
IBM VSE/Enterprise Systems Architecture
VSE Central Functions
6.1

REXX/VSE User's Guide

IBM

SC33-6641-00

Note!
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xv.

This book is also provided as an online book that can be viewed with IBM* BookManager* READ and
IBM Library Reader* licensed programs.

Second Edition (April 1995)

This edition applies to Version 6 Release 1 of IBM REXX/VSE, which is part of VSE/Central Functions, Program Number
5686-066, and to all subsequent releases and modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed, comments may
be addressed to:

IBM Corporation or to: IBM Deutschland Entwicklung GmbH
Attn: Dept ECJ - BP/003D Department 3248
6300 Diagonal Highway Schoenaicher Strasse 220
Boulder, CO 80301, D-71032 Boeblingen
U.S.A. Federal Republic of Germany

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.
© Copyright International Business Machines Corporation 1988, 1995.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures... ix

Tables.. xiii

Notices.. xv
Programming Interface Information..xv
Trademarks and Service Marks.. xv

About This Book...xvii
Who Should Use This Book...xvii
How This Book Is Organized...xvii

Purpose of Each Chapter...xvii
Examples... xvii
Exercises...xviii
Terminology.. xviii

Where to Find More Information... xviii
REXX/VSE Publications.. xviii
z/VSE Publications... xviii
SAA Publications.. xviii
IBM Compiler and Library Publications... xviii

Referenced Program Products.. xviii

Part 1. PART I — Learning the REXX Language.. 1

Chapter 1. Introduction... 3
Purpose...3
What is REXX?...3
Features of REXX.. 3

Ease of use.. 3
Free format..3
Convenient built-in functions... 3
Debugging capabilities..3
Interpreted language.. 3
Extensive parsing capabilities.. 4

Components of REXX..4
REXX and Systems Application Architecture (SAA).. 4
Benefits of Using a Compiler.. 4

Improved Performance...5
Reduced System Load...5
Protection for Source Code and Programs... 5
Improved Productivity and Quality...5
Portability of Compiled Programs...5
SAA Compliance Checking..5

Chapter 2. Writing and Running a REXX Program... 7
Purpose...7
Before You Begin.. 7
What is a REXX Program?... 7
Syntax of REXX Instructions.. 8

 iii

The Format of REXX Instructions... 8
The Letter Case of REXX Instructions.. 8
Types of REXX Clauses... 11

Programs Using Double-Byte Character Set Names... 13
Running a Program... 14

Using the JCL EXEC Command to Run a REXX Program..14
Using ARXEXEC or ARXJCL...15
Defining Language Processor Environments..15
Customizing a Language Processor Environment..16

Interpreting Error Messages.. 16
How to Prevent Translation to Uppercase... 17

Characters within a Program.. 17
Characters Input to a Program... 17

Passing Information to a Program... 18
Getting Information from the Data Stack or Input Stream..18
Specifying Values When Calling a Program..19
Preventing Translation of Input to Uppercase... 20
Passing Arguments... 21

Chapter 3. Using Variables and Expressions...23
Purpose...23
Program Variables.. 23
Using Variables... 23

Variable Names...23
Variable Values... 24
Exercises - Identifying Valid Variable Names.. 25

Using Expressions.. 25
Arithmetic Operators.. 25
Comparison Operators..28
Logical (Boolean) Operators... 31
Concatenation Operators... 32
Priority of Operators... 33

Tracing Expressions with the TRACE Instruction.. 35
Tracing Operations..35
Tracing Results..36

Chapter 4. Controlling the Flow within a Program.. 37
Purpose...37
Conditional, Looping, and Interrupt Instructions..37
Using Conditional Instructions...37

IF…THEN…ELSE Instructions... 37
Nested IF…THEN…ELSE Instructions...39
SELECT WHEN…OTHERWISE…END Instruction..40

Using Looping Instructions.. 43
Repetitive Loops... 43
Conditional Loops... 46
Combining Types of Loops..49
Nested DO Loops.. 50

Using Interrupt Instructions.. 51
EXIT Instruction..51
CALL and RETURN Instructions..52
SIGNAL Instruction...53

Chapter 5. Using Functions..55
Purpose...55
What is a Function?.. 55

Example of a Function.. 56
Built-In Functions...56

iv

Arithmetic Functions...57
Comparison Functions.. 57
Conversion Functions... 57
Formatting Functions..58
String Manipulating Functions..58
Miscellaneous Functions.. 59
Testing Input with Built-In Functions...60

Chapter 6. Writing Subroutines and Functions... 63
Purpose...63
What are Subroutines and Functions?...63

When to Write Subroutines Rather Than Functions...64
Writing Subroutines and Functions..64

When to Use Internal Versus External Subroutines or Functions... 66
Passing Information..66
Receiving Information from a Subroutine or Function.. 70

Subroutines and Functions—Similarities and Differences.. 72

Chapter 7. Manipulating Data..75
Purpose...75
Using Compound Variables and Stems..75

What Is a Compound Variable?.. 75
Using Stems.. 76

Parsing Data..77
Parsing Instructions..77
More about Parsing into Words.. 79
Parsing with Patterns..80
Parsing Multiple Strings as Arguments.. 82

Part 2. PART II — Using REXX...87

Chapter 8. Using Commands from a Program...89
Purpose...89
Types of Commands...89

Using Quotations Marks in Commands.. 89
Using Variables in Commands.. 90
Calling Another REXX Program as a Command... 90

Issuing Commands from a Program.. 91
What is a Host Command Environment?..91
How Is a Command Passed to the Host Environment?... 92
Changing the Host Command Environment... 92

Chapter 9. Diagnosing Problems within a Program.. 95
Purpose...95
Debugging Programs.. 95

Tracing Commands with the TRACE Instruction..95
Using REXX Special Variables RC and SIGL... 96
Tracing with the Interactive Debug Facility..97

Chapter 10. Using REXX/VSE External Functions...101
Purpose.. 101
REXX/VSE External Functions..101

Using the ASSGN Function... 101
Using the OUTTRAP Function...101
Using the REXXIPT Function.. 102
Using the REXXMSG Function.. 103
Using the SETLANG Function... 103

 v

Using the SLEEP Function...104
Using the STORAGE Function... 104
Using the SYSVAR Function..104

Function Packages... 104
Search Order for Functions.. 105

Chapter 11. Storing Information in the Data Stack.. 107
Purpose.. 107
What is a Data Stack?...107
Manipulating the Data Stack..107

Adding Elements to the Data Stack..107
Removing Elements from the Stack...108
Determining the Number of Elements on the Stack..108

Processing of the Data Stack... 110
Using the Data Stack.. 111

Passing Information between a Routine and the Main Program...111
Leaving Data on the Stack..112
Creating a Buffer on the Data Stack.. 112

Creating a Buffer with the MAKEBUF Command... 112
Dropping a Buffer with the DROPBUF Command.. 113
Finding the Number of Buffers with the QBUF Command.. 114
Finding the Number of Elements in a Buffer..114

Protecting Elements in the Data Stack.. 116
Creating a New Data Stack with the NEWSTACK Command... 116
Deleting a Private Stack with the DELSTACK Command... 117
Finding the Number of Stacks.. 117

Chapter 12. Processing Data and Input/Output Processing.. 119
Purpose.. 119
Types of Processing... 119
Dynamic Modification of a Single REXX Expression..119

Using the INTERPRET Instruction..119
Using EXECIO to Process Information to and from Files.. 120

When to Use the EXECIO Command..120
Using the EXECIO Command..120

Appendix A. Using REXX in TSO/E and Other MVS Address Spaces...................... 135
Purpose.. 135
Services Available to REXX Execs... 135
Running Execs in a TSO/E Address Space.. 137

Running an Exec in the Foreground...137
Running an Exec in the Background.. 139

Running Execs in a Non-TSO/E Address Space.. 139
Using an Exec Processing Routine to Invoke an Exec from a Program...140
Using IRXJCL to Run an Exec in MVS Batch.. 140
Using the Data Stack in TSO/E Background and MVS Batch...140

Summary of TSO/E Background and MVS Batch.. 141
CAPABILITIES.. 141
REQUIREMENTS...141

Defining Language Processor Environments.. 141
What is a Language Processor Environment?..142
Customizing a Language Processor Environment... 142

Appendix B. Allocating Data Sets... 143
Allocating Data Sets...143

What is Allocation?...143
Where to Begin... 143

vi

Appendix C. Specifying Alternate Libraries with the ALTLIB Command................153
Specifying Alternative Exec Libraries with the ALTLIB Command... 153

Using the ALTLIB Command.. 153
Stacking ALTLIB Requests... 153
Using ALTLIB with ISPF..154

Examples of the ALTLIB Command...154

Appendix D. Comparisons Between CLIST and REXX.. 155
Accessing System Information... 155
Controlling Program Flow..156
Debugging.. 157
Execution... 158
Interactive Communication...158
Passing Information.. 159
Performing File I/O.. 160
Syntax.. 160
Using Functions... 161
Using Variables.. 161

Bibliography.. 163

Index.. 165

 vii

viii

Figures

1. Example of a Simple Program... 7

2. Example of a Longer Program... 8

3. Example of Free Format.. 11

4. Example of a Program with a Syntax Error... 16

5. Example of Reading Input and Writing Output...18

6. Example of a Program That Uses PULL...19

7. Variation of an Example that Uses PULL...19

8. Example of a Program That Uses the ARG Instruction.. 20

9. Example of a Program That Uses PARSE ARG..21

10. Example Using Arithmetic Expressions..28

11. Example Using a Comparison Expression.. 30

12. Example Using Logical Expressions... 32

13. Example Using Concatenation Operators.. 33

14. TRACE Shows How REXX Evaluates an Expression... 35

15. Possible Solution...36

16. Example of Missing Instructions.. 39

17. Example Using SELECT WHEN…OTHERWISE…END..42

18. Possible Solution...43

19. Example Using a DO FOREVER Loop.. 45

20. Example Using the LEAVE Instruction..45

21. Example Using DO WHILE...47

22. Possible Solution...48

23. Example Using DO UNTIL... 49

 ix

24. Possible Solution...49

25. Example Using the EXIT Instruction.. 52

26. Finding a Maximum Number...56

27. Possible Solution...61

28. Example of Subroutine Using the PROCEDURE Instruction.. 67

29. Example of Subroutine without the PROCEDURE Instruction...67

30. Example of Function Using the PROCEDURE Instruction.. 67

31. Example of Function without the PROCEDURE Instruction...67

32. Example Using PROCEDURE EXPOSE in Subroutine... 68

33. Example Using PROCEDURE EXPOSE in a Function.. 68

34. Example of Passing Arguments on the CALL Instruction...69

35. Example of Passing Arguments on the Call to an Internal Routine... 69

36. Possible Solution (Main Program)...71

37. Possible Solution (Internal Subroutine Named CHECK)..71

38. Possible Solution (External Subroutine named THROW)...72

39. Possible Solution...72

40. Possible Solution 1... 109

41. Possible Solution 2... 109

42. Possible Solution 3... 110

43. Using the Data Stack to Pass Information from the Main Program...111

44. External Routine..112

45. Data Stack Example.. 118

46. EXECIO Example 1..128

47. EXECIO Example 2..128

48. EXECIO Example 3..128

x

49. EXECIO Example 4..129

50. EXECIO Example 5..129

51. EXECIO Example 5 (continued)..130

52. EXECIO Example 6..131

53. EXECIO Example 6 (continued)..132

54. EXECIO Example 6 (continued)..133

 xi

xii

Tables

1. Arithmetic Operator Priority..27

2. Overall Operator Priority... 33

3. Similarities between Subroutines and Functions...73

4. Differences between Subroutines and Functions.. 73

5. LST Queue Contents..93

6. Language Codes for SETLANG Function That Replace the Function Call..103

 xiii

xiv

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only IBM's product, program, or service may be used.
Any functionally equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, New
York 10594, USA.

Programming Interface Information
This book is intended to help the customer write programs in the REXX programming language and
customize services that REXX/VSE 6.1.0 provides for REXX processing. This book documents General-use
Programming Interface and Associated Guidance Information that REXX/VSE 6.1.0 provides.

General-use programming interfaces allow the customer to write programs that obtain the services of
REXX/VSE 6.1.0.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
in the United States or other countries or both:

Systems Application Architecture SAA

IBM CICS

BookManager Library Reader

VSE/ESA MVS/ESA

Operating System/400 OS/400

Operating System/2 OS/2

© Copyright IBM Corp. 1988, 1995 xv

xvi IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

About This Book

This book describes the REstructured eXtended eXecutor (REXX) language. The REXX language is
implemented through

• The REXX/VSE Interpreter
• The Library for REXX/370 in REXX/VSE, which you can use to run compiled REXX programs.

The interpreter is also called the language processor. The Library for REXX/370 in REXX/VSE is also called
a compiler's runtime processor. REXX/VSE is a partial implementation of Level 2 Systems Application
Architecture (SAA) REXX on the VSE/ESA system.

Who Should Use This Book
This book is intended for anyone who wants to learn how to write REXX programs. More specifically, the
audience is programmers who may range from the inexperienced to those with extensive programming
experience. Because of the broad range of experience in readers, this book is divided into two parts.

• Part 1, “PART I — Learning the REXX Language,” on page 1

This part is for inexperienced REXX programmers who have at least some knowledge of JCL and know
how to create PROC members and a sublibrary. Programmers unfamiliar with VSE/ESA should first read
VSE/ESA System Control Statements, SC33-6713. Experienced programmers new to REXX can also read
this section to learn the basics of the REXX language.

• Part 2, “PART II — Using REXX,” on page 87

This part is for programmers already familiar with the REXX language and experienced with the
workings of VSE/ESA. It describes more complex aspects of the REXX language and how they work
in VSE/ESA.

If you are a new programmer, you might want to concentrate on the first part. If you are an experienced
VSE/ESA programmer, you might want to read the first part and concentrate on the second part.

How This Book Is Organized
This book includes chapter previews, examples, and exercises.

Purpose of Each Chapter
At the beginning of each chapter is a statement about the purpose of the chapter. Following that are
headings and page numbers where you can find specific information.

Examples
Throughout the book, you will find examples that you can try as you read. Examples including REXX
keyword instructions uppercase any REXX keywords. Similarly, examples showing VSE/ESA control
statements or VSE/POWER commands uppercase keyword operands and command names. Information
that can vary is in lowercase. This use of uppercase and lowercase is to help you distinguish between
words that cannot change and words that can. It does not mean that you must type REXX instructions
and VSE/ESA control statements or VSE/POWER commands with certain words in uppercase and others in
lowercase.

Here are some examples. The following REXX keyword instruction contains the REXX keyword SAY, which
cannot vary, and a phrase, which can vary.

 SAY 'This is an example of an instruction.'

© Copyright IBM Corp. 1988, 1995 xvii

The next example shows a system control statement. The system control statement name and keywords
are in uppercase because they cannot vary. The library and sublibrary are in lowercase because they can
vary.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)

Exercises
Periodically, you will find sections with exercises you can do to test your understanding of the information.
Answers to the exercises are included when appropriate.

Terminology
REXX/VSE is interactive only from the operator's console. Keep this reservation in mind regarding any
terminology in this book suggesting interactive input and output. For example, displaying output refers
to presenting it through the current output stream; entering information refers to providing it through the
current input stream.

A REXX program can be called an exec.

Where to Find More Information
The following books contain information related to the topics covered in this book.

REXX/VSE Publications
• REXX/VSE Reference.

z/VSE Publications
• z/VSE System Control Statements
• VSE/POWER Application Programming

SAA Publications
• SAA Common Programming Interface REXX Level 2 Reference , SC24-5549
• SAA Common Programming Interface Communications Reference SC26-4399

IBM Compiler and Library Publications
• IBM Compiler and Library for REXX/370; Introducing the Next Step in REXX Programming, G511-1430
• IBM Compiler and Library for REXX/370; User's Guide and Reference, SH19-8160

Referenced Program Products
This book refers to the following product:

• Library for SAA REXX/370, Program Number 5695-014
• Compiler for SAA REXX/370, Program Number 5695-013.

All occurrences of VSE/ESA refer to VSE/ESA Version 2, Release 1, Program Number 5690-VSE.

xviii IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/c2643999.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/h1981606.pdf

Part 1. PART I — Learning the REXX Language

The REXX language is a versatile general-purpose programming language new and experienced
programmers can use. This part of the book is for programmers who want to learn the REXX language. The
chapters in this part cover the following topics.

• Chapter 1, “Introduction,” on page 3 — The REXX language has many features that make it a powerful
programming tool.

• Chapter 2, “Writing and Running a REXX Program,” on page 7 — Programs are easy to write and have
few syntax rules.

• Chapter 3, “Using Variables and Expressions,” on page 23 — Variables, expressions, and operators are
essential when writing programs that do arithmetic and comparisons.

• Chapter 4, “Controlling the Flow within a Program,” on page 37 — You can use instructions to branch,
loop, or interrupt the flow of a program.

• Chapter 5, “Using Functions,” on page 55 — A function is a sequence of instructions that can perform a
specific task and must return a value.

• Chapter 6, “Writing Subroutines and Functions,” on page 63 — You can write internal and external
routines that a program calls.

• Chapter 7, “Manipulating Data,” on page 75 — Compound variables and parsing are two ways to
manipulate data.

Several REXX instructions either get information from the input stream or write information to the output
stream. The INDD and OUTDD fields in the module name table identify the default input and output
streams, respectively. If you have not changed the defaults, the current input stream is SYSIPT and the
current output stream is SYSLST.

• SAY sends information to the output stream.
• PARSE PULL and PULL get information from the top of the data stack or, if the stack is empty, from the

input stream.
• TRACE sends information to the output stream.
• PARSE EXTERNAL gets information from the input stream.
• EXECIO reads information from or writes it to the specified output stream or device.

The USERID built-in function returns the current user ID.

© Copyright IBM Corp. 1988, 1995 1

2 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 1. Introduction

Purpose
This chapter describes the REXX programming language and some of its features.

What is REXX?
REXX is an extremely versatile programming language. Common programming structure, readability, and
free format make it a good language for beginners and general users. REXX is also suitable for more
experienced computer professionals because it can be intermixed with commands to host environments,
it provides powerful functions, and it has extensive mathematical capabilities.

REXX programs can do many tasks, including the automation of VSE/Operations. For example, if you use
the JCL EXEC command to call a REXX program, you can leave JCL statements on the stack for VSE/ESA
to process. This enables you to insert JCL statements or data into the current job stream. REXX programs
can run in any partition. They can communicate with POWER through the SAS interface.

Features of REXX
In addition to its versatility, REXX has many other features, some of which are:

Ease of use
The REXX language is easy to read and write because many instructions are meaningful English words.
Unlike some lower level programming languages that use abbreviations, REXX instructions are common
words, such as SAY, PULL, IF…THEN…ELSE…, DO…END, and EXIT.

Free format
There are few rules about REXX format. You need not start an instruction in a particular column. You can
skip spaces in a line or skip entire lines. You can have an instruction span many lines or have multiple
instructions on one line. You need not predefine variables. You can type instructions in upper, lower, or
mixed case. The few rules about REXX format are covered in “Syntax of REXX Instructions” on page 8.

Convenient built-in functions
REXX supplies built-in functions that perform various processing, searching, and comparison operations
for both text and numbers. Other built-in functions provide formatting capabilities and arithmetic
calculations.

Debugging capabilities
When a REXX program running in REXX/VSE encounters an error, REXX writes messages describing the
error to the current output stream. You can also use the REXX TRACE instruction and the interactive
debug facility to locate errors in programs.

Interpreted language
The REXX/VSE product includes the REXX/VSE interpreter. When a REXX program runs, the interpreter
directly processes each line. Languages that are not interpreted must be compiled into machine language
and possibly link-edited before they are run.

© Copyright IBM Corp. 1988, 1995 3

The REXX/VSE product also includes the Library for REXX/370 in REXX/VSE. You can use this component
to run compiled programs. (See “Benefits of Using a Compiler” on page 4 for information about the
benefits of using a compiler.)

Extensive parsing capabilities
REXX includes extensive parsing capabilities for character manipulation. This parsing capability lets you
set up a pattern to separate characters, numbers, and mixed input.

Components of REXX
The various components of REXX make it a powerful tool for programmers. REXX is made up of:

• Clauses, which can be instructions, null clauses, or labels. Instructions can be:

– Keyword instructions
– Assignments
– Commands (both REXX/VSE commands and host commands, such as ADDRESS POWER commands)

The language processor processes keyword instructions and assignments.
• Built-in functions — These functions are built into the language processor and provide convenient

processing options.
• External functions — REXX/VSE provides these functions that interact with the system to do specific

tasks for REXX.
• Data stack functions — A data stack can store data for I/O and other types of processing.

REXX and Systems Application Architecture (SAA)
Systems Application Architecture* (SAA*) REXX defines a common set of language elements you can use
in several environments. REXX/VSE is a partial implementation of Level 2 SAA REXX on the VSE/ESA*
system. The SAA environments are the following:

• MVS

– Base system (TSO/E, APPC/MVS, batch)
– CICS*
– IMS

• VM CMS
• Operating System/400* (OS/400*)
• Operating System/2* (OS/2*).

Benefits of Using a Compiler
The IBM Compiler for REXX/370 (Program Number 5695-013) and the IBM Library for REXX/370 in
REXX/VSE provide significant benefits for programmers during program development and for users when
a program is run. The benefits are:

• Improved performance
• Reduced system load
• Protection for source code and programs
• Improved productivity and quality
• Portability of compiled programs
• Checking for compliance to SAA

4 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Improved Performance
The performance improvements that you can expect when you run compiled REXX programs depend on
the type of program. A program that performs large numbers of arithmetic operations of default precision
shows the greatest improvement. A program that mainly issues commands to the host shows minimal
improvement because REXX cannot decrease the time the host takes to process the commands.

Reduced System Load
Compiled REXX programs run faster than interpreted programs. Because a program has to be compiled
only once, running compiled programs reduces system load and improves response time for frequently
run programs.

For example, a REXX program that performs many arithmetic operations might take 12 seconds to run
on the interpreter. Running the program 60 times uses about 12 minutes of processor time. The same
program when compiled might run six times faster, using only about 2 minutes of processor time.

Protection for Source Code and Programs
Your REXX programs and algorithms are assets that you want to protect.

The Compiler produces object code, which helps you protect these assets by discouraging people from
making unauthorized changes to your programs. You can distribute your REXX programs in object code
only.

Improved Productivity and Quality
The Compiler can produce source listings, cross-reference listings, and messages, which help you more
easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You can then focus on
correcting errors in logic during testing with the REXX interpreter.

Portability of Compiled Programs
A compiled REXX program can run under other operating systems, such as MVS/ESA* or VM CMS. A REXX
program compiled under VM CMS or MVS/ESA can run under REXX/VSE.

SAA Compliance Checking
The Systems Application Architecture (SAA) definitions of software interfaces, conventions, and protocols
provide a framework for designing and developing applications that are consistent within and across
several operating systems.

To help you write programs for use in all SAA environments, the Compiler can optionally check for SAA
compliance. With this option in effect, a warning message is issued for each non-SAA item found in a
program. For more information, see IBM Compiler and Library for REXX/370; Introducing the Next Step in
REXX Programming

Chapter 1. Introduction 5

6 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 2. Writing and Running a REXX Program

Purpose
This chapter introduces programs and their syntax, describes the steps involved in writing and running
programs, and explains concepts you need to understand to avoid common problems.

Before You Begin
The default location for all parts of REXX/VSE is the PRD1.BASE sublibrary. All descriptions and examples
in this documentation refer to this sublibrary.

Before you can run a REXX program you need to put the program in a sublibrary in the active PROC chain.

What is a REXX Program?
A REXX program consists of REXX language instructions that the REXX interpreter interprets directly. (The
Library for REXX/370 in REXX/VSE runs compiled programs.) A program can also contain commands that
the host environment executes, such as ADDRESS POWER commands.

One advantage of the REXX language is its similarity to ordinary English. This similarity makes it easy
to read and write a REXX program. For example, to write a line to the output stream, you use the REXX
instruction SAY followed by the line. SAY writes output to the current output stream. If you have not
changed the default, the output stream is SYSLST.

/* Sample REXX Program */
 SAY 'This is a REXX program.'

Figure 1. Example of a Simple Program

This program starts with a comment line to identify it as a REXX program. A comment begins with /* and
ends with */. More about comments and why you might need a REXX program identifier appears later
(see Comments).

When you run the program, the SAY instruction sends to the output stream:

 This is a REXX program.

Even in a longer program, the instructions are similar to ordinary English and are easy to understand. For
example, you could use the following to call the program ADDTWO, which adds two numbers:

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42
21
/&

Here is the ADDTWO program:

© Copyright IBM Corp. 1988, 1995 7

/**************************** REXX *********************************/
/* This program adds two numbers and produces their sum. */
/***/
 PULL number1 /* Assigns: number1=42 */
 PULL number2 /* Assigns: number2=21 */
 sum = number1 + number2
 SAY 'The sum of the two numbers is' sum'.'

Figure 2. Example of a Longer Program

When you run the example program, PULL gets input from the current input stream. The default is SYSIPT.

The first PULL instruction assigns the variable number1 the value 42. The second PULL instruction assigns
the variable number2 the value 21. The next line contains an assignment. The language processor adds
the values in number1 and number2 and assigns the result, 63, to sum. Finally, the SAY instruction sends
to the output stream the line:

The sum of the two numbers is 63.

Before you try any examples, please read the next two sections, “Syntax of REXX Instructions” on page
8 and “Running a Program” on page 14.

Syntax of REXX Instructions
Some programming languages have rigid rules about how and where you enter characters on each line.
For example, assembler statements must begin in a certain column. REXX, on the other hand, has simple
syntax rules. You can use upper or lower or mixed case. REXX has no restrictions about the columns in
which you can type.

An instruction can begin in any column on any line. The following are all valid instructions.

SAY 'You can type in any column'
 SAY 'You can type in any column'
 SAY 'You can type in any column'

These instructions are sent to the output stream:

 You can type in any column
 You can type in any column
 You can type in any column

The Format of REXX Instructions
The REXX language has free format. This means you can insert extra spaces between words. For example,
the following all mean the same:

 total=num1+num2
 total =num1+num2
 total = num1+num2
 total = num1 + num2

You can also insert blank lines throughout a program without causing an error.

The Letter Case of REXX Instructions
You can enter a REXX instruction in lowercase, uppercase, or mixed case. For example, SAY, Say, and say
all have the same meaning. The language processor translates alphabetic characters to uppercase, unless
you enclose them in single or double quotation marks.

8 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Using Quotation Marks in an Instruction
A series of characters within matching quotation marks is a literal string. The following examples contain
literal strings.

SAY 'This is a REXX literal string.' /* Using single quotation marks */

SAY "This is a REXX literal string." /* Using double quotation marks */

Do not enclose a literal string with one each of the two different types of quotation marks. For example,
the following is incorrect:

SAY 'This is a REXX literal string." /* Using mismatched quotation marks */

If you omit the quotation marks around a literal string in a SAY instruction, the language processor usually
translates the statement to uppercase. For example,

 SAY This is a REXX string.

results in:

 THIS IS A REXX STRING.

(This assumes none of the words is the name of a variable that you have already assigned a value. In
REXX, the default value of a variable is its own name in uppercase.)

If a string contains an apostrophe, you can enclose the literal string in double quotation marks.

 SAY "This isn't difficult!"

You can also use two single quotation marks in place of the apostrophe, because a pair of single quotation
marks is processed as one.

 SAY 'This isn't difficult!'

Either way, the outcome is the same.

 This isn't difficult!

Ending an instruction
A line usually contains one instruction except when it contains a semicolon (;) or ends with a comma (,).

The end of the line or a semicolon indicates the end of an instruction. If you put one instruction on a line,
the end of the line delineates the end of the instruction. If you put multiple instructions on one line, you
must separate adjacent instructions with a semicolon.

 SAY 'Hi!'; say 'Hi again!'; say 'Hi for the last time!'

This example would result in three lines.

 Hi!
 Hi again!
 Hi for the last time!

Chapter 2. Writing and Running a REXX Program 9

Continuing an instruction
A comma is the continuation character. It indicates that the instruction continues to the next line. The
comma, when used in this manner, also adds a space when the lines are concatenated. Here is how the
comma continuation character works when a literal string is being continued on the next line.

 SAY 'This is an extended',
 'REXX literal string.'

The comma at the end of the first line adds a space (between extended and REXX when the two lines are
concatenated for output. A single line results:

 This is an extended REXX literal string.

The following two instructions are identical and yield the same result:

 SAY 'This is',
 'a string.'

 SAY 'This is' 'a string.'

The space between the two separate strings is preserved:

 This is a string.

Continuing a literal string without adding a space
If you need to continue an instruction to a second or more lines but do not want REXX to add spaces in the
line, use the concatenation operand (two single OR bars, ||).

 SAY 'This is an extended literal string that is bro'||,
 'ken in an awkward place.'

This example results in one line no space in the word "broken".

 This is an extended literal string that is broken in an awkward place.

Also note that the following two instructions are identical and yield the same result:

 SAY 'This is' ||,
 'a string.'

 SAY 'This is' || 'a string.'

These examples result in:

 This isa string.

In both examples, the concatenation operator deletes spaces between the two strings.

The following example demonstrates the free format of REXX.

10 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/************************* REXX *****************************/
SAY 'This is a REXX literal string.'
SAY 'This is a REXX literal string.'
 SAY 'This is a REXX literal string.'
SAY,
'This',
'is',
'a',
'REXX',
'literal',
'string.'

SAY'This is a REXX literal string.';SAY'This is a REXX literal string.'
SAY ' This is a REXX literal string.'

Figure 3. Example of Free Format

Running this example results in six lines of identical output, followed by one indented line.

 This is a REXX literal string.
 This is a REXX literal string.
 This is a REXX literal string.
 This is a REXX literal string.
 This is a REXX literal string.
 This is a REXX literal string.
 This is a REXX literal string.

Thus, you can begin an instruction anywhere on a line, you can insert blank lines, and you can insert
extra spaces between words in an instruction. The language processor ignores blank lines, and it ignores
spaces that are greater than one. This flexibility of format lets you insert blank lines and spaces to make a
program easier to read.

Blanks and spaces are significant only during parsing. “Parsing Data” on page 77 describes parsing.

Types of REXX Clauses
REXX clauses can be: instructions, null clauses, and labels. Instructions can be keyword instructions,
assignments, or commands. The following example shows a program with these types of clauses. A
description of each type of clause follows the example.

/* QUOTA REXX program. Two car dealerships are competing to */
/* sell the most cars in 30 days. Who will win? */

store_a=0; store_b=0
DO 30
 CALL sub
END
IF store_a>store_b THEN SAY "Store_a wins!"
 ELSE IF store_b>store_a THEN SAY "Store_b wins!"
 ELSE SAY "It's a tie!"
EXIT

sub:
store_a=store_a+RANDOM(0,20) /* RANDOM returns a random number in */
store_b=store_b+RANDOM(0,20) /* in specified range, here 0 to 20 */
RETURN

Keyword Instructions
A keyword instruction tells the language processor to do something. It begins with a REXX keyword that
identifies what the language processor is to do. For example, DO can group instructions and execute them
repetitively, and IF tests whether a condition is met. SAY writes to the current output stream.

IF, THEN and ELSE are three keywords that work together in one instruction. Each keyword forms a
clause, which is a subset of an instruction. If the expression that follows the IF keyword is true, the
instruction that follows the THEN keyword is processed. Otherwise, the instruction that follows the ELSE
keyword is processed. (Note that a semicolon is needed before the ELSE if you are putting an ELSE clause

Chapter 2. Writing and Running a REXX Program 11

on the same line with a THEN.) If you want to put more than one instruction after a THEN or ELSE, use
a DO before the group of instructions and an END after them. More information about the IF instruction
appears in “Using Conditional Instructions” on page 37.

The EXIT keyword tells the language processor to end the program. Using EXIT in the preceding example
is necessary because, otherwise, the language processor would execute the code in the subroutine after
the label sub:. EXIT is not necessary in some programs (such as those without subroutines), but it is
good programming practice to include it. More about EXIT appears in “EXIT Instruction” on page 51.

Assignment
An assignment gives a value to a variable or changes the current value of a variable. A simple assignment
instruction is:

 number = 4

In the preceding program, a simple assignment instruction is: store_a=0. The left side of the assignment
(before the equal sign) contains the name of the variable to receive a value from the right side (after
the equal sign). The right side can be an actual value (such as 4) or an expression. An expression is
something that needs to be evaluated, such as an arithmetic expression. The expression can contain
numbers, variables, or both.

 number = 4 + 4

 number = number + 4

In the first example, the value of number is 8. If the second example directly followed the first in a
program, the value of number would become 12. More about expressions is in “Using Expressions” on
page 25.

Label
A label, such as sub: is a symbolic name followed by a colon. A label can contain either single- or
double-byte characters or a combination of single- and double-byte characters. (Double-byte characters
are valid only if OPTIONS ETMODE is the first instruction in your program.) A label identifies a portion of
the program and is commonly used in subroutines and functions, and with the SIGNAL instruction. (Note
that you need to include a RETURN instruction at the end of a subroutine to transfer control back to the
main program.) More about the use of labels appears in Chapter 6, “Writing Subroutines and Functions,”
on page 63 and “SIGNAL Instruction” on page 53.

Null Clause
A null clause consists of only blanks or comments or both. The language processor ignores null clauses,
but they make a program easier to read.
Comments

A comment begins with /* and ends with */. Comments can be on one or more lines or on part
of a line. You can put information in a comment that might not be obvious to a person reading the
REXX instructions. Comments at the beginning of a program can describe the overall purpose of the
program and perhaps list special considerations. A comment next to an individual instruction can
clarify its purpose.

Note: For portability reasons, you are recommended to start each REXX program with a comment that
includes the word REXX.

The first comment in a program is the REXX program identifier. It immediately identifies the program
to readers as a REXX program.

12 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Blank lines
Blank lines separate groups of instructions and aid readability. The more readable a program is, the
easier it is to understand and maintain.

Commands
A command is a clause consisting of only an expression. Commands are sent to a previously defined
environment for processing. (You should enclose in quotation marks any part of the expression not to
be evaluated.) The example program did not include any commands. The following example includes a
command in an ADDRESS instruction:

/* REXX program including a command */
job.1="* $$ JOB jnm=testjob"
job.2="// JOB testjob"
job.3="// EXEC testprog"
job.0=3
ADDRESS power "PUTQE RDR STEM job."

ADDRESS is a keyword instruction. When you specify an environment and a command on an ADDRESS
instruction, a single command is sent to the environment you specify. In this case, the environment is
power. The command is the expression that follows the environment:

"PUTQE RDR STEM job."

This PUTQE command puts the job testjob on the POWER RDR queue. By default the job is class A.
For more details about changing the host command environment, see “Changing the Host Command
Environment” on page 92.

More information about issuing commands appears in Chapter 8, “Using Commands from a Program,” on
page 89.

Programs Using Double-Byte Character Set Names
You can use double-byte character set (DBCS) names in your REXX programs for literal strings, symbols,
and comments. Such character strings can be single-byte, double-byte, or a combination of both. To
use DBCS names, OPTIONS ETMODE must be the first instruction in the program. This specifies that
the language processor should check strings containing DBCS characters for validity. You must enclose
DBCS characters within shift-out (SO) and shift-in (SI) delimiters. (The SO character is X'0E', and the SI
character is X'0F') The SO and SI characters are non-printable. In the following example, the less than
(<) and greater than (>) symbols represent shift-out (SO) and shift-in (SI), respectively. For example,
<.S.Y.M.D> and <.D.B.C.S.R.T.N> represent DBCS symbols in the following examples.

Example 1

The following is an example of a program using a DBCS variable name and a DBCS subroutine label.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */
<.S.Y.M.D> = 10 /* Variable with DBCS characters between */
 /* shift-out (<) and shift-in (>) */
y.<.S.Y.M.D> = JUNK
CALL <.D.B.C.S.R.T.N> /* Call subroutine with DBCS name */
EXIT
<.D.B.C.S.R.T.N>: /* Subroutine with DBCS name */
DO i = 1 TO 10
 IF y.i = JUNK THEN /* Does y.i match the DBCS variable's
 value? */
 SAY 'Value of the DBCS variable is : ' <.S.Y.M.D>
END
RETURN

Example 2

Chapter 2. Writing and Running a REXX Program 13

The following example shows DBCS characters in an EXECIO command and some other uses of DBCS
variable names. DBCS characters are passed to a program called through LINKPGM and are passed with
the built-in function LENGTH.

/* REXX */
OPTIONS 'ETMODE' /* ETMODE to enable DBCS variable names */

/**/
/* Use EXECIO to read lines into DBCS stem variables */
/**/

"EXECIO * DISKR mylib.sublib.data.proc (STEM <.D.B.C.S__.S.T.E.M>. FINIS"

IF rc = 0 THEN /* if good return code from program */

 /**/
 /* Say each DBCS stem variable that EXECIO sets */
 /**/

 DO i = 1 TO <.D.B.C.S__.S.T.E.M>.0

 SAY "Line " i "==> " <.D.B.C.S__.S.T.E.M>.i

 END

line1_<.v.a.l.u.e> = <.D.B.C.S__.S.T.E.M>.1 /* line 1 value */

line_len = LENGTH(line1_<.v.a.l.u.e>) /* Length of line */

/**/
/* The ADDRESS instruction specifies the LINKPGM host command */
/* environment to call program PROCA29 to process a line.
/* This line includes 2 variable names to pass 2 parameters, one */
/* of which is a DBCS variable name. The LINKPGM host command */
/* environment routine looks up the value of the two variables */
/* and passes their values to the address LINKPGM command */
/* "proca29". */
/**/
ADDRESS LINKPGM "proca29 line_len line1_<.v.a.l.u.e>"

Running a Program
You need to store your REXX program in a sublibrary with a member type of PROC. You can run a program:

• From batch by using the JCL EXEC command
• From another program by calling ARXEXEC or ARXJCL. The recommended method is using the JCL EXEC

command. Calling REXX in this way lets you leave JCL statements on the stack for VSE/ESA to process.
This lets you insert JCL statements or data into the current job stream. Using ARXEXEC or ARXJCL does
not allow you to leave JCL statements on the stack. However, this method is compatible with MVS/ESA.

