
Installation Guide

Version 2 Release 2

TCP/IP is a communications facility that
permits bi-directional communication

between VSE-based software and
software running on other platforms

equipped with TCP/IP.

This manual explains the product
installation and configuration process.

Published October 2017
Copyright © by CSI International

Copyright © 1996–2017 by CSI International

All Rights Reserved

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to the restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

This material contains confidential and proprietary material of Connectivity
Systems, Inc., hereafter referred to as CSI International and CSI, and may not be
used in any way without written authorization from CSI International. This
material may not be reproduced, in whole or in part, in any way, without prior
written permission from CSI International.

Permission is hereby granted to copy and distribute this document as follows:

• Each copy must be a complete and accurate copy.

• All copyright notices must be retained.

• No modifications may be made.

• The use of each copy is restricted to the evaluation and/or promotion of
CSI International’s TCP/IP FOR VSE product or in accordance with a
license agreement.

TCP/IP FOR VSE Installation Guide
Version 2 Release 2
October 2017

Published by CSI International

Phone: 800-795-4914

Fax: 740-986-6022

Internet: http://www.csi-international.com

Product questions: info@csi-international.com

Technical support: support@csi-international.com

Review comments: documentation@csi-international.com

http://www.csi-international.com/
mailto:info@csi-international.com
mailto:support@csi-international.com
mailto:documentation@csi-international.com

i

Monday through Friday, 9:00 A.M. through 5:00 P.M. EST/EDT.

Telephone: Toll Free in the USA

Worldwide

800-795-4914

740-420-5400

Email: support@csi-international.com

Web: http://csi-international.com/problemreport_vse.htm

After business hours and 24 hours on Saturday and Sunday:

Telephone: Toll Free in the USA

Worldwide

800-795-4914

740-420-5400

CSI International provides support to address each issue according to
its severity.

During Business Hours

Emergency Service 24/7

CSI International Technical Support

mailto:support@csi-international.com
http://csi-international.com/problemreport_vse.htm

ii

Updates to This Manual

The following table describes updates to this manual. Updates may be
identified by a fix number in CSI International’s support database.

October 2017

ID Change Description Page

 Ch. 3, “Installation”:
Updated the product installation procedure.

32

 Ch. 6, “Configuring FTP Daemons”:
Added TLS 1.2 support (the SET TLS12
command) to the section “Creating an External
FTP Server.”

104

iii

Table of Contents

To return from a hyperlink jump, press <Alt> <◄>

CSI International Technical Support .. i

Updates to This Manual ... ii

1. Fundamentals of TCP/IP .. 1
Overview .. 1

TCP/IP Protocol ... 1
Why on VSE?... 1

Structure of TCP/IP .. 2
Clients, Servers, and Daemons.. 2
Host .. 2
TCP and UDP... 2
IP .. 3

IPv4 Network Addressing ... 4
IP Address ... 4

Class A .. 4
Class B .. 4
Class C .. 5

Address Notation .. 5
Multiple Addresses ... 5
Subnetworks .. 5

Class A .. 6
Class B .. 6
Class C .. 6

Addressing Laws .. 7
Law Explanations .. 7

Routing and Gateways ...10
Routing and Gateways ..10
Fake Software Addresses ..10
Convenience ...10
Address Translation ...10
ARP ...10

Table of Contents

iv

Routing ...10
Gateways ..11

File Systems ...12
PC File Structure ...12

Names ..12
File Content ...12

UNIX File Structure ...12
Names ..12
File Content ...13

VSE File Structure ...13
TCP/IP FOR VSE File Structure ..14

Public Names ..14
Structure ...14
Syntax ..15
Qualifying Public Names ..15

2. Planning for Installation ...16
Overview ...16

Compatibility ..16
Storage Requirements ...16

Communication Adapters ..17
LCS Devices ...17
MTU Size ...17
Cisco Router ...18
Channel-Attached RS/6000 ...18
CTC Adapter, 3088 MCCU, or Virtual Channel-to-Channel Adapter19
IOCP Gen ...20

Software Values ...21
Product Keys ...21
Network Address and Subnet Mask ..22
VSE/POWER LST Queue ...22

Target Application IDs ...23
Telnet LU Names ...23

TCP/IP for VSE File System ..24
Defining Your File System ..24
Using Public Names ...24
Setting Up Your Directory ..25

Using DEFINE FILE Command ..25
Using the FILESYS Program ...29

Securing Your File System ..31

3. Installation ...32
Overview ...32

Table of Contents

v

Step 1: Download and Extract Files ...33
Step 2: Install From the .AWS Virtual Tape ...35

Required Tools ..35
Procedure ..35

Step 3: Verify the Installation ...37
Verify the Release Level ...37
Verify the Product Phases (Optional) ..37

Step 4: Install TCP/IP for VSE Optional Features ...38
Step 5: Supply the Product Key ..39

Example ...39
Step 6: Configure VTAM ..41

Example ...41
Step 7: Configure CICS ...43

Set Up the CICS Interface ...43
Notes for Users of the VSE Interactive User Interface ..44

Step 8: Configure TCP/IP ..46
Library Initialization Member ..47

Optional Materials ..48
Documentation ..48
Preventive Maintenance ..48

4. Link Configuration ..49
Overview ...49

Hardware ..49
IOCP ..49
VM ..49
VSE ...49
TCP/IP ...50

Generic LCS Controllers ..51
Products ..51
Adapter Types ...51
Defining to TCP/IP ..52
Defining to VSE ..52
Defining to IOCP: Bus and Tag ...53
Defining to VM ...54

CLAW Interface Devices ...55
Defining to TCP/IP ..55
Defining to VSE ..56

VSE/ESA 2.1 and Above ..56
VSE/ESA 1.4 ...56

Defining to VM ...56
Defining to IOCP: Bus and Tag ...56
Defining to IOCP: ESCON ...56

Table of Contents

vi

Virtual CTC Adapter: Connecting Under VM...58
Defining to TCP/IP ..58
Defining to VSE ..58
Defining to VM ...59
Coupling the Adapters ..59
Defining to TCP/IP on VM ...60

Real CTC Adapter or 3088 MCCU ...61
Defining to TCP/IP ..61
Defining to VSE ..61
Defining to VM ...61
Defining to IOCP ...62

OSA Express ..63
Defining to TCP/IP ..63
Defining to VSE ..64
OSA Express Performance ..64

Cross-Partition Connections ...65
Connecting Two Partitions ..65
Specifying to TCP/IP ..66

System 00 ...66
System 01 ...67

Connection Considerations ..67
Primary Partition ..67
Secondary Partition ..68
Other Hosts ...68
Multi-homing ..69

5. Configuring the Telnet Daemon ...70
Overview ...70

Configuration Commands ...70
Restrictions ...71
Features ..71
Required Resources ..71

VTAM Setup..72
VTAM Definitions ...72

Example ..72
VTAM Considerations ...73
Buffer Pools ..73

Defining a Telnet Daemon ...75
LOGMODEs ...75
CICS ..76

Auto Install ...76
TCT ...76

Table of Contents

vii

Controlling the IP Address ...77
Creating Daemon Pools ..77
Specifying Address Patterns ..77

CONNECT_SEQUENCE OFF ..77
CONNECT_SEQUENCE ON ...77
Example ..78
Recommendations ..78

Using TN3270E ...79
Telnet Menu ...80

How to Code ...80
Menu Definition Sections ...80

Header Section ..81
Entering Screen Commands ..82
Variables ..83
Single-Character-Input Menu Example ...85
PF-Key-Input Menu Example ..87

6. Configuring FTP Daemons ...89
Overview ...89
Planning Considerations ..90
Introduction to Configuring an FTP Server (Daemon) ...91

Creating an Internal FTP Server ...91
Monitoring and Controlling an Internal FTP Server ..95
Creating an External FTP Server ..95

Parameters ..96
SET Commands ...99

Controlling the FTPBATCH Partition from the Console ... 104
Using FTPBATCH to Create an External FTP Server with RAW Data Space 105

Controlling Defaults Using EXTTYPES.L ... 108
File Types and Translation .. 108
Transfer Overrides ... 108
EXTTYPES.L Definitions .. 109
Modifying EXTTYPES.L ... 111
Default Member... 112
Transfer Examples ... 113

7. Configuring the Line Printer Daemon .. 114
Overview ... 114
Defining the LP Daemon ... 115

Writing to VSE/POWER .. 117
Writing to a VSAM KSDS .. 117
Writing to a VSAM ESDS .. 117
Writing to a VSE Library .. 117

Table of Contents

viii

Supported LPR Subcommands .. 117

8. Configuring the HTTP Daemon .. 119
Overview ... 119

Web Server Functions .. 119
Defining the HTTP Daemon ... 121

DEFINE HTTPD Command .. 121
Related Commands .. 121

HTML Files ... 122
File Location ... 122
File Location Algorithm ... 122
File Location Examples .. 123

Example 1 ... 123
Example 2 ... 123
Example 3 ... 123
Example 4 ... 124
Example 5 ... 124

Non-Standard File Names ... 124
Non-Standard File Examples ... 126

Example 1 ... 126
Example 2 ... 126

Member Types and Translation.. 127
Member Types ... 127
Translation .. 127
HTTP Examples... 128

Graphics Files ... 128
Loading .. 128
Displaying Data ... 129
CGI .. 129

Server Side Includes .. 130
Introduction .. 130
Syntax .. 130
How it Works .. 130
CGI Variables ... 130
HTTPD Variables .. 131
URL Commands .. 131

Security ... 132

9. Security .. 133
Overview ... 133
SECURITY Command .. 135
Defining User IDs ... 137

Explicitly Defining User IDs ... 137

Table of Contents

ix

FTP Security .. 139
FTP Autonomous Files ... 139

HTTP Security ... 141
DEFINE HTTPD Command .. 141

Telnet Security ... 142
Security Exit Points ... 143

Security Managers ... 143
Security Request Flow .. 143

Auto Security Manager .. 144
ASECURITY Command ... 144

User-Created Security Manager .. 147
Implicitly Defining User IDs Defined In the User Security Manager 147
Network Security in a User Security Manager ... 147
Sample User Security Manager Code ... 147
General Coding Requirements ... 148
Operation .. 148
Security Exit Block (SXBLOK) ... 149
SXBLOK DSECT .. 154

Vender-Provided Exits .. 158
IBM ... 158
Other Vendors ... 158

Security Changes in 1.5E ... 159
Required Commands .. 159
Enhancements ... 159
Equivalent Security Commands ... 160
QUERY SECURITY Command .. 161

Alternative Security Methods ... 162
NETWORK Security with IP Addresses ... 162
Using Cryptography with SSL/TLS Protocols ... 162

10. Operation ... 163
Overview ... 163
Initialization ... 164

Partition Structure .. 164
Initialization JCL ... 164

Message Management ... 167
Message Routing ... 167
Message Logging ... 167

DEFINE LOG ... 168
MODIFY LOG .. 169
QUERY LOGS .. 169

Message-Case Translation ... 169
Message Suppression ... 170

Table of Contents

x

Command Interface ... 171
Issuing Commands through the VSE Console .. 171

Using a TCP/IP Prompt... 171
Using MSG with the DATA= Parameter ... 172
Suppressing Entered Strings .. 172

Issuing Commands through IPNETCMD .. 173
Shutdown Processing .. 175

Application Shutdown .. 175
Normal Shutdown .. 176
Cancel .. 177
Cancel with Force .. 177

Restart Processing ... 178
CHECKTCP Utility .. 179
Event Publisher .. 181

Item Format .. 181
Processing Rules .. 181
Item Header .. 182
Item Dictionary ... 182
Element Dictionary .. 183
Executing IMODs .. 183
Related Commands .. 184

11. ASCII-to-EBCDIC Translation ... 185
Overview ... 185

EBCDIC ... 185
ASCII ... 186
Translation .. 186
Problems ... 186

Translation Options ... 188
Control Operations ... 188
FTP .. 188
HTTP ... 188
LPR ... 188
LPD ... 189
Telnet ... 189

Translation ... 190
Standard Translation .. 190
Single-Byte Member .. 190
Double-Byte Member ... 191
Null Translation ... 191

The CSTRAN Macro .. 192
Purpose ... 192
Syntax .. 192

Table of Contents

xi

Macro Operation .. 194
Assembly Output ... 194
Activating a Table .. 195
Code Pages ... 195

Coding Example ... 201
Source Job .. 201
Generated Table... 202

Double-Byte Character Sets ... 203
Where Used .. 203
DBCS Data Structure: EBCDIC ... 203
DBCS Data Structure: ASCII .. 203
Conversion Problems ... 203
Other Considerations .. 204
Single-Byte Translation Tables .. 204
Double-Byte Translation Tables and Code Pages ... 204
Code Page Source Files .. 205
Obtaining the Double-Byte Code Page Files .. 205
Activating DBCS Support ... 206
Using DBCS Translation .. 206
DBCS Behavior with FTP ... 207
SITE Command ... 208
Enabling DBCS Support ... 208

12. Performance .. 209
Overview ... 209
TCP/IP Concepts .. 210

Data Flow ... 210
MTU Size ... 212
TCP Segment Size ... 213
TCP Window Size ... 213
Retransmissions ... 215
Statistics Command .. 216

Performance Factors .. 221
Storage Utilization ... 221
FTP Performance ... 221
FTPBATCH Performance ... 222
TN3270 Performance ... 223

Buffer Pools .. 223
Telnet Daemons ... 223

Port Queuing .. 225
Background ... 225
Query Command.. 227

Table of Contents

xii

Appendix A: Technical Support .. 228
Statement of Intent .. 228
Obtaining Support ... 228

Appendix B: Quickstart Guide .. 230
System Setup.. 230

Control Units ... 230
TCP/IP Network .. 230

Configuration Commands .. 231
File System ... 231
Daemons ... 231

Network-Dependent Configuration ... 233
Connection Using a 3172 Device ... 233

Using Multiple Devices .. 234
Connection Using a Gateway .. 235

Complex System Example ... 236
Basic Command Set ... 237
Using Subnetworking ... 240

Selecting Other TCP/IP Software .. 242
Microsoft Windows® .. 242
UNIX ... 242
AS/400 with OS/400 Version 4.3 ... 243

1

1
1. Fundamentals of TCP/IP

Overview

This chapter presents an overview of the Transmission Control
Protocol/Internet Protocol (TCP/IP) and its principles. It provides enough
information to allow a new TCP/IP user to configure and use TCP/IP FOR
VSE. If you are an experienced TCP/IP user, you can skip this chapter. If
you are a new TCP/IP user, we recommend that you supplement this
material with a TCP/IP textbook or workshop.

TCP/IP is a communications protocol that was developed for the United
States Advanced Research Projects Agency (ARPA). The TCP/IP
protocol is a set of rules that enable different types of computers to
communicate with each other. The computers communicate by using the
standard TCP/IP protocol, or format, to transfer or share data.

The TCP/IP protocol rules are established and maintained by the Internet
Engineering Task Force (IETF). The IETF is an international community
of network designers, operators, vendors, and researchers concerned with
the Internet’s architecture and operation. The IETF’s mission is to
produce technical and engineering documents that influence the way
people design, use, and manage the Internet with the view of making it
work better. These documents include protocol standards, best current
practices, and informational updates of various kinds. Each document is
commonly referred to as an RFC, or Request for Comments.

