codes for the Host Command Environment Routine

Return Code Description

≤-13 If the value of the return code is -13 or less than -13, the routine requested turning
on the HOSTFAIL flag. This is a TRACE NEGATIVE condition and a FAILURE condition is
trapped in the program.

Host Command Environment Routine

458 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 78. Return Codes for the Host Command Environment Routine (continued)

Return Code Description

-1 — -12 If the value of the return code is from -1 to -12 inclusive, the routine requested turning
on the HOSTERR flag. This is a TRACE ERROR condition and an ERROR condition is
trapped in the program.

0 No error condition was indicated by the routine. No error conditions are trapped (for
example, to indicate a TRACE condition).

1 — 12 If the value of the return code is 1 - 12 inclusive, the routine requested turning on the
HOSTERR flag. This is a TRACE ERROR condition and an ERROR condition is trapped in
the program.

≥13 If the value of the return code is 13 or greater than 13, the routine requested turning
on the HOSTFAIL flag. This is a TRACE NEGATIVE condition and a FAILURE condition is
trapped in the program.

Data Stack Routine
The data stack routine is called to handle any requests for data stack services. The routine is called
when a program wants to perform a data stack operation or when a program needs to process data
stack-related operations. The routine is called for the following:

• PUSH
• PULL
• QUEUE
• QUEUED()
• MAKEBUF
• DROPBUF
• NEWSTACK
• DELSTACK
• QSTACK
• QBUF
• QELEM.

The name of the data stack routine that REXX/VSE supplies is ARXSTK. If you provide your own data stack
routine, your routine can handle all of the data stack requests or your routine can perform pre-processing
and then call the routine REXX/VSE supplies, ARXSTK. If your routine handles the data stack requests
without calling the routine REXX/VSE supplies, your routine must manipulate its own data stack.

If your data stack routine performs pre-processing and then calls ARXSTK, your routine must pass the
address of the environment block for the language processor environment to ARXSTK.

An application can call ARXSTK to operate on the data stack. The only requirement is that a language
processor environment has been initialized.

Parameter 1 indicates the type of function to be performed against the data stack. If the data stack
routine is called to pull an element off the data stack (PULL function) and the data stack is empty, a return
code of 4 indicates an empty data stack. However, you can use the PULLEXTR function to bypass the data
stack and read from the input stream.

If the data stack routine is called and a data stack is not available, all services operate as if the data stack
were empty. A PUSH or QUEUE will seem to work, but the pushed or queued data is lost. QSTACK returns
a 0. NEWSTACK will seem to work, but a new data stack is not created and any subsequent data stack
functions operate as if the data stack is permanently empty.

Data Stack Routine

Chapter 21. Replaceable Routines and Exits 459

The maximum string that can be placed on the data stack is 1 byte less than 16 megabytes. REXX does
not check the content of the string, so the string can contain any hexadecimal characters.

If multiple data stacks are associated with a single language processor environment, all data stack
operations are performed on the last data stack that was created under the environment. If a language
processor environment is initialized with the NOSTKFL flag off, a data stack is always available to
programs that run in that environment. The language processor environment might not have its own
data stack. The environment might share the data stack with its parent environment depending on the
setting of the NEWSTKFL flag when the environment is initialized.

If the NEWSTKFL flag is on, a new data stack is initialized for the new environment. If the NEWSTKFL flag
is off and a previous environment on the chain of environments was initialized with a data stack, the new
environment shares the data stack with the previous environment on the chain. “Using the Data Stack” on
page 422 describes how the data stack is shared between language processor environments.

The name of the data stack replaceable routine is specified in the STACKRT field in the module name
table. “Module Name Table” on page 398 describes the format of the module name table.

Entry Specifications: For the data stack replaceable routine, the contents of the registers on entry are
described in the following. You can specify the address of the environment block in either register 0 or
in the environment block address parameter in the parameter list. For more information, see “Using the
Environment Block Address” on page 441.
Register 0

Address of the current environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: Register 1 contains the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. To indicate the end of the parameter list, set the
high-order bit of the last address to 1. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 79 on page 460 describes the parameters for the data stack routine.

Table 79. Parameters for the Data Stack Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is left justified, in
uppercase, and padded to the right with blanks. Valid functions are:

PUSH PULL
QUEUE PULLEXTR
MAKEBUF QUEUED
NEWSTACK DROPBUF
QSTACK DELSTACK
QELEM QBUF

“Functions Supported for the Data Stack Routine” on page 461
describes the functions in more detail.

Data Stack Routine

460 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 79. Parameters for the Data Stack Routine (continued)

Parameter Number of
Bytes

Description

Parameter 2 4 The address of a fullword in storage that points to a data stack element,
a parameter string, or a fullword of zeros. The use of this parameter
depends on the function requested. If the function is DROPBUF, the
parameter points to a character string containing the number of the
data stack buffer from which to start deleting data stack elements.

If the function is a function that places an element on the data stack
(for example, PUSH), the address points to a string of bytes that the
caller wants to place on the data stack. There are no restrictions on
the string. The string can contain any combination of hexadecimal
characters.

For PULL and PULLEXTR, this parameter is not used on input. On
output, it specifies the address of the string that was returned. For
PULL, the string was pulled from the data stack. For PULLEXTR, the
string was read from the current input stream. It is recommended that
you do not change the original string and that you copy the original
string into your own dynamic storage. Also, the original string may no
longer be valid when another data stack operation is performed.

Parameter 3 4 The length of the string to which the address in parameter 2 points. This
is 0 if there is no string or element. The maximum length is 16 million.
A string longer than 16 million characters is truncated to 16 million with
no error indication.

Parameter 4 4 A fullword binary number into which the result from the call is stored.
The value is the result of the function performed and is valid only when
the return code from the routine is 0. For more information about the
results that can be returned in parameter 4, see the descriptions of the
supported functions that follow and the individual descriptions of the
data stack commands in this book.

Parameter 5 4 This parameter is optional. It is the address of the environment block
that represents the environment in which you want the data stack
replaceable routine to run.

If you specify a nonzero value for the environment block address
parameter, the data stack routine uses the value you specify and
ignores register 0. However, the routine does not check whether the
address is valid. Therefore, ensure the address you specify is correct or
unpredictable results can occur. For more information, see “Using the
Environment Block Address” on page 441.

Parameter 6 4 This parameter is optional. It is a field that the data stack replaceable
routine uses to return the return code.

If you use this parameter, the data stack routine returns the return code
in the parameter and also in register 15. Otherwise, the routine uses
register 15 only. If the parameter list is incorrect, the return code is
returned in register 15 only. "Return Codes" describes the return codes.

Functions Supported for the Data Stack Routine
Parameter 1 contains the name of the function that the data stack routine is to perform. The functions
operate on the currently active data stack. Valid functions are:

Data Stack Routine

Chapter 21. Replaceable Routines and Exits 461

PUSH
Adds an element to the top of the data stack.

PULL
Retrieves an element off the top of the data stack.

PULLEXTR
Bypasses the data stack and reads a string from the current input stream. ASSGN(STDIN) returns the
name of the current input stream.

PULLEXTR is useful if the data stack is empty or you want to bypass the data stack entirely. For
example, suppose you use the PULL function and the data stack routine returns with a return code
of 4, which indicates that the data stack is empty. You can then use the PULLEXTR function to
read a string from the input stream. (For more information, see PARSE EXTERNAL on page “PARSE
EXTERNAL ” on page 44.)

QUEUE
Adds an element at the logical bottom of the data stack. If there is a buffer on the data stack, the
element is placed immediately above the buffer.

QUEUED
Returns the number of elements on the data stack, not including buffers.

MAKEBUF
Places a buffer on the top of the data stack. The return code from the data stack routine is the number
of the new buffer. The data stack initially contains one buffer (buffer 0), but you can use MAKEBUF
to create additional buffers on the data stack. The first time MAKEBUF is issued for a data stack, the
value 1 is returned.

DROPBUF n
Removes all elements from the data stack starting from the nth buffer. All elements that are removed
are lost. If you do not specify n, the last buffer that was created and all subsequently added elements
are deleted.

For example, if MAKEBUF is issued six times (that is, the last return code from the MAKEBUF function
is 6), and

DROPBUF 2

is issued, five buffers are deleted. These are buffers 2, 3, 4, 5, and 6.

DROPBUF 0 removes everything from the currently active data stack.

NEWSTACK
Creates a new data stack. The previously active data stack cannot be accessed until a DELSTACK is
issued.

DELSTACK
Deletes the currently active data stack. All elements on the data stack are lost. If the active data stack
is the primary data stack (that is, only one data stack exists and a NEWSTACK was not issued), all
elements on the data stack are deleted, but the data stack is still operational.

QSTACK
Returns the number of data stacks that are available to the running REXX program.

QBUF
Returns the number of buffers on the active data stack. If the data stack contains no buffers, 0 is
returned.

QELEM
Returns the number of elements from the top of the data stack to the next buffer. If QBUF = 0, then
QELEM = 0.

Return Specifications: For the data stack routine, the contents of the registers on return are:
Registers 0-14

Same as on entry

Data Stack Routine

462 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 15
Return code

Return Codes: Table 80 on page 463 shows the return codes for the data stack routine. These are the
return codes from the routine itself. They are not the return codes from any of the REXX/VSE commands
that are issued, such as NEWSTACK, DELSTACK, or QBUF. The command's return code is placed into the
REXX special variable RC, which the program can retrieve.

The data stack routine returns the return code in register 15. If you specify the return code parameter
(parameter 6), the routine also returns the return code in the parameter.

Table 80. Return Codes for the Data Stack Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

4 The data stack is empty. A return code of 4 is only for the PULL function.

20 Processing was not successful. An error condition occurred. The requested function
is not performed. You may have specified a function name that is incorrect. An error
message describing the error may be issued.

28 Processing was not successful. A language processor environment could not be located.

32 Processing was not successful. The parameter list is incorrect. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

Storage Management Routine
REXX storage routines handle storage and have pools of storage available to satisfy storage requests for
REXX processing. If the pools of storage available to the REXX storage routines are depleted, the routines
then call the storage management routine to request a storage pool. A storage pool is contiguous storage
that can be used by the REXX storage routines to satisfy storage requests for REXX processing.

You can provide your own storage management routine that interfaces with the REXX storage routines.
If you provide your own storage management routine, when the pools of storage are depleted, the REXX
storage routines call your storage management routine for a storage pool. If you do not provide your
own storage management routine, GETVIS and FREEVIS handle storage pool requests. The storage that
GETVIS and FREEVIS obtain and free is accessible in only a single partition. No storage is shared between
partitions. Providing your own storage management routine gives you an alternative to this.

The storage management routine is called to obtain or free a storage pool for REXX processing. The
routine supplies a storage pool that the REXX storage routines manage.

The storage management routine is called when:

• REXX processing requests storage and a sufficient amount of storage is not available in the pools of
storage the REXX storage routines use

• A storage pool needs to be freed. A storage pool may need to be freed when a language processor
environment is terminated or when the REXX storage routines determine that a particular pool of
storage can be freed.

Specify the name of the storage management routine in the GETFREER field in the module name table.
“Module Name Table” on page 398 describes the format of the module name table. Note that an
application may replace this routine.

Entry Specifications: The following describes the contents of the registers on entry for the storage
management replaceable routine. For more information about register 0, see “Using the Environment
Block Address” on page 441.

Storage Management Routine

Chapter 21. Replaceable Routines and Exits 463

Register 0
Address of the current environment block

Register 1
Address of the parameter list

Registers 2-12
Unpredictable

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address

Parameters: Register 1 contains the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. All parameters are passed on the call. Set the
high-order bit of the last address to 1 to indicate the end of the parameter list. Table 81 on page 464
describes the parameters for the storage management routine.

Table 81. Parameters for the Storage Management Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name is left justified, in uppercase,
and padded to the right with blanks. The following functions are valid:
GET

Obtain a storage pool above 16 megabytes in virtual storage
GETLOW

Obtain a storage pool below 16 megabytes in virtual storage
FREE

Free a storage pool

Parameter 2 4 Specifies the address of a storage pool. This parameter is required as
an input parameter for the FREE function. It specifies the address of the
storage pool the routine should free.

This parameter is used as an output parameter for the GET and
GETLOW functions. The parameter specifies the address of the storage
pool the routine obtained.

Parameter 3 4 Specifies the size of the storage pool, in bytes, to be freed or that
was obtained. On input for the FREE function, this specifies the size of
the storage pool to free. This is the size of the storage pool to which
parameter 2 points. All requests for the FREE function are for a single
storage pool that GET or GETLOW previously obtained.

On output for the GET and GETLOW functions, the parameter specifies
the size of the storage pool the routine obtained. This size must be at
least the size that was requested in parameter 4. The REXX/VSE storage
routines use the size returned in parameter 3.

Parameter 4 4 Specifies in bytes the size of the storage pool to obtain. This parameter
is an input parameter for GET and GETLOW. It specifies the size of the
storage pool that is being requested. The size of the storage pool that is
actually obtained is returned in parameter 3.

This parameter is not used for the FREE function.

Storage Management Routine

464 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 81. Parameters for the Storage Management Replaceable Routine (continued)

Parameter Number of
Bytes

Description

Parameter 5 4 This field is reserved.

Return Specifications: For the storage management replaceable routine, the contents of the registers on
return are:
Registers 0-14

Same as on entry
Register 15

Return code

Return Codes: Table 82 on page 465 shows the return codes for the storage management routine.

Table 82. Return Codes for the Storage Management Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

20 Processing was not successful. An error condition occurred. Storage was not obtained or
freed.

User ID Routine
The user ID routine returns the same value as the USERID built-in function. REXX/VSE calls the user ID
replaceable routine whenever the USERID built-in function is issued in a language processor environment.
The name of the user ID routine REXX/VSE supplies is ARXUID.

The name of the user ID replaceable routine is specified in the IDROUT field in the module name table.
“Module Name Table” on page 398 describes the format of the module name table.

Entry Specifications: For the user ID replaceable routine, the contents of the registers on entry are
described below. The address of the environment block can be specified in either register 0 or in
the environment block address parameter in the parameter list. For more information, see “Using the
Environment Block Address” on page 441.
Register 0

Address of the current environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: Register 1 contains the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. Set the high-order bit of the last address to 1
to indicate the end of the parameter list. For more information about passing parameters, see “Parameter
Lists for REXX/VSE Routines” on page 325.

Table 83 on page 466 describes the parameters for the user ID routine.

User ID Routine

Chapter 21. Replaceable Routines and Exits 465

Table 83. Parameters for the User ID Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is left justified, in
uppercase, and padded to the right with blanks. The only valid function
is USERID. This must be in uppercase, left justified, and padded to the
right with blanks. “Function Supported for the User ID Routine” on page
466 describes function in detail.

Parameter 2 4 An address of storage into which the routine places the user ID.
On output, the area that this address points to contains a character
representation of the user ID.

Parameter 3 4 The length of storage to which the address in parameter 2 points. On
input, this value is the maximum length of the area that is available to
contain the ID. The length supplied is 160 bytes.

The routine must change this parameter and return the actual length
of the character string it returns. If the routine returns a 0, the USERID
built-in function returns a null value.

If the routine copies more characters into the storage area than the
storage provided, REXX may abend and any results are unpredictable.

Parameter 4 4 This parameter is optional. It is the address of the environment
block that represents the environment in which you want the user ID
replaceable routine to run.

If you specify a nonzero value, the user ID routine uses the value you
specify and ignores register 0. However, the routine does not check
whether the address is valid. Therefore, ensure the address you specify
is correct or unpredictable results can occur. For more information, see
“Using the Environment Block Address” on page 441.

Parameter 5 4 This parameter is optional. It is a field the user ID replaceable routine
uses to return the return code.

If you use this parameter, the user ID routine returns the return code in
the parameter and also in register 15. Otherwise, the routine uses only
register 15. If the parameter list is incorrect, the return code is returned
only in register 15. "Return Codes" describes the return codes.

Function Supported for the User ID Routine
Specify the function the user ID routine is to perform in parameter 1. The only valid function is USERID.
USERID

Returns the same value that the USERID built-in function would return. The value returned can be:

1. the user ID from the last SETUID command
2. the user ID of the calling REXX program, if one REXX program calls another
3. the user ID under which the job is running
4. the job name.

Return Specifications: For the user ID replaceable routine, the contents of the registers on return are:
Registers 0-14

Same as on entry

User ID Routine

466 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 15
Return code

Return Codes: Table 84 on page 467 shows the return codes for the user ID routine. The routine returns
the return code in register 15. If you specify the return code parameter (parameter 5), the user ID routine
also returns the return code in the parameter.

Table 84. Return Codes for the User ID Replaceable Routine

Return Code Description

0 Processing was successful. The user ID was returned, or a null character string was
returned.

20 Processing was not successful. Either parameter 1 (function) was not valid or parameter
3 (length) was less than or equal to 0. The user ID was not obtained.

28 Processing was not successful. The language processor environment could not be
located.

32 Processing was not successful. The parameter list is incorrect. It contains too few or too
many parameters, or the high-order bit of the last address is not 1 to indicate the end of
the parameter list.

Message Identifier Routine
The message identifier replaceable routine is called to determine if the message identifier (message ID)
is to accompany an error message. The name of the message identifier routine that REXX/VSE supplies is
ARXMSGID.

Note: To permit FORTRAN programs to call ARXMSGID, REXX/VSE provides an alternate entry point for
the ARXMSGID routine. The alternate entry point name is ARXMID.

The routine is called whenever a message is to be written when a REXX program or REXX routine (for
example, ARXEXCOM or ARXIC) is running.

The name of the message identifier replaceable routine is specified in the MSGIDRT field in the module
name table. “Module Name Table” on page 398 describes the format of the module name table.

Entry Specifications: The following describes the contents of the registers on entry for the message
identifier routine. For more information about register 0, see “Using the Environment Block Address” on
page 441.
Register 0

Address of the current environment block
Registers 1-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters: There is no parameter list for the message identifier routine. Return codes are used to return
information to the caller.

Return Specifications: For the message identifier replaceable routine, the contents of the registers on
return are:
Registers 0-14

Same as on entry

Message Identifier Routine

Chapter 21. Replaceable Routines and Exits 467

Register 15
Return code

Return Codes: Table 85 on page 468 shows the return codes for the message identifier routine.

Table 85. Return Codes for the Message Identifier Replaceable Routine

Return Code Description

0 Include the message identifier (message ID) with the message.

Nonzero Do not include the message identifier (message ID) with the message.

REXX Exit Routines
You can use exit routines to customize REXX processing.

Generally, you use exit routines to customize a particular command or function on a system-wide basis.
You use the REXX exits to customize different aspects of REXX processing on a language processor
environment basis.

This topic describes the following types of exits:

• Exits for initialization and termination (ARXINITX, ARXITMV, and ARXTERMX)
• The SAA-defined halt exit (with Halt Test and Halt Clear functions)
• Installation-supplied exits (for exec processing, exec initialization, and exec termination).

Some exits receive parameters on entry, and others receive no parameters. Some of the REXX exits, such
as the exits for initialization and termination, have fixed names. Others, such as the exec processing, exec
initialization, exec termination, and halt exit, do not. You supply the name yourself and then define the
name in the appropriate fields in the module name table.

Exits for Language Processor Environment Initialization and Termination
The supplied exits are default exits. There are three exits you can use to customize the initialization and
termination of language processor environments. The names of these exits are fixed. If you do not wish to
use the default exits, you can provide your own exits. If you provide one or more exits, the exit is called
whenever the ARXINIT and ARXTERM routines are called. This occurs whenever a user explicitly calls
ARXINIT and ARXTERM or when the system automatically calls the routines to initialize and terminate a
language processor environment. See Chapter 20, “Initialization and Termination Routines,” on page 427
for a description of ARXINIT and ARXTERM and their parameters.

ARXINITX
This is the pre-environment initialization exit routine. You can use ARXINITX to:

• Prevent the initialization of a language processor environment
• Change parameters for initializing a language processor environment
• Perform special pre-environment processing.

By default, ARXINIT sets a return code of 0 and returns.

ARXINITX performs exit processing before a new language processor environment is initialized. ARXINIT
calls ARXINITX. ARXINITX receives control before an environment is initialized and before ARXINIT
evaluates any parameters. ARXINITX receives the same parameters that ARXINIT receives.

ARXINIT uses register 0 to locate the previous environment block, reentrant or non-reentrant. Therefore,
changing register 0 controls how ARXINIT locates the previous environment block. If you change register
0 and do not restore it, REXX/VSE uses the new value to locate the previous environment block.

The following shows the contents of the registers on entry for the ARXINITX exit.

Exit Routines

468 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Register 0
Same as on entry to ARXINIT initialization routine (address of environment block)

Register 1
Address of the parameter list passed to ARXINIT

Registers 2–12
Unpredictable

Register 13
Address of register save area

Register 14
Return address

Register 15
Entry point address

The following table shows the parameters for ARXINITX.

Table 86. Parameters for ARXINITX

Parameter Number of
Bytes

Description

Parameter 1 8 This parameter specifies the function to be performed:
INITENVB

Initializes a new environment.
FINDENVB

Obtains the address of the environment block for the current
non-reentrant environment. FINDENVB returns the address of the
environment block in register 0 and in parameter 6. It does not
initialize a new environment.

Parameter 2 8 The name of the parameters module, which contains the values for
initializing the new environment.

On the call to the ARXINIT initialization routine, the caller may have
passed a blank in this field. Therefore, ARXINIT assumes that all the
fields in the parameters module are null.

ARXINIT provides two ways in which you can pass parameter values;
the parameters module and the address of an in-storage parameter list,
which is parameter 3.

Parameter 3 4 The address of an in-storage parameter list, which is an area in storage
containing parameters that are equivalent to the parameters in the
parameters module. The format of the in-storage list is identical to the
format of the parameters module.

This parameter may be 0. If the address is 0, ARXINIT assumes that all
fields in the in-storage parameter list are null.

Parameter 4 4 The address of a user field. ARXINIT does not use or check this pointer
or the field. You can use this field for your own processing.

Parameter 5 4 A 4-byte field that is reserved.

Exit Routines

Chapter 21. Replaceable Routines and Exits 469

Table 86. Parameters for ARXINITX (continued)

Parameter Number of
Bytes

Description

Parameter 6 4 Only ARXINIT uses this parameter for output, and the exit should
not alter this parameter. The parameter contains the address of the
environment block. If you use the FINDENVB parameter to locate an
environment, this parameter contains the address of the environment
block for the current non-reentrant environment. If you use INITENVB
to initialize a new environment, ARXINIT returns the address of the
environment block for the newly created environment in this parameter.

For either FINDENVB or INITENVB, ARXINIT also returns the address
of the environment block in register 0. This parameter lets higher level
languages obtain the environment block address in order to examine
information in the environment block.

Parameter 7 4 Only ARXINIT uses this parameter for output, and the exit should not
alter this parameter. In this field ARXINIT returns a reason code, which
indicates why the requested function did not complete successfully.

Parameter 8 4 This is an optional parameter that lets you specify how REXX obtains
storage in the language processor environment. Specify 0 if you want
REXX/VSE to reserve a default amount of storage work area.

If you want to pass a storage work area to ARXINIT, specify the address
of an extended parameter list. The extended parameter list consists of a
fullword that is the address of the storage work area and a fullword that
is the length of the work area, followed by X'FFFFFFFFFFFFFFFF'.

Parameter 9 4 Only ARXINIT uses this parameter for output, and the exit should not
alter this parameter. It is a 4-byte field that ARXINIT uses to return the
return code.

The following shows return specifications from ARXINITX.
Register 0

Same values passed to the ARXINIT initialization routine
Registers 1-14

Same as on entry
Register 15

Return code

The following table shows return codes for ARXINITX.

Table 87. Return Codes for ARXINITX

Return Code Meaning

0 Exit processing was successful. REXX processing continues.

Nonzero Exit processing was not successful. REXX processing sets register 15 to 20 and
terminates. (The program is not executed. REXX sends a message that indicates a
failure in a system service.)

ARXITMV
ARXIMTV is the post-environment initialization exit routine. It performs exit processing after a language
processor environment is initialized. You can use ARXITMV to perform special processing for a newly
initialized language processor environment.

Exit Routines

470 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARXINIT calls ARXITMV after the environment is initialized and after the control blocks, such as the
environment block, are set up. By default, ARXITMV does not prevent the initialization of a language
processor environment and does not perform any special initialization processing. It sets a return code of
0 and returns.

ARXITMV does not receive any parameters. ARXITMV has the same return codes as ARXINITX; see Table
87 on page 470.

The following shows entry specifications for ARXITMV.
Register 0

Address of new environment block
Registers 1-12

Unpredictable
Register 13

Address of register save area
Register 14

Return address
Register 15

Exit entry point address

The following shows return specifications.
Register 0

Same as on entry
Registers 1–14

Same as on entry
Register 15

Return code

ARXTERMX
ARXTERMX is the environment termination exit routine. You can use ARXTERMX to prevent the
termination of a language processor environment or to perform special termination processing for a
language processor environment. By default, ARXTERMX sets a return code of 0 and returns.

ARXTERM calls ARXTERMX. ARXTERMX performs exit processing before a language processor
environment is terminated. ARXTERMX does not receive any parameters. See the list that follows for entry
specifications. ARXTERMX receives control before ARXTERM terminates the environment. ARXTERMX has
the same return specifications as ARXITMV; see “ARXITMV” on page 470. ARXITMV has the same return
codes as ARXINITX; see Table 87 on page 470.

The following shows entry specifications for ARXTERMX.
Register 0

Address of terminating environment block
Registers 1–12

Unpredictable
Register 13

Address of register save area
Register 14

Return address
Register 15

Exit entry point address

Installing ARXINITX, ARXITMV, and ARXTERMX
To install the ARXINITX, ARXITMV, or ARXTERMX exit, you need to link-edit the exit with the ARXINIT
initialization routine. You cannot change the names of these default exit routines.

Exit Routines

Chapter 21. Replaceable Routines and Exits 471

Halt Exit
The halt exit has two functions: test and clear. The halt test function is called at each clause boundary.
The halt clear function is called when a halt condition is raised.

The following describes the contents of the registers on entry:
Register 0

The address of the language processor environment (ENVBLOCK) under which the program is running
Register 1

The address of a list that contains the addresses of the REXX exit parameters
Registers 2-12

Unpredictable
Register 13

The address of a 72-byte register save area
Register 14

The return address
Register 15

The exit entry point address.

The halt test exit parameter list consists of the following 6 fullword fields:

Table 88. Parameter List for Halt Exit

Parameter Length Type Description

RXIT_EXIT 4 Supplied Exit identifier code, a
unique integer value in
binary that identifies
the exit. The value is 7.

RXIT_SUBFN 4 Supplied Exit function subcode.
The value is 1 for clear,
2 for test.

RXIT_ENVB@ 4 Supplied Address of the
ENVBLOCK under
which the REXX
program was running
when this exit was
called.