Using the JCL EXEC Command to Run a REXX Program
The program must be a member of a sublibrary in the active PROC chain. If the program
myprog is in the library mainlib, sublibrary sublib1, its full name is in the format
library.sublibrary.program_name.filetype, for example, mainlib.sublib1.myprog.proc. The library
name can be up to 7 characters. (This is a VSE/ESA stipulation.) The sublibrary name, program_name, and
file type are each up to 8 characters. To use the JCL EXEC command to run a REXX program in batch,
specify

REXX=program_name

on the JCL EXEC statement. For example:

14 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

// LIBDEF PROC SEARCH=rexxlib.samples
// EXEC REXX=myprog

REXX treats the program_name as a member with a type of PROC. If you omit the name, specify blanks,
or use a name longer than 8 characters, VSE JCL reports an error and stops processing. REXX calls the
Librarian services to search the active PROC chain for the program. For example, if the program_name
is myprog, the Librarian services search for myprog.PROC. REXX accesses the program through the
Librarian services.

You can include optional parameters on the call, by specifying:

PARM=parameters

Here is an example:

*
// LIBDEF PROC,SEARCH=rexxlib.samples
// EXEC REXX=program1,PARM='m n o'

You can pass only one argument to the program you are calling, but the argument can consist of more
than one token. In the example, the program receives the argument: m n o. If you are passing an
argument to , you need to include a PARSE ARG (or ARG) instruction in the program to retrieve the
arguments. For example, if you call a program by using:

// EXEC REXX=program1,PARM='1 2 3'

You could include the following instruction in the program:

PARSE ARG var1 var2 var3

This would give var1 the value 1, var2 the value 2, and var3 the value 3. For more information, see
“Specifying Values When Calling a Program” on page 19 and “Passing Arguments” on page 21.

Using ARXEXEC or ARXJCL
To call a REXX program from another program, you can use ARXEXEC or ARXJCL. You can use ARXJCL to
run a REXX program in two ways:

• Call ARXJCL from a non-REXX program
• Specify ARXJCL on the JCL EXEC statement.

To use ARXJCL on the JCL EXEC statement, specify the member name of the program and any arguments
After PARM=. For example:

// LIBDEF PROC,SEARCH=rexxlib.samples
// EXEC ARXJCL,PARM='MYPROG arg1 arg2'

To use ARXEXEC or ARXJCL to call a REXX program from a non-REXX program, you need to specify
parameters that define the program and supply other related information. For details, see the REXX/VSE
Reference.

Defining Language Processor Environments
Before you can run a program, a language processor environment must exist. A language processor
environment defines the way a REXX program is processed and how it accesses system services.
REXX/VSE provides the default parameters module ARXPARMS to define language processor
environments. REXX/VSE sets the defaults but a system programmer can modify them.

Chapter 2. Writing and Running a REXX Program 15

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

What Is a Language Processor Environment?
A language processor environment defines characteristics, such as:

• The search order for locating commands and external routines
• The devices for reading and writing data
• The valid host command environments and the routines that process commands in each host command

environment
• The function packages (user, local, and system) that are available in the environment and the entries in

each package
• Whether programs running in the environment can use the data stack
• The names of routines that handle system services, such as I/O operations, program loading, obtaining

and freeing storage, and data stack requests.

Note: A language processor environment differs from a host command environment. The language
processor environment is the environment in which a REXX program runs. The host command
environment is the environment to which the language processor passes commands for execution. The
language processor environment defines the host command environments.

For more information about defining language processor environments, see the REXX/VSE Reference.

Customizing a Language Processor Environment
An individual or an installation can customize a language processor environment in two ways:

• Change the values in the default parameters module ARXPARMS.
• Call the initialization routine ARXINIT and specify parameters to change default parameters.

For more information about customizing a language processor environment, see the REXX/VSE Reference.

Interpreting Error Messages
When you run a program that contains an error, an error message often includes the line on which the
error occurred and gives an explanation of the error. Error messages can result from syntax errors and
from computational errors. For example, the following program has a syntax error.

 /************************** REXX **********************************/
 /* This REXX program contains a deliberate error of not closing */
 /* a comment. Without the error, it would pull input to produce */
 /* a greeting. */
 /**/

 PULL who /* Get the person's name.
 IF who = '' THEN
 SAY 'Hello, stranger'
 ELSE
 SAY 'Hello,' who

Figure 4. Example of a Program with a Syntax Error

When the program runs, the language processor sends the following lines to the output stream. (If you
have not changed the default, the output stream is SYSLST.)

 7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who
ARX0006I Error running HELLO, line 7: Unmatched "/*" or quote

The program runs until the language processor detects the error, the missing */ at the end of the
comment. The PULL instruction does not use the data from the data stack or input stream because this
line contains the syntax error. The program ends, and the language processor sends the error messages.

16 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

The first error message begins with the line number of the statement where the language processor
detected the error. Three pluses (+++) and the contents of the statement follow this.

 7 +++ PULL who /* Get the person's name.IF who =
'' THEN SAY 'Hello stranger'ELSE SAY 'Hello' who

The second error message begins with the message number. A message containing the program name,
the line where the language processor found the error, and an explanation of the error follow this.

ARX0006I Error running HELLO, line 7: Unmatched "/*" or quote

For more information about the error, you can go to the message explanations in the error messages
section of the z/VSE Messages and Codes.

To fix the syntax error in this program, add */ to the end of the comment on line 7.

 PULL who /* Get the person's name. */

How to Prevent Translation to Uppercase
The language processor generally translates alphabetic characters to uppercase before processing them.
The alphabetic characters can be within a program, such as words in a REXX instruction, or they can be
external to a program and processed as input. You can prevent the translation to uppercase as follows:

Characters within a Program
To prevent translation of alphabetic characters in a program to uppercase, simply enclose the characters
in single or double quotation marks. The language processor does not change numbers and special
characters, regardless of whether they are in quotation marks. Suppose you use a SAY instruction with
a phrase containing a mixture of alphabetic characters, numbers, and special characters; the language
processor changes only the alphabetic characters.

 SAY The bill for lunch comes to $123.51!

results in:

 THE BILL FOR LUNCH COMES TO $123.51!

(This example assumes none of the words are the names of variables that have been assigned other
values.)

Quotation marks ensure that information in a program is processed exactly as typed. This is important in
the following situations:

• For output that must be lowercase or a mixture of uppercase and lowercase.
• To ensure that commands are processed correctly. For example, if a variable name in a program is the

same as a command name, the program can end in error when the command is issued. It is a good
programming practice to avoid using variable names that are the same as commands and to enclose all
commands in quotation marks.

Characters Input to a Program
When reading input or passing input from another program, the language processor also changes
alphabetic characters to uppercase before processing them. To prevent translation to uppercase, use
the PARSE instruction.

Chapter 2. Writing and Running a REXX Program 17

http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf

For example, the following program reads input from the input stream and sends this information to the
output stream.

 /************************** REXX ***********************************/
 /* This REXX program gets the name of an animal from the input */
 /* stream and sends it to the output stream. */
 /***/

 PULL animal /* Get the animal name.*/
 SAY animal

Figure 5. Example of Reading Input and Writing Output

If the input is tyrannosaurus, the language processor produces the output:

 TYRANNOSAURUS

To cause the language processor to read input exactly as it is presented, use the PARSE PULL instruction
instead of the PULL instruction.

 PARSE PULL animal

Now if the input is TyRannOsauRus, the output is:

 TyRannOsauRus

Exercises - Running and Modifying the Example Programs
You can write and run the preceding example. Now change the PULL instruction to a PARSE PULL
instruction and note the difference.

Passing Information to a Program
When a program runs, you can pass information to it in several ways:

• By using PULL to get information from the data stack or input stream
• By specifying input when calling the program.

Getting Information from the Data Stack or Input Stream
The PULL instruction is one way for a program to receive input. Repeating an earlier example shows this.
Here is how to call the ADDTWO program.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42
21
/&

Here is the ADDTWO program.

18 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/**************************** REXX ******************************/
/* This program adds two numbers and produces their sum. */
/**/
 PULL number1
 PULL number2
 sum = number1 + number2
 SAY 'The sum of the two numbers is' sum'.'

Figure 6. Example of a Program That Uses PULL

The PULL instruction can extract more than one value at a time from the input stream by separating a line
of input. The following variation of the example shows this.

// LIBDEF *,SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=addtwo
42 21
/&

/**************************** REXX ******************************/
/* This program adds two numbers and says their sum */
/**/
 PULL number1 number2
 sum = number1 + number2
 SAY 'The sum of the two numbers is' sum'.'

Figure 7. Variation of an Example that Uses PULL

The PULL instruction extracts the numbers 42 and 21 from the input stream.

Note:

1. For the PULL instruction to extract information from the input stream, the data stack must be empty.
More information about the data stack appears in Chapter 11, “Storing Information in the Data Stack,”
on page 107.

2. If you are using SYSIPT for input and your program does not read all the lines, VSE JCL treats any
remaining SYSIPT data as JCL statements. In this case, VSE JCL may issue the message

1S01D INVALID STATEMENT

to the operator's console.

Specifying Values When Calling a Program
Another way for a program to receive input is through values you specify when you call the program. For
example to pass the two numbers 42 and 21 to a program named ADD, you could use the JCL EXEC
command:

*
// LIBDEF *, SEARCH=(prd1.base,rexxlib.samples)
// EXEC REXX=add,PARM='42 21'

The program ADD uses the ARG instruction to assign the input to variables as shown in the following
example.

Chapter 2. Writing and Running a REXX Program 19

/**************************** REXX ******************************/
/* This program receives two numbers as input, adds them, and */
/* produces their sum. */
/**/
 ARG number1 number2
 sum = number1 + number2
 SAY 'The sum of the two numbers is' sum'.'

Figure 8. Example of a Program That Uses the ARG Instruction

ARG assigns the first number, 42, to number1 and the second number, 21, to number2.

If the number of values is fewer or more than the number of variable names after ARG or PULL, errors can
occur, as the following sections describe.

Specifying Too Few Values
If you specify fewer values than the number of variables after PULL or ARG, the extra variables are set to
the null string. Here is an example in which you pass only one number to the program:

// EXEC REXX=add,PARM='42'

The language processor assigns the value 42 to number1, the first variable following ARG. It assigns the
null string to number2, the second variable. In this situation, the program ends with an error when it tries
to add the two variables. In other situations, the program might not end in error.

Specifying Too Many Values
When you specify more values than the number of variables following PULL or ARG, the last variable gets
the remaining values. For example, you pass three numbers to the program ADD:

// EXEC REXX=add,PARM='42 21 10'

The language processor assigns the value 42 to number1, the first variable following ARG. It assigns the
value 21 10 to number2, the second variable. In this situation, the program ends with an error when it
tries to add the two variables. In other situations, the program might not end in error.

To prevent the last variable from getting the remaining values, use a period (.) at the end of the PULL or
ARG instruction.

 ARG number1 number2 .

The period acts as a dummy variable to collect unwanted extra information. (In this case, number1
receives 42, number2 receives 21, and the period ensures the 10 is discarded. If there is no extra
information, the period is ignored. You can also use a period as a placeholder within the PULL or ARG
instruction as follows:

 ARG . number1 number2

In this case, the first value, 42, is discarded and number1 and number2 get the next two values, 21 and
10.

Preventing Translation of Input to Uppercase
Like the PULL instruction, the ARG instruction changes alphabetic characters to uppercase. To prevent
translation to uppercase, use PARSE ARG as in the following example.

20 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/**************************** REXX ********************************/
/* This program receives the last name, first name, and score of */
/* a student and reports the name and score. */
/**/
 PARSE ARG lastname firstname score
 SAY firstname lastname 'received a score of' score'.'

Figure 9. Example of a Program That Uses PARSE ARG

Exercises - Using the ARG Instruction
The left column shows the input values sent to a program. The right column is the ARG instruction within
the program that receives the input. What value does each variable receive?
Input

Variables Receiving Input
1. 115 -23 66 5.8

ARG first second third
2. .2 0 569 2E6

ARG first second third fourth
3. 13 13 13 13

ARG first second third fourth fifth
4. Weber Joe 91

ARG lastname firstname score
5. Baker Amanda Marie 95

PARSE ARG lastname firstname score
6. Callahan Eunice 88 62

PARSE ARG lastname firstname score .

ANSWERS

1. first = 115, second = -23, third = 66 5.8
2. first = .2, second = 0, third = 569, fourth = 2E6
3. first = 13, second = 13, third = 13, fourth = 13, fifth = null
4. lastname = WEBER, firstname = JOE, score = 91
5. lastname = Baker, firstname = Amanda, score = Marie 95
6. lastname = Callahan, firstname = Eunice, score = 88

Passing Arguments
Values passed to a program are usually called arguments. An argument can consist of one word or a string
of words. Blanks separate words within an argument from each other. The number of arguments passed
depends on how the program is called.

Using the CALL Instruction or a REXX Function Call
When you call a REXX program using either the CALL instruction or a REXX function call, you can pass up
to 20 arguments to the program. Separate each argument from the next with a comma.

Chapter 2. Writing and Running a REXX Program 21

Using the JCL EXEC Command
You can pass only one argument using PARM= on the JCL EXEC statement. However, keep in mind that
one argument can consist of many words. An argument, if present, appears as a single string. Give special
consideration to argument strings containing commas. For example, if you specify:

// EXEC REXX=myprog, PARM='1,2'

the program receives a single argument string consisting of "1,2". The program could then use a PARSE
ARG instruction as follows to break the argument string into the comma-separated values:

PARSE ARG A ',' B
SAY 'A is ' A /* Produces: 'A is 1' */
SAY 'B is ' B /* Produces: 'B is 2' */

For more information about functions and subroutines, see Chapter 6, “Writing Subroutines and
Functions,” on page 63. For more information about arguments, see “Parsing Multiple Strings as
Arguments” on page 82.

22 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 3. Using Variables and Expressions

Purpose
This chapter describes variables, expressions, and operators, and explains how to use them in REXX
programs.

Program Variables
One of the most powerful aspects of computer programming is the ability to process variable data
to achieve a result. Regardless of the complexity of a process, when data is unknown or varies, you
substitute a symbol for the data. This is much like substituting x and y in an algebraic equation.

 x = y + 29

The symbol, when its value can vary, is called a variable. A group of symbols or numbers that must be
calculated to be resolved is called an expression.

Using Variables
A variable is a character or group of characters representing a value. A variable can contain either single-
or double-byte characters or both. (Double-byte characters are valid only if OPTIONS ETMODE is the first
instruction of your program.) The following variable big represents the value one million or 1,000,000.

 big = 1000000

Variables can refer to different values at different times. If you assign a different value to big, it gets the
value of the new assignment, until it is changed again.

 big = 999999999

Variables can also represent a value that is unknown when the program is written. In the following
example, the user's name is unknown, so it is represented by the variable who.

 /* Gets name from current input stream */
 PARSE PULL who /* and puts it in variable "who" */

Variable Names
A variable name, the part that represents the value, is always on the left of the assignment statement and
the value itself is on the right. In the following example, the variable name is variable1.

 variable1 = 5
 SAY variable1

As a result of the preceding assignment statement, the language processor assigns variable1 the value
5, and the SAY produces:

 5

Variable names can consist of:

© Copyright IBM Corp. 1988, 1995 23

A–Z
uppercase alphabetic

a–z
lowercase alphabetic

0–9
numbers

@ # $ ¢ ? ! . _
special characters

X'41'–X'FE'
double-byte character set (DBCS) characters. (OPTIONS ETMODE must be the first instruction in your
program for these characters to be valid in a variable name.)

Restrictions on the variable name are:

• The first character cannot be 0 through 9 or a period (.)
• The variable name cannot exceed 250 bytes. For names containing DBCS characters, count each DBCS

character as 2 bytes, and count the shift-out (SO) and shift-in (SI) as 1 byte each.
• SO (X'0E') and SI (X'0F') must delimit DBCS characters within a DBCS name. Also note that:

– SO and SI cannot be contiguous.
– Nesting of SO / SI is not permitted.
– A DBCS name cannot contain a DBCS blank (X'4040').

• The variable name should not be RC, SIGL, or RESULT, which are REXX special variables. More about
special variables appears later in this book.

Examples of acceptable variable names are:

 ANSWER ?98B A Word3 number the_ultimate_value

Also, if OPTIONS ETMODE is the first instruction in your program, the following are valid DBCS variable
names, where < represents shift-out, > represents shift-in, X, Y, and Z represent DBCS characters, and
lowercase letters and numbers represent themselves.

 <.X.Y.Z> number_<.X.Y.Z> <.X.Y>1234<.Z>

Variable Values
The value of the variable, which is the value the variable name represents, might be categorized as
follows:

• A constant, which is a number that is expressed as:

– An integer (12)
– A decimal (12.5)
– A floating point number (1.25E2)
– A signed number (-12)
– A string constant (' 12')

• A string, which is one or more words that may or may not be within quotation marks, such as:

 This value can be a string.
 'This value is a literal string.'

24 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

• The value from another variable, such as:

 variable1 = variable2

In the preceding example, variable1 changes to the value of variable2, but variable2 remains
the same.

• An expression, which is something that needs to be calculated, such as:

 variable2 = 12 + 12 - .6 /* variable2 becomes 23.4 */

Before a variable is assigned a value, its value is the value of its own name translated to uppercase. For
example, if the variable new has not been assigned a value, then

SAY new

produces

NEW

Exercises - Identifying Valid Variable Names
Which of the following are valid REXX variable names?

1. 8eight
2. $25.00
3. MixedCase
4. nine_to_five
5. result

ANSWERS

1. Incorrect, because the first character is a number.
2. Valid
3. Valid
4. Valid
5. Valid, but it is a special variable name that you should use only to receive results from a subroutine.

Using Expressions
An expression is something that needs to be calculated and consists of numbers, variables, or strings, and
one or more operators. The operators determine the kind of calculation to do on the numbers, variables,
and strings. There are four types of operators: arithmetic, comparison, logical, and concatenation.

Arithmetic Operators
Arithmetic operators work on valid numeric constants or on variables that represent valid numeric
constants.
Types of Numeric Constants
12

A whole number has no decimal point or commas. Results of arithmetic operations with whole
numbers can contain a maximum of nine digits unless you override this default by using the NUMERIC

Chapter 3. Using Variables and Expressions 25

DIGITS instruction. For information about the NUMERIC DIGITS instruction, see the REXX/VSE
Reference. Examples of whole numbers are:

 123456789 0 91221 999

12.5
A decimal number includes a decimal point. Results of arithmetic operations with decimal numbers
are limited to a total maximum of nine digits (NUMERIC DIGITS default) before and after the decimal.
Examples of decimal numbers are:

123456.789 0.888888888

1.25E2
A floating point number in exponential notation, is said to be in scientific notation. The number
after the "E" represents the number of places the decimal point moves. Thus 1.25E2 (also written as
1.25E+2) moves the decimal point to the right two places and results in 125. When an "E" is followed
by a minus (-), the decimal point moves to the left. For example, 1.25E-2 is .0125.

You can use floating point numbers to represent very large or very small numbers. For more
information about floating point numbers, see the REXX/VSE Reference.

-12
A signed number with a minus (-) next to the number represents a negative value. A signed number
with a plus (+) next to the number represents a positive value. When a number has no sign, it is
processed as if it has a positive value.

The arithmetic operators you can use are:
Operator

Meaning
+

Add
-

Subtract
*

Multiply
/

Divide
%

Divide and return a whole number without a remainder
//

Divide and return the remainder only
**

Raise a number to a whole number power
-number

(Prefix -) Same as the subtraction 0 - number
+number

(Prefix +) Same as the addition 0 + number

Using numeric constants and arithmetic operators, you can write arithmetic expressions such as:

 7 + 2 /* result is 9 */
 7 - 2 /* result is 5 */
 7 * 2 /* result is 14 */
 7 ** 2 /* result is 49 */
 7 ** 2.5 /* result is an error */

26 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Division
Notice that three operators represent division. Each operator computes the result of a division expression
in a different way.
/

Divide and express the answer possibly as a decimal number. For example:

 7 / 2 /* result is 3.5 */
 6 / 2 /* result is 3 */

%
Divide and express the answer as a whole number. The remainder is ignored. For example:

 7 % 2 /* result is 3 */

//
Divide and express the answer as the remainder only. For example:

 7 // 2 /* result is 1 */

Order of Evaluation
When you have more than one operator in an arithmetic expression, the order of numbers and operators
can be critical. For example, in the following expression, which operation does the language processor
perform first?

 7 + 2 * (9 / 3) - 1

Proceeding from left to right, the language processor evaluates the expression as follows:

• First it evaluates expressions within parentheses.
• Then it evaluates expressions with operators of higher priority before expressions with operators of

lower priority.

Arithmetic operator priority is as follows, with the highest first:

Table 1. Arithmetic Operator Priority

- + Prefix operators

** Power (exponential)

* / % // Multiplication and division

+ - Addition and subtraction

Thus, the preceding example would be evaluated in the following order:

1. Expression in parentheses

 7 + 2 * (9 / 3) - 1
 ___/
 3

2. Multiplication

 7 + 2 * 3 - 1
 ___/
 6

Chapter 3. Using Variables and Expressions 27

3. Addition and subtraction from left to right

 7 + 6 - 1 = 12

Using Arithmetic Expressions
You can use arithmetic expressions in a program many different ways. The following example uses several
arithmetic operators to round and remove extra decimal places from a dollar and cents value.

/****************************** REXX *********************************/
/* This program computes the total price of an item including sales */
/* tax, rounded to two decimal places. The cost and percent of the */
/* tax (expressed as a decimal number) are passed to the program */
/* when you run it. */
/***/

 PARSE ARG cost percent_tax

 total = cost + (cost * percent_tax) /* Add tax to cost. */
 price = ((total * 100 + .5) % 1) / 100 /* Round and remove extra */
 /* decimal places. */
 SAY 'Your total cost is $'price'.'

Figure 10. Example Using Arithmetic Expressions

Exercises—Calculating Arithmetic Expressions
1. What line of output does the following program produce?

/****************************** REXX ******************************/
 pa = 1
 ma = 1
 kids = 3
 SAY "There are" pa + ma + kids "people in this family."

2. What is the value of:

a. 6 - 4 + 1
b. 6 - (4 + 1)
c. 6 * 4 + 2
d. 6 * (4 + 2)
e. 24 % 5 / 2

ANSWERS

1. There are 5 people in this family.
2. The values are as follows:

a. 3
b. 1
c. 26
d. 36
e. 2

Comparison Operators
Expressions that use comparison operators do not return a number value as do arithmetic expressions.
Comparison expressions return either 1, which represents true, or 0, which represents false.

Comparison operators can compare numbers or strings and perform evaluations, such as:

28 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

• Are the terms equal? (A = Z)
• Is the first term greater than the second? (A > Z)
• Is the first term less than the second? (A < Z)

For example, if A = 4 and Z = 3, then the results of the previous comparison questions are:

(A = Z) Does 4 = 3? 0 (False)
(A > Z) Is 4 > 3? 1 (True)
(A < Z) Is 4 < 3? 0 (False)

The more commonly used comparison operators are as follows:
Operator

Meaning
=

Equal
==

Strictly Equal
\ =

Not equal
\ ==

Not strictly equal
>

Greater than
<

Less than
> <

Greater than or less than (same as not equal)
> =

Greater than or equal to
\ <

Not less than
< =

Less than or equal to
\ >

Not greater than

Note: The NOT character (¬) is synonymous with the backslash (\). You can use the two characters
interchangeably according to availability and personal preference. This book uses the backslash (\)
character.

The Strictly Equal and Equal Operators
When two expressions are strictly equal, everything including the blanks and case (when the expressions
are characters) is exactly the same.

When two expressions are equal, they are resolved to be the same. The following expressions are all true.

 'WORD' = word /* returns 1 */
 'word ' \== word /* returns 1 */
 'word' == 'word' /* returns 1 */
 4e2 \== 400 /* returns 1 */
 4e2 \= 100 /* returns 1 */

Chapter 3. Using Variables and Expressions 29

Using Comparison Expressions
You often use a comparison expression in an IF…THEN…ELSE instruction. The following example uses
an IF…THEN…ELSE instruction to compare two values. For more information about this instruction, see
“IF…THEN…ELSE Instructions” on page 37.

/****************************** REXX *********************************/
/* This program compares what you paid for lunch for two */
/* days in a row and then comments on the comparison. */
/***/

PARSE PULL yesterday /* Gets yesterday's price from input stream */

PARSE PULL today /* Gets today's price */

IF today > yesterday THEN /* lunch cost increased */
 SAY "Today's lunch cost more than yesterday's."

ELSE /* lunch cost remained the same or decreased */
 SAY "Today's lunch cost the same or less than yesterday's."

Figure 11. Example Using a Comparison Expression

Exercises - Using Comparison Expressions
1. Based on the preceding example of using a comparison expression, what result does the language

processor produce from the following lunch costs?
Yesterday's Lunch

Today's Lunch

4.42

3.75
3.50

3.50
3.75

4.42
2. What is the result (0 or 1) of the following expressions?

a. "Apples" = "Oranges"
b. " Apples" = "Apples"
c. " Apples" == "Apples"
d. 100 = 1E2
e. 100 \= 1E2
f. 100 \== 1E2

ANSWERS

1. The language processor produces the following sentences:

a. Today's lunch cost the same or less than yesterday's.
b. Today's lunch cost the same or less than yesterday's.
c. Today's lunch cost more than yesterday's.

2. The expressions result in the following. Remember 0 is false and 1 is true.

a. 0
b. 1

30 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

c. 0 (The first " Apples" has a space.)
d. 1
e. 0
f. 1

Logical (Boolean) Operators
Logical expressions, like comparison expressions, return 1 (true) or 0 (false) when processed. Logical
operators combine two comparisons and return 1 or 0 depending on the results of the comparisons.

The logical operators are:
Operator

Meaning
&

AND

Returns 1 if both comparisons are true. For example:

 (4 > 2) & (a = a) /* true, so result is 1 */

 (2 > 4) & (a = a) /* false, so result is 0 */

|
Inclusive OR

Returns 1 if at least one comparison is true. For example:

 (4 > 2) | (5 = 3) /* at least one is true, so result is 1 */

 (2 > 4) | (5 = 3) /* neither one is true, so result is 0 */

&&
Exclusive OR

Returns 1 if only one comparison (but not both) is true. For example:

 (4 > 2) && (5 = 3) /* only one is true, so result is 1 */

 (4 > 2) && (5 = 5) /* both are true, so result is 0 */

 (2 > 4) && (5 = 3) /* neither one is true, so result is 0 */

Prefix \
Logical NOT

Negates—returning the opposite response. For example:

 \ 0 /* opposite of 0, so result is 1 */

 \ (4 > 2) /* opposite of true, so result is 0 */

Using Logical Expressions
You can use logical expressions in complex conditional instructions and as checkpoints to screen
unwanted conditions. When you have a series of logical expressions, for clarification, use one or more
sets of parentheses to enclose each expression.

 IF ((A < B) | (J < D)) & ((M = Q) | (M = D)) THEN

Chapter 3. Using Variables and Expressions 31

The following example uses logical operators to make a decision.

/****************************** REXX ********************************/
/* This program receives arguments for a complex logical expression */
/* that determines whether a person should go skiing. The first */
/* argument is a season and the other two can be 'yes' or 'no'. */
/**/

 PARSE ARG season snowing broken_leg

 IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO')
 THEN SAY 'Go skiing.'
 ELSE
 SAY 'Stay home.'

Figure 12. Example Using Logical Expressions

When arguments passed to this example are SPRING YES NO, the IF clause translates as follows:

 IF ((season = 'WINTER') | (snowing ='YES')) & (broken_leg ='NO') THEN
 ______________/ ____________/ _____________/
 false true true
 ___________________/ /
 true /
 _____________________________/
 true

As a result, when you run the program, it produces the result:

 Go skiing.

Exercises - Using Logical Expressions
A student applying to colleges has decided to evaluate them according to the following specifications:

 IF (inexpensive | scholarship) & (reputable | nearby) THEN
 SAY "I'll consider it."
 ELSE
 SAY "Forget it!"

A college is inexpensive, did not offer a scholarship, is reputable, but is more than 1000 miles away.
Should the student apply?

ANSWER

Yes. The conditional instruction works out as follows:

 IF (inexpensive | scholarship) & (reputable | nearby) THEN ...
 __________/ ___________/ _________/ ______/
 true false true false
 ___________/ _________/
 true true
 _________________________/
 true

Concatenation Operators
Concatenation operators combine two terms into one. The terms can be strings, variables, expressions, or
constants. Concatenation can be significant in formatting output.

The operators that indicate how to join two terms are as follows:
Operator

Meaning

32 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

blank
Concatenates terms and places one blank between them. If more than one blank separates terms,
this becomes a single blank. For example:

 SAY true blue /* result is TRUE BLUE */

||
Concatenates terms with no blanks between them. For example:

 (8 / 2)||(3 * 3) /* result is 49 */

abuttal
Concatenates terms with no blanks between them. For example:

 per_cent'%' /* if per_cent = 50, result
 is 50% */

You can use abuttal only with terms that are of different types, such as a literal string and a symbol, or
when only a comment separates two terms.

Using Concatenation Operators
One way to format output is to use variables and concatenation operators as in the following example.

/****************************** REXX *********************************/
/* This program formats data into columns for output. */
/***/
 sport = 'base'
 equipment = 'ball'
 column = ' '
 cost = 5

 SAY sport||equipment column '$' cost

Figure 13. Example Using Concatenation Operators

The result of this example is:

 baseball $ 5

A more sophisticated way to format information is with parsing and templates. Information about parsing
appears in “Parsing Data” on page 77.

Priority of Operators
When more than one type of operator appears in an expression, what operation does the language
processor do first?

 IF (A > 7**B) & (B < 3)

Like the priority of operators for the arithmetic operators, there is an overall priority that includes all
operators. The priority of operators is as follows with the highest first.

Table 2. Overall Operator Priority

\ or ¬ - + Prefix operators

** Power (exponential)

* / % // Multiply and divide

Chapter 3. Using Variables and Expressions 33

Table 2. Overall Operator Priority (continued)

+ - Add and subtract

blank || abuttal Concatenation operators

== = >< and so on Comparison operators

& Logical AND

| Inclusive OR and exclusive OR

Thus, given the following values

• A = 8
• B = 2
• C = 10

the language processor would evaluate the previous example

 IF (A > 7**B) & (B < 3)

as follows:

1. Evaluate what is inside the first set of parentheses.

a. Evaluate A to 8.
b. Evaluate B to 2.
c. Evaluate 7**2.
d. Evaluate 8 > 49 is false (0).

2. Evaluate what is inside the next set of parentheses.

a. Evaluate B to 2.
b. Evaluate 2 < 3 is true (1).

3. Evaluate 0 & 1 is 0

Exercises - Priority of Operators
1. What are the answers to the following examples?

a. 22 + (12 * 1)
b. -6 / -2 > (45 % 7 / 2) - 1
c. 10 * 2 - (5 + 1) // 5 * 2 + 15 - 1

2. In the example of the student and the college from the previous exercise (see Example), if the
parentheses were removed from the student's formula, what would be the outcome for the college?

 IF inexpensive | scholarship & reputable | nearby THEN
 SAY "I'll consider it."
 ELSE
 SAY "Forget it!"

Remember the college is inexpensive, did not offer a scholarship, is reputable, but is 1000 miles away.

ANSWERS

1. The results are as follows:

a. 34 (22 + 12 = 34)
b. 1 (true) (3 > 3 - 1)
c. 32 (20 - 2 + 15 - 1)

34 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

2. I'll consider it.

The & operator has priority, as follows, but the outcome is the same as the previous version with the
parentheses.

 IF inexpensive | scholarship & reputable | nearby THEN
 _________/ _________/ _______/ ____/
 true false true false
 \ ___________/ /
 \ false /
 _________________/ /
 true /
 ____________________/
 true

Tracing Expressions with the TRACE Instruction
You can use the TRACE instruction to show how the language processor evaluates each operation of an
expression as it reads it, or to show the final result of an expression. These two types of tracing are useful
for debugging programs.

Tracing Operations
To trace operations within an expression, use the TRACE I (TRACE Intermediates) form of the TRACE
instruction. The language processor breaks down all expressions that follow the instruction and analyzes
them as:

 >V> - Variable value - The data traced is the contents
 of a variable.
 >L> - Literal value - The data traced is a literal
 (string, uninitialized variable, or constant).
 >O> - Operation result - The data traced is the result
 of an operation on two terms.

The following example uses the TRACE I instruction. (The line numbers are not part of the program. They
facilitate the discussion of the example that follows it.)

 1 /************************* REXX ***************************/
 2 /* This program uses the TRACE instruction to show how */
 3 /* an expression is evaluated, operation by operation. */
 4 /**/
 5 a = 9
 6 y = 2
 7 TRACE I
 8
 9 IF a + 1 > 5 * y THEN
10 SAY 'a is big enough.'
11 ELSE NOP /* No operation on the ELSE path */

Figure 14. TRACE Shows How REXX Evaluates an Expression

When you run the example, the SAY instruction produces:

 9 *-* IF a + 1 > 5 * y
 >V> "9"
 >L> "1"
 >O> "10"
 >L> "5"
 >V> "2"
 >O> "10"
 >O> "0"

The 9 is the line number. The *-* indicates that what follows is the data from the program,
IF a + 1 < 5 * y. The remaining lines break down all the expressions.

Chapter 3. Using Variables and Expressions 35

Tracing Results
To trace only the final result of an expression, use the TRACE R (TRACE Results) form of the TRACE
instruction. The language processor analyzes all expressions that follow the instruction as follows:

 >>> Final result of an expression

If you changed the TRACE instruction operand in the previous example from an I to an R, you would see
the following results.

 9 *-* IF a + 1 > 5 * y
 >>> "0"

In addition to tracing operations and results, the TRACE instruction offers other types of tracing. The
REXX/VSE Reference describes these.

Exercises - Using the TRACE Instruction
Write a program with a complex expression, such as:

 IF (a > z) | (c < 2 * d) THEN

Define a, z, c, and d in the program and use the TRACE I instruction.

ANSWER

/****************************** REXX ********************************/
/* This program uses the TRACE instruction to show how the language */
/* processor evaluates an expression, operation by operation. */
/**/
 a = 1
 z = 2
 c = 3
 d = 4

 TRACE I

 IF (a > z) | (c < 2 * d) THEN
 SAY 'At least one expression was true.'
 ELSE
 SAY 'Neither expression was true.'

Figure 15. Possible Solution

When you run this program, it produces:

 12 *-* IF (a > z) | (c < 2 * d)
 >V> "1"
 >V> "2"
 >O> "0"
 >V> "3"
 >L> "2"
 >V> "4"
 >O> "8"
 >O> "1"
 >O> "1"
 - THEN
 13 *-* SAY 'At least one expression was true.'
 >L> "At least one expression was true."
 At least one expression was true.

36 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Chapter 4. Controlling the Flow within a Program

Purpose
This chapter introduces instructions that alter the sequential execution of a program and demonstrates
how to use those instructions.

Conditional, Looping, and Interrupt Instructions
Generally, when a program runs, one instruction after another executes, starting with the first and ending
with the last. The language processor, unless told otherwise, executes instructions sequentially.

You can change the order of execution within a program by using REXX instructions that cause the
language processor to skip some instructions, repeat others, or transfer control to another part of the
program. These REXX instructions can be classified as follows:

• Conditional instructions set up at least one condition in the form of an expression. If the condition
is true, the language processor selects the path following that condition. Otherwise the language
processor selects another path. The REXX conditional instructions are:

– IF expression THEN…ELSE
– SELECT WHEN expression…OTHERWISE…END

• Looping instructions tell the language processor to repeat a set of instructions. A loop can repeat a
specified number of times or it can use a condition to control repeating. REXX looping instructions are:

– DO repetitor…END
– DO WHILE expression…END
– DO UNTIL expression…END

• Interrupt instructions tell the language processor to leave the program entirely or leave one part of the
program and go to another part, either permanently or temporarily. The REXX interrupt instructions are:

– EXIT
– SIGNAL label
– CALL label…RETURN

Using Conditional Instructions
There are two types of conditional instructions:

• IF…THEN…ELSE can direct the execution of a program to one of two choices.
• SELECT WHEN…OTHERWISE…END can direct the execution to one of many choices.

IF…THEN…ELSE Instructions
The examples of IF…THEN…ELSE instructions in previous chapters demonstrate the two-choice selection.
In a flow chart, this appears as follows:

© Copyright IBM Corp. 1988, 1995 37

As a REXX instruction, the flowchart example looks like:

 IF expression THEN instruction
 ELSE instruction

You can also arrange the clauses in one of the following ways to enhance readability:

 IF expression THEN
 instruction
 ELSE
 instruction

or

 IF expression
 THEN
 instruction
 ELSE
 instruction

When you put the entire instruction on one line, you must use a semicolon before the ELSE to separate the
THEN clause from the ELSE clause.

 IF expression THEN instruction; ELSE instruction

Generally, at least one instruction should follow the THEN and ELSE clauses. When either clause has no
instructions, it is good programming practice to include NOP (no operation) next to the clause.