For more information on the IETF, visit www.ietf.org.

Most computers already use TCP/IP to communicate with each other.
Adding the TCP/IP protocol to VSE permits VSE-based systems to
communicate and share data with virtually any other computer in the
world.

TCP/IP Protocol

Why on VSE?

http://www.ietf.org/

Chapter 1 Fundamentals of TCP/IP

2

Structure of TCP/IP

This section explains the basic structure of TCP/IP. Understanding this
structure is important to the TCP/IP FOR VSE user.

TCP/IP activity begins with a request made by a client. In this context, a
client is a program that initiates a request from a remote location. Typical
clients include

• Web browsers

• File Transfer Protocol (FTP) programs

• Line Printer (LPR) programs, also known as printer emulators

• Telnet programs, also known as terminal emulators

Remember that VSE is sometimes a client. When VSE requests an action
from a remote server, VSE is a client of the remote server.

A daemon or server is a program that receives and processes requests
from clients. These terms are interchangeable.

A host is a system that runs TCP/IP software. A host can be:

• A VSE partition. Each VSE partition that runs TCP/IP for VSE is a
host.

• A personal computer (PC). Each PC on your network that runs TCP/IP
is a host.

• Any other type of computer or peripheral drive. UNIX and AS/400
systems are hosts.

Generally, a host links a set of clients and/or servers to the TCP/IP
network. Multi-homing occurs when a single computer contains multiple
LAN adapters and possibly multiple IP addresses. TCP/IP FOR VSE
supports multi-homing.

Transmission Control Protocol (TCP) software accepts requests directly
from clients and servers. TCP accepts data transmission requests of any
length and transports the data across the network. When required, TCP
breaks the data into smaller pieces called datagrams or packets. It uses
checksums, sequence numbers, timestamps, time-out counters, and
retransmission algorithms to ensure reliable data transmission.

The User Datagram Protocol (UDP), an alternate transport function, runs
parallel to TCP. UDP software does not guarantee reliable data
transmission. UDP is the method of choice in situations where speed is
critical and reliability is secondary.

Clients, Servers, and
Daemons

Host

TCP and UDP

Chapter 1 Fundamentals of TCP/IP

3

For example, UDP is used for Internet radio broadcasting because the
occasional garbled byte or missing packet is acceptable in view of the
high transmission rates that are required. To circumvent this possible
problem, both clients and servers use retransmission and verification key
algorithms to ensure that packets are used in the correct order and are
complete.

The Internet Protocol (IP) software is the part of TCP/IP that actually
performs the communication function. After IP receives packets of data
from TCP or UDP, it ensures that the packet size meets the requirements
of the transmission path and physical adapters, such as Ethernets and
CTCs. IP changes the packet size if necessary and transmits the data.

It is important to understand that IP software is not designed to be
reliable. TCP expects IP to transmit the data immediately, so IP sends the
data with no further checks. If transmission is delayed for any reason, the
data is discarded. TCP, however, uses its verification systems to ensure
that the data is received. If TCP does not receive acknowledgement of a
complete transmission, it retransmits the data. One consequence of this
system is that retransmissions increase when a communication path
becomes saturated, and that causes CPU consumption to increase.

IP

Chapter 1 Fundamentals of TCP/IP

4

IPv4 Network Addressing

TCP/IP recognizes several types of address structures. At the lowest
level, each piece of communications hardware has its own address
structure. For example, each Ethernet card has a unique identification
number that is assigned at the factory. When TCP/IP transmits across an
Ethernet network, it must coordinate the network address with the
Ethernet address. To do this, TCP/IP uses an internal system called
Address Resolution Protocol (ARP).

One of TCP/IP’s best features is its consistent way of identifying each
TCP/IP host. When you connect to the Internet, you must follow
standard Internet procedures. First, you register your network with the
Internet Network Information Center (InterNIC), which assigns you a
unique network ID. For registration information, contact your Internet
provider. Your Internet provider is the organization that connects you to
the Internet.

The IPv4 address is a 32-bit number. This number contains both a
network ID and a host ID. The network ID identifies your network to
other networks. The host ID identifies the individual hosts within your
own network.

The first part of the address identifies the address class. The address class
determines the format of the other bits in the address. There are three
address classes, which are described in the following sections.

The class A format is as follows:

0 1.....7 8......................31

0 Network Host

The class A address begins with a bit of 0, followed by a 7-bit network
ID and a 24-bit host ID. A class A address supports a maximum of 128
networks, and each network can have 16 million hosts. To obtain a
class A address, you have to explain why you need one. Class A
addresses are easily recognizable because they have values of 1 through
127, inclusive, in the first field of the IP address.

The class B format is as follows:

0. 2.............15 16......................31

10 Network Host

The class B address begins with bits of 10, followed by a 14-bit network
ID and a 16-bit host ID. A class B address supports a maximum of
16,383 networks, and each network can have 65,535 hosts. Class B

IP Address

Class A

Class B

Chapter 1 Fundamentals of TCP/IP

5

addresses have values of 128 through 191, inclusive, in the first field of
the IP address.

The class C format is as follows:

0.. 3...................23 24......31

100 Network Host

The class C address begins with bits of 110, followed by a 21-bit
network ID and an 8-bit host ID. The class C address is the most
common type of address. A class C address supports a maximum of
2,097,151 separate networks, and each network can have 256 hosts. In
practice, this works well because most networks have fewer than 256
hosts. Class C addresses have values of 192 through 223, inclusive, in
the first field of the IP address.

Regardless of its class, an IPv4 address is always written as four decimal
numbers separated by periods. Each number represents one byte of the
address. This notation is not standard for mainframe programmers, but it
eliminates ambiguity between machines that order bits and bytes
differently.

A host can have more than one address. This situation occurs when a
host is part of multiple networks and is assigned an address on each
network.

If your network consists only of some PCs on an Ethernet or a Token
Ring, converting TCP/IP network addresses to physical addresses (for
the Ethernet or Token Ring hardware) is not a problem. TCP/IP’s address
resolution protocol (ARP) obtains physical addresses by broadcasting
“where are you” requests. When you attach multiple physical networks
to a single host, such as TCP/IP FOR VSE, addresses are more difficult to
obtain. Because the ARP facility cannot extend beyond the physical
network to which it is attached, you must provide ROUTE statements
that link each network address to a physical network and location.

Instead of providing large numbers of ROUTE statements, you can
assign network addresses based on a subnetwork. To do this, you provide
a subnet mask value that is applied to the host portion of the TCP/IP
address. The resulting value is the subnetwork number. A single ROUTE
statement maps the subnetwork number to a physical network.

The subnet mask value is a binary value that is logically ANDed with an
IP address to obtain the subnetwork number. There are two methods that
are commonly used to determine the subnet mask value. The first method
is to include only the subnet portion, such as 0.0.255.0. The other method
is to include the network number, such as 255.255.255.0. TCP/IP FOR
VSE accepts both methods. The examples that follow use the first
format.

Class C

Address Notation

Multiple Addresses

Subnetworks

Chapter 1 Fundamentals of TCP/IP

6

The subnet number must begin with the left-most bit of the host number
and must consist of contiguous bits.

The following subsections show an example of a subnetwork mask
applied to each class of network address.

With 24 bits reserved for the host number, class A addresses provide the
most capability for subnetworking. If the subnetwork mask is 0.255.0.0
(X'00FF0000'), the network address appears as follows:

0 1.....7 8.............15 16..............31

0 Network Subnetwork Host

Note that the subnetwork number is still a part of the host number. In this
example, host numbers of 1 (0 is reserved) through 65,535 (X'00FFFF')
belong to subnetwork 0, hosts 65,536 (X'010000') through 131,071
(X'01FFFF') belong to subnetwork 1, and so on.

Class B addresses reserve 16 bits for the host address. This means that
65,535 host numbers can be subdivided into subnetworks. If the
subnetwork mask is 0.0.255.0 (X'0000FF00'), the network address
appears as follows

0. 2.............15 16.......23 24......31

10 Network Subnetwork Host

This partitioning of the host number permits up to 255 hosts on each
subnetwork. Specifically, hosts 1 (0 is reserved) through 255 (X'00FF')
belong to subnetwork 0, hosts 256 (X'010000') through 511 (X'01FFFF')
belong to subnetwork 1, and so on.

The class C address has 8 bits (256 values) set aside for host numbers.
Subnetworking is still possible, but the distribution of hosts across
subnetworks must be carefully planned. If the subnetwork mask is
0.0.0.192 (X'000000C0'), the network address appears as follows:

0.. 3...................23 . 26....31

100 Network SN Host

In this example, there are four possible subnetworks. Hosts 1 (0 is
reserved) through 63 (X'6F') belong to subnetwork 0, hosts 64 (X'10')
through 127 (X'7F') belong to subnetwork 1, and so on.

Class A

Class B

Class C

Chapter 1 Fundamentals of TCP/IP

7

The IPv4 addressing laws are summarized in the following list. For an
explanation of each law, see the next section.

1. Addresses are represented by four decimal numbers. Each number
has a value in the range of 0 through 255. Each number represents
one byte of the four-byte address.

2. Each address consists of a network number and a host number.

3. The network number consists of the left-most one, two, or three
bytes, depending on the value of the left-most byte. The values that
correspond to the number of bytes are as follows:

• 1 through 127 = one byte

• 128 through 191 = two bytes

• 192 through 223 = three bytes

4. A portion of the host number may designate a subnetwork number.
You can determine the host number and subnetwork number by
using the following procedure:

A. Remove the network portion of the address.

B. Apply the subnetwork mask to the remainder of the address. Use
a logical AND operation to determine the subnetwork number.

C. Remove the subnetwork number to determine the host number.

5. A host number cannot be zero or all ones.

6. All devices on a single physical Ethernet or Token Ring have the
same network and subnetwork numbers.

7. Devices that are not on the same physical Ethernet or Token Ring
cannot share a common network and subnetwork number.

8. All devices on the same network must use the same subnetwork
mask.

9. No two devices may use the same address.

10. Devices that connect to multiple networks have a different address
on each network.

11. All rules are likely to change.

Each addressing law is explained below.

1. Addresses are represented by sets of four decimal numbers. Each
number has a value in the range of 0 through 255. Each number
represents one byte of the four-byte address. Thus, the address of
001.002.003.004 is equivalent to X'01020304', and 10.255.0.16 is
equivalent to X'0AFF0010'.

Addressing Laws

Law Explanations

Chapter 1 Fundamentals of TCP/IP

8

2. Each address consists of a network number and a host number. The
network number identifies the physical network. The host number
identifies the individual devices on the network.

3. The network number consists of the left-most one, two, or three
bytes, depending on the value of the left-most byte. Three types of
network/host addresses are possible:

• Class A addresses use a one-byte network number and a
three-byte host number.

• Class B addresses use a two-byte network number and a
two-byte host number.

• Class C addresses use a three-byte network number and a
one-byte host number. The network type is determined by the
value of the left-most byte in the address, as explained earlier in
the section “IPv4 Network Addressing” on page 4.

4. A portion of the host number may designate a subnetwork number.
In addition to the network number, users may arbitrarily use the left-
most portion of the host number to identify a subnetwork number.
Subnetworks are used because, in the real world, there is a shortage
of network numbers. Remember that if your network connects to the
Internet at any point, all of your addresses must be unique.

To alleviate the network number shortage, you can use part of the
host address field as a subnetwork number. The subnet mask that
determines which portion of the host number to use is completely
arbitrary and entirely up to the user, provided that all users on the
network use the same mask value.

5. A host number cannot be zero or all ones. These values are reserved
for special purposes, such as broadcast messages.

6. All devices on a single physical Ethernet or Token Ring have the
same network and subnetwork numbers. TCP/IP routing relies on the
correspondence of physical networks to network and subnetwork
numbers.

7. Devices that are not on the same physical Ethernet or Token Ring
cannot share a common network and subnetwork number.

8. All devices on the same network must use the same subnetwork
mask.

9. No two devices may use the same address. This happens more often
than people care to admit. When this happens, the results are bad.

10. Devices that connect to multiple networks have a different address
on each network. This is called multi-homing. All gateways use
multi-homing. If TCP/IP FOR VSE is connected to multiple networks,
it is assigned an address on each network.

Chapter 1 Fundamentals of TCP/IP

9

11. Change is inevitable. As the Internet expands, TCP/IP grows and
changes. As IP addresses become scarce, new IP versions are
released to provide more capacity. IP Version 6, or IP TNG (The
Next Generation), replaces the current IPv4 version. IPv6 uses a
completely different addressing notation. Fortunately, IPv4 and IPv6
will coexist for some time. Look for IPv6 implementations in routers
and bridges, and in hosts such as VM and VSE.

Chapter 1 Fundamentals of TCP/IP

10

Routing and Gateways

If you connect a PC to your mainframe using an Ethernet or a Token
Ring, the PC has a real address that is recognized by the physical
hardware. This address is sometimes referred to as a Machine Address
Control address (MAC address). This is the only address that you can use
when you send data to the PC using the Ethernet or the Token Ring. In
fact, regardless of how you connect your PC to the mainframe, the only
way to communicate with it is by using the real hardware address.

TCP/IP assigns each host an internal address, which is really a “fake”
software address. Because the hardware does not recognize TCP/IP
internal addresses, there is no way to send messages using these
addresses. To solve this problem, TCP/IP uses its address resolution
protocol to convert the internal address to the MAC address. The ARP
protocol is described in more detail below.

Although internal addresses are useless for delivering messages across a
physical network, they are convenient. Internal addresses provide
consistency across an Internet that contains many different types of
hardware. In fact, this one reason justifies TCP/IP’s arbitrary method of
addressing.

When you use TCP/IP, you use the internal address to send your data.
The IP portion of TCP/IP translates the internal address into a MAC
address, regardless of the hardware involved.

ARP enables TCP/IP to determine the hardware address of a TCP/IP
host. To see how this works, consider an example. Assume that you are
the flight attendant on an airline, and you want to give a lucky passenger
a free first-class ticket. Because you do not know where the passenger is
sitting, you use the loudspeaker to ask Mr. Lucky to ring the flight
attendant call button. Everyone on the plane hears the announcement, but
only Mr. Lucky responds. ARP works in a similar manner. If TCP/IP
FOR VSE wants to find a specific PC, it broadcasts an ARP message over
the network. Everyone receives the ARP message, but only the specific
PC responds.

When a message is destined for a PC on an Ethernet or Token Ring and
TCP/IP does not know its MAC address, it broadcasts an ARP message
on the Ethernet or Token Ring. Every adapter on the network accepts the
ARP message and passes the request to the TCP/IP software running on
the machine. The PC with the matching address responds by sending its
hardware address. TCP/IP saves this address in a table and keeps the
messages flowing.

ARP requires that the address it is searching for be on the same physical
network. If this is the case, the machine you are searching for replies to
ARP’s request and you can communicate with it. If this is not the case,
then you must tell TCP/IP how to find the path to the target computer.