RXIT_USER 4 Supplied This is the
ENVBLOCK_USER field
that was established
when ARXINIT created
the environment block.

RXIT_EXITRC 4 Output The exit must store its
return code here.

RXHLT_FLAGS 4 Returned This parameter is for
halt test only. For the
test function, having
the first bit on raises
halt. This is equivalent
to setting this field
to the decimal value
2147483648.

When you do not want to raise a halt condition, set RC and RXHLT_FLAGS to 0.

Exit Routines

472 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

The following shows return specifications.
Register 1-14

Same as on entry
Register 15

Ignored

The halt exit may return one of the three following values as a return code in RXIT_EXITRC:

Table 89. Return Codes for Halt Exit

Return Code Meaning

0 Successful handling of the service. The parameter has been updated as appropriate for
the exit. The bit setting of the flags determines the action.

1 Exit chooses not to handle the service request. The language processor should handle
the request by the default means. The continuation processing of the language
processor is the same as would occur if this exit had not been specified.

-1 A severe error occurred while processing this request. REXX ends the program with
error 48 (Failure in system service).

Any other value specified is not supported and is treated as a -1.

REXX Exit Data Areas and Parameters
The ARXXITDF macro assigns the correct integer values to the symbols identifying the REXX exit and the
associated function subcodes. To include it in an assembler language program, call the macro with:

 ARXXITDF Include symbols for REXX exits and subcodes

The macro declares the following symbol and subcodes:

* RXHLT: Exit for HALT processing
*
RXHLT EQU 7 Halt processing
RXHLTCLR EQU 1 ... Clear HALT indicator
RXHLTTST EQU 2 ... Test HALT indicator

Installing a Halt Exit
The halt exit routine must be a separate phase that ARXINIT loads before the start of processing of a
REXX program. The name of this phase is in the module name table, field RXHLT.

Installation-Supplied Exits
There are default exit routines for exec initialization, exec termination, and exec processing. You can use
these routines or provide and use your own exit routines. To do so, you specify the name you have chosen
in the appropriate field of the module name table.

Exec Initialization and Termination Exits
You can use these exits to update and access REXX variables. ARXEXEC or a compiler runtime processor
calls these exits. The exec initialization exit gets control after initialization of the REXX variable pool but
before the processing of the first clause in the program. The exec termination exit is called after a REXX
program has completed, but before the termination of the variable pool for the program.

The exec initialization and termination exits do not have fixed names. For initialization, specify the name
you have chosen in the EXECINIT field in the module name table. For termination, specify the name you
have chosen in the EXECTERM field in the module name table. You can do this by providing your own
parameters module that replaces the default module. Or you can call ARXINIT to initialize a language
processor environment and pass the module name table on the call.

Exit Routines

Chapter 21. Replaceable Routines and Exits 473

The two exits are used on a language processor environment basis. You can provide an exec initialization
and exec termination exit in any type of environment.

See “Changing the Default Values for Initializing an Environment” on page 412 for a description of how to
provide your own parameters module. See Chapter 20, “Initialization and Termination Routines,” on page
427 for a description of ARXINIT.

The following shows entry specifications for both exits:
Register 0

Address of current environment block
Registers 1-12

Unpredictable
Register 13

Address of register save area
Register 14

Return address
Register 15

Exit entry point address

When an environment is initialized, REXX/VSE creates the environment block (ENVBLOCK) that contains
pointers to several other control blocks. Together, these control blocks define all the characteristics of the
environment. The address of the environment block is passed in register 0 in all calls to REXX exits and
routines, and in all calls to the REXX compiler runtime processor and compiler interface routines. You can
read only information from the environment block or the control blocks to which the environment block
points. If you change the values, results are unpredictable.

The exec initialization and termination exits have the same return specifications as ARXITMV. See
“ARXITMV” on page 470.

The following table shows return codes.

Table 90. Return Codes

Return Code Meaning

0 Exit processing was successful. REXX processing continues.

Nonzero Exit processing was not successful. The program is not run. REXX issues a message that
indicates a failure in a system service.

Exec Processing (ARXEXEC) Exit Routine
You can use an exec processing exit to prevent the running of a REXX program or to perform special
processing before a REXX program runs.

The ARXEXEC routine calls an exec processing exit. (If you provide an exec processing exit, it is called
whenever the ARXEXEC routine is called to invoke a REXX program. You can explicitly call ARXEXEC
or REXX/VSE can call ARXEXEC to invoke a program. REXX/VSE always calls ARXEXEC to handle exec
processing. For example, if you run a REXX program using the EXEC command, the ARXEXEC routine is
called to invoke the program.) The exec processing exit gets control before the program is loaded, if the
program was not pre-loaded, and before ARXEXEC evaluates any parameters on the call.

The exec processing exit does not have a fixed name. Specify the name of the exit in the IRXEXECX field
in the module name table. You can do this by providing your own parameters module that replaces the
default module. Or you can call ARXINIT to initialize a language processor environment and pass the
module name table on the call.

The exit is used on a language processor environment basis. You can provide an exec processing exit in
any type of environment.

Exit Routines

474 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

See “Changing the Default Values for Initializing an Environment” on page 412 for a description of how to
provide your own parameters module. See Chapter 20, “Initialization and Termination Routines,” on page
427 for a description of ARXINIT.

The following shows entry specifications for the exec processing exit.
Register 0

Address of the current environment block
Register 1

Address of the parameter list passed to ARXEXEC
Registers 2–12

Unpredictable
Register 13

Address of register save area
Register 14

Return address
Register 15

Entry point address

The following table shows parameters for the exec processing exit.

Table 91. Parameters for Exec Processing Exit

Parameter Number of
Bytes

Description

Parameter 1 4 The address of the exec block (EXECBLK). The exec block is a control
block that describes the program to load. It contains information
needed to process the program, such as the member from which the
program is to be loaded and the name of the initial host command
environment when the program starts running.

This parameter can be 0 if the program is pre-loaded and the address
of the pre-loaded program is passed in parameter 4. If you specify both
this parameter and parameter 4, the value in parameter 4 is used and
this parameter is ignored.

Parameter 2 4 The address of the arguments for the program. The arguments
are arranged as a vector of address/length pairs followed by
X'FFFFFFFFFFFFFFFF'. There is no limit to the number of arguments
passed to the program.

Exit Routines

Chapter 21. Replaceable Routines and Exits 475

Table 91. Parameters for Exec Processing Exit (continued)

Parameter Number of
Bytes

Description

Parameter 3 4 A fullword of flag bits. Only the first 4 bits are used. The remaining bits
are reserved. Bits 0, 1, and 2 are mutually exclusive.
Bit 0

If the bit is set on, the program was called as a command, that is,
another program did not call it as an external function or subroutine.

Bit 1
If the bit is set on, the program was called as an external function (a
function call).

Bit 2
If the bit is set on, the program was called as a subroutine.

Bit 3
Set this bit on if you want ARXEXEC to return extended return codes
in the range 20001-20099.

If a syntax error occurs, ARXEXEC returns a value in the range
20001-20099 in the evaluation block, regardless of the setting of bit
3. If bit 3 is on and a syntax error occurs, ARXEXEC returns with a return
code in the range 20001-20099 that matches the value returned in
the evaluation block. If bit 3 is off and a syntax error occurs, ARXEXEC
returns with return code 0.

Parameter 4 4 The address of the in-storage control block (INSTBLK). The in-storage
control block defines the structure of a pre-loaded program in storage.
It contains pointers to each record in the program and the length of
each record.

This parameter is specified if the caller of the ARXEXEC routine has
pre-loaded the program. Otherwise, this parameter is 0.

Parameter 5 4 Reserved, must be 0.

Parameter 6 4 The address of an evaluation block (EVALBLOCK). ARXEXEC uses
the evaluation block to return the result from the program that was
specified on either the RETURN or EXIT instruction.

The value may be 0, if the program does not return a result or the caller
of ARXEXEC plans to use the ARXRLT (get result) routine to get the
result or the result is to be ignored.

Parameter 7 4 The address of an 8-byte field that defines a work area. In the 8-byte
field:

• The first 4 bytes contain the address of the work area
• The second 4 bytes contain the length of the work area.

The work area is passed to the language processor to use for running
the program. If the work area is too small, ARXEXEC returns with a
return code of 20 and a message indicates an error. The minimum
length required for the work area is X'1800' bytes.

If you do not want to pass a work area, specify an address of 0.
ARXEXEC obtains storage for its work area or calls the replaceable
storage routine specified in the GETFREER field (in the module name
table) for the environment, if you provided a storage routine.

Exit Routines

476 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 91. Parameters for Exec Processing Exit (continued)

Parameter Number of
Bytes

Description

Parameter 8 4 The address of a user field. ARXEXEC does not use or check this pointer
or the user field. You can use this field for your own processing.

If you do not want to use a user field, specify an address of 0.

The exec processing exit has the same return specifications as ARXITMV. See “ARXITMV” on page 470.
The exec processing exit has the same return codes as ARXINITX; see Table 87 on page 470.

Installing the Exec Processing, Exec Initialization, and Exec Termination
For the exec initialization exit, specify the exit's name in the EXECINIT field in the module name table.
For the exec termination exit, specify the exit's name in the EXECTERM field. For the exec processing exit,
specify the exit's name in the IRXEXECX field. Link-edit these exits as separate phases.

Exit Routines

Chapter 21. Replaceable Routines and Exits 477

Exit Routines

478 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 22. Double-Byte Character Set (DBCS)
Support

A Double-Byte Character Set supports languages that have more characters than can be represented by 8
bits (such as Korean Hangeul and Japanese kanji). REXX has a full range of DBCS functions and handling
techniques.

These include:

• String handling capabilities with DBCS characters
• OPTIONS modes that handle DBCS characters in literal strings, symbols (for example, variable names

and labels), comments, and data operations
• A number of functions that specifically support the processing of DBCS character strings
• Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as described in Chapter 4,
“Functions,” on page 59. This explains how the characters in a result are obtained from the characters
of the arguments by such actions as selecting, concatenating, and padding. The appendix describes how
the resulting characters are represented as bytes. This internal representation is not usually seen if the
results are printed. It may be seen if the results are displayed on certain terminals.

General Description
The following characteristics help define the rules used by DBCS to represent extended characters:

• Each DBCS character consists of 2 bytes.
• Each SBCS character consists of 1 byte.
• There are no DBCS control characters.
• The codes are within the ranges defined in the table, which shows the valid DBCS code for the DBCS

blank. You cannot have a DBCS blank in a simple symbol, in the stem of a compound variable, or in a
label.

Table 92. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'

2nd X'41' to X'FE'

DBCS blank X'4040'

• DBCS alphanumeric and special symbols

A DBCS contains double-byte representation of alphanumeric and special symbols corresponding to
those of the Single-Byte Character Set (SBCS). In EBCDIC, the first byte of a double-byte alphanumeric
or special symbol is X'42' and the second is the same hex code as the corresponding EBCDIC code.

Here are some examples:

X'42C1' is an EBCDIC double-byte A
X'4281' is an EBCDIC double-byte a
X'427D' is an EBCDIC double-byte quote

• No case translation

DBCS Support

© Copyright IBM Corp. 1988, 2004 479

In general, there is no concept of lowercase and uppercase in DBCS.
• Notational conventions

This appendix uses the following notational conventions:

DBCS character -> .A .B .C .D
SBCS character -> a b c d e
DBCS blank -> '. '
EBCDIC shift-out (X'0E') -> <
EBCDIC shift-in (X'0F') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS characters from SBCS
characters.

Enabling DBCS Data Operations and Symbol Use
The OPTIONS instruction controls how REXX regards DBCS data. To enable DBCS operations, use the
EXMODE option. To enable DBCS symbols, use the ETMODE option on the OPTIONS instruction; this must
be the first instruction in the program. (See page “OPTIONS” on page 43 for more information.)

If OPTIONS ETMODE is in effect, the language processor does validation to ensure that SO and SI are
paired in comments. Otherwise, the contents of the comment are not checked. The comment delimiters
(/* and */) must be SBCS characters.

Symbols and Strings
In DBCS, there are DBCS-only symbols and strings and mixed symbols and strings.

DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
A DBCS-only symbol consists of only non-blank DBCS codes as indicated in Table 92 on page 479.

A mixed DBCS symbol is formed by a concatenation of SBCS symbols, DBCS-only symbols, and other
mixed DBCS symbols. In EBCDIC, the SO and SI bracket the DBCS symbols and distinguish them from the
SBCS symbols.

The default value of a DBCS symbol is the symbol itself, with SBCS characters translated to uppercase.

A constant symbol must begin with an SBCS digit (0–9) or an SBCS period. The delimiter (period) in a
compound symbol must be an SBCS character.

DBCS-Only Strings and Mixed SBCS/DBCS Strings
A DBCS-only string consists of only DBCS characters. A mixed SBCS/DBCS string is formed by a
combination of SBCS and DBCS characters. In EBCDIC, the SO and SI bracket the DBCS data and
distinguish it from the SBCS data. Because the SO and SI are needed only in the mixed strings, they are
not associated with the DBCS-only strings.

In EBCDIC:

DBCS-only string -> .A.B.C
Mixed string -> ab<.A.B>
Mixed string -> <.A.B>
Mixed string -> ab<.C.D>ef

Validation
The user must follow certain rules and conditions when using DBCS.

DBCS Symbol Validation
DBCS symbols are valid only if you comply with the following rules:

DBCS Support

480 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

• The DBCS portion of the symbol must be an even number of bytes in length
• DBCS alphanumeric and special symbols are regarded as different to their corresponding SBCS

characters. Only the SBCS characters are recognized by REXX in numbers, instruction keywords, or
operators

• DBCS characters cannot be used as special characters in REXX
• SO and SI cannot be contiguous
• Nesting of SO or SI is not permitted
• SO and SI must be paired
• No part of a symbol consisting of DBCS characters may contain a DBCS blank.
• Each part of a symbol consisting of DBCS characters must be bracketed with SO and SI.

Note: When you use DBCS symbols as variable names or labels, the maximum length of a DBCS variable
name is the same as the maximum length of an SBCS variable name, 250 bytes, including any SO, SI,
DBCS, and SBCS characters. Each DBCS character is counted as 2 bytes and each SO or SI is counted as 1
byte.

These examples show some possible misuses:

<.A.BC> -> Incorrect because of odd byte length
<.A.B><.C> -> Incorrect contiguous SO/SI
<> -> Incorrect contiguous SO/SI (null DBCS symbol)
<.A<.B>.C> -> Incorrectly nested SO/SI
<.A.B.C -> Incorrect because SO/SI not paired
<.A. .B> -> Incorrect because contains blank
'. A<.B><.C> -> Incorrect symbol

Mixed String Validation
The validation of mixed strings depends on the instruction, operator, or function. If you use a mixed string
with an instruction, operator, or function that does not allow mixed strings, this causes a syntax error.

The following rules must be followed for mixed string validation:

• DBCS strings must be an even number of bytes in length, unless you have SO and SI.

EBCDIC only:

• SO and SI must be paired in a string.
• Nesting of SO or SI is not permitted.

These examples show some possible misuses:

'ab<cd' -> INCORRECT - not paired
'<.A<.B>.C> -> INCORRECT - nested
'<.A.BC>' -> INCORRECT - odd byte length

The end of a comment delimiter is not found within DBCS character sequences. For example, when the
program contains /* < */, then the */ is not recognized as ending the comment because the scanning
is looking for the > (SI) to go with the < (SO) and not looking for */.

When a variable is created, modified, or referred to in a REXX program under OPTIONS EXMODE, it is
validated whether it contains a correct mixed string or not. When a referred variable contains a mixed
string that is not valid, it depends on the instruction, function, or operator whether it causes a syntax
error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER instructions all require valid mixed strings
with OPTIONS EXMODE in effect.

Using DBCS Characters in Symbols and Comments
To enable the use of DBCS characters in symbols and comments, use the ETMODE option of the OPTIONS
instruction. For more information, see “OPTIONS” on page 43.

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 481

The following are some ways that DBCS names can be used:

• as variables or labels within your program
• as constant symbols
• to pass parameters on the LINKPGM host command environment.
• as a STEM name on EXECIO or as a trapping variable for the OUTTRAP function
• in functions such as SYMBOL and DATATYPE
• in arguments of functions (such as LENGTH)
• in the variable access routine ARXEXCOM.

The following example shows a program using a DBCS variable name and a DBCS subroutine label:

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */
<.S.Y.M.D> = 10 /* Variable with DBCS characters between */
 /* shift-out (<) and shift-in (>) */
y.<.S.Y.M.D> = JUNK
CALL <.D.B.C.S.R.T.N> /* Call subroutine with DBCS name */
EXIT
<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10
 IF y.i = JUNK THEN /* Does y.i match the DBCS variable's
 value? */
 SAY 'Value of the DBCS variable is : ' <.S.Y.M.D>
END
RETURN

Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

PARSE
In EBCDIC:

x1 = '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 1 w1
 w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1 .
 w1 -> '<.A.B>'

The leading and trailing SO and SI are unnecessary for word parsing and, thus, they are stripped off.
However, one pair is still needed for a valid mixed DBCS string to be returned.

PARSE VAR x1 . w2
 w2 -> '<. ><.E><.F><>'

Here the first blank delimited the word and the SO is added to the string to ensure the DBCS blank and the
valid mixed string.

PARSE VAR x1 w1 w2
 w1 -> '<.A.B>'
 w2 -> '<. ><.E><.F><>'

PARSE VAR x1 w1 w2 .
 w1 -> '<.A.B>'
 w2 -> '<.E><.F>'

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <.A.B><><.C.D>'

PARSE VAR x2 w1 '' w2

DBCS Support

482 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

PARSE VAR x2 w1 '<><>' w2
 w1 -> 'abc<>def <.A.B><><.C.D>'
 w2 -> ''

Note that for the last three examples '', <>, and <><> are each a null string (a string of length 0). When
parsing, the null string matches the end of string. For this reason, w1 is assigned the value of the entire
string and w2 is assigned the null string.

PUSH and QUEUE
The PUSH and QUEUE instructions add entries to the data stack. Because an element on the data stack
can be up to 1 byte less than 16 megabytes, truncation will probably never occur. However, if truncation
splits a DBCS string, REXX ensures that the integrity of the SO-SI pairing is kept under OPTIONS EXMODE.

SAY and TRACE
The SAY and TRACE instructions write information to the current output stream. ASSGN(STDOUT) returns
the name of the current output stream. Similar to the PUSH and QUEUE instructions, REXX ensures the
SO-SI pairs are kept for any data that is separated to meet the requirements of the output stream or
device.

When the data is split up in shorter lengths, again the DBCS data integrity is kept under OPTIONS
EXMODE. In EBCDIC, if the default output width is less than 4, the string is treated as SBCS data, because
4 is the minimum for mixed string data.

UPPER
Under OPTIONS EXMODE, the UPPER instruction translates only SBCS characters in contents of one or
more variables to uppercase, but it never translates DBCS characters. If the content of a variable is not
valid mixed string data, no uppercasing occurs.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word delimiting and length
determining conform with the following rules under OPTIONS EXMODE:

1. Counting characters—Logical character lengths are used when counting the length of a string (that is,
1 byte for one SBCS logical character, 2 bytes for one DBCS logical character). In EBCDIC, SO and SI
are considered to be transparent, and are not counted, for every string operation.

2. Character extraction from a string—Characters are extracted from a string on a logical character
basis. In EBCDIC, leading SO and trailing SI are not considered as part of one DBCS character.
For instance, .A and .B are extracted from <.A.B>, and SO and SI are added to each DBCS
character when they are finally preserved as completed DBCS characters. When multiple characters
are consecutively extracted from a string, SO and SI that are between characters are also extracted.
For example, .A><.B is extracted from <.A><.B>, and when the string is finally used as a completed
string, the SO prefixes it and the SI suffixes it to give <.A><.B>.

Here are some EBCDIC examples:

S1 = 'abc<>def'

SUBSTR(S1,3,1) -> 'c'
SUBSTR(S1,4,1) -> 'd'
SUBSTR(S1,3,2) -> 'c<>d'

S2 = '<><.A.B><>'

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 483

SUBSTR(S2,1,1) -> '<.A>'
SUBSTR(S2,2,1) -> '<.B>'
SUBSTR(S2,1,2) -> '<.A.B>'
SUBSTR(S2,1,3,'x') -> '<.A.B><>x'

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> '<.A>'
SUBSTR(S3,3,2) -> 'c<><.A>'
DELSTR(S3,3,1) -> 'ab<><.A.B>'
DELSTR(S3,4,1) -> 'abc<><.B>'
DELSTR(S3,3,2) -> 'ab<.B>'

3. Character concatenation—String concatenation can only be done with valid mixed strings. In EBCDIC,
adjacent SI and SO (or SO and SI) that are a result of string concatenation are removed. Even during
implicit concatenation as in the DELSTR function, unnecessary SO and SI are removed.

4. Character comparison—Valid mixed strings are used when comparing strings on a character basis. A
DBCS character is always considered greater than an SBCS one if they are compared. In all but the
strict comparisons, SBCS blanks, DBCS blanks, and leading and trailing contiguous SO and SI (or SI
and SO) in EBCDIC are removed. SBCS blanks may be added if the lengths are not identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank characters are also removed for
comparison.

Note: The strict comparison operators do not cause syntax errors even if you specify mixed strings that
are not valid.

In EBCDIC:

 '<.A>' = '<.A. >' -> 1 /* true */
 '<><><.A>' = '<.A><><>' -> 1 /* true */
 '<> <.A>' = '<.A>' -> 1 /* true */
'<.A><><.B>' = '<.A.B>' -> 1 /* true */
 'abc' < 'ab<. >' -> 0 /* false */

5. Word extraction from a string—“Word” means that characters in a string are delimited by an SBCS or
a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also removed when words
are separated in a string, but contiguous SO and SI (or SI and SO) in a word are not removed or
separated for word operations. Leading and trailing contiguous SO and SI (or SI and SO) of a word are
not removed if they are among words that are extracted at the same time.

In EBCDIC:

W1 = '<><. .A. . .B><.C. .D><>'

SUBWORD(W1,1,1) -> '<.A>'
SUBWORD(W1,1,2) -> '<.A. . .B><.C>'
SUBWORD(W1,3,1) -> '<.D>'
SUBWORD(W1,3) -> '<.D>'

W2 = '<.A. .B><.C><> <.D>'

SUBWORD(W2,2,1) -> '<.B><.C>'
SUBWORD(W2,2,2) -> '<.B><.C><> <.D>'

Built-in Function Examples
Examples for built-in functions, those that support DBCS and follow the rules defined, are given in this
section. For full function descriptions and the syntax diagrams, refer to Chapter 4, “Functions,” on page
59.

ABBREV
In EBCDIC:

DBCS Support

484 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ABBREV('<.A.B.C>','<.A.B>') -> 1
ABBREV('<.A.B.C>','<.A.C>') -> 0
ABBREV('<.A><.B.C>','<.A.B>') -> 1
ABBREV('aa<>bbccdd','aabbcc') -> 1

Applying the character comparison and character extraction from a string rules.

COMPARE
In EBCDIC:

COMPARE('<.A.B.C>','<.A.B><.C>') -> 0
COMPARE('<.A.B.C>','<.A.B.D>') -> 3
COMPARE('ab<>cde','abcdx') -> 5
COMPARE('<.A><>','<.A>','<. >') -> 0

Applying the character concatenation for padding, character extraction from a string, and character
comparison rules.

COPIES
In EBCDIC:

COPIES('<.A.B>',2) -> '<.A.B.A.B>'
COPIES('<.A><.B>',2) -> '<.A><.B.A><.B>'
COPIES('<.A.B><>',2) -> '<.A.B><.A.B><>'

Applying the character concatenation rule.

DATATYPE
DATATYPE('<.A.B>') -> 'CHAR'
DATATYPE('<.A.B>','D') -> 1
DATATYPE('<.A.B>','C') -> 1
DATATYPE('a<.A.B>b','D') -> 0
DATATYPE('a<.A.B>b','C') -> 1
DATATYPE('abcde','C') -> 0
DATATYPE('<.A.B','C') -> 0

Note: If string is not a valid mixed string and C or D is specified as type, 0 is returned.

FIND
FIND('<.A. .B.C> abc','<.B.C> abc') -> 2
FIND('<.A. .B><.C> abc','<.B.C> abc') -> 2
FIND('<.A. . .B> abc','<.A> <.B>') -> 1

Applying the word extraction from a string and character comparison rules.

INDEX, POS, and LASTPOS
INDEX('<.A><.B><><.C.D.E>','<.D.E>') -> 4
POS('<.A>','<.A><.B><><.A.D.E>') -> 1
LASTPOS('<.A>','<.A><.B><><.A.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

INSERT and OVERLAY
In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.B>','<.C.D><>',2) -> '<.C.D.A.B><>'
INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 485

OVERLAY('<.A.B>','<.C.D><>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',3) -> '<.C.D><><.A.B>'
OVERLAY('<.A.B>','<.C.D><>',4,,'<.E>') -> '<.C.D><.E.A.B>'
OVERLAY('<.A>','<.C.D><.E>',2) -> '<.C.A><.E>'

Applying the character extraction from a string and character comparison rules.

JUSTIFY
JUSTIFY('<><. .A. . .B><.C. .D>',10,'p')
 -> '<.A>ppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',11,'p')
 -> '<.A>pppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',10,'<.P>')
 -> '<.A.P.P.P.B><.C.P.P.P.D>'
JUSTIFY('<><.X. .A. . .B><.C. .D>',11,'<.P>')
 -> '<.X.P.P.A.P.P.B><.C.P.P.D>'

Applying the character concatenation for padding and character extraction from a string rules.

LEFT, RIGHT, and CENTER
In EBCDIC:

LEFT('<.A.B.C.D.E>',4) -> '<.A.B.C.D>'
LEFT('a<>',2) -> 'a<> '
LEFT('<.A>',2,'*') -> '<.A>*'
RIGHT('<.A.B.C.D.E>',4) -> '<.B.C.D.E>'
RIGHT('a<>',2) -> ' a'
CENTER('<.A.B>',10,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E>'
CENTER('<.A.B>',11,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E.E>'
CENTER('<.A.B>',10,'e') -> 'eeee<.A.B>eeee'

Applying the character concatenation for padding and character extraction from a string rules.

LENGTH
In EBCDIC:

LENGTH('<.A.B><.C.D><>') -> 4

Applying the counting characters rule.

REVERSE
In EBCDIC:

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>'

Applying the character extraction from a string and character concatenation rules.

SPACE
In EBCDIC:

SPACE('a<.A.B. .C.D>',1) -> 'a<.A.B> <.C.D>'
SPACE('a<.A><><. .C.D>',1,'x') -> 'a<.A>x<.C.D>'
SPACE('a<.A><. .C.D>',1,'<.E>') -> 'a<.A.E.C.D>'

Applying the word extraction from a string and character concatenation rules.