 IF expression THEN
 instruction
 ELSE NOP

If you have more than one instruction for a condition, begin the set of instructions with a DO and end them
with an END.

 IF weather = rainy THEN
 SAY 'Find a good book.'
 ELSE
 DO
 PULL playgolf /* Gets data from input stream */
 If playgolf='YES' THEN SAY 'Fore!'
 END

38 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Without the enclosing DO and END, the language processor assumes only one instruction for the ELSE
clause.

Nested IF…THEN…ELSE Instructions
Sometimes it is necessary to have one or more IF…THEN…ELSE instructions within other IF…THEN…ELSE
instructions. Having one type of instruction within another is called nesting. With nested IF instructions, it
is important to match each IF with an ELSE and each DO with an END.

 IF weather = fine THEN
 DO
 SAY 'What a lovely day!'
 IF tenniscourt = free THEN
 SAY 'Let's play tennis!'
 ELSE NOP
 END
 ELSE
 SAY 'We should take our raincoats!'

Not matching nested IFs to ELSEs and DOs to ENDs can have some surprising results. If you eliminate the
DOs and ENDs and the ELSE NOP, as in the following example, what is the outcome?

/******************************** REXX *******************************/
/* This program demonstrates what can happen when you do not include */
/* DOs, ENDs, and ELSEs in nested IF...THEN...ELSE instructions. */
/***/
 weather = 'fine'
 tenniscourt = 'occupied'

 IF weather = 'fine' THEN
 SAY 'What a lovely day!'
 IF tenniscourt = 'free' THEN
 SAY 'Let's play tennis!'
 ELSE
 SAY 'We should take our raincoats!'

Figure 16. Example of Missing Instructions

Looking at the program you might assume the ELSE belongs to the first IF. However, the language
processor associates an ELSE with the nearest unpaired IF. The outcome is as follows:

 What a lovely day!
 We should take our raincoats!

Exercise - Using the IF…THEN…ELSE Instruction
Write the REXX instructions for the following flowchart:

Chapter 4. Controlling the Flow within a Program 39

ANSWER

 IF a = 0 THEN
 IF c = 2 THEN
 z = 1
 ELSE NOP
 ELSE
 IF z = 2 THEN
 IF c = 3 THEN
 a = 1
 ELSE
 a = 3
 ELSE NOP

SELECT WHEN…OTHERWISE…END Instruction
To select one of any number of choices, use the SELECT WHEN…OTHERWISE…END instruction. In a
flowchart it appears as follows:

40 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

As a REXX instruction, the flowchart example looks like:

 SELECT
 WHEN expression THEN instruction
 WHEN expression THEN instruction
 WHEN expression THEN instruction
 :
 :
 OTHERWISE
 instruction(s)
 END

The language processor scans the WHEN clauses starting at the beginning until it finds a true expression.
After it finds a true expression, it ignores all other possibilities, even though they might also be true. If no
WHEN expressions are true, it processes the instructions following the OTHERWISE clause.

As with IF…THEN…ELSE, when you have more than one instruction for a possible path, begin the set
of instructions with a DO and end them with an END. However, if more than one instruction follows the
OTHERWISE keyword, DO and END are not necessary.

Chapter 4. Controlling the Flow within a Program 41

/******************************** REXX *******************************/
/* This program receives input with a person's age and sex. In */
/* reply, it produces a person's status as follows: */
/* BABIES - under 5 */
/* GIRLS - female 5 to 12 */
/* BOYS - male 5 to 12 */
/* TEENAGERS - 13 through 19 */
/* WOMEN - female 20 and up */
/* MEN - male 20 and up */
/***/
 PARSE ARG age sex .

 SELECT
 WHEN age < 5 THEN /* person younger than 5 */
 status = 'BABY'
 WHEN age < 13 THEN /* person between 5 and 12 */
 DO
 IF sex = 'M' THEN /* boy between 5 and 12 */
 status = 'BOY'
 ELSE /* girl between 5 and 12 */
 status = 'GIRL'
 END
 WHEN age < 20 THEN /* person between 13 and 19 */
 status = 'TEENAGER'
 OTHERWISE
 IF sex = 'M' THEN /* man 20 or older */
 status = 'MAN'
 ELSE /* woman 20 or older */
 status = 'WOMAN'
 END

 SAY 'This person should be counted as a' status'.'

Figure 17. Example Using SELECT WHEN…OTHERWISE…END

Each SELECT must end with an END. Indenting each WHEN makes a program easier to read.

Exercises - Using SELECT WHEN…OTHERWISE…END
"Thirty days hath September, April, June, and November; all the rest have thirty-one, save February
alone ..."

Write a program that uses the input of a number from 1 to 12, representing the month, and produces the
number of days in that month. Assume the user specifies the month number as an argument when calling
the program. (Include in the program an ARG instruction to assign the month number into the variable
month). Then have the program produce the number of days. For month 2, this can be 28 or 29.

ANSWER

42 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/******************************** REXX *******************************/
/* This program uses the input of a whole number from 1 to 12 that */
/* represents a month. It produces the number of days in that */
/* month. */
/***/

 ARG month

 SELECT
 WHEN month = 9 THEN
 days = 30
 WHEN month = 4 THEN
 days = 30
 WHEN month = 6 THEN
 days = 30
 WHEN month = 11 THEN
 days = 30
 WHEN month = 2 THEN
 days = '28 or 29'
 OTHERWISE
 days = 31
 END

 SAY 'There are' days 'days in Month' month'.'

Figure 18. Possible Solution

Using Looping Instructions
There are two types of looping instructions, repetitive loops and conditional loops. Repetitive loops let
you repeat instructions a certain number of times. Conditional loops use a condition to control repeating.
All loops, regardless of the type, begin with the DO keyword and end with the END keyword.

Repetitive Loops
The simplest loop tells the language processor to repeat a group of instructions a specific number of
times. It uses a constant after the keyword DO.

 DO 5
 SAY 'Hello!'
 END

When you run this example, it produces five lines of Hello!:

 Hello!
 Hello!
 Hello!
 Hello!
 Hello!

You can also use a variable in place of a constant, as in the following example, which gives you the same
results.

 number = 5
 DO number
 SAY 'Hello!'
 END

A variable that controls the number of times a loop repeats is called a control variable. Unless you
specify otherwise, the control variable increases by 1 each time the loop repeats.

 DO number = 1 TO 5
 SAY 'Loop' number
 SAY 'Hello!'

Chapter 4. Controlling the Flow within a Program 43

 END
 SAY 'Dropped out of the loop when number reached' number

This example results in five lines of Hello! preceded by the number of the loop. The number increases at
the bottom of the loop and is tested at the top.

 Loop 1
 Hello!
 Loop 2
 Hello!
 Loop 3
 Hello!
 Loop 4
 Hello!
 Loop 5
 Hello!
 Dropped out of the loop when number reached 6

You can change the increment of the control variable with the keyword BY as follows:

 DO number = 1 TO 10 BY 2
 SAY 'Loop' number
 SAY 'Hello!'
 END
 SAY 'Dropped out of the loop when number reached' number

This example has results similar to the previous example except the loops are numbered in increments of
two.

 Loop 1
 Hello!
 Loop 3
 Hello!
 Loop 5
 Hello!
 Loop 7
 Hello!
 Loop 9
 Hello!
 Dropped out of the loop when number reached 11

Infinite Loops
What happens when the control variable of a loop cannot attain the last number? For example, in the
following program segment, count does not increase beyond 1.

 DO count = 1 to 10
 SAY 'Number' count
 count = count - 1
 END

The result is called an infinite loop because count alternates between 1 and 0, producing an endless
number of lines saying Number 1.

If your program is in an infinite loop, contact the operator to cancel it.

DO FOREVER Loops
Sometimes you might want to write an infinite loop purposely; for instance, in a program that reads
records from a file until it reaches the end of the file. You can use the EXIT instruction to end an infinite
loop when a condition is met, as in the following example. More about the EXIT instruction appears in
“EXIT Instruction” on page 51.

44 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/******************************* REXX ********************************/
/* This program processes strings until the value of a string is */
/* a null string. */
/***/
 DO FOREVER
 PULL string /* Gets string from input stream */
 IF string = '' THEN
 PULL file_name
 IF file_name = '' THEN
 EXIT
 ELSE
 DO
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 END
 END

Figure 19. Example Using a DO FOREVER Loop

This example sends strings to a user-written function for processing and then issues a message that the
processing completed successfully or failed. When the input string is a blank, the loop ends and so does
the program. You can also end the loop without ending the program by using the LEAVE instruction. The
following topic describes this.

LEAVE Instruction
The LEAVE instruction causes an immediate exit from a repetitive loop. Control goes to the instruction
following the END keyword of the loop. An example of using the LEAVE instruction follows:

/******************************** REXX *******************************/
/* This program uses the LEAVE instruction to exit from a DO */
/* FOREVER loop. */
/***/
 DO FOREVER
 PULL string /* Gets string from input stream */
 IF string = 'QUIT' then
 LEAVE
 ELSE
 DO
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 END
 END
 SAY 'Program run complete.'

Figure 20. Example Using the LEAVE Instruction

ITERATE Instruction
The ITERATE instruction stops execution from within the loop and passes control to the DO instruction at
the top of the loop. Depending on the type of DO instruction, the language processor increases and tests a
control variable or tests a condition to determine whether to repeat the loop. Like LEAVE, ITERATE is used
within the loop.

 DO count = 1 TO 10
 IF count = 8
 THEN
 ITERATE
 ELSE
 SAY 'Number' count
 END

This example results in a list of numbers from 1 to 10 with the exception of number 8.

Chapter 4. Controlling the Flow within a Program 45

 Number 1
 Number 2
 Number 3
 Number 4
 Number 5
 Number 6
 Number 7
 Number 9
 Number 10

Exercises - Using Loops
1. What are the results of the following loops?

a.
 DO digit = 1 TO 3
 SAY digit
 END
 SAY 'Digit is now' digit

b.
 DO count = 10 BY -2 TO 6
 SAY count
 END
 SAY 'Count is now' count

c.
 DO index = 10 TO 8
 SAY 'Hup! Hup! Hup!'
 END
 SAY 'Index is now' index

2. Sometimes an infinite loop can occur when input to end the loop does not match what is
expected. For instance, in the example of using the LEAVE Instruction on page “#unique_130/
unique_130_Connect_42_leave” on page 45, what happens when the input is Quit and a PARSE
PULL instruction replaces the PULL instruction?

 PARSE PULL file_name

ANSWERS

1. The results of the repetitive loops are as follows:

a. 1
 2
 3
 Digit is now 4

b. 10
 8
 6
 Count is now 4

c. Index is now 10
2. The program would be unable to leave the loop because Quit is not equal to QUIT. In this case,

omitting the PARSE keyword is preferred because regardless of whether the input is quit, QUIT, or
Quit, the language processor translates the input to uppercase before comparing it to QUIT.

Conditional Loops
There are two types of conditional loops, DO WHILE and DO UNTIL. One or more expressions control both
types of loops. However, DO WHILE loops test the expression before the loop executes the first time and
repeat only when the expression is true. DO UNTIL loops test the expression after the loop executes at
least once and repeat only when the expression is false.

46 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

DO WHILE Loops
DO WHILE loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:

 DO WHILE expression /* expression must be true */
 instruction(s)
 END

Use a DO WHILE loop when you want to execute the loop while a condition is true. DO WHILE tests the
condition at the top of the loop. If the condition is initially false, the language processor never executes
the loop.

You can use a DO WHILE loop instead of the DO FOREVER loop in the example of using the LEAVE
instruction “LEAVE Instruction” on page 45. However, you need to initialize the loop with a first case so
the condition can be tested before you get into the loop. Notice the first case initialization in the first PULL
of the following example.

/******************************** REXX *******************************/
/* This program uses a DO WHILE loop to send a string to a */
/* user-written function for processing. */
/***/
 PULL string /* Gets string from input stream */
 DO WHILE string \= 'QUIT'
 result = process(string) /* Calls a user-written function */
 /* to do processing on string. */
 IF result = 0 THEN SAY "Processing complete for string:" string
 ELSE SAY "Processing failed for string:" string
 PULL string
 END
 SAY 'Program run complete.'

Figure 21. Example Using DO WHILE

Exercise - Using a DO WHILE Loop
Write a program with a DO WHILE loop that uses as input a list of responses about whether passengers
on a commuter airline want a window seat. The flight has 8 passengers and 4 window seats. Discontinue
the loop when all the window seats are taken. After the loop ends, produce the number of window seats
taken and the number of responses processed.

ANSWER

Chapter 4. Controlling the Flow within a Program 47

/******************************** REXX *******************************/
/* This program uses a DO WHILE loop to keep track of window seats */
/* in an 8-seat commuter airline. */
/***/

 window_seats = 0 /* Initialize window seats to 0 */
 passenger = 0 /* Initialize passengers to 0 */

 DO WHILE (passenger < 8) & (window_seats \= 4)

 /**/
 /* Continue while the program has not yet read the responses of */
 /* all 8 passengers and while all the window seats are not taken. */
 /**/

 PULL window /* Gets "Y" or "N" from input stream */
 passenger = passenger + 1 /* Increase number of passengers by 1 */
 IF window = 'Y' THEN
 window_seats = window_seats + 1 /* Increase window seats by 1 */
 ELSE NOP
 END

 SAY window_seats 'window seats were assigned.'
 SAY passenger 'passengers were questioned.'

Figure 22. Possible Solution

DO UNTIL Loops
DO UNTIL loops in a flowchart appear as follows:

As REXX instructions, the flowchart example looks like:

 DO UNTIL expression /* expression must be false */
 instruction(s)
 END

Use DO UNTIL loops when a condition is not true and you want to execute the loop until the condition is
true. The DO UNTIL loop tests the condition at the end of the loop and repeats only when the condition is
false. Otherwise, the loop executes once and ends. For example:

48 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/******************************** REXX ******************************/
/* This program uses a DO UNTIL loop to ask for a password. If the */
/* password is incorrect three times, the loop ends. */
/**/
 password = 'abracadabra'
 time = 0
 DO UNTIL (answer = password) | (time = 3)
 PULL answer /* Gets ANSWER from input stream */
 time = time + 1
 END

Figure 23. Example Using DO UNTIL

Exercise - Using a DO UNTIL Loop
Change the program in the previous exercise “Exercise - Using a DO WHILE Loop” on page 47 from a
DO WHILE to a DO UNTIL loop and achieve the same results. Remember that DO WHILE loops check for
true expressions and DO UNTIL loops check for false expressions, which means their logical operators are
often reversed.

ANSWER

/******************************** REXX *******************************/
/* This program uses a DO UNTIL loop to keep track of window seats */
/* in an 8-seat commuter airline. */
/***/

 window_seats = 0 /* Initialize window seats to 0 */
 passenger = 0 /* Initialize passengers to 0 */

 DO UNTIL (passenger >= 8) | (window_seats = 4)

 /**/
 /* Continue while the program has not yet read the responses of */
 /* all 8 passengers and while all the window seats are not taken. */
 /**/

 PULL window /* Gets "Y" or "N" from input stream */
 passenger = passenger + 1 /* Increase number of passengers by 1 */
 IF window = 'Y' THEN
 window_seats = window_seats + 1 /* Increase window seats by 1 */
 ELSE NOP
 END
 SAY window_seats 'window seats were assigned.'
 SAY passenger 'passengers were questioned.'

Figure 24. Possible Solution

Combining Types of Loops
You can combine repetitive and conditional loops to create a compound loop. The following loop is set to
repeat 10 times while the quantity is less than 50, at which point it stops.

 quantity = 20
 DO number = 1 TO 10 WHILE quantity < 50
 quantity = quantity + number
 SAY 'Quantity = 'quantity ' (Loop 'number')'
 END

The result of this example is as follows:

 Quantity = 21 (Loop 1)
 Quantity = 23 (Loop 2)
 Quantity = 26 (Loop 3)
 Quantity = 30 (Loop 4)
 Quantity = 35 (Loop 5)
 Quantity = 41 (Loop 6)

Chapter 4. Controlling the Flow within a Program 49

 Quantity = 48 (Loop 7)
 Quantity = 56 (Loop 8)

You can substitute a DO UNTIL loop, change the comparison operator from < to >, and get the same
results.

 quantity = 20
 DO number = 1 TO 10 UNTIL quantity > 50
 quantity = quantity + number
 SAY 'Quantity = 'quantity ' (Loop 'number')'
 END

Nested DO Loops
Like nested IF…THEN…ELSE instructions, DO loops can contain other DO loops. A simple example follows:

 DO outer = 1 TO 2
 DO inner = 1 TO 2
 SAY 'HIP'
 END
 SAY 'HURRAH'
 END

The output from this example is:

 HIP
 HIP
 HURRAH
 HIP
 HIP
 HURRAH

If you need to leave a loop when a certain condition arises, use the LEAVE instruction followed by the
name of the control variable of the loop. If the LEAVE instruction is for the inner loop, processing leaves
the inner loop and goes to the outer loop. If the LEAVE instruction is for the outer loop, processing leaves
both loops.

To leave the inner loop in the preceding example, add an IF…THEN…ELSE instruction that includes a
LEAVE instruction after the IF instruction.

 DO outer = 1 TO 2
 DO inner = 1 TO 2
 IF inner > 1 THEN
 LEAVE inner
 ELSE
 SAY 'HIP'
 END
 SAY 'HURRAH'
 END

The result is as follows:

 HIP
 HURRAH
 HIP
 HURRAH

Exercises - Combining Loops
1. What happens when the following program runs?

 DO outer = 1 TO 3
 SAY /* Produces a blank line */
 DO inner = 1 TO 3

50 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 SAY 'Outer' outer 'Inner' inner
 END
 END

2. Now what happens when the LEAVE instruction is added?

 DO outer = 1 TO 3
 SAY /* Produces a blank line */
 DO inner = 1 TO 3
 IF inner = 2 THEN
 LEAVE inner
 ELSE
 SAY 'Outer' outer 'Inner' inner
 END
 END

ANSWERS

1. When this example runs, it produces the following:

 Outer 1 Inner 1
 Outer 1 Inner 2
 Outer 1 Inner 3

 Outer 2 Inner 1
 Outer 2 Inner 2
 Outer 2 Inner 3

 Outer 3 Inner 1
 Outer 3 Inner 2
 Outer 3 Inner 3

2. The result is one line of output for each of the inner loops.

 Outer 1 Inner 1

 Outer 2 Inner 1

 Outer 3 Inner 1

Using Interrupt Instructions
Instructions that interrupt the flow of a program can cause the program to:

• End (EXIT)
• Skip to another part of the program marked by a label (SIGNAL)
• Go temporarily to a subroutine either within the program or outside the program (CALL or RETURN).

EXIT Instruction
The EXIT instruction causes a REXX program to unconditionally end and return to where the program
was called. If another program called the REXX program, EXIT returns to that calling program. More
about calling external routines appears later in this chapter and in Chapter 6, “Writing Subroutines and
Functions,” on page 63.

Besides ending a program, EXIT can also return a value to the caller of the program. If the program was
called as a subroutine from another REXX program, the value is received in the REXX special variable
RESULT. If the program was called as a function, the value is received in the original expression at the
point where the function was called. Otherwise, the value is received in the REXX special variable RC. The
value can represent a return code and can be in the form of a constant or an expression that is computed.

Chapter 4. Controlling the Flow within a Program 51

/******************************** REXX ****************************/
/* This program uses the EXIT instruction to end the program and */
/* return a value indicating whether a job applicant gets the */
/* job. A value of 0 means the applicant does not qualify for */
/* the job, but a value of 1 means the applicant gets the job. */
/* The value is placed in the REXX special variable RESULT. */
/**/
PULL months_experience /* Gets number from input stream */
PULL references /* Gets "Y" or "N" from input stream */
PULL start_tomorrow /* Gets "Y" or "N" from input stream */

IF (months_experience > 24) & (references = 'Y') & (start_tomorrow= 'Y')
THEN job = 1 /* person gets the job */
ELSE job = 0 /* person does not get the job */

EXIT job

Figure 25. Example Using the EXIT Instruction

CALL and RETURN Instructions
The CALL instruction interrupts the flow of a program by passing control to an internal or external
subroutine. An internal subroutine is part of the calling program. An external subroutine is another
program. The RETURN instruction returns control from a subroutine back to the calling program and
optionally returns a value.

When calling an internal subroutine, CALL passes control to a label specified after the CALL keyword.
When the subroutine ends with the RETURN instruction, the instructions following CALL are processed.

When calling an external subroutine, CALL passes control to the program name that is specified after the
CALL keyword. When the external subroutine completes, you can use the RETURN instruction to return to
where you left off in the calling program.

For more information about calling subroutines, see Chapter 6, “Writing Subroutines and Functions,” on
page 63.

52 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

SIGNAL Instruction
The SIGNAL instruction, like CALL, interrupts the usual flow of a program and causes control to pass to
a specified label. The label to which control passes can be before or after the SIGNAL instruction. Unlike
CALL, SIGNAL does not return to a specific instruction to resume execution. When you use SIGNAL from
within a loop, the loop automatically ends. When you use SIGNAL from an internal routine, the internal
routine does not return to its caller.

In the following example, if the expression is true, then the language processor goes to the label
Emergency: and skips all instructions in between.

SIGNAL is useful for testing programs or to provide an emergency course of action. It should not be used
as a convenient way to move from one place in a program to another. SIGNAL does not provide a way to
return as does the CALL instruction described in the previous topic.

For more information about the SIGNAL instruction, see “SIGL” on page 97, and the REXX/VSE
Reference .

Chapter 4. Controlling the Flow within a Program 53

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

54 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 5. Using Functions

Purpose
This chapter defines what a function is and describes how to use the built-in functions.

What is a Function?
A function is a sequence of instructions that can receive data, process that data, and return a value. In
REXX, there are several kinds of functions:

• Built-in functions are built into the language processor. More about built-in functions appears later in
this chapter.

• User-written functions are those an individual user writes or an installation supplies. These can
be internal or external. An internal function is part of the current program that starts at a label.
An external function is a self-contained program or program outside of the calling program. More
information about user-written functions appears in “Writing Subroutines and Functions” on page 64.

• Function packages are groups of functions and subroutines that an individual user writes or an
installation supplies. They are link-edited into phases and categorized as user, local, and system.
REXX/VSE external functions are provided in a system function package. More information about
REXX/VSE external functions appears in “REXX/VSE External Functions” on page 101.

Regardless of the kind of function, all functions return a value to the program that issued the function call.
To call a function, type the function name, immediately followed by parentheses enclosing arguments to
the function, if any. There can be no space between the function name and the left parenthesis.

 function(arguments)

A function call can contain up to 20 arguments separated by commas. Arguments can be:

• Constant

function(55)

• Symbol

function(symbol_name)

• Option that the function recognizes

function(option)

• Literal string

function('With a literal string')

• Unspecified or omitted

function()

• Another function

function(function(arguments))

© Copyright IBM Corp. 1988, 1995 55

• Combination of argument types

function('With literal string', 55, option)
function('With literal string',, option) /* Second argument omitted */

All functions must return values. When the function returns a value, the value replaces the function call.
In the following example, the language processor adds the value the function returns to 7 and produces
the sum.

 SAY 7 + function(arguments)

A function call generally appears in an expression. Therefore, a function call, like an expression, does not
usually appear in an instruction by itself.

Example of a Function
Calculations that functions represent often require many instructions. For instance, the simple calculation
for finding the highest number in a group of three numbers, might be written as follows:

/***************************** REXX **********************************/
/* This program receives three numbers as arguments and analyzes */
/* which number is the greatest. */
/***/

 PARSE ARG number1, number2, number3 .

 IF number1 > number2 THEN
 IF number1 > number3 THEN
 greatest = number1
 ELSE
 greatest = number3
 ELSE
 IF number2 > number3 THEN
 greatest = number2
 ELSE
 greatest = number3

 RETURN greatest

Figure 26. Finding a Maximum Number

Rather than writing multiple instructions every time you want to find the maximum of a group of three
numbers, you can use a built-in function that does the calculation for you and returns the maximum
number. The function is called MAX, and you can use it as follows:

 MAX(number1,number2,number3,....)

To find the maximum of 45, -2, number, and 199 and put the maximum into the symbol biggest, write
the following instruction:

 biggest = MAX(45,-2,number,199)

Built-In Functions
More than 50 functions are built into the language processor. The built-in functions fall into the following
categories:

• Arithmetic functions

These functions evaluate numbers from the argument and return a particular value.
• Comparison functions

56 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

These functions compare numbers or strings or both and return a value.
• Conversion functions

These functions convert one type of data representation to another type of data representation.
• Formatting functions

These functions manipulate the characters and spacing in strings supplied in the argument.
• String manipulating functions

These functions analyze a string supplied in the argument (or a variable representing a string) and
return a particular value.

• Miscellaneous functions

These functions do not clearly fit into any of the other categories.

The following tables briefly describe the functions in each category. For a complete description of these
functions, see the REXX/VSE Reference.

Arithmetic Functions
Function Description

ABS Returns the absolute value of the input number.

DIGITS Returns the current setting of NUMERIC DIGITS.

FORM Returns the current setting of NUMERIC FORM.

FUZZ Returns the current setting of NUMERIC FUZZ.

MAX Returns the largest number from the list specified, formatted according to the current
NUMERIC settings.

MIN Returns the smallest number from the list specified, formatted according to the current
NUMERIC settings.

RANDOM Returns a quasi-random, non-negative whole number in the range specified.

SIGN Returns a number that indicates the sign of the input number.

TRUNC Returns the integer part of the input number and optionally a specified number of decimal
places.

Comparison Functions
Function Description

COMPARE Returns 0 if the two input strings are identical. Otherwise, returns the position of the first
character that does not match.

DATATYPE Returns a string indicating the input string is a particular data type, such as a number or
character.

SYMBOL Returns VAR, LIT, or BAD to indicate the state of the symbol (variable, literal, or bad).

Conversion Functions
Function Description

B2X Returns a string, in character format, that represents the input binary string converted to
hexadecimal. (Binary to hexadecimal)

Chapter 5. Using Functions 57

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Function Description

C2D Returns the decimal value of the binary representation of the input string. (Character to
Decimal)

C2X Returns a string, in character format, that represents the input string converted to
hexadecimal. (Character to Hexadecimal)

D2C Returns a string, in character format, that represents the input decimal number converted
to binary. (Decimal to Character)

D2X Returns a string, in character format, that represents the input decimal number converted
to hexadecimal. (Decimal to Hexadecimal)

X2B Returns a string, in character format, that represents the input hexadecimal string
converted to binary. (Hexadecimal to binary)

X2C Returns a string, in character format, that represents the input hexadecimal string
converted to character. (Hexadecimal to Character)

X2D Returns the decimal representation of the input hexadecimal string. (Hexadecimal to
Decimal)

Formatting Functions

Function Description

CENTER or
CENTRE

Returns a string of a specified length with the input string centered in it, with pad
characters added as necessary to make up the length.

COPIES Returns the specified number of concatenated copies of the input string.

FORMAT Returns the input number, rounded and formatted.

JUSTIFY 1 Returns a specified string formatted by adding pad characters between words to justify to
both margins.

LEFT Returns a string of the specified length, truncated or padded on the right as needed.

RIGHT Returns a string of the specified length, truncated or padded on the left as needed.

SPACE Returns the words in the input string with a specified number of pad characters between
each word.

String Manipulating Functions

Function Description

ABBREV Returns a string indicating if one string is equal to the specified number of leading
characters of another string.

DELSTR Returns a string after deleting a specified number of characters, starting at a specified
point in the input string.

DELWORD Returns a string after deleting a specified number of words, starting at a specified word in
the input string.

1 Is a non-SAA built-in function REXX/VSE provides.
2 Is a non-SAA built-in function REXX/VSE provides.

58 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Function Description

FIND 2 Returns the word number of the first word of a specified phrase found within the input
string.

INDEX 2 Returns the character position of the first character of a specified string found in the input
string.

INSERT Returns a character string after inserting one input string into another string after a
specified character position.

LASTPOS Returns the starting character position of the last occurrence of one string in another.

LENGTH Returns the length of the input string.

OVERLAY Returns a string that is the target string overlaid by a second input string.

POS Returns the character position of one string in another.

REVERSE Returns a character string, the characters of which are in reverse order (swapped end for
end).

STRIP Returns a character string after removing leading or trailing characters or both from the
input string.

SUBSTR Returns a portion of the input string beginning at a specified character position.

SUBWORD Returns a portion of the input string starting at a specified word number.

TRANSLATE Returns a character string with each character of the input string translated to another
character or unchanged.

VERIFY Returns a number indicating whether an input string is composed only of characters from
another input string or returns the character position of the first unmatched character.

WORD Returns a word from an input string as a specified number indicates.

WORDINDEX Returns the character position in an input string of the first character in the specified
word.

WORDLENGTH Returns the length of a specified word in the input string.

WORDPOS Returns the word number of the first word of a specified phrase in the input string.

WORDS Returns the number of words in the input string.

Miscellaneous Functions
Function Description

ADDRESS Returns the name of the environment to which commands are currently being sent.

ARG Returns an argument string or information about the argument strings to a program or
internal routine.

BITAND Returns a string composed of the two input strings logically ANDed together, bit by bit.

BITOR Returns a string composed of the two input strings logically ORed together, bit by bit.

BITXOR Returns a string composed of the two input strings eXclusive ORed together, bit by bit.

CONDITION Returns the condition information, such as name and status, associated with the current
trapped condition.

DATE Returns the date in the default format (dd mon yyyy) or in one of various optional
formats.

Chapter 5. Using Functions 59

Function Description

ERRORTEXT Returns the error message associated with the specified error number.

EXTERNALS 2 This function always returns a 0.

LINESIZE 2 Returns the width of the current output device. ASSGN(STDOUT) returns the name of the
current output device.

QUEUED Returns the number of lines remaining in the external data queue at the time when the
function is called.

SOURCELINE Returns either the line number of the last line in the source file or the source line a
number specifies.

TIME Returns the local time in the default 24-hour clock format (hh:mm:ss) or in one of various
optional formats.

TRACE Returns the trace actions currently in effect.

USERID 2 Returns the current user ID. This is the last user ID specified on the SETUID command,
the user ID of the calling REXX program if one program calls another, the user ID under
which the job is running, or the job name.

VALUE Returns the value of a specified symbol and optionally assigns it a new value.

XRANGE Returns a string of all 1-byte codes (in ascending order) between and including specified
starting and ending values.

Testing Input with Built-In Functions
Some of the built-in functions provide a convenient way to test input. When a program uses input, the
user might provide input that is not valid. For instance, in the example of using comparison expressions
on “Using Comparison Expressions” on page 30, the program uses a dollar amount in the following
instruction.

 PARSE PULL yesterday /* Gets yesterday's price from input stream */

If the program pulls only a number, the program processes that information correctly. However, if the
program pulls a number preceded by a dollar sign or pulls a word, such as nothing, the program returns
an error. To avoid getting an error, you can check the input with the DATATYPE function as follows.

 IF DATATYPE(yesterday) \= 'NUM'
 THEN DO
 SAY 'The input amount was in the wrong format.'
 EXIT
 END

Other useful built-in functions to test input are WORDS, VERIFY, LENGTH, and SIGN.

Exercise - Writing a Program with Built-In Functions
Write a program that checks a file name for a length of 8 characters. If the name is longer than 8
characters, the program truncates it to 8 and sends a message indicating the shortened name. Use the
LENGTH and the SUBSTR built-in functions (the REXX/VSE Reference describes these).

ANSWER

60 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

/***************************** REXX *********************************/
/* This program tests the length of a file name. */
/* If the name is longer than 8 characters, the program truncates */
/* extra characters and sends a message indicating the shortened */
/* name. */
/**/
PULL name /* Gets name from input stream */

IF LENGTH(name) > 8 THEN /* Name is longer than 8 characters */
 DO
 name = SUBSTR(name,1,8) /* Shorten name to first 8 characters */
 SAY 'The name you specified was too long.'
 SAY name 'will be used.'
 END
ELSE NOP

Figure 27. Possible Solution

Chapter 5. Using Functions 61

62 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 6. Writing Subroutines and Functions

Purpose
This chapter shows how to write subroutines and functions and discusses their differences and
similarities.

What are Subroutines and Functions?
Subroutines and functions are routines made up of a sequence of instructions that can receive data,
process that data, and return a value. The routines can be:
Internal

The routine is within the current program, marked by a label, and only that program uses the routine.
External

A member of a sublibrary in the active PROC or PHASE chain or in the SVA. One or more programs can
call an external routine.

In many aspects, subroutines and functions are the same. However, they are different in a few major
aspects, such as how to call them and the way they return values.

• Calling a subroutine

To call a subroutine, use the CALL instruction followed by the subroutine name (label or program
member name). You can optionally follow this with up to 20 comma-separated arguments. The
subroutine call is an entire instruction.

 CALL subroutine_name argument1, argument2,...

• Calling a function

To call a function, use the function name (label or program member name) immediately followed by
parentheses that can contain arguments. There can be no space between the function name and the left
parentheses. The function call is part of an instruction, for example, an assignment instruction.

 z = function(argument1, argument2,...)

• Returning a value from a subroutine

A subroutine does not have to return a value, but when it does, it sends back the value with the RETURN
instruction.

 RETURN value

The calling program receives the value in the REXX special variable named RESULT.

 SAY 'The answer is' RESULT

• Returning a value from a function

A function must return a value. When the function is a REXX program, the value is returned with either
the RETURN or EXIT instruction.

 RETURN value

© Copyright IBM Corp. 1988, 1995 63

The calling program receives the value at the function call. The value replaces the function call, so that
in the following example, z = value.

 z = function(argument1, argument2,...)

When to Write Subroutines Rather Than Functions
The actual instructions that make up a subroutine or a function can be identical. It is the way you want to
use them in a program that turns them into either a subroutine or a function. For example, you can call the
built-in function SUBSTR as either a function or a subroutine. This is how to call SUBSTR as a function to
shorten a word to its first eight characters:

 a = SUBSTR('verylongword',1,8) /* a is set to 'verylong' */

You get the same results if you call SUBSTR as a subroutine:

 CALL SUBSTR 'verylongword', 1, 8
 a = RESULT /* a is set to 'verylong' */

When deciding whether to write a subroutine or a function, ask yourself the following questions:

• Is a returned value optional? If so, write a subroutine.
• Do I need a value returned as an expression within an instruction? If so, write a function.

The rest of this chapter describes how to write subroutines and functions and finally summarizes the
differences and similarities between the two.

Writing Subroutines and Functions
A subroutine is a series of instructions that a program calls to perform a specific task. The instruction that
calls the subroutine is the CALL instruction. You can use the CALL instruction several times in a program
to call the same subroutine.

When the subroutine ends, it can return control to the instruction that directly follows the subroutine call.
The instruction that returns control is the RETURN instruction.

A function is a series of instructions that a program calls to perform a specific task and return a value.
As Chapter 5, “Using Functions,” on page 55 describes, a function can be built-in or user-written. Call a
user-written function the same way as a built-in function: specify the function name immediately followed
by parentheses that can contain arguments. There can be no blanks between the function name and the
left parenthesis. The parentheses can contain up to 20 arguments or no arguments at all.

 function(argument1, argument2,…)
or
 function()

A function requires a return value because the function call generally appears in an expression.

64 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 z = function(arguments1, argument2,…)

When the function ends, it can use the RETURN instruction to send back a value to replace the function
call.

Both subroutines and functions can be internal (a label designates these) or external (a sublibrary
member name that contains the subroutine or function designates these). The two preceding examples
illustrate an internal subroutine named sub1 and an internal function named func1.

IMPORTANT NOTE

Because internal subroutines and functions generally appear after the main part of the program, when
you have an internal subroutine or function, it is important to end the main part of the program with the
EXIT instruction.

The following illustrates an external subroutine named sub2.

The following illustrates an external function named func2.

Chapter 6. Writing Subroutines and Functions 65

When to Use Internal Versus External Subroutines or Functions
To determine whether to make a subroutine or function internal or external, you might consider factors,
such as:

• Size of the subroutine or function. Very large subroutines and functions often are external, whereas
small ones fit easily within the calling program.

• How you want to pass information. It is quicker to pass information through variables in an internal
subroutine or function. The next topic describes passing information this way.

• Whether the subroutine or function might be of value to more than one program or user. If so, an
external subroutine or function is preferable.

• Performance. For functions, the language processor searches for an internal function before it searches
for an external function. For the complete search order of functions, see “Search Order for Functions”
on page 105.

Passing Information
A program and its internal subroutine or function can share the same variables. Therefore, you can use
commonly shared variables to pass information between caller and internal subroutine or function. You
can also use arguments to pass information to and from an internal subroutine or an internal function.
External subroutines, however, cannot share variables with the caller. To pass information to them, you
need to use arguments or some other external way, such as the data stack. (Remember: An internal
function does not need to pass arguments within the parentheses that follow the function call. However,
all functions, both internal and external, must return a value.)

Using Variables and Expressions

Protecting Variables with the PROCEDURE Instruction
When you use the PROCEDURE instruction immediately after the subroutine or function label, all variables
in the subroutine or function become local to the subroutine or function; they are shielded from the
main part of the program. You can also use the PROCEDURE EXPOSE instruction to protect all but a few
specified variables.

The following examples show how results differ when a subroutine or function uses or does not use
PROCEDURE.