Routing and Gateways

Fake Software
Addresses

Convenience

Address Translation

ARP

Routing

Chapter 1 Fundamentals of TCP/IP

11

TCP/IP FOR VSE uses one of two methods to map an internal address to
a MAC network. The first method is to provide a ROUTE command for
each TCP/IP address, linking it to a specific physical network. A second
and more convenient method is to establish logical subnetworks, where
ranges of TCP/IP addresses are mapped to physical networks.

A gateway is a device (hardware, software, or combination) that is
connected to two or more physical networks. When a gateway receives a
message, it forwards the message to its destination using the appropriate
physical network.

ARP protocols, described above, are ineffective with gateways, unless
the gateway is sophisticated enough to respond to ARP requests for all
devices on the attached physical networks. In practice, TCP/IP addresses
are grouped into subnetworks based on physical networks. Explicit
routing information enables TCP/IP to send messages to the appropriate
gateway. TCP/IP FOR VSE, when used as a gateway, is sophisticated
enough to respond to ARP requests for multiple IP addresses. This is
important if you have multiple VSE machines, or VSE and VM machines
connected with a channel-to-channel adapter (CTCA). See the DEFINE
ALTIP command description in the TCP/IP FOR VSE Command
Reference for more information about this function.

Gateways

Chapter 1 Fundamentals of TCP/IP

12

File Systems

Because the IBM platforms are latecomers to the TCP/IP arena, most
client software available now understands file structure from a UNIX and
a PC perspective. The TCP/IP FOR VSE file system is designed to allow
existing clients to access VSE-based datasets.

A PC’s file structure has the following characteristics.

In the PC structure, a dataset name consists of a directory, subdirectories,
name, and extension. Only the name is required. A typical name follows.

\root\level_1\level_2\name.ext

The directories are delimited by backward slashes (\). The name and its
extension are separated by a period. The first backslash indicates that
root is in the base directory of the PC file system. Omitting the first
backslash indicates that root is a subdirectory of the current working
directory. Older PC file systems limited names and directory names to
eight alphanumeric (and a few other printable) characters. The file
extension was, at most, three characters. Windows has eliminated these
restrictions and even permits embedded blanks in the names. This type of
file system is often referred to as a hierarchical file system.

A PC file consists of a single string of bytes. There is no provision for
records except for the convention that text files can be broken into lines
by including the carriage-return or line-feed pairs.

The UNIX file structure has the following characteristics.

UNIX systems follow a pattern similar to PCs. A UNIX file name might
appear as follows:

/root/level_1/level_2/name.ext

Note that the separator character is a forward slash. Also, the file
extension is simply a part of the file name and has no significance to
UNIX. Like the Windows file name format, individual directory and file
names can be lengthy. One final consideration is that UNIX file names
are case-sensitive.

Although a UNIX file name is similar to a PC file name, the mechanism
that UNIX uses to describe its files using the FTP protocol is different.
Many PC-based software clients expect output to be returned in UNIX
format, even though such output might not make sense in a VSE context.
To support these clients, TCP/IP FOR VSE uses a concept called UNIX
Mode in which the external representation of the TCP/IP FOR VSE file
system is returned in UNIX format.

PC File Structure

Names

File Content

UNIX File Structure

Names

Chapter 1 Fundamentals of TCP/IP

13

Like a PC file, a UNIX file is a single string of bytes. There is no
provision for records except for the convention that text files may be
broken into lines by the inclusion of carriage-return or line-feed pairs.

VSE’s file structure is more complex than the structure on either a PC or
a UNIX system. VSE uses multiple file systems such as VSAM,
VSE/POWER, and Librarian that can be used in different ways,
depending on what is appropriate for an application.

File Content

VSE File Structure

Chapter 1 Fundamentals of TCP/IP

14

TCP/IP FOR VSE File Structure

TCP/IP FOR VSE has structured its file system to permit a reasonable
mapping of VSE and PC/UNIX facilities. This mapping takes into
consideration the large variety of VSE file types, objects that should be
addressed as files (such as VSE/POWER queue entries), and processes
defined through APIs. This enables VSE to provide a comfortable
interface to the entities (including humans and client software products)
that expect a file system to be organized as a hierarchical file. So how do
we take a non-hierarchical file system and represent it to the outside
world as a hierarchical one? The next few sections describe this process.

Making information in the VSE world available to the TCP/IP
community is difficult because naming conventions are inconsistent. To
solve this problem, we use a name space. A name space contains names
that correspond to VSE entities. The names are known as public names
because they are names used by clients external to VSE.

A public name has the following structure:

directory.directory.directory.name

The name field is required. The directory fields are optional; if present,
there can be as many as 21 levels. Note that the directory structure is
completely arbitrary and is intended to make VSE dataset access easy
and logical to the end user. A typical way to configure a file system is to
have root level entries for each type of file. For example, at the root of a
TCP/IP FOR VSE file system, you could have the following entries:

• POWER, to represent the VSE/POWER queue file (IJQFILE)

• MASTCAT, to represent entries in the VSAM master catalog

• PRD1, to represent the PRD1 library

• ICCF, to represent the ICCF library (DTSFILE) label

You can define each node in the hierarchy in a similar manner. TCP/IP
FOR VSE defines certain types of files, such as POWER, for you.

It is important to note that all components of TCP/IP FOR VSE share the
same file system. So if you define a file for one purpose, such as FTP,
you have also defined it for other purposes, such as GPS and the VSE
web server.

Public Names

Structure

Chapter 1 Fundamentals of TCP/IP

15

To permit maximum flexibility in meeting the needs of three different
platform types, TCP/IP FOR VSE uses periods, forward slashes, and
backward slashes somewhat interchangeably. As a result, the following
public names all refer to the same pseudo file (for example, all entries in
the POWER LST queue class A):

• POWER.LST.A

• POWER/LST/A

• POWER\LST\A

The following rules apply:

1. Periods are acceptable except when accessing HFS files. (The period
is an allowed character in an HFS resident file.)

2. Forward slashes are restricted to UNIX simulation mode.

3. Backward slashes are restricted to PC mode.

For FTP transfers, the mode is determined by the change directory (CD)
command. To set UNIX mode, use the CD / format. To set PC mode, use
the CD \ format. To set the FTP daemon’s default mode of operation, use
the DEFINE FTPD command or a client SITE command.

In general, a public name, as it appears in the file structure, points to a
VSE file defined by a DLBL statement, a POWER queue, an ICCF
library, a Librarian library, or a user-defined process. When a TCP/IP
client uses a public name, it specifies one of the following:

• The public name that is assigned to a file

• The public name that is assigned to a file, with additional qualifiers.
The additional qualifiers are used when the public name refers to a
POWER queue or a library.

For example, if VSE.PRD2.LIBRARY is the public name of a Librarian
file, a client might request file VSE/PRD2/LIBRARY/TEST/PROG.A.
The additional levels of qualification specify the sublibrary TEST, the
member PROG, and the type A.

Syntax

Qualifying Public Names

16

2
2. Planning for Installation

Overview

Before installing TCP/IP FOR VSE, you need to make several decisions
about your needs and capabilities. This chapter presents a series of
questions and provides a worksheet that you can use to determine your
installation-dependent values.

If you are viewing this document online, we recommend that you
produce a printed copy of this chapter and use it as a worksheet.

TCP/IP FOR VSE Version 2.1 can be run on any release of the VSE
operating system, including VSE/ESA 2.7, z/VSE 3.1, z/VSE 4.3, and
z/VSE 5.1.

To install TCP/IP FOR VSE, you need a VSE library with a minimum of
9,000 available blocks. You need two sublibraries: one for the distributed
TCP/IP FOR VSE system materials, and one for your site’s custom data.
Using a separate sublibrary for your site’s custom data allows you to
keep your data intact during reinstallation and maintenance. We
recommend that the library and sublibrary names be PRD2.TCPIP and
PRD2.CONFIG, respectively. Using this naming standard reduces
confusion when you talk with Technical Support and when you perform
standard reinstallation and maintenance tasks. Fill in the chart below
with your site’s names.

Description
Recommended
Name Your Name

Library Name PRD2.TCPIP

Sublibrary Name PRD2.CONFIG

Compatibility

Storage Requirements

Chapter 2 Planning for Installation

17

Communication Adapters

Before TCP/IP FOR VSE can communicate with other TCP/IP hosts, you
must provide one or more communications adapters. Adapter types
include LAN Channel Station adapters, Common Link Access to
Workstation routers, and channel-to-channel adapters.

Many communications adapters use a protocol called the LAN Channel
Station (LCS). The LCS protocol became popular with the IBM 8232
and continues to be supported in IBM control units such as the 3172,
2216, and the Open Systems Adapter. Many OEM vendors offer control
units that emulate the LCS, including the Netshuttle for VSE, a Bustech
device. Other OEM products that emulate a 3172 include the Polaris
StarGate and the Interlink 3762. In this chapter, we use the generic term
LCS to mean any of these devices.

Each LCS occupies an even-odd pair of hardware unit addresses.
Depending on the model and features, your LCS can be addressed by
more than one pair of unit addresses. This permits the device to be shared
across partitions by different programs. For example, the same LCS
might be used by VTAM at addresses 050/051 and by TCP/IP at
addresses 052/053.

Up to 16 adapters can reside within an LCS device. Each adapter serves
as a physical connection to a network and is addressed by its position
within the device. The first adapter, the default, is identified as “adapter
0.” When coding TCP/IP FOR VSE initialization statements, you must
explicitly define each adapter available to TCP/IP FOR VSE.

You must configure the adapters to reject non-IP traffic and traffic not
explicitly addressed to the adapter. Consult your LCS documentation for
details. For example, with Netshuttle for VSE, there is an IP filter flag
that is accessible through the configuration utility supplied with the
device. The default for most devices is to filter out non-IP traffic, but you
should verify this for your specific device. If you do not filter out non-IP
traffic, all traffic is passed to TCP/IP FOR VSE even if it is not intended
for delivery. TCP/IP FOR VSE must then evaluate each message and
either discard it or continue to process it. This additional processing can
increase CPU consumption and greatly degrade TCP/IP response time.

You must select a maximum transmission unit (MTU) size during
installation. The MTU size determines how much data TCP/IP FOR VSE
can send in one operation. The best MTU size for your installation
depends on your control unit and other network characteristics. See
“MTU Size” in Chapter 12, “Performance,” for more information on
MTU size and data fragmentation.

LCS Devices

MTU Size

Chapter 2 Planning for Installation

18

MTU sizes vary depending on the adapter type, the manufacturer, the
network, and the devices attached. In all cases, TCP/IP requires a
minimum size of 576. The maximum size is the value allowed by the
most restrictive device on the path between your adapter and the remote
device(s) with which the adapter must communicate. The following table
summarizes values that are acceptable in most TCP/IP FOR VSE
installations.

Adapter Default Minimum Maximum
Ethernet 1500 576 1500

Token Ring 1500 576 Ring dependent:
 4 Mbit/sec ~4000
16 Mbit/sec ~8000

FDDI 1500 576 2000

We recommend using the default or larger MTU size for each adapter.
This value can then be restricted selectively for each path by overrides
supplied by DEFINE ROUTE commands. TCP/IP FOR VSE includes the
DISCOVER client, which allows you to determine the optimal MTU size
for any path. This client is documented in the TCP/IP FOR VSE User
Guide, Chapter 5, “Ping, Traceroute, DISCOVER Clients.”

The Cisco router is a high speed channel-attached device that supports
Ethernet, Token Ring, X.25, and other communications adapters. The
Cisco router is connected to TCP/IP FOR VSE using the Common Link
Access to Workstation (CLAW) interface. MTU size specifications are
identical to those of the Channel-Attached RS/6000 and are explained in
the following section.

This interface is commonly referred to as the Common Link Access to
Workstation (CLAW). Each device occupies an even-odd pair of unit
addresses.

The MTU size must conform to the following rules:

• The minimum size is 576.

• The maximum size supported by TCP/IP for VSE is 16K. The selected
size must be acceptable to TCP/IP running on the RS/6000.

• The default size is 4096.

In addition to this information, you must assign a host name, a host
application name, a workstation name, and a workstation application
name. The maximum length for each name is eight bytes. As far as
TCP/IP FOR VSE is concerned, the first three names are arbitrary. The
fourth name, which is the workstation application name, must be TCPIP.
The attached device requires you to supply the names as part of its
configuration data.

Cisco Router

Channel-Attached
RS/6000

Chapter 2 Planning for Installation

19

You also need to determine the input and output buffers sizes because
these values must be specified in the attached device’s configuration.
Too small a value results in additional I/O operations. Too large a value
wastes fixed storage. We recommend a size of 4096 bytes (4K) for the
DEFINE LINK. This should then be reduced by supplying DEFINE
ROUTE statements for paths that require a smaller MTU size.

Before proceeding with the installation, fill in the following chart:

Unit Address

MTU Size

Host name (maximum of eight bytes)

Host application name (maximum of eight
bytes)

Workstation name (maximum of eight bytes)

Workstation application name (maximum of
eight bytes)

TCPIP

Buffer size

TCP/IP FOR VSE can communicate with other TCP/IP hosts executing
under VSE, MVS, or VM by use of a real or virtual channel-to-channel
adapter (CTCA). Each connection requires two CTCAs at adjacent unit
addresses. The first address must be an even value.

MTU size must conform to the following rules:

• The minimum size is 576.

• The maximum size is 32,768. The value that you select must be
acceptable to the TCP/IP implementation that owns the other side of
the CTC. Selection of the MTU size for a virtual CTC connection can
be complicated.

• The default size is 4096.

You should select an MTU size of 32,768 on the VSE side in the
following situations:

• You are connecting two VSE systems.

• You are connecting a VSE system with a VM system and traffic flows
only between those two systems.

You should determine an MTU size that is consistent with the physical
hardware connection in the following situations:

• You are routing VSE traffic through VM, and VM is using a hardware
communications adapter.

CTC Adapter, 3088
MCCU, or Virtual
Channel-to-Channel
Adapter

Chapter 2 Planning for Installation

20

• You are routing VM traffic through VSE, using VSE as a gateway.

Regardless of the MTU size selected for the DEFINE LINK, you must
ensure that each DEFINE ROUTE statement includes an MTU override
when the path being defined requires a smaller value.

Before proceeding with the installation, write your unit address and
MTU size in the following chart:

Unit Address

MTU Size

If your computer requires you to modify IOCP before you install
hardware, you may need to perform an IOCP gen. Put a check mark in
the appropriate box below after you complete the IOCP gen. If you do
not need an IOCP gen, put a check mark in the other box.

I have performed the required IOCP gen.

An IOCP gen is not required.

IOCP Gen

Chapter 2 Planning for Installation

21

Software Values

During installation, you must supply the following custom information.

TCP/IP FOR VSE requires a product key (also known as a product code)
that permits it to run at your site and only at your site. The product key is
a string of five words (CSI supplied) or digit strings (IBM supplied).
Depending on the optional TCP/IP FOR VSE components that you
license, you may have multiple product keys. You must include each key
as a separate PRODKEY macro call in the job used to generate the
PRODKEYS phase. TCP/IP FOR VSE requires separate product keys for
the base component, GPS, SecureFTP, SSL/TLS, and See-TCP for VSE.
TCP/IP FOR VSE examines the first copy of PRODKEYS.PHASE that it
can find and determines the best key (the key with the most time until
expiration) for each product or feature.