STRIP
In EBCDIC:

STRIP('<><.A><.B><.A><>',,'<.A>') -> '<.B>'

DBCS Support

486 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Applying the character extraction from a string and character concatenation rules.

SUBSTR and DELSTR
In EBCDIC:

SUBSTR('<><.A><><.B><.C.D>',1,2) -> '<.A><><.B>'
DELSTR('<><.A><><.B><.C.D>',1,2) -> '<><.C.D>'
SUBSTR('<.A><><.B><.C.D>',2,2) -> '<.B><.C>'
DELSTR('<.A><><.B><.C.D>',2,2) -> '<.A><><.D>'
SUBSTR('<.A.B><>',1,2) -> '<.A.B>'
SUBSTR('<.A.B><>',1) -> '<.A.B><>'

Applying the character extraction from a string and character concatenation rules.

SUBWORD and DELWORD
In EBCDIC:

SUBWORD('<><. .A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><. .A. . .B><.C. .D>',1,2) -> '<><. .D>'
SUBWORD('<><.A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><.A. . .B><.C. .D>',1,2) -> '<><.D>'
SUBWORD('<.A. .B><.C><> <.D>',1,2) -> '<.A. .B><.C>'
DELWORD('<.A. .B><.C><> <.D>',1,2) -> '<.D>'

Applying the word extraction from a string and character concatenation rules.

TRANSLATE
In EBCDIC:

TRANSLATE('abcd','<.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> '<.A>x<.C>d'

Applying the character extraction from a string, character comparison, and character concatenation rules.

VERIFY
In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

WORD, WORDINDEX, and WORDLENGTH
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORD(W,1) -> '<.A>'
WORDINDEX(W,1) -> 2
WORDLENGTH(W,1) -> 1

Y = '<><.A. . .B><.C. .D>'

WORD(Y,1) -> '<.A>'
WORDINDEX(Y,1) -> 1
WORDLENGTH(Y,1) -> 1

Z = '<.A .B><.C> <.D>'

WORD(Z,2) -> '<.B><.C>'
WORDINDEX(Z,2) -> 3
WORDLENGTH(Z,2) -> 2

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 487

Applying the word extraction from a string and (for WORDINDEX and WORDLENGTH) counting characters
rules.

WORDS
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORDS(W) -> 3

Applying the word extraction from a string rule.

WORDPOS
In EBCDIC:

WORDPOS('<.B.C> abc','<.A. .B.C> abc') -> 2
WORDPOS('<.A.B>','<.A.B. .A.B><. .B.C. .A.B>',3) -> 4

Applying the word extraction from a string and character comparison rules.

DBCS Processing Functions
This section describes the functions that support DBCS mixed strings. These functions handle mixed
strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as opposed to
LENGTH(string), which is measured in characters).

Counting Option
In EBCDIC, when specified in the functions, the counting option can control whether the SO and SI are
considered present when determining the length. Y specifies counting SO and SI within mixed strings. N
specifies not to count the SO and SI, and is the default.

Function Descriptions
The following are the DBCS functions and their descriptions.

DBADJUST

DBADJUST (string

, operation

)

In EBCDIC, adjusts all contiguous SI and SO (or SO and SI) characters in string based on the operation
specified. The following are valid operations. Only the capitalized and highlighted letter is needed; all
characters following it are ignored.
Blank

changes contiguous characters to blanks (X'4040').
Remove

removes contiguous characters, and is the default.

Here are some EBCDIC examples:

DBADJUST('<.A><.B>a<>b','B') -> '<.A. .B>a b'
DBADJUST('<.A><.B>a<>b','R') -> '<.A.B>ab'
DBADJUST('<><.A.B>','B') -> '<. .A.B>'

DBCS Support

488 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DBBRACKET

DBBRACKET (string)

In EBCDIC, adds SO and SI brackets to a DBCS-only string. If string is not a DBCS-only string, a SYNTAX
error results. That is, the input string must be an even number of bytes in length and each byte must be a
valid DBCS value.

Here are some EBCDIC examples:

DBBRACKET('.A.B') -> '<.A.B>'
DBBRACKET('abc') -> SYNTAX error
DBBRACKET('<.A.B>') -> SYNTAX error

DBCENTER

DBCENTER (string , length
,

pad , option

)

returns a string of length length with string centered in it, with pad characters added as necessary to make
up length. The default pad character is a blank. If string is longer than length, it is truncated at both ends
to fit. If an odd number of characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBCENTER('<.A.B.C>',4) -> ' <.B> '
DBCENTER('<.A.B.C>',3) -> ' <.B>'
DBCENTER('<.A.B.C>',10,'x') -> 'xx<.A.B.C>xx'
DBCENTER('<.A.B.C>',10,'x','Y') -> 'x<.A.B.C>x'
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>'
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>'
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> '
DBCENTER('<.A.B.C>',9,'<.P>') -> ' <.A.B.C.P>'
DBCENTER('<.A.B.C>',10,'<.P>') -> '<.P.A.B.C.P>'
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>'

DBCJUSTIFY

DBCJUSTIFY (string , length
,

pad , option

)

formats string by adding pad characters between nonblank characters to justify to both margins and
length of bytes length (length must be nonnegative). Rules for adjustments are the same as for the
JUSTIFY function. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some examples:

DBCJUSTIFY('<><AA BB><CC>',20,,'Y')
 -> '<AA> <BB> <CC>'

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 489

DBCJUSTIFY('<>< AA BB>< CC>',20,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC>'

DBCJUSTIFY('<>< AA BB>< CC>',21,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','Y')
 -> '<AAXXXXBB> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','N')
 -> '<AAXXBBXXCC> '

DBLEFT

DBLEFT (string , length
,

pad , option

)

returns a string of length length containing the leftmost length characters of string. The string returned is
padded with pad characters (or truncated) on the right as needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBLEFT('ab<.A.B>',4) -> 'ab<.A>'
DBLEFT('ab<.A.B>',3) -> 'ab '
DBLEFT('ab<.A.B>',4,'x','Y') -> 'abxx'
DBLEFT('ab<.A.B>',3,'x','Y') -> 'abx'
DBLEFT('ab<.A.B>',8,'<.P>') -> 'ab<.A.B.P>'
DBLEFT('ab<.A.B>',9,'<.P>') -> 'ab<.A.B.P> '
DBLEFT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBLEFT('ab<.A.B>',9,'<.P>','Y') -> 'ab<.A.B> '

DBRIGHT

DBRIGHT (string , length
,

pad , option

)

returns a string of length length containing the rightmost length characters of string. The string returned is
padded with pad characters (or truncated) on the left as needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRIGHT('ab<.A.B>',4) -> '<.A.B>'
DBRIGHT('ab<.A.B>',3) -> ' <.B>'
DBRIGHT('ab<.A.B>',5,'x','Y') -> 'x<.B>'
DBRIGHT('ab<.A.B>',10,'x','Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>') -> '<.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBRIGHT('ab<.A.B>',11,'<.P>','Y') -> ' ab<.A.B>'
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>'

DBCS Support

490 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DBRLEFT

DBRLEFT (string , length

, option

)

returns the remainder from the DBLEFT function of string. If length is greater than the length of string,
returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRLEFT('ab<.A.B>',4) -> '<.B>'
DBRLEFT('ab<.A.B>',3) -> '<.A.B>'
DBRLEFT('ab<.A.B>',4,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',3,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',8) -> ''
DBRLEFT('ab<.A.B>',9,'Y') -> ''

DBRRIGHT

DBRRIGHT (string , length

, option

)

returns the remainder from the DBRIGHT function of string. If length is greater than the length of string,
returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRRIGHT('ab<.A.B>',4) -> 'ab'
DBRRIGHT('ab<.A.B>',3) -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5) -> 'a'
DBRRIGHT('ab<.A.B>',4,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',8) -> ''
DBRRIGHT('ab<.A.B>',8,'Y') -> ''

DBTODBCS

DBTODBCS (string)

converts all passed, valid SBCS characters (including the SBCS blank) within string to the corresponding
DBCS equivalents. Other single-byte codes and all DBCS characters are not changed. In EBCDIC, SO and
SI brackets are added and removed where appropriate.

Here are some EBCDIC examples:

DBTODBCS('Rexx 1988') -> '<.R.e.x.x. .1.9.8.8>'
DBTODBCS('<.A> <.B>') -> '<.A. .B>'

Note: In these examples, the .x is the DBCS character corresponding to an SBCS x.

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 491

DBTOSBCS

DBTOSBCS (string)

converts all passed, valid DBCS characters (including the DBCS blank) within string to the corresponding
SBCS equivalents. Other DBCS characters and all SBCS characters are not changed. In EBCDIC, SO and SI
brackets are removed where appropriate.

Here are some EBCDIC examples:

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1'
DBTOSBCS('<.X. .Y>') -> '<.X> <.Y>'

Note: In these examples, the .d is the DBCS character corresponding to an SBCS d. But the .X and .Y do
not have corresponding SBCS characters and are not converted.

DBUNBRACKET

DBUNBRACKET (string)

In EBCDIC, removes the SO and SI brackets from a DBCS-only string enclosed by SO and SI brackets. If
the string is not bracketed, a SYNTAX error results.

Here are some EBCDIC examples:

DBUNBRACKET('<.A.B>') -> '.A.B'
DBUNBRACKET('ab<.A>') -> SYNTAX error

DBVALIDATE

DBVALIDATE (string

, 'C'

)

returns 1 if the string is a valid mixed string or SBCS string. Otherwise, returns 0. Mixed string validation
rules are:

1. Only valid DBCS character codes
2. DBCS string is an even number of bytes in length
3. EBCDIC only — Proper SO and SI pairing.

In EBCDIC, if C is omitted, only the leftmost byte of each DBCS character is checked to see that it falls
in the valid range for the implementation it is being run on (that is, in EBCDIC, the leftmost byte range is
from X'41' to X'FE').

Here are some EBCDIC examples:

z='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(z) -> 0

y='C1C20E111213140F'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> 0

DBCS Support

492 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

DBWIDTH

DBWIDTH (string

, option

)

returns the length of string in bytes.

The option controls the counting rule. Y counts SO and SI within mixed strings as one each. N does not
count the SO and SI and is the default.

Here are some EBCDIC examples:

DBWIDTH('ab<.A.B>','Y') -> 8
DBWIDTH('ab<.A.B>','N') -> 6

DBCS Support

Chapter 22. Double-Byte Character Set (DBCS) Support 493

DBCS Support

494 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 23. ARXTERMA Routine

The ARXTERMA routine terminates a language processor environment. ARXTERMA differs from the
ARXTERM termination routine. ARXTERM terminates a language processor environment only if no
active REXX programs are currently running in the environment. ARXTERMA terminates all active REXX
programs under a language processor environment, and optionally terminates the environment. If
you customize REXX processing and initialize a language processor environment using the ARXINIT
initialization routine, when you terminate the environment, you are recommended to use the ARXTERM
termination routine. “Termination Routine – ARXTERM” on page 437 describes ARXTERM.

Note: To permit FORTRAN programs to call ARXTERMA, REXX/VSE provides an alternate entry point for
the ARXTERMA routine. The alternate entry point name is ARXTMA.

On the call to ARXTERMA, you specify whether ARXTERMA should terminate the environment in addition
to terminating all active programs that are currently running in the environment. You can optionally pass
the address of the environment block that represents the environment in which you want ARXTERMA to
run. You can pass the address either in parameter 2 or in register 0. If you do not pass an environment
block address, ARXTERMA locates the current non-reentrant environment that was created at the same
task level and runs in that environment.

ARXTERMA does not terminate an environment if:

• The environment was not initialized under the current task
• The environment was the first environment initialized under the task and other environments are still

initialized under the task.

However, ARXTERMA does terminate all active programs running in the environment.

ARXTERMA invokes the exec load routine to free each program in the environment. The exec load routine
is the routine the EXROUT field in the module name table identifies, which is one of the parameters for the
initialization routine, ARXINIT. All programs in the environment are freed regardless of whether they were
pre-loaded before the ARXEXEC routine was called. ARXTERMA also frees the storage for each program in
the environment.

ARXTERMA sets the ENVBLOCK_TERMA_CLEANUP flag to indicate that ARXTERMA is cleaning up the
environment. ARXTERMA frees all active programs and optionally terminates the environment itself. The
replaceable routines can use this ENVBLOCK_TERMA_CLEANUP flag to allow special processing during
abnormal termination. If ARXTERMA does not terminate the environment, the flag is cleared upon exit
from ARXTERMA.

Entry Specifications
For the ARXTERMA termination routine, the contents of the registers on entry are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

ARXTERMA Routine

© Copyright IBM Corp. 1988, 2004 495

Parameters
In register 1, you pass the address of a parameter list, which consists of a list of addresses. Each address
in the parameter list points to a parameter. Set the high-order bit of the last address to 1 to indicate
the end of the parameter list. For more information about passing parameters, see “Parameter Lists for
REXX/VSE Routines” on page 325.

Table 93 on page 496 shows the parameters for ARXTERMA.

Table 93. Parameters for ARXTERMA

Parameter Number of
Bytes

Description

Parameter 1 4 A fullword field in which you specify whether you want to terminate the
environment in addition to terminating all active programs running in
the environment. Specify one of the following:

• 0 — terminates all programs and the environment
• X'80000000' — terminates all programs, but does not terminate the

environment.

Parameter 2 4 This parameter is optional. It is the address of the environment block
that represents the environment you want ARXTERMA to terminate.

If you do not want to use this parameter, set the high-order bit in the
address that points to parameter 1 to 1 to end the parameter list. (You
cannot simply specify an address of 0 because ARXTERMA tries to use
0 as a valid address and fails with a return code of 28.)

If you specify an environment block address, ARXTERMA uses the value
you specify and ignores register 0. However, ARXTERMA does not check
whether the address is valid. Therefore, ensure the address you specify
is correct or unpredictable results can occur.

If you use register 0 to specify the address of an environment block,
ARXTERMA checks whether the address is valid. If the address is
valid, ARXTERMA terminates that environment. Otherwise, ARXTERMA
locates the current non-reentrant environment that was created at the
same task level and terminates that environment.

Return Specifications
For the ARXTERMA termination routine, the contents of the registers on return are:
Register 0

If you passed the address of an environment block in register 0, ARXTERMA returns the address of
the environment block for the previous environment. If you did not pass an address in register 0, the
register contains the same value as on entry.

Registers 1-14
Same as on entry

Register 15
Return code

Return Codes
Table 94 on page 497 shows the return codes for the ARXTERMA routine.

ARXTERMA Routine

496 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 94. Return Codes for ARXTERMA

Return Code Description

0 Processing was successful. If ARXTERMA also terminated the environment, the
environment was not the last environment on the task.

4 Processing was successful. If ARXTERMA also terminated the environment, the
environment was the last environment on the task.

20 Processing was not successful. ARXTERMA could not terminate the environment.

28 Processing was not successful. The environment could not be found.

ARXTERMA Routine

Chapter 23. ARXTERMA Routine 497

ARXTERMA Routine

498 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Chapter 24. Support for the Library for REXX/370 in
REXX/VSE

Before using the Library for REXX/370 in REXX/VSE to execute a compiled REXX program, you need
to compile the program on VM CMS or MVS. This appendix introduces the compiler and describes the
support for the Library for REXX/370 in REXX/VSE.

Benefits of Using a Compiler
The IBM Compiler for REXX/370 and the Library for REXX/370 in REXX/VSE provide significant benefits
for programmers during program development and for users when a program is run. The benefits include:

• Improved performance
• Reduced system load
• Protection for source code and programs
• Improved productivity and quality
• Portability of compiled programs
• SAA compliance checking.

Improved Performance
The performance improvements that you can expect when you run compiled REXX programs depend on
the type of program. A program that performs large numbers of arithmetic operations of default precision
shows the greatest improvement. A program that mainly issues commands to the host shows minimal
improvement because REXX cannot decrease the time the host takes to process the commands.

Reduced System Load
Compiled REXX programs run faster than interpreted programs. Because a program has to be compiled
only once, system load is reduced and response time is improved when the program is run frequently.

For example, a REXX program that performs many arithmetic operations might take 12 seconds to run
on the interpreter. Running the program 60 times uses about 12 minutes of processor time. The same
program when compiled might run six times faster, using only about 2 minutes of processor time.

Protection for Source Code and Programs
Your REXX programs and algorithms are assets that you want to protect. The Compiler produces object
code, which helps you protect these assets by discouraging other users from making unauthorized
changes to your programs. You can distribute your REXX programs in object code only.

Improved Productivity and Quality
The Compiler can produce source listings, cross-reference listings, and messages, which help you more
easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You can then focus on
correcting errors in logic during testing with the REXX interpreter.

Portability of Compiled Programs
A compiled REXX program can run under other operating systems, such as MVS/ESA* or VM CMS. A REXX
program compiled under VM CMS or MVS/ESA can run under REXX/VSE.

Compiler Support

© Copyright IBM Corp. 1988, 2004 499

SAA Compliance Checking
The Systems Application Architecture (SAA) definitions of software interfaces, conventions, and protocols
provide a framework for designing and developing applications that are consistent within and across
several operating systems. SAA REXX is a set of common elements of the REXX language. The REXX/VSE
interpreter supports these elements.

To help you write programs for use in all SAA environments, the Compiler can optionally check for SAA
compliance. With this option in effect, a warning message is issued for each non-SAA item found in a
program.

Compiler Publications
For more information about the compiler, see the following books:

• IBM Compiler and Library for SAA REXX/370 Release 2: Introducing the Next Step in REXX Programming,
G511-1430

• IBM Compiler and Library for SAA REXX/370 3 User's Guide and Reference
• IBM Compiler and Library for SAA REXX/370 Diagnosis Guide

Routines and Interfaces for the Library for REXX/370 in REXX/VSE
REXX/VSE provides routines and interfaces it uses during the execution of compiled programs under a
compiler runtime processor.

Central to compiler support is the compiler programming table. REXX/VSE uses the compiler runtime
processor name stored in the compiled REXX program to locate the entry for the compiler runtime
processor in the compiler programming table. The compiler programming table entry contains the name
of the compiler runtime processor and the names of up to four optional compiler interface routines.
REXX/VSE uses the compiler runtime processor to run compiled programs. During the execution of a
compiled program, REXX/VSE invokes compiler interface routines to perform specialized processing.

The following information, to the end of the chapter, is product-sensitive programming interface
information.

Programming Routines for a REXX Compiler Runtime Processor
REXX/VSE provides various programming routines that support a REXX compiler runtime processor. These
routines are:

• ARXERS - a REXX compiler programming routine that searches for and runs an external routine. For
more information on the search order for external routines, see “Search Order” on page 60.

• ARXHST - a REXX compiler programming routine that searches for and runs a host command. For more
information on locating host commands, see “Commands” on page 23.

• ARXRTE - a REXX compiler programming routine that searches for and invokes a REXX exit routine. For
more information on REXX exit routines, see “REXX Exit Routines” on page 468

In addition, you can use the GETEVAL function of the ARXRLT programming service to obtain the
evaluation block for an external function or subroutine. These routines and the GETEVAL function of
ARXRLT are intended for use only by a compiler runtime processor. For more information on the ARXRLT
programming service, see “Programming Services” on page 135.

Routines and Interfaces to Support a REXX Compiler
This section discusses the characteristics of a compiled REXX program and the routines and interfaces to
support a REXX compiler, including:

• The compiler programming table
• The compiler runtime processor

Compiler Support

500 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

http://publibfp.dhe.ibm.com/epubs/pdf/eagua04.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/h1981791.pdf

• The four compiler interface routines:

– Compiler interface initialization routine
– Compiler interface termination routine
– Compiler interface load routine
– Compiler interface variable handling routine.

Overview
REXX/VSE defines a format for compiled REXX programs so that REXX/VSE can distinguish between
compiled and interpreted programs. REXX/VSE also provides a defined interface for installing a REXX
compiler runtime processor.

A compiler runtime processor executes compiled programs. To initiate runtime processing of a compiled
REXX program, REXX/VSE uses a compiler programming table to identify the runtime processor and
up to four interface routines. You can modify the compiler programming table to identify routines for
a compiler runtime processor, if a compiler runtime processor is installed. Each of the four compiler
interface routines are optional and can provide special processing for initializing and terminating the
compiler runtime processor, loading compiled REXX programs, and accessing REXX variables.

How REXX Identifies a Compiled Program
During REXX program processing, REXX/VSE determines whether a program is compiled or interpreted.
REXX/VSE recognizes a program as compiled if the program meets the following three criteria:

• The length of the first record is at least 20 bytes
• The string 'EXECPROC' is in columns 5–12 of first record
• The first non-blank in columns 1–4 of the first record is not a comment delimiter.

If a program meets these criteria, REXX/VSE determines the name of a compiler runtime processor from
columns 13–20 of the first record.

You might find that some interpreted programs meet these criteria and are, therefore, incorrectly
executed as compiled programs. There are several ways to correct this problem, including:

• Shift everything in the first record one column to the right. This leaves the string 'EXECPROC' in the first
record, but not in the expected position (columns 5–12) for a compiled program.

• Add a comment as the first record of the REXX program. The record that contains 'EXECPROC' remains
intact as the second record.

The Compiler Programming Table
The compiler programming table is a control block that REXX/VSE uses to obtain information about a
compiler runtime processor. This information includes the names of up to four optional compiler interface
routines. Before REXX/VSE runs the first compiled program in the first language processor environment
REXX/VSE loads ARXCMPTM as the compiler programming table. Once the compiler programming table
is loaded, it is used for all compiled programs in the current and any subsequent language processor
environments.

The ARXCMPTM module is in PRD1.BASE. Source for a sample compiler programming table is in
PRD1.BASE member ARXCMPTM.Z. If you want to install another REXX compiler runtime processor, you
can create your own compiler programming table using this member as a model. After you create the
source for the compiler programming table, assemble and link-edit the table as phase ARXCMPTM. You
must place ARXCMPTM in the SVA.

A mapping macro, ARXCMPTB, for the compiler programming table is in PRD1.BASE. See Table 95 on
page 502 and Table 96 on page 502 for the format of the compiler programming table.

Note: Each field name in the following tables must include the prefix COMPGMTB_.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 501

Table 95. Compiler Programming Table Header Information

Offset (Decimal) Number of Bytes Field Name Description

0 4 FIRST Address of the first entry

4 4 TOTAL Total number of entries

8 4 USED Number of entries used

12 4 LENGTH Length of each entry

16 8 -- Reserved

24 8 — X'FFFFFFFFFFFFFFFF'.

Table 96. Compiler Programming Table Entry Information

Offset (Decimal) Number of Bytes Field Name Description

0 8 RTPROC Name of the Compiler Runtime
Processor

8 8 COMPINIT Name of the Compiler Interface
Initialization Routine

16 8 COMPTERM Name of the Compiler Interface
Termination Routine

24 8 COMPLOAD Name of the Compiler Interface Load
Routine

32 8 COMPVAR Name of the Compiler Interface Variable
Handling Routine

40 16 STORAGE Four words of storage that a REXX
compiler runtime processor can use.
For example, a REXX compiler runtime
processor might use these storage
words as anchors for its control block
structure.

Figure 33 on page 503 shows the sample compiler programming table shipped in PRD1.BASE member
ARXCMPTM.Z. EAGRTXIN is the name of the compiler interface initialization routine. EAGRTXTR is the
name of the compiler interface termination routine. EAGRTPRC is the name of the compiler runtime
processor. EAGRTXLD is the name of the compiler interface load routine. EAGRTXVH is the name of the
compiler interface variable handling routine.

Compiler Support

502 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARXCMPTM CSECT ,
ARXCMPTM AMODE 31
ARXCMPTM RMODE ANY

ARXCMPTB_HEADER DS 0CL32
ARXCMPTB_FIRST DC AL4(FIRST_ENTRY)
ARXCMPTB_TOTAL DC F'1'
ARXCMPTB_USED DC F'1'
ARXCMPTB_LENGTH DC F'56'
 DC X'0000000000000000'
ARXCMPTB_FFFF DC X'FFFFFFFFFFFFFFFF'
FIRST_ENTRY DS 0CL56
FIRST_ENTRY_RTPROC DC C'EAGRTPRC'
FIRST_ENTRY_COMPINIT DC C'EAGRTXIN'
FIRST_ENTRY_COMPTERM DC C'EAGRTXTR'
FIRST_ENTRY_COMPLOAD DC C'EAGRTXLD'
FIRST_ENTRY_COMPVAR DC C'EAGRTXVH'
FIRST_ENTRY_STORAGE DC 4F'0'
 END ARXCMPTM

Figure 33. Sample Compiler Programming Table

The Compiler Runtime Processor
When REXX/VSE encounters a compiled REXX program, REXX/VSE passes control to the appropriate
compiler runtime processor to run the program. Before the first invocation of a compiled REXX program
in the first language processor environment, REXX/VSE loads the appropriate compiler runtime processor,
saves the location of the compiler runtime processor, then invokes the compiler runtime processor.
On subsequent invocations of compiled REXX programs, and in subsequent language processor
environments, REXX/VSE uses the saved location of the loaded compiler runtime processor to pass
control to the compiler runtime processor.

The compiler runtime processor must issue all messages relating to language processing. This includes
those VSE/ESA Messages and Codes contains.

When the compiler runtime processor receives control, it must pass control to the exec initialization
routine (EXECINIT) and exec termination routine (EXECTERM) at the appropriate times. The programming
routine ARXRTE must pass control to these routines.

Table 97 on page 504 describes the results required from a compiler runtime processor. The results vary
according to how the compiled program was invoked under the compiler runtime processor.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 503

Table 97. Compiler Runtime Processor Expected Results

Method of Invocation
(Compiled Program)

Returned Results (Compiled Program)

EXIT/RETURN
Without

Expression

EXIT/RETURN
With Expression

Language Error Processing Error

Subroutine Set return code to
0. The compiler
runtime processor
must not obtain
or complete an
EVALBLOK.

Set return code
to 0. The
compiler runtime
processor must
use the GETEVAL
function of ARXRLT
to obtain an
EVALBLOK. The
compiler runtime
processor must
then use the
results from the
execution of the
compiled program
to complete the
EVALBLOK.

Set return code
to 200nn, where
1≤nn≤99. The
compiler runtime
processor must not
obtain or complete
an EVALBLOK.

Set return code to
20. The compiler
runtime processor
must not obtain
or complete an
EVALBLOK.

Function For a
RETURN without
expression, set
the return code
to 20045. Return
code 20045 is a
special case of
return code 200nn.

For an
EXIT without
expression, set the
return code to 0.

Set return code
to 0. The
compiler runtime
processor must
use the GETEVAL
function of ARXRLT
to obtain an
EVALBLOK. The
compiler runtime
processor must
then use the
results from the
execution of the
compiled program
to complete the
EVALBLOK.