66 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
 number1 = 10
 CALL subroutine
 SAY number1 number2 /* Produces 10 NUMBER2 */
 EXIT

 subroutine: PROCEDURE
 number1 = 7
 number2 = 5
 RETURN

Figure 28. Example of Subroutine Using the PROCEDURE Instruction

/******************************* REXX ********************************/
/* This program does not use a PROCEDURE instruction to protect the */
/* variables within its subroutine. */
/***/
 number1 = 10
 CALL subroutine
 SAY number1 number2 /* Produces 7 5 */
 EXIT

 subroutine:
 number1 = 7
 number2 = 5
 RETURN

Figure 29. Example of Subroutine without the PROCEDURE Instruction

The next two examples are the same, except they use functions rather than subroutines:

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
 number1 = 10
 SAY pass() number2 /* Produces 7 NUMBER2 */
 EXIT

 pass: PROCEDURE
 number1 = 7
 number2 = 5
 RETURN number1

Figure 30. Example of Function Using the PROCEDURE Instruction

/******************************* REXX ********************************/
/* This program does not use a PROCEDURE instruction to protect the */
/* variables within its function. */
/***/
 number1 = 10
 SAY pass() number2 /* Produces 7 5 */
 EXIT

 pass:
 number1 = 7
 number2 = 5
 RETURN number1

Figure 31. Example of Function without the PROCEDURE Instruction

Exposing Variables with PROCEDURE EXPOSE
To protect all but specific variables, use the EXPOSE option with the PROCEDURE instruction, followed by
the variables that are to remain exposed to the subroutine or function.

The next example uses PROCEDURE EXPOSE in a subroutine:

Chapter 6. Writing Subroutines and Functions 67

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction with the EXPOSE option */
/* to expose one variable, number1, in its subroutine. The other */
/* variable, number2, is set to null and the SAY instructuion */
/* produces this name in uppercase. */
/***/
 number1 = 10
 CALL subroutine
 SAY number1 number2 /* produces 7 NUMBER2 */
 EXIT

 subroutine: PROCEDURE EXPOSE number1
 number1 = 7
 number2 = 5
 RETURN

Figure 32. Example Using PROCEDURE EXPOSE in Subroutine

The next example is the same except PROCEDURE EXPOSE is in a function instead of a subroutine.

/******************************* REXX ********************************/
/* This program uses a PROCEDURE instruction with the EXPOSE option */
/* to expose one variable, number1, in its function. */
/***/
 number1 = 10
 SAY pass() number1 /* Produces 5 7 */
 EXIT

 pass: PROCEDURE EXPOSE number1
 number1 = 7
 number2 = 5
 RETURN number2

Figure 33. Example Using PROCEDURE EXPOSE in a Function

For more information about the PROCEDURE instruction, see the REXX/VSE Reference.

Passing Information by Using Arguments
A way to pass information to either internal or external subroutines or functions is through arguments.
When calling a subroutine, you can pass up to 20 arguments separated by commas on the CALL
instruction as follows:

 CALL subroutine_name argument1, argument2, argument3,…

In a function call, you can pass up to 20 arguments separated by commas.

 function(argument1,argument2,argument3,…)

Using the ARG Instruction
A subroutine or function can receive the arguments with the ARG instruction. In the ARG instruction,
commas also separate arguments.

 ARG arg1, arg2, arg3, …

The names of the arguments that are passed do not have to be the same as those on the ARG instruction
because information is passed by position rather than by argument name. The first argument sent is
the first argument received and so forth. You can also set up a template in the CALL instruction or
function call. The language processor then uses this template in the corresponding ARG instruction. For
information about parsing with templates, see “Parsing Data” on page 77.

68 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

In the following example, the main routine sends information to a subroutine that computes the perimeter
of a rectangle. The subroutine returns a value in the variable perim by specifying the value in the RETURN
instruction. The main program receives the value in the special variable RESULT.

Figure 34. Example of Passing Arguments on the CALL Instruction

The next example is the same except it uses ARG in a function instead of a subroutine.

Figure 35. Example of Passing Arguments on the Call to an Internal Routine

In the two preceding examples, notice the positional relationships between long and length, and wide
and width. Also notice how information is received from variable perim. Both programs include perim
on a RETURN instruction. For the program with a subroutine, the language processor assigns the value in
perim to the special variable RESULT. For the program using a function, the language processor replaces
the function call perimeter(long,wide) with the value in perim.

Using the ARG Built-in Function
Another way for a subroutine or function to receive arguments is with the ARG built-in function. This
function returns the value of a particular argument. A number represents the argument position.

For instance, in the previous example, instead of the ARG instruction:

 ARG length, width

you can use the ARG function as follows:

Chapter 6. Writing Subroutines and Functions 69

 length = ARG(1) /* puts the first argument into length */
 width = ARG(2) /* puts the second argument into width */

More information about the ARG function appears in the REXX/VSE Reference.

Receiving Information from a Subroutine or Function
Although a subroutine or function can receive up to 20 arguments, it can specify only one expression on
the RETURN instruction. That expression can be:

• A number

RETURN 55

• One or more variables whose values are substituted (or their names if no values have been assigned).

RETURN value1 value2 value3

• A literal string

RETURN 'Work complete.'

• An arithmetic, comparison, or logical expression whose value is substituted.

RETURN 5 * number

Example - Writing an Internal and an External Subroutine
Write a program that plays a simulated coin toss game and produces the accumulated scores.

There should be four possible inputs:

• 'HEADS'
• 'TAILS'
• '' (Null—to quit the game)
• None of these three (incorrect response).

Write an internal subroutine without arguments to check for valid input. Send valid input to an external
subroutine that uses the RANDOM built-in function to generate random outcomes. Assume HEADS = 0
and TAILS = 1, and use RANDOM as follows:

RANDOM(0,1)

Compare the valid input with the value from RANDOM. If they are the same, the user wins one point; if
they are different, the computer wins one point. Return the result to the main program where results are
tallied.

ANSWER

70 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

/***************************** REXX ********************************/
/* This program plays a simulated coin toss game. */
/* The input can be heads, tails, or null ("") to quit the game. */
/* First an internal subroutine checks input for validity. */
/* An external subroutine uses the RANDOM built-in function to */
/* obtain a simulation of a throw of dice and compares the user */
/* input to the random outcome. The main program receives */
/* notification of who won the round. It maintains and produces */
/* scores after each round. */
/***/
 PULL flip /* Gets "HEADS", "TAILS", or "" */
 /* from input stream. */
 computer = 0; user = 0 /* Initializes scores to zero */
 CALL check /* Calls internal subroutine, check */
 DO FOREVER
 CALL throw /* Calls external subroutine, throw */

 IF RESULT = 'machine' THEN /* The computer won */
 computer = computer + 1 /* Increase the computer score */
 ELSE /* The user won */
 user = user + 1 /* Increase the user score */

 SAY 'Computer score = ' computer ' Your score = ' user
 PULL flip
 CALL check /* Call internal subroutine, check */
 END
 EXIT

Figure 36. Possible Solution (Main Program)

/*************************** REXX ************************************/
/* This internal subroutine checks for valid input of "HEADS", */
/* "TAILS", or "" (to quit). If the input is anything else, the */
/* subroutine says the input is not valid and gets the next input. */
/* The subroutine keeps repeating until the input is valid. */
/* Commonly used variables return information to the main program */
/***/
check:
 DO UNTIL outcome = 'correct'
 SELECT
 WHEN flip = 'HEADS' THEN
 outcome = 'correct'
 WHEN flip = 'TAILS' THEN
 outcome = 'correct'
 WHEN flip = '' THEN
 EXIT
 OTHERWISE
 outcome = 'incorrect'
 PULL flip
 END
 END
 RETURN

Figure 37. Possible Solution (Internal Subroutine Named CHECK)

Chapter 6. Writing Subroutines and Functions 71

/******************************* REXX ********************************/
/* This external subroutine receives the valid input, analyzes it, */
/* gets a random "flip" from the computer, and compares the two. */
/* If they are the same, the user wins. If they are different, */
/* the computer wins. The routine returns the outcome to the */
/* calling program. */
/***/
throw:
 ARG input
 IF input = 'HEADS' THEN
 userthrow = 0 /* heads = 0 */
 ELSE
 userthrow = 1 /* tails = 1 */

 compthrow = RANDOM(0,1) /* choose a random number */
 /* between 0 and 1 */
 IF compthrow = userthrow THEN
 outcome = 'human' /* user chose correctly */
 ELSE
 outcome = 'machine' /* user chose incorrectly */

 RETURN outcome

Figure 38. Possible Solution (External Subroutine named THROW)

Exercise - Writing a Function
Write a function named AVG that receives a list of numbers separated by blanks and computes their
average. The final answer can be a decimal number. To call this function, you would use:

 AVG(number1 number2 number3…)

Use the WORDS and WORD built-in functions. For more information about these built-in functions, see the
REXX/VSE Reference.

ANSWER

/******************************* REXX ********************************/
/* This function receives a list of numbers, adds them, computes */
/* their average, and returns the average to the calling program. */
/***/

 ARG numlist /* receive the numbers in a single variable */

 sum = 0 /* initialize sum to zero */

 DO n = 1 TO WORDS(numlist) /* Repeat for as many times as there */
 /* are numbers */

 number = WORD(numlist,n) /* Word #n goes to number */
 sum = sum + number /* Sum increases by number */
 END

 average = sum / WORDS(numlist) /* Compute the average */

 RETURN average

Figure 39. Possible Solution

Subroutines and Functions—Similarities and Differences
The following table highlights similarities and differences between subroutines and functions:

72 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Table 3. Similarities between Subroutines and Functions

Can be internal or external.

• Internal

– Can pass information by using common variables
– Can protect variables with the PROCEDURE instruction
– Can pass information by using arguments.

• External

– Must pass information by using arguments
– Can use the ARG instruction or the ARG built-in function to receive arguments.

Uses the RETURN instruction to return to the caller.

Table 4. Differences between Subroutines and Functions

Subroutines Functions

Calling Call by using the CALL instruction, followed
by the subroutine name and, optionally, up
to 20 arguments.

Call by specifying the function's name,
immediately followed by parentheses that
optionally contain up to 20 arguments.

Returning a
Value

Might return a value to the caller. If you
include a value on the RETURN instruction,
the language processor assigns this value
to the REXX special variable RESULT.

Must return a value. Specify a value on
the RETURN instruction; the language
processor replaces the function call with
this value.

Chapter 6. Writing Subroutines and Functions 73

74 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 7. Manipulating Data

Purpose
This chapter describes how to use compound variables and stems and explains parsing.

Using Compound Variables and Stems
Sometimes it is useful to store groups of related data in a way that makes data retrieval easy. For
example, you could store a list of employee names in an array and retrieve them by number. An array
is an arrangement of elements in one or more dimensions, identified by a single name. An array called
employee could contain names as follows:

 EMPLOYEE
 (1) Adams, Joe
 (2) Crandall, Amy
 (3) Devon, David
 (4) Garrison, Donna
 (5) Leone, Mary
 (6) Sebastian, Isaac

In some computer languages, you use the number of the element to access an element in an array. For
example, employee(1) would retrieve Adams, Joe. In REXX, you use compound variables.

What Is a Compound Variable?
You can use compound variables to create an array or a list of variables in REXX. A compound variable, for
example: employee.1, consists of a stem and a tail. A stem is a symbol with a period at the end. Here are
some examples of stems:

 FRED.
 Array.
 employee.

A tail is similar to a subscript. It follows the stem and consists of additional parts of the name that
can be constant symbols (as in employee.1), simple symbols (as in employee.n), or null. Thus, in
REXX, subscripts need not necessarily be numeric. A compound variable contains at least one period with
characters on both sides of it. Here are some more examples of compound variables:

 FRED.5
 Array.Row.Col
 employee.name.phone

You cannot do any substitution for the name of the stem but you can use substitution for the tail. For
example:

employee.7='Amy Martin'
new=7
employee.new='May Davis'
say employee.7 /* Produces: May Davis */

As with other REXX variables, if you have not previously assigned a value to a variable in a tail, it takes on
the value of its own name in uppercase.

 first = 'Fred'
 last = 'Higgins'
 name = first.last /* NAME is assigned FIRST.Higgins */

© Copyright IBM Corp. 1988, 1995 75

 /* The value FIRST appears because the */
 /* variable FIRST is a stem, which */
 /* cannot change. */
 SAY name.first.middle.last /* Produces NAME.Fred.MIDDLE.Higgins */

You can use a DO loop to initialize a group of compound variables and set up an array.

 DO i = 1 TO 6
 PARSE PULL employee.i
 END

If you use the same names used in the example of the employee array, you have a group of compound
variables as follows:

 employee.1 = 'Adams, Joe'
 employee.2 = 'Crandall, Amy'
 employee.3 = 'Devon, David'
 employee.4 = 'Garrison, Donna'
 employee.5 = 'Leone, Mary'
 employee.6 = 'Sebastian, Isaac'

After the names are in the group of compound variables, you can easily access a name by its number or by
a variable that represents its number.

 name = 3
 SAY employee.name /* Produces 'Devon, David' */

For more information about compound variables, see the REXX/VSE Reference.

Using Stems
When working with compound variables, it is often useful to initialize an entire collection of variables
to the same value. You can do this easily by using an assignment that includes a stem. For example,
number.=0 initializes all array elements in the array named number. to 0.

You can change the values of all compound variables in an array the same way. For example, to change all
employee names to Nobody, use the following assignment instruction:

 employee. = 'Nobody'

As a result, all compound variables beginning with the stem employee., previously assigned or not, have
the value Nobody. After a stem assignment, you can assign individual compound variables new values.

 employee.='Nobody'
 SAY employee.5 /* Produces 'Nobody' */
 SAY employee.10 /* Produces 'Nobody' */
 SAY employee.oldest /* Produces 'Nobody' */

 employee.new = 'Clark, Evans'
 SAY employee.new /* Produces 'Clark, Evans' */

You can use stems with the EXECIO command when reading to and writing from a file. See “Using EXECIO
to Process Information to and from Files” on page 120 for information about EXECIO. You can also
use stems with the OUTTRAP external function when trapping command output from ADDRESS POWER
commands. For information about OUTTRAP, see “Using the OUTTRAP Function” on page 101.

Exercises - Using Compound Variables and Stems
1. After these assignment instructions, what do the following SAY instructions produce?

 a = 3 /* assigns '3' to variable 'A' */
 d = 4 /* '4' to 'D' */

76 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

 c = 'last' /* 'last' to 'C' */
 a.d = 2 /* '2' to 'A.4' */
 a.c = 5 /* '5' to 'A.last' */
 z.a.d = 'cv3d' /* 'cv3d' to 'Z.3.4' */

a. SAY a
b. SAY D
c. SAY c
d. SAY a.a
e. SAY A.D
f. SAY d.c

g. SAY c.a
h. SAY a.first
i. SAY z.a.4

2. After these assignment instructions, what output do the SAY instructions produce?

 hole.1 = 'full'
 hole. = 'empty'
 hole.s = 'full'

a. SAY hole.1
b. SAY hole.s
c. SAY hole.mouse

ANSWERS

1. a. 3
b. 4
c. last
d. A.3
e. 2
f. D.last

g. C.3
h. A.FIRST
i. cv3d

2. a. empty
b. full
c. empty

Parsing Data
Parsing is separating data and assigning parts of it into one or more variables. Parsing can assign each
word in the data into a variable or can divide the data into smaller parts. Parsing is also useful to format
data into columns.

The variables to receive data are named in a template. A template is a model telling how to split the data.
It can be a simple as a list of variables to receive data. More complex templates can contain patterns;
“Parsing with Patterns” on page 80 explains patterns.

Parsing Instructions
The REXX parsing instructions are PULL, ARG, and PARSE. (PARSE has several variants.)

Chapter 7. Manipulating Data 77

PULL Instruction
Earlier chapters showed PULL as an instruction that reads input and assigns it to one or more variables. If
the data stack contains information, the PULL instruction takes information from the data stack. When the
data stack is empty, PULL takes information from the current input stream. If you have not changed the
default, the current input stream is SYSIPT. See Chapter 11, “Storing Information in the Data Stack,” on
page 107 for information about the data stack.

/* This REXX program parses the string "Knowledge is power." */
 PULL word1 word2 word3
 /* word1 contains 'KNOWLEDGE' */
 /* word2 contains 'IS' */
 /* word3 contains 'POWER.' */

PULL uppercases character information before assigning it into variables. If you do not want uppercase
translation, use the PARSE PULL instruction.

/* This REXX program parses the string: "Knowledge is power." */
 PARSE PULL word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

You can include the optional keyword UPPER on any variant of the PARSE instruction. This causes the
language processor to uppercase character information before assigning it into variables. For example,
using PARSE UPPER PULL… gives the same result as using PULL.

ARG Instruction
The ARG instruction takes information passed as arguments to a program, function, or subroutine, and
puts it into one or more variables. To pass the three arguments Knowledge is power. to a REXX
program named sample:

1. Call the program and pass the arguments by specifying on the JCL EXEC statement:

REXX=sample,PARM='Knowledge is power.'

2. Use the ARG instruction to receive the three arguments into variables.

/* SAMPLE -- A REXX program using ARG */
 ARG word1 word2 word3
 /* word1 contains 'KNOWLEDGE' */
 /* word2 contains 'IS' */
 /* word3 contains 'POWER.' */

ARG uppercases the character information before assigning the arguments into variables.

If you do not want uppercase translation, use the PARSE ARG instruction instead of ARG.

/* REXX program using PARSE ARG */
 PARSE ARG word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE UPPER ARG has the same result as ARG. It uppercases character information before assigning it
into variables.

PARSE VALUE … WITH Instruction
The PARSE VALUE…WITH instruction parses a specified expression, such as a literal string, into one or
more variables whose names follow the WITH subkeyword.

78 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 PARSE VALUE 'Knowledge is power.' WITH word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE VALUE does not uppercase character information before assigning it into variables. If you want
uppercase translation, use PARSE UPPER VALUE. You could use a variable instead of a string in PARSE
VALUE (you would first assign the variable the value):

 string='Knowledge is power.'
 PARSE VALUE string WITH word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

Or you can use PARSE VAR to parse a variable.

PARSE VAR Instruction
The PARSE VAR instruction parses a specified variable into one or more variables.

 quote = 'Knowledge is power.'
 PARSE VAR quote word1 word2 word3
 /* word1 contains 'Knowledge' */
 /* word2 contains 'is' */
 /* word3 contains 'power.' */

PARSE VAR does not uppercase character information before assigning it into variables. If you want
uppercase translation, use PARSE UPPER VAR.

More about Parsing into Words
In the preceding examples, the number of words in the data to parse is always the same as the number
of variables in the template. Parsing always assigns new values to all variables named in the template. If
there are more variable names than words in the data to parse, the leftover variables receive null (empty)
values. If there are more words in the data to parse than variable names in the template, each variable
gets one word of data in sequence except the last variable, which gets the remainder of the data.

In the next example, there are more variable names in the template than words of data; the leftover
variable receives a null value.

 PARSE VALUE 'Extra variables' WITH word1 word2 word3
 /* word1 contains 'Extra' */
 /* word2 contains 'variables' */
 /* word3 contains '' */

In the next example there are more words in the data than variable names in the template; the last
variable gets the remainder of the data. The last variable name can contain several words and possibly
leading and trailing blanks.

 PARSE VALUE 'More words in data' WITH var1 var2 var3
 /* var1 contains 'More' */
 /* var2 contains 'words' */
 /* var3 contains ' in data' */

Parsing into words generally removes leading and trailing blanks from each word before putting it into a
variable. However, when putting data into the last variable, parsing removes one word-separator blank but
retains any extra leading or trailing blanks. There are two leading blanks before words. Parsing removes
both the word-separator blank and the extra leading blank before putting 'words' into var2. There are
four leading blanks before in. Because var3 is the last variable, parsing removes the word-separator
blank but keeps the extra leading blanks. Thus, var3 receives ' in data' (with three leading blanks).

Chapter 7. Manipulating Data 79

A period in a template acts as a placeholder. It receives no data. You can use a period as a "dummy
variable" within a group of variables or at the end of a template to collect unwanted information.

 string='Example of using placeholders to discard junk'
 PARSE VAR string var1 . var2 var3 .
 /* var1 contains 'Example' */
 /* var2 contains 'using' */
 /* var3 contains 'placeholders' */
 /* The periods collect the words 'of' and 'to discard junk' */

For more information about parsing instructions, see the REXX/VSE Reference.

Parsing with Patterns
The simplest template is a group of blank-separated variable names. This parses data into blank-
delimited words. The preceding examples all use this kind of template. Templates can also contain
patterns. A pattern can be a string, a number, or a variable representing either of these.

String
If you use a string in a template, parsing checks the input data for a matching string. When assigning
data into variables, parsing generally skips over the part of the input string that matches the string in the
template.

 phrase = 'To be, or not to be?' /* phrase containing comma */
 PARSE VAR phrase part1 ',' part2 /* template containing comma */
 /* as string separator */
 /* part1 contains 'To be' */
 /* part2 contains ' or not to be?' */

In this example, notice that the comma is not included with 'To be' because the comma is the string
separator. (Notice also that part2 contains a value that begins with a blank. Parsing splits the input string
at the matching text. It puts data up to the start of the match in one variable and data starting after the
match in the next variable.

Variable
When you do not know in advance what string to specify as separator in a template, you can use a variable
enclosed in parentheses.

 separator = ','
 phrase = 'To be, or not to be?'
 PARSE VAR phrase part1 (separator) part2
 /* part1 contains 'To be' */
 /* part2 contains ' or not to be?' */

Again, in this example, notice that the comma is not included with 'To be' because the comma is the string
separator.

Number
You can use numbers in a template to indicate the column at which to separate data. An unsigned integer
indicates an absolute column position. A signed integer indicates a relative column position.

An unsigned integer or an integer with the prefix of an equal sign (=) separates the data according to
absolute column position. The first segment starts at column 1 and goes up to, but does not include,
the information in the column number specified. Subsequent segments start at the column numbers
specified.

 quote = 'Ignorance is bliss.'
 +....1....+....2
.sk

80 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

 PARSE VAR quote part1 5 part2
 /* part1 contains 'Igno' */
 /* part2 contains 'rance is bliss.' */

The following code has the same result:

 quote = 'Ignorance is bliss.'
 +....1....+....2

 PARSE VAR quote 1 part1 =5 part2
 /* part1 contains 'Igno' */
 /* part2 contains 'rance is bliss.' */

Specifying the numeric pattern 1 is optional. If you do not use a numeric pattern to indicate a starting
point for parsing, this defaults to 1. The example also shows that the numeric pattern 5 is the same as =5.

If a template has several numeric patterns and a later one is lower than a preceding one, parsing loops
back to the column the lower number specifies.

 quote = 'Ignorance is bliss.'
 +....1....+....2

 PARSE VAR quote part1 5 part2 10 part3 1 part4
 /* part1 contains 'Igno' */
 /* part2 contains 'rance' */
 /* part3 contains ' is bliss.' */
 /* part4 contains 'Ignorance is bliss.' */

When each variable in a template has column numbers both before and after it, the two numbers indicate
the beginning and the end of the data for the variable.

 quote = 'Ignorance is bliss.'
 +....1....+....2

 PARSE VAR quote 1 part1 10 11 part2 13 14 part3 19 1 part4 20
 /* part1 contains 'Ignorance' */
 /* part2 contains 'is' */
 /* part3 contains 'bliss' */
 /* part4 contains 'Ignorance is bliss.' */

Thus, you could use numeric patterns to skip over part of the data:

 quote = 'Ignorance is bliss.'
 +....1....+....2

 PARSE VAR quote 2 var1 3 5 var2 7 8 var3 var 4 var5
 SAY var1||var2||var3 var4 var5 /* || means concatenate */
 /* Says: grace is bliss. */

A signed integer in a template separates the data according to relative column position. The plus or
minus sign indicates movement right or left, respectively, from the starting position. In the next example,
remember that part1 starts at column 1 (by default because there is no number to indicate a starting
point).

 quote = 'Ignorance is bliss.'
 +....1....+....2
.sk
 PARSE VAR quote part1 +5 part2 +5 part3 +5 part4
 /* part1 contains 'Ignor' */
 /* part2 contains 'ance ' */
 /* part3 contains 'is bl' */
 /* part4 contains 'iss.' */

+5 part2 means parsing puts into part2 data starting in column 6 (1+5=6). +5 part3 means data put
into part3 starts with column 11 (6+5=11), and so on. The use of the minus sign is similar to the use of

Chapter 7. Manipulating Data 81

the plus sign. It identifies a relative position in the data string. The minus sign "backs up" (moves to the
left) in the data string.

 quote = 'Ignorance is bliss.'
 +....1....+....2
.sk
 PARSE VAR quote part1 +10 part2 +3 part3 -3 part4
 /* part1 contains 'Ignorance ' */
 /* part2 contains 'is ' */
 /* part3 contains 'bliss.' */
 /* part4 contains 'is bliss.' */

In this example, part1 receives characters starting at column 1 (by default). +10 part2 receives
characters starting in column 11 (1+10=11). +3 part3 receives characters starting in column 14
(11+3=14). -3 part4 receives characters starting in column 11 (14-3=11).

To provide more flexibility, you can define and use variable numeric patterns in a parsing instruction.
To do this, first define the variable as an unsigned integer before the parsing instruction. Then, in the
parsing instruction, enclose the variable in parentheses and specify one of the following before the left
parenthesis:

• A plus sign (+) to indicate column movement to the right
• A minus sign (-) to indicate column movement to the left
• An equal sign (=) to indicate an absolute column position.

(Without +, -, or = before the left parenthesis, the language processor would consider the variable to be a
string pattern.) The following example uses the variable numeric pattern movex.

 quote = 'Ignorance is bliss.'
 +....1....+....2
.sk
 movex = 3 /* variable position */
 PARSE VAR quote part5 +10 part6 +3 part7 -(movex) part8
 /* part5 contains 'Ignorance ' */
 /* part6 contains 'is ' */
 /* part7 contains 'bliss.' */
 /* part8 contains 'is bliss.' */

For more information about parsing, see the REXX/VSE Reference.

Parsing Multiple Strings as Arguments
When passing arguments to a function or a subroutine, you can specify multiple strings to be parsed.
The ARG, PARSE ARG, and PARSE UPPER ARG instructions parse arguments. These are the only parsing
instructions that work on multiple strings.

To pass multiple strings, use commas to separate adjacent strings.

The next example passes three arguments to an internal subroutine.

 CALL sub2 'String One', 'String Two', 'String Three'
 :
 :
 EXIT

 sub2:
 PARSE ARG word1 word2 word3, string2, string3
 /* word1 contains 'String' */
 /* word2 contains 'One' */
 /* word3 contains '' */
 /* string2 contains 'String Two' */
 /* string3 contains 'String Three' */

The first argument is two words "String One" to parse into three variable names, word1, word2, and
word3. The third variable, word3, is set to null because there is no third word. The second and third
arguments are parsed entirely into variable names string2 and string3.

82 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

For more information about passing multiple arguments, see the REXX/VSE Reference.

Exercise - Practice with Parsing
What are the results of the following parsing examples?

1.
 quote = 'Experience is the best teacher.'
 PARSE VAR quote word1 word2 word3

• a) word1 =
• b) word2 =
• c) word3 =

2.
 quote = 'Experience is the best teacher.'
 PARSE VAR quote word1 word2 word3 word4 word5 word6

• a) word1 =
• b) word2 =
• c) word3 =
• d) word4 =
• e) word5 =
• f) word6 =

3.
 PARSE VALUE 'Experience is the best teacher.' WITH word1 word2 . . word3

• a) word1 =
• b) word2 =
• c) word3 =

4.
 PARSE VALUE 'Experience is the best teacher.' WITH v1 5 v2
 +....1....+....2....+....3.

• a) v1 =
• b) v2 =

5.
 quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

 PARSE VAR quote v1 v2 15 v3 3 v4

• a) v1 =
• b) v2 =
• c) v3 =
• d) v4 =

6.
 quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

 PARSE UPPER VAR quote 15 v1 +16 =12 v2 +2 1 v3 +10

• a) v1 =
• b) v2 =
• c) v3 =

Chapter 7. Manipulating Data 83

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

7.
 quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

 PARSE VAR quote 1 v1 +11 v2 +6 v3 -4 v4

• a) v1 =
• b) v2 =
• c) v3 =
• d) v4 =

8.
 first = 7
 quote = 'Experience is the best teacher.'
 +....1....+....2....+....3.

 PARSE VAR quote 1 v1 =(first) v2 +6 v3

• a) v1 =
• b) v2 =
• c) v3 =

9.
 quote1 = 'Knowledge is power.'
 quote2 = 'Ignorance is bliss.'
 quote3 = 'Experience is the best teacher.'
 CALL sub1 quote1, quote2, quote3
 EXIT

 sub1:
 PARSE ARG word1 . . , word2 . . , word3 .

• a) word1 =
• b) word2 =
• c) word3 =

ANSWERS

1. • a) word1 = Experience
• b) word2 = is
• c) word3 = the best teacher.

2. • a) word1 = Experience
• b) word2 = is
• c) word3 = the
• d) word4 = best
• e) word5 = teacher.
• f) word6 = ''

3. • a) word1 = Experience
• b) word2 = is
• c) word3 = teacher.

4. • a) v1 = Expe
• b) v2 = rience is the best teacher.

5. • a) v1 = Experience
• b) v2 = is (Note that v2 contains 'is '.)
• c) v3 = the best teacher.

84 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

• d) v4 = perience is the best teacher.
6. • a) v1 = THE BEST TEACHER

• b) v2 = IS
• c) v3 = EXPERIENCE

7. • a) v1 = 'Experience '
• b) v2 = 'is the'
• c) v3 = ' best teacher.'
• d) v4 = ' the best teacher.'

8. • a) v1 = 'Experi'
• b) v2 = 'ence i'
• c) v3 = 's the best teacher.'

9. • a) word1 = Knowledge
• b) word2 = Ignorance
• c) word3 = Experience

Chapter 7. Manipulating Data 85

86 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Part 2. PART II — Using REXX

Besides being a versatile general-purpose programming language, REXX can interact with POWER, which
expands its capabilities. This part of the book is for programmers already familiar with the REXX language
and experienced in VSE/ESA. The chapters in this part cover the following topics.

• Chapter 8, “Using Commands from a Program,” on page 89 — A REXX program can issue REXX/VSE
commands and ADDRESS POWER commands.

• Chapter 9, “Diagnosing Problems within a Program,” on page 95 — Several debugging options are
available in a program.

• Chapter 10, “Using REXX/VSE External Functions,” on page 101 — External functions interact with the
system to do specific tasks,

• Chapter 11, “Storing Information in the Data Stack,” on page 107 — The data stack is useful in I/O and
other types of special processing.

• Chapter 12, “Processing Data and Input/Output Processing,” on page 119 — You can use the EXECIO
command to process information to and from files.

Several REXX instructions send information to the current output stream or retrieve it from the current
input stream. These instructions are:

• PARSE EXTERNAL—gets information from the current input stream.
• PARSE PULL and PULL—get information from the current input stream.
• SAY—sends information to the current output stream.
• TRACE—sends information to the current output stream.
• EXECIO—reads information from or writes it to the specified output stream or device.

If you have not changed the defaults, the current input stream is SYSIPT, and the current output stream
is SYSLST. You can use the ASSGN external function to return the name of the current input or output
stream.

© Copyright IBM Corp. 1988, 1995 87

88 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 8. Using Commands from a Program

Purpose
This chapter describes how to use commands in a REXX program.

Types of Commands
A REXX program can issue several types of commands. The main categories of commands are:
REXX/VSE commands

These commands do REXX-related tasks in a program, such as:

• Control I/O processing of information to and from files (EXECIO)
• Perform data stack services (MAKEBUF, DROPBUF, QBUF, QELEM, NEWSTACK, DELSTACK, QSTACK)
• Check for the existence of a host command environment (SUBCOM)
• Run a REXX program in the active PROC chain (EXEC)
• Set the user ID (and password) that is associated with the REXX program (SETUID)

There are also REXX/VSE immediate commands: HI, HT, RT, TE, TQ, and TS. See the REXX/VSE
Reference, for details about the immediate commands.

More information about REXX/VSE commands appears throughout the book where the related task is
discussed.

ADDRESS POWER commands
These commands operate only in the POWER environment. They permit you to:

• Put a job on a queue (PUTQE). See the REXX/VSE Reference, for details.
• Retrieve a job from a queue (GETQE). See the REXX/VSE Reference, for details.
• Return job completion messages into the stem specified by OUTTRAP (QUERYMSG).
• Send a CTL service request to POWER. (The VSE/POWER Application Programming, lists the POWER

commands you can send through a CTL service request. VSE/POWER Administration and Operation,
explains their syntax.)

ADDRESS LINK/LINKPGM commands
These are any commands with parameter lists invoked by LINK/LINKPGM.

ADDRESS JCL commands
JCL commands can be issued via a REXX program. The REXX program must have been invoked by //
EXEC REXX. See the REXX/VSE Reference, for detailed information about issuing JCL commands via a
REXX program.

When a program issues a command, the REXX special variable RC is set to the return code. A program can
use the return code to determine a course of action within the program. Every time a command is issued,
RC is set. Thus, RC contains the return code from the most recently issued command.

Using Quotations Marks in Commands
Generally, to differentiate commands from other types of instructions, you enclose the command within
single or double quotation marks. If the command is not enclosed within quotation marks, it is processed
as an expression and might end in error. For example, the language processor treats an asterisk (*) as a
multiplication operator.

© Copyright IBM Corp. 1988, 1995 89

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre31.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre31.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Using Variables in Commands
When a command contains a variable, the value of the variable is not used if the variable is within
quotation marks. The language processor uses the value of a variable only for variables outside quotation
marks. For example, suppose the variable queue contains RDR. For the following, the language processor
would not substitute RDR for queue:

ADDRESS power "PUTQE queue STEM job."

But if you change the quotation marks so that queue is not within them, the language processor would
substitute RDR for queue:

ADDRESS power "PUTQE" queue "STEM job."

The preceding is the same as:

ADDRESS power "PUTQE RDR STEM job."

Calling Another REXX Program as a Command
Previously, this book discussed how to call another program as an external routine (Chapter 6, “Writing
Subroutines and Functions,” on page 63). You can also call a program from another program explicitly
with the EXEC command or implicitly by member name. Like an external routine, a program called
explicitly or implicitly can return a value to the caller with the RETURN or EXIT instruction. Unlike an
external routine, which passes a value to the special variable RESULT, the program that is called passes a
value to the REXX special variable RC.

Calling Another Program with the EXEC Command
To explicitly call another program from within a program, use the EXEC command as you would any
other REXX/VSE command. The called program should end with a RETURN or EXIT instruction, ensuring
that control returns to the caller. The REXX special variable RC is set to the return code from the EXEC
command. You can optionally return a value to the caller on the RETURN or EXIT instruction. When control
passes back to the caller, the REXX special variable RC is set to the value of the expression returned on
the RETURN or EXIT instruction.

For example, to call a program named CALC and pass it an argument of four numbers, you could include
the following instructions:

 "EXEC calc 24 55 12 38"
 SAY 'The result is' RC

CALC might contain the following instructions:

 ARG number1 number2 number3 number4
 answer = number1 * (number2 + number3) - number4
 RETURN answer

Calling Another Program Implicitly
To implicitly call another program from within a program, use the member name. Because it is treated as
a command, enclose the member name and the argument, if any, within quotation marks. For example,
to implicitly call a program named CALC and send it an argument of four numbers, you could include the
following instructions.

90 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 "calc 24 55 12 38"
 SAY 'The result is' RC

CALC might contain the following instructions:

 ARG number1 number2 number3 number4
 answer = number1 * (number2 + number3) - number4
 RETURN answer

Issuing Commands from a Program
The following sections explain what a host command environment is, how commands are passed to host
command environments, and how to change the host command environment.

Question

Add something here about APPC calls, ISPF? See TSO/E book/files...

What is a Host Command Environment?
An environment for executing commands is called a host command environment. Before a program runs,
an active host command environment is defined to handle commands the program issues. When the
language processor encounters a command, it passes the command to the host command environment
for processing.

When a REXX program runs on a host system, there is at least one default environment available for
executing commands.

The host command environments are as follows:
VSE

This is the default host command environment. You can use the VSE &hcenv to call REXX/VSE
commands (such as MAKEBUF and NEWSTACK) and services. (You cannot use ADDRESS POWER
commands in this environment.)

POWER
This environment is for Spool Access Support (SAS) requests and services, GET, CTL, and PUT. The
POWER host command environment lets you:

• Use the PUTQE command to put elements on a POWER queue and the GETQE command to retrieve
POWER queue elements

• Send a CTL service request to POWER. See VSE/POWER Application Programming, for a list
of the POWER commands that you can issue through a CTL service request. See VSE/POWER
Administration and Operation, for the syntax of these commands.

• Execute REXX/VSE commands.

LINK and LINKPGM
Host command environments for loading and calling programs. They let you load and call a phase
from the active PHASE search chain. They differ in:

• the format of the parameter list that the program receives
• the capability of passing multiple parameters
• variable substitution for the parameters
• the ability of the called program to update the parameters.

JCL
An environment that lets you issue JCL commands via a REXX program. The REXX program must has
been invoked by // EXEC REXX. You may issue JCL commands which do not require any input data, or
issue JCL commands requiring SYSIPT data. Use the REXXIPT function to accomplish this.

Chapter 8. Using Commands from a Program 91

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf

Examples Using APPC/MVS Services
The following example illustrates the syntax for calling an SAA CPI Communications call under the
CPICOMM host command environment:

CPICOMM Example

/* REXX */
ADDRESS CPICOMM ’CMALLC conversation_id return_code’
if return_code = CM_OK then say 'OK!'
 else say 'Why not?'

Whenever you use an SAA CPI Communications call or APPC/MVS call from a REXX program, the entire
call must be enclosed in single or double quotation marks.