When TCP/IP FOR VSE cannot find a valid key for the stack itself, it
starts in demonstration mode. This mode provides full functionality, but
it limits the number of daemons that can be used. A stack running in
demonstration mode shuts down automatically after 60 minutes. You can
restart the stack in demonstration mode for an additional hour, but the
total run time for all stacks operating without valid product keys is
limited to 4 hours per IPL. The demonstration mode is provided as an aid
for new installations and disaster recovery only; a valid key is still
required.

TCP/IP FOR VSE always uses the real serial number of the CPU.
This is true even if you run VSE in a virtual machine under
VM/ESA. To obtain the real serial number of the CPU, use the
System Information Request (SIR) AR command under VSE/ESA.
TCP/IP FOR VSE ignores the first two digits of the serial number, so
if you are running TCP/IP FOR VSE in an LPAR, you can use the
same product key for all VSE logical partitions running on the same
physical machine.

Before proceeding with the installation, fill in the following chart:

Product key

Serial number

Does your installation have a disaster recovery plan? If so, you should
call CSI International to obtain a product key for your disaster recovery
machine. You need this product key to use TCP/IP FOR VSE at the
disaster recovery site, both for testing and for genuine disasters. You can
include your disaster-recovery site keys in the same phase as your
production keys. The correct set is determined automatically based on
the CPU ID.

Product Keys

Chapter 2 Planning for Installation

22

Before TCP/IP FOR VSE can communicate with another TCP/IP host, it
must have a unique network address. The address is represented in the
TCP/IP standard dotted-decimal notation. In this notation, the four bytes
of the address are converted individually to decimal and are printed with
a period separating the bytes. If you already have a TCP/IP network in
place, see your network administrator for this address. If you are
unfamiliar with TCP/IP addressing conventions, see the section
“Network Addressing” in Chapter 1, “Fundamentals of TCP/IP.”

Another network value that you need to obtain from your network
administrator is the subnet mask. If you do not have a TCP/IP network in
place, see Appendix B, “Quickstart Guide,” for suggestions on
implementing a small TCP/IP network.

Before proceeding with the installation, fill in the following chart:

IP address

Subnet mask

You can use TCP/IP FOR VSE to automatically trigger actions based on
POWER listings. For example, you can set the following tasks to run
automatically:

• Route print output from your POWER LST queue to any printer in the
network.

• FTP listings from VSE to other computers in your network.

• Email the POWER listings to a remote destination. Transmission of
LST files can also involve automatic conversion to PDF format.

To automatically spool listings to remote locations, you need to select
one or more output classes for monitoring. For more information, see the
DEFINE EVENT command in the TCP/IP FOR VSE Command
Reference.

Before proceeding with the installation, fill in the following chart:

FTP output class

LPR output class

Email output class

Network Address and
Subnet Mask

VSE/POWER LST Queue

Chapter 2 Planning for Installation

23

To use telnet for communicating with a VSE-based application such as
CICS, you need to know the application ID. In addition, each telnet
session (virtual terminal) requires an LU name.

The following chart shows some target application IDs:

VTAM Application Target Application ID

CICSPROD DBDCCICS

CICSTEST PRODCICS

Each telnet session requires a VTAM LU name (virtual terminal). We
recommend that you assign a range of IDs, such as TCP0001 through
TCP0999, since this enables you to configure all of your telnet daemons
with a single statement. You can configure up to 99 telnet daemons with
one DEFINE TELNETD statement. If you configure more telnet
daemons than you need, you waste CPU and storage resources.

Enter your telnet IDs below:

Telnet IDs Telnet IDs

VTAM Values

Target Application
IDs

Telnet LU Names

Chapter 2 Planning for Installation

24

TCP/IP for VSE File System

As discussed in Chapter 1, “Fundamentals of TCP/IP,” the TCP/IP FOR
VSE hierarchical file system is a combination of several different file
systems. The file system is used for all file access within TCP/IP FOR
VSE. This includes access by FTP, LPR, LPD, the TCP/IP FOR VSE web
server (HTTP), and user- and vendor-written software.

TCP/IP FOR VSE provides several mechanisms for defining the file
system. The following methods are the most common:

• Method 1: Select the appropriate files individually and give them
short, arbitrary public names. This is the recommended method.

• Method 2: Use the FILESYS batch program to build a set of DEFINE
FILE commands based on your standard labels. The resulting
command set must be edited to ensure complete information and to
remove files that should not be made available.

As an example, consider the following sample commands used to define
a VSE file system:

DEFINE FILE,PUBLIC='VSE.LIBRARY.SYSRES',DLBL=IJSYSRS,TYPE=LIBRARY
DEFINE FILE,PUBLIC='VSE.LIBRARY.PRD2',DLBL=PRD2,TYPE=LIBRARY
DEFINE FILE,PUBLIC='VSE.POWER',DLBL=IJQFILE,TYPE=POWER
DEFINE FILE,PUBLIC='VSE.VSAM.PAYROLL',DLBL=PAYFILE,TYPE=ESDS

In this example, the file structure has the following characteristics:

• An FTP client running on a PC sees that VSE is the highest level
directory and that it contains three subdirectories named LIBRARY,
POWER, and VSAM.

• The subdirectory LIBRARY contains SYSRES and PRD2. For
TYPE=LIBRARY all the sublibraries defined in SYSRES and PRD2
are subdirectories, and the members of SYSRES and PRD2 are the file
names.

• The POWER subdirectory automatically contains the RDR, PUN, and
LST queues. The file names are the spool files identified by the job
name and number.

• VSE.VSAM.PAYROLL is a VSAM ESDS and contains no
subdirectories.

In our example, we have defined the following public names:

• VSE.LIBRARY.SYSRES

• VSE.LIBRARY.PRD2

Defining Your File
System

Using Public Names

Chapter 2 Planning for Installation

25

• VSE.POWER

• VSE.VSAM.PAYROLL

The public names you specify can consist of as many as 21 levels of
directories and the file name. The directory levels are one- to eight-
character names and are separated by periods. The file name is the last
field of the public name.

Each public name corresponds to a DLBL statement but has no
relationship to the real dataset name. If the statement identifies a VSAM
file or sequential dataset, then the user must specify the fully qualified
public name. If the public name identifies a library, then the user adds an
additional level of qualification to reach the member.

For more information on public names, see “File Systems” in Chapter 1,
“Fundamentals of TCP/IP.” For more information on the DEFINE FILE
command, see the TCP/IP FOR VSE Command Reference.

When you set up your file system, you could start with the following
sample file definitions:

DEFINE FILE,PUBLIC='POWER',DLBL=IJQFILE,TYPE=POWER,
DEFINE FILE,PUBLIC='PRD1',DLBL=PRD1,TYPE=LIBRARY,
DEFINE FILE,PUBLIC='VSAMUCAT',TYPE=VSAMCAT,DLBL=VSESPUC

In this case, the directory structure is as follows:

POWER <POWER queues>
PRD1 <Library>
VSAMUCAT <VSAM catalog>

Notice how the virtual file system is a seamless combination of POWER
spool files, VSE libraries, and VSAM catalog entries.

When you implement TCP/IP FOR VSE as a simulated UNIX or PC
environment, you should take the time to design the pseudo directory and
its name structure so that it has a familiar look and feel to the users.

When you use the DEFINE FILE command to define your file system,
you must specify the keyword parameter TYPE=. The TYPE= parameter
tells TCP/IP FOR VSE how to define the file and what directory structure
to use. The table below lists the valid values.

Setting Up Your
Directory

Using DEFINE FILE
Command

Chapter 2 Planning for Installation

26

TYPE= Description

POWER Defines the VSE/POWER queues as TCP/IP files. A
subdirectory structure is created automatically under the
public name you specify in the DEFINE FILE statement. For
example:

DEFINE FILE,PUBLIC='POWER',TYPE=POWER

The statement creates pseudo file POWER at the root of the
TCP/IP FOR VSE file system. The next level of the file system
contains entries RDR, LST, and PUN, which correspond to
the RDR, LST, and PUN queues. Under each queue, TCP/IP
FOR VSE creates the following 38 entries:

• Entries for each possible POWER class, including A to Z
and 0 to 9.

• The word ALL, representing all entries in the specified
queue.

• The word BIN, representing all queues in binary mode.
TCP/IP FOR VSE automatically performs binary transfers
to and from any POWER queue entry accessed through the
BIN class.

You can issue GET, PUT, DELETE, and RENAME
commands against entries on the POWER queues. Wild cards
are supported for all operations.

Chapter 2 Planning for Installation

27

TYPE= Description

LIBRARY Defines a VSE library, all sublibraries, and all members of
each sublibrary as TCP/IP files. A subdirectory structure is
automatically created under the public name you specify in
the DEFINE FILE statement. For example,

DEFINE FILE,PUBLIC='PRD2',TYPE=LIBRARY,DLBL=PRD2

PRD2 is defined at the root of the TCP/IP FOR VSE file
system. All PRD2 sublibraries are defined at the next level of
the hierarchy, making all members of each sublibrary
accessible as individual files.

For example, assume you have a VSE library named
JOHNLIB with sublibraries PROD and TEST. Each
sublibrary has two members, which are REXXPROG.A and
REXXPROG.JCL. You can issue the following command:

DEFINE FILE,PUBLIC='JOHNLIB',TYPE=LIBRARY,-
DLBL=JOHNLIB

Then you can create JOHNLIB at the root level of the
hierarchy and PROD and TEST at the next level. Note that if
you issue a change directory command to JOHNLIB.PROD,
you cannot issue another change directory command to
REXXPROG.

You can issue GET, PUT, DELETE, APPEND, and
RENAME commands against library members. Wild cards
are supported for all commands except DELETE and
RENAME.

Chapter 2 Planning for Installation

28

TYPE= Description
VSAMCAT Defines a VSE VSAM catalog and all files contained within

as TCP/IP files. A subdirectory structure is created under the
public name you specify. For example:

DEFINE FILE,PUBLIC='IJSYSUC',DLBL=IJSYSUC, -
TYPE=VSAMCAT

IJSYSUC is defined at the root of the TCP/IP FOR VSE file
system. All files accessible through this catalog are defined
at the next level of the hierarchy. Note the following:

• When you issue a GET command for a file in a VSAM
catalog defined with TYPE=VSAMCAT, TCP/IP for VSE
checks to see if a DLBL exists for the file in the TCP/IP
partition. If it does, TCP/IP for VSE uses it. If not, TCP/IP
for VSE dynamically creates a DLBL.

• You cannot access VSAM-managed SAM files with a
catalog defined with TYPE=VSAMCAT. You must use
TYPE=SAM for these files.

• You cannot issue a PUT command for a file accessed with
a TYPE=VSAMCAT catalog if the file does not exist.
FTP does not create the file for you.

• If you issue a DELETE command for a file accessed with
a TYPE=VSAMCAT catalog, TCP/IP for VSE directs
IDCAMS to perform the DELETE CLUSTER.

• The RENAME command is not supported for files
accessed with a TYPE=VSAMCAT catalog.

• The APPEND command is supported for ESDS files only.

• Wild cards are supported only for directory lists.

KSDS Defines an individual KSDS file, but it does not create a
subdirectory structure. You can issue GET and PUT for a
TYPE=KSDS file, but you cannot RENAME or DELETE.

ESDS Defines an individual ESDS file, but it does not create a
subdirectory structure. You can issue GET, PUT, or
APPEND for a TYPE=ESDS file, but you cannot RENAME
or DELETE.

If you try to APPEND to a TYPE=ESDS file, the DLBL for
the file must specify DISP=(OLD,KEEP) and the definition
on DEFINE CLUSTER must include the NOREUSE
parameter.

Chapter 2 Planning for Installation

29

TYPE= Description
ICCF Defines the ICCF file system and all files within, but does

not create a subdirectory structure. Here is an example:

DEFINE FILE,PUBLIC='ICCF',TYPE=ICCF
GET ICCF.librarynumber.membername

The first statement defines ICCF at the root of the TCP/IP
FOR VSE file system. The second statement allows you to
access individual ICCF files. The variable librarynumber is
the ICCF library number and the variable membername is the
name of the member to be accessed. Because there is no
directory structure, you cannot issue a CD command to the
ICCF file system. You cannot WRITE, DELETE, or
RENAME.

BIM-EDIT For more information, see the appropriate BIM-EDIT
documentation.

SAM Defines a SAM file to TCP/IP FOR VSE and makes it
accessible, but does not create a subdirectory structure. You
can issue READ and WRITE commands for the SAM file,
but you cannot RENAME, APPEND, or DELETE.

VTOC Defines an entire VTOC to the TCP/IP FOR VSE file system.
A directory structure is created consisting of the file names in
the VTOC. You can RENAME and DELETE entries in the
directory but you cannot READ, WRITE, or APPEND.

The FILESYS batch program helps you build a file system based on the
partition or standard labels that exist in your system. The program
generates individual DEFINE FILE commands and stores them in a
library member. After you generate this member, you must edit it to
remove undesired files and duplicates, add and correct TYPE= values,
and modify any other file options as needed.

You then apply these definitions by modifying your initialization deck to
contain “INCLUDE member,” where member is the name of this
file-definition member.

Using the FILESYS
Program

Chapter 2 Planning for Installation

30

To execute the FILESYS batch program, use a job similar to the
following example:

// JOB FILESYS EXECUTION
// LBDEF *,SEARCH=lib.sublib *TCP/IP base library
// EXEC FILESYS
FILESYS SET command 1
FILESYS SET command 2
...
/*
/&

If your site requires upper-case output, then replace the EXEC FILESYS
statement with the following line:

// EXEC FILESYS,PARM='UPPERCASE'

The FILESYS SET commands control the output.

SET Command Description

SET OUTPUT=
[SHORT | FULL]

By default, files that are not useful for client or
server access, such as the POWER job
accounting file or the CICS dump file, are
excluded from DEFINE FILE generation. If you
want to include every possible file, then use the
FULL option.

SET SYSLOG=
[ON | OFF]

Write the commands to SYSLOG. By default,
they are not displayed on SYSLOG.

SET SYSLST=
[ON | OFF]

Write the commands to SYSLST. By default,
they are not displayed on SYSLST.

SET SYSPCH=
[ON | OFF]

Write the commands to SYSPCH. By default,
they are not displayed on SYSPCH.
Note: The SYSLOG, SYSLST, and SYSPCH
commands can be used together or individually
when writing to the library. For example, you
can echo the data to SYSLST while writing it to
your library.

SET LIB=lib.sublib To place a member in a VSE library, you must
indicate which library to use. There is no
default.

SET MEMBER=
name.type

To create a member, you must specify the
member name and type to use. Because the
TCP/IP INCLUDE command accepts only “.L”
members, we recommend that you use that type.
There is no default.

Chapter 2 Planning for Installation

31

The following examples show how to use different FILESYS options.

Example 1: Write to a VSE library member and echo it to SYSLST.