Set return code
to 200nn, where
1≤nn≤99. The
compiler runtime
processor must not
obtain or complete
an EVALBLOK.

Set return code to
20. The compiler
runtime processor
must not obtain
or complete an
EVALBLOK.

Compiler Support

504 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 97. Compiler Runtime Processor Expected Results (continued)

Method of Invocation
(Compiled Program)

Returned Results (Compiled Program)

EXIT/RETURN
Without

Expression

EXIT/RETURN
With Expression

Language Error Processing Error

Command Set return code
to 0. The
compiler runtime
processor must
use the GETEVAL
function of ARXRLT
to obtain an
EVALBLOK. The
compiler runtime
processor must
then complete the
EVALBLOK with a
result of 0.

Set return code to
0. The compiler
runtime processor
must represent the
results from the
compiled program
execution as a
number in string
format. If the
result string fits
in a fullword, the
compiler runtime
processor must
use the GETEVAL
function of ARXRLT
to obtain an
EVALBLOK. The
compiler runtime
processor must
then complete the
EVALBLOK with the
result string. If the
result string does
not fit in a fullword,
then the compiler
runtime processor
must set the return
code to 20026
and must not
obtain or modify an
EVALBLOK.

Set return code
to 200nn, where
1≤nn≤99. The
compiler runtime
processor must not
obtain or complete
an EVALBLOK.

Set return code to
20. The compiler
runtime processor
must not obtain
or complete an
EVALBLOK.

Entry Specifications
The contents of the registers on entry to the compiler runtime processor are:
Register 0

Address of an environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 505

Parameters for the Compiler Runtime Processor
In register 1, REXX/VSE passes the address of a parameter list, which consists of a list of addresses.
Each address in the parameter list points to a parameter. REXX/VSE passes all parameters on the call.
REXX/VSE sets the high-order bit of the last address in the parameter list to 1. Table 98 on page 506
lists the parameters for the compiler runtime processor.

Table 98. Parameters for a Compiler Runtime Processor

Parameter Number of
Bytes

Description

Parameter 1 4 EXECBLK address. On entry to the compiler runtime processor, this
parameter contains the address of the REXX exec block (EXECBLK)
that ARXLOAD uses. The exec block is a control block that describes
the program to be loaded. For more information on the exec block
parameter for ARXLOAD, see “The Exec Block” on page 445.

Parameter 2 4 Compiled Program arguments. On entry to the compiler runtime
processor, this parameter contains the address of a series of address/
length pairs that describe the arguments for the program. A double
word of X'FFFFFFFFFFFFFFFF' delineates the end of the pairs. For more
information on REXX program arguments, see “Format of Argument
List” on page 338.

Parameter 3 4 A fullword of flag bits. For more information on flag bits, see the
ARXEXEC parameters on page Table 14 on page 335.

Parameter 4 4 In-storage control block address. The in-storage control block contains
a series of address/length pairs that REXX uses to describe the
structure of a loaded program in storage. ARXLOAD or the compiler
interface load routine initializes the in-storage control block before
a compiler runtime processor receives control. For more information
on the in-storage control block, see “The In-Storage Control Block
(INSTBLK)” on page 339.

Parameter 5 4 This is reserved.

Parameter 6 4 Address of a user field. When a program calls ARXEXEC to invoke a
compiled REXX program, the program can pass the address of a user
field. ARXEXEC passes the user field address to the compiler runtime
processor in this parameter. For more information on the user field, see
Table 14 on page 335.

Parameter 7 4 Environment block address. On entry, this parameter contains the
address of the REXX environment block with which the compiler
programming table is associated. This parameter is identical to the
address in register 0. For more information on the REXX environment
block, see “Format of the Environment Block (ENVBLOCK)” on page
414.

Parameter 8 4 Compiler runtime processor entry address. Specifies the address of
the entry in the compiler programming table for the compiler runtime
processor.

Parameter 9 4 Compiler runtime processor return code. On exit, the compiler runtime
processor must set this parameter to a return code that indicates the
completion status of the compiler runtime processor. Table 99 on page
507 lists the return codes for the compiler runtime processor.

Compiler Support

506 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 98. Parameters for a Compiler Runtime Processor (continued)

Parameter Number of
Bytes

Description

Parameter 10 4 Compiler runtime processor abend and reason codes. The abend and
reason codes are the same as those ARXEXEC returns. For more
information on abend and reason codes for ARXEXEC, see page "Return
Codes".

Return Specifications
On return from the compiler runtime processor, the contents of registers 0–14 must be the same as on
entry.

Return Codes
Table 99 on page 507 lists the return codes the compiler runtime processor issues.

Table 99. Return Codes from a REXX Compiler Runtime Processor

Return Code
(Decimal)

Description

0 Processing was successful. Table 97 on page 504 shows the expected results from the
compiler runtime processor.

20 Processing was not successful. The compiler runtime processor issued an error
message that describes the error.

20001–20099 Processing was successful. However, the compiler runtime processor detected a syntax
error in the compiled program. The return code value is 20000 plus the value of the
REXX error number. See z/VSE Messages and Codes.

Programming Considerations
The compiler runtime processor must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The compiler runtime processor must be reentrant.

Environment
The attributes for the compiler runtime processor are:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task Mode
• Reentrant.

Compiler Interface Routines
During various stages of processing a compiled REXX program, REXX/VSE invokes a compiler interface
routine, if installed, to perform special processing. The compiler runtime processor is not required to
use the compiler interface routines. However, you must install those compiler interface routines that the
compiler runtime processor requires. To indicate to REXX/VSE that a compiler interface routine is not

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 507

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

required, specify a module name of eight blanks in the appropriate field of the compiler programming
table entry. The four compiler interface routines are:
Compiler interface initialization routine

Initializes a compiler runtime processor
Compiler interface termination routine

Terminates a compiler runtime processor
Compiler interface load routine

Performs specialized processing to service a request to load or free a compiled program
Compiler interface variable handling routine

Performs specialized processing to service a request to access REXX variables.

Compiler Interface Initialization Routine

This routine, if installed, receives control to initialize a compiler runtime processor before the compiler
runtime processor is invoked for the first time. REXX/VSE invokes a compiler interface initialization routine
once for each compiler runtime processor that runs in a REXX language processor environment.

Entry Specifications
The contents of the registers on entry to the compiler interface initialization routine are:
Register 0

Address of an environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameter List
In register 1, REXX/VSE passes the address of a parameter list, which consists of a list of addresses. Each
address in the parameter list points to a parameter. REXX/VSE passes all parameters on the call and sets
the high-order bit of the last address in the parameter list to 1. The following table lists the parameters for
the compiler interface initialization routine.

Table 100. Parameter List for the Compiler Interface Initialization Routine

Parameter Number of
Bytes

Description

Parameter 1 4 Environment block address. On entry, this parameter contains the
address of the REXX environment block with which the compiler
programming table is associated. This parameter is identical to the
address in register 0. For more information on the REXX environment
block, see “Format of the Environment Block (ENVBLOCK)” on page
414.

Compiler Support

508 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 100. Parameter List for the Compiler Interface Initialization Routine (continued)

Parameter Number of
Bytes

Description

Parameter 2 4 Compiler runtime processor entry address. Specifies the address of
the entry in the compiler programming table for the compiler runtime
processor.

Parameter 3 4 Compiler interface initialization routine return code. On exit, the
compiler interface initialization routine must set this parameter to
a return code that indicates the completion status of the compiler
interface initialization routine. Table 101 on page 509 lists the return
codes for the compiler interface initialization routine.

Return Specifications
On return from the compiler interface initialization routine, the contents of registers 0–14 must be the
same as on entry.

Return Codes
Table 101 on page 509 lists the return codes the compiler interface initialization routine issues.

Table 101. Return Codes from the Compiler Interface Initialization Routine

Return Code
(Decimal)

Description

0 Processing was successful. REXX/VSE can now pass control to the compiler runtime
processor.

20 Processing was not successful. REXX/VSE does not give control to the associated
compiler runtime processor. REXX/VSE does not execute any compiled REXX program
that uses the associated compiler runtime processor.

Programming Considerations
The compiler interface initialization routine must follow standard linkage conventions. It must save the
registers on entry and restore the registers when it returns. The compiler interface initialization routine
must be reentrant.

Environment
The attributes for the compiler interface initialization routine are:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task Mode
• Reentrant.

Compiler Interface Termination Routine

This routine, if installed, receives control at the termination of a REXX language processor environment.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 509

Entry Specifications
The contents of the registers on entry to the compiler interface termination routine are:
Register 0

Address of an environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameter List
In register 1, REXX/VSE passes the address of a parameter list, which consists of a list of addresses. Each
address in the parameter list points to a parameter. REXX/VSE passes all parameters on the call and sets
the high-order bit of the last address in the parameter list to 1. The following table lists the parameters for
the compiler interface termination routine.

Table 102. Parameter List for the Compiler Interface Termination Routine

Parameter Number of
Bytes

Description

Parameter 1 4 Environment block address. On entry, this parameter contains the
address of the REXX environment block with which the compiler
programming table is associated. This parameter is identical to the
address in register 0. For more information on the REXX environment
block, see “Format of the Environment Block (ENVBLOCK)” on page
414.

Parameter 2 4 Compiler runtime processor entry address. Specifies the address of
the entry in the compiler programming table for the compiler runtime
processor.

Parameter 3 4 Compiler interface termination routine return code. This parameter is
reserved for future use. REXX/VSE initializes this parameter to 0 and
does not inspect the parameter on return from the compiler interface
termination routine.

Return Specifications
On return from the compiler interface termination routine, the contents of registers 0–14 must be the
same as on entry.

Return Codes
The return code parameter in the compiler interface termination routine is reserved for future use. The
compiler interface termination routine must not modify the return code parameter; REXX/VSE does not
inspect the return code parameter.

Compiler Support

510 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Programming Considerations
The compiler interface termination routine must follow standard linkage conventions. It must save the
registers on entry and restore the registers when it returns. The compiler interface termination routine
must be reentrant.

Environment
The attributes for the compiler interface termination routine are:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task Mode
• Reentrant.

Compiler Interface Load Routine

ARXLOAD passes control to the compiler interface load routine in either of two cases:

• After the REXX language processor reads a compiled REXX program into storage.
• When the REXX language processor makes a request to free the in-storage control block that an earlier

request to the compiler interface load routine created.

Note: This section discusses the interaction between the compiler interface load routine and the IBM-
supplied ARXLOAD routine.

For compiled programs, ARXLOAD calls the compiler interface load routine, if installed, before ARXLOAD
builds the in-storage control block and after ARXLOAD has obtained all information the compiler interface
load routine requires.

One of the inputs (parameter 5) to the compiler interface load routine is a group of blocks containing
the compiled REXX program. The compiler interface load routine must create and initialize an in-storage
control block from the group of blocks, preferably above 16 megabytes in virtual storage. For more
information about the in-storage control block, see “The In-Storage Control Block (INSTBLK)” on page
339.

Entry Specifications
The contents of the registers on entry to the compiler interface load routine are:
Register 0

Address of an environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 511

Parameter List
In register 1, the calling program (ARXLOAD) passes the address of a parameter list, which consists
of a list of addresses. Each address in the parameter list points to a parameter. ARXLOAD passes all
parameters on the call and sets the high-order bit of the last address in the parameter list to 1. The
following table lists the parameters for the compiler interface load routine.

Table 103. Parameter List for the Compiler Interface Load Routine

Parameter Number of
Bytes

Description

Parameter 1 8 Function requested. On entry, this parameter contains the function
requested of the compiler interface load routine The function
specification is in uppercase, left-justified, and padded on the right with
blanks. Acceptable values are:
"LOAD "

Specifies that the compiler interface load routine is to load a
program into storage.

"FREE "
Specifies that the compiler interface load routine is to free the
program represented by the in-storage control block specified in
parameter 8.

For more information on the LOAD and FREE functions, see "Functions
You Can Specify...".

Parameter 2 4 EXECBLK address. On entry to the compiler interface load routine, this
parameter contains the address of the REXX exec block (EXECBLK)
that ARXLOAD uses. The exec block is a control block that describes
the program to be loaded. For more information on the exec block
parameter for ARXLOAD, see “The Exec Block” on page 445.

Parameter 3 4 Record format. On entry, this parameter specifies the format of records
in the blocks passed to this routine in parameter 5. Possible values for
this parameter are 'F ' for fixed-length records and 'V ' for variable-
length records. Variable-length records do not span across blocks.

Parameter 4 4 Record length. On entry, this parameter specifies the length of each
record for fixed-length records, or the maximum record length for
variable-length records. Each variable-length record contains a record
descriptor word (RDW). The first two bytes of the RDW indicate the
actual length of the record, including the RDW.

Parameter 5 4 Address of a vector of address/length pairs. Each address/length pair
contains the address and length of a block of data that contains the
statements of the program. A double word of X'FFFFFFFFFFFFFFFF'
indicates the end of the pairs.

Parameter 6 4 Environment block address. On entry, this parameter contains the
address of the REXX environment block with which the compiler
programming table is associated. This parameter is identical to the
address in register 0. For more information on the REXX environment
block, see “Format of the Environment Block (ENVBLOCK)” on page
414.

Parameter 7 4 Compiler runtime processor entry address. Specifies the address of
the entry in the compiler programming table for the compiler runtime
processor.

Compiler Support

512 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 103. Parameter List for the Compiler Interface Load Routine (continued)

Parameter Number of
Bytes

Description

Parameter 8 4 In-storage control block address. The in-storage control block contains
a series of address/length pairs that REXX uses to describe the
structure of a loaded program in storage. For more information on the
in-storage control block, see “The In-Storage Control Block (INSTBLK)”
on page 339.

When ARXLOAD invokes the compiler interface load routine to load a
compiled program, the compiler interface load routine should create
an in-storage control block and place the control block address in this
parameter. ARXLOAD considers this parameter to be valid only when
the return code from the compiler interface load routine is 0.

When ARXLOAD invokes the compiler interface load routine to free
storage for the REXX program, this parameter contains the address of
the in-storage control block that the compiler interface load routine
previously created and is to free.

For complete details on in-storage control blocks, see “The In-Storage
Control Block (INSTBLK)” on page 339.

Parameter 9 4 Compiler interface load routine return code. On exit, the compiler
interface load routine must set this parameter to a return code that
indicates the completion status of the compiler interface load routine.
Table 104 on page 513 lists the return codes issued by the compiler
interface load routine.

Return Specifications
On return from the compiler interface load routine, the contents of registers 0–14 must be the same as on
entry.

Return Codes
Table 104 on page 513 lists the return codes issued by the compiler interface load routine.

Table 104. Return Codes from the Compiler Interface Load Routine

Return Code
(Decimal)

Description

0 Processing was successful. If the requested function was LOAD, parameter 8 contains
the address of the created in-storage control block.

If the requested function was FREE, the in-storage control block specified in parameter
8 has been freed.

4 Processing was successful. However, the compiler interface load routine did not create
an in-storage control block. ARXLOAD will create an in-storage control block.

20 Processing was not successful. A severe error has occurred. The compiler interface load
routine should issue a message to accompany this return code. ARXLOAD propagates a
return code of 20 to the caller of ARXLOAD.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 513

Programming Considerations
The compiler interface load routine must follow standard linkage conventions. It must save the registers
on entry and restore the registers when it returns. The compiler interface load routine must be reentrant.

Environment
The attributes for the compiler interface load routine are:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task Mode
• Reentrant.

Compiler Interface Variable Handling Routine

The compiler interface variable handling routine, if installed, receives control whenever an external
routine or host command requests access to REXX variables using ARXEXCOM.

Entry Specifications
The contents of the registers on entry to the compiler interface variable handling routine are:
Register 0

Address of an environment block
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameter List for the Compiler Interface Variable Handling Routine
In register 1, the calling program passes the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. REXX/VSE sets the high-order bit of
the last address in the parameter list to 1. Table 105 on page 515 lists the parameters for the compiler
interface variable handling routine.

Compiler Support

514 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 105. Parameter List for the Compiler Interface Variable Handling Routine

Parameter Number of
Bytes

Description

Parameter 1 1 Variable handling function request. On entry to the compiler interface
variable handling routine, this parameter contains a 1-character field
corresponding to the shared variable request code (SHVCODE) used by
ARXEXCOM. For more information on shared variable request codes,
see "SHVCODE".

This routine must also support the function 'n'—Fetch Next with
Mask. The Fetch Next with Mask function must search through all
variables known to the language processor. These variables include
stem variables that have been assigned a value. The output from
this function is expected to be the next variable that begins with the
specified mask.

Parameter 2 4 The address of the variable name to be manipulated. This is an input
parameter for the following functions:
Function

SHVCODE
Set Variable

'S','s'
Fetch Variable

'F','f'
Drop Variable

'D','d'
Fetch Private

'P'
For the Fetch Next ('N') and Fetch Next with Mask ('n') functions, this
parameter must be set on output to the address of the next variable
name.

Parameter 3 4 Length of variable name. Specifies the length of the string to which the
address in parameter 2 points.

Parameter 4 4 Address of the value for the variable. This is an input parameter for the
Set Variable function ('S','s') and an output parameter for the following
functions:
Function

SHVCODE
Fetch Variable

'F','f'
Fetch Next

'N'
Fetch Next with Mask

'n'
Fetch Private

'P'
This parameter is not used for the Drop Variable ('D','d') function.

Parameter 5 4 Length of the value for the variable. Specifies the length of the value to
which the address in parameter 4 points.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 515

Table 105. Parameter List for the Compiler Interface Variable Handling Routine (continued)

Parameter Number of
Bytes

Description

Parameter 6 4 Work block extension address. On entry, this parameter contains the
address of the work block extension. The work block extension contains
the WORKEXT_RTPROC field, which the compiler runtime processor can
use as an anchor for resources that are specific to a particular compiled
program.

Parameter 7 4 Compiler runtime processor entry address. Specifies the address of
the entry in the compiler programming table for the compiler runtime
processor.

Parameter 8 4 Environment block address. On entry, this parameter contains the
address of the REXX environment block with which the compiler
programming table is associated. This parameter is identical to the
address in register 0. For more information on the REXX environment
block, see “Format of the Environment Block (ENVBLOCK)” on page
414.

Parameter 9 1 Shared variable function return code (SHVRET). On output, the compiler
interface variable handling routine must set this parameter to the
appropriate value for the SHVRET field. The values returned in this
parameter for the Fetch Next with Mask function must be identical to
those returned for the Fetch Next function. For a list of appropriate
values for the SHVRET field, see "SHVBLOCK".

Parameter 10 4 Compiler interface variable handling routine return code. On exit, the
compiler interface variable handling routine must set this parameter
to a return code that indicates the completion status of the compiler
interface variable handling routine. Table 106 on page 517 lists the
return codes for the compiler interface variable handling routine.

Parameter 11 4 Fetch next mask. This parameter is optional and used only with the
Fetch Next with Mask function ('n'). When the language processor
provides this parameter, it specifies an address of a mask used to
search for the next variable or stem. The mask can be a character string
that meets the naming conventions for simple variables or variable
stems. The mask cannot identify a compound variable. The compiler
interface variable handling routine must return a variable whose name
begins with the mask provided. A parameter value of 0 indicates that no
mask is provided.

Parameter 12 4 Fetch next mask length. This parameter is optional and may be used
only in conjunction with parameter 11. This value is the length of the
mask provided in parameter 11. This parameter is ignored if the value in
parameter 11 is 0.

Return Specifications
On return from the compiler interface variable handling routine, the contents of registers 0–14 must be
the same as on entry.

Return Codes
Table 106 on page 517 lists the return codes the compiler interface variable handling routine issues.

Compiler Support

516 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 106. Return Codes from the Compiler Interface Variable Handling Routine

Return Code
(Decimal)

Description

0 Processing was successful.

4 Processing was not successful. Insufficient storage was available.

8 Processing was not successful. The name that was passed in parameter 2, or created by
a symbolic substitution on parameter 2, is too long.

12 Processing was not successful. The name that was passed in parameter 2, or created by
a symbolic substitution on parameter 2, is incorrect because it begins with a character
that is not valid.

20 Processing was not successful.

Programming Considerations
The compiler interface variable handling routine must follow standard linkage conventions. It must save
the registers on entry and restore the registers when it returns. The compiler interface variable handling
routine must be reentrant.

Environment
The attributes for the compiler interface variable handling routine are:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task Mode
• Reentrant.

Environment for the Programming Routines
The ARXERS, ARXHST, and ARXRTE programming routines must run in an environment with the following
characteristics:

• State: Problem Program
• Key: 8
• AMODE(31)/RMODE(ANY)
• ASC mode: Primary
• Task mode.

External Routine Search Routine (ARXERS)
ARXERS is a programming routine that searches for and runs an external routine. ARXERS allows a
compiler runtime processor to pass control to an external routine by a direct interface. A compiler runtime
processor that uses ARXERS leaves the implementation of the external routine search and invocation to
REXX/VSE. For more information on the search order for REXX external routines, see “Search Order” on
page 60.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 517

Entry Specifications
The contents of the registers on entry to ARXERS are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters for ARXERS
You can pass the address of an environment block in register 0. In register 1, the compiler runtime
processor must pass the address of a parameter list, which consists of a list of addresses. Each address in
the parameter list points to a parameter.

The first five parameters are required. The addresses that point to parameter 6 and parameter 7 are
optional. If ARXERS does not find the high-order bit set on in the address for parameter 5 or (optional
parameters) 6 or 7, ARXERS does not invoke the specified routine and returns with a return code of 32 in
register 15. See Table 108 on page 520 for more information on return codes. Set the high-order bit of
the last address in the parameter list to 1. Table 107 on page 519 lists the parameters for the external
routine search routine.

Compiler Support

518 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Table 107. Parameters for the External Routine Search Routine

Parameter Number of
Bytes

Description

Parameter 1 8 Function requested. On entry to ARXERS, this parameter contains the
function requested of the external routine search routine. The function
specification must be in uppercase, left-justified, and padded on the
right with blanks. Acceptable values are:
"EXTSUB "

Specifies that the external routine that is being requested is a
subroutine. The subroutine is not required to return an EVALBLOK.
For a successfully run subroutine that does not return an
EVALBLOK, the EVALBLOK address is set to 0 and the return code is
set to 0.

"EXTBRSUB"
Specifies that the external routine that is being requested is a
subroutine and receives control through a branch instruction. The
external routine is invoked using standard register linkage. See
Table 21 on page 345 for more information.

"EXTFCT "
Specifies that the external routine that is being requested is a
function. The function is required to return an EVALBLOK. For a
successfully run function that does not return an EVALBLOK, the
EVALBLOK address is set to 0 and the return code is set to 4.

"EXTBRFCT"
Specifies that the external routine that is being requested is
a function and receives control through a branch instruction.
The external routine is called using standard register linkage
conventions. See Table 21 on page 345 for more information.

Parameter 2 4 Address of the external routine name.

For the "EXTFCT " and "EXTSUB " functions, this parameter specifies
the address of the external routine name for the requested external
routine. The name must not include the opening left parenthesis that
identifies the routine as a function, if that is the type of routine being
called.

For the "EXTBRFCT" and "EXTBRSUB" functions, this parameter
specifies the address of the external routine that is to be given control.
ARXERS branches to this address after building the parameter list for
the specified routine.

Parameter 3 4 Length of the external routine name. Specifies the length of the
external routine name to which parameter 2 points. ARXERS ignores
this parameter if parameter 1 is "EXTBRFCT" or "EXTBRSUB".

Parameter 4 4 Address of the arguments for the external routine. Specifies the address
of a set of address/length pairs that hold the arguments for the external
routine. These arguments must be in the format an external routine
expects. (See “Interface for Writing External Function and Subroutine
Code” on page 344 for a description of the argument list format.)

Parameter 5 4 Address of an EVALBLOK. On return from ARXERS, this parameter
contains the address of an EVALBLOK (if any) that ARXERS returned
after an external routine successfully completed. An address of 0
indicates that ARXERS did not receive an EVALBLOK.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 519

Table 107. Parameters for the External Routine Search Routine (continued)

Parameter Number of
Bytes

Description

Parameter 6 4 The address of a REXX environment block is optional. This is the
address of the REXX environment block under which the request is
to be performed. If the compiler runtime processor supplies a nonzero
parameter, ARXERS considers this parameter to be a valid environment
block address. If you omit this parameter or it is 0, ARXERS obtains the
environment block address from register 0. See “Using the Environment
Block Address” on page 441 for more information about this.

Parameter 7 4 Return code. The return code parameter is optional. Upon return from
ARXERS, this parameter contains the return code for ARXERS. Register
15 contains the same value as this parameter (if used).

Return Specifications
On return from the external routine search routine, the contents of the registers are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes
Table 108 on page 520 lists the return codes issued by the external routine search routine.

Table 108. Return Codes from the External Routine Search Routine

Return Code
(Decimal)

Description

0 Processing was successful. ARXERS located the external routine, and the external
routine returned control with a return code of 0 in register 15. If you specified EXTFCT or
EXTBRFCT, the address of the EVALBLOK is available in parameter 5.

4 Processing was successful. ARXERS located the external routine, and the external
routine returned control with a return code of 0 in register 15. However, you specified
EXTFCT or EXTBRFCT, and the external routine returned no EVALBLOK.

8 Processing was successful. ARXERS located the external routine, and the external
routine returned with a nonzero return code in register 15.

12 Processing was not successful. ARXERS attempted to create an EVALBLOK, but
insufficient virtual storage was available.

16 Processing was not successful. ARXERS could not locate the specified routine.

20 Processing was not successful. An error message may accompany this return code.

28 Processing was not successful. ARXERS was unable to locate a language processor
environment. Verify that you passed a valid environment block address.

32 Processing was not successful. The parameter list is incorrect. The parameter list
contains either too few or too many parameters, or the high-order bit of the last address
in the list is not set to 1 to indicate the end of the parameter list.

Compiler Support

520 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Host Command Search Routine (ARXHST)
ARXHST is a programming routine that searches for and runs a host command. ARXHST allows a compiler
runtime processor to pass control to a host command through a direct interface. A compiler runtime
processor that uses ARXHST leaves the implementation of the host command search and invocation to
REXX/VSE. For more information on the search order for REXX external routines, see “Search Order” on
page 60.

ARXHST also allows a compiler runtime processor to set and clear the ETMODE flag, based on the
OPTIONS ETMODE or OPTIONS NOETMODE instruction. The "ETMODE" function of ARXHST sets the
ETMODE flag. The "NOETMODE" function of ARXHST clears the ETMODE flag. For more information on
OPTIONS ETMODE and OPTIONS NOETMODE, see the OPTIONS instruction on page “OPTIONS” on page
43.