SAA CPI Communications calls and APPC/MVS calls can use pseudonyms rather than integer values.
In the CPICOMM example, instead of comparing the variable return_code to an integer value of 0, the
example compares return_code to the pseudonym value CM_OK. The integer value for CM_OK is 0.
TSO/E provides two pseudonym files, one for the LU62 host command environment and one for the
CPICOMM host command environment. These files define the pseudonyms and their integer values. The
LU62 pseudonym file is REXAPPC1, and the CPICOMM pseudonym file is REXAPPC2. Both files are in
PRD1.BASE. You can include this information from the pseudonym files in your REXX programs.

For more information about host command environments and pseudonym files, refer to TSO/E V2
REXX/MVS Reference (SC28-1883) .

How Is a Command Passed to the Host Environment?
The language processor evaluates each expression in a REXX program. This evaluation results in a
character string (which may be the null string). The character string is then prepared as is appropriate
and submitted to the host command environment. The environment processes the string as a command,
and, after processing is complete, returns control to the language processor. If the string is not a valid
command for the current host command environment, a failure occurs and the special variable RC
contains the return code from the host command environment.

Changing the Host Command Environment
You can change the host command environment either from the default or from whatever environment
was previously established. To change the host command environment, use the ADDRESS instruction
followed by the name of an environment.

The ADDRESS instruction has two forms; one affects all commands issued after the instruction, and one
affects only a single command.

• Single command

When an ADDRESS instruction includes both the name of the host command environment and a
command, only that command is sent to the specified environment. After the command is complete
the former host command environment becomes active again. The following ADDRESS instruction sends
a single PDISPLAY command to the POWER environment.

ADDRESS power "PDISPLAY RDR,*MYJOB"

• All commands

When an ADDRESS instruction includes only the name of the host command environment, all
commands issued afterward within that program are processed as that environment's commands.

For example, the default environment is VSE. To change the environment for all commands that follow,
you can use:

92 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 ADDRESS power

This ADDRESS instruction affects only the host command environment of the program that uses the
instruction. If a program calls an external routine, the host command environment is the default
environment regardless of the host command environment of the calling program. Upon return to the
original program, the host command environment that the ADDRESS instruction previously established
is resumed.

Determining the Active Host Command Environment
To find out which host command environment is currently active, use the ADDRESS built-in function.

 curenv = ADDRESS()

In this example, curenv is set to the active host command environment, for example, VSE.

Checking if a Host Command Environment Is Available
To check if a particular host command environment is available before trying to send commands to
that environment, use the REXX/VSE SUBCOM command followed by the name of the host command
environment, such as POWER.

 SUBCOM power

If the environment is present, the REXX special variable RC is set to 0. If the environment is not present,
RC is set to 1. For example, you could find out if the POWER environment is available before trying to use a
GETQE command:

SUBCOM power
IF rc=0 THEN
DO
 ADDRESS power "PUTQE RDR STEM myjob."
 ADDRESS power "GETQE RDR JOBNAME job1 CLASS a"
END
ELSE…

Examples Using the ADDRESS Instruction
1. The following example shows how to check if the current environment is POWER, send several

commands the POWER environment, and change the environment back to its original value:

curenv=ADDRESS()
IF curenv='POWER' THEN NOP
ELSE ADDRESS 'POWER'
"PUTQE RDR STEM mystem."
"GETQE LST JOBNAME myjob CLASS A"
ADDRESS (curenv)

2. The following example shows how to send a single command to POWER. Suppose your LST queue
contains the following entries:

Table 5. LST Queue Contents

Job Name Class Job Number

MYJOB A 1

MYJOB A 2

MYJOB Q 3

Chapter 8. Using Commands from a Program 93

Table 5. LST Queue Contents (continued)

Job Name Class Job Number

NEWJOB A 4

The following command retrieves from the LST queue the job MYJOB Class A.

ADDRESS power 'GETQE LST JOBNAME myjob CLASS A'

3. The following examples show using the LINK and LINKPGM environments to call another program.
In each pair of examples, the first example includes no arguments to pass to the program, while the
second example includes arguments.

ADDRESS LINK 'PROG1'
ADDRESS LINK 'EXPONEN parm'

ADDRESS LINKPGM 'PROG1'
ADDRESS LINKPGM 'ADDNUMS n1 n2 n3 ... nn'

94 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 9. Diagnosing Problems within a Program

Purpose
This chapter describes how to trace command output and other debugging techniques.

Debugging Programs
When you encounter an error in a program, there are several ways to locate the error.

• The TRACE instruction shows how the language processor evaluates each operation. (TRACE writes to
the output stream. If you have not changed the default, the output stream is SYSLST.) For information
about using the TRACE instruction to evaluate expressions, see “Tracing Expressions with the TRACE
Instruction” on page 35. For information about using the TRACE instruction to evaluate host commands,
see the next section, “Tracing Commands with the TRACE Instruction” on page 95.

• REXX/VSE sets the special variables RC and SIGL as follows:
RC

Indicates the return code from a command.
SIGL

Indicates the line number from which there was a transfer of control because of a function call, a
SIGNAL instruction, or a CALL instruction.

• The TS immediate command starts tracing. The TE immediate command ends tracing, including
interactive debug. You can use TS and TE in a REXX program or specify TS or TE on a call to ARXIC from
a non-REXX program. For more information about interactive debug, see “Tracing with the Interactive
Debug Facility” on page 97.

Tracing Commands with the TRACE Instruction
The TRACE instruction has many options for various types of tracing, including C for commands and E for
errors.

TRACE C
After TRACE C, the language processor traces each command before executing it and then executes it
and sends the return code from the command to the current output stream.

The return code from the MAKEBUF command is the current number of buffers. If you use MAKEBUF
without TRACE C, the following produces no output:

/* REXX program */
"MAKEBUF"

However, the following program:

/* REXX program with TRACE C*/
TRACE C
"MAKEBUF"

produces:

 3 *-* "MAKEBUF"
 >>> "MAKEBUF"
 +++ RC(1) +++

© Copyright IBM Corp. 1988, 1995 95

Note: RC contains the current number of buffers. In the example, the 1 means this is the first MAKEBUF
command you have used.

TRACE E
When you specify TRACE E in a program, the language processor traces any host command that results
in a nonzero return code after it executes and sends the return code from the command to the output
stream.

If a program includes TRACE E and issues an incorrect command, the program sends to the output
stream error messages, the line number, the command, and the return code from the command. For
example, the following code:

/* REXX program with error--misspelled command */
TRACE E
MAKBUF

would return:

 3 *-* "MAKBUF"
 +++ RC(-3) +++

The line number is 3, the incorrect command is MAKBUF, and the return code is -3.

For more information about the TRACE instruction, see the REXX/VSE Reference.

Using REXX Special Variables RC and SIGL
As mentioned earlier, the REXX language has three special variables: RC, SIGL, and RESULT. REXX/VSE
sets these variables during particular situations and you can use them in an expression at any time. If
REXX/VSE did not set a value, a special variable has the value of its own name in uppercase, as do other
variables in REXX. You can use two special variables, RC and SIGL, to help diagnose problems within
programs.

RC
RC stands for return code. The language processor sets RC every time a program issues a command.
When a command ends without error, RC is usually 0. When a command ends in error, RC is whatever
return code is assigned to that error.

In the following example, a SAY instruction showing the RC follows an incorrect command:

/* REXX program with error--'READER' should be 'RDR' */
ADDRESS POWER "PDELETE READER, ALL"
SAY 'The return code from the command is' RC

After the incorrect SAS interface command, the return code from the SAS interface is 0.

The RC variable can be especially useful in an IF instruction to determine which path a program should
take.

 ADDRESS POWER "PDELETE RDR,ALL"
 IF rc ¬= 0 THEN
 CALL error1
 ELSE NOP

Note: Every command sets a value for RC, so it does not remain the same for the duration of a program.
When using RC, make sure it contains the return code of the command you want to test.

96 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

SIGL
The language processor sets the SIGL special variable in connection with a transfer of control within a
program because of a function or a SIGNAL or CALL instruction. When the language processor transfers
control to another routine or another part of the program, it sets the SIGL special variable to the line
number from which the transfer occurred. (The line numbers in the following example are to aid in
discussion after the example. They are not part of the program.)

1 /* REXX */
2 :
3 CALL routine
4 :
5
6 routine:
7 SAY 'We came here from line' SIGL /* SIGL is set to 3 */
8 RETURN

If the called routine itself calls another routine, SIGL is reset to the line number from which the most
recent transfer occurred.

SIGL and the SIGNAL ON ERROR instruction can help determine what command caused an error and what
the error was. When SIGNAL ON ERROR is in a program, any host command that returns a nonzero return
code causes a transfer of control to a routine named error. The error routine runs regardless of other
actions that would usually take place, such as the transmission of error messages. (The line numbers are
to aid the discussion and are not part of the program.)

01 /* REXX program with error -- 'READER' should be 'RDR' */
02 SIGNAL ON ERROR
03 ADDRESS POWER "PCANCEL"
04
05 ADDRESS POWER "PDELETE READER,ALL" /* line containing error */
06 .
07 .
08 .
09 EXIT
10
11 ERROR:
12 SAY 'The return code from the command on line' SIGL 'is' RC

This produces:

The return code from the command on line 5 is -3

For more information about the SIGNAL instruction, see the REXX/VSE Reference.

Tracing with the Interactive Debug Facility
The interactive debug facility lets a user control the execution of a program. (In a batch environment, the
interaction is between the input stream and the program.) The language processor reads from the input
stream, and writes output to the output stream. If you have not changed the defaults, the input stream is
SYSIPT, and the output stream is SYSLST.

If running from the operator's console, interactive debug pauses for input after most instructions. If you
are using files for input and output, instead of pausing, interactive debug reads the next line from the
input stream at each pause point.

Starting Interactive Debug
To start interactive debug, specify ? before the option of a TRACE instruction, for example: TRACE ?A.
There can be no blank(s) between the question mark and the option. Interactive debug is not carried over
into external routines that are called but is resumed when the routines return to the traced program.

Chapter 9. Diagnosing Problems within a Program 97

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Options within Interactive Debug
After interactive debug starts, you can provide one of the following during each pause or each time the
language processor reads from the input stream.

• A null line, which continues tracing. The language processor continues execution until the next pause or
read from the input stream. Repeatedly input of a null line, therefore, steps from pause point to pause
point until the program ends.

• An equal sign (=), which re-executes the last instruction traced. The language processor re-executes the
previously traced instruction with values possibly modified by instructions read from the input stream.
(The input can also be an assignment, which changes the value of a variable.)

• Additional instructions. This input can be any REXX instruction, including a command or call to another
program. This input is processed before the next instruction in the program is traced. For example, the
input could be a TRACE instruction that alters the type of tracing:

 TRACE L /* Makes the language processor pause at labels only */

The input could be an assignment instruction. This could change the flow of a program, by changing the
value of a variable to force the execution of a particular branch in an IF THEN ELSE instruction. In the
following example, RC is set by a previous command.

 IF RC = 0 THEN
 DO
 instruction1
 instruction2
 END
 ELSE
 instructionA

If the command ends with a nonzero return code, the ELSE path is taken. To force taking the first path,
the input during interactive debug could be:

 RC = 0

Ending Interactive Debug
You can end interactive debug in one of the following ways:

• Use the TRACE OFF instruction as input. To end tracing, you can include TRACE OFF to be read as input
from the current input stream. If you have not changed the default, the input stream is SYSIPT. The
TRACE OFF instruction ends tracing, as stated in the message at the beginning of interactive debug:

 +++ Interactive trace. TRACE OFF to end debug, ENTER to continue. +++

• Use the TRACE ? instruction as input

The question mark prefix before a TRACE option can end interactive debug as well as beginning it.
The question mark reverses the previous setting (on or off) for interactive debug. Thus you can use
TRACE ?R within a program to start interactive debug, and provide input of another TRACE instruction
with ? before the option to end interactive debug but continue tracing with the specified option.

• Use TRACE with no options as input. If you specify TRACE with no options in the input stream, this turns
off interactive debug but continues tracing with TRACE Normal in effect. (TRACE Normal traces only
failing commands after execution.)

• Let the program run until it ends. Interactive debug automatically ends when the program that started
tracing ends. You can end the program prematurely using as input an EXIT instruction. The EXIT
instruction ends both the program and interactive debug.

98 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

• Use the TE immediate command. The TE immediate command ends tracing of REXX programs. The
program continues processing, but tracing is off. In interactive debug, you can provide TE as input to
end tracing.

Chapter 9. Diagnosing Problems within a Program 99

100 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 10. Using REXX/VSE External Functions

Purpose
This chapter shows how to use external functions and describes function packages.

REXX/VSE External Functions
In addition to the built-in functions, REXX/VSE provides external functions that you can use to do specific
tasks.

The REXX/VSE external functions are:

• ASSGN – Returns the name of the current input or output stream, and, optionally, changes it.
• OUTTRAP – Returns the name of the variable in which trapped output is stored or traps lines of POWER

command output.
• REXXIPT – Lets a program read data stored in compound variables. (The program can read the data as if

it were SYSIPT data.)
• REXXMSG – Specifies the output destination where REXX/VSE messages are routed to. Offers the

possibility to suppress all REXX error messages.
• SETLANG – Retrieves and optionally changes the language of REXX messages. The function returns the

previous language setting.
• SLEEP – Specifies the number of seconds a REXX program is requested to wait until it continues

processing.
• STORAGE – Returns a specified number of bytes of data from a specified address in storage. You can

optionally overwrite the storage.
• SYSVAR – Returns VSE system information.

Following are brief explanations about how to use these external functions. For complete information, see
REXX/VSE Reference.

Using the ASSGN Function
ASSGN returns the name of the current input or output stream, or, optionally, changes it.

ASSGN(STDIN) returns the name of the current input stream; ASSGN(STDOUT) returns the name of the
current output stream. To return the name of the current stream and change it to the specified value, you
can use one of the following:

ASSGN(STDIN,sysipt) /* Changes input to SYSIPT */
ASSGN(STDIN,syslog) /* Changes input to SYSLOG */
ASSGN(STDIN,filename) /* Changes input to specified file */
ASSGN(STDOUT,syslst) /* Changes outout to SYSLST */
ASSGN(STDOUT,syslog) /* Changes output to SYSLOG */
ASSGN(STDOUT,filename) /* Changes output to specified file */

Note: Using SYSLST with STDIN or SYSIPT with STDOUT results in REXX error 40.

Using the OUTTRAP Function
OUTTRAP returns the name of the variable where trapped output is stored (with no arguments) or traps:

• error information from PUTQE and GETQE
• command output from POWER commands (CTL requests) sent to the SAS interface or error information

if the command fails.

© Copyright IBM Corp. 1988, 1995 101

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

(See VSE/POWER Application Programming, for a list of POWER commands you can send through a
CTL service request. See VSE/POWER Administration and Operation for the syntax of these commands.)
OUTTRAP may not trap all of the output from the SAS interface; it traps only the output routed back
through the interface.

Specify OUTTRAP with no arguments to return the name of the variable in which trapped output is stored.
If you use OUTTRAP with no arguments and no trapping is in effect, then it returns OFF.

y = OUTTRAP()
SAY y /* Produces the variable name being used to store */
 /* output or "OFF" if trapping is off. */

Specify a stem (the part of a compound variable up to and including the first period) after the function call
to trap lines of command output (or error information). See “Using Compound Variables and Stems” on
page 75 for details about compound variables.)

OUTTRAP("trapvar.")

This starts trapping, using the stem trapvar. for the numbered series of compound variables. The
compound variables trapvar.1, trapvar.2, trapvar.3, and so on, each receive a line of output. If
you do not set a limit to the number of output lines, the numbering of variables continues to a maximum
of 999999999 lines. The total number of lines stored is in trapvar.0.

With the CONCAT option, OUTTRAP stores output from successive commands in consecutive order until
reaching the maximum number of lines. For example, if a command produces 3 lines of output and the
next command produces 2 lines, OUTTRAP stores output in trapvar.1 through trapvar.5. CONCAT
is the default. With NOCONCAT, OUTTRAP overwrites stored lines. For example, if OUTTRAP stores 3
lines from a command (in trapvar.1 through trapvar.3) and the next command produces 2 lines,
OUTTRAP stores them in trapvar.1 and trapvar.2. (Also, trapvar.3 would no longer contain the
third line from the first command's output. Before OUTTRAP stores output, trapvar. is dropped, as if
the REXX instruction DROP trapvar. is used.)

Here is an example using NOCONCAT:

y = OUTTRAP('var.','*',NOCONCAT)
ADDRESS power "PDISPLAY LST,ALL"
 SAY 'The number of lines stored is' var.0

To limit the number of lines of output saved, specify a number after the variable name.

 y = OUTTRAP('trapvar.',5)

Specifying 5 after the variable name trapvar means that up to 5 lines of command output are stored.
Trapvar.1 through trapvar.5 contain the output. The number of lines of stored output, in this case 5,
is in trapvar.0. Subsequent lines of command output are not saved.

For more information, see REXX/VSE Reference.

Using the REXXIPT Function
You can use the REXXIPT function to read data stored in compound variables as if it were SYSIPT data. To
have access to SYSIPT data, you must use the JCL card // EXEC REXX= to call the program containing
the REXXIPT function. (Otherwise, you receive an error.)

First, store the lines of data into compound variables. For example:

line.1="Now is the time"
line.2="for all good men"
line.3="to come to the aid of their country."
line.0=3 /* number of lines of data */

102 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Call the REXXIPT function before using the ADDRESS instruction:

oldstem = REXXIPT(line.)
ADDRESS LINK "myphase"

The REXXIPT function call specifies the name of a stem, in this case, line.. The variables
line.1 through line.n contain the lines of data to read. (In this case, line.1
contains Now is the time, line.2 contains for all good men, and line.3 contains
to come to the aid of their country.). The variable line.0 contains the number of lines
available to read; in this case, line.0 contains 3.

The called program uses the VSE/ESA OPEN, GET, and CLOSE macros using DTFDI to read records from
SYSIPT. It reads the contents of the compound variables in order. (It reads line.1, then line.2, then
line.3.) A record of fewer than 80 bytes is padded with blanks. A record of more than 80 bytes is
truncated. Reading past the the last record acts as the end of file condition. If you call the same program a
second time and it reads the records again, reading starts at the first record.

You can use the REXXIPT function for the following environments:

• ADDRESS JCL
• ADDRESS LINK
• ADDRESS LINKPGM.

Using the REXXMSG Function
You can use the REXXMSG function to specify the output destination where REXX/VSE messages are
routed to. Use REXXMSG() to find out the current message destination without setting anything. You can
also use REXXMSG to suppress all REXX/VSE messages. Initially REXXMSG is set to "ON". See REXX/VSE
Reference, for REXXMSG examples.

Using the SETLANG Function
You can use the SETLANG function to determine the language in which REXX messages are currently
being produced and optionally to change the language. If you do not specify an argument, SETLANG
returns a 3-character code that indicates the language in which REXX messages are currently being
produced. Table 6 on page 103 shows the language codes that replace the function call and the
corresponding language for each code.

You can optionally specify one of the language codes on the function call to change the language. In this
case, SETLANG returns the language code in effect before the call to SETLANG and sets the language to
the code you have specified. The language codes you can specify depend on the language features that
are installed on your system.

Table 6. Language Codes for SETLANG Function That Replace the Function Call

Language
Code

Language

ENP US English--all uppercase

ENU US English-mixed case (uppercase and lowercase)

(This is the default.)

To find out the language in which REXX messages are currently being presented, use the SETLANG
function with no argument:

 curlang=SETLANG() /* curlang is set to the 3-character */
 /* code of the current language setting. */

Chapter 10. Using REXX/VSE External Functions 103

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

To set the language to uppercase US English for subsequent REXX messages, use the SETLANG function
with the 3-character code, ENP, enclosed in parentheses:

 oldlang=SETLANG("ENP") /* oldlang is set to the previous */
 /* language setting. */
 /* The current setting is ENP. */

Using the SLEEP Function
You can use the SLEEP function to specify the time in seconds a REXX program is requested to wait. See
REXX/VSE Reference, for an example of SLEEP.

Using the STORAGE Function
You can use the STORAGE function to retrieve data from a particular address in storage. You can also use
the STORAGE function to place data into a particular address in storage. See REXX/VSE Reference, for
examples of STORAGE.

Using the SYSVAR Function
You can use the SYSVAR function to get, depending on the arg_name, VSE system information:

• the highest return code from VSE JCL
• the VSE JCL jobname
• the Librarian return and reason code of an EXECIO command for Libr members
• the VSE/POWER jobname
• the jobnumber of the VSE/POWER job calling the REXX program
• the partition ID
• the VSE/ESA supervisor version.

See REXX/VSE Reference, for examples of SYSVAR.

Function Packages
A function package is a group of external routines (functions and subroutines) that are accessed more
quickly than external routines written in interpreted REXX. You can write functions in REXX or in any
language that VSE/ESA supports and that can follow REXX parameter passing conventions. Routines in
a function package must be written in a programming language that produces object code, which can
be link-edited into a phase. The routine must also support the system interface for function packages.
Some programming languages that meet these qualifications are assembler, COBOL, PL/I, and REXX that
is compiled.

There are three types of function packages.

• User packages — User-written external functions that are available to an individual. These packages are
searched before other types of function packages and are often written to replace the other types of
function packages.

• Local packages — Application or system support functions that are generally available to a specific
group of users. Local packages are searched after user packages.

• System packages — Functions written for system-wide use, such as the REXX/VSE external functions.
System packages are searched after user and local packages.

The default name for the user packages is ARXFUSER, and the default name for the local package is
ARXFLOC. The REXX/VSE Reference, contains information about providing your own system function
package or more than one local or user function package.

104 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Search Order for Functions
When the language processor encounters a function call, if defaults have not been changed, it goes
through the following search order:

• Internal functions—Labels in the program that issued the function call are searched first (unless the
label is in quotation marks in the function call).

• Built-in functions — The built-in functions are next in the search order.
• Function packages—REXX/VSE searches user, local, and system function packages, in that order.
• External function—A member of a sublibrary in the active PROC or PHASE chain.

See REXX/VSE Reference, for details about the search order.

Chapter 10. Using REXX/VSE External Functions 105

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

106 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 11. Storing Information in the Data Stack

Purpose
This chapter describes how to use the REXX data stack to store information. Also, thischapter describes
how to add a buffer to a data stack and how to create a private data stack.

What is a Data Stack?
REXX/VSE uses an expandable data structure called a data stack to store information. The data stack
combines characteristics of a conventional stack and queue.

Stacks and queues are similar types of data structures that temporarily hold data items (elements) until
needed. When elements are needed, they are removed from the top of the data structure. The basic
difference between a stack and a queue is that elements are added to the top of a stack and to the bottom
of a queue. The figure that follows shows this.

With a stack, the last element added to the stack (elem6) is the first removed. Because elements are
placed on the top of a stack and removed from the top, the newest elements on a stack are the ones
processed first. The technique is called LIFO (last in first out).

With a queue, the first element added to the queue (elem1) is the first removed. Because elements are
placed on the bottom of a queue and removed from the top, the oldest elements on a queue are the ones
processed first. The technique is called FIFO (first in first out).

 │ ▼ ▲ │ │ ▲ │
 ├───────────┤ ├───────────┤
 │ elem6 │ │ elem1 │
 ├───────────┤ ├───────────┤
 │ elem5 │ │ elem2 │
 ├───────────┤ ├───────────┤
 │ elem4 │ │ elem3 │
 ├───────────┤ ├───────────┤
 Stack │ elem3 │ │ elem4 │ Queue
 ├───────────┤ ├───────────┤
 │ elem2 │ │ elem5 │
 ├───────────┤ ├───────────┤
 │ elem1 │ │ elem6 │
 └───────────┘ ├───────────┤
 │ ▲ │

As the following figure shows, the data stack that REXX uses combines the techniques used in adding
elements to stacks and queues. You can add elements on the top or the bottom of a data stack. Removal
of elements from the data stack, however, occurs only from the top of the stack.

 │ ▼ ▲ │
 ├───────────┤
 Data │ elem1 │
 ├───────────┤
 Stack │ elemA │
 ├───────────┤
 │ ▲ │

Manipulating the Data Stack
Several REXX instructions manipulate the data stack. PUSH and QUEUE add elements to the data stack.
PULL and PARSE PULL remove elements from the data stack.

Adding Elements to the Data Stack
PUSH and QUEUE store information on the data stack.

© Copyright IBM Corp. 1988, 1995 107

• PUSH - puts one item of data on the top of the data stack. There is virtually no limit to the length of the
data item.

 elem1 = 'String 1 for the data stack'
 PUSH elem1

• QUEUE - puts one item of data on the bottom of the data stack. Again, there is virtually no limit to the
length of the data item.

 elemA = 'String A for the data stack'
 QUEUE elemA

If the two preceding sets of instructions were in a program, the data stack would appear as follows:
 PUSH
 │ ▼ │
 ├───────────┤
 │ elem1 │
 ├───────────┤
 │ elemA │
 ├───────────┤
 │ ▲ │
 QUEUE

Note: When adding elements in a particular order to the data stack, some people find it less confusing to
use the same instruction consistently, either PUSH or QUEUE, but not both.

Removing Elements from the Stack
To remove information from the data stack, use the PULL and PARSE PULL instructions. These instructions
appear earlier in this book extracting information from the input stream. (When the data stack is empty,
PULL removes information from the input stream. If you have not changed the default, the input stream is
SYSIPT.)

• PULL and PARSE PULL - remove one element from the top of the data stack.

 PULL stackitem

Based on the examples from “Adding Elements to the Data Stack” on page 107, the variable
stackitem contains the value of elem1 with the characters translated to uppercase.

 SAY stackitem /* Produces: STRING 1 FOR THE DATA STACK */

If you use PARSE PULL rather than PULL, the language processor does not translate the value to
uppercase.

 PARSE PULL stackitem
 SAY stackitem /* Produces: String 1 for the data stack */

After either of the preceding examples, the data stack appears as follows:
 PULL
 │ ▲ │
 ├───────────│
 │ elemA │
 ├───────────┤
 │ │

Determining the Number of Elements on the Stack
The QUEUED built-in function returns the total number of elements on a data stack. For example, to find
out how many elements are on the data stack, use the QUEUED function with no arguments:

108 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 SAY QUEUED() /* Produces a decimal number */

To remove all elements from a data stack and list them, you can use the QUEUED function as follows:

 number = QUEUED()
 DO number
 PULL element
 SAY element
 END

Exercise - Using the Data Stack
Write a program that puts the letters V, S, E on the data stack in such a way that they spell "VSE" when
removed. Use the QUEUED built-in function and the PULL and SAY instructions to help remove the letters
and list them. To put the letters on the stack, you can use the REXX instructions PUSH, QUEUE, or a
combination of the two.

ANSWER

/******************************** REXX *****************************/
/* This program uses the PUSH instruction to put the letters V,S,E */
/* on the data stack in reverse order. */
/***/

 PUSH 'E' /***************************/
 PUSH 'S' /* Data in stack is: */
 PUSH 'V' /* (third push) V */
 /* (second push) S */
 number = QUEUED() /* (first push) E */
 DO number /***************************/
 PULL stackitem
 SAY stackitem
 END

Figure 40. Possible Solution 1

/******************************** REXX ******************************/
/* This program uses the QUEUE instruction to put the letters V,S,E */
/* on the data stack in that order. */
/**/

 QUEUE 'V' /***************************/
 QUEUE 'S' /* Data in stack is: */
 QUEUE 'E' /* (first queue) V */
 /* (second queue) S */
 /* (third queue) E */
 DO QUEUED() /***************************/
 PULL stackitem
 SAY stackitem
 END

Figure 41. Possible Solution 2

Chapter 11. Storing Information in the Data Stack 109

/******************************** REXX *****************************/
/* This program uses the PUSH and QUEUE instructions to put V,S,E */
/* on the data stack. */
/***/

 PUSH 'S' /***************************/
 QUEUE 'E' /* Data in stack is: */
 PUSH 'V' /* (second push) V */
 /* (first push) S */
 /* (first queue) E */
 DO QUEUED() /***************************/
 PULL stackitem
 SAY stackitem
 END

Figure 42. Possible Solution 3

Processing of the Data Stack
You can think of a data stack as a temporary holding place for information. Every REXX/VSE program has a
separate data stack available for each REXX environment that is initialized. (There is one data stack for an
environment unless you create additional ones with NEWSTACK.)

When a program issues a PULL instruction, and when it issues a command, the data stack is searched first
for information and, if that is empty, information is retrieved from the input stream.
 │
 ▼

 ┌───────────┐
 │ │
 ├───────────┤
 │ │
 ├───────────┤
 Data │ │
 ├───────────┤
 Stack │ │
 ├───────────┤
 │ │
 └───────────┘

 │
 ▼

 ┌───────────┐
 │ │
 │ │
 Input Stream │ │
 └───────────┘

Some types of input that can be stored on the data stack are:

• Data for the PULL and PARSE PULL instructions

When a program issues a PULL instruction, the language processor first goes to the data stack and pulls
off the top element. If the data stack is empty, the language processor goes to the input stream for
input.

Note: To prevent the language processor from searching the data stack, you can use the PARSE
EXTERNAL instruction instead of PULL. PARSE EXTERNAL gets input directly from the input stream
and bypasses the data stack.

• Responses to commands

A program can put information on the data stack for a command's use.
• Similarly, a program can put data from the input stream on the data stack for a command's use.
• Commands to be issued after the program ends

110 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

When a program ends, the language processor considers all elements remaining on the data stack to
be JCL and submits them to Job Control. (See “Leaving Data on the Stack” on page 112 for more
information.)

• Information the EXECIO command reads from and writes to files when performing I/O.

For information about the EXECIO command and how it uses the data stack, see “Using EXECIO to
Process Information to and from Files” on page 120.

Using the Data Stack
The data stack has some unique characteristics, such as:

• It can contain a virtually unlimited number of data items of virtually unlimited size.
• It can contain commands to be issued after the program ends.
• It can pass information between REXX programs and other types of programs.

Because of the data stack's unique characteristics, you can use the data stack specifically to:

• Store a large number of data items for a single program's use.
• Pass a large number of arguments or an unknown number of arguments between a routine (subroutine

or function) and the main program.
• Store data items from an input file that the EXECIO command has read. For information about the

EXECIO command, see “Using EXECIO to Process Information to and from Files” on page 120.
• Share information between a REXX program and any other program.

Passing Information between a Routine and the Main Program
You can use the data stack to pass information from a program to an external routine without using
arguments. The program pushes or queues the information on the stack and the routine pulls it off and
uses it. The figure that follows shows a program that puts information on the stack and calls an external
routine. The second figure shows the external routine.

/*************************** REXX ********************************/
/* This program places the letters 'V', 'S', 'E' on the data */
/* stack. It then calls an external routine that changes the */
/* data stack, pulls a line from the stack without uppercasing */
/* it, and sends it to the output stream. */
/***/

QUEUE 'V'
QUEUE 'S'
QUEUE 'E'

CALL external

PARSE PULL stackitem
SAY stackitem

Figure 43. Using the Data Stack to Pass Information from the Main Program

Chapter 11. Storing Information in the Data Stack 111

/*************************** REXX ********************************/
/* This program reads the name of the operating system from the */
/* stack and puts an item on the stack. */
/***/

EXTERNAL:
new_stack = '
number = QUEUED()

DO number
 PULL stackitem
 new_stack = new_stack||stackitem
End

PUSH 'You are working on a' new_stack 'system.' /* Puts item on stack */

Figure 44. External Routine

Leaving Data on the Stack
If you call REXX by using the JCL EXEC command, you can leave JCL statements on the stack. VSE/ESA
can then process the JCL statements left on the stack. This means you can insert JCL statements or data
into the current job stream.

JCL statements must be 80 characters. If a stack entry has fewer than 80 characters, it is padded with
trailing blanks. If it has more than 80 characters, only the first 80 are used; the rest are ignored. After
program processing is done, the 80-character entries left on the stack are passed to VSE/ESA. VSE/ESA
treats these as a JCL procedure. See the z/VSE System Control Statements, SC33-6713, for rules about
the contents of a JCL procedure.

Creating a Buffer on the Data Stack
When a program calls a routine (subroutine or function) and both the program and the routine use the
data stack, the stack becomes a way to share information. However, programs and routines that do not
purposely share information from the data stack might unintentionally do so and end in error. To help
prevent this, you can use the MAKEBUF and DROPBUF commands. MAKEBUF creates a buffer, which you
can think of as an extension to the stack. DROPBUF deletes the buffer and all elements within it.

Although the buffer does not prevent the PULL instruction from accessing elements placed on the stack
before the buffer was created, it is a way for a program to create a temporary extension to the stack. The
buffer allows a program to:

1. Use the QUEUE instruction to insert elements in FIFO order on a stack that already contains elements.
2. Have temporary storage that it can delete easily with the DROPBUF command.

A program can create multiple buffers before dropping them. Every time MAKEBUF creates a new buffer,
the REXX special variable RC is set with the number of the buffer created. Thus, if a program issues three
MAKEBUF commands, RC is set to 3 after the third MAKEBUF command.

Note: To protect elements on the stack, a program can create a new stack with the NEWSTACK command.
For information about the NEWSTACK command, see “Protecting Elements in the Data Stack” on page
116.

Creating a Buffer with the MAKEBUF Command
To create a buffer on the data stack before adding more elements to the stack, use the MAKEBUF
command. All elements added to the data stack after the MAKEBUF command are placed in the buffer.
Below the buffer are elements placed on the stack before the MAKEBUF command.
 │ ▼ ▲ │
 ├───────────┤
 │ newX │
 ├───────────┤
 │ newY │ ◄─ QUEUE
 ────┼───────────┼───

112 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf

 MAKEBUF │ │
 ────┼───────────┼───
 │ old1 │
 ├───────────┤
 │ oldA │
 ├───────────┤
 │ ▲ │

To create this buffer, you could use the following instructions:

 'MAKEBUF'
 PUSH 'newX'
 QUEUE 'newY'

Removing Elements from a Stack with a Buffer
The buffer MAKEBUF created does not prevent a program from accessing elements below it. After a
program removes the elements added after the MAKEBUF command, then it removes elements added
before the MAKEBUF command was issued.

Given the previous illustration, the program can issue three PULL instructions to remove the following
elements from the data stack.

 newX
 newY
 old1

To prevent a routine from accessing elements below the buffer, you can use the QUEUED built-in function
as follows:

 olditems = QUEUED()
 'MAKEBUF'
 PUSH ...
 QUEUE ...
 DO WHILE QUEUED() > olditems /* total items > old number of items */
 PULL
 ...
 END
 'DROPBUF'

Dropping a Buffer with the DROPBUF Command
When a program has no more need for a buffer on the data stack, it can use the DROPBUF command to
remove the buffer (and its contents). DROPBUF removes the most recently created buffer.
 DROPBUF │ ▼ ▲ │
 ├───────────┤
 │ old1 │
 ├───────────┤
 │ oldA │
 ├───────────┤
 │ ▲ │

To drop a specific buffer on the data stack and all buffers created after it, use the REXX/VSE DROPBUF
command with the number of the buffer. The first MAKEBUF creates buffer 1, the second creates buffer 2,
and so on. For example, suppose a program issues three MAKEBUF commands that create three buffers.
Issuing DROPBUF 2 removes the second and third buffers and all elements within them.

To remove all elements from the entire data stack including elements placed on the data stack before
buffers were added, use DROPBUF 0. This creates an empty data stack. (You should use this with
caution.)

Note: When an element is removed below a buffer, the buffer disappears. Thus, when you are removing
elements below a buffer, the DROPBUF command you use might remove the incorrect buffer and its
elements.

Chapter 11. Storing Information in the Data Stack 113

To prevent a program from removing elements below a buffer, use the QUEUED built-in function or the
REXX/VSE NEWSTACK command, as “Protecting Elements in the Data Stack” on page 116 describes.

Finding the Number of Buffers with the QBUF Command
To find out how many buffers the MAKEBUF command created, use the REXX/VSE QBUF command. QBUF
returns the number of buffers created in the REXX special variable RC.

 'MAKEBUF'
 ⋮
 'MAKEBUF'
 ⋮
 'QBUF'
 SAY 'The number of buffers is' RC /* RC = 2 */

QBUF returns the total number of buffers created, not just the ones a single program created. Thus, if
a program issues two MAKEBUF commands and calls a routine that issues two more, when the routine
issues a QBUF command, RC returns the total number of buffers created, which is four.

Finding the Number of Elements in a Buffer
To find out how many elements are in the most recently created buffer, use the REXX/VSE QELEM
command. QELEM returns the number of elements in the most recently created buffer in the REXX special
variable RC.

 PUSH A
 'MAKEBUF'
 PUSH B
 PUSH C
 'QELEM'
 SAY 'The number of elements is' RC /* RC = 2 */

QELEM does not return the number of elements on a data stack with no buffers that the MAKEBUF
command created. If QBUF returns 0, no matter how many elements are on the stack, QELEM also returns
0.

For more information about these stack commands, see the REXX/VSE Reference.

Exercises - Creating a Buffer on the Data Stack
1. What are the results of the following instructions?

a. What is item?

 QUEUE A
 QUEUE B
 'MAKEBUF'
 QUEUE C
 PULL item

b. What is element?

 PUSH 'a'
 PUSH 'b'
 'MAKEBUF'
 PUSH 'c'
 PUSH 'd'
 'DROPBUF'
 PARSE PULL element

c. What is stackitem?

 QUEUE a
 'MAKEBUF'

114 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

 QUEUE b
 'MAKEBUF'
 QUEUE c
 'DROPBUF'
 PULL stackitem

d. What is RC?

 PUSH A
 'MAKEBUF'
 PUSH B
 CALL sub1
 'QBUF'
 SAY RC
 EXIT

 sub1:
 'MAKEBUF'
 RETURN

e. What is RC?