// JOB FILESYS EXECUTION
// LBDEF *,SEARCH=PRD2.TCPIP
// EXEC FILESYS
SET LIB=TCPIP.CONFIG
SET MEMBER=FILESYS.L
SET SYSLST=ON
/*
/&

Example 2: Write to the punch queue.

// JOB FILESYS EXECUTION
// LBDEF *,SEARCH=PRD2.TCPIP
// EXEC FILESYS
SET SYSPCH=ON
/*
/&

Example 3: Write to a VSE library. All messages sent to SYSLOG are in
upper case.

// JOB FILESYS EXECUTION
// LBDEF *,SEARCH=PRD2.TCPIP
// EXEC FILESYS,PARM=’UPPERCASE’
SET LIB=TCPIP.CONFIG
SET MEMBER=FILESYS.L
/*
/&

Many customers have expressed concern about the security of making a
VSE file system available over a TCP/IP network or even over the
Internet. Here are two ways to keep your files secure:

1. Control file access:

• Do not define the file to the TCP/IP FOR VSE file system.

• Use the LOCAL_DLBL OFF command setting, or configure FTP
daemons using the DYNFILE=NO parameter setting. These
settings prevent remote users from accessing local VSE files
directly. See the LOCAL_DLBL and the DEFINE FTPD
commands for details.

2. Use the TCP/IP FOR VSE automatic security exit, or create a custom
security exit.

Securing Your File
System

32

3
3. Installation

Overview

This chapter explains the TCP/IP FOR VSE installation procedure. Please
review the entire chapter before beginning. You need the values
determined in chapter 2, “Planning for Installation,” page 16, to code
some of the configuration statements.

If you are also installing any of TCP/IP FOR VSE’s optional features—
GPS, TLS/SSL for VSE, SecureFTP, or See-TCP for VSE—you will
need to see additional information in the TCP/IP FOR VSE Optional
Features Guide. The installation procedure indicates when to refer to this
information.

We recommend that you install a minimal configuration of TCP/IP FOR
VSE. Once you have completed this task, it is a simple matter to expand
your configuration to the desired size and complexity. For configuration
examples, see “Appendix B: Quickstart Guide” on page 230.

Chapter 3 Installation

33

Step 1: Download and Extract Files

To obtain TCP/IP FOR VSE from CSI International, download the
product archive (a ZIP file) from CSI International’s webpage (www.csi-
international.com) or FTP server (ftp://ftp.csi-international.com).You
must use the ID and password that are provided for you when you set up
a CSI account. To arrange for access to the FTP server, you must contact
a CSI Technical Support representative (support@csi-international.com).

The installation documents and files are distributed in the downloaded
TCPIPvrm.ZIP file, where vrm is the version, release, and modification
level. The vrm is currently 222 but may change as new maintenance
releases are created. Replace vrm in all the examples below with the vrm
of the .zip file.

When extracted, the following files should be present in a folder on
your PC:

• $Readme.txt

• $Install-AWS.txt

• TCPIPvrm.AWS

• TvrmSHA1.JCL

• $Release_Notes.pdf

The $Readme.txt file describes the files in the product archive.

Note:

Review the $Readme file in the distribution file first to check for any
updates to the installation files.

A sample $Readme.txt file follows. This sample is typical and may not
apply to the latest release. The actual $ReadMe in the distribution file
may be different.

Extracting Files

Readme File

http://www.csi-international.com/download.htm
http://www.csi-international.com/download.htm
mailto:support@csi-international.com

Chapter 3 Installation

34

Sample $Readme.txt File

*
TCPIPvrm.ZIP contains the compressed distribution files for installing
the TCP/IP for VSE product from CSI International.
*
$Readme.txt describes the files contained in the TCPIPvrm.ZIP archive.
*
$Install-AWS.txt - instructions for installing the TCPIPvrm.AWS
virtual tape file.
TCPIPvrm.AWS - a virtual tape containing a backup of the TCP/IP
lib.sublib that can be installed with the LIBR utility.
*
After successful installation, you should cycle TCP/IP and see the
following message:
*
IPN209I CSI Service Pack vv.rr.mm.(yyyy-mm-dd) has been applied.
*
The QUERY VERSION command can also be used to see the IPN209 message.
*
TvrmSHA1.JCL - is an assembly/link-edit job that contains the values
for the SHA-1 phase verification utility(CIALSHPH).
The CIALSHPH utility is documented in the SSL/TLS chapter of the
TCP/IP for VSE Optional Features guide.
*
$Release_Notes.pdf contains important information and
considerations about this new release.
*

Important:

The vv.rr.mm and yyyy-mm-dd strings in the IPN209 message represent
the service pack vrm and the date the service pack was created. When
you check the IPN209 message on your system after installing the
software, make sure that the vv.rr.mm and yyyy-mm-dd displayed in that
message match the numbers in the $Readme.txt file for this installation.
If the numbers do not match, contact CSI Technical Support.

The TCPIPvrm.ZIP archive file contains the following virtual tape file:

TCPIPvrm.AWS

You must install TCP/IP FOR VSE from this .AWS virtual tape. Go to
“Step 2: Install From the .AWS Virtual Tape” on page 35.

Software File

Chapter 3 Installation

35

Step 2: Install From the .AWS Virtual Tape

This procedure explains how to install TCP/IP FOR VSE from the
extracted .AWS virtual tape. The LIBR utility is used in the installation
job.

The IBM VSE Virtual Tape Server must be running before you can
install software using this method. This free utility can be obtained from
the IBM z/VSE downloads web page:
http://www-03.ibm.com/systems/z/os/zvse/downloads.

Information on using the VSE Virtual Tape Server to install the .AWS
virtual tape is available at this web page:
http://www-03.ibm.com/systems/z/os/zvse/products/vtape.html.

Note:

These websites are maintained by IBM and may change. Contact IBM
for assistance with them.

Follow these steps to install the software:

1. Copy the unzipped TCPIPvrm.AWS file to a folder on the PC
running the VSE Virtual Tape Server.

2. Create an installation job that uses LIBR. Copy the following sample
job and edit it as described below.

// JOB LIBRREST
// OPTION SYSPARM='00',LOG
// ON $CANCEL OR $ABEND GOTO VTAPSTOP
VTAPE START,UNIT=590,LOC=ip-addr:2386, -
X
 FILE='C:\VTAPE\TCPIPvrm.AWS'
MTC REW,590
// ASSGN SYS007,590
// EXEC LIBR,SIZE=256K
RESTORE SUBLIB=CSITCP.TCPPvrm:lib.sublib TAPE=SYS007

/*
/* VTAPE STOP MUST BE AFTER /&
/&
/. VTAPSTOP
VTAPE STOP,UNIT=590

Customize this job for your site as follows:

• Change “590” to the virtual tape drive address configured on your
VSE system.

Required Tools

Procedure

http://www-03.ibm.com/systems/z/os/zvse/downloads
http://www-03.ibm.com/systems/z/os/zvse/products/vtape.html

Chapter 3 Installation

36

• Change “ip-addr” to the address of the remote system (the PC)
running the VSE Virtual Tape Server.

• Change “C:\VTAPE\TCPIPvrm.AWS” to the actual path of the
AWS file on the PC in step 1 above.

• Change “lib.sublib” to the library.sublibrary name for your
system. The library must exist, but the sublibrary must not exist.
LIBR will create the sublibrary in the library during the restore.
The library must contain at least 9000 free blocks.

3. Ensure that the VSE Virtual Tape Server is running, and then run the
installation job. If there are no errors, the job restores the entire
TCP/IP FOR VSE product.

4. After the restore is complete, it is recommended that you shut down
all other stacks. This is needed because a new system control block
may be allocated that is shared by all stacks, including non-CSI
stacks and the Linux Fast Path stack. See also step 6.

Note:

If you are running multiple stacks, it is recommended that they all
use the new stack version.

5. It is recommended that you shut down all external partitions that use
TCP/IP services. See also step 6.

Also, ensure that the new installation’s lib.sublib is in the libdef
phase search chain of each of these external partitions. This is
required to load the newly installed phases.

6. An IPL of the z/VSE system can be performed and will accomplish
the shutdown and restart of the stacks and the external partitions
described in steps 4 and 5 above.

Go to “Step 3: Verify the Installation” on page 37.

Chapter 3 Installation

37

Step 3: Verify the Installation

Cycle TCP/IP FOR VSE and check for the following message. This
message verifies the installation’s release level.

IPN209I CSI Service Pack vv.rr.mm.(yyyy-mm-dd) has been applied. Status is ...

You can also use the QUERY VERSIONS command to display this
message.

Important:

Make sure that the service pack date in this message (yyyy-mm-dd)
matches the date in the $Readme.txt file for this installation. If the dates
do not match, contact CSI Technical Support.

As an option, follow the steps in the “SHA-1 Phase Verification”
procedure to verify the integrity of the product phases you downloaded
and installed. This procedure is documented in the “TLS/SSL for VSE”
chapter in the TCP/IP FOR VSE Optional Features Guide. This procedure
guarantees that the SHA-1 values of the installed phases match the
original, distributed values.

You must use the file TvrmSHA1.JCL that is included in the distribution
ZIP file.

The SHA-1 Phase Verification procedure is also available in a standalone
document along with the software on CSI’s FTP server (ftp://ftp.csi-
international.com).

The TLS/SSL for VSE optional feature must be enabled on your system
before you can perform this procedure.

Verify the Release Level

Verify the Product
Phases (Optional)

Chapter 3 Installation

38

Step 4: Install TCP/IP for VSE Optional Features

If you are installing any TCP/IP FOR VSE optional features, see the
TCP/IP FOR VSE Optional Features Guide for additional information.
Some optional features require setup steps beyond activating the
feature’s product key.

Chapter 3 Installation

39

Step 5: Supply the Product Key

Before running TCP/IP FOR VSE in production mode, you must supply a
phase that contains one or more product keys. Product keys are provided
by CSI International or IBM based on the terms of your license
agreements. As each product key approaches expiration, you are notified
daily by a console message (IPN594W).

We recommend that you place your production product key in the
sublibrary allocated to configuration data, and that you make this
sublibrary first in the search order. In this way, applying maintenance
updates or reinstalling the product will not overlay your PRODKEYS
phase.

You can use the following job stream to install the product key(s) you
have obtained from your CSI International account manager. Both
standard and optional-feature product keys are installed in this job.

// JOB KEY
// LIBDEF *,SEARCH=PRD2.TCPIP
// LIBDEF PHASE,CATALOG=PRD2.CONFIG
// OPTION CATAL
// EXEC ASSEMBLY
 PRODKEY AXED-BEET-CARE-GENT-NAPS TCP/IP Full System
 PRODKEY AXED-BEET-CARE-GIBE-MYTH TCP/IP Secure FTP
 PRODKEY BCOY-BEET-CARE-GENT-QUAY TCP/IP SSL/TLS

 END
/*
// EXEC LNKEDT
/*
/&

Notes:

• You can include multiple keys in the PRODKEYS phase by adding
additional PRODKEY statements. If you have more than one of our
products installed, the key for each product must be represented in the
above job stream. You can also place product keys for multiple CPUs
in the same PRODKEYS.PHASE member. Doing this allows you to
share the PRODKEYS.PHASE member.

• You must cycle TCP/IP FOR VSE if you change the
PRODKEYS.PHASE member.

• In the example above, PRD2.CONFIG is the name of the library into
which the TCP/IP FOR VSE configuration data is being installed.

Example

Chapter 3 Installation

40

• After you have completed a license agreement for the software, you
must replace the string of five words with the product key provided by
your CSI International representative. The keys that appear in the
example above are for illustration only.

• If you obtained your TCP/IP FOR VSE license from IBM, you must
also include a CUSTDEF phase. This phase must reside in the same
sublibrary as your PRODKEYS phase. Contact your IBM
representative for information on generating a CUSTDEF.PHASE.

Chapter 3 Installation

41

Step 6: Configure VTAM

If you want to permit access to your VSE VTAM-based applications
using TN3270, you must define one or more VTAM application IDs to
be used as virtual terminal LU names. One ID (LU name) is required for
each concurrent telnet TN3270 session. Each application name is
referenced by a corresponding TCP/IP FOR VSE DEFINE TELNETD
command.

For your convenience, we provide the library member TCPAPPL.B. This
member contains a standard definition for several VTAM applications.
You can use this member or provide equivalent definition information
yourself.

After the library member is complete, you can add it to the VTAM
startup list ATCCON00 or you can use the VTAM VARY command
following VTAM initialization.

Here is an example of a VTAM application ID definition.

TCPAPPL VBUILD TYPE=APPL
TELNLU01 APPL AUTH=(ACQ),EAS=1
TELNLU02 APPL AUTH=(ACQ),EAS=1
TELNLU03 APPL AUTH=(ACQ),EAS=1
TELNLU04 APPL AUTH=(ACQ),EAS=1

Notes:

• TELNLU01 through TELNLU04 define four virtual terminals that are
to be used by four separate telnet daemons.

• You must add an APPL statement for each additional virtual terminal
you require. “EAS=1” is an optional parameter that tells VTAM that
only one LU-LU session is expected for the LU name being defined.
If this is omitted, then VTAM reserves an additional 4K of storage
when the APPL is opened. This can quickly add up when large
numbers of terminals are to be supported.

• The application names are arbitrary. You can choose any convenient
value. If you are defining numerous virtual terminals, we recommend
that you use virtual terminal names with a prefix and numeric suffix,
such as TELNLUxx, where xx is the numeric suffix. By using this
approach, you can more easily define these virtual terminals to
TCP/IP FOR VSE.

• VTAM requires one megabyte of dataspace storage for initialization,
plus an additional megabyte of dataspace storage for each application.
TCP/IP FOR VSE therefore increases by one megabyte the amount of
dataspace storage that VTAM obtains. To increase VTAM’s storage,

Example

Chapter 3 Installation

42

modify the DSPACE parameter on the EXEC card in the VTAM
startup procedure.

Depending on your system dataspace definitions, which can be
displayed with the QUERY DSPACE console command, you may
need to increase the system dataspace size. The SYSDEF DSPACE
command is used for this purpose. If you run multiple TCP/IP
partitions, VTAM requires one additional megabyte for each partition
running telnet daemons. See the IBM z/VSE documentation for more
information on VTAM dataspace requirements.

Chapter 3 Installation

43

Step 7: Configure CICS

TCP/IP FOR VSE includes several CICS-based clients. These clients
enable CICS users to perform the following tasks:

• Log on from a CICS terminal to other platforms and applications
using telnet. For example, a user could log on to a UNIX system from
CICS.

• Initiate a file transfer between the TCP/IP FOR VSE FTP client and a
remote FTP server using the FTP Interactive Client.

• Initiate a print request between the TCP/IP Line Printer Requester and
a remote Line Printer daemon.

• Initiate a Ping request to test network connectivity, or run a
TRACERT request to trace the network path to a destination.

• Interactively use TCP/IP FOR VSE’S EMAIL facilities to send email.

• Use the REXEC facility interactively to issue a command on a remote
system.

• Probe for the maximum MTU size to a given host.