Entry Specifications
The contents of the registers on entry to ARXHST are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable
Register 13

Address of a register save area
Register 14

Return address
Register 15

Entry point address

Parameters for ARXHST
In register 1, the compiler runtime processor must pass the address of a parameter list, which consists of
a list of addresses. Each address in the parameter list points to a parameter. The first six parameters are
required. The addresses that point to parameter 7 and parameter 8 are optional. If ARXHST does not find
the high-order bit set on in the address for parameter 6 or (optional parameters) 7 or 8, ARXHST does not
invoke the specified routine and returns with a return code of 32 in register 15. See Table 110 on page
523 for more information on return codes. The high-order bit of the last address in the parameter list
must be set to 1. Table 109 on page 521 lists the parameters for the host command search routine.

Table 109. Parameters for the Host Command Search Routine

Parameter Number of
Bytes

Description

Parameter 1 8 Function requested. On entry to ARXHST, this parameter contains the
function requested of the host command search routine. The function
name must be in uppercase, left-justified, and padded on the right with
blanks. Acceptable values are:
"HOSTCMD "

Specifies ARXHST searches for and invokes a host command.
"ETMODE"

Specifies that ARXHST sets the ETMODE flag.
"NOETMODE"

Specifies that ARXHST clears the ETMODE flag.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 521

Table 109. Parameters for the Host Command Search Routine (continued)

Parameter Number of
Bytes

Description

Parameter 2 8 Host command environment name. Specifies the name of the host
command environment that is in effect for the compiled REXX program
that is running. The name must be in uppercase, left-justified, and
padded on the right with blanks. The name should correspond to an
entry in the host command environment table. Use this parameter
only for the "HOSTCMD" function. For the "ETMODE" or "NOETMODE"
functions, set this parameter to blanks.

Parameter 3 4 Address of host command string. Specifies the address of a string for
the host command environment to run. ARXHST passes the string as is
to the host command environment routine that corresponds to the host
command environment specified in parameter 2. The program that calls
ARXHST must manage (allocate and free) storage for the command
buffer. Use this parameter only for the "HOSTCMD" function. For the
"ETMODE" or "NOETMODE" functions, set this parameter to 0.

Parameter 4 4 Host command string length. Specifies the length of the command
string to which the address in parameter 3 points. Use this parameter
only for the "HOSTCMD" function. For the "ETMODE" or "NOETMODE"
functions, set this parameter to 0.

Parameter 5 4 Command output buffer address. Specifies the address of an area
to hold the result of the command. This result is a character
representation of the binary return code the host command issues. It is
recommended that this area be 20 bytes. If parameter 2 is not defined
in the host command environment table, ARXHST returns the character
representation of -3.

The compiler runtime processor that calls ARXHST should properly
set the REXX special variable RC. Use this parameter only for the
"HOSTCMD" function. For the "ETMODE" or "NOETMODE" functions, set
this parameter to 0.

Parameter 6 4 Output area length. Specifies the length of the output area to which
the address in parameter 5 points. Use this parameter only for the
"HOSTCMD" function. For the "ETMODE" or "NOETMODE" functions, set
this parameter to 0.

Parameter 7 4 The address of a REXX environment block is optional. This is the
address of the REXX environment block under which the request is
to be performed. If the compiler runtime processor supplies a nonzero
parameter, ARXHST considers this parameter to be a valid environment
block address. If you omit this parameter or it is 0, ARXHST obtains the
environment block address from register 0. See “Using the Environment
Block Address” on page 441 for more information about this.

Parameter 8 4 The requested function return code is optional. On return from ARXHST,
this parameter contains the return code for ARXHST. See Table 110 on
page 523 for information on return codes the host command search
routine issues. Register 15 contains the same value as this parameter (if
used).

Return Specifications
On return from the host command search routine, the contents of the registers are:

Compiler Support

522 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Registers 0-14
Same as on entry

Register 15
Return code.

Return Codes
Table 110 on page 523 lists the return codes the host command search routine issues.

Table 110. Return Codes from the Host Command Search Routine

Return Code
(Decimal)

Description

0 Processing was successful. For the "HOSTCMD" function, ARXHST located the host
command and the host command returned with a return code of 0 in register 15. For
the "ETMODE" and "NOETMODE" functions, ARXHST set or cleared the ETMODE flag
successfully.

20 Processing was not successful. For the "HOSTCMD" function, ARXHST could not locate
the specified host command. ARXHST returns -3 in the command output buffer. The
command string specified in parameters 3 and 4 is incorrect, the requested function
could not be located in the search order, or the host command environment table did
not define the host command environment routine. This return code could also indicate
passing an incorrect function (parameter 1) to ARXHST. Valid functions are "HOSTCMD",
"ETMODE", and "NOETMODE".

28 Processing was not successful. ARXHST could not locate a language processor
environment. The command output area is not modified. Verify that you passed a valid
environment block address.

32 Processing was not successful. The parameter list is incorrect. The parameter list
contains too few or too many parameters, or the high-order bit of the last address in
the list is not set to 1 to indicate the end of the parameter list. The command output
buffer is not modified.

nn Processing was successful. The specified host command environment routine returned
a nonzero return code. The return code from the host command environment routine is
nn.

Exit Routing Routine (ARXRTE)
ARXRTE is a programming routine that locates and invokes a REXX exit. ARXRTE provides a way for a
compiler runtime processor to invoke REXX exit routines. A compiler runtime processor that uses ARXRTE
leaves the implementation of exit routing to REXX/VSE. For information about REXX exit routines, see
“REXX Exit Routines” on page 468.

Entry Specifications
The contents of the registers on entry to ARXRTE are:
Register 0

Address of an environment block (optional)
Register 1

Address of the parameter list the caller passes
Registers 2-12

Unpredictable

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 523

Register 13
Address of a register save area

Register 14
Return address

Register 15
Entry point address

Parameters for ARXRTE
In register 1, the compiler runtime processor must pass the address of a parameter list, which consists of
a list of addresses. Each address in the parameter list points to a parameter. The first three parameters
are required. The addresses that point to parameter 4 and parameter 5 are optional. If ARXRTE does
not find the high-order bit set on in either the address for parameter 3 or (optional parameters) 4 or
5, ARXRTE does not invoke the specified routine and returns with a return code of 32 in register 15.
See Table 112 on page 525 for more information on return codes. To end the parameter list, set the
high-order bit of the last address to 1. Table 111 on page 524 lists the parameters for the exit routing
routine.

Table 111. Parameters for the Exit Routing Routine

Parameter Number of
Bytes

Description

Parameter 1 8 Function requested. On entry to ARXRTE, this parameter contains the
function requested of the exit routing routine. The function name must
be in uppercase, left-justified, and padded on the right with blanks.
Acceptable values are:
"EXECINIT"

Specifies running the EXECINIT exit routine. For more information
on the EXECINIT exit, see “Exec Initialization and Termination
Exits” on page 473.

"EXECTERM"
Specifies running the EXECTERM exit routine. For more information
on the EXECTERM exit, see “Exec Initialization and Termination
Exits” on page 473.

Parameter 2 8 Exit routine parameter list address. Specifies the address of the
parameter list for the requested exit routine. If the exit does not require
parameters, the address in this parameter must be set to 0. For a
discussion of the parameters for the specified exit, see “REXX Exit
Routines” on page 468.

Parameter 3 4 Exit routine return code. On return from ARXRTE, this parameter
contains the return code value from the requested exit. This value has
meaning only if the return code from ARXRTE is 0.

Parameter 4 4 The address of a REXX environment block is optional. This is the
address of the REXX environment block under which the request is
to be performed. If the compiler runtime processor supplies a nonzero
parameter, ARXRTE considers this parameter to be a valid environment
block address. If you omit this parameter or it is 0, ARXRTE obtains
the environment block address from register 0. (See Chapter 20,
“Initialization and Termination Routines,” on page 427.)

Parameter 5 4 Return code. The return code parameter is optional. On return from
ARXRTE, this parameter contains the return code for ARXRTE. Register
15 will contain the same value as this parameter (if used).

Compiler Support

524 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Return Specifications
On return from the exit routing routine, the contents of the registers are:
Registers 0-14

Same as on entry
Register 15

Return code.

Return Codes
Table 112 on page 525 lists the return codes the exit routing routine issues.

Table 112. Return Codes from the Exit Routing Routine

Return Code
(Decimal)

Description

0 Processing was successful. ARXRTE located the exit, passed control to the exit, and the
exit ran to completion. The return code from the exit is available in parameter 3.

4 Processing was not successful. The module name table for the current environment
did not have an entry for the requested exit. Verify that the environment block address
specified in parameter 4 is correct and that the module name table contains the name of
the exit you specified.

20 Processing was not successful. The error may occur because:

• A compiled program is not executing
• The requested function is not supported.

28 Processing was not successful. A language processor environment could not be located.
Verify that the environment block address specified in parameter 4 is correct.

32 Processing was not successful. The parameter list contained too few or too many
parameters, or the high-order bit of the last parameter was not set to 1 to indicate
the end of the parameter list.

Compiler Support

Chapter 24. Support for the Library for REXX/370 in REXX/VSE 525

Compiler Support

526 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Appendix A. List of the Names of Macros Intended for
Customers' Use

The macros identified in this appendix are provided as programming interfaces for customers of REXX/
VSE.

Warning: Do not use as programming interfaces any REXX/VSE macros other than those identified
in this appendix.

General-Use Programming Interfaces
The macros listed in this topic are general-use programming interfaces intended for customer use. Some
macros have keywords, fields, or parameters that are designed for IBM internal use only. Such keywords,
fields, or parameters are not part of the programming interfaces for use by customers in writing programs
that request or receive the services of REXX/VSE. Please refer to the appropriate product documentation
for the correct classification and use of these keywords, fields, or parameters.

Mapping Macros
This section lists the general-use programming interface mapping macros for REXX/VSE. The data areas
are programming interfaces or contain fields that are programming interfaces. (The macro ID is the
member name in PRD1.BASE; the acronym identifies the control block and is typically the prefix of each
field in the control block.)

Table 113. Mapping Macros

Macro ID Acronym

ARXARGTB ARGTABLE

ARXDSIB DSIB

ARXEFPL EFPL

ARXENVB ENVBLOCK

ARXEVALB EVALBLOCK

ARXEXECB EXECBLK

ARXEXTE ARXEXTE

ARXFPDIR FPCKDIR

ARXINSTB INSTBLK

ARXMODNT MODNAMET

ARXPACKT PACKTB

ARXPARMB PARMBLOCK

ARXSHVB SHVBLOCK

ARXSUBCT SUBCOMTB

ARXWORKB WORKBLOK

© Copyright IBM Corp. 1988, 2004 527

Product-Sensitive Programming Interfaces
Macros listed in this topic are product-sensitive programming interfaces intended for customer use.
Macros can have keywords, fields, or parameters that are designed for IBM internal use only. Such
keywords, fields, or parameters are not part of the programming interfaces for use by customers in writing
programs that request or receive the services of REXX/VSE. Please refer to the appropriate product
documentation for the correct classification and use of these keywords, fields, or parameters.

Mapping Macros
This section lists the product-sensitive programming interface mapping macros for REXX/VSE. The data
areas are programming interfaces or contain fields that are programming interfaces.

Table 114. Mapping Macros

Macro ID Acronym

ARXCMPTB —

ARXENVB ENVBLOCK

ARXEXTE ARXEXTE

ARXWORKB WORKBLOK

528 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Appendix B. Servicing REXX/VSE

When applying a Program Temporary Fix (PTF), check if mandatory or recommended phases are affected
which had been loaded into the SVA during IPL.

Mandatory phases are:

Table 115. Mandatory Phases

Phase Name Approximate Size Residency Mode

ARXREXX 2080 ANY

ARXINIT 361.088 ANY

ARXRXVEC 920 ANY

EAGRTXIN 274.832 ANY

EAGRTXLD 304 ANY

EAGRTPRC 304 ANY

EAGRTXTR 312 ANY

EAGRTXVH 304 ANY

Recommended phases are

Table 116. Recommended Phases

Phase Name Approximate Size Residency Mode

ARXIOLAR 7424 24

ARXSTO00 23104 ANY

ARXSTAM 17096 ANY

ARXRX24. 5344 24

If these phases have been affected by a PTF they can be made active by running job ARXINST.Z. This job
calls loadlist $SVAREXX and loads the mandatory and recommended phases listed above into the SVA.
Make sure to have 600KB of SVA storage.

© Copyright IBM Corp. 1988, 2004 529

* $$ JOB JNM=ARXINST,DISP=D,CLASS=0
// JOB ARXINST LOAD REXX INTO THE SVA
* *--*
* * PART 1: Load REXX/VSE via $SVAREXX *
* *--*
// LIBDEF PHASE,SEARCH=PRD1.BASE
SET SDL
LIST=$SVAREXX
/*
* *--*
* * PART 2: VERIFY THAT THE MANDATORY AND RECOMMENDED *
* * REXX/VSE PHASES HAVE BEEN LOADED INTO THE SVA *
* *--*
// EXEC ARXVERFY
* *--*
* * PART 3: INITIALIZE REXX/VSE TABLES *
* *--*
// EXEC ARXLINK
/&
* $$ EOJ

Figure 34. Initializing REXX/VSE using ARXINST.Z

In order to load single phases into the SVA, replace LIST=$SVAREXX by the name of the affected phase
and run part 1 of ARXINST.Z.

To replace, for example, phase EAGRTXIN you would code the following:

* $$ JOB JNM=RELOAD,DISP=D,CLASS=0
// JOB RELOAD LOAD EAGRTXIN INTO THE SVA
// LIBDEF PHASE,SEARCH=PRD1.BASE
SET SDL
EAGRTXIN,SVA
/*
/&
* $$ EOJ

Figure 35. Loading Single Phases into the SVA

530 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Appendix C. REXX Supplied Link Books

REXX allows you to write exit routines that may replace IBM supplied programs. In order to activate your
exit routines you need to relink ARXINIT together with your object decks.

The sample job ARXSKLNK.Z in PRD1.BASE shows you how to link the REXX phase ARXINIT. The job
includes a link book with the name ARXINLNK.OBJ. You can also use the skeleton ARXSKLNK.Z to link
other REXX phases. The following is the list of supplied link books:

LINKBOOK PHASE

ARXCONA1: ARXCONAD

ARXCPRO1: ARXCPROF

ARXDILK1: ARXDI01

ARXDILNK: ARXDI02, ARXDI03, ARXDI04, ARXDI05,
ARXDI06, ARXDI07, ARXDI08, ARXDI09,
ARXDI0A, ARXDI0B, ARXDI0C, ARXDI0D,
ARXDI0E

ARXEFCO1: ARXEFCO

ARXEFSO1: ARXEFSO

ARXEFSN1: ARXEFSN

ARXENPL0: ARX00ENP

ARXENPL1: ARX01ENP

ARXENPL2: ARX02ENP

ARXENPL3: ARX03ENP

ARXENPL4: ARX04ENP

ARXENPL5: ARX05ENP

ARXENPL6: ARX06ENP

ARXENPL7: ARX07ENP

ARXENPL8: ARX08ENP

ARXENPL9: ARX09ENP

ARXENUL1: ARX01ENU

ARXENUL2: ARX02ENU

ARXENUL3: ARX03ENU

ARXENUL4: ARX04ENU

ARXENUL5: ARX05ENU

ARXENUL6: ARX06ENU

ARXENUL7: ARX07ENU

ARXENUL8: ARX08ENU

ARXENUL9: ARX09ENU

© Copyright IBM Corp. 1988, 2004 531

LINKBOOK PHASE

ARXENUL0: ARX00ENU

ARXINLNK: ARXINIT

ARXREXX1: ARXREXX

ARXANCR1: ARXANCHR

ARXCMPT1: ARXCMPTM

ARXPARM1: ARXPARMS

ARXIOLA1: ARXIOLAR

ARXFLOC1: ARXFLOC

ARXFUSE1: ARXFUSER

ARXSTAM1: ARXSTAM

ARXEMSG1: ARXEMSG

ARXLINKL: ARXLINK

ARXINTL: ARXINT

ARXLOADL: ARXLOAD

ARXLDL: ARXLD

ARXSUBCL: ARXSUBCM

ARXSUBL: ARXSUB

ARXEXC1: ARXCEXEC

ARXEXECL: ARXEXEC

ARXEXL: ARXEX

ARXINOUL: ARXINOUT

ARXIOL: ARXIO

ARXJCLL: ARXJCL

ARXRLFL: ARXRLT

ARXSTKL: ARXSTK

ARXTRML1: ARXTERM

ARXTRML2: ARXTRM

ARXICLNK: ARXIC

ARXUIDL: ARXUID

ARXTERML: ARXTERMA

ARXTMAL: ARXTMA

ARXMSGIL: ARXMSGID

ARXMIDL: ARXMID

ARXEXCOL: ARXEXCOM

ARXEXCL: ARXEXC

532 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

LINKBOOK PHASE

ARXSAYL: ARXSAY

ARXERSL: ARXERS

ARXHSTL: ARXHST

ARXHLTL: ARXHLT

ARXTXTL: ARXTXT

ARXLINL: ARXLIN

ARXRTEL: ARXRTE

ARXRXVEL: ARXRXVEC

ARXRX24L: ARXRX24

ARXLNK04: ARXVERFY

ARXLNK05: ARXEFVSE

ARXSTOLK: ARXSTO00

ARXSYSL1: ARXSYSLN

ARXEOJ1: ARXEOJTB

ARXJCL2: ARXJCLAD

ARXIDCM1: ARXIDCAM

ARXLIBRI: ARXLIBR

ARXOCXI1: ARXOCXIT

ARXOUTL: ARXOUT

REXXLOA1: REXXLOAD

Appendix C. REXX Supplied Link Books 533

534 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Bibliography

This bibliography lists some publications that provide additional information about REXX or the VSE/ESA
system.

• REXX/VSE User's Guide
• VSE/ESA REXX/VSE Diagnosis Reference
• z/VSE System Macros User's Guide
• z/VSE Guide to System Functions
• z/VSE System Control Statements
• VSE/POWER Administration and Operation
• VSE/POWER Application Programming
• VSE/ESA Library Guide, GC33-6619
• z/VSE Messages and Codes, Volume 1
• z/VSE Installation
• SAA Common Programming Interface REXX Level2 Reference, SC24-5549
• IBM Compiler and Library for SAA REXX/370 Release 2: Introducing the Next Step in REXX Programming,

G511-1430
• IBM Compiler and Library for SAA REXX/370, User's Guide and Reference
• IBM Compiler and Library for SAA REXX/370 Release 2 Diagnosis Guide

© Copyright IBM Corp. 1988, 2004 535

http://publibfp.dhe.ibm.com/epubs/pdf/iesrue02.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrde01.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmge41.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/eagua04.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/h1981791.pdf

536 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

Index

Special Characters
- (subtraction operator) 14
-3 return code 458
, (comma)

as continuation character 13
in CALL instruction 31
in function calls 59
in parsing template list 29, 114
separator of arguments 31, 59

: (colon)
as a special character 12
in a label 18

! prefix on TRACE option 55
? prefix on TRACE option 55
. (period)

as placeholder in parsing 106
causing substitution in variable names 20
in numbers 120

* (multiplication operator) 14, 120
- tracing flag 56
** (power operator) 14, 122
/ (division operator) 14, 120
// (remainder operator) 14, 123
/= (not equal operator) 15
/== (strictly not equal operator) 15, 16
\ (NOT operator) 16
\< (not less than operator) 16
\<< (strictly not less than operator) 16
\= (not equal operator) 15
\== (strictly not equal operator) 15
\> (not greater than operator) 16
\>> (strictly not greater than operator) 16
& (AND logical operator) 16
&& (exclusive OR operator) 16
% (integer division operator) 14, 123
+ (addition operator) 14, 120
+++ tracing flag 56
< (less than operator) 15
<< (strictly less than operator) 15, 16
<<= (strictly less than or equal operator) 16
<= (less than or equal operator) 16
<> (less than or greater than operator) 15
= (equal sign)

assignment indicator 19
equal operator 15
immediate debug command 319
in DO instruction 32
in parsing template 108

== (strictly equal operator) 14–16, 120
> (greater than operator) 15
>.> tracing flag 56
>< (greater than or less than operator) 15
>= (greater than or equal operator) 16
>> (strictly greater than operator) 15, 16
>>= (strictly greater than or equal operator) 16
>>> tracing flag 56

>C> tracing flag 56
>F> tracing flag 56
>L> tracing flag 56
>O> tracing flag 57
>P> tracing flag 57
>V> tracing flag 57
¬ (NOT operator) 16
¬< (not less than operator) 16
¬<< (strictly not less than operator) 16
¬= (not equal operator) 15
¬== (strictly not equal operator) 15, 16
¬> (not greater than operator) 16
¬>> (strictly not greater than operator) 16
| (inclusive OR operator) 16
|| (concatenation operator) 14
$ABEND 458
$RC 330
$SVAREXX 529

A
ABBREV function

description 62
example 62
testing abbreviations 62
using to select a default 62

abbreviations
testing with ABBREV function 62

ABS function
description 62
example 62

absolute 108
absolute value

finding using ABS function 62
function 62
used with power 122

abuttal 14
Accept function, REXX Sockets 280
Access Control Table (DTSECTAB) 223
access control to console automation 228
accessing REXX variables 352
action taken when a condition is not trapped 130
action taken when a condition is trapped 130
actions (Message Action Table) 249
ACTIVATE console 222
activate console (MCSOPER macro) 219
active loops 40
adding an operator communication exit 94, 237
adding information to a VSAM file 168
addition

description 121
operator 14

additional operator examples 123
ADDRESS CONSOLE 221
ADDRESS function

description 62
determining current environment 62

Index 537

ADDRESS function (continued)
example 63

ADDRESS instruction
description 27
example 28
settings saved during subroutine calls 32

ADDRESS JCL command 201
ADDRESS LINK environments 205
ADDRESS LINK IDCAMS 214
ADDRESS LINK LIBR 213
address of environment block

obtaining 427
passing to REXX routines 325, 389, 412

ADDRESS POWER commands 24, 181
address setting 28, 32
address, specifying with SETUID 165
advanced topics in parsing 113
algebraic precedence 16
alphabetic character word options in TRACE 54
alphabetics

checking with DATATYPE 68
used as symbols 10

alphanumeric checking with DATATYPE 68
altering

flow within a repetitive DO loop 40
special variables 23
TRACE setting 84

alternate entry point names 418
alternate messages flag 397
ALTMSGS flag 99, 397
AND, logical operator 16
ANDing character strings together 64
ARG function

description 63
example 63

ARG instruction
description 29
example 29

ARG option of PARSE instruction 44
argument list for function package 345
arguments

checking with ARG function 63
of functions 29, 59
of subroutines 29, 30
passing to functions 59
retrieving with ARG function 63
retrieving with ARG instruction 29
retrieving with the PARSE ARG instruction 44

arithmetic
basic operator examples 122
comparisons 124
errors 126
exponential notation example 125
numeric comparisons, example 124
NUMERIC settings 42
operation rules 121
operator examples 123
operators 14, 119, 120
overflow 126
precision 120
underflow 126
whole numbers 126

array
initialization of 21

array (continued)
setting up 20

array of MDB variables 234
ARXANCHR phase 422
ARXANCHR.Z sample 422
ARXARGTB mapping macro 338, 345
ARXCMPTB (compiler programming table)

creating the source 501
format 502
mapping macro 502

ARXCMPTM (compiler programming table module)
example 502

ARXCONAD 228
ARXDSIB mapping macro 447, 453
ARXEFPL mapping macro 345
ARXEFPLX 244
ARXEFVSE 348
ARXENVB mapping macro 414
ARXENVT mapping macro 422
ARXEOJTB 210
ARXERS (external routine search)

entry specifications 518
environment 517
parameter descriptions 518
return codes 520
return specifications 520

ARXERS compiler programming routine 421
ARXEVALB mapping macro 341, 345
ARXEX alternate entry point 334
ARXEXC alternate entry point 352
ARXEXCOM variable pool access interface 352
ARXEXEC routine

argument list 338
description 328, 334
evaluation block 341
exec block 337
getting larger area to store result 363
getting larger evaluation block 363
in-storage control block 339
overview 323
parameters 334
return codes 343
returning result from program 341

ARXEXECB mapping macro 337, 445
ARXEXTE mapping macro 418
ARXFLOC 348, 349
ARXFPDIR mapping macro 349
ARXFUSER 348, 349
ARXHLT routine 370
ARXHST (host command search)

entry specifications 521
environment 517
return codes 523
return specifications 523

ARXHST compiler programming routine 421
ARXIC routine 361
ARXINIT initialization routine 427
ARXINITX exit 440, 468
ARXINOUT I/O routine 447
ARXINSTB mapping macro 339
ARXINT alternate entry point 427
ARXIO alternate entry point 447
ARXIOPTS 452
ARXITMV exit 440, 470

538 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

ARXJCL routine
calling 331
description 328
overview 323
parameters 332
return codes 333

ARXLD alternate entry point 442
ARXLIN routine 376
ARXLOAD exec load routine 442
ARXMID alternate entry point 467
ARXMODNT mapping macro 398, 399
ARXMSGID message ID routine 467
ARXOUT routine 378
ARXPACKT mapping macro 404
ARXPARMB mapping macro 391, 393
ARXPARMS parameters module 99, 406
ARXPARMS.Z

sample for parameters module 413
ARXPARMS.Z (sample for ARXPARMS) 413
ARXRLT get result routine 363
ARXRTE (exit routing routine)

entry specifications 523
environment 517
parameter descriptions 524
return codes 525
return specifications 525

ARXRTE compiler programming routine 421
ARXSAY routine 368
ARXSHVB mapping macro 354
ARXSTK data stack routine 459
ARXSUB alternate entry point 357
ARXSUBCM routine 357
ARXSUBCT mapping macro 360, 401
ARXTERM termination routine 437
ARXTERMA termination routine 495
ARXTERMX exit 440, 471
ARXTMA alternate entry point 495
ARXTRM alternate entry point 437
ARXTXT routine 372
ARXUID user-ID routine 465
ARXWORKB mapping macro 417
ARXXITDF 473
ASSGN function 93
assigning

data to variables 44
assignment

description 19
indicator (=) 19
multiple assignments 110
of compound variables 20, 21

associative storage 20
ATTNROUT field (module name table) 400
AUTH= in DTSECTAB 223
authorized

calling REXX program as 329
automatic initialization of language processor environments
390

B
B2X function

description 65
example 65

backslash, use of 12, 16

basic operator examples 122
batch

running program in 328, 329
bibliography 535
binary

description 10
digits 10
strings

nibbles 10
to hexadecimal conversion 65

Bind function, REXX Sockets 281
BITAND function

description 64
example 64
logical bit operations 64

BITOR function
description 64
example 64
logical bit operations, BITOR 64

bits checked using DATATYPE 68
BITXOR function

description 64
example 65
logical bit operations, BITXOR 64

blanks
adjacent to special character 8
as concatenation operator 14
in parsing, treatment of 106
removal with STRIP function 81

boolean operations 16
bottom of program reached during execution 38
bracketed DBCS strings