 QUEUE A
 'MAKEBUF'
 PUSH B
 PUSH C
 'MAKEBUF'
 PUSH D
 'QELEM'
 SAY RC

f. What is RC?

 QUEUE A
 QUEUE B
 QUEUE C
 'QELEM'
 SAY RC

2. The following instructions:

 'MAKEBUF'
 QUEUE 'prompt'
 'MAKEBUF'
 QUEUE 'data'
 QUEUE 'info'
 QUEUE 'item'
 'MAKEBUF'

created this data stack:
 ─────┬───────────┬─────
 MAKEBUF 3 │ │
 ─────┼───────────┼─────
 │ data │
 ├───────────┤
 │ info │
 ├───────────┤
 │ item │
 ─────┼───────────┼─────
 MAKEBUF 2 │ │
 ─────┼───────────┼─────
 │ prompt │
 ─────┼───────────┼─────
 MAKEBUF 1 │ │
 ─────┴───────────┴─────

Answer the following questions based on this information.

a. What is returned to the function?

 SAY QUEUED()

Chapter 11. Storing Information in the Data Stack 115

b. What is RC?

 'QBUF'
 SAY RC

c. What is RC?

 'QELEM'
 SAY RC

d. What are both RCs and the result of the QUEUED() function?

 'DROPBUF 2'
 'QBUF'
 SAY RC
 'QELEM'
 SAY RC
 SAY QUEUED()

ANSWERS

1. a. C
b. b
c. B (The language processor uppercases b because it was queued without quotation marks and

pulled without PARSE.)
d. 2
e. 1
f. 0

2. a. 4
b. 3
c. 0
d. 1, 1, 1

Protecting Elements in the Data Stack
In certain environments, it is often important for a program to isolate stack elements from other
programs. A program might want to protect stack elements from a routine (subroutine or function) that it
calls.

To protect elements on the data stack, you can create a new data stack with the REXX/VSE NEWSTACK
command. To delete the new data stack and all elements in it, use the REXX/VSE DELSTACK command.
Programs can create multiple stacks before deleting them.

Note: Before a program returns to its caller, the called program should issue a DELSTACK command for
each NEWSTACK command it issued, unless the called program intends for the caller to also use the new
data stack.

Creating a New Data Stack with the NEWSTACK Command
The NEWSTACK command creates a private data stack that is completely isolated from the original data
stack. A program and the routines that it calls cannot access the elements on the original data stack until
it (or its routines) issues a DELSTACK command. When there are no more elements in the new data stack,
information is taken from the input stream.

Note: If you use NEWSTACK, you also need to use a corresponding DELSTACK command.

All elements added to the data stack after the NEWSTACK command are placed in the new data stack.
The original stack contains the elements placed on the stack before the NEWSTACK command.

116 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 │ ▼ ▲ │
 ┌───────────┐ ├───────────┤
 Original │ old1 │ │ newX │ New
 ├───────────┤ ├───────────┤
 Stack │ oldA │ │ newY │ Stack
 └───────────┘ ├───────────┤
 │ ▲ │

To create this new stack, you could use the following instructions:

 PUSH 'oldA'
 PUSH 'old1'
 'NEWSTACK'
 QUEUE 'newY'
 PUSH 'newX'

Deleting a Private Stack with the DELSTACK Command
When a program wants to delete the new stack and remove all elements placed on the new stack, it can
issue the REXX/VSE DELSTACK command. DELSTACK removes the most recently created data stack. If no
stack was previously created with the NEWSTACK command, DELSTACK removes all the elements from
the original stack.

Finding the Number of Stacks
To find out how many stacks exist, use the REXX/VSE QSTACK command. QSTACK returns the total
number of stacks, including the original data stack, in the REXX special variable RC.

 'NEWSTACK'
 :
 'NEWSTACK'
 :
 'QSTACK'
 SAY 'The number of stacks is' RC /* RC contains 3 */

QSTACK returns the total number of stacks, not only the ones created for a single program. Suppose a
program issues two NEWSTACK commands and calls a routine that issues two more. When the routine
issues a QSTACK command, RC contains the total number of stacks, which is five.

For more information about these commands, see the REXX/VSE Reference.

Chapter 11. Storing Information in the Data Stack 117

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Additional Example

/********************************* REXX ******************************/
/* This program tests several of the stack functions to see how they */
/* work together. It uses the NEWSTACK and DELSTACK commands, puts */
/* an element on the stack that exceeds 255 characters, uses the */
/* LENGTH built-in function to see how long the element is, uses the */
/* QUEUED built-in function to see how many items are on the stack, */
/* and then issues more PULL instructions than are elements on the */
/* stack. */
/***/
 element = 'Attention please! This is a test.'
 PUSH element

 'NEWSTACK' /* Create a new stack and protect elements previously */
 /* placed on the stack */

 longitem = 'SAA is a definition -- a set of software interfaces,',
 'conventions, and protocols that provide a framework for designing',
 'and developing applications with cross-system consistency.',
 'The Systems Application Architecture defines a common programming',
 'interface you can use to develop applications, and defines common',
 'communications support that you can use to connect those',
 'applications.'

 SAY 'The length of the element is' LENGTH(longitem) 'characters.'
 /* The length of the element is 379 characters. */
 QUEUE longitem

 PULL anyitem
 SAY anyitem /* Produces the longitem quote in uppercase */

 SAY 'There are' QUEUED() 'number of elements on the stack.'
 /* The QUEUED function returns 0 */

 PULL emptyitem /* Pull an element from the stack. If stack is */
 /* empty, pull an element from the input stream. */

 'DELSTACK' /* Remove the new stack and return to the original stack.*/

 PULL anyitem
 SAY anyitem /* Produces: ATTENTION PLEASE! THIS IS A TEST. */

Figure 45. Data Stack Example

118 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Chapter 12. Processing Data and Input/Output
Processing

Purpose
This chapter describes dynamic modification of a single REXX expression and I/O processing of files.

Types of Processing
The word processing here means the performance of operations and calculations on data. Ordinary
processing of instructions in REXX occurs every time the language processor evaluates an expression.
This chapter describes two special types of REXX processing:

• Dynamic modification of a single REXX expression

The INTERPRET instruction evaluates an expression and then treats it as a REXX instruction.
• Processing information to and from files

The REXX/VSE EXECIO command in a program reads information from a file to the data stack (or a list of
variables) and writes information from the data stack (or list of variables) back to a file.

Dynamic Modification of a Single REXX Expression
Typically the language processor evaluates REXX expressions and the result replaces the expression. For
example, the arithmetic expression 5 + 5 evaluates to 10.

 answer = 5 + 5 /* answer gets the value 10 */

If the arithmetic expression is in quotation marks, the expression is evaluated as a string.

 answer = '5 + 5' /* answer gets the value 5 + 5 */

To both evaluate and execute an expression, you can use the INTERPRET instruction.

Using the INTERPRET Instruction
The INTERPRET instruction not only evaluates an expression, but also treats it as an instruction after it
is evaluated. Thus if a combination of the previous examples were used with the INTERPRET instruction,
answer becomes "10".

 number=2
 message='SAY "The square of 2 is"'
 square='** 2'
 INTERPRET message number square /* "The square of 2 is 4" */

You can also group a number of instructions within a string, assign the string to a variable, and use
INTERPRET to execute the instructions:

 action = 'DO 3; SAY "Hello!"; END'
 INTERPRET action /* results in:
 Hello!
 Hello!
 Hello! */

© Copyright IBM Corp. 1988, 1995 119

Because the INTERPRET instruction causes dynamic modification, use it very carefully. For more
information about the INTERPRET instruction, see the REXX/VSE Reference.

Using EXECIO to Process Information to and from Files
A program uses the EXECIO command to perform the input and output (I/O) of information to and from
a file. The information can be stored in the data stack for serialized processing or in a list of variables for
random processing.

When to Use the EXECIO Command
The various operands and combination of operands of the EXECIO command permit you to do many types
of I/O. For example, you can use the EXECIO command to:

• Read information from a file
• Write information to a file
• Open a file without reading or writing any records
• Empty a file
• Copy information from one file to another
• Copy information to and from a list of compound variables
• Add information to the end of a file
• Update information in a file one line at a time.

Using the EXECIO Command
EXECIO reads information from or writes information to a file. You can also use EXECIO to open a file
without reading or writing any records or to empty a file. EXECIO reads information from a file with
either the DISKR or DISKRU operands. Using these operands, you can also open a file without reading its
records. See “Reading Information from a File” on page 121 for more information about the DISKR and
DISKRU operands. EXECIO writes information to a file with the DISKW operand. Using this operand, you
can also open a file without writing records or empty an existing file. See “Writing Information to a File” on
page 123 for more information on the DISKW operand.

EXECIO operates on I/O files of the following types:

• Sublibrary members of any type. The REXX program must specify the full name of the member on the
EXECIO command. (The full name consists of a library name, sublibrary name, member name, and
member type, for example: mylib.mysublib.myfile.typea.) See the description of NODATA and
DATA that follows.

• SYSIPT and SYSLST. These names are reserved words on the EXECIO command. You can use only
DISKR (not DISKRU) with SYSIPT. You can use only DISKW with SYSLST.

This option is only for members of a sublibrary.
NODATA

DATA
indicates whether the member contains SYSIPT data. NODATA specifies no SYSIPT data in the
member. DATA specifies the member contains SYSIPT data.

This option is valid only for DISKW and is required only for opening a member of a sublibrary. This
option is ignored for other types of files.

The default is NODATA for a new member. For a member that already exists, the default is its value
from when it was created.

• SAM files. Only SAM files on disk are supported.

120 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Before EXECIO can perform I/O to or from a SAM file, you need to use DLBL to associate the file with a file
name. The following example associates userid.my.input with the file name myinp:

// DLBL myinp,'userid.my.input'

On EXECIO for SAM files, you also need to specify additional operands that you do not specify for other
types of files. See “Options” on page 124 for details.

If you use EXECIO to read information from a file to the data stack, the information can be stored in FIFO
or LIFO order on the data stack. FIFO is the default. If you use EXECIO to read information from a file to a
list of variables, the first file line is stored in variable1, the second file line is stored in variable2, and
so on. You can randomly access data read into a list of variables. After the information is in the data stack
or in a list of variables, the program can test it, copy it to another file, or update it before returning it to the
original file.

Reading Information from a File
To read information from a file to the data stack or to a list of variables, use EXECIO with either the DISKR
or DISKRU operand. To read all lines from the sublibrary member mylib.mysub.myfile.text, you
could use:

 "EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"

The asterisk immediately after EXECIO specifies reading the entire file rather than only a certain number
of lines.

To read all lines from a sequential file named my.data.set you would first use DLBL to associate the file
with a file name, such as myfile, as follows:

// DLBL myfile,'my.data.set'

You could then use the following EXECIO command:

"EXECIO * DISKR myfile (FINIS RECFORM fixblk RECSIZE 80 BLKSIZE 400"

This EXECIO command includes the additional operands that SAM files require. See “Options” on page
124 for descriptions.

To read all lines from the default input stream, you could use:

 "EXECIO * DISKR sysipt (FINIS"

(Remember: use only DISKR for SYSIPT.)

The rest of the examples in this chapter primarily use files that are sublibrary members. Remember that
for SAM files you need to use DLBL to associate the file with a file name before using EXECIO and that
you need to include the additional operands as options (see “Options” on page 124) on the EXECIO
command. For further information, see the REXX/VSE Reference.

How to specify the number of lines to read
In the preceding examples, the asterisk immediately after EXECIO specifies reading the entire file. To
read a specific number of lines, put the number immediately after EXECIO:

 "EXECIO 25 …"

When all the information is on the data stack, you can queue a null line to indicate the end of the
information. If there are null lines throughout the data, you can use the built-in function QUEUED to

Chapter 12. Processing Data and Input/Output Processing 121

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

determine the number of items on the stack. (Examples using QUEUE and QUEUED for writing output are
on page “How to specify the number of lines to write” on page 123.)

To open a file without reading any records, specify 0 immediately after EXECIO and specify the OPEN
operand.

 "EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"

Using DISKR or DISKRU
Depending on the purpose you have for the input file, use either the DISKR or DISKRU operand.

• DISKR - Reading Only

To start I/O from a file that you want only to read, use the DISKR operand with the FINIS option. The
FINIS option closes the file after the information is read. Closing the file allows other programs to
access the file.

 "EXECIO * DISKR ... (FINIS"

Note: Do not use the FINIS option if you want the next EXECIO in your program to continue reading at
the line immediately following the last line read.

• DISKRU - Reading and Updating

To start I/O to a file that you want to read and update, use the DISKRU operand without the FINIS
option. (Remember: you cannot use DISKRU for SYSIPT.) Because you can update only the last line
that was read, you usually read and update a file one line at a time, or go immediately to the single
line that needs updating. The file remains open while you update the line and return the line with a
corresponding EXECIO DISKW command.

 "EXECIO 1 DISKRU ..."

More about using DISKRU appears in “Updating Information in a File” on page 127.

Option of specifying a starting line number
If you want to start reading at a line other than the beginning of the file, specify the line number at which
to begin. For example, to read all the lines starting at line 100 to the data stack, you could use:

 "EXECIO * DISKR mylib.mysub.myfile.typea 100 (FINIS"

To start at line 100 and read only 5 lines to the data stack, use:

 "EXECIO 5 DISKR mylib.mysub.myfile.typea 100 (FINIS"

To open a file at line 100 without reading lines to the data stack, use:

 "EXECIO 0 DISKR mylib.mysub.myfile.typea 100 (OPEN"

See “Options” on page 124 for information about DISKR, DISKRU, and DISKW options.

122 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Writing Information to a File
To write information to a file from the data stack or from a list of variables, use EXECIO with the DISKW
operand. To write all lines on the stack to the sublibrary member mylib.mysub.myfile.typea, you
could use:

 "EXECIO * DISKW mylib.mysub.myfile.typea (FINIS"

The asterisk immediately after EXECIO specifies writing all the lines on the stack to the file rather than
only a certain number of lines.

To write all lines from the stack to a sequential file named my.data.set you would first use DLBL to
associate the file with a file name: // DLBL myfile,'my.data.set'. You could then use an EXECIO
command (which must include the additional operands SAM files require):

"EXECIO * DISKW myfile (FINIS RECFORM fixblk RECSIZE 80 BLKSIZE 400"

To write all lines from the input stream SYSIPT to the operator's console, you could use:

 "EXECIO * DISKR SYSIPT"
 QUEUE '
 "EXECIO * DISKW SYSLST"

How to specify the number of lines to write
In the preceding examples, the asterisk immediately after EXECIO specifies writing all the lines. To write a
specific number of lines, put the number immediately after EXECIO:

 "EXECIO 25 DISKW ..."

To write the entire data stack or to write until a null line is found, you can use EXECIO * in conjunction
with the QUEUE instruction or QUEUED built-in function. Using EXECIO * causes EXECIO to continue to
pull items off the data stack until it finds a null line. If the stack becomes empty before a null line is found,
EXECIO looks for input in the input stream. ASSGN(STDIN) returns the name of the current input stream.
If you do not want EXECIO to check the input stream, queue a null line at the bottom of the stack to
indicate the end of the information:

 QUEUE '

If there are null lines (lines of length 0) throughout the data and the data stack is not shared, you can
assign the result of the QUEUED built-in function to a variable to indicate the number of items on the
stack.

 n = QUEUED()
 "EXECIO" n "DISKW joeslib.joessub.joesfile.typea (FINIS"

Note: The stack can contain a null line but the language processor converts this to a blank line when
writing to the file.

To open a file without writing records to it, specify 0 after EXECIO and specify the OPEN operand.

 "EXECIO 0 DISKW mylib.mysub.myfile.typea (OPEN"

Note: To empty a file, you can use two EXECIO commands:

 "EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"
 "EXECIO 0 DISKW mylib.mysub.myfile.typea (FINIS"

Chapter 12. Processing Data and Input/Output Processing 123

The first command opens the file and positions the file position pointer before the first record.
The second command writes an end-of-file mark and closes the file. This deletes all records in
mylib.mysub.myfile.typea. You can also empty a file by using EXECIO with both the OPEN and
FINIS operands.

Options
Options you can use are:

• OPEN - Opens a file. When you specify OPEN with EXECIO 0, this opens the data set and positions the
file position pointer before the first record.

 "EXECIO 0 DISKR mylib.mysub.myfile.typea (OPEN"
 "EXECIO 0 DISKW mylib.mysub.myfile.typea (OPEN"

Note: If the file is already open, no operation is performed for OPEN.
• FINIS - Closes the file after reading it or writing to it. Closing the file lets other programs access it. For

reading, FINIS also resets the current positional pointer to the beginning of the file. For writing, FINIS
forces the completion of all I/O operations by physically writing the contents of any partially filled I/O
buffers to the file.

 "EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"
 "EXECIO * DISKW mylib.mysub.myfile.typea (FINIS"

• STEM - Specifies reading the information from or writing it to variables (instead of the data stack). If you
specify a simple variable after STEM (rather than a stem, which ends in a period), the variable names are
simply appended with numbers. In this case, you cannot easily access the variables by using an index in
a loop. If you specify a compound variable after STEM, you can access the variables by using an index in
a loop.

 "EXECIO * DISKR mylib.mysub.myfile.typea (STEM newvar."
 "EXECIO * DISKW mylib.mysub.myfile.typea (STEM newvar."

Both examples use the stem newvar..

The DISKR command places lines of information or records from the file in variables. If 10 lines of
information are read, newvar.1 contains record 1, newvar.2 contains record 2, and so forth, up to
newvar.10, which contains record 10. The number of items in the list of compound variables is in
the special variable newvar.0. Thus, if 10 lines of information are read into the newvar. variables,
newvar.0 contains the number 10. Each stem variable beyond newvar.10 (for example, variable
newvar.11) is residual; it contains the value that it held before the EXECIO command.

To avoid confusion about whether a residual stem variable value is meaningful, you may want to clear
the entire stem variable before entering the EXECIO command. To clear all stem variables, you can
either:

– Use the DROP instruction as follows to set all stem variables to their uninitialized state:

DROP newvar.

– Set all stem variables to nulls as follows:

newvar. = '

The DISKW command writes lines of information from the compound variables newvar.1, newvar.2,
newvar.3, and so on, to the file. The variable newvar.0 is not used.

When writing from variables, if you use * with a stem, the EXECIO command stops writing information to
the file when it finds a null value or an uninitialized compound variable. For example, if the list contains
10 compound variables, the EXECIO command stops at newvar.11.

124 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

You can specify the number of lines EXECIO reads to or writes from a list of compound variables.

 "EXECIO 5 DISKR mylib.mysub.myfile.typea (STEM newvar."
 "EXECIO 5 DISKW mylib.mysub.myfile.typea (STEM newvar."

In these examples, EXECIO reads 5 items to the newvar. variables or writes 5 items from them.

See Figure 52 on page 131 for an example of EXECIO with stem variables.

Accessing SAM files requires additional operands that are not needed for other files.
BLKSIZE n

n specifies the block size of the file. The maximum is 32700. See VSE/ESA System Macros User's
Guide , SC33-6715, for details about the block size.

RECFORM FIXBLK
RECFORM FIXUNB
RECFORM VARBLK
RECFORM VARUNB

Specifies the record format is fixed blocked, fixed unblocked, variable blocked, or variable unblocked.
RECSIZE n

Specifies the record size. This is required if you specify RECFORM FIXUNB or RECFORM FIXBLK.
Do not specify RECSIZE if you specify RECFORM VARBLK or RECFORM VARUNB. Records are blank-
extended if they are too short. If the records are too long, EXECIO ends with an error.

See the REXX/VSE Reference, for information about return codes from EXECIO.

Copying Information from One File to Another
Before you can copy one file to another, the files must be sublibrary members, SAM files, or SYSIPT or
SYSLST. (For SAM files, you must use a DLBL before using EXECIO.)

Copying an entire file
To copy the entire sublibrary member mylib.mysub.myfile.typea to
joeslib.joessub.joesfile.typea, you could use the following instructions:

 "NEWSTACK" /* Create a new data stack for input only */
 "EXECIO * DISKR mylib.mysub.myfile.typea (FINIS"
 QUEUE '' /* Add a null line to indicate the end of information */
 "EXECIO * DISKW joeslib.joessub.joesfile.typea (FINIS"
 "DELSTACK" /* Delete the new data stack */

If the program does not queue a null line at the end of the information on the stack, the EXECIO command
goes to the input stream to get more information and does not end until it encounters a null line.

You can also use the QUEUED built-in function to indicate the end of the information when copying an
entire file. If the file is likely to include null lines throughout the data, using the QUEUED function is
preferable.

 n = QUEUED() /* Assign the number of stack items to "n" */
 "EXECIO" n "DISKW mylib.mysub.myfile.typea (FINIS"

Also, when copying an undetermined number of lines to and from the data stack, it is a good idea to use
the NEWSTACK and DELSTACK commands to prevent removing items previously placed on the stack. For
more information about these commands, see “Protecting Elements in the Data Stack” on page 116.

Chapter 12. Processing Data and Input/Output Processing 125

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf

Copying a specified number of lines to a new file
To copy 10 lines of data from the sublibrary member mylib.mysub.myfile.typea to the sublibrary
member joeslib.joessub.joesfile.typea, you could use:

 "EXECIO 10 DISKR mylib.mysub.myfile.typea (FINIS"
 "EXECIO 10 DISKW joeslib.joessub.joesfile.typea (FINIS"

To copy the same 10 lines of data to a list of compound variables with the stem data., use:

 "EXECIO 10 DISKR mylib.mysub.myfile.typea (FINIS STEM data."
 "EXECIO 10 DISKW joeslib.joessub.joesfile.typea (FINIS STEM data."

Adding lines to the end of a file
To add 5 lines from a sublibrary member named my.input.file.text to the end of a sublibrary
member named new.output.file.text, you could use:

 "EXECIO 5 DISKR my.input.file.text (OPEN STEM var. FINIS" /* Read input file */
 "EXECIO * DISKR new.output.file.text (OPEN STEM var2. FINIS" /* Read output file */
 "EXECIO * DISKW new.output.file.text (OPEN STEM var2." /* Go to end of output */
 "EXECIO 5 DISKW new.output.file.text (STEM var. FINIS" /* Add new records */

Copying Information to and from Compound Variables
When copying information from a file, you can store the information in the data stack, which is the default,
or you can store the information in a list of compound variables. Similarly, when copying information back
to a file, you can remove information from the data stack, which is the default, or you can remove the
information from a list of compound variables.

Copying Information from a File to a List of Compound Variables
To copy an entire file into compound variables with the stem newvar., and then send the list to the
output stream, use:

 "EXECIO * DISKR mylib.mysub.myfile.typea (STEM newvar."
 DO i = 1 to newvar.0
 SAY newvar.i
 END

When you want to copy a varying number of lines to compound variables, you can use a variable within the
EXECIO command as long as the variable is not within quotation marks. For example, the variable lines
can represent the number of lines indicated when the program is run.

 ARG lines
 "EXECIO" lines "DISKR mylib.mysub.myfile.typea (STEM newvar."

Copying Information from Compound Variables to a File
To copy 10 compound variables with the stem newvar., regardless of how many items are in the list, you
could use the following:

 "EXECIO 10 DISKW mylib.mysub.myfile.typea (STEM NEWVAR."

Note: An uninitialized compound variable has the value of its own name in uppercase. For example, if
newvar.9 and newvar.10 do not contain values, the file receives the values NEWVAR.9 and NEWVAR.10.

126 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Updating Information in a File
You can use EXECIO to update a single line of a file or multiple lines. Use the DISKRU form of the EXECIO
command to read information that you may subsequently update.

Note:

1. The line written must be the same length as the line read. When a changed line is longer than the
original line, information that extends beyond the original number of bytes is truncated and EXECIO
sends a return code of 1. If lines must be made longer, write the data to a new file. When a changed
line is shorter than the original line, it is padded with blanks to attain the original line length.

2. When using DISKRU, the value for the lines operand following EXECIO must be 1. If you use a value
greater than 1, you receive an error message and a return code of 20, and the program ends. After a
line is written, trying to rewrite the line causes an error.

3. You cannot use DISKRU with SYSIPT.

Updating a single line
When updating a single line in a file, it is more efficient to locate the line in advance and specify the
update to it than to read all the lines in the file to the stack, locate and change the line, and then write all
the lines back.

Suppose you have a sublibrary member named dept5.employee.list.text that contains a list of
employee names, user IDs, and phone extensions.

 Adams, Joe JADAMS 5532
 Crandall, Amy AMY 5421
 Devon, David DAVIDD 5512
 Garrison, Donna DONNAG 5514
 Leone, Mary LEONE1 5530
 Sebastian, Isaac ISAAC 5488

You can change the information on a particular line. For example, to change the phone extension on line 2
to 5500, you could use:

 "EXECIO 1 DISKRU dept5.employee.list.text 2 (LIFO"
 PULL line
 PUSH 'Crandall, Amy AMY 5500'
 "EXECIO 1 DISKW dept5.employee.list.text (FINIS"

Updating multiple lines
To update multiple lines, you can use more than one EXECIO command for the same file. For example,
to update Mary Leone's user ID in addition to Amy Crandall's phone extension, use the following
instructions.

 "EXECIO 1 DISKRU dept5.employee.list.text 2 (LIFO"
 PULL line
 PUSH 'Crandall, Amy AMY 5500'
 "EXEXIO 1 DISKW dept5.employee.list.text"
 "EXECIO 1 DISKRU dept5.employee.list.text 5 (LIFO"
 PULL line
 PUSH 'Leone, Mary MARYL 5530'
 "EXECIO 1 DISKW dept5.employee.list.text (FINIS"

Chapter 12. Processing Data and Input/Output Processing 127

Additional Examples

/***************************** REXX *********************************/
/* This program reads from a file to find the first occurrence */
/* of the string "Jones". It ignores upper and lowercase */
/* distinctions (by using PULL, which uppercases data it reads). */
/* */
/**/
done = 'no'
lineno=0
DO WHILE done = 'no'
 "EXECIO 1 DISKR store.employee.list.text"

 IF RC = 0 THEN /* Record was read */
 DO
 PULL record
 lineno = lineno + 1 /* Count the record */
 IF INDEX(record,'JONES') \= 0 THEN
 DO
 SAY 'Found in record' lineno
 done = 'yes'
 SAY 'Record = ' record
 END
 ELSE NOP
 END
 ELSE
 done = 'yes'
END

EXIT 0

Figure 46. EXECIO Example 1

/***************************** REXX *********************************/
/* This program copies records from the sublibrary member */
/* STORE.INPUT.JAN20.TEXT to the end STORE.OUTPUT.JAN20.TEXT. */
/* The program assumes that the input file has no null lines. */
/**/

SAY 'Copying ...'

"EXECIO * DISKR store.input.jan20.text (FINIS"
QUEUE '' /* Insert a null line at the end to indicate end of file */
"EXECIO * DISKW store.output.jan20.text (FINIS"

SAY 'Copy complete.'

EXIT 0

Figure 47. EXECIO Example 2

/***************************** REXX **********************************/
/* This program starts at the third record and reads 5 records from */
/* the sublibrary member STORE.SALES.MAR3.TEXT. It strips trailing */
/* blanks from the records and writes any record that is longer */
/* than 20 characters. It does not close the file when finished. */
/***/
"EXECIO 5 DISKR store.sales.mar3.text 3"

DO i = 1 to 5
 PARSE PULL line
 stripline = STRIP(line,t)
 len = LENGTH(stripline)

 IF len > 20 THEN
 SAY 'Line' stripline 'is long.'
 ELSE NOP
END

/* The file is still open for processing */

EXIT 0

Figure 48. EXECIO Example 3

128 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/***************************** REXX **********************************/
/* This program reads the first 100 records (or until EOF) of the */
/* sublibrary member STORE.STOCK.FEB13.TEXT. (It issues a message */
/* if it reads fewer than 100 records.) It puts records on the data */
/* stack in LIFO order. */
/***/
eofflag = 2 /* Return code to indicate end of file */

"EXECIO 100 DISKR store.stock.feb13.text (LIFO"
return_code = RC

IF return_code = eofflag THEN
 SAY 'Premature end of file.'
ELSE
 SAY '100 Records read.'
DROPBUF 0
EXIT return_code

Figure 49. EXECIO Example 4

/***************************** REXX *********************************/
/* This program uses "EXECIO 0 ..." to open, empty, or close a */
/* sequential file. It reads records from DANS.IN.DATA */
/* and writes selected records to DANS.OUT.DATA. */
/* DANS.IN.DATA has variable-length records (RECFORM = VARBLK). */
/* (Before using EXECIO, use DLBL to associate DANS.IN.DATA with */
/* INPUT and DANS.OUT.DATA with OUTPUT.) */
/**/
eofflag = 2 /* Return code to indicate end-of-file */
return_code = 0 /* Initialize return code */
in_ctr = 0 /* Initialize # of lines read */
out_ctr = 0 /* Initialize # of lines written */

/**/
/* Open the file INPUT, but do not read any records yet. */
/* All records are read and processed within the loop body. */
/**/

/* Open INPUT */
"EXECIO 0 DISKR input (OPEN RECFORM VARBLK BLKSIZE 400"

/**/
/* Now read all lines from INPUT, starting at line 1, and copy */
/* selected lines to OUTPUT. */
/**/

DO WHILE (return_code \ = eofflag) /* Loop while not end-of-file */
 'EXECIO 1 DISKR input' /* Read 1 line */
 /* to data stack */
 return_code = rc /* Save EXECIO rc */
 IF return_code = 0 THEN /* Get a line ok? */
 DO /* Yes */
 in_ctr = in_ctr + 1 /* Increment input line ctr */
 PARSE PULL line.1 /* Pull line just read from stack*/
 IF LENGTH(line.1) > 10 THEN /* If line longer than 10 chars */
 DO
 /* Write to output */
 "EXECIO 1 DISKW output (STEM line. RECFORM VARBLK"
 out_ctr = out_ctr + 1 /* Increment output line ctr */
 END
 END
END
/* Close the input file, INPUT */
"EXECIO 0 DISKR input (FINIS "

IF out_ctr > 0 THEN /* Were any lines written to output?*/
 DO /* Yes. So output is now open */

Figure 50. EXECIO Example 5

Chapter 12. Processing Data and Input/Output Processing 129

 /***/
 /* Because OUTPUT is already open at this point, the following */
 /* "EXECIO 0 DISKW..." command closes the file */
 /* but does not empty it of the lines that have already been */
 /* written. OUTPUT will contain out_ctr lines. */
 /***/

 /* Close the open file */
 "EXECIO 0 DISKW output (Finis RECFORM VARBLK"
 SAY 'OUTPUT now contains ' out_ctr' lines.'
END
ELSE /* Else no new lines have been */
 /* written to OUTPUT. */
 DO /* Erase any old records from it. */

 /***/
 /* Because OUTPUT is still closed at this point, the */
 /* following "EXECIO 0 DISKW..." command opens the file, */
 /* writes 0 records, and then closes it. This effectively */
 /* empties OUTPUT. This deletes any old records that */
 /* were in the file when the program started. */
 /***/

 /* Empty DANS.OUT.DATA */
 "EXECIO 0 DISKW output (OPEN FINIS RECFORM VARBLK BLKSIZE 400"
 SAY 'Output is now empty.'
 END
EXIT

Figure 51. EXECIO Example 5 (continued)

130 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

/***************************** REXX ********************************/
/* This program uses EXECIO to successively append records from */
/* STORE.DATA.ONE.TEXT and then STORE.DATA.TWO.TEXT to the end */
/* of STORE.DATA.ALL.TEXT. It shows the effect of residual data */
/* in STEM variables. STORE.DATA.ONE.TEXT contains 20 records. */
/* STORE.DATA.TWO.TEXT contains 10 records. */
/***/

/***/
/* Read all records from STORE.DATA.ONE.TEXT and append them to */
/* the end of STORE.DATA.ALL.TEXT. */
/***/

prog_rc = 0 /* Initialize program return code */

/* Read all records */
"EXECIO * DISKR store.data.one.text (STEM newvar. FINIS"

IF RC = 0 THEN /* If read was successful */
 DO
 /***/
 /* At this point, newvar.0 should be 20, indicating 20 records */
 /* have been read. Stem variables newvar.1, newvar.2, and so on */
 /* through newvar.20 contain the 20 records that were read. */
 /***/

 SAY "---"
 SAY newvar.0 "records have been read from store.data.one.text."
 SAY
 DO i = 1 TO newvar.0 /* Loop through all records */
 SAY newvar.i /* Produces the ith record */
 END

 /* Write exactly the number of records read. */
 "EXECIO" newvar.0 "DISKW store.data.all.text (STEM newvar."
 IF rc = 0 THEN /* If write was successful */
 DO
 SAY
 SAY newvar.0 "records were written to store.data.all.text."
 END
 ELSE
 DO
 prog_rc = RC /* Save program return code */
 SAY
 SAY "Error during 1st EXECIO ... DISKW; return code is " RC
 SAY
 END
 END

Figure 52. EXECIO Example 6

Chapter 12. Processing Data and Input/Output Processing 131

ELSE
 DO
 prog_rc = RC /* Save program return code */
 SAY
 SAY "Error during 1st EXECIO ... DISKR, return code is " RC
 SAY
 END

 IF prog_rc = 0 THEN /* If no errors so far... continue */
 DO
 /***/
 /* At this time, the stem variables newvar.0 through newvar.20 */
 /* contain residual data from the previous EXECIO. */
 /* "DROP newvar." clears these residual values from the stem. */
 /***/
 DROP newvar. /* Set all stem variables to their
 uninitialized state */
 /***/
 /* Read all records from STORE.DATA.TWO.TEXT and append them */
 /* to the end of STORE.DATA.ALL.TEXT. */
 /***/

 /* Read all records*/
 "EXECIO * DISKR store.data.two.text (STEM newvar. FINIS"
 IF RC = 0 THEN /* If read was successful */
 DO
 /***/
 /* At this point, newvar.0 should be 10, indicating 10 */
 /* records have been read. Stem variables newvar.1, */
 /* newvar.2, and so on through newvar.10 contain 10 records. */
 /* If we had not cleared the stem newvar. with the previous */
 /* DROP instruction, variables newvar.11 through newvar.20 */
 /* would still contain records 11 through 20 from */
 /* STORE.DATA.ONE.TEXT. */
 /* However, we would know that the last EXECIO DISKR did not */
 /* read these values because the current newvar.0 variable */
 /* indicates that the last EXECIO read only 10 records. */
 /***/
 SAY
 SAY
 SAY "---"
 SAY newvar.0 "records have been read from store.data.two.text."
 SAY
 DO i = 1 TO newvar.0 /* Loop through all records */
 SAY newvar.i /* Produces the ith record */
 END

 "EXECIO" newvar.0 "DISKW store.data.all.text (STEM newvar."
 /* Writes exactly the number of records read */
 IF RC = 0 THEN /* If write was successful */
 DO
 SAY
 SAY newvar.0 "records were written to 'store.data.all.text'"
 END

Figure 53. EXECIO Example 6 (continued)

132 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 ELSE
 DO
 prog_rc = RC /* Save program return code */
 SAY
 SAY "Error during 2nd EXECIO ...DISKW, return code is " RC
 SAY
 END
 END
 ELSE
 DO
 prog_rc = RC /* Save program return code */
 SAY
 SAY "Error during 2nd EXECIO ... DISKR, return code is " RC
 SAY
 END
 END

"EXECIO 0 DISKW store.data.all.text (FINIS" /* Close output file */

 EXIT 0

Figure 54. EXECIO Example 6 (continued)

Chapter 12. Processing Data and Input/Output Processing 133

134 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Appendix A. Using REXX in TSO/E and Other MVS
Address Spaces

Purpose
This chapter describes how to use REXX in TSO/E and in non-TSO/E address spaces in MVS. It also briefly
describes the concept of a language processor environment.

Services Available to REXX Execs
This book, until now, has described writing and running REXX execs in the TSO/E address space. Besides
TSO/E, execs can run in other address spaces within MVS. Where an exec can run is determined by
the types of services the exec requires. There are services that are available to an exec that runs in
any address space, TSO/E or non-TSO/E; and there are more specific services available only in a TSO/E
address space. The following table lists all the services and where they are available.

Service Non-TSO/E
Address Space

TSO/E Address
Space

REXX language instructions — These instructions are used
throughout this book. For a description of each one, see
TSO/E V2 REXX/MVS Reference (SC28-1883).

X X

Built-in functions — A brief description of each built-in
function appears in “Built-In Functions” on page 56. A
longer description appears in TSO/E V2 REXX/MVS Reference
(SC28-1883).

X X

TSO/E REXX commands — These commands consist of:

• Data stack commands — For more information, see Chapter
11, “Storing Information in the Data Stack,” on page 107.

• DELSTACK X X

• DROPBUF X X

• MAKEBUF X X

• NEWSTACK X X

• QBUF X X

• QELEM X X

• QSTACK X X

• Other commands —

• EXECIO — controls I/O processing X X

• EXECUTIL — changes how an exec runs X

© Copyright IBM Corp. 1988, 1995 135

Service Non-TSO/E
Address Space

TSO/E Address
Space

• Immediate commands:

• HI (from attention mode only) X

• HE (from attention mode only) X

• HT (from attention mode only) X

• RT (from attention mode only) X

• TE X X

• TS X X

• SUBCOM — queries the existence of a host command
environment

X X

TSO/E commands — All TSO/E commands, both authorized
and unauthorized can be issued from an exec that runs in a
TSO/E address space. For a description of these commands,
see TSO/E Command Reference (SC28-1969).