To set up the CICS interface, you must add the installation lib.sublib to
your CICS partition’s search chain. To do this, modify your CICS startup
JCL as follows:

// LIBDEF *,SEARCH=(…,lib.sublib,…)

Then, define the programs and transactions to CICS. To do this, modify
and run the job stream below.

* $$ JOB JNM=DEFINE,CLASS=0,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB DEFINE
// LIBDEF *,SEARCH=(PRD2.TCPIP,PRD1.BASE)
// EXEC DFHCSDUP
MIGRATE TABLE(DFHPPTIP) TOGROUP(TEMP)
COPY GROUP(TEMP) TO(TCPIP) REPLACE
DELETE ALL GROUP(TEMP)
MIGRATE TABLE(DFHPCTIP) TOGROUP(TEMP)
COPY GROUP(TEMP) TO(TCPIP) REPLACE
DELETE ALL GROUP(TEMP)
ADD GROUP(TCPIP) LIST(VSELIST)
/*
/&
* $$ EOJ

Set Up the CICS
Interface

Chapter 3 Installation

44

Notes:

• The PCT and PPT tables are shipped as assembled under CICS/VSE
Version 2.3. If you need to reassemble the PCT or PPT statements
before using them, the source code is in DFHPCTIP.A and
DFHPPTIP.A.

• In the example, PRD2.TCPIP is the installation library and sublibrary
containing the TCP/IP FOR VSE phases. If you installed TCP/IP FOR
VSE into a different library.sublib, you must make the appropriate
changes to the job.

• The use of the group TCPIP and list VSELIST is arbitrary. You can
make any adjustments that your site requires.

• The above migration creates the following definitions in the CICS
PCT and PPT:

DFHPCT TYPE=ENTRY,TRANSID=TRAC,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=trac,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=REXE,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=rexe,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=DISC,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=disc,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=EMAI,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=emai,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=PING,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=ping,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TELN,PROGRAM=TELNET01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=teln,PROGRAM=TELNET01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TELC,PROGRAM=TELNET01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TELW,PROGRAM=TELNET01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TELR,PROGRAM=TELNET01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=FTP,PROGRAM=FTP01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=ftp,PROGRAM=FTP01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=FTPC,PROGRAM=FTP01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=FTPW,PROGRAM=FTP01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=FTPR,PROGRAM=FTP01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TCPC,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TCPW,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=TCPR,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=LPR,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPCT TYPE=ENTRY,TRANSID=lpr,PROGRAM=CLIENT01,RSL=PUBLIC
DFHPPT TYPE=ENTRY,PROGRAM=TELNET01,RSL=PUBLIC,PGMLANG=ASSEMBLER
DFHPPT TYPE=ENTRY,PROGRAM=FTP01,RSL=PUBLIC,PGMLANG=ASSEMBLER
DFHPPT TYPE=ENTRY,PROGRAM=CLIENT01,RSL=PUBLIC,PGMLANG=ASSEMBLER

A CICS Node Error Program (NEP) should be installed. NEP is useful in
cases where users who telnet into CICS do not log off cleanly.
Occasionally, a user remains logged on to the Interactive Interface or
ICCF after terminating a telnet session. The NEP allows CICS to log
these users off automatically, thus freeing their sessions.

Notes for Users of the
VSE Interactive User
Interface

Chapter 3 Installation

45

The easiest way to install NEP is to use the sample NEP, which is found
in ICCF library 59 in member IESZNEP. Follow the instructions in that
member. If you already have an NEP installed, the member IESZNEPS
or IESZNETX might be more appropriate.

Chapter 3 Installation

46

Step 8: Configure TCP/IP

Before you initially define TCP/IP FOR VSE, you must collect the
following configuration information:

Category Required Configuration Information

Links Identification information for each device, controller, and
connection mechanism TCP/IP FOR VSE is to use for
external communication.

Daemons Definition information for each TCP/IP FOR VSE server
(daemon) you plan to use. All of the standard servers
such as FTPD and TELNETD should be selected ahead
of time, along with their many options.

Routing Routing information for TCP/IP FOR VSE. This
information enables TCP/IP to route IP datagrams
through the network to their destination. Your Network
Administrator may need to assist you in determining the
necessary ROUTE details for your environment.

General General configuration information. For example, you
must specify the HOST IP address for TCP/IP FOR VSE.

There are also file systems to define, security to be considered, and a
myriad of other details you can identify by reviewing the various
commands available. See the TCP/IP FOR VSE Command Reference for
details.

TCP/IP FOR VSE contains commands and parameters that enable you to
control all aspects of its configuration and operation. These commands
should be contained in one or more configuration files for automatic
execution during stack initialization. For testing, you can choose to omit
one or more commands from the configuration file and enter them from
the console. This process allows you to measure each command’s
impact.

To develop your custom configuration, begin with the VSE library
member IPINITxx.L, where xx is the TCP/IP FOR VSE system identifier
(SYSID).

Note 1:

Do not confuse this member with the IPINITXX.L example file in the
installation library. Most of the definition commands in the example file
are commented out. The IPINITxx.L mentioned above is created from the
IBM interactive installation. If you do not use that facility to create an
IPINITxx.L member, you can use the provided example file as a guide.

Chapter 3 Installation

47

Note 2:

Place your configuration member(s) in a sublibrary that is different from
the installation library. You will need to add this configuration sublibrary
to the LIBDEF search chain.

During initialization, TCP/IP FOR VSE reads a member from the
partition’s source library search chain. This library member (an ‘L’
book), also known as the initialization deck, contains configuration
commands that TCP/IP FOR VSE executes during initialization.

The name of this member is one of the following:

• The value you coded for INIT= in the IPNET execution parameter list,

–or–

• If INIT= is not coded, IPINITxx.L, where xx is the TCP/IP FOR VSE
system identifier (SYSID).

The SYSID is coded in the // EXEC IPNET,PARM='ID=xx,...' JCL
statement that is used to start the product. If you choose to run multiple
stacks on a single VSE system, each SYSID must be unique. If you have
two different VSE systems, and each one has only one stack, then each
SYSID can be the same or different—the choice is up to you. The default
identifier is 00.

Caution:

If you set ID= to a value other than 00, you must specify this value
to all TCP/IP FOR VSE-enabled applications you use. By default,
all socket application calls use 00 as the system identifier.

The TCP/IP FOR VSE initialization member can become large and
difficult to manage. To help manage this member, you can create
separate members that contain routing definitions, user definitions, file
definitions, or telnet daemon definitions and then include these members
using the INCLUDE command. See the TCP/IP FOR VSE Command
Reference for details on this command. As an example, see “Using the
FILESYS Program,” page 29, for information on including a
file-definition member in your initialization deck.

See also “Appendix B: Quickstart Guide,” page 230, for more
information about configuring TCP/IP FOR VSE.

Library Initialization
Member

Chapter 3 Installation

48

Optional Materials

The following materials are available from CSI International’s website:

• Documentation

• Samples

• Preventive maintenance software.

A complete set of TCP/IP FOR VSE documentation is supplied with the
product from CSI International at
www.csi-international.com/products/zVSE/TCP-IP/TCP-IP.htm .

The downloaded PDF files can be viewed using Adobe® Reader®
software or another PDF viewer.

Preventive maintenance software is provided in service packs and fixes.

Each service pack contains cumulative maintenance. Service packs are in
either beta or production status. Once a beta service pack undergoes a
formal internal quality assurance test, and if all goes well at customer
early-test sites, the service pack is promoted to production status. To
apply a service pack, install it the same way you install the product.

Once a service pack is in production status, maintenance fixes for
individual components are created to correct reported problems. Once a
fix is confirmed to correct a confirmed error, it is made available for
download from the CSI FTP server. The fixes can then be downloaded
and applied.

Registered customers can obtain beta service packs or fixes at any time.

For your convenience, CSI upgrades the current service pack periodically
by incorporating any outstanding fixes. Before running the installation
job, check CSI International’s website to be sure you have the latest
version. You may find that reinstalling the updated software is a simpler
task than downloading and installing separate fixes.

If you received your copy of TCP/IP FOR VSE from IBM, IBM’s method
requires you to install the product and apply maintenance using PTFs
applied with MSHP.

Documentation

Preventive Maintenance

http://www.csi-international.com/products/zVSE/TCP-IP/TCP-IP.htm

49

4
4. Link Configuration

Overview

When you install and configure TCP/IP FOR VSE, your first task is to
establish communications between your mainframe and your network or
networks. To do this, you must take the following actions:

1. Decide how your mainframe is going to communicate with your
network(s). TCP/IP FOR VSE uses links to communicate. In general,
a link is a hardware device that connects to (1) the mainframe using a
standard bus and tag or ESCON channel and (2) the network using a
standard Ethernet, FDDI, or Token Ring connection.

2. Establish the link between the mainframe and the network(s). There
are several steps required to establish a link. The steps you need to
take depend on the type of link and your hardware and software.

You must select and install the physical hardware. This can consist of an
open systems adapter, a channel-to-channel (CTC) adapter, or one of
many non-IBM adapters. For a list of communications adapters
supported by TCP/IP FOR VSE, see chapter 2, “Planning for Installation,”
on page 16.

In most cases, you need to modify your input/output configuration
program (IOCP) to recognize the new hardware. Because many
installations require considerable notice before an IOCP gen, you may
want to plan ahead.

If VSE is running in a virtual machine under VM, you need to define the
device to VM and then dedicate it to your VSE virtual machine. You can
allow VM to sense the device, or you can use the SET RDEVICE
command to do this dynamically, or you can use the VM HCPRIO file.

Before you can use a new device, you must define it to VSE. To do this,
use the VSE ADD statements in member $IPLxxx.PROC in the
IJSYSRS.SYSLIB sublibrary.

Hardware

IOCP

VM

VSE

http://www.cisco.com/
http://www.cisco.com/
http://www.cisco.com/univercd/cc/td/doc/product/software

Chapter 4 Link Configuration

50

Finally, you must define the hardware to TCP/IP FOR VSE. To do this,
use the DEFINE LINK command. If you are using an LCS, open systems
adapter, or an equivalent device, you may also need to include one or
more DEFINE ADAPTER commands.

After you define your devices to TCP/IP FOR VSE, you must also add
DEFINE ROUTE commands to specify which links access which
network addresses.

The remainder of this chapter addresses hardware types individually.

TCP/IP

Chapter 4 Link Configuration

51

Generic LCS Controllers

A number of devices emulate LAN Channel Station (LCS) protocols. In
general, you follow the same procedure to define all of these devices. We
discuss the procedure in this section and mention the differences.

Some devices that support LCS protocols are as follows:

• Bustech Netshuttle for VSE. This device is an inexpensive single
adapter control unit. It supports a single attachment to the mainframe
and a single 10-Mbps Ethernet attachment to the LAN. Other models
of the Bustech Netshuttle line, including the Netshuttle 110,
Netshuttle 120, and Netshuttle 140, also support TCP/IP PASSTHRU.

• IBM 3172. The 3172 supports up to four adapters, sequentially
numbered 0 through 3. The adapter types can be Ethernet, Token
Ring, or FDDI. The 3172 uses one of the following two operating
systems for TCP/IP PASSTHRU:

 The Interconnect Communications Program (ICP).

 The Internet Protocol Channel Communications Program
(IPCCP). This operating system, which uses the CLAW protocol,
does not apply to this section.

• DBM’s Open Systems Adapter (OSA/OSA-2).

• Polaris Communications StarGate with Fast Packet 3172 emulation.

• IBM 2216 N-Ways Multi-Access Control Unit.

In addition, there are other control units that support TCP/IP
PASSTHRU using LCS protocols.

LCS control units are stand-alone devices that support from one to n
LAN connection adapters. All LCS control units appear to the mainframe
as two adjacent devices, one for input and one for output. The first
address is always an even number, and it is this number that identifies the
device to TCP/IP FOR VSE. These adapters can be any mixture of the
adapter types listed in the next section.

The allowable adapter types for the DEFINE ADAPTER command are
listed below. This command is used to define a generic LCS adapter to
TCP/IP FOR VSE, as described in the next section.

TYPE= Value Adapter Description

ETHERNET Ethernet 802.3 The Ethernet LAN adapter allows
connection to other Ethernet-equipped
devices.

Products

Adapter Types

Chapter 4 Link Configuration

52

TYPE= Value Adapter Description

TOKEN_RING Token Ring 802.5 The token ring adapter allows
connections to single- or multi-ring
Token Ring networks. Token Ring
adapters typically transfer data at
4 or 16 Mbps.

FDDI FDDI A fiber optic data device interface
adapter provides a transfer rate of
100 Mbps.

To explicitly define an adapter for use by TCP/IP FOR VSE, you must use
the DEFINE ADAPTER command along with the DEFINE LINK
command. The following example shows definitions for three adapters in
an OSA device. You can specify OSA, OSA2, LCS, or 3172 as the
TYPE= value on the DEFINE LINK command for any of the generic
LCS adapters.

DEFINE LINK,ID=LINK01,TYPE=OSA,DEV=500,MTU=1500
DEFINE ADAPTER,LINKID=LINK01,NUMBER=0,TYPE=ETHERNET
DEFINE ADAPTER,LINKID=LINK01,NUMBER=1,TYPE=TOKEN_RING,MTU=2000
DEFINE ADAPTER,LINKID=LINK01,NUMBER=2,TYPE=FDDI,MTU=3000

Notes:

• Three adapters are defined. The NUMBER= value of an adapter
corresponds to its physical location within the OSA. A different
adapter type is used in each case.

• The MTU sizes should match the ones you selected in Chapter 2,
“Planning for Installation,” page 16.

• See the TCP/IP FOR VSE Command Reference for details on the
DEFINE LINK and the DEFINE ADAPTER commands.

• If you are using the IBM 2216 N-Ways Multi-Access Control Unit,
the 2216 console command LIST NETS might help to determine the
proper value for NUMBER.

The OSA appears as two adjacent devices, and it follows the same rules
as CTC adapters. The device definition depends on your VSE release
level. The following definition is for VSE/ESA 2.1 and above releases.

ADD 500:501,CTCA,EML

If this device is under VM control, you may need to add the EML
parameter so that VSE bypasses inquiry on device status.

Defining to TCP/IP

Defining to VSE

Chapter 4 Link Configuration

53

An LCS control unit is defined to the IOCP as two adjacent devices. The
addresses must be sequential and must begin with an even address, as
shown in this example:

CHPID PATH=(21),TYPE=BL
CNTLUNIT CUNUMBR=001,PATH=(21),UNITADD=((00,8)), X
 UNIT=3088,PROTOCOL=S4,SHARED=N
IODEVICE ADDRESS=(500,32),CUNUMBR=001,UNIT=CTC, X
 UNITADD=00,STADET=N,TIMEOUT=N

Notes:

• If you are defining an OSA to IOCP, the UNITADD parameter MUST
specify X'00' and X'01' for data transfer across port 0. If you have two
physical ports available, you MUST specify a unit address of X'02'
and X'03' for the device pair that transfers data across port 1.

• You can SHARE the OSA port between multiple partitions in an
LPAR environment. See the appropriate IBM documentation for
information about this option.

• The LINK number specifies the link address (ESCD port number) to
which the IBM 3172 is connected. See IBM manual number
SC30-3572-02 for more information about 3172 IOCP considerations.