DBBRACKET function 489
DBUNBRACKET function 492

built-in functions
ABBREV 62
ABS 62
ADDRESS 62
ARG 63
B2X 65
BITAND 64
BITOR 64
BITXOR 64
C2D 67
C2X 68
calling 30
CENTER 65
CENTRE 65
COMPARE 66
CONDITION 66
COPIES 67
D2C 72
D2X 73
DATATYPE 68
DATE 69
DBCS functions 488
definition 30
DELSTR 72
DELWORD 72
description 61
DIGITS 72
ERRORTEXT 73
EXTERNALS 90
FIND 90

Index 539

built-in functions (continued)
FORM 74
FORMAT 74
FUZZ 75
INDEX 91
INSERT 75
JUSTIFY 91
LASTPOS 76
LEFT 76
LENGTH 76
LINESIZE 92
MAX 77
MIN 77
OVERLAY 78
POS 78
QUEUED 78
RANDOM 79
REVERSE 79
RIGHT 80
SIGN 80
SOURCELINE 80
SPACE 81
STRIP 81
SUBSTR 82
SUBWORD 82
SYMBOL 82
TIME 83
TRACE 84
TRANSLATE 85
TRUNC 85
USERID 92
VALUE 86
VERIFY 86
WORD 87
WORDINDEX 87
WORDLENGTH 87
WORDPOS 88
WORDS 88
X2B 89
X2C 89
X2D 89
XRANGE 88

BY phrase of DO instruction 32

C
C2D function

description 67
example 67
implementation maximum 67

C2X function
description 68
example 68

CALL instruction
description 30
example 31
implementation maximum 32

calling a phase 205
calling REXX routines, general considerations 324
calls

recursive 31
carriage control characters 182, 187
CART (command and response correlation token)

creating 224

CART (command and response correlation token) (continued)
examples 224
GETMSG function 233
SENDMSG function 239

CART command 220, 224
CC characters 182, 187
CENTER function

description 65
example 65

centering a string using
CENTER function 65
CENTRE function 65

CENTRE function
description 65
example 65

chains of environments 388, 410
change value in specific storage address 101, 102
changing defaults for initializing language processor
environments 412
changing destination of commands 27
changing maximum number of language processor
environments 421
character

definition 8
position of a string 76
position using INDEX 91
removal with STRIP function 81
strings, ANDing 64
strings, exclusive-ORing 64
strings, ORing 64
to decimal conversion 67
to hexadecimal conversion 68
word options, alphabetic in TRACE 54

characteristics of language processor environment 381, 390
checking arguments with ARG function 63
cjustif

description 489
clauses

assignment 19
commands 19
continuation of 13
description 8, 18
instructions 19
keyword instructions 19
labels 18
null 18

Close function, REXX Sockets 282
close member flag 396
CLOSEXFL flag 396
CMDSOFL flag 394
code page 8
collating sequence using XRANGE 88
collections of variables 86
colon

as a special character 12
as label terminators 18
in a label 18

combining string and positional patterns 114
comma

as continuation character 13
in CALL instruction 31
in function calls 59
in parsing template list 29, 114
separator of arguments 31, 59

540 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

command
-3 return code 24
ACTIVATE 222
adding/removing an operator communication exit 94,
237
ADDRESS POWER 181
alternative destinations 23
authorization 220
CART 220, 224
clause 19
CONSTATE 225
CONSWITCH 225
CORCMD 245, 271
creating a new library member 94
DEACTIVATE 225
definition of host 24
destination of 27
environment, console 221
errors, trapping 129
inhibiting with TRACE instruction 55
issue via SENDCMD function 238
issuing to host 23
issuing to underlying operating system 23
JCL EXEC 329
MSG 237, 238, 251, 256
reponses outstanding in parallel 226
reserved names 142
return codes from 24
REXX/VSE 143
serialize a REXX program 94, 235
trap lines of output 95

command authorization 220
command processors

in parallel 227
return and reason codes 270

command search order flag 394
commands, REXX console 221
comments

description 8
examples 8
REXX program identifier 8

communicating with a user console 138
COMPARE function

description 66
example 66

comparisons
description 15
numeric, example 124
of numbers 15, 124
of strings

using COMPARE 66
compiler interface routines

initialization
description 508
entry specifications 508
environment 509
parameter descriptions 508
programming considerations 509
return codes 509
return specifications 509

load
description 511
entry specifications 511
environment 514

compiler interface routines (continued)
load (continued)

parameter descriptions 512
programming considerations 514
return codes 513
return specifications 513

overview 507
termination

description 509
entry specifications 510
environment 511
parameter descriptions 510
programming considerations 511
return codes 510
return specifications 510

variable handling
description 514
entry specifications 514
environment 517
parameter descriptions 514
programming considerations 517
return codes 516
return specifications 516

compiler programming routine
ARXERS 421
ARXHST 421
ARXRTE 421

compiler programming routines
overview 517

compiler programming table (ARXCMPTB)
creating the source 501
format 502
mapping macro 502

compiler programming table module (ARXCMPTM)
example 502

compiler runtime processor
call compiler interface load routine 442
considerations for exec load routine 442
description 503
entry specifications 505
environment 507
interface routine

initialization 508
load 511
termination 509
variable handling 514

interface routines 414, 416
obtain evaluation block 363
parameter descriptions 506
programming considerations 507
programming routine

exit routing routine (ARXRTE) 523
external routine search (ARXERS) 517
host command search (ARXHST) 521

results expected from compiled program 503
return codes 507
return specifications 507

compiler support, REXX
description 501
identifying a compiled program 501

completion messages 196
compound

symbols 20
variable

Index 541

compound (continued)
variable (continued)

description 20
setting new value 21

comppt
parameter containing address of 416

CONCAT option, FINDMSG function 231
concatenation

of strings 14
operator

|| 14
abuttal 14
blank 14

concatenation option, FINDMSG function 231
conceptual overview of parsing 115
condition

action taken when not trapped 130
action taken when trapped 130
definition 129
ERROR 129
FAILURE 129
HALT 129
information 132
information, definition 32
NOVALUE 129
saved during subroutine calls 32
SYNTAX 130
trap information using CONDITION 66
trapping of 129
traps, notes 131

CONDITION function
description 66
example 66

conditional
loops 32
phrase 35

Connect function, REXX Sockets 283
considerations for calling REXX routines 324
console

ACTIVATE 222
activating (MCSOPER macro) 219
application framework (REXXCO) 247
command environment 221
current 221, 225
data flow 217
DEACTIVATE 225
general-use interfaces 219
I/O interfaces 218
master 220
name 222
profile 221, 222
REXX, commands 221
user 220

console automation
benefits 217
demos 253
scenarios 247

CONSOLE host command environment 26
console profile

REXALLRC 221, 222
REXAUTO 222, 224
REXNORC 221, 222, 246
REXX 222

console program 217

Console Router
data flow 217
queue space 244
return and reason codes 270
routing codes 220

constant symbols 20
CONSTATE command 225
CONSWITCH command 225
content addressable storage 20
continuation

character 13
clauses 13
example 13
of data for display 50

control
storing VSE/POWER spool-access services messages 95

control blocks
environment block (ENVBLOCK) 389, 414
evaluation (EVALBLOCK) 341, 345
exec block (EXECBLK) 337
for language processor environment 388, 414
in-storage (INSTBLK) 339
input and output 452
parameter block (PARMBLOCK) 390, 416
request (SHVBLOCK) 354
return result from program 341
shared variable (SHVBLOCK) 354
SHVBLOCK 354
vector of external entry points 418
work block extension 416

control service (CTL) 196
control variable 34
controlled loops 34
conversion

binary to hexadecimal 65
character to decimal 67
character to hexadecimal 68
conversion functions 61
decimal to character 72
decimal to hexadecimal 73
formatting numbers 74
functions 90
hexadecimal to binary 89
hexadecimal to character 89
hexadecimal to decimal 89

COPIES function
description 67
example 67

copying a string using COPIES 67
copying information 145
copying information from one VSAM file to another 168
copying information to and from a list of compound variables
(REXX stem) 168
CORCMD command 245, 271
counting

option in DBCS 488
words in a string 88

CPU monitor 247
creating

buffer on the data stack 159
new data stack 160, 425
non-reentrant environment 427
reentrant environment 427

creating a new library member 94, 236

542 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

crp
portability 499

CTL 196
CTL VSE/POWER spool-access services service

return codes 197
current console 221, 225
current non-reentrant environment, locating 427
current terminal line width 92
customizing services

description 381
environment characteristics 381
exit routines 381
general considerations for calling routines 324
language processor environments 387
replaceable routines 381, 384, 385
summary of 136

D
D2C function

description 72
example 73
implementation maximum 73

D2X function
description 73
example 73
implementation maximum 73

data
length 13
terms 13

data flow (Console Router) 217
Data Set Information Block (DSIB) 453
data stack

counting lines in 78
creating 160, 425
creating a buffer 159
data left on stack 328
deleting 143
DELSTACK command 143
discarding a buffer 144
DROPBUF command 144
dropping a buffer 144
MAKEBUF command 159
NEWSTACK command 160, 425
number of buffers 161
number of elements on 162
primary 425
QBUF command 161
QELEM command 162
QSTACK command 163
querying number of elements on 162
querying the number of 163
querying the number of buffers 161
replaceable routine 459
secondary 425
sharing between environments 422
use in different environments 422
writing to with PUSH 49
writing to with QUEUE 49

data stack flag 395
DATA system variable, MERGE function 236
DATATYPE function

description 68
example 69

date and version of the language processor 46
DATE function

description 69
example 70

DBADJUST function
description 488
example 488

DBBRACKET function
description 489
example 489

DBCENTER function
description 489
example 489

DBCS
built-in function descriptions 488
built-in function examples 484
characters 479
counting option 488
description 479
enabling data operations and symbol use 480
EXMODE 480
function handling 483
functions

DBADJUST 488
DBBRACKET 489
DBCENTER 489
DBCJUSTIFY 489
DBLEFT 490
DBRIGHT 490
DBRLEFT 491
DBRRIGHT 491
DBTODBCS 491
DBTOSBCS 492
DBUNBRACKET 492
DBVALIDATE 492
DBWIDTH 493

handling 479
instruction examples 482
mixed SBCS/DBCS string 480
mixed string validation example 481
mixed symbol 480
notational conventions 480
only string 68
parsing characters 115
processing functions 488
SBCS strings 479
shift-in (SI) characters 480, 484
shift-out (SO) characters 480, 484
string, DBCS-only 480
string, mixed SBCS/DBCS 480
strings 43, 479
strings and symbols 480
support 479, 493
symbol validation and example 480
symbol, DBCS-only 480
symbol, mixed 480
symbols and strings 480
validation, mixed string 481

DBLEFT function
description 490
example 490

DBRIGHT function
description 490
example 490

Index 543

DBRLEFT function
description 491
example 491

DBRRIGHT function
description 491
example 491

DBTODBCS function
description 491

DBTOSBCS function
description 492
example 492

DBUNBRACKET function
description 492
example 492

DBVALIDATE function
description 492
example 492

DBWIDTH function
description 493
example 493

DEACTIVATE console 225
debugging programs

-3 return code 24
immediate commands 143
return codes from commands 24

debugging, CORCMD command 245, 271
decimal

arithmetic 119, 127
to character conversion 72
to hexadecimal conversion 73

default
environment 23
selecting with ABBREV function 62

default input 94
default output 94
defaults for initializing language processor environments
406
defaults provided for ARXPARMS parameters module 406
delayed state

description 129
deleting

part of a string 72
words from a string 72

deleting a data stack 143
deleting information in a VSAM file 168
DELMSG function 219, 229, 262
DELSTACK command 143
DELSTR function

description 72
example 72

DELWORD function
description 72
example 72

demo programs
REXXASM 263
REXXCPUM 259
REXXCXIT 255
REXXDOM 261
REXXFLSH 255
REXXJMGR 262
REXXLOAD 253
REXXSCAN 264
REXXSPCE 256
REXXTRY 262

demo programs (continued)
REXXWAIT 263
SETSDL 263

derived names of variables 20
description

of built-in functions for DBCS 488
DIGITS function

description 72
example 72

DIGITS option of NUMERIC instruction 42, 120
direct interface to variables (ARXEXCOM) 352
directory names, function packages

ARXFLOC 348, 349
ARXFUSER 348, 349

directory, function package
example of 350
format 349
format of entries 349
specifying in function package table 352

discarding a buffer on the data stack 144
division

description 122
operator 14

DLBL
for SAM files 147

DO instruction
description 32
example 34

DOM macro 219
DROP instruction

description 37
example 37

DROPBUF command 144
dropping a buffer on the data stack 144
DSIB 453
dtaastk

leftover data 328
DTRIINIT conventions 237
DTSECTAB (Access Control Table) 223
dup0003

binary strings 10
description 9
hexadecimal strings 9
literal strings 9
numbers 11
operator characters 11
special characters 12
symbols 10

dup0018
interactive 53, 319

E
ECHO parameter 138
ECHO/ECHOU option 220, 227, 245
EFPL (external function parameter list) 345
elapsed-time clock

measuring intervals with 83
saved during subroutine calls 32

emptying a VSAM file 168
enabled for variable pool access (ARXEXCOM) 352
END clause

specifying control variable 34
end of job return table ARXEOJTB 210

544 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

engineering notation 125
entry point names 418
environment

addressing of 27
console command 221
default 28, 45
determining current using ADDRESS function 62
for activating / deactivating console sessions 26
for loading and calling programs 26, 205
host command 23
language processor 382, 387
name, definition 28
temporary change of 27

environment block
description 389, 412, 414
format 414
obtaining address of 427
overview for calling REXX routines 325
passing on call to REXX routines 325, 389, 412

environment table for number of language processor
environments 422
EOJ return table ARXEOJTB 210
equal

operator 15
sign

in parsing template 108
to indicate assignment 11, 19

equality, testing of 15
error

definition 23
during execution of functions 61
from commands 23
messages

retrieving with ERRORTEXT 73
producing the message ID 467
replaceable routine for message ID 467
traceback after 57
trapping 129

error codes of failing functions 242
ERROR condition of SIGNAL and CALL instructions 132
error handling (REXXCO) 252
ERRORTEXT function

description 73
example 73

ETMODE 43
evaluation block

for ARXEXEC routine 341
for function packages 344, 345
obtaining a larger one 363

evaluation block (EVALBLOK)
used by compiler runtime processor 503

evaluation of expressions 13
event 251
example

ABBREV function 62
ABS function 62
ADDRESS function 63
ADDRESS instruction 28
ARG function 63
ARG instruction 29
ARXJCL on JCL EXEC 331
ASSGN external function 94
B2X function 65
basic arithmetic operators 122

example (continued)
BITAND function 64
BITOR function 64
BITXOR function 65
built-in function in DBCS 484
C2D function 67
C2X function 68
CALL instruction 31
CENTER function 65
CENTRE function 65
character 13
clauses 13
combining positional pattern and parsing into words 110
combining string and positional patterns 114
comments 8
COMPARE function 66
CONDITION function 66
console application framework (REXXCO) 247
continuation 13
COPIES function 67
D2C function 73
D2X function 73
DATATYPE function 69
DATE function 70
DBADJUST function 488
DBBRACKET function 489
DBCENTER function 489
DBCS instruction 482
DBLEFT function 490
DBRIGHT function 490
DBRLEFT function 491
DBRRIGHT function 491
DBTOSBCS function 492
DBUNBRACKET function 492
DBVALIDATE function 492
DBWIDTH function 493
DELSTACK command 144
DELSTR function 72
DELWORD function 72
DIGITS function 72
DO instruction 34
DROP instruction 37
ERRORTEXT function 73
EXEC 25
EXECIO command 151, 154, 156
EXIT instruction 38
exponential notation 125
expressions 18
FIND function 91
FORM function 74
FORMAT function 74
FUZZ function 75
GETQE command 186
IF instruction 38
INDEX function 91
INSERT function 76
INTERPRET instruction 39
ITERATE instruction 40
JCL EXEC 329
JUSTIFY function 91
LASTPOS function 76
LEAVE instruction 41
LEFT function 76
LENGTH function 77

Index 545

example (continued)
LIBDEF 329
MAKEBUF command 145, 160
MAX function 77
MIN function 77
mixed string validation 481
NEWSTACK command 161
NOP instruction 41
numeric comparisons 124
OUTTRAP external function 96
OVERLAY function 78
parsing instructions 112
parsing multiple strings in a subroutine 114
period as a placeholder 106
POS function 78
PROCEDURE instruction 47
PULL instruction 48
PUSH instruction 49
PUTQE command 193
QBUF command 162
QELEM command 163
QSTACK command 164
QUEUE instruction 49
QUEUED function 78
RANDOM function 79
REVERSE function 79
RIGHT function 80
SAY instruction 50
SELECT instruction 51
SIGL, special variable 133
SIGN function 80
SIGNAL instruction 52
simple templates, parsing 105
SOURCELINE function 80
SPACE function 81
special characters 12
STORAGE external function 101
STRIP function 81
SUBCOM command 166
SUBSTR function 82
SUBWORD function 82
SYMBOL function 83
symbol validation 481
templates containing positional patterns 108
templates containing string patterns 107
TIME function 84
TRACE function 84
TRACE instruction 56
TRANSLATE function 85
TRUNC function 85
UPPER instruction 57
using a variable as a positional pattern 111
using a variable as a string pattern 111
VALUE function 86
VERIFY function 87
WORD function 87
WORDINDEX function 87
WORDLENGTH function 87
WORDPOS function 88
WORDS function 88
X2B function 89
X2C function 89
X2D function 90
XRANGE function 88

exception conditions saved during subroutine calls 32
exclusive OR operator 16
exclusive-ORing character strings together 64
exec block (EXECBLK) 337, 445
EXEC command 25, 145
exec initialization exit 440, 473
exec load replaceable routine 442
exec processing exit (IRXEXECX) 440, 474
exec processing routines

ARXEXEC 334
ARXJCL 331

exec termination exit 440, 473
EXECINIT field (module name table) 400
EXECIO command

files operated upon 147
input checking 153
STEM operand 148

EXECTERM field (module name table) 400
execution

by language processor 7
of data 39

EXIT instruction
description 37
example 38

exit routines
ARXINITX 440, 468
ARXITMV 440, 470
ARXTERMX 440, 471
exec initialization 440, 473
exec processing 440, 474
exec termination 440, 473
for ARXEXEC 440, 474
halt 472
language processor environment initialization 440, 468
language processor environment termination 440, 468

exit routing routine (ARXRTE)
entry specifications 523
environment 517
parameter descriptions 524
return codes 525
return specifications 525

EXMODE
in DBCS 480
with OPTIONS instruction 43

exponential notation
description 119, 124
example 125
usage 11

exponentiation
description 124
operator 14

EXPOSE option of PROCEDURE instruction 46
exposed variable 46
expressions

evaluation 13
examples 18
parsing of 46
results of 13
tracing results of 54

EXROUT field (module name table) 400
external

data queue
counting lines in 78
reading from with PULL 48

546 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

external (continued)
data queue (continued)

writing to with PUSH 49
writing to with QUEUE 49

functions
ASSGN 93
description 60
LOCKMGR 94, 235
MERGE 94, 236
OPERMSG 94, 237
OUTTRAP 95
PAUSEMSG 97, 238
REXXMSG 99
search order 61
SLEEP 100
SORTSTEM 101
STORAGE 101
SYSVAR 102

instruction, UPPER 57
routine

calling 30
definition 30

subroutines
description 60
search order 61

variables
access with VALUE function 86

external entry points
alternate names 418
ARXEX 334
ARXEXC 352
ARXEXCOM 352
ARXEXEC 334
ARXHLT 370
ARXIC 361
ARXINIT 427
ARXINOUT 447
ARXINT 427
ARXIO 447
ARXJCL 331
ARXLD 442
ARXLIN 376
ARXLOAD 442
ARXMID 467
ARXMSGID 467
ARXOUT 378
ARXRLT 363
ARXSAY 368
ARXSTK 459
ARXSUB 357
ARXSUBCM 357
ARXTERM 437
ARXTERMA 495
ARXTMA 495
ARXTRM 437
ARXTXT 372
ARXUID 465

external function parameter list (EFPL) 345
external functions

ASSGN 93
creating a new library member 236
LOCKMGR 94, 235
MERGE 94, 236
OPERMSG 94, 237

external functions (continued)
OUTTRAP 95
PAUSEMSG 97, 238
providing in function packages 344
REXXIPT 98
REXXMSG 99
SETLANG 99
SLEEP 100
SORTSTEM 101
STORAGE 101
SYSVAR 102
writing 344

EXTERNAL option of PARSE instruction 44
external REXX program ("Action") 249, 251, 255
external routine search (ARXERS)

entry specifications 518
environment 517
parameter descriptions 518
return codes 520
return specifications 520

EXTERNALS function
description 90

extracting
substring 82
word from a string 87
words from a string 82

F
FAILURE condition of SIGNAL and CALL instructions 129,
132
failure, definition 23
Fast Service Upgrade (FSU) 3
Fcntl function, REXX Sockets 284
FIFO (first-in/first-out) stacking 49
file

copying information 145
sequence numbers 7, 442

FIND function
description 90
example 91

finding
mismatch using COMPARE 66
string in another string 78, 91
string length 76
word length 87

FINDMSG function 219, 229
findstr, FINDMSG function 230
flags for language processor environment

ALTMSGS 397
CLOSEXFL 396
CMDSOFL 394
defaults provided 406
FUNCSOFL 394
LOCPKFL 396
NEWSCFL 396
NEWSTKFL 395
NOESTAE 396
NOLOADDD 397
NOMSGIO 397
NOMSGWTO 397
NOPMSGS 397
NOREADFL 395
NOSTKFL 395

Index 547

flags for language processor environment (continued)
NOWRTFL 395
RENTRANT 396
SPSHARE 397
STORFL 397
SYSPKFL 396
TSOFL 394
USERPKFL 395

flags, tracing
- 56
+++ 56
>.> 56
>>> 56
>C> 56
>F> 56
>L> 56
>O> 57
>P> 57
>V> 57

flow of control
unusual, with CALL 129
unusual, with SIGNAL 129
with CALL/RETURN 30
with DO construct 32
with IF construct 38
with SELECT construct 50

flow of REXX program processing 381
FOR phrase of DO instruction 32
FOREVER repetitor on DO instruction 32
FORM function

description 74
example 74

FORM option of NUMERIC instruction 42, 126
FORMAT function

description 74
example 74

formatting
DBCS blank adjustments 488
DBCS bracket adding 489
DBCS bracket stripping 492
DBCS EBCDIC to DBCS 491
DBCS string width 493
DBCS strings to SBCS 492
DBCS text justification 489
numbers for display 74
numbers with TRUNC 85
of output during tracing 56
text centering 65
text justification 91
text left justification 76, 490
text left remainder justification 491
text right justification 80, 490
text right remainder justification 491
text spacing 81
text validation function 492

FORTRAN programs, alternate entry points for external entry
points 418
fptbtso

defining function packages products provide 348
framework, example console application (REXXCO) 247
FSU (Fast Service Upgrade) 3
FUNCSOFL flag 394
function package flags 395
function package table

function package table (continued)
defaults provided 406

function packages
ARXFLOC 348, 349
ARXFUSER 348, 349
description 344
directory 348
directory names

ARXFLOC 348, 349
ARXFUSER 348, 349
specifying in function package table 352
supplied by REXX/VSE 348, 349

example of directory 350
external function parameter list 345
format of entries in directory 349
function package table 352
getting larger area to store result 363
getting larger evaluation block 363
interface for writing code 344
link-editing the code 349
overview 323
parameters code receives 345
provided by IBM products 348
summary of 136
supplied directory names 348, 349
types of

local 347
system 347
user 347

writing 344
function search order flag 394
functions

ABS 62
ADDRESS 62
ARG 63
ASSGN 93
B2X 65
BITAND 64
BITOR 64
BITXOR 64
built-in 62, 89
built-in, description 61
C2D 67
C2X 68
call, definition 59
calling 59
CENTER 65
CENTRE 65
COMPARE 66
CONDITION 66
COPIES 67
D2C 72
D2X 73
DATATYPE 68
DATE 69
definition 59
DELMSG 219, 229, 262
DELSTR 72
DELWORD 72
description 59
DIGITS 72
error codes 242
ERRORTEXT 73
external

548 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

functions (continued)
external (continued)

ASSGN 93
LOCKMGR 94, 235
MERGE 94, 236
OPERMSG 94, 237
OUTTRAP 95
PAUSEMSG 97, 238
REXXMSG 99
SLEEP 100
SORTSTEM 101
STORAGE 101
SYSVAR 102

EXTERNALS 90
FIND 90
FINDMSG 219, 229
forcing built-in or external reference 60
FORM 74
FORMAT 74
FUZZ 75
GETMSG 219, 232
INDEX 91
INSERT 75
internal 59
JUSTIFY 91
LASTPOS 76
LEFT 76
LENGTH 76
LINESIZE 92
LOCKMGR 94, 235
MAX 77
MERGE 94, 236, 250
MIN 77
numeric arguments of 126
OPERMSG 94, 237, 256
OUTTRAP 94
OVERLAY 78
PAUSEMSG 97, 238
POS 78
processing in DBCS 488
providing in function packages 344
QUEUED 78
RANDOM 79
return from 49
REVERSE 79
REXXMSG 99
RIGHT 80
search order 60, 61
SENDCMD 220, 238
SENDMSG 219, 239
SIGN 80
SLEEP 100
SORTSTEM 101, 240
SOURCELINE 80
SPACE 81
STORAGE 101
STRIP 81
SUBSTR 82
SUBWORD 82
SYMBOL 82
SYSDEF 240
SYSDEF (connecting to VSE/OCCF) 224, 241
SYSDEF (disconnecting from VSE/OCCF)
241

functions (continued)
SYSVAR 102, 242
TIME 83
TRACE 84
TRANSLATE 85
TRUNC 85
USERID 92
VALUE 86
variables in 46
VERIFY 86
WORD 87
WORDINDEX 87
WORDLENGTH 87
WORDPOS 88
WORDS 88
writing external 344
X2B 89
X2C 89
X2D 89
XRANGE 88

FUZZ
controlling numeric comparison 124
option of NUMERIC instruction 42, 124

FUZZ function
description 75
example 75

G
general concepts 7, 26
general considerations for calling REXX routines 324
general-use interface, console 219
get result routine (ARXRLT) 363
GET VSE/POWER spool-access services service 25, 181
GetClientId function, REXX Sockets 285
GETFREER field (module name table) 400
GetHostByAddr function, REXX Sockets 285
GetHostByName function, REXX Sockets 286
GetHostId function, REXX Sockets 286
GetHostName function, REXX Sockets 287
GETMSG function 219, 232
GetPeerName function, REXX Sockets 287
GETQE command 182
GetSockName function, REXX Sockets 287
GetSockOpt function, REXX Sockets 288
getting a larger evaluation block 363
GiveSocket function, REXX Sockets 289
global variables

access with VALUE function 86
GOTO, unusual 129
greater than operator 15
greater than or equal operator (>=) 16
greater than or less than operator (><) 15
group, DO 33
grouping instructions to run repetitively 32
guard digit 121