X

TSO/E External Functions:

• GETMSG — retrieves system messages issued during an
extended MCS console session

X

• LISTDSI — returns data set attributes X

• MSG — controls the display of messages for TSO/E
commands

X

• OUTTRAP — traps lines of TSO/E command output X

• PROMPT — controls prompting for TSO/E interactive
commands

X

• SETLANG — controls the language in which REXX messages
are displayed

X X

• STORAGE — retrieves and optionally changes the value in a
storage address

X X

• SYSDSN — returns information about the availability of a
data set

X

• SYSVAR — returns information about the user, the terminal,
the exec, and the system

X

Interaction with CLISTs — Execs and CLISTs can call
each other and pass information back and forth. For more
information, see “Running an Exec from a CLIST” on page
138.

X

136 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Service Non-TSO/E
Address Space

TSO/E Address
Space

ISPF and ISPF/PDF services — An exec that is invoked from
ISPF can use that dialog manager's services.

X

Running Execs in a TSO/E Address Space
Earlier sections in this book described how to run an exec in TSO/E explicitly and implicitly in the
foreground. When you run an exec in the foreground, you do not have use of your terminal until the exec
completes. Another way to run an exec is in the background, which allows you full use of your terminal
while the exec runs.

Running an Exec in the Foreground
Interactive execs and ones written that involve user applications are generally run in the foreground. You
can invoke an exec in the foreground in the following ways:

• Explicitly with the EXEC command.
• Implicitly by member name if the PDS containing the exec was previously allocated to SYSPROC or

SYSEXEC. (Your installation might have a different name for the system file that contains execs. For the
purposes of this book, it is called SYSEXEC.) For more information, see Appendix B, “Allocating Data
Sets,” on page 143.

• From another exec as an external function or subroutine, as long as both execs are in the same PDS
or the PDSs containing the execs are allocated to a system file, for example SYSPROC or SYSEXEC. For
more information about external functions and subroutines, see Chapter 6, “Writing Subroutines and
Functions,” on page 63.

• From a CLIST or other program. For more information, see “Running an Exec from a CLIST” on page
138.

Things to Consider When Allocating to a System File (SYSPROC or SYSEXEC)
Allocating a partitioned data set containing execs to a system file allows you to:

• Run execs implicitly - After a PDS is allocated to a system file, you can run the exec by simply entering
the member name, which requires fewer keystrokes and is therefore faster to invoke.

• Invoke user-written external functions and subroutines written in REXX that are in PDSs also allocated
to SYSEXEC or SYSPROC.

• Control search order - You can concatenate the data sets within the file to control search order. This is
useful in testing a version of an exec placed earlier in the search order than the original version.

• Compression - In certain situations a REXX exec will be compressed in order to optimize usage of
system storage. These situations can arise only when the exec is stored in either SYSPROC or the
application-level CLIST file using the ALTLIB command. The compression removes comment text
between the comment delimiters /* and */, removes leading and trailing blanks, and replaces blank
lines with null lines. Blanks and comments within literal strings or DBCS strings are not removed. If
the system finds the characters "SOURCELINE" outside of a comment, the exec is not compressed.
Additionally, if you do not want an exec to be compressed, you can allocate the exec to the CLIST
user-level file, or any of the levels used for execs.

• Improve performance - Depending on your installation’s setup, you can affect the performance of execs
you run by allocating the data sets that contain them to either SYSEXEC or SYSPROC. More about this
technique appears in the following sections on allocating to a specific system file.

Appendix A. Using REXX in TSO/E and Other MVS Address Spaces 137

Allocating to SYSEXEC
SYSEXEC is a system file that can contain execs only. SYSEXEC precedes SYSPROC in the search order.
Therefore execs in PDSs allocated to SYSEXEC are retrieved more rapidly than execs in PDSs allocated to
SYSPROC.

Allocating to SYSPROC
SYSPROC is a system file that originally contained only CLISTs written for applications or for an
individual's use. SYSPROC now can also contain execs as long as the execs are distinguishable from
CLISTs.

The SYSEXEC file is searched first, followed by SYSPROC. If your installation uses a large number of
CLISTs that are in data sets allocated to SYSPROC and you do not have a large number of REXX execs,
you may want to use SYSPROC only and not use SYSEXEC. To use SYSPROC only, a system programmer
can change the search order on an installation-wide basis, or an individual can change the search order
using the EXECUTIL SEARCHDD(NO) command. You can issue the EXECUTIL SEARCHDD(NO) command
directly from the terminal, from an exec or CLIST, and from the JCL input stream run in TSO/E background.
The ALTLIB command can also affect search order. For general information about ALTLIB, see “Specifying
Alternative Exec Libraries with the ALTLIB Command” on page 153. For more information about the
EXECUTIL and ALTLIB commands, see TSO/E Command Reference (SC28-1969).

Running an Exec from a CLIST
A CLIST can invoke an exec with the EXEC command explicitly or implicitly. If it invokes an exec implicitly,
the exec must be in a PDS allocated to SYSEXEC or SYSPROC. The CLIST that invokes the exec does
not have to be allocated to SYSPROC. After the invoked exec and other programs it might call complete,
control returns to the CLIST instruction following the invocation.

Similarly, an exec can invoke a CLIST with the EXEC command explicitly or implicitly. If it invokes a CLIST
implicitly, the CLIST must be in a PDS allocated to SYSPROC, yet the exec does not have to be in a PDS
allocated to a system file.

Note: Execs and CLISTs cannot access each other’s variables and GLOBAL variables cannot be declared in
a CLIST that is invoked from an exec.

The following examples demonstrate how a CLIST invokes an exec and how a number is returned to the
invoking CLIST. The CLIST named TEST explicitly executes an exec named EXEC1. EXEC1 calls EXEC2,
which returns the result "A OK". EXEC1 then returns to the CLIST with a numeric return code of 100 if
information was passed correctly and 50 if information was not passed correctly.

138 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

The results from this series of programs is as follows:

 We are now in Exec1.
 Exec2 speaking.
 The result from Exec2 is A OK
 The result is 100% correct.
 THE RESULT FROM THE EXECS IS 100

Sending a Return Code Back to the Calling CLIST
As demonstrated in the previous example, an exec can return a number to a CLIST with the EXIT
instruction followed by the number or a variable representing the number. The CLIST receives the number
in the variable REQCLEANUP - Created by ActiveSystems 02/28/97 Entity not defined.

When an exec invokes a CLIST, the CLIST can return a number to the exec by the EXIT CODE() statement
with the number to be returned enclosed in parentheses after CODE. The exec receives the number in the
REXX special variable RC.

Note: &LASTCC is set after each CLIST statement or command executes as compared to RC, which is set
after each command executes. To save the values of each special variable, set a new variable with the
value at the point where you want the special variable value saved.

In the following two examples, exec USERID.MYREXX.EXEC(TRANSFER) passes an argument to CLIST
USERID.MY.CLIST(RECEIVE), and the CLIST returns a number through the CODE parameter of the EXIT
statement.

Running an Exec in the Background
Execs run in the background are processed when higher priority programs are not using the system.
Background processing does not interfere with a person's use of the terminal. You can run time-
consuming and low priority execs in the background, or execs that do not require terminal interaction.

Running an exec in the background is the same as running a CLIST in the background. The program
IKJEFT01 sets up a TSO/E environment from which you can invoke execs and CLISTs and issue
TSO/E commands. For example, to run an exec named SETUP contained in a partitioned data set
USERID.MYREXX.EXEC, submit the following JCL.

The EXEC statement defines the program as IKJEFT01. In a DD statement, you can assign one or more
PDSs to the SYSEXEC or SYSPROC system file. The SYSTSPRT DD allows you to print output to a specified
data set or a SYSOUT class. In the input stream, after the SYSTSIN DD, you can issue TSO/E commands
and invoke execs and CLISTs.

The preceding example must be written in a fixed block, 80 byte record data set. To start the background
job, issue the SUBMIT command followed by the data set name, for example, REXX.JCL.

 SUBMIT rexx.jcl

For more information about running jobs in the background, see TSO/E User's Guide (SC28-1968).

Running Execs in a Non-TSO/E Address Space
Because execs that run in a non-TSO/E address space cannot be invoked by the TSO/E EXEC command,
you must use other means to run them. Ways to run execs outside of TSO/E are:

• From a high level program using the IRXEXEC or IRXJCL processing routines.
• From MVS batch with JCL that specifies IRXJCL in the EXEC statement.

TSO/E provides the TSO/E environment service, IKJTSOEV. Using IKJTSOEV, you can create a TSO/E
environment in a non-TSO/E address space. You can then run REXX execs in the environment and the
execs can contain TSO/E commands, external functions, and services that an exec running in a TSO/E

Appendix A. Using REXX in TSO/E and Other MVS Address Spaces 139

address space can use. For information about the TSO/E environment service and how to run REXX execs
within the environment, see TSO/E Programming Services (SC28-1971).

Using an Exec Processing Routine to Invoke an Exec from a Program
To invoke an exec from a high-level language program running in an MVS address space, use one of the
exec processing routines (IRXEXEC or IRXJCL). If you use IRXEXEC, you must specify parameters that
define the exec to be run and supply other related information. For more information, see TSO/E REXX
Reference (SC28-1975).

You can also use an exec processing routine to invoke an exec in a TSO/E address space. Two reasons to
use them in TSO/E are:

• To pass more than one argument to an exec. When invoking an exec implicitly or explicitly, you can pass
only one argument string. With IRXEXEC, you can pass multiple arguments.

• To call an exec from a program other than a CLIST or exec.

Using IRXJCL to Run an Exec in MVS Batch
To run a REXX exec in MVS batch, you must specify program IRXJCL in the JCL EXEC statement. SYSEXEC
is the default load DD. Running an exec in MVS batch is similar in many ways to running an exec in
the TSO/E background, however, there are significant differences. One major difference is that the exec
running in MVS batch cannot use TSO/E services, such as TSO/E commands and most of the TSO/E
external functions. Additional similarities and differences appear in “Summary of TSO/E Background and
MVS Batch” on page 141.

The following series of examples show how an MVS batch job named USERIDA invokes a REXX exec in
a PDS member named USERID.MYREXX.EXEC(JCLTEST). The member name, JCLTEST, is specified as the
first word after the PARM parameter of the EXEC statement. Two arguments, TEST and IRXJCL, follow the
member name. Output from the exec goes to an output data set named USERID.IRXJCL.OUTPUT, which
is specified in the SYSTSPRT DD statement. The SYSTSIN DD statement supplies the exec with three lines
of data in the input stream. This exec also uses EXECIO to write a 1-line timestamp to the end of the
sequential data set USERID.TRACE.OUTPUT, which is allocated in the OUTDD statement.

USERID.TRACE.OUTPUT

 Exec JCLTEST has ended at 15:03:06

USERID.IRXJCL.OUTPUT

 Running exec JCLTEST
 Test IRXJCL
 First line of data
 Second line of data
 Third line of data

 Leaving exec JCLTEST

Using the Data Stack in TSO/E Background and MVS Batch
When an exec runs in the TSO/E background or MVS batch, it has the same use of the data stack as an
exec that runs in the TSO/E foreground. The PULL instruction, however, works differently when the data
stack is empty. In the TSO/E foreground, PULL goes to the terminal for input. In the TSO/E background
and MVS batch, PULL goes to the input stream as defined by ddname SYSTSIN. When SYSTSIN has no
data, the PULL instruction returns a null. If the input stream has no data and the PULL instruction is in a
loop, the exec can result in an infinite loop.

140 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Summary of TSO/E Background and MVS Batch

CAPABILITIES
TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

Execs run without terminal interaction. Execs run without terminal interaction.

Execs can contain:

• REXX instructions
• Built-in functions
• TSO/E REXX commands
• TSO/E commands
• TSO/E external functions

Execs can contain:

• REXX instructions
• Built-in functions
• TSO/E REXX commands
• The TSO/E external functions, STORAGE and

SETLANG

Execs are invoked through the PARM parameter on the
EXEC statement and through explicit or implicit use of
the EXEC command in the input stream.

Execs are invoked through the PARM parameter on
the EXEC statement. The first word on the PARM
parameter is the member name of the PDS to be
invoked. Following words are arguments to be passed.

Information in the input stream is processed as TSO/E
commands and invocations of execs and CLISTs.

Information in the input stream is processed as input
data for the exec that is running.

Output sent to a specified output data set or to a
SYSOUT class.

Output sent to a specified output data set or to a
SYSOUT class.

Messages are displayed in the output file. Messages may appear in two places; the JCL output
listing and in the output file. To suppress messages in
the output file, use the TRACE OFF instruction.

REQUIREMENTS
TSO/E BACKGROUND (IKJEFT01) MVS BATCH (IRXJCL)

The default DDs are SYSTSPRT and SYSTSIN. The default DDs are SYSTSPRT and SYSTSIN.

Initiated by executing program IKJEFT01. Initiated by executing program IRXJCL.

JCL should be written in a fixed block, 80-byte record
data set.

JCL should be written in a fixed block, 80-byte record
data set.

Exec that is invoked can be either a member of a PDS
or a sequential data set.

Exec that is invoked must be a member of a PDS.

Data set may be allocated to either SYSEXEC or
SYSPROC.

Data set must be allocated to the SYSEXEC DD.

Defining Language Processor Environments
Before an exec can be processed, a language processor environment must exist. A language processor
environment defines the way a REXX exec is processed and how it accesses system services. Because
MVS contains different types of address spaces and each one accesses services a different way, REXX
in TSO/E provides three default parameters modules that define language processor environments. They
are:

• IRXTSPRM - for TSO/E
• IRXPARMS - for non-TSO/E
• IRXISPRM - for ISPF

Appendix A. Using REXX in TSO/E and Other MVS Address Spaces 141

The defaults are set by TSO/E but they can be modified by a system programmer.

What is a Language Processor Environment?
A language processor environment defines characteristics, such as:

• The search order used to locate commands and external routines
• The ddnames for reading and writing data and from which execs are loaded
• The valid host command environments and the routines that process commands in each host command

environment
• The function packages (user, local, and system) that are available in the environment and the entries in

each package
• Whether execs running in the environment can use the data stack
• The names of routines that handle system services, such as I/O operations, loading of an exec,

obtaining and freeing storage, and data stack requests.

Note: A language processor environment is different from a host command environment. The language
processor environment is the environment in which a REXX exec runs. The host command environment
is the environment to which the language processor passes commands for execution. The valid host
command environments are defined by the language processor environment.

For more information about defining language processor environments, see TSO/E REXX Reference
(SC28-1975).

Customizing a Language Processor Environment
An individual or an installation can customize a language processor environment in two ways:

• Change the values in the three default parameters modules, IRXTSPRM, IRXISPRM, and IRXPARMS.
• Call an initialization routine IRXINIT and specifying parameters to change default parameters.

For more information about customizing a language processor environment, see TSO/E REXX Reference).

142 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3a330.pdf

Appendix B. Allocating Data Sets

Allocating Data Sets
Execs can be stored in either sequential data sets or partitioned data sets (PDSs). A sequential data set
contains only one exec, while a PDS can contain one or more execs. In a PDS, each exec is a member and
has a unique member name. When a PDS consists entirely of execs, it is called an exec library.

Exec libraries make execs easy to maintain and execute. Your installation can keep commonly used
execs in a system library and you can keep your own execs in a private exec library. To learn important
information about data sets at your installation, use the “Preliminary Checklist” on page 144.

What is Allocation?
Before you can store execs in a data set, you must create the data set by allocation. Allocation can mean
different things depending on your purpose. In this book allocation means two things:

• Creating a new data set in which to store REXX execs. You can create a new data set with the ISPF/PDF
UTILITIES option or with the TSO/E ALLOCATE command.

Checklists for creating a data set appear in:

– “Checklist #1: Creating and Editing a Data Set Using ISPF/PDF” on page 145
– “Checklist #2: Creating a Data Set with the ALLOCATE Command” on page 148.

• Accessing an existing data set and associating it, and possibly other data sets, to a system file.
Allocating a data set to a system file (SYSEXEC or SYSPROC) enables you to execute the execs implicitly
by simply typing their member names. When more than one PDS is specified in the allocation, they are
concatenated or logically connected in the order in which they are specified.

The association of the PDS to the system file remains for the duration of your terminal session or until
another ALLOCATE command alters the association.

You can allocate a data set to a system file in the foreground with the TSO/E ALLOCATE command or in
the background with a JCL DD statement. You cannot use ISPF/PDF to allocate a data set to a system
file.

Checklists for allocating a data set to SYSEXEC and SYSPROC appear in:

– “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on page 149.
– “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on page 150.

Where to Begin
Before creating a PDS in which to store your execs, use the Preliminary Checklist on page “Preliminary
Checklist” on page 144 to find out information that you can use to make your PDS compatible with other
PDSs at your installation. Then create a PDS with either Checklist #1 on page “Checklist #1: Creating and
Editing a Data Set Using ISPF/PDF” on page 145 or Checklist #2 on page “Checklist #2: Creating a Data
Set with the ALLOCATE Command” on page 148.

After the PDS is created, if you want to be able to invoke those execs implicitly during that terminal
session, you must allocate the PDS to a system file (SYSEXEC or SYSPROC). The allocation is temporary
and must be established for each terminal session. One way to establish the allocation is to write a setup
exec that automatically executes when you log on. Information about how to write a setup exec is in
Checklist #3 on page “Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC” on page 149 and
Checklist #4 on page “Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC” on page 150. If
you do not know which checklist to use, use Checklist #3.

© Copyright IBM Corp. 1988, 1995 143

The following checklists assume that the defaults shipped with TSO/E have not been altered by your
installation. Also if your installation changes system allocations after you have used the checklists to set
up your private allocation, you might need to use the checklists again to keep your allocations up-to-date.

Preliminary Checklist
1. Issue the LISTALC STATUS command to see the names of all data sets allocated to SYSEXEC and

SYSPROC.

To see what data sets are already defined to SYSEXEC and SYSPROC at your installation, issue the
LISTALC command with the STATUS keyword.

 READY
 listalc status

You then see several screens of data set names that might look something like the following. Scroll
until you find SYSEXEC and SYSPROC.

 --DDNAME---DISP--
 ICQ.INFOCTR.LOAD.
 STEPLIB KEEP
 CATALOG.VTSO022
 SYS00006 KEEP,KEEP
 CATALOG.VTSO028
 KEEP,KEEP
 ISP.PHONE.EXEC
 SYSEXEC KEEP
 ICQ.INFOCTR.ICQCLIB
 SYSPROC KEEP
 SYS1.TSO.CLIST
 KEEP
 ISP.ISPF.CLISTS
 KEEP

In this example, one data set ISP.PHONE.EXEC is allocated to SYSEXEC, and three data sets
ICQ.INFOCTR.ICQCLIB, SYS1.TSO.CLIST, and ISP.ISPF.CLISTS are allocated to SYSPROC. (When a
space appears below the data set name, the data set is allocated to the previously-specified file
(DDNAME)).

2. Write down the names of the data sets at your installation that are allocated to SYSEXEC.

• First data set: __
• Remaining data sets: __
__
__
__

3. Write down the names of the data sets at your installation that are allocated to SYSPROC.

• First data set: __
• Remaining data sets: __
__
__
__

4. Issue the LISTDS command for the first data set in each system file to display the record format,
logical record length, and block size.

To see the attributes of data sets used at your installation, issue the LISTDS command for the first data
set in each system file concatenation to display something like the following:

 READY
 LISTDS 'sysexec.first.exec'

 SYSEXEC.FIRST.EXEC
 --RECFM-LRECL-BLKSIZE-DSORG

144 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

 VB 255 5100 PO
 --VOLUMES--
 TSO026

 READY
 LISTDS 'sysproc.first.clist'

 SYSPROC.FIRST.CLIST
 --RECFM-LRECL-BLKSIZE-DSORG
 FB 80 19040 PO
 --VOLUMES--
 TSOL07

5. Write down the attributes of the first data set in your SYSEXEC concatenation.

• RECFM = ______________________________
• LRECL = ______________________________
• BLKSIZE = ______________________________

6. Write down the attributes of the first data set in your SYSPROC concatenation.

• RECFM = ______________________________
• LRECL = ______________________________
• BLKSIZE = ______________________________

Please Note

Save this information for use with the following checklists.

Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
1. Select the ISPF/PDF DATASET UTILITIES option (option 3.2).

From the ISPF/PDF Primary Option Menu, select the UTILITIES option (option 3) and press the ENTER
key.

------------------------ ISPF/PDF PRIMARY OPTION MENU -------------------------
OPTION ===> 3
 USERID - YOURID
 0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
 1 BROWSE - Display source data or output listings TERMINAL - 3277
 2 EDIT - Create or change source data PF KEYS - 12
 3 UTILITIES - Perform utility functions
 4 FOREGROUND - Invoke language processors in foreground
 5 BATCH - Submit job for language processing
 6 COMMAND - Enter TSO command or CLIST
 7 DIALOG TEST - Perform dialog testing
 8 LM UTILITIES- Perform library administrator utility functions
 9 IBM PRODUCTS- Additional IBM program development products
 C CHANGES - Display summary of changes for this release
 T TUTORIAL - Display information about ISPF/PDF
 X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Then select the DATASET option (option 2) and press the ENTER key.

Appendix B. Allocating Data Sets 145

-------------------------- UTILITY SELECTION MENU ----------------------------
OPTION ===> 2

 1 LIBRARY - Compress or print data set. Print index listing.
 Print, rename, delete, or browse members
 2 DATASET - Allocate, rename, delete, catalog, uncatalog, or
 display information of an entire data set
 3 MOVE/COPY - Move, copy, or promote members or data sets
 4 DSLIST - Print or display (to process) list of data set names
 Print or display VTOC information
 5 RESET - Reset statistics for members of ISPF library
 6 HARDCOPY - Initiate hardcopy output
 8 OUTLIST - Display, delete, or print held job output
 9 COMMANDS - Create/change an application command table
 10 CONVERT - Convert old format menus/messages to new format
 11 FORMAT - Format definition for formatted data Edit/Browse
 12 SUPERC - Compare data sets (Standard dialog)
 13 SUPERCE - Compare data sets (Extended dialog)
 14 SEARCH-FOR - Search data sets for strings of data
 D DATA MGMT - Data Management Tools

2. Specify a new data set name on the Data Set Utility panel and type A on the OPTION line.

On the next panel that appears, type the name of the data set you want to allocate, for example
USERID.REXX.EXEC, and enter A on the OPTION line.

------------------------------- DATA SET UTILITY -----------------------------
OPTION ===> a

 A - Allocate new data set C - Catalog data set
 R - Rename entire data set U - Uncatalog data set
 D - Delete entire data set S - Data set information (short)
 blank - Data set information

ISPF LIBRARY:
 PROJECT ===> userid
 GROUP ===> rexx
 TYPE ===> exec

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
 DATA SET NAME ===>
 VOLUME SERIAL ===> left 0If not cataloged, required for option "C")

DATA SET PASSWORD ===> (If password protected)

3. Specify the data set attributes on the Allocate New Data Set panel.

After you name the data set, a panel appears on which you define the attributes of the data set. Use
the attributes recommended by your installation for REXX libraries, and include the record format
(RECFM), record length (LRECL), and block size (BLKSIZE) from the appropriate system file from
the Preliminary Checklist on page “5” on page 145. If you are unsure about which system file is
appropriate, use the values from SYSEXEC.

If your installation has no attribute recommendations and you have no attributes from the Preliminary
Checklist, you can use the following attributes on the ISPF/PDF Allocate New Data Set panel:

146 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

---------------------------- ALLOCATE NEW DATA SET ---------------------------
COMMAND ===>

DATA SET NAME: USERID.REXX.EXEC

 VOLUME SERIAL ===> (Blank for authorized default volume)*
 GENERIC UNIT ===> (Generic group name or unit address)*
 SPACE UNITS ===> blks (BLKS, TRKS or CYLS)
 PRIMARY QUAN ===> 50 (in above units)
 SECONDARY QUAN ===> 20 (in above units)
 DIRECTORY BLOCKS ===> 10 (Zero for sequential data set)
 RECORD FORMAT ===> VB
 RECORD LENGTH ===> 255
 BLOCK SIZE ===> 6120
 EXPIRATION DATE ===> (YY/MM/DD
 YY.DDD in julian form
 DDDD for retention period in days
 or blank)

 (* Only one of these fields may be specified)

4. Edit a member of the newly created PDS by selecting the EDIT option (option 2) and specifying the
PDS name with a member name.

Once you have allocated a PDS, you can press the RETURN PF key (PF4) to return to the Primary
Option Menu and begin an edit session. Select the EDIT option (option 2) from the ISPF/PDF Primary
Option Menu.

------------------------ ISPF/PDF PRIMARY OPTION MENU ----------------------
OPTION ===> 2
 USERID - YOURID
 0 ISPF PARMS - Specify terminal and user parameters TIME - 12:47
 1 BROWSE - Display source data or output listings TERMINAL - 3277
 2 EDIT - Create or change source data PF KEYS - 12
 3 UTILITIES - Perform utility functions
 4 FOREGROUND - Invoke language processors in foreground
 5 BATCH - Submit job for language processing
 6 COMMAND - Enter TSO command or CLIST
 7 DIALOG TEST - Perform dialog testing
 8 LM UTILITIES- Perform library administrator utility functions
 9 IBM PRODUCTS- Additional IBM program development products
 C CHANGES - Display summary of changes for this release
 T TUTORIAL - Display information about ISPF/PDF
 X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Then specify the data set name and member name on the Edit - Entry Panel. In the example that
follows, the member name is timegame.

Appendix B. Allocating Data Sets 147

------------------------------ EDIT - ENTRY PANEL ---------------------------
COMMAND ===>

ISPF LIBRARY:
 PROJECT ===> userid
 GROUP ===> rexx ===> ===> ===>
 TYPE ===> exec
 MEMBER ===> timegame (Blank for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
 DATA SET NAME ===>
 VOLUME SERIAL ===> (If not cataloged)

 DATA SET PASSWORD ===> (If password protected)

 PROFILE NAME ===> (Blank defaults to data set type)

 INITIAL MACRO ===> LOCK ===> YES (YES, NO or NEVER)

 FORMAT NAME ===> MIXED MODE ===> NO (YES or NO)

In the edit session, you can type REXX instructions, such as the ones that follow.

EDIT ---- USERID.REXX.EXEC(TIMEGAME)---------------- COLUMNS 009 080
COMMAND ===> SCROLL ===> HALF
****** ************************ TOP OF DATA **************************
000001 /************************** REXX *****************************/
000002 /* This is an interactive REXX exec that compares the time */
000003 /* from a user's watch with computer time. */
000004 /***/
000005
000006 SAY 'What time is it?'
000007 PULL usertime /* Put the user's response
000008 into a variable called
000009 "usertime" */
000010 IF usertime = '' THEN
000011 SAY "O.K. Game's over."
000012 ELSE
000013 DO
000014 SAY "The computer says:"
000015 /* TSO system */ "time" /* command */
000016 END
000017
000018 EXIT
****** *********************** BOTTOM OF DATA **********************************

Checklist #2: Creating a Data Set with the ALLOCATE Command
1. Type an ALLOCATE command at the READY prompt to define the attributes of the new data set.

You can use the ALLOCATE command to create a PDS instead of using ISPF/PDF panels. If you
noted attributes in the Preliminary Checklist on page “5” on page 145, substitute the attributes from
the appropriate system file in the following example. If you are unsure about which system file is
appropriate, use the values from SYSEXEC.

Note: In the ALLOCATE command, specify a record format of VB as RECFM(v,b) and a record format of
FB as RECFM(f,b).

If your installation has no attribute recommendations and you have no attributes from the Preliminary
Checklist, you can use the attributes in the following example.

 ALLOCATE DA(rexx.exec) NEW DIR(10) SPACE(50,20) DSORG(po)
 RECFM(v,b) LRECL(255) BLKSIZE(6120)

148 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

For more information about the ALLOCATE command, see TSO/E V2 REXX/MVS Reference
(SC28-1883) and TSO/E Command Reference (SC28-1969).

2. Edit a member of the newly created PDS by selecting the ISPF/PDF EDIT option (option 2) and
specifying the PDS name with a member name.

See the description for this step in the previous checklist on page “4” on page 147.

Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
1. Write an exec named SETUP that allocates data sets to SYSEXEC.

Create a data set member named SETUP in your exec PDS. In SETUP issue an ALLOCATE command
that concatenates your PDS to the beginning of all the data sets already allocated to SYSEXEC. Include
the data sets allocated to SYSEXEC from the list in the Preliminary Checklist on page “Preliminary
Checklist” on page 144. If there are no other data sets allocated to SYSEXEC, specify your PDS only.
Your SETUP exec could look like the following example.

Note: The order in which you list data sets in an ALLOCATE command is the order in which they are
concatenated and searched. To give your execs priority in the search order, list your data set of execs
before other data sets.

Generally all the data sets in the list should have the same record format, either VB or FB. Also, the
first data set in the list can determine the block size for the data sets that follow. If the block size of the
first data set is smaller than the block sizes of subsequent data sets, you might end in error. To avoid
error, use the Preliminary Checklist and the other checklists provided, and follow directions carefully.

2. Execute SETUP by entering the following EXEC command:

 READY
 EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

 Allocation to SYSEXEC completed.

To have SETUP execute when you log on and automatically allocate your data set to SYSEXEC, type the
same EXEC command in the COMMAND field of your LOGON panel.

Appendix B. Allocating Data Sets 149

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a '?' in
any entry field.

 ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

 USERID ===> YOURID

 PASSWORD ===> NEW PASSWORD ===>

 PROCEDURE ===> MYPROC GROUP IDENT ===>

 ACCT NMBR ===> 00123

 SIZE ===> 5800

 PERFORM ===>

 COMMAND ===> EXEC rexx.exec(setup) exec

 ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

 -NOMAIL -NONOTICE -RECONNECT -OIDCARD

Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC
1. Write an exec named SETUP that allocates data sets to SYSPROC.

Create a data set member named SETUP in your exec PDS. In SETUP issue an ALLOCATE command
that concatenates your PDS to the beginning of all the data sets already allocated to SYSPROC. Include
the data sets allocated to SYSPROC from the list in the Preliminary Checklist on page “Preliminary
Checklist” on page 144. If there are no other data sets allocated to SYSPROC, specify your PDS only.
Your SETUP exec could look like the following example.

Note: The order in which you list data sets in an ALLOCATE command is the order in which they are
concatenated and searched. To give your execs priority in the search order, list your data set of execs
before other data sets.

Generally all the data sets in the list should have the same record format, either VB or FB. Also, the
first data set in the list can determine the block size for the data sets that follow. If the block size of the
first data set is smaller than the block sizes of subsequent data sets, you might end in error. To avoid
error, use the Preliminary Checklist and the other checklists provided, and follow directions carefully.

2. Execute SETUP by entering the following EXEC command:

 READY
 EXEC rexx.exec(setup) exec

If the allocation was successful, you should then see displayed on your screen:

 Allocation to SYSPROC completed.

To have SETUP execute when you log on and automatically allocate your data set to SYSPROC, type the
same EXEC command in the COMMAND field of your LOGON panel.

150 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

------------------------------- TSO/E LOGON ----------------------------------
PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific HELP information by entering a '?' in
any entry field.

 ENTER LOGON PARAMETERS BELOW: RACF LOGON PARAMETERS:

 USERID ===> YOURID

 PASSWORD ===> NEW PASSWORD ===>

 PROCEDURE ===> MYPROC GROUP IDENT ===>

 ACCT NMBR ===> 00123

 SIZE ===> 5800

 PERFORM ===>

 COMMAND ===> EXEC rexx.exec(setup) exec

 ENTER AN 'S' BEFORE EACH OPTION DESIRED BELOW:

 -NOMAIL -NONOTICE -RECONNECT -OIDCARD

Appendix B. Allocating Data Sets 151

152 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Appendix C. Specifying Alternate Libraries with the
ALTLIB Command

The ALTLIB command gives you more flexibility in specifying exec libraries for implicit execution. With
ALTLIB, a user or ISPF application can easily activate and deactivate exec libraries for implicit execution
as the need arises. This flexibility can result in less search time when fewer execs are activated for
implicit execution at the same time.

In addition to execs, the ALTLIB command lets you specify libraries of CLISTs for implicit execution.

Specifying Alternative Exec Libraries with the ALTLIB Command
The ALTLIB command lets you specify alternative libraries to contain implicitly executable execs. You can
specify alternative libraries on the user, application, and system levels.

• The user level includes exec libraries previously allocated to the file SYSUEXEC or SYSUPROC. During
implicit execution, these libraries are searched first.

• The application level includes exec libraries specified on the ALTLIB command by data set or file name.
During implicit execution, these libraries are searched after user libraries.

• The system level includes exec libraries previously allocated to file SYSEXEC or SYSPROC. During implicit
execution, these libraries are searched after user or application libraries.

Using the ALTLIB Command
The ALTLIB command offers several functions, which you specify using the following operands:
ACTIVATE

Allows implicit execution of execs in a library or libraries on the specified level(s), in the order
specified.

DEACTIVATE
Excludes the specified level from the search order.

DISPLAY
Displays the current order in which exec libraries are searched for implicit execution.

RESET
Resets searching to the system level only (execs allocated to SYSEXEC or SYSPROC).

For complete information about the syntax of the ALTLIB command, see TSO/E Command Reference.

Note:

1. With ALTLIB, data sets concatenated to each of the levels can have differing characteristics (logical
record length and record format), but the data sets within the same level must have the same
characteristics.

2. At the application and system levels, ALTLIB uses the virtual lookaside facility (VLF) to provide
potential increases in library search speed.

Stacking ALTLIB Requests
On the application level, you can stack up to eight activate requests with the top, or current, request
active. Application-level libraries you define while running an ISPF application are in effect only while
that application has control. When the application completes, the original application-level libraries are
automatically reactivated.

© Copyright IBM Corp. 1988, 1995 153

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3c530.pdf

Using ALTLIB with ISPF
Under ISPF, ALTLIB works the same as in line mode TSO/E. However, if you use ALTLIB under line mode
TSO/E and start ISPF, the alternative libraries you specified under line mode TSO/E are unavailable until
ISPF ends.

When you use ALTLIB under ISPF, you can pass the alternative library definitions from application to
application by using ISPEXEC SELECT with the PASSLIB operand; for example:

ISPEXEC SELECT NEWAPPL(ABC) PASSLIB

The PASSLIB operand passes the ALTLIB definitions to the invoked application. When the invoked
application completes and the invoking application regains control, the ALTLIB definitions that were
passed take effect again, regardless of whether the invoked application changed them. If you omit the
PASSLIB operand, ALTLIB definitions are not passed to the invoked application.

For more information about writing ISPF applications, see ISPF Dialog Management Services and
Examples

Examples of the ALTLIB Command
In the following example, an application issues the ALTLIB command to allow implicit execution of execs
in the data set NEW.EXEC, to be searched ahead of SYSPROC:

ALTLIB ACTIVATE APPLICATION(exec) DATASET(new.exec)

The application could also allow searching for any private execs that the user has allocated to the file
SYSUEXEC or SYSUPROC, with the following command:

ALTLIB ACTIVATE USER(exec)

To display the active libraries in their current search order, use the DISPLAY operand as follows:

ALTLIB DISPLAY

For more information about the search order EXEC uses for execs and CLISTs, see TSO/E Command
Reference.

To deactivate searching for a certain level, use the DEACTIVATE operand; for example, to deactivate
searching for execs on the system level (those allocated to SYSEXEC or SYSPROC), issue:

ALTLIB DEACTIVATE SYSTEM(exec)

And, to reset exec searching back to the system level, issue:

ALTLIB RESET

154 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3c530.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/ikj3c530.pdf

Appendix D. Comparisons Between CLIST and REXX

Both the CLIST language and the REXX language can be used in TSO/E as procedures languages. Some
major features of REXX that are different from CLIST are:

• Host command environments - TSO/E REXX has the ability to invoke commands from several
environments in MVS and ISPF, as well as from TSO/E. The ADDRESS instruction sets the environment
for commands. For more information, see “Issuing Commands from a Program” on page 91.

• Parsing capabilities - For separating data into variable names and formatting text, REXX provides
extensive parsing through templates. For more information, see “Parsing Data” on page 77.

• Use of a data stack - REXX offers the use of a data stack in which to store data. For more information,
see Chapter 11, “Storing Information in the Data Stack,” on page 107.

• Use of mixed and lowercase characters - Although variables and most input are translated to
uppercase, REXX provides ways to maintain mixed and lowercase representation. For more information,
see “How to Prevent Translation to Uppercase” on page 17.

In some ways CLIST and REXX are similar. The following tables show similarities and differences in the
areas of:

• Accessing system services
• Controlling program flow
• Debugging
• Execution
• Interactive communication
• Passing information
• Performing file I/O
• Syntax
• Using functions
• Using variables

Accessing System Information
CLIST REXX

LISTDSI statement

 LISTDSI REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

LISTDSI external function

 x = LISTDSI(baseds)

&SYSOUTTRAP and REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.