• If you have an IBM N-Ways 2216 Multi-Access Control Unit, the
IODEVICE UNIT parameter should be set to 3172 (that is,
UNIT=3172). See IBM manual number SC30-3886-02 for more
information about obtaining the IOCP for a 2216.

Defining to IOCP:
Bus and Tag

Chapter 4 Link Configuration

54

An LCS control unit is defined to the IOCP as two adjacent devices. The
addresses must be sequential and must begin with an even address, as
shown in the following example.

CHPID PATH=(30),TYPE=CNC
CNTLUNIT CUNUMBR=500,PATH=(30),UNITADD=((00,8)), X
 UNIT=3172,LINK=C1,CUADD=1
IODEVICE ADDRESS=(500,8),CUNUMBR=500,UNIT=SCTC, X
 UNITADD=00

This example defines a full series of eight devices. Although you may
not need this many devices now, it allows for future expansion.

Notes:

• If you are defining an OSA to IOCP, the UNITADD parameter MUST
specify X'00' and X'01' for data transfer across port 0. If you have two
physical ports available, you MUST specify a unit address of X'02'
and X'03' for the device pair that transfers data across port 1.

• You can SHARE the OSA port between multiple partitions in an
LPAR environment. See the appropriate IBM documentation for
information about this option.

• The LINK number specifies the link address (ESCD port number) to
which the IBM OSA is connected. See IBM manual number
SC30-3572-02 for more information about 3172 IOCP considerations.

• If you have an IBM N-Ways 2216 Multi-Access Control Unit, the
IODEVICE UNIT parameter should be set to 3172 (that is,
UNIT=3172). See IBM manual number SC30-3886-02 for more
information about generating the IOCP for a 2216.

You must define the LCS control unit to VM as a 3088. You can include
the definition in the SYSTEM CONFIG file. VM also has the capability
to sense the device automatically. This means that if you omit the
statement, the device is still recognized and used. The following is a
sample definition.

RDEVICE 500-501 TYPE CTCA

You must also include the appropriate information in the VSE virtual
machine’s directory entry. The following is a sample entry:

DEDICATE 500 500
DEDICATE 501 501

Defining to IOCP:
ESCON

Defining to VM

Chapter 4 Link Configuration

55

CLAW Interface Devices

There are a number of devices that use a protocol called the Common
Link Access to Workstation (CLAW) interface. Some devices that use
the CLAW interface are:

• RS/6000 with a block multiplex channel attachment

• Cisco® 7500 series router with a channel interface processor (CIP)
card

• Cisco 7200 series router with a CPA card

• IBM 3172 Interconnect Controller running the IPCCP operating
system.

In all cases, there is a stand-alone processor at the other end of the
CLAW interface that can be connected to a VSE mainframe with a
channel attachment. TCP/IP FOR VSE passes IP traffic directly to the
attached processor using a channel connection and channel speed, thus
resulting in a very high speed connection.

The CLAW device appears to the mainframe as two adjacent devices,
one for input and one for output. The first address is always an even
number, and it is this number that identifies the device to TCP/IP FOR
VSE.

Define a CLAW to TCP/IP as follows:

DEFINE LINK,ID=LINK01,TYPE=CLAW,DEV=500,MTU=1500, -
 HOSTNAME=VSE,HOSTAPPL=TCPIP, -
 WSNAME=itsname,WSAPPL=TCPIP

Notes:

• The reference to device 500 also causes the assignment of device 501.

• The WSNAME parameter must match the Remote Host Name
parameter in the Add a Subchannel panel in the SMIT BLKMUX
installation utility on the RS/6000.

• For a Cisco router with a CIP card or a Cisco router with a CPA card,
the CLAW interface is configured with commands entered directly on
the router. Documentation is available at the vendor’s website.
Information on configuring the CLAW interface can be found at
http://www.cisco.com/c/en/us/td/docs/ios/bridging/configuration/guid
e/15_0sy/br_15_0sy_book/br_claw_tcpip_offld.html.

• If you have an IBM 3172, consider running the 3172 using the ICP
operating system. See the section on configuring for the LCS.

Defining to TCP/IP

http://www.cisco.com/c/en/us/td/docs/ios/bridging/configuration/guide/15_0sy/br_15_0sy_book/br_claw_tcpip_offld.html
http://www.cisco.com/c/en/us/td/docs/ios/bridging/configuration/guide/15_0sy/br_15_0sy_book/br_claw_tcpip_offld.html

Chapter 4 Link Configuration

56

The CLAW appears as two adjacent device addresses and follows the
rules of CTC adapters. The device definition depends on your VSE/ESA
release level.

Use the following definition for this release level:

ADD 500:501,CTCA,EML

We recommend that you use the EML parameter so that VSE bypasses
inquiry on device status.

Use the following definition for this release level:

ADD 500:501,3705,10,EML

This statement defines the devices in a manner that provides for channel
translation but does not involve the missing interrupt handler.

The CLAW appears as two adjacent devices and follows the rules of
CTC adapters. The following box contains a sample of statements that
you should add to the VM/ESA SYSTEM CONFIG file.

RDEVICE 500-501 TYPE CTCA

The CLAW device is defined to the IOCP as two adjacent 3088s. The
addresses must be sequential and must begin on an even boundary.

CHPID PATH=(21),TYPE=BL
CNTLUNIT CUNUMBR=500,PATH=(21),UNITADD=((00,8)), X
 UNIT=3088,PROTOCOL=S4,SHARED=N
IODEVICE ADDRESS=(500,8),CUNUMBR=001,UNIT=CTC, X
 UNITADD=00,STADET=N,TIMEOUT=N

The example defines a series of eight devices. Although you may not
need this many devices now, it allows for future expansion.

The CLAW is defined to the IOCP as an RS6K. The addresses must be
sequential and must begin on an even boundary. This is shown in the
following example.

CHPID PATH=(21),TYPE=CNC
CNTLUNIT CUNUMBR=500,PATH=(21),UNITADD=((00,8)), X
 UNIT=RS6K,LINK=CA
IODEVICE ADDRESS=(500,8),CUNUMBR=001,UNIT=SCTC

Defining to VSE

VSE/ESA 2.1
and Above

VSE/ESA 1.4

Defining to VM

Defining to IOCP:
Bus and Tag

Defining to IOCP:
ESCON

Chapter 4 Link Configuration

57

Notes:

• This example defines a series of eight devices. Although you may not
need this many devices now, it allows for future expansion.

• Configuring the CLAW on the mainframe is easy. Configuring the
CLAW on the RS6000 may not be. The utility you need to use is
called SMIT. In addition to the standard manuals that explain SMIT,
you may want to look at the following IBM manuals:

 RISC/6000 to Mainframe Using S/370 Channel Connections
(manual number SG24-4589)

 Block Multiplex User's Guide and Service Information
(manual number SC31-8196)

Chapter 4 Link Configuration

58

Virtual CTC Adapter: Connecting Under VM

To establish communication between TCP/IP FOR VSE and another copy
of TCP/IP FOR VSE or TCP/IP for VM or MVS, you can use a virtual
CTC adapter (CTCA). (This provides, of course, that both TCP/IPs are
executing in virtual machines under the same VM image.) The
connection requires two CTCAs: one for input, and one for output.

This section describes how to establish a virtual CTC connection when
both TCP/IP implementations are running under VM control.

Define a CTC adapter to TCP/IP FOR VSE as follows:

DEFINE LINK,ID=LINK01,TYPE=CTCA,DEV=500,STOPPED

Notes:

• The STOPPED operand prevents the link from initializing until a
START LINK command is issued. If the other end of the VCTC
connection is down, TCP/IP FOR VSE continues to try the link until
the other end is restarted. Each time TCP/IP FOR VSE attempts a
restart, it sends error messages to your VSE console. The STOPPED
operand prevents this from happening. Alternatively, you can alter the
amount of time between restart attempts with the RETRY_TIME
parameter on the DEFINE LINK. See the TCP/IP FOR VSE Command
Reference for more information about the RETRY_TIME parameter.

• It is important to note that the reference to device address 500 causes
devices 500 and 501 to be assigned within TCP/IP FOR VSE.

• TCP/IP FOR VSE uses a special protocol to communicate with other
implementations of TCP/IP FOR VSE. This allows TCP/IP FOR VSE to
easily determine when the other side of the connection is initializing
and terminating. Unfortunately, MVS and VM do not have this special
protocol, so TCP/IP FOR VSE must rely on I/O errors to determine
when an MVS, OS/390, or VM connection has been dropped. This can
result in delays in determining that a link has terminated.

The virtual CTC adapter appears as two adjacent devices, and it follows
the rules of CTC adapters. The device definition depends on your VSE
release level. The following definition is for VSE/ESA 2.1 and above
releases.

ADD 500:501,CTCA,EML

Defining to TCP/IP

Defining to VSE

Chapter 4 Link Configuration

59

You need to add the EML parameter so that VSE bypasses inquiry on
device status. This prevents problems when the CTCs are not already
coupled at VSE IPL time.

A virtual CTC adapter is defined to a virtual machine as two adjacent
device addresses. Virtual CTCAs are created by using the SPECIAL
command in each virtual machine’s directory entry or by using the CP
DEFINE CTCA command. The following example assumes that TCP/IP
FOR VSE is executing in the virtual machine VSETEST and that we are
connecting to IBM’s TCP/IP running on virtual machine IBMTCP.

The following is added to the VSEPROD directory entry:
SPECIAL 500 3088
SPECIAL 501 3088

The following is added to the VMTCPIP directory entry:
SPECIAL 500 3088
SPECIAL 501 3088

In this example, we arbitrarily selected addresses 500 and 501 on each
virtual machine. There is no requirement that they be identical values.

Once defined, the CTC adapters must be coupled before traffic can flow.
The following example shows the commands issued from the VSEPROD
virtual machine to couple it to the VMTCPIP virtual machine.

COUPLE 500 TO VMTCPIP 501
COUPLE 501 TO VMTCPIP 500

And from the VMTCPIP virtual machine:

COUPLE 500 to VSEPROD 501
COUPLE 501 to VSEPROD 500

Note:

We cross-couple an odd address to an even address. This is an absolute
requirement, and problems will occur if you do not do this.

You can easily automate this process on both the VM and VSE sides.
You probably already have a PROFILE EXEC that runs when you log on
(or autolog on) to your VSE virtual machine, and this is an excellent
place to add the above statements. On the TCP/IP for VM side, you can
use either the PROFILE EXEC on the TCP/IP virtual machine or the
TCP/IP for VM initialization exit. Although you need to issue the
COUPLE command only once, it is best to have it execute on both the
VM side and the VSE side so that either side can be brought up first.

Defining to VM

Coupling the Adapters

Chapter 4 Link Configuration

60

The following example illustrates the configuration statements you need
to place in the TCP/IP on VM’s initialization deck. These statements
have been tested with TCP/IP on VM Version 2, Release 3, and TCP/IP
for VM FL310. We assume that the CTCs in use are at addresses 500 and
501 (as seen by TCP/IP for VM). We also assume that TCP/IP FOR VSE
is not serving as a gateway. In other words, TCP/IP for VM uses the
CTC connection only for traffic whose final destination is TCP/IP FOR
VSE.

DEVICE CTC1 CTC 500
* Define the CTC devices and assign symbolic name CTC1.
LINK CTCVSE CTC 0 CTC1
* Define the CTC link and assign symbolic name CTCVSE.
* The value 0 is the link number. It must be numeric and
* it must be unique.
. . .
HOME nnn.nnn.nnn.nnn CTCVSE
* The designated IP address is that of VM’s TCP/IP.
* You must add a HOME statement for the new link in VM TCP/IP.
. . .
GATEWAY mmm.mmm.mmm.mmm = CTCVSE nnnn HOST
* There may be several other statements under GATEWAY. The above
* statement is added. The IP address is the one assigned to TCP/IP
* for VSE. This is the value usually found in the TCP/IP for VSE
* initialization statement SET IPADDR. The nnnn is the MTU size.
* Selecting the correct MTU size is a complex subject and is
* discussed in Chapter 2, “Planning for Installation,” and
* Chapter 12, “Performance.”
. . .
START CTC1
* This statement tells VM TCP/IP to begin processing traffic on the
* CTC link.

Defining to TCP/IP on
VM

Chapter 4 Link Configuration

61

Real CTC Adapter or 3088 MCCU

A CTCA connection can be established between two copies of TCP/IP
FOR VSE running on two different processors or between TCP/IP FOR
VSE and TCP/IP executing under VM, OS/390, or MVS running on two
different processors. This connection requires two CTC adapters: one for
input and one for output.

If you are trying to define a virtual CTCA connection, you should follow
the instructions in the previous section.

You can use the following command to define a CTC adapter interface to
TCP/IP.

DEFINE LINK,ID=LINK01,TYPE=CTCA,DEV=(500,501)

Both device addresses are listed in order to control the sequence of use.
The first listed device is used for input, and the second listed device is
used for output. At the “far end of the pipe,” the devices must attach in
reverse order. This means that the “other end” of device 500 must be the
second device in the DEFINE LINK specified by the target TCP/IP FOR
VSE.

The CTC adapter appears as two adjacent device addresses, and follows
the rules of CTC adapters. The device definition depends on your VSE
release level. The following definition is for VSE/ESA 2.1 and above
releases.

ADD 500:501,CTCA

The CTC adapter appears as two adjacent device addresses, and follows
the rules of CTC adapters. The device definition depends on your VM
release level. In either case, you must also ATTACH the device (both
addresses) to the VSE virtual machine. The following definition is for
VM/ESA 1.2 and above releases.

RDEVICE 500-501 TYPE CTCA

You can add this statement to the SYSTEM CONFIG file, or you can
allow VM/ESA to sense the device automatically.

Defining to TCP/IP

Defining to VSE

Defining to VM

Chapter 4 Link Configuration

62

The CTC Adapter is defined to the IOCP as two adjacent 3088s. The
addresses must be sequential and must begin on an even boundary. This
is shown in the following example.

CHPID PATH=(21),TYPE=BL
CNTLUNIT CUNUMBR=001,PATH=(21),UNITADD=((00,32)), X
 UNIT=3088,PROTOCOL=S4,SHARED=N
IODEVICE ADDRESS=(500,32),CUNUMBR=001,UNIT=CTC, X
 UNITADD=00,STADET=N,TIMEOUT=N

This example defines a full series of 32 devices. Although you may not
need this many devices now, it allows for future expansion.

Defining to IOCP

Chapter 4 Link Configuration

63

OSA Express

The OSA Express adapter provides exceptional performance and can be
used to communicate over a network, between virtual machines, and
between LPARs.

To use the OSA Express adapter in queued direct I/O (QDIO) mode, use
the following definition:

DEFINE LINK,ID=link_id,TYPE=OSAX,DEV=(cuu1,cuu2),DATAPATH=cuu3, -
 IPADDR=ipaddr,MTU=mtu_size

The two device addresses (cuu1, cuu2) must be an even/odd pair. If cuu2
is omitted, cuu1 + 1 is used as the default. These addresses control the
sequence of use. The first listed device is used for input, and the second
is used for output. The following is an example:

DEFINE LINK,ID=OSAX_01,TYPE=OSAX,DEV=(920,921),DATAPATH=922, -
 IPADDR=9.164.155.99,MTU=1500

You can also specify the following parameters for this link type. These
parameters are not processed by the TCP/IP FOR VSE stack and are used
as required by the adapter.