H
HALT condition of SIGNAL and CALL instructions 129, 132
halt exit 472
Halt Interpretation (HI) immediate command 159, 319, 361
Halt Typing (HT) immediate command 159, 361

Index 549

halt, trapping 129
halting a looping program

from a program 361
HI immediate command 159
using the ARXIC routine 361

hexadecimal
checking with DATATYPE 68
description 9
digits 9
strings

implementation maximum 10
to binary, converting with X2B 89
to character, converting with X2C 89
to decimal, converting with X2D 89

HI (Halt Interpretation) immediate command 159, 321, 361
HI (Halt Interpretation), passed from MSG command 237,
251
hints and tips 244
host command environment

ARXSUBCM routine 357
change entries in SUBCOMTB table 357
check existence of 165
CONSOLE 26
description 23
JCL 26
LINK 26, 205
LINKPGM 26, 205
POWER 25
replaceable routine 456
VSE 25

host command environment table
defaults provided 406

host command replaceable routine 228
host command search (ARXHST)

entry specifications 521
environment 517
return codes 523
return specifications 523

host commands
-3 return code 24, 458
ADDRESS POWER 181
definition of 24
issuing commands to underlying operating system 23
return codes from 24
REXX/VSE 143
using 137, 138

hours calculated from midnight 83
how to use this book 1
HT (Halt Typing) immediate command 159, 361

I
I/O

control block 452
replaceable routine 446
to and from a VSAM file 167
to and from files 145

I/O disposition 93
I/O interface, console 218
identf

program 8
REXX program 8

identifying users 92
IDROUT field (module name table) 400

IEXM 247
IF instruction

description 38
example 38

immediate commands
HI (Halt Interpretation) 159, 321, 361
HT (Halt Typing) 159, 361
issuing from program 361
RT (Resume Typing) 164, 361
TE (Trace End) 166, 321, 361
TQ (Trace Query) 167, 361
TS (Trace Start) 167, 321, 361

implementation maximum
C2D function 67
CALL instruction 32
D2C function 73
D2X function 73
hexadecimal strings 10
literal strings 9
MAX function 77
MIN function 77
numbers 11
operator characters 21
symbols 11
TIME function 84
X2D function 90

implied semicolons 12
imprecise numeric comparison 124
in-storage control block (INSTBLK) 339
in-storage parameter list 432
inclusive OR operator 16
INDD field (module name table) 399
indefinite loops 34
indentation during tracing 56
INDEX function

description 91
example 91

indirect evaluation of data 39
inequality, testing of 15
infinite loops 32
inhibition of commands with TRACE instruction 55
initialization

of arrays 21
of compound variables 21
of language processor environments

automatic 390
using routine ARXINIT 388, 427

initialization routine (ARXINIT)
description 427
how environment values are determined 409
how values are determined 432
in-storage parameter list 432
output parameters 434
parameters module 432
reason codes 435
restrictions on values 433
specifying values 433
to initialize an environment 427
to locate an environment 427
values used to initialize environment 409

Initialize function, REXX Sockets 290
INNAME system variable, MERGE function 236, 250
input and output control block 452
input/output

550 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

input/output (continued)
ARXIOPTS control block 452
default 94
replaceable routine 446
to and from a VSAM file 167
to and from files 145

INSERT function
description 75
example 76

inserting a string into another 75
installation of REXX/VSE SOCKET function 317
INSTBLK (in-storage control block) 339
instructions

ADDRESS 27
ARG 29
CALL 30
definition 19
DO 32
DROP 37
EXIT 37
IF 38
INTERPRET 39
ITERATE 40
keyword

description 27
LEAVE 41
NOP 41
NUMERIC 42
OPTIONS 43
PARSE 44
parsing, summary 112
PROCEDURE 46
PULL 48
PUSH 49
QUEUE 49
RETURN 49
SAY 50
SELECT 50
SIGNAL 51
TRACE 53
UPPER 57

integer
arithmetic 119, 127
division

description 119, 123
operator 14

interactive debug
description 319

interface for writing functions and subroutines 344
interface routine (OUTTRAP) 324
interface to variables (ARXEXCOM) 352
internal

functions
description 59
return from 49
variables in 46

routine
calling 30
definition 30

internal REXX program ("Action") 249, 251, 255
INTERPRET instruction

description 39
example 39

interpretive execution of data 39

interrupting program execution 321
interrupting program interpretation 361
interrupting program processing 159
invoking

built-in functions 30
REXX programs 138
routines 30

Ioctl function, REXX Sockets 291
IOROUT field (module name table) 400
IRXEXECX exec processing exit 440, 474
IRXEXECX field (module name table) 400
issuing host commands 23
ITERATE instruction

description 40
example 40
use of variable on 40

J
JCL host command environment 26, 201
JCL jobname

see SYSJOBNAME variable 102
job

as an "Action" 249, 256
creation by MERGE function 237
skeleton 251

job completion messages 196
job management 198
justification, text right, RIGHT function 80
JUSTIFY function

description 91
example 91

justifying text with JUSTIFY function 91

K
keyword

conflict with commands 141
description 27
mixed case 27
reservation of 141

L
label

as target of CALL 30
as target of SIGNAL 51
description 18
duplicate 52
in INTERPRET instruction 39
search algorithm 51

language
codes for REXX messages

determining current 99
in parameter block 392
in parameters module 392
SETLANG function 99
setting 99

determining
for REXX messages 99

processor date and version 46
processor, execution 7
structure and syntax 8

Index 551

language processor environment
automatic initialization 390
chains of 388, 410
changing the defaults for initializing 412
characteristics 390
considerations for calling REXX routines 325
control blocks for 388, 414
data stack in 422
description 382, 387
flags and masks 393
how environments are located 411
maximum number of 388, 421
non-reentrant 427
obtaining address of environment block 427
overview for calling REXX routines 325
reentrant 427
restrictions on values for 413
sharing data stack 422
terminating 437, 495

LASTPOS function
description 76
example 76

leading
blank removal with STRIP function 81
zeros

adding with the RIGHT function 80
removing with STRIP function 81

LEAVE instruction
description 41
example 41
use of variable on 41

leaving your program 37
LEFT function

description 76
example 76

LENGTH function
description 76
example 77

less than operator (<) 15
less than or equal operator (<=) 16
less than or greater than operator (<>) 15
LIBDEF

before load 337
example 329

LIFO (last-in/first-out) stacking 49
line length and width of output device 92
line length of output device 92
line width of output device 92
lines

from a program retrieved with SOURCELINE 80
LINESIZE function

description 92
LINK host command environment 26, 205
linking, definition 26, 205
LINKPGM host command environment 26, 205
list

template
ARG instruction 29
PARSE instruction 44
PULL instruction 48

Listen function, REXX Sockets 291
literal string

description 9
implementation maximum 9

literal string (continued)
patterns 107

load-table option, FINDMSG function 231
LOADACTN option, FINDMSG function 231
LOADDD field (module name table) 400
loading a REXX program 442
loading and calling programs 26, 205
loadlist $SVAREXX 529
local function packages 347
locating

phrase in a string 90
string in another string 78, 91
word in a string 87

locating current non-reentrant environment 427
LOCKMGR function 94, 235
LOCPKFL flag 396
logical

bit operations
BITAND 64
BITOR 64
BITXOR 64

operations 16
looping program

halting 321, 361
tracing 321, 361

loops
active 40
execution model 36
indefinite loops 321
infinite loops 321
modification of 40
repetitive 33
termination of 41

lowercase symbols 10

M
macro

DOM 219
MCSOPER 219
MCSOPMSG 219
MGCRE 219
WTO 219
WTOR 219

MAKEBUF command 159
managing storage 463
mandatory phases 529
mapping macros

ARXARGTB (argument list for ARXEXEC) 338
ARXARGTB (argument list for function packages) 345
ARXDSIB (data set information block) 447, 453
ARXEFPL (external function parameter list) 345
ARXENVB (environment block) 414
ARXENVT (environment table) 422
ARXEVALB (evaluation block) 341, 345
ARXEXECB (exec block) 337, 445
ARXEXTE (vector of external entry points) 418
ARXFPDIR (function package directory) 349
ARXINSTB (in-storage control block) 339
ARXMODNT (module name table) 398, 399
ARXPACKT (function package table) 404
ARXPARMB (parameter block) 391, 393
ARXSHVB (SHVBLOCK) 354

552 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

mapping macros (continued)
ARXSUBCT (host command environment table) 360,
401
ARXWORKB (work block extension) 417

mask settings 393
mask, GETMSG function 233
masks for language processor environment 393
master console 220
MAX function

description 77
example 77
implementation maximum 77

maximum number of language processor environments 388,
421
MCONS= in DTSECTAB 223
MCSOPER macro

return and reason codes 267
MCSOPMSG macro

return and reason codes 268
MDB (Message Data Block) variables 234
MERGE 94
MERGE function 236, 250
message

deleting 219
deleting (DELMSG function) 229, 262
error, from JCL 330
FINDMSG function 229
GETMSG function 232
highlighted 219, 229, 262
HOLD state 219, 229, 262
multi-line, with FINDMSG function 232
retrieving (MCSOPMSG macro) 219
routing to a specific partition 227, 245
sending via SENDMSG function 239

Message Action Table
actions 249

Message Data Block (MDB) variables 234
message identifier replaceable routine 467
message IDs, producing 467
messages

language for REXX 99, 392
storing VSE/POWER spool-access services messages 95

MGCRE macro
return and reason codes 269

MIN function
description 77
example 77
implementation maximum 77

minutes calculated from midnight 83
mixed DBCS string 68
module name table

ATTNROUT field 400
defaults provided 406
description 398
EXECINIT field 400
EXECTERM field 400
EXROUT field 400
format 398
GETFREER field 400
IDROUT field 400
in parameter block 390
INDD field 399
IOROUT field 400
IRXEXECX field 400

module name table (continued)
LOADDD field 400
MSGIDRT field 400
OUTDD field 400
part of parameters module 390
STACKRT field 400

MSG command 237, 238, 251, 256
MSG msgtype, GETMSG function 233
MSGIDRT field (module name table) 400
msgtype, GETMSG function 233
multi-line messages with FINDMSG 232
multi-way call 31, 52
multiple

assignments in parsing 110
string parsing 114

multiplication
description 121
operator 14

N
name, ACTIVATE console 222
names

of functions 59
of programs 45
of REXX/VSE external entry points 418
of subroutines 30
of variables 11
reserved command names 142

negation
of logical values 16
of numbers 14

nesting of control structures 32
NetView 223
new data stack flag 395
new data stack, creating 160
new host command environment flag 396
NEWSCFL flag 396
NEWSTACK command 160, 425
NEWSTKFL flag 395
nibbles 10
NOCONCAT option, FINDMSG function 231
NOESTAE flag 396
NOETMODE 43
NOEXMODE 43
NOLOADDD flag 397
NOMSGIO flag 99, 397
NOMSGWTO flag 99, 397
non

writing programs for 137
non-reentrant environment 396, 427
NOP instruction

description 41
example 41

NOPMSGS flag 99, 397
NOREADFL flag 395
NOSTKFL flag 395
not equal operator 15
not greater than operator 16
not less than operator 16
NOT operator 12, 16
notation

engineering 125
exponential, example 125

Index 553

notation (continued)
scientific 125

note
condition traps 131

NOVALUE condition
not raised by VALUE function 86
of SIGNAL instruction 132
on SIGNAL instruction 129
use of 141

NOWRTFL flag 395
null

clauses 18
strings 9, 13

number of language processor environments, changing
maximum 422
numbers

arithmetic on 14, 119, 120
checking with DATATYPE 68
comparison of 15, 124
description 11, 119, 120
formatting for display 74
implementation maximum 11
in DO instruction 32
truncating 85
use in the language 126
whole 126

numeric
comparisons, example 124
options in TRACE 55

NUMERIC instruction
description 42
DIGITS option 42
FORM option 42, 126
FUZZ option 42
option of PARSE instruction 44, 126
settings saved during subroutine calls 32

O
obtaining a larger evaluation block 363
OC exit, OPERMSG function 237, 256
opening a VSAM file without reading or writing any records
168
operation scenarios (REXXCO) 247
operations

arithmetic 121
tracing results 53

operator
arithmetic

description 13, 119, 120
list 14

as special characters 11
characters

description 11
implementation maximum 21

comparison 15, 124
concatenation 14
examples 122, 123
logical 16
precedence (priorities) of 16

operator communication exit, OPERMSG function 94, 237,
256
operator communication, tracking 228
OPERMSG function 94, 237, 256

option, FINDMSG function 231
options

alphabetic character word in TRACE 54
numeric in TRACE 55
prefix in TRACE 54

OPTIONS instruction
description 43

OR, logical
exclusive 16
inclusive 16

ORing character strings together 64
OUTDD field (module name table) 400
OUTNAME system variable, MERGE function 236, 250
output device

finding width with LINESIZE 92
reading from with PULL 48
writing to with SAY 50

output trapping 95, 202
OUTTRAP function 95, 202
OUTTRAP interface routine 324
overflow, arithmetic 126
OVERLAY function

description 78
example 78

overlaying a string onto another 78
overview of parsing 115

P
packing a string with X2C 89
pad character, definition 61
page, code 8
parallel outstanding command responses 226
parameter block

format 391, 392
relationship to parameters module 390

parameters module
changing the defaults 412
default values for 406
defaults

ARXPARMS 390, 406
for ARXINIT 432
format of 390
providing you own 412
relationship to parameter block 390
restrictions on values for 413

parentheses
adjacent to blanks 12
in expressions 16
in function calls 59
in parsing templates 111

PARSE instruction
description 44
NUMERIC option 126

PARSE SOURCE token 393
parsing

advanced topics 113
combining patterns and parsing into words 110
combining string and positional patterns 114
conceptual overview 115
definition 105
description 105, 117
equal sign 108
examples

554 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

parsing (continued)
examples (continued)

combining positional pattern and parsing into words
110
combining string and positional patterns 114
parsing instructions 112
parsing multiple strings in a subroutine 114
period as a placeholder 106
simple templates 105
templates containing positional patterns 108
templates containing string patterns 107
using a variable as a positional pattern 111
using a variable as a string pattern 111

into words 105
multiple assignments 110
multiple strings 114
patterns

conceptual view 115
positional 105, 108
string 105, 107

period as placeholder 106
positional patterns

relative 109
variable 111

selecting words 105
source string 105
special case 114
steps 115
string patterns

literal string patterns 107
variable string patterns 111

summary of instructions 112
templates

in ARG instruction 29
in PARSE instruction 44
in PULL instruction 48

treatment of blanks 106
UPPER, use of 111
variable patterns

positional 111
string 111

with DBCS characters 115
word parsing

conceptual view 115
description and examples 105

partition
routing messages to 227, 245
see SYSPID variable 102

partitions
name of for language processor environment 393
running programs 138
using REXX 137

parts
in LIBDEF example 329

passing address of environment block to REXX routines 325,
412
patterns in parsing

combined with parsing into words 110
conceptual view 115
example

combining string pattern and parsing into words
110

parsing
examples

patterns in parsing (continued)
parsing (continued)

examples (continued)
combining string pattern and parsing into
words 110

positional 105, 108
string 105, 107

PAUSEMSG function 97, 238
period

as placeholder in parsing 106
causing substitution in variable names 20
in numbers 120

permanent command destination change 27
phase

calling 205
mandatory 529
recommended 529

place job on VSE/POWER queue 187
portability of compiled REXX programs 499
POS function

description 78
example 78

position
last occurrence of a string 76
of character using INDEX 91

positional patterns
absolute 108
description 105
relative 109
variable 111

POWER host command environment 25
POWER jobclass

see SYSPOWJCLS variable 102
POWER jobname

see SYSPOWJNM variable 102
POWER jobnumber

see SYSPOWJNUM variable 102
POWER queue entry, retrieving 182
POWER queue, placing a job 187
powers of ten in numbers 11
PRD1.BASE

parameters module in 413
sample job ARXEOJTB.Z 211

precedence of operators 16
precision of arithmetic 120
prefix

operators 15, 16
options in TRACE 54

preloading a REXX program 442
primary data stack 425
primary messages flag 397
PROCEDURE instruction

description 46
example 47

producing message IDs 467
profile, console 221, 222
program identifier 8
program libraries

storing REXX programs 7
programming

restrictions 7
programming services

ARXEXCOM (variable pool access) 352
ARXHLT (Halt condition) 370

Index 555

programming services (continued)
ARXIC (trace and execution control) 361
ARXLIN (LINESIZE function) 376
ARXOUT 378
ARXRLT (get result) 363
ARXSAY (SAY instruction) 368
ARXSUBCM (host command environment table) 357
ARXTXT text retrieval 372
description 323
function packages 344
general considerations for calling routines 324
passing address of environment block to routines 325
summary of 135
writing external functions and subroutines 344

programs
description 1
loading and calling 205
loading of 442
overview of writing 135
preloading 442
retrieving lines with SOURCELINE 80
running 138
running in batch 138, 329
writing 137

protecting variables 46
pseudo random number function of RANDOM 79
PTF 529
publications

bibliography 535
SAA Common Programming Interface REXX Level 2
Reference 4
VSE/ESA Messages and Codes 5
VSE/ESA REXX/VSE Diagnosis Reference 5
VSE/ESA REXX/VSE User's Guide 4

PULL from SYSLOG 219
PULL instruction

description 48
example 48

PULL option of PARSE instruction 45
PULLEXTR 462
PUSH instruction

description 49
example 49

put job on VSE/POWER queue 187
PUT VSE/POWER spool-access services service 25, 181
PUTQE command 187

Q
QBUF command 161
QELEM command 162
QSTACK command 163
QT (Query Trace) immediate command 361
query

existence of host command environment 165
number of buffers on data stack 161
number of data stacks 163
number of elements on data stack 162

query current console settings 225
querying TRACE setting 84
QUERYMSG command 194
QUEUE instruction

description 49
example 49

queue space, Console Router 244
QUEUED function

description 78
example 78

R
RANDOM function

description 79
example 79

random number function of RANDOM 79
RC (return code)

not set during interactive debug 320
set by commands 23
set to 0 if commands inhibited 55
special variable 132, 141

Read function, REXX Sockets 292
reading

NOREADFL flag, effect on 395
reading from compound variables 98
reading information from a VSAM file 168
readnig

with EXECIO 147
reason codes

for ARXINIT routine 435
librarian reason code

see SYSLIBRCODE variable 102
recommended phases 529
recursive call 31
Recv function, REXX Sockets 293
RecvFrom function, REXX Sockets 294
reentrant environment 396, 427
relative positional patterns 109
remainder

description 119, 123
operator 14

removing an operator communication exit 94, 237
RENTRANT flag 396
reordering data with TRANSLATE function 85
repeating a string with COPIES 67
repetitive loops

altering flow 41
controlled repetitive loops 34
exiting 41
simple DO group 33
simple repetitive loops 33

replaceable routines
data stack 459
exec load 442
host command environment 456
input/output (I/O) 446
message identifier 467
storage management 463
user ID 465

reply
issue via SENDCMD function 238

reponses outstanding in parallel 226
request (shared variable) block (SHVBLOCK) 354
reservation of keywords 141
reserved command names 142
Resolve function, REXX Sockets 295
resource locking 235
RESP msgtype, GETMSG function 233
response

556 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

response (continued)
GETMSG function 232

restoring variables 37
restrictions

embedded blanks in numbers 11
first character of variable name 19
in programming 7
maximum length of results 13

restrictions on values for language processor environments
413
REstructured eXtended eXecutor language (REXX)

built-in functions 59
description 1
keyword instructions 27

RESULT
set by RETURN instruction 31, 50
special variable 141

results
length of 13

Resume Typing (RT) immediate command 164, 361
retrieve a message (MCSOPMSG macro) 219
retrieve entry from POWER queue 182
retrieving

argument strings with ARG 29
arguments with ARG function 63
lines with SOURCELINE 80

return codes
ARXCONAD 228
command processors 270
from JCL host command environment 203
librarian return code

see SYSLIBRCODE variable 102
MCSOPER macro 267
MCSOPMSG macro 268
MGCRE macro 269
REXX console commands 228
REXXCO 252
VSE JCL

see SYSMRC variable 102
VSE system macro

see SYSERRCODES variable 102
Return Codes 242
RETURN instruction

description 49
returnc

as set by commands 23
setting on exit 37

returning a character string 37
returning control from REXX program 49
REVERSE function

description 79
example 79

rex
ARXEXEC 331
ARXINIT 331
ARXREXX 330
ARXTERM 331

REXALLRC console profile 221, 222
REXAUTO console profile 222, 224
REXNORC console profile 221, 222, 246
REXX

program portability 499
REXX compiler support

description 501

REXX compiler support (continued)
identifying a compiled program 501

REXX console
commands 221

REXX console profile 222
REXX external entry points

alternate names 418
ARXEX 334
ARXEXC 352
ARXEXCOM 352
ARXEXEC 334
ARXHLT 370
ARXIC 361
ARXINIT 427
ARXINOUT 447
ARXINT 427
ARXIO 447
ARXJCL 331
ARXLD 442
ARXLIN 376
ARXLOAD 442
ARXMID 467
ARXMSGID 467
ARXOUT 378
ARXRLT 363
ARXSAY 368
ARXSTK 459
ARXSUB 357
ARXSUBCM 357
ARXTERM 437
ARXTERMA 495
ARXTMA 495
ARXTRM 437
ARXTXT 372
ARXUID 465

REXX program identifier 8
REXX Sockets API

function descriptions
Accept 280
Bind 281
Close 282
Connect 283
Fcntl 284
GetClientId 285
GetHostByAddr 285
GetHostByName 286
GetHostId 286
GetHostName 287
GetPeerName 287
GetSockName 287
GetSockOpt 288
GiveSocket 289
Initialize 290
Ioctl 291
Listen 291
Read 292
Recv 293
RecvFrom 294
Resolve 295
Select 295
Send 297
SendTo 298
SetSockOpt 299
ShutDown 300

Index 557

REXX Sockets API (continued)
function descriptions (continued)

Socket 300
SocketSet 302
SocketSetList 302
SocketSetStatus 303
TakeSocket 303
Terminate 304
Translate 305
Version 306
Write 306

installation of REXX/VSE SOCKET function 317
overview 275
programming hints and tips 275
sample programs

client 309
server 311

tasks 276
REXX vector of external entry points 418
REXX/VSE commands 143
REXX/VSE. commands

DELSTACK 143
DROPBUF 144
EXEC 145
EXECIO 145
immediate commands

HI 159
HT 159
RT 164
TE 166
TQ 167
TS 167

MAKEBUF 159
NEWSTACK 160
QBUF 161
QELEM 162
QSTACK 163
SUBCOM 165
valid in REXX/VSE 137
VSAMIO 167

REXXASM demo program 263
REXXCO application framework

actions 249
error codes 252
error handling 252
invocation 250
termination 251

REXXCPUM demo program 259
REXXCXIT demo program 255
REXXDOM demo program 261
REXXFLSH demo program 255
REXXIPT function 98
REXXJMGR demo program 262
REXXLOAD demo program 253
REXXMSG function 99
REXXSCAN demo program 264
REXXSPCE demo program 256
REXXTRY demo program 262
REXXWAIT demo program 263
RIGHT function

description 80
example 80

rounding
description 121

rounding (continued)
using a character string as a number 11

routines
exit 440, 468
for customizing services 381
for programming services 323
general considerations 324
replaceable 439

routing codes 220
routing messages to specific partition 227, 245
RSCLIENT EXEC 309
RSSERVER EXEC 311
RT (Resume Typing) immediate command 164, 361
running a program 145
running a REXX program

from batch 329
in REXX/VSE 138, 328
restriction 329
using ARXEXEC routine 334
using ARXJCL routine 331

running off the end of a program 38
RXHLT 473
rxs

return codes 307
system messages 307

S
SAA

book 1
books 4
general description 500

SAA REXX 1, 500
SAM files, reading or writing to 147
SAY instruction

description 50
displaying data 50
example 50

SBCS strings 479
scenarios, console automation 247
scientific notation 125
search order

active PHASE chain 61
for external functions 61
for external subroutines 61
for functions 60
for subroutines 31

searching a string for a phrase 90
secondary data stack 425
seconds calculated from midnight 83
security administrator 223
security checking for GETQE command 185
security considerations 223
security user-id 223
Select function, REXX Sockets 295
SELECT instruction

description 50
example 51

selecting a default with ABBREV function 62
semicolons

implied 12
omission of 27
within a clause 8

Send function, REXX Sockets 297

558 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

SENDCMD function 220, 238
SENDMSG function 219, 239
SendTo function, REXX Sockets 298
sequence numbers 7
sequence numbers in file 442
sequence, collating using XRANGE 88
serialize a REXX program 94, 235
service offerings 221
Servicing REXX 529
SETLANG function 99
SETSDL demo program 263
SetSockOpt function, REXX Sockets 299
SETUID command 165
shared variable (request) block (SHVBLOCK) 354
sharing data stack between environments 422
shift-in (SI) characters 480
Shift-in (SI) characters 484
shift-out (SO) characters 480
Shift-out (SO) characters 484
ShutDown function, REXX Sockets 300
SHVBLOCK request block 354
SIGL

set by CALL instruction 31
set by SIGNAL instruction 52
special variable

example 133
SIGN function

description 80
example 80

SIGNAL instruction
description 51
example 52
execution of in subroutines 32

significant digits in arithmetic 120
simple

repetitive loops 33
symbols 20

skeleton
MERGE function 236, 250
SKOCCF 223
variable resolution 252

SKOCCF skeleton 223
SLEEP function 100
smples

in LIBDEF example 329
Socket function, REXX Sockets 300
SocketSet function, REXX Sockets 302
SocketSetList function, REXX Sockets 302
SocketSetStatus function, REXX Sockets 303
SORTSTEM function 101, 240
source

of program and retrieval of information 45
string 105

SOURCE option of PARSE instruction 45
SOURCELINE function

description 80
example 80

SPACE function
description 81
example 81

spacing, formatting, SPACE function 81
special

characters and example 12
parsing case 114

special (continued)
RC 141
RESULT 141
SIGL 141
variables

RC 23, 132
RESULT 31, 50
SIGL 31, 133

specify output destination for REXX/VSE messages 99
SPSHARE flag 397
stack 231
STACKRT field (module name table) 400
stem of a variable

assignment to 21
description 20
used in DROP instruction 37
used in EXECIO 148
used in PROCEDURE instruction 46

steps in parsing 115
storage

change value in specific storage address 101
management replaceable routine 463
managing 463
obtain value in specific storage address 101