 SET SYSOUTTRAP = 100

OUTTRAP external function

 x = OUTTRAP(var,100)

CONTROL statement

 CONTROL PROMPT

PROMPT external function

 x = PROMPT(on)

© Copyright IBM Corp. 1988, 1995 155

CLIST REXX

&SYSDSN built-in function

 IF REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.('SYS1.MYLIB') = OK
THEN
 :

SYSDSN external function

 IF SYSDSN('SYS1.MYLIB') = OK THEN
 :

Control Variables: For User Information

 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

 WRITE REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

For Terminal Information

 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

For CLIST Information

 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

For System Information

 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.
 REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

SYSVAR external function with the following
arguments: For User Information

 SYSPREF

 SAY SYSVAR(syspref)

 SYSPROC
 SYSUID

For Terminal Information

 SYSLTERM
 SYSWTERM

For Exec Information

 SYSENV
 SYSICMD
 SYSISPF
 SYSNEST
 SYSPCMD
 SYSSCMD

For System Information

 SYSCPU
 SYSHSM
 SYSLRACF
 SYSRACF
 SYSSRV
 SYSTSOE

Controlling Program Flow
CLIST REXX

Branching Branching

IF/THEN/ELSE statements IF/THEN/ELSE instructions

156 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

CLIST REXX

SELECT/WHEN/OTHERWISE/END statements SELECT/WHEN/OTHERWISE/END instructions

Looping Looping

Iterative DO Iterative DO

DO/WHILE/END statements DO/WHILE/END instructions

DO/UNTIL/END statements DO/UNTIL/END instructions

Interrupting Interrupting

END, EXIT statements EXIT instruction

GOTO statement SIGNAL instruction

LEAVE instruction

CALL instruction

Calling another CLIST Calling another exec as an external subroutine

EXEC command

 :
 EXEC MYNEW.CLIST(CLIST1) 'VAR'
 :
 END

 PROC 1 VAR
 :
 EXIT

CALL instruction

 :
 call exec1 var
 :
 exit

 arg var
 :
 return

Calling a subprocedure Calling an internal subroutine

SYSCALL statement

 :
 SYSCALL SOMESUB VAR
 :
 END
 SOMESUB: PROC 1 VAR
 :
 EXIT

CALL instruction

 :
 call sub1 var
 :
 exit
 sub1:
 arg var
 :
 return

Debugging
CLIST REXX

Debugging a CLIST Debugging an exec

CONTROL SYMLIST LIST CONLIST MSG TRACE instruction

 trace i

Interactive debug facility (EXECUTIL TS and TRACE ?
R)

Return codes for commands and statements Return codes for commands

Appendix D. Comparisons Between CLIST and REXX 157

CLIST REXX

&LASTCC, REQCLEANUP - Created by ActiveSystems
02/28/97 Entity not defined.

 SET ECODE = REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.

RC

 ecode = RC

Trapping TSO/E command output Trapping TSO/E command output

&SYSOUTTRAP, REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.

OUTTRAP external function

Error handling Error handling

ERROR and ATTN statements SIGNAL ON ERROR,
SIGNAL ON FAILURE,
SIGNAL ON HALT,
SIGNAL ON NOVALUE, and
SIGNAL ON SYNTAX instructions.
CALL ON ERROR, CALL ON FAILURE, and
CALL ON HALT
instructions.¹

¹
For more information about REXX error handling instructions, see TSO/E REXX Reference.

Execution
CLIST REXX

Explicit Explicit

EXEC command

 EXEC MYNEW.CLIST(CLIST1)

EXEC command

 EXEC MYNEW.EXEC(FIRST) EXEC

Implicit Implicit

1. Allocate/concatenate to SYSPROC
2. Specify member name of PDS with or without %

1. Allocate/concatenate to SYSPROC or SYSEXEC
2. Specify member name of PDS with or without %

Interactive Communication
CLIST REXX

Reading from the terminal Reading from the terminal

READ, READDVAL statements

 READ INPUTA, INPUTB, INPUTC

PULL, PARSE PULL, PARSE UPPER PULL, PARSE
EXTERNAL instructions

 pull inputa, inputb, inputc

Writing to the terminal Writing to the terminal

158 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

http://publibfp.dhe.ibm.com/epubs/pdf/ikj3a330.pdf

CLIST REXX

WRITE statement

 WRITE Your previous entry was not valid.

SAY instruction

 say 'Your previous entry was not valid.'

Passing Information
CLIST REXX

Receiving parameters in a CLIST Receiving arguments in an exec

PROC statement

 PROC 1 DSNAME MEMBER() DISP(SHR)

CLISTs can receive positional, keyword, and keyword
value parameters.

ARG, PARSE ARG, PARSE UPPER ARG instructions

 arg dsname member disp

An exec receives positional parameters. Use the
PARSE ARG and PARSE UPPER ARG instructions to
receive keywords, for example:

my.data member(member1) disp(old)

 parse upper arg dsname .
 parse upper arg 'MEMBER('mem')'
 parse upper arg 'DISP('disp')'

Recognizing comments within a parameter Recognizing comments within a parameter

A CLIST PROC statement recognizes a comment within
a parameter sent by the EXEC command and ignores
that comment.

An ARG instruction does not recognize a comment
within a parameter sent by the EXEC command. It is
treated as part of the argument.

Sending parameters to a CLIST Sending arguments to an exec

EXEC command

 EXEC MY.CLIST(NEW) -
 'MY.DATA MEMBER(MEMBER1) DISP(OLD)'

EXEC command from TSO/E READY

 'EXEC MY.EXEC(NEW)',
 "'my.data member(member1) disp(old)' EXEC"

Sending information to a subprocedure Sending information to a subroutine

SYSCALL statement

 SYSCALL SOMESUB REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.

CALL instruction

 call somsub var

Sending information from a subprocedure Sending information from a subroutine

Appendix D. Comparisons Between CLIST and REXX 159

CLIST REXX

RETURN statement

 :
 SYSCALL SOMESUB REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.
 SET ANSWER = REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.
 :
 END

 SOMESUB: PROC 1 V1
 :
 RETURN CODE(33) /* code goes to &LASTCC */

RETURN instruction

 :
 call somesub var
 answer = RESULT
 exit

 somesub:
 arg v1
 :
 value = 4 * v1 / 3
 return value /* value goes to RESULT */

Performing File I/O
CLIST REXX

Reading from a file Reading from a file

OPENFILE, GETFILE, CLOSFILE statements

 OPENFILE PAYCHEKS
 SET COUNTER=1
 DO WHILE &COUNTER ¬> 3
 GETFILE PAYCHEKS
 SET EMPLOYEE&COUNTER=REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.
 SET COUNTER=REQCLEANUP - Created by
ActiveSystems 02/28/97 Entity not defined.+1;
 END
 CLOSFILE PAYCHEKS

EXECIO DISKR, EXECIO DISKRU commands

 'EXECIO 3 DISKR indd (stem employee. FINIS'
/* Read 3 records from the data set in indd. */
/* The 3 records go to a list of compound */
/* variables with the stem of employee. They */
/* are employee.1, employee.2 and employee.3 */

Writing to a file Writing to a file

OPENFILE, PUTFILE, CLOSFILE statements

 OPENFILE PRICES OUTPUT
 SET PRICES = $2590.00
 PUTFILE PRICES
 CLOSFILE PRICES

EXECIO DISKW

 push '$2590.00' /* put amount on data stack */
 'EXECIO 1 DISKW outdd (finis'
/*Write from data stack to data set in outdd*/

Syntax
CLIST REXX

Continuing a statement over more than one line Continuing an instruction over more than one line

Use - or +

 IF &STR(SYSDATE)=&STR(10/13/87) THEN +
WRITE On &SYSDATE the system was down.

Use ,

 say 'This instruction',
 'covers two lines.'

Separating statements within a line Separating instructions within a line

No more than one statement per line Use ;

 do 5; Say 'Hello'; end

Character set of statements Character set of instructions

160 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

CLIST REXX

Must be in uppercase Can be upper, lower, or mixed case

Comments Comments

Enclose between /* */, closing delimiter optional at the
end of a line.

Enclose between /* */, closing delimiter always
required.

Using Functions
CLIST REXX

Calling a function Calling a function

&FUNCTION(expression)

 SET A = &LENGTH(ABCDE) /* &A = 5 */

function(arguments)

 a = length('abcde') /* a = 5 */

Using Variables
CLIST REXX

Assigning value to a variable Assigning value to a variable

SET statement

 SET X = 5 /* &X gets the value 5 */
 SET NUMBER = &X /* &NUMBER gets the value 5 */
 SET Y = NUMBER /* &Y gets the value NUMBER */

assignment instruction

 x = 5 /* X gets the value 5 */
 NUMBER = x /* NUMBER gets the value 5 */
 Y = 'number' /* Y gets the value number */

Appendix D. Comparisons Between CLIST and REXX 161

162 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Bibliography

This bibliography lists some publications that provide additional information about REXX or the VSE/ESA
system.

• REXX/VSE Reference
• VSE/ESA REXX/VSE Diagnosis Reference , LY33-9189
• z/VSE System Control Statements
• z/VSE Guide to System Functions
• POWER Application Programming
• POWER Administration and Operation
• z/VSE Messages and Codes
• SAA Common Programming Interface REXX Level 2 Reference , SC24-5549
• IBM Compiler and Library for SAA REXX/370 Release 2: Introducing the Next Step in REXX Programming ,

G511-1430-01
• IBM Compiler and Library for REXX/370; User's Guide and Reference
• IBM Compiler and Library for SAA REXX 370 Release 2 Diagnosis Guide

© Copyright IBM Corp. 1988, 1995 163

http://publibfp.dhe.ibm.com/epubs/pdf/iesrre32.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessoea0.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iessye51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespce51.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iespao80.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/iesmc191.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/h1981606.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/h1981791.pdf

164 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

Index

Special Characters
* 26
** 26
/ 26
// 26
\ 31
\ < 29
\ > 29
\= 29
\== 29
& 31
&& 31
% 26
< 29
< = 29
=

comparison operator 29
in assignment 12
in parsing template 82

== 29
> 29
> < 29
> = 29
>>> - final result 36
>L> - literal value 35
>O> - operation result 35
>V> - variable value 35
| 31

A
ADDRESS built-in function 93
ADDRESS instruction 92
ADDRESS JCL commands 89
ADDRESS POWER commands 89
ALLOCATE command 148–150
allocation

description 143
to a system file 137, 143
to SYSEXEC 149
to SYSPROC 150

allocation checklist
creating a data set with ALLOCATE 148
creating and editing a data set using ISPF/PDF 145
preliminary 144
writing an exec to allocate to SYSEXEC 149
writing an exec to allocate to SYSPROC 150

ALTLIB command
using under ISPF 154

ARG built-in function 69
ARG instruction 19, 68, 78
argument

ARG instruction 68
definition 21
passing

using CALL instruction 21

argument (continued)
passing (continued)

using REXX function call 21
used to pass information to a function 68
used to pass information to a subroutine 68

arithmetic operator
division, type of 27
priority 27
type of 25

ASSGN 101
assignment instruction 12

B
background (TSO)

JCL 139
running an exec 139

batch (MVS)
JCL 140
running an exec 140

bibliography 163
blank line 13
built-in function

ADDRESS 93
ARG 69
comparison 57
conversion 57
DATATYPE 60
description 55
formatting 58
QUEUED 108, 113
REXX language

arithmetic 57
comparison 57
conversion 57
formatting 58
string manipulating 58

string manipulating 58
SUBSTR 64

C
CALL/RETURN instruction 52, 65
calling a phase 91
character, uppercase

preventing with PARSE 17, 20
preventing with quotation mark 17

checklist
creating a data set with ALLOCATE 148
creating and editing a data set using ISPF/PDF 145
preliminary 144
writing an exec to allocate to SYSEXEC 149
writing an exec to allocate to SYSPROC 150

checklist #1 - creating and editing a data set using ISPF/PDF
145
checklist #2 - creating a data set with ALLOCATE 148
checklist #3 - writing an exec to allocate to SYSEXEC 149

Index 165

checklist #4 - writing an exec to allocate to SYSPROC 150
clause

as a subset of an instruction 11
CLIST

comparison to REXX 155
invoking an exec 138
returning information to an exec 139
running from an exec 138

comma
to continue an instruction 10
to separate parsing templates 80

commands
ALLOCATE 148–150
ALTLIB 153
as an instruction 13
DELSTACK 117
DROPBUF 113
enclosing in quotation marks 17, 89
EXEC 90
EXECIO 120
EXECUTIL SEARCHDD 138
GETQE 89, 93
immediate 89
issuing from a program 91
LISTALC STATUS 144
LISTDS 144
MAKEBUF 112
NEWSTACK 116
PUTQE 13, 93
QBUF 114
QELEM 114
QSTACK 117
QUERYMSG 89
REXX/VSE 89
SUBCOM 93
using parentheses 89
using quotation mark 89
using variable 90

comment
beginning a program 7, 12
identifying as a program 12
to clarify the purpose of a program 12

comparison operator
equal 29
false (0) 28
strictly equal 29
true (1) 28
types of 28

compound variable
changing all variables in an array 76
description 75
initializing 75
used in EXECIO command 124, 126
used in OUTTRAP 102
using stems 76

concatenation
of data sets 143

concatenation operator
type of

|| 33
abuttal 33
blank 33

continuation
of an instruction 10

copy
information to and from files 125
information to compound variables 126
information to the end of a file 126

D
DATA option 120
data set

adding to SYSEXEC 149
adding to SYSPROC 150
allocating 143
attributes 146
concatenation 149, 150
creating 143
creating in ISPF/PDF 145
creating with ALLOCATE 148
creating with the ALLOCATE command 148
editing 147
finding the allocation status of 144
library 143
partitioned (PDS) 143
sequential 143

data stack
adding an element 107
characteristic 111
creating a buffer 112
creating a new stack 116
data left on stack 112
deleting a private stack 117
description 107
determining the number of elements on the stack 108
dropping one or more buffers 113
finding the number of buffers 114
finding the number of elements in 114
finding the number of stacks 117
leftover data 112
manipulating 107
passing information between a program and a routine
111
protecting an element 116
removing an element 108
removing an element from a stack with a buffer 113
search order for processing 110
type of input 110
using in MVS batch 140
using in TSO/E background 140

DATATYPE built-in function 60
DBCS

names
example 13, 24

names, using 13
debug

for error 95
interactive debug facility 97
with REXX special variable 96, 97

DELSTACK command 117
diagnosis

problem within a program 95
DO FOREVER loop 44
DO UNTIL loop

combining types 49
flowchart 48

DO WHILE loop

166 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

DO WHILE loop (continued)
flowchart 47

DO…END instruction 43
double-byte character set names

in programs 13
DROPBUF command 113

E
edit

an exec 147
environment

defining in REXX 141
host command environment 91
JCL 91
language processor 141
LINK 91
LINKPGM 91
POWER 91
VSE 91

error
debugging 35, 95
tracing command 95
tracing expression 35

error message
getting more information 17
interpreting 16
syntax error 16

example
use of uppercase and lowercase xvii

exclusive OR 31
exec

editing in ISPF 147
invoking a CLIST 138
returning information to a CLIST 139
running

explicitly 137
from a CLIST 137, 138
from another exec 137
implicitly 137, 143
implicitly with ALTLIB 153
in a TSO/E address space 137
in non-TSO/E address space
139
in the background 139
in the foreground 137
with IKJEFT01 139
with IRXEXEC 140
with IRXJCL 140
with JCL 139

service available 135
EXEC command

description 90
example 90

exec identifier 12, 138
EXECIO command

adding information to a file 126
copying information to a file 125
copying information to and from compound variables
126
DATA option 120
description 120
example 128
NODATA option 120

EXECIO command (continued)
reading information from a file 121
return code 125
updating information to a file 127
writing information to a file 123

EXECUTIL SEARCHDD 138
EXIT instruction 51, 65
expression

arithmetic
order of evaluation 27

Boolean 31
comparison 28
concatenation 32
definition 25
logical 31
tracing 35

external function
ASSGN 101
OUTTRAP 101
REXXIPT 102
REXXMSG 103
SETLANG 103
SLEEP 104
STORAGE 104
SYSVAR 104

external subroutine 65

F
FIFO (first in first out) 107
file

adding information with EXECIO command 126
copying information with EXECIO command 125
reading information from with EXECIO 121
to contain a program 7
updating information with EXECIO command 127
writing information to with EXECIO 123

file I/O 120
foreground processing

explicit execution 137
implicit execution 137
of an exec 137

function
ADDRESS built-in 93
ARG built-in 69
built-in function

arithmetic 56
comparison 57
conversion 57
formatting 58
string manipulating 58
testing input with 60

comparison to a subroutine 63, 72
description

built-in 55
external 55, 101
function package 55, 104
user written 55

exposing a specific variable 67
external 65
internal 65
internal versus external, when to use 66
passing information to

using a variable 66

Index 167

function (continued)
protecting a variable 66
QUEUED built-in 108, 113
receiving information from

using the ARG built-in function 69
returning a value 56
REXX/VSE external

description 101
OUTTRAP 101
STORAGE 104

search order 105
using EXIT 65
using PROCEDURE 66
using PROCEDURE EXPOSE 67
using RETURN 65
writing 64

function package
description 104
local 104
system 104
user 104

G
GETQE

example 93, 94
use 89

H
host command environment

changing 92
checking if it is available 93
compared to language processor environment 16, 142
default 91
finding the active environment 93

I
identifier

of an exec 138
IF…THEN…ELSE

instruction
flowchart 37
matching clauses 39
nested 39
using DO and END 38
using NOP 39

IKJEFT01 139
immediate commands 89
implicit execution 143
inclusive OR 31
infinite loop

from TSO/E background and MVS batch 140
stopping 44

input
passing argument 21
preventing translation to uppercase 20
receiving with ARG 19
receiving with PULL 19
to a program

preventing translation to uppercase 17, 20
using a period as a placeholder 20, 80

input/output (I/O)
reading from a file 121
reading to compound variables 124
using the EXECIO command 120
writing from compound variables 124
writing to a file 123

instruction
adding during interactive debug 98
ADDRESS 92
ARG 19, 68
blank 13
CALL 65
CALL/RETURN 52
comment 12
conditional 37
continuing to the next line 10
DO FOREVER 44
DO UNTIL 48
DO WHILE 47
DO…END 43
EXIT 51, 65, 98
formatting 8
IF…THEN…ELSE 37
INTERPRET 119
interrupt 37
ITERATE 45
LEAVE 45, 50
literal string 9
looping 37
PARSE 17, 20
PARSE EXTERNAL 110
PARSE PULL 108
PARSE UPPER VALUE 79
PARSE UPPER VAR 79
PARSE VALUE…WITH 78
PARSE VAR 79
PROCEDURE 66
PROCEDURE EXPOSE 67
PULL 18, 108
PUSH 107
QUEUE 107
re-executing during interactive debug 98
RETURN 65
SAY 7
SELECT WHEN…OTHERWISE…END 40
SIGNAL 53
SIGNAL ON ERROR 97
syntax 8
TRACE

ending tracing 98
interactive debug 97
tracing command 95
tracing expression 35

type of
assignment 12
command 13
keyword 11
label 12
null 12, 13

using 8
using blank 8
using comma 10
using quotation mark 8, 89
using semicolon 9

168 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

instruction (continued)
writing 8

interactive debug facility
adding an instruction 98
continuing 98
description 97
ending 98
option 98
re-executing the last instruction traced 98
starting 97

interactive trace 98
internal function 65
internal subroutine 65
INTERPRET instruction 119
IRXEXEC 140
IRXJCL 140
ITERATE instruction 45

J
JCL (job control language)

in MVS batch 140
in TSO background 139

JCL environment 91

K
keyword instruction 11

L
label instruction 12
language processor environment

ARXPARMS 15
compared to host command environment 16, 142
customizing 16, 142
definition 15, 141
IRXISPRM 141
IRXPARMS 141
IRXTSPRM 141

LEAVE instruction 45, 50
library

alternative (ALTLIB) 153
application level 153
exec 143
system

SYSEXEC 137, 138
SYSPROC 137, 138

system level 153
user level 153

Library for REXX/370 in REXX/VSE
benefits 4

LIFO (last in first out) 107
LINK environment 91
LINKPGM environment 91
LISTALC STATUS command 144
LISTDS command 144
literal string 9
logical (Boolean) operator

false (0) 31
true (1) 31
type of 31

logical AND 31

logical NOT 31
loop

altering the flow 45
conditional 46
DO FOREVER 44
DO UNTIL 48
DO WHILE 47
DO…END 43
exiting prematurely 45
infinite 44
ITERATE 45
LEAVE 45
nested DO loop 50
repetitive 43

lowercase character
changing to uppercase 17, 20
preventing the change to uppercase 17, 20

M
MAKEBUF command 112
message

error
getting more information 17

explanation 16
interpreting 16
tracing 35

move
information from one file to another 125

MVS batch
comparison to TSO/E background 141
running an exec 140
using IRXJCL 140
using the data stack 140

N
name for variable

restriction on naming 23
valid name 23

NEWSTACK command 116
NODATA option 120
non-TSO/E address space

running an exec 139
null clause 12
numeric constant

decimal number 26
floating point number 26
signed number 26
whole number 25

numeric pattern in parsing 80

O
operator

arithmetic
order of priority 27

Boolean 31
comparison 28
concatenation 32
logical 31
order of priority 33

OUTTRAP external function 101

Index 169

P
parentheses 89
PARSE ARG instruction 78
PARSE EXTERNAL instruction 110
PARSE instruction

PARSE ARG 78
PARSE PULL 78
PARSE UPPER ARG 78
PARSE UPPER PULL 78
PARSE UPPER VALUE 79
PARSE UPPER VAR 79
PARSE VALUE…WITH 78
PARSE VAR 79
preventing translation to uppercase 17, 20

PARSE PULL instruction 78, 108
PARSE UPPER ARG instruction 78
PARSE UPPER PULL instruction 78
PARSE UPPER VALUE instruction 79
PARSE UPPER VAR instruction 79
PARSE VALUE…WITH instruction 78
PARSE VAR instruction 79
parsing

ARG 78
blanks, treatment of 79
comma 80
description 77
equal sign in pattern 82
into words 79
multiple strings 82
PARSE ARG 78
PARSE PULL 78
PARSE UPPER ARG 78
PARSE UPPER PULL 78
pattern

numeric 80
string 80
variable 80

placeholder 20, 80
PULL 77
separator

blank 80
number 80
string 80
variable 80

template 77, 80
UPPER, effect of 78
words 79

partitioned data set
creating in ISPF/PDF 145
creating with ALLOCATE 148
description 143

passing arguments 21
period

as placeholder 20
phase, calling 91
placeholder in parsing 20, 80
portability of compiled REXX programs

portability 5
POWER environment 91
preliminary checklist 144
PROCEDURE instruction 66, 67
program

calling as a command 90

program (continued)
comment line 7
description xvii, 7
error message 16
example 8
passing information to 18
program xvii
receiving input 19
using blank line 13
using double-byte character set names 13
writing 8

program identifier
of a program 7, 12

protection
of an element on a data stack 116

PULL instruction 18, 77, 108
PUSH instruction 107
PUTQE

example 13, 93

Q
QBUF command 114
QELEM command 114
QSTACK command 117
queue

description 107
FIFO order 107

QUEUE instruction 107
QUEUED built-in function 108, 113
quotation mark

around a literal string 9
around command 17, 89
in an instruction 9
to prevent translation to uppercase 17

R
RC special variable

for debugging 96
used with a command 89
used with stack command 114

relative numeric pattern in parsing 81
repetitive loop 43
RESULT special variable

used with EXIT 51
REXX compiler

benefits 4
REXX environment

definition 141
REXX exec identifier 138
REXX instruction

adding during interactive debug 98
ADDRESS 92
ARG 19, 68, 78
blank 13
CALL 65
CALL/RETURN 52
comment 12
conditional 37
continuing to the next line 10
DO FOREVER 44
DO UNTIL 48

170 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

REXX instruction (continued)
DO WHILE 47
DO…END 43
EXIT 51, 65, 98
formatting 8
IF…THEN…ELSE 37
INTERPRET 119
interrupt 37
ITERATE 45
LEAVE 45, 50
literal string 9
looping 37
PARSE 17, 20
PARSE ARG 78
PARSE EXTERNAL 110
PARSE PULL 78, 108
PARSE UPPER ARG 78
PARSE UPPER PULL 78
PARSE UPPER VALUE 79
PARSE UPPER VAR 79
PARSE VALUE…WITH 78
PARSE VAR 79
PROCEDURE 66
PROCEDURE EXPOSE 67
PULL 18, 77, 108
PUSH 107
QUEUE 107
re-executing during interactive debug 98
RETURN 65
SAY 7
SELECT WHEN…OTHERWISE…END 40
SIGNAL 53
SIGNAL ON ERROR 97
syntax 8
TRACE

interactive debug 97
tracing command 95
tracing expression 35

type of
assignment 12
command 13
keyword 11
label 12
null 12, 13

using 8
using blank 8
using comma 10
using quotation mark 8, 89
using semicolon 9
writing 8

REXX language
comparison to CLIST 155
description 3
example

use of uppercase and lowercase xvii
feature of 3
program

description xvii, 7
REstructured eXtended eXecutor xvii
SAA (Systems Application Architecture) xvii
SAA (Systems Application Architecture) REXX 4

REXX program
portability of 5

REXX program identifier 7, 12

REXX special variable
for debugging 97
RC

for debugging 96
for receiving information 69, 70
used with a command 89
used with stack command 114, 117

RESULT
used with EXIT 51

SIGL
for debugging 96, 97

REXX/VSE command
DELSTACK 117
DROPBUF 113
EXEC 90
EXECIO 120
MAKEBUF 112
NEWSTACK 116
QBUF 114
QELEM 114
QSTACK 117

REXX/VSE environment service
description 101

REXX/VSE external function
ASSGN 101
description 101
OUTTRAP 101
REXXIPT 102
REXXMSG 103
SETLANG 103
SLEEP 104
STORAGE 104
SYSVAR 104

REXXIPT 102
REXXMSG 103
rules

syntax 8

S
SAA (Systems Application Architecture) REXX

general description 5
language 4

SAY instruction 7
SELECT WHEN…OTHERWISE…END

instruction
flowchart 40

semicolon
to end an instruction 9

service
for REXX in MVS 135

SETLANG external function
valid language codes 103

SIGL special variable
for debugging 96

SIGNAL instruction 53
SIGNAL ON ERROR instruction 97
SLEEP 104
special variable 90
stack 107
stem

used with OUTTRAP function 101
STORAGE external function 104
string pattern in parsing 80

Index 171

SUBCOM command 93
sublibrary member

input and output 120
storing programs 14

SUBMIT command 139
subroutine

calling 52
comparison to a function 63, 72
description 63
exposing a specific variable 67
external 65
internal 65
internal versus external, when to use 66
passing information to

using a variable 66
protecting variable 66
RESULT 70
returning a value 52
using an argument 68
using CALL/RETURN 64
using PROCEDURE 66
using PROCEDURE EXPOSE 67
using the ARG built-in function 69
writing 64

SUBSTR built-in function 64
syntax

rules of REXX 8
SYSEXEC

allocating to 149
SYSIPT data, accessing 102
SYSPROC

allocating to 150
system file

allocating to 143
SYSEXEC 138, 153
SYSPROC 138, 153
SYSUEXEC 153
SYSUPROC 153

SYSUEXEC 153
SYSUPROC 153
SYSVAR 104

T
template 80
TRACE instruction

>>> - final result 36
ending tracing 98
interactive debug 97
tracing operation 35
tracing result 36

TSO/E background
comparison to MVS batch 141
using the data stack 140

TSO/E commands
ALLOCATE 148–150
ALTLIB 153
EXECUTIL SEARCHDD 138
LISTALC STATUS 144
LISTDS 144
SUBMIT 139

TSO/E REXX command
EXECUTIL SEARCHDD 138

U
uppercase character

changing from lowercase 17, 20
preventing the change to 17, 20

user ID 60
USERID build-in function 60

V
variable

compound 75
control 43
description 23
naming 23
restriction on naming 23
stem 76
type of value 24
valid name 23
value 24
within REXX/VSE command 90

variable of a stem
description 76, 101
used with EXECIO function 124
used with OUTTRAP function 76, 101

variable string pattern in parsing 80
VSE environment 91

172 IBM VSE/Enterprise Systems Architecture VSE Central Functions: REXX/VSE User's Guide

IBM®

Product Number: 5686-066

SC33-6641-00

	Contents
	Figures
	Tables
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Purpose of Each Chapter
	Examples
	Exercises
	Terminology

	Where to Find More Information
	REXX/VSE Publications
	z/VSE Publications
	SAA Publications
	IBM Compiler and Library Publications

	Referenced Program Products

	Part 1. PART I — Learning the REXX Language
	Chapter 1. Introduction
	Purpose
	What is REXX?
	Features of REXX
	Ease of use
	Free format
	Convenient built-in functions
	Debugging capabilities
	Interpreted language
	Extensive parsing capabilities

	Components of REXX
	REXX and Systems Application Architecture (SAA)
	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking

	Chapter 2. Writing and Running a REXX Program
	Purpose
	Before You Begin
	What is a REXX Program?
	Syntax of REXX Instructions
	The Format of REXX Instructions
	The Letter Case of REXX Instructions
	Using Quotation Marks in an Instruction
	Ending an instruction
	Continuing an instruction
	Continuing a literal string without adding a space

	Types of REXX Clauses
	Keyword Instructions
	Assignment
	Label
	Null Clause
	Commands

	Programs Using Double-Byte Character Set Names
	Running a Program
	Using the JCL EXEC Command to Run a REXX Program
	Using ARXEXEC or ARXJCL
	Defining Language Processor Environments
	What Is a Language Processor Environment?

	Customizing a Language Processor Environment

	Interpreting Error Messages
	How to Prevent Translation to Uppercase
	Characters within a Program
	Characters Input to a Program
	Exercises - Running and Modifying the Example Programs

	Passing Information to a Program
	Getting Information from the Data Stack or Input Stream
	Specifying Values When Calling a Program
	Specifying Too Few Values
	Specifying Too Many Values

	Preventing Translation of Input to Uppercase
	Exercises - Using the ARG Instruction

	Passing Arguments
	Using the CALL Instruction or a REXX Function Call
	Using the JCL EXEC Command

	Chapter 3. Using Variables and Expressions
	Purpose
	Program Variables
	Using Variables
	Variable Names
	Variable Values
	Exercises - Identifying Valid Variable Names

	Using Expressions
	Arithmetic Operators
	Division
	Order of Evaluation
	Using Arithmetic Expressions
	Exercises—Calculating Arithmetic Expressions

	Comparison Operators
	The Strictly Equal and Equal Operators
	Using Comparison Expressions
	Exercises - Using Comparison Expressions

	Logical (Boolean) Operators
	Using Logical Expressions
	Exercises - Using Logical Expressions

	Concatenation Operators
	Using Concatenation Operators

	Priority of Operators
	Exercises - Priority of Operators

	Tracing Expressions with the TRACE Instruction
	Tracing Operations
	Tracing Results
	Exercises - Using the TRACE Instruction

	Chapter 4. Controlling the Flow within a Program
	Purpose
	Conditional, Looping, and Interrupt Instructions
	Using Conditional Instructions
	IF…THEN…ELSE Instructions
	Nested IF…THEN…ELSE Instructions
	Exercise - Using the IF…THEN…ELSE Instruction

	SELECT WHEN…OTHERWISE…END Instruction
	Exercises - Using SELECT WHEN…OTHERWISE…END

	Using Looping Instructions
	Repetitive Loops
	Infinite Loops
	DO FOREVER Loops
	LEAVE Instruction
	ITERATE Instruction
	Exercises - Using Loops

	Conditional Loops
	DO WHILE Loops
	Exercise - Using a DO WHILE Loop
	DO UNTIL Loops
	Exercise - Using a DO UNTIL Loop

	Combining Types of Loops
	Nested DO Loops
	Exercises - Combining Loops

	Using Interrupt Instructions
	EXIT Instruction
	CALL and RETURN Instructions
	SIGNAL Instruction

	Chapter 5. Using Functions
	Purpose
	What is a Function?
	Example of a Function

	Built-In Functions
	Arithmetic Functions
	Comparison Functions
	Conversion Functions
	Formatting Functions
	String Manipulating Functions
	Miscellaneous Functions
	Testing Input with Built-In Functions
	Exercise - Writing a Program with Built-In Functions

	Chapter 6. Writing Subroutines and Functions
	Purpose
	What are Subroutines and Functions?
	When to Write Subroutines Rather Than Functions

	Writing Subroutines and Functions
	When to Use Internal Versus External Subroutines or Functions
	Passing Information
	Using Variables and Expressions
	Protecting Variables with the PROCEDURE Instruction
	Exposing Variables with PROCEDURE EXPOSE

	Passing Information by Using Arguments
	Using the ARG Instruction
	Using the ARG Built-in Function

	Receiving Information from a Subroutine or Function
	Example - Writing an Internal and an External Subroutine
	Exercise - Writing a Function

	Subroutines and Functions—Similarities and Differences

	Chapter 7. Manipulating Data
	Purpose
	Using Compound Variables and Stems
	What Is a Compound Variable?
	Using Stems
	Exercises - Using Compound Variables and Stems

	Parsing Data
	Parsing Instructions
	PULL Instruction
	ARG Instruction
	PARSE VALUE … WITH Instruction
	PARSE VAR Instruction

	More about Parsing into Words
	Parsing with Patterns
	String
	Variable
	Number

	Parsing Multiple Strings as Arguments
	Exercise - Practice with Parsing

	Part 2. PART II — Using REXX
	Chapter 8. Using Commands from a Program
	Purpose
	Types of Commands
	Using Quotations Marks in Commands
	Using Variables in Commands
	Calling Another REXX Program as a Command
	Calling Another Program with the EXEC Command
	Calling Another Program Implicitly

	Issuing Commands from a Program
	What is a Host Command Environment?
	Examples Using APPC/MVS Services

	How Is a Command Passed to the Host Environment?
	Changing the Host Command Environment
	Determining the Active Host Command Environment
	Checking if a Host Command Environment Is Available
	Examples Using the ADDRESS Instruction

	Chapter 9. Diagnosing Problems within a Program
	Purpose
	Debugging Programs
	Tracing Commands with the TRACE Instruction
	TRACE C
	TRACE E

	Using REXX Special Variables RC and SIGL
	RC
	SIGL

	Tracing with the Interactive Debug Facility
	Starting Interactive Debug
	Options within Interactive Debug
	Ending Interactive Debug

	Chapter 10. Using REXX/VSE External Functions
	Purpose
	REXX/VSE External Functions
	Using the ASSGN Function
	Using the OUTTRAP Function
	Using the REXXIPT Function
	Using the REXXMSG Function
	Using the SETLANG Function
	Using the SLEEP Function
	Using the STORAGE Function
	Using the SYSVAR Function

	Function Packages
	Search Order for Functions

	Chapter 11. Storing Information in the Data Stack
	Purpose
	What is a Data Stack?
	Manipulating the Data Stack
	Adding Elements to the Data Stack
	Removing Elements from the Stack
	Determining the Number of Elements on the Stack
	Exercise - Using the Data Stack

	Processing of the Data Stack
	Using the Data Stack
	Passing Information between a Routine and the Main Program

	Leaving Data on the Stack
	Creating a Buffer on the Data Stack
	Creating a Buffer with the MAKEBUF Command
	Removing Elements from a Stack with a Buffer

	Dropping a Buffer with the DROPBUF Command
	Finding the Number of Buffers with the QBUF Command
	Finding the Number of Elements in a Buffer
	Exercises - Creating a Buffer on the Data Stack

	Protecting Elements in the Data Stack
	Creating a New Data Stack with the NEWSTACK Command
	Deleting a Private Stack with the DELSTACK Command
	Finding the Number of Stacks
	Additional Example

	Chapter 12. Processing Data and Input/Output Processing
	Purpose
	Types of Processing
	Dynamic Modification of a Single REXX Expression
	Using the INTERPRET Instruction

	Using EXECIO to Process Information to and from Files
	When to Use the EXECIO Command
	Using the EXECIO Command
	Reading Information from a File
	How to specify the number of lines to read
	Using DISKR or DISKRU
	Option of specifying a starting line number

	Writing Information to a File
	How to specify the number of lines to write
	Options

	Copying Information from One File to Another
	Copying an entire file
	Copying a specified number of lines to a new file
	Adding lines to the end of a file

	Copying Information to and from Compound Variables
	Copying Information from a File to a List of Compound Variables
	Copying Information from Compound Variables to a File

	Updating Information in a File
	Updating a single line
	Updating multiple lines

	Additional Examples

	Appendix A. Using REXX in TSO/E and Other MVS Address Spaces
	Purpose
	Services Available to REXX Execs
	Running Execs in a TSO/E Address Space
	Running an Exec in the Foreground
	Things to Consider When Allocating to a System File (SYSPROC or SYSEXEC)
	Allocating to SYSEXEC
	Allocating to SYSPROC
	Running an Exec from a CLIST
	Sending a Return Code Back to the Calling CLIST

	Running an Exec in the Background

	Running Execs in a Non-TSO/E Address Space
	Using an Exec Processing Routine to Invoke an Exec from a Program
	Using IRXJCL to Run an Exec in MVS Batch
	Using the Data Stack in TSO/E Background and MVS Batch

	Summary of TSO/E Background and MVS Batch
	CAPABILITIES
	REQUIREMENTS

	Defining Language Processor Environments
	What is a Language Processor Environment?
	Customizing a Language Processor Environment

	Appendix B. Allocating Data Sets
	Allocating Data Sets
	What is Allocation?
	Where to Begin
	Preliminary Checklist
	Checklist #1: Creating and Editing a Data Set Using ISPF/PDF
	Checklist #2: Creating a Data Set with the ALLOCATE Command
	Checklist #3: Writing an Exec that Sets up Allocation to SYSEXEC
	Checklist #4: Writing an Exec that Sets up Allocation to SYSPROC

	Appendix C. Specifying Alternate Libraries with the ALTLIB Command
	Specifying Alternative Exec Libraries with the ALTLIB Command
	Using the ALTLIB Command
	Stacking ALTLIB Requests
	Using ALTLIB with ISPF

	Examples of the ALTLIB Command

	Appendix D. Comparisons Between CLIST and REXX
	Accessing System Information
	Controlling Program Flow
	Debugging
	Execution
	Interactive Communication
	Passing Information
	Performing File I/O
	Syntax
	Using Functions
	Using Variables

	Bibliography
	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