STORAGE function
restricting use of 397

storage management replaceable routine 463
STORFL flag 397
storing REXX programs 7
strict comparison 15
strictly equal operator 15, 16
strictly greater than operator 15, 16
strictly greater than or equal operator 16
strictly less than operator 15, 16
strictly less than or equal operator 16
strictly not equal operator 15, 16
strictly not greater than operator 16
strictly not less than operator 16
string

and symbols in DBCS 480
as literal constant 9
as name of function 9
as name of subroutine 30
binary specification of 10
centering using CENTER function 65
centering using CENTRE function 65
comparison of 15
concatenation of 14
copying using COPIES 67
DBCS 479
DBCS-only 480
deleting part, DELSTR function 72
description 9
extracting words with SUBWORD 82
finding a phrase in 90
finding character position 91
hexadecimal specification of 9
interpretation of 39
length of 13
mixed SBCS/DBCS 480
mixed, validation 481
null 9, 13
patterns

description 105

Index 559

string (continued)
patterns (continued)

literal 107
variable 111

quotation marks in 9
repeating using COPIES 67
SBCS 479
verifying contents of 86

STRIP function
description 81
example 81

structure and syntax 8
SUBCOM command 165
SUBCOMTB table 228
subexpression 13
subkeyword 19
sublibrary members, reading or writing to 147
subroutines

calling of 30
definition 59
external, search order 61
forcing built-in or external reference 31
naming of 30
passing back values from 49
providing in function packages 344
return from 49
use of labels 30
variables in 46
writing external 344

subsidiary list 37, 47
substitution

in expressions 13
in variable names 20

SUBSTR function
description 82
example 82

substring, extracting with SUBSTR function 82
subtraction

description 121
operator 14

SUBWORD function
description 82
example 82

summary
parsing instructions 112

supervisor version
see SYSVERSION variable 102

switch to a console session 225
symbol

assigning values to 19
classifying 20
compound 20
constant 20
DBCS validation 480
DBCS-only 480
description 10
implementation maximum 11
mixed DBCS 480
simple 20
uppercase translation 10
use of 19
valid names 11

SYMBOL function
description 82

SYMBOL function (continued)
example 83

symbols and strings in DBCS 480
syntax

diagrams 3
error

traceback after 57
trapping with SIGNAL instruction 129

general 8
SYNTAX condition of SIGNAL instruction 130, 132
SYSCPIUD 102
SYSDEF function 240
SYSDEF function (connecting to VSE/OCCF) 224, 241
SYSDEF function (disconnecting from VSE/OCCF) 241
SYSERRCODES 102
SYSERRCODES, SYSVAR function 242
SYSIPT

accessing data 98
default input 94
reading from compound variables 98
reading or writing to 147

SYSJOBNAME 102
SYSLST

default output 94
reading or writing to 147

SYSMRC variable 102
SYSPID variable 102
SYSPKFL flag 396
SYSPOWJCLS variable 102
SYSPOWJNM variable 102
SYSPOWJNUM variable 102
system files

storing REXX programs 7
system function packages

ARXEFVSE 348
provided by products 348
REXX/VSE-supplied 348

system variables, MERGE function 236, 250
system-supplied routines

ARXEXCOM 352
ARXEXEC 328
ARXHLT 370
ARXIC 361
ARXINIT (initialization) 427
ARXINOUT 447
ARXJCL 328
ARXLIN 376
ARXLOAD 442
ARXMSGID 467
ARXOUT 378
ARXRLT 363
ARXSAY 368
ARXSTK 459
ARXSUBCM 357
ARXTERM 437
ARXTERMA 495
ARXTXT 372
ARXUID 465

SYSVAR function 102, 242
SYSVERSION variable 102

T
table of authorized programs 210

560 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

tail 20
TakeSocket function, REXX Sockets 303
TE (Trace End) immediate command 166, 321, 361
template

definition 105
list

ARG instruction 29
PARSE instruction 44

parsing
definition 105
general description 105
in ARG instruction 29
in PARSE instruction 44
PULL instruction 48

templates
in PULL instruction 48

temporary command destination change 27
ten, powers of 125
Terminate function, REXX Sockets 304
terminating a language processor environment 437, 495
termination

REXXCO 251
termination routine (ARXTERM) 437
termination routine (ARXTERMA) 495
terms and data 13
testing

abbreviations with ABBREV function 62
variable initialization 82

text retrieval routine ARXTXT 372
THEN

as free standing clause 27
following IF clause 38
following WHEN clause 50

TIME function
description 83
example 84
implementation maximum 84

TO phrase of DO instruction 32
token for PARSE SOURCE 393
TQ (Trace Query) immediate command 167, 361
trace

tags 56
trace and execution control (ARXIC routine) 361
Trace End (TE) immediate command 166, 319, 361
TRACE function

description 84
example 84

TRACE instruction
alphabetic character word options 54
description 53
example 56

Trace Query (TQ) immediate command 167, 361
TRACE setting

altering with TRACE function 84
altering with TRACE instruction 53
querying 84

Trace Start (TS) immediate command 167, 319, 361
traceback, on syntax error 57
tracing

action saved during subroutine calls 32
by interactive debug 319
data identifiers 56
execution of programs 53
external control of 321

tracing (continued)
looping programs 321

tracing flags
- 56
+++ 56
>.> 56
>>> 56
>C> 56
>F> 56
>L> 56
>O> 57
>P> 57
>V> 57

tracking of operator communication 228
trailing

blank removed using STRIP function 81
zeros 121

transaction IEXM 247
TRANSLATE function

description 85
example 85

Translate function, REXX Sockets 305
translation

with TRANSLATE function 85
with UPPER instruction 57

trap command output 95
trap conditions

explanation 129
how to trap 129
information about trapped condition 66
using CONDITION function 66

trapname
description 130

TRUNC function
description 85
example 85

truncating numbers 85
TS (Trace Start) immediate command 167, 321, 361
type of data checking with DATATYPE 68
types of function packages 347

U
unassigning variables 37
unconditionally leaving your program 37
underflow, arithmetic 126
uninitialized variable 20
unpacking a string

with B2X 65
with C2X 68

UNTIL phrase of DO instruction 32
unusual change in flow of control 129
updating information in a VSAM file 168
UPPER

in parsing 111
instruction

description 57
example 57

option of PARSE instruction 44
uppercase translation

during ARG instruction 29
during PULL instruction 48
of symbols 10
with PARSE UPPER 44

Index 561

uppercase translation (continued)
with TRANSLATE function 85
with UPPER instruction 57

user console 220
user function packages 347
user ID

replaceable routine 465
user-defined variables, MERGE function 236
USERID function

description 92
userid, specifying with SETUID 165
USERPKFL flag 395
users, identifying 92

V
validn

DBCS symbol 480
mixed string 481

VALUE function
description 86
example 86

value of variable, getting with VALUE 86
VALUE option of PARSE instruction 46
values used to initialize language processor environment
409
VAR option of PARSE instruction 46
variable

compound 20
controlling loops 34
description 19
direct interface to 352
dropping of 37
exposing to caller 46
external collections 86
getting value with VALUE 86
global 86
in internal functions 46
in subroutines 46
names 11
new level of 46
parsing of 46
patterns, parsing with

positional 111
string 111

positional patterns 111
reference 111
resetting of 37
setting new value 19
SIGL 133
simple 20
special

RC 23, 132, 141
RESULT 50, 141
SIGL 31, 133, 141

string patterns, parsing with 111
testing for initialization 82
translation to uppercase 57
valid names 19

variable pool access (ARXEXCOM) 352
variable resolution within job skeletons 252
vector of external entry points 418
VERIFY function

description 86

VERIFY function (continued)
example 87

verifying contents of a string 86
Version function, REXX Sockets 306
VERSION option of PARSE instruction 46
VSAMIO command 167
VSE host command environment 25
VSE job as an "Action" 249, 256
VSE security user-id 223
VSE system macro

see SYSERRCODES variable 102
VSE/OCCF

connecting 224, 241
disconnecting 241
Message Automation Table 223
SKOCCF skeleton 223

W
wait for a specified number of seconds 100
WHILE phrase of DO instruction 32
whole numbers

checking with DATATYPE 68
description 11, 126

word
alphabetic character options in TRACE 54
counting in a string 88
deleting from a string 72
extracting from a string 82, 87
finding in a string 90
finding length of 87
in parsing 105
locating in a string 87
parsing

conceptual view 115
description and examples 105

WORD function
description 87
example 87

WORDINDEX function
description 87
example 87

WORDLENGTH function
description 87
example 87

WORDPOS function
description 88
example 88

WORDS function
description 88
example 88

work block extension 416
Write function, REXX Sockets 306
writing

external functions and subroutines 344
NOWRTFL flag, effect on 395
REXX programs 137
to the stack

with PUSH 49
with QUEUE 49

writing information to a VSAM file 168
writnig

with EXECIO 147
WTO macro 219

562 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

WTOR macro 219

X
X2B function

description 89
example 89

X2C function
description 89
example 89

X2D function
description 89
example 90
implementation maximum 90

XOR, logical 16
XORing character strings together 64
XRANGE function

description 88
example 88

Z
zeros

added on the left 80
removal with STRIP function 81

zone, FINDMSG function 231

Index 563

564 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE V6R7 Reference

IBM®

Product Number: 5686–066

SC33-6642-11

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Summary of Changes
	Chapter 1. Introduction
	Who Should Read This Book
	The Compiler and the Library for REXX/370
	How to Use This Book
	How to Read the Syntax Diagrams
	For Further REXX Information

	Chapter 2. REXX General Concepts
	Where to Find More Information
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Implied Semicolons
	Continuations

	Expressions and Operators
	Expressions
	Operators
	String Concatenation
	Arithmetic
	Comparison
	Logical (Boolean)

	Parentheses and Operator Precedence

	Clauses and Instructions
	Null Clauses
	Labels
	Instructions
	Assignments
	Keyword Instructions
	Commands

	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Compound Symbols
	Stems

	Commands to External Environments
	Environment
	Commands
	Host Commands and Host Command Environments.
	The VSE Host Command Environment
	The POWER Host Command Environment
	The JCL Host Command Environment
	The LINK and LINKPGM Host Command Environments
	The CONSOLE Host Command Environment

	Chapter 3. Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	Simple DO Group
	Repetitive DO Loops
	Simple Repetitive Loops
	Controlled Repetitive Loops

	Conditional Phrases (WHILE and UNTIL)

	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	Alphabetic Character (Word) Options
	Prefix Options
	Numeric Options
	Tracing Tips

	A Typical Example
	Format of TRACE Output

	UPPER

	Chapter 4. Functions
	Syntax
	Functions and Subroutines
	Search Order
	Errors During Execution

	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	ARG (Argument)
	ASSGN
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER/CENTRE
	COMPARE
	CONDITION
	COPIES
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DBCS (Double-Byte Character Set Functions)
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIGITS
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	EXTERNALS
	FIND
	FORM
	FORMAT
	FUZZ
	INDEX
	INSERT
	JUSTIFY
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINESIZE
	MAX (Maximum)
	MIN (Minimum)
	OUTTRAP
	OVERLAY
	POS (Position)
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	REXXIPT
	REXXMSG
	SETLANG
	SIGN
	SLEEP
	SOURCELINE
	SPACE
	STORAGE
	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	SYSVAR
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	USERID
	VALUE
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	Additional Functions Provided in REXX/VSE
	EXTERNALS
	FIND
	INDEX
	JUSTIFY
	LINESIZE
	USERID

	External Functions
	ASSGN
	LOCKMGR
	MERGE
	OPERMSG
	OUTTRAP
	Additional Variables That OUTTRAP Sets

	PAUSEMSG
	REXXIPT
	REXXMSG
	Overruling REXXMSG

	SETLANG
	SLEEP
	SORTSTEM
	STORAGE
	SYSVAR

	Chapter 5. Parsing
	Parsing Rules
	Simple Templates for Parsing into Words
	The Period as a Placeholder

	Templates Containing String Patterns
	Templates Containing Positional (Numeric) Patterns
	Combining Patterns and Parsing Into Words

	Parsing with Variable Patterns
	Using UPPER
	Parsing Instructions Summary
	Parsing Instructions Examples

	Advanced Topics in Parsing
	Parsing Multiple Strings
	Combining String and Positional Patterns: A Special Case
	Parsing with DBCS Characters
	Details of Steps in Parsing

	Chapter 6. Numbers and Arithmetic
	Introduction
	Definition
	Numbers
	Precision
	Arithmetic Operators
	Arithmetic Operation Rules—Basic Operators
	Addition and Subtraction
	Multiplication
	Division
	Basic Operator Examples

	Arithmetic Operation Rules—Additional Operators
	Power
	Integer Division
	Remainder
	Additional Operator Examples

	Numeric Comparisons
	Exponential Notation
	Numeric Information
	Whole Numbers
	Numbers Used Directly by REXX
	Errors

	Chapter 7. Conditions and Condition Traps
	Action Taken When a Condition Is Not Trapped
	Action Taken When a Condition Is Trapped
	Condition Information
	Descriptive Strings

	Special Variables
	The Special Variable RC
	The Special Variable SIGL

	Chapter 8. Using REXX
	Additional REXX Support
	Programming Services
	Customizing Services

	Writing Programs
	Running a Program
	Communicating with a User Console

	Chapter 9. Reserved Keywords, Special Variables, and Command Names
	Reserved Keywords
	Special Variables
	Reserved Command Names

	Chapter 10. REXX/VSE Commands
	Immediate Commands
	DELSTACK
	DROPBUF
	EXEC
	EXECIO
	Read Options
	Additional Options Required for SAM Files
	Closing Files

	EXECIO Input Checking
	Return Codes

	HI
	HT
	MAKEBUF
	NEWSTACK
	QBUF
	QELEM
	QSTACK
	RT
	SETUID
	SUBCOM
	TE
	TQ
	TS
	VSAMIO
	Return Codes
	Using the VSAMIO Command
	Reading Information from a VSAM file

	Chapter 11. ADDRESS POWER Commands
	Accessing Entries in VSE/POWER Queues
	GETQE
	Security Considerations

	PUTQE
	QUERYMSG
	Rules for Issuing Job Completion Messages

	CTL
	Submitting and Controlling Power Jobs

	Chapter 12. JCL Command Environment
	The JCL Host Command Environment
	Format of Address JCL Commands
	VSE JCL ON Conditions
	Unsupported JCL Commands
	VSE JCL Output Trapping
	Return codes from the JCL Host Command Environment

	Chapter 13. Host Command Environments for Loading and Calling Programs
	Host Commands
	The LINK Host Command Environment
	Return Codes from the LINK Environment
	The LINKPGM Host Command Environment
	Return Codes from the LINKPGM Environment
	Table of Authorized Programs

	Invoking VSE Utilities
	Invoking LIBR using ADDRESS LINK
	Invoking IDCAMS using ADDRESS LINK
	Invoking ASSEMBLE and LNKEDT
	Invoking DITTO

	Chapter 14. REXX/VSE Console Automation
	Benefits of a Programmable REXX Console
	A Look at VSE/ESA's Console Support
	Console I/O Interfaces
	WTO - Write to Operator
	WTOR - Write to Operator with Reply
	DOM - Delete Operator Message

	General-Use Console Interfaces
	MCSOPER - Activate Console
	MCSOPMSG - Retrieve Message
	MGCRE - Create Command or Reply

	Master Console versus User Console
	Master Console
	User Console

	Routing Codes
	Service Offerings

	Console Command Environment
	Console Commands
	REXX Console Commands
	VSE Console Commands

	Activating a Console Session
	Security Considerations
	Receiving Messages from VSE/OCCF

	Creating a Command and Response Correlation Token (CART)
	Querying the Current Console Setting
	Switching to a Console Session
	Deactivating a Console Session
	Temporarily Shutting off an (Unknown) Console

	Examples of REXX and VSE Console Commands
	Having Command Responses Outstanding in Parallel
	Routing Messages From and Replies To a Specific Partition
	Tracking of Operator Communication
	Console Host Command Replaceable Routine
	Entry for ARXCONAD in Table SUBCOMTB
	ARXCONAD Return Codes

	Console-related REXX Functions
	DELMSG
	FINDMSG
	Examples of Functions Calls
	Handling of Multi-line Messages

	GETMSG
	Function Format
	GETMSG Function Codes
	Message Data Block (MDB) Variables

	LOCKMGR
	MERGE
	OPERMSG
	PAUSEMSG
	SENDCMD
	SENDMSG
	SORTSTEM
	Examples of Function Calls

	SYSDEF
	SYSVAR
	Error Codes of Failing Functions

	Always Keep in Mind...
	Make Frequent Use of the GETMSG Function
	Do not Send Messages to "Yourself"
	Redirect Some Output to SYSLST
	Direct Messages to Only One Console (ECHOU Option)
	Remember the REXNORC Profile
	Split off a Time-consuming Task into a Separate Job
	Finish All Preparatory Work Prior to ACTIVATE CONSOLE
	Handle One Command at a Time
	Start Testing on a Small Scale
	The Most Important Rule...

	REXX/VSE CPU Monitor
	REXX Console Application Framework
	Operation Scenarios
	Concept
	Message Action Table Entries
	Actions

	How to Use the REXX Console Application REXXCO
	Loading
	Invocation
	Termination
	Event
	User-Supplied REXX Action Program
	User-supplied Job Skeletons
	Variable Resolution within Job Skeletons
	Error Handling

	Automated Operation Demos (Examples)
	REXXLOAD
	Invocation
	Error Conditions

	REXXFLSH
	Scenario
	Running the Demo
	Background Information

	REXXCXIT
	Scenario
	Running the Demo
	Background information

	REXXSPCE
	Scenario
	Before Starting...
	Running the Application
	Handling REXXVSMn Messages
	Creating DLBL/EXTENT Statements
	Writing into and Freeing up Work Space
	Summary Listing of Demo Parts

	REXXCPUM
	Scenario
	Invocation
	Error Codes

	REXXDOM
	Running the Demo
	Background Information

	Other Examples (Not Related to Console Functions)
	REXXTRY
	REXXJMGR
	REXXWAIT
	REXXASM
	REXXSSDL

	Miscellaneous Examples of Using the REXX Console
	Retrieve Messages using Filter and Timestamp
	Scan the Hardcopy File
	Scan Job Messages for One Partition

	Return and Reason Codes
	MCSOPER Macro
	MCSOPMSG Macro
	MGCRE Macro
	Command Processor Return and Reason Codes
	CORCMD Command for Problem Solving

	Chapter 15. REXX Sockets Application Program Interface
	Programming Hints and Tips for Using REXX Sockets
	SOCKET External Function
	Tasks You Can Perform Using REXX Sockets
	REXX Socket Functions
	Accept
	Bind
	Close
	Connect
	Fcntl
	GetClientId
	GetHostByAddr
	GetHostByName
	GetHostId
	GetHostName
	GetPeerName
	GetSockName
	GetSockOpt
	GiveSocket
	Initialize
	Ioctl
	Listen
	Read
	Recv
	RecvFrom
	Resolve
	Select
	Send
	SendTo
	SetSockOpt
	ShutDown
	Socket
	SocketSet
	SocketSetList
	SocketSetStatus
	TakeSocket
	Terminate
	Translate
	Version
	Write
	REXX Sockets System Messages
	REXX Sockets Return Codes
	Sample Programs
	REXX-EXEC RSCLIENT Sample Program
	REXX-EXEC RSSERVER Sample Program
	Sample Programs Using the TCP/IP SSL Support with the REXX/VSE Socket Function
	Server Program:
	Client Program:

	Installation of REXX/VSE SOCKET Function

	Chapter 16. Debug Aids
	Interactive Debugging of Programs
	Interrupting Program Processing
	Starting and Stopping Tracing

	Chapter 17. Programming Services
	General Considerations for Calling REXX/VSE Routines
	Parameter Lists for REXX/VSE Routines
	Specifying the Address of the Environment Block
	Using the Environment Block Address Parameter
	Using the Environment Block for Reentrant Environments

	Return Codes for REXX/VSE Routines

	Calling REXX
	Calling REXX Directly with the JCL EXEC Command
	Return Codes
	The ARXREXX Program

	Calling REXX with ARXEXEC or ARXJCL
	The ARXJCL Routine
	The ARXEXEC Routine
	The Exec Block (EXECBLK)
	Format of Argument List
	The In-Storage Control Block (INSTBLK)
	The Evaluation Block (EVALBLOCK)
	How ARXEXEC Returns Information about Syntax Errors

	External Functions and Subroutines and Function Packages
	Interface for Writing External Function and Subroutine Code
	Function Packages
	Directory for Function Packages
	Format of Entries in the Directory
	Example of a Function Package Directory

	Specifying Directory Names in the Function Package Table

	Variable Pool – ARXEXCOM
	Maintain Entries in the Host Command Environment Table – ARXSUBCM
	Trace and Execution Control Routine – ARXIC
	Get Result Routine – ARXRLT
	SAY Instruction Routine – ARXSAY
	Halt Condition Routine – ARXHLT
	Text Retrieval Routine – ARXTXT
	LINESIZE Function Routine – ARXLIN
	OUTTRAP Interface Routine – ARXOUT

	Chapter 18. Customizing Services
	Flow of REXX Program Processing
	Language Processor Environment Initialization and Termination
	Loading and Freeing a REXX Program
	Processing of the REXX Program

	Overview of Replaceable Routines
	Exit Routines

	Chapter 19. Language Processor Environments
	Overview of Language Processor Environments
	Using the Environment Block
	When Environments Are Automatically Initialized
	Characteristics of a Language Processor Environment
	Flags and Corresponding Masks
	Module Name Table
	Host Command Environment Table
	Function Package Table
	Values in the ARXPARMS Default Parameters Module
	How ARXINIT Determines What Values to Use for the Environment
	Values ARXINIT Uses to Initialize Environments

	Chains of Environments and How Environments Are Located
	Locating a Language Processor Environment

	Changing the Default Values for Initializing an Environment
	Providing Your Own Parameters Module
	Changing Values

	Specifying Values for Different Environments
	Parameters You Cannot Change

	Control Blocks Created for a Language Processor Environment
	Format of the Environment Block (ENVBLOCK)
	Format of the Parameter Block (PARMBLOCK)
	Format of the Work Block Extension
	Format of the REXX Vector of External Entry Points

	Changing the Maximum Number of Environments in a Partition
	Using the Data Stack

	Chapter 20. Initialization and Termination Routines
	Initialization Routine – ARXINIT
	Entry Specifications
	Parameters
	Specifying How REXX Obtains Storage in the Environment
	How ARXINIT Determines What Values to Use for the Environment
	Parameters Module and In-Storage Parameter List
	Specifying Values for the New Environment

	Termination Routine – ARXTERM

	Chapter 21. Replaceable Routines and Exits
	Replaceable Routines
	General Considerations
	Using the Environment Block Address
	Installing Replaceable Routines

	Exec Load Routine
	The Exec Block
	The In-Storage Control Block

	Input/Output Routine
	Functions Supported for the I/O Routine
	Buffer and Buffer Length Parameters
	Line Number Parameter
	I/O Control Block
	Data Set Information Block (DSIB)

	Host Command Environment Routine
	Data Stack Routine
	Functions Supported for the Data Stack Routine

	Storage Management Routine
	User ID Routine
	Function Supported for the User ID Routine

	Message Identifier Routine
	REXX Exit Routines
	Exits for Language Processor Environment Initialization and Termination
	ARXINITX
	ARXITMV
	ARXTERMX
	Installing ARXINITX, ARXITMV, and ARXTERMX

	Halt Exit
	REXX Exit Data Areas and Parameters
	Installing a Halt Exit

	Installation-Supplied Exits
	Exec Initialization and Termination Exits
	Exec Processing (ARXEXEC) Exit Routine
	Installing the Exec Processing, Exec Initialization, and Exec Termination

	Chapter 22. Double-Byte Character Set (DBCS) Support
	General Description
	Enabling DBCS Data Operations and Symbol Use
	Symbols and Strings
	DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
	DBCS-Only Strings and Mixed SBCS/DBCS Strings

	Validation
	DBCS Symbol Validation
	Mixed String Validation

	Using DBCS Characters in Symbols and Comments
	Instruction Examples
	PARSE
	PUSH and QUEUE
	SAY and TRACE
	UPPER

	DBCS Function Handling
	Built-in Function Examples
	ABBREV
	COMPARE
	COPIES
	DATATYPE
	FIND
	INDEX, POS, and LASTPOS
	INSERT and OVERLAY
	JUSTIFY
	LEFT, RIGHT, and CENTER
	LENGTH
	REVERSE
	SPACE
	STRIP
	SUBSTR and DELSTR
	SUBWORD and DELWORD
	TRANSLATE
	VERIFY
	WORD, WORDINDEX, and WORDLENGTH
	WORDS
	WORDPOS

	DBCS Processing Functions
	Counting Option

	Function Descriptions
	DBADJUST
	DBBRACKET
	DBCENTER
	DBCJUSTIFY
	DBLEFT
	DBRIGHT
	DBRLEFT
	DBRRIGHT
	DBTODBCS
	DBTOSBCS
	DBUNBRACKET
	DBVALIDATE
	DBWIDTH

	Chapter 23. ARXTERMA Routine
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Chapter 24. Support for the Library for REXX/370 in REXX/VSE
	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking
	Compiler Publications

	Routines and Interfaces for the Library for REXX/370 in REXX/VSE
	Programming Routines for a REXX Compiler Runtime Processor
	Routines and Interfaces to Support a REXX Compiler
	Overview
	How REXX Identifies a Compiled Program
	The Compiler Programming Table
	The Compiler Runtime Processor
	Entry Specifications
	Parameters for the Compiler Runtime Processor
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Routines
	Compiler Interface Initialization Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Termination Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Load Routine
	Entry Specifications
	Parameter List
	Return Specifications
	Return Codes
	Programming Considerations
	Environment

	Compiler Interface Variable Handling Routine
	Entry Specifications
	Parameter List for the Compiler Interface Variable Handling Routine
	Return Specifications
	Return Codes
	Programming Considerations
	Environment
	Environment for the Programming Routines

	External Routine Search Routine (ARXERS)
	Entry Specifications
	Parameters for ARXERS
	Return Specifications
	Return Codes

	Host Command Search Routine (ARXHST)
	Entry Specifications
	Parameters for ARXHST
	Return Specifications
	Return Codes

	Exit Routing Routine (ARXRTE)
	Entry Specifications
	Parameters for ARXRTE
	Return Specifications
	Return Codes

	Appendix A. List of the Names of Macros Intended for Customers' Use
	General-Use Programming Interfaces
	Mapping Macros
	Product-Sensitive Programming Interfaces
	Mapping Macros

	Appendix B. Servicing REXX/VSE
	Appendix C. REXX Supplied Link Books
	Bibliography
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