Parameter Description
ALTIP Assigns up to nine more IP addresses if z/VSE is a

multi-homed host or if the TCP/IP FOR VSE stack
serves as a gateway to other stacks.

ROUTER Allows for capturing traffic addressed to “unknown”
hosts and applying routing parameters.
Values: Primary; Secondary; None (default).

OSAPORT Specifies a port if two ports per CHPID are supported
(default is 0).

PORTNAME Specifies the symbolic name of the OSA Express port
to be used with this link. This parameter is obsolete for
most OSAX adapters.

For more information on these parameters, see DEFINE LINK in the
TCP/IP FOR VSE Command Reference along with the IBM-provided
documentation for your adapter.

To use an OSA Express adapter in non-QDIO mode, you must define the
link as you would for a conventional OSA adapter. See the section
“Generic LCS Controllers,” page 51, for more information.

Defining to TCP/IP

Chapter 4 Link Configuration

64

Consult the IBM-provided documentation for your machine model and
VSE level to install and configure your OSA Express adapter.

You must choose parameter values carefully to optimize this adapter’s
performance. Depending on installation, this adapter supports MTU sizes
up to 64KB. For communication over network segments that support
large sizes, the larger the MTU size, the better. This is especially true
when you are communicating with virtual machines or LPARs because
the data moves memory to memory. If the datagrams are to flow over a
physical network such as an Ethernet segment, an MTU size larger than
1500 may result in fragmentation, excessive retransmission, and poor
performance. See chapter 12, “Performance,” for more information on
choosing an optimal MTU size.

If you use your OSA Express to communicate in both inter- and intra-
machine modes, you should supply DEFINE ROUTE commands to
ensure appropriate MTU values for each destination’s class.

Defining to VSE

OSA Express
Performance

Chapter 4 Link Configuration

65

Cross-Partition Connections

TCP/IP FOR VSE provides a mechanism for connecting multiple TCP/IP
partitions. This feature can be useful in some circumstances. For
example, you can use this feature to create production and test partitions
and to communicate between them. In this section, we explain how to set
up cross-partition connections and discuss considerations that you should
be aware of.

Although we document this feature, we do not necessarily recommend
that you use it. Cross-partition connections are likely to cause extremely
poor performance, especially if the two TCP/IP partitions do not have
equal priority.

CSI International does not recommend using the cross-partition feature
to separate FTP and TN3270 workloads. See “Performance Factors” in
chapter 12, “Performance,” for more information on FTP and TN3270
performance.

To connect two partitions, you can use one of the following methods:

• If the two TCP/IP FOR VSE partitions execute in separate VSE images
under the same copy of VM/ESA, you can use a virtual channel-to-
channel adapter. This is the most common method.

• If the two TCP/IP FOR VSE partitions execute in the same VSE image,
you can use a TYPE=IPNET connection.

To set up additional TCP/IP partitions, you can use one of the following
methods:

• Connect the second TCP/IP FOR VSE partition directly to the network
and treat each TCP/IP for VSE partition separately. This is the
simplest method.

• Route TCP/IP FOR VSE traffic from one partition to the other before it
goes out to your network. You must use this method if you do not
have the physical resources to use the first method. This section is
concerned with this second method.

Before continuing, be sure to understand the following terms:

• The primary TCP/IP FOR VSE partition is the partition that owns the
communication adapter to your network.

• The secondary TCP/IP for VSE partition is the partition that does not
own any physical links. This partition communicates directly and only
to the primary TCP/IP FOR VSE partition using a virtual channel-to-
channel adapter or a TYPE=IPNET connection.

Connecting Two
Partitions

Chapter 4 Link Configuration

66

The discussion in this section also assumes that you already have a
primary partition in place. We assume that the primary partition
communicates with your network over your physical control unit and that
you are adding a secondary partition.

Let us start by looking at an example of how to set up a cross-partition
connection. This example demonstrates how to tell TCP/IP FOR VSE that
you want a cross-partition connection.

Each copy of TCP/IP FOR VSE operates under a system ID. You assign
this ID on the ID= subparameter of the EXEC statement PARM=
parameter. This value can also form the final two positions of the name
of the default initialization member name. In this section, however, we
use the INIT= subparameter to explicitly supply the member name.

In the initialization statements for each TCP/IP FOR VSE partition, you
must include a DEFINE LINK command for each separate TCP/IP FOR
VSE system with which you need cross-partition communication.

The following job contains definitions for system 00.

// JOB TCPIP0
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.TCPIP)
// SETPFIX LIMIT=400K
// EXEC IPNET,SIZE=IPNET,PARM='ID=00,INIT=IPINIT00'
/&

The following TCP/IP definition establishes a connection to the other
TCP/IP partition:

DEFINE LINK,ID=LINK01,TYPE=IPNET,SYSID=01,STOPPED

The above definition is stored in a library member named IPINIT00.L.
Note that the STOPPED parameter prevents attempts at link initialization
until the START LINKID command is issued. This is especially useful
when this TCP/IP partition is to be the first started (or the only one under
normal circumstances) and you do not want to generate error messages
or go through initialization retry. You can use the RETRY_TIME
parameter to govern the period of time that TCP/IP FOR VSE waits
between attempts.

Specifying to TCP/IP

System 00

Chapter 4 Link Configuration

67

The following job contains definitions for system 01.

// JOB TCPIP1
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.TCPIP)
// SETPFIX LIMIT=200K
// EXEC IPNET,SIZE=IPNET,PARM='ID=01,INIT=IPINIT01'
/&

The following TCP/IP definition establishes a connection to the other
TCP/IP partition:

DEFINE LINK,ID=LINK01,TYPE=IPNET,SYSID=00,STOPPED

The above definition is stored in a library member named IPINIT01.L.

In this section, we discuss items to consider when setting up a cross-
partition connection. These considerations are from four perspectives:

• The primary TCP/IP FOR VSE partition

• The secondary TCP/IP FOR VSE partition

• Other TCP/IP FOR VSE hosts

• TCP/IP FOR VSE partitions with multiple links (multi-homing)

When you set up a cross-partition connection, you need to add the
following statements to the primary TCP/IP FOR VSE partition:

DEFINE LINK,ID=LINKSEC,TYPE=CTCA/IPNET,DEV=xxx,MTU=mtusize
DEFINE ROUTE,ID=RTESEC,IPADDR=xxx.xxx.xxx.xxx,LINKID=LINKSEC
DEFINE ALTIP,IPADDR=xxx.xxx.xxx.xxx

Each statement is explained in the following table.

Command Explanation
DEFINE LINK Defines the required link to the secondary

partition. See chapter 2, “Planning for
Installation,” and chapter 12, “Performance,” for
details on selecting an MTU.

DEFINE ROUTE Defines the required static route definition to the
secondary partition. Variable xxx.xxx.xxx.xxx is the
IP address of the secondary partition.

System 01

Connection
Considerations

Primary Partition

Chapter 4 Link Configuration

68

Command Explanation
DEFINE ALTIP Allows the primary partition to answer ARP

requests on behalf of the secondary partition.
Variable xxx.xxx.xxx.xxx is the IP address of the
secondary partition. See DEFINE ALTIP in the
TCP/IP FOR VSE Command Reference.

When you set up a cross-partition connection, you need to add the
following statements to the secondary TCP/IP FOR VSE partition:

DEFINE LINK,ID=LINKPRIM,TYPE=CTCA/IPNET,DEV=xxx,MTU=mtusize
DEFINE ROUTE,ID=RTEALL,IPADDR=0.0.0.0,LINKID=LINKPRIM

Each statement is explained in the following table.

Command Explanation
DEFINE LINK Defines the required link to the primary partition.

See Chapter 2, “Planning for Installation,” for
information about MTU size. The MTU size
should match the MTU size of the communications
link to your network in the primary partition.

DEFINE ROUTE Tells TCP/IP FOR VSE that you have one physical
connection in this TCP/IP FOR VSE partition and
that you want all traffic routed through it. It is not
necessary to include the GATEWAY= parameter
on this DEFINE ROUTE statement.

You may need to add static route definitions to other hosts on your
network. The DEFINE ALTIP statement enables the primary partition to
answer ARP requests for the secondary partition, but it does so only for
hosts on the same physical network. For other hosts, you must supply the
required routing information. For example, on a Windows® host, you
may need the following static route command:

ROUTE ADD xxx.xxx.xxx.xxx yyy.yyy.yyy.yyy

The variables have the following meanings:

• xxx.xxx.xxx.xxx is the IP address of the secondary partition

• yyy.yyy.yyy.yyy is the IP address of the primary partition

You can accomplish the same thing more easily by adding the correct
routing definitions to your gateways and using domain names.

Secondary Partition

Other Hosts

Chapter 4 Link Configuration

69

TCP/IP FOR VSE supports multi-homing, which means that a single stack
can be attached directly to multiple networks. Each attachment point
(adapter) requires a unique IP address. To configure a multi-homed
system, you must use a combination of the following statements:

• IPADDR parameter on the DEFINE LINK statement

• DEFINE ADAPTER statement

• DEFINE MASK statement

• Appropriate DEFINE ROUTE statements.

For example, assume that TCP/IP FOR VSE is part of a class C network
with IP address 192.168.0.1 and subnet mask 255.255.255.0 over a
Bustech Netshuttle for VSE at physical address 600. TCP/IP FOR VSE is
also part of a class A network with IP address 10.0.0.1 and subnet mask
255.0.0.0 over a CLAW interface at physical address 700. You would
use the following statements to configure this system:

DEFINE LINK,ID=BUSTECH,TYPE=3172,DEV=600
DEFINE ADAPTER,ID=CARD0,LINKID=BUSTECH,NUMBER=0,IPADDR=192.168.0.1
DEFINE LINK,ID=CLAW,TYPE=CLAW,DEV=700,IPADDR=10.0.0.1
DEFINE MASK,ID=MASKC,NETWORK=192.168.0.1,MASK=255.255.255.0
DEFINE MASK,ID=MASKA,NETWlORK=10.0.0.1,MASK=255.0.0.0
DEFINE ROUTE,ID=RBUSTECH,IPADDR=192.168.0.0,LINKID=BUSTECH,ADAPTER=0
DEFINE ROUTE,ID=RCLAW,IPADDR=10.0.0.0,LINKID=CLAW

The SET IPADDR statement provides the default IP address if one is not
specified on the DEFINE LINK/DEFINE ADAPTER statements. Also,
when multi-homing is used, it is good practice to always explicitly code
IP addresses on the DEFINE LINK/DEFINE ADAPTER statements.

Multi-homing

70

5
5. Configuring the Telnet Daemon

Overview

One of the most useful features of TCP/IP FOR VSE is that it supports the
TN3270 and TN3270E protocols. This means that any user with a
TN3270 client can directly access your 3270-based applications running
under VSE. You can use the following TN3270 daemons with TCP/IP
FOR VSE:

• A TN3270 daemon that uses your existing Virtual
Telecommunications Access Method (VTAM) configuration to route
3270 data streams through VTAM. This daemon requires VTAM. The
installation selects the logical unit (LU) name that the TN3270 client
is to use based on IP addresses or a port-mapping methodology.

• A TN3270E daemon that uses your existing VTAM configuration to
route 3270 data streams through VTAM. This daemon also uses
VTAM, but the TN3270E client selects the LU name.

Before you can use TN3270 support, you must do the following:

• Define a VTAM name for each logical session to be supported. Note
that these names define virtual terminals. Virtual terminals are
terminals that do not physically exist, but they are defined to VTAM
and recognized by VTAM. If you are using TN3270E, all possible LU
names that might be selected by any client must be defined to VTAM.

• Optionally, create a logon menu panel if more than one application is
to be accessible.

• Define the telnet daemons.

See the TCP/IP FOR VSE Command Reference for information about the
commands you can use to configure telnet daemons. These commands
are listed in the table below.

Configuration
Commands

Chapter 5 Configuring the Telnet Daemon

71

Command Task
DEFINE TELNETD Define a telnet daemon

DELETE TELNETD Delete a telnet daemon

QUERY TELNETDS Query telnet daemons and associated
status

SET TELNETD_BUFFERS Define the number of concurrent
buffers for telnet

CONNECT_SEQUENCE Controls how telnet daemons are
assigned to session requests based on
IP address

DEFINE MENU Define a USSMSG10-type menu

DELETE MENU Delete a USSMSG10-type menu

QUERY MENUS Query your menus

TCP/IP FOR VSE does not support the following:

• TN3270E printing as defined by RFC 1147. The enhanced printing
capabilities in TN3270E are available through the General Print
Server (GPS) optional feature. The TN3270 protocol is non-SNA,
which means that the ATTN and SYSREQ keys do not work.

• Line-mode telnet daemons, primarily because there are no VSE
applications that are line oriented. This means that you must have a
TN3270 client if you plan to use the TN3270 daemon provided by
TCP/IP FOR VSE.

The TCP/IP FOR VSE TN3270 daemon provides many features:

• Support for multiple screen sizes

• Extended highlighting with high intensity, underscored, and blinking
fields

• Support for program symbol sets

• Extended color support. Each character can be a different color,
regardless of field definition

• Cursor-selectable fields. Some TN3270 clients support this feature
with the mouse, giving you point-and-click capability.

System resources are required to support TN3270 sessions. See
chapter 12, “Performance,” for more information about the resources
required to run TN3270 daemons.

Restrictions

Features

Required Resources

Chapter 5 Configuring the Telnet Daemon

72

VTAM Setup

Before you start a telnet daemon, you must define a VTAM application
ID to be used as a virtual terminal LU name. One ID (LU name) is
required for each telnet TN3270 daemon, whether in session or not. Each
application name is referenced by a single corresponding TCP/IP FOR
VSE DEFINE TELNETD command.

For your convenience, we provide the library member TCPAPPL.B. This
member defines virtual terminals that you can use in one or more
DEFINE TELNETD statements.

Once the library member is complete, you can either add it to the VTAM
startup member ATCCONxx or use the VTAM VARY command after
VTAM initialization is complete. Issue this command as follows:

V NET,ACT,ID=TCPAPPL

The following screen is a sample VTAM definition:

TCPAPPL VBUILD TYPE=APPL
TELNLU01 APPL AUTH=(ACQ),EAS=1
TELNLU02 APPL AUTH=(ACQ),EAS=1
TELNLU03 APPL AUTH=(ACQ),EAS=1
TELNLU04 APPL AUTH=(ACQ),EAS=1

In this example, note the following:

• TELNLU01 through TELNLU04 define four virtual terminals. Each
virtual terminal is used by a telnet daemon.

• You must add APPL statements for any additional virtual terminals
you need.

• The application names are arbitrary. If you are defining numerous
telnet daemons, we recommend that you use virtual terminal names
with a prefix and numeric suffix, such as TELNLUxx, where xx is the
numeric suffix. The prefix can be from one to six characters, and the
suffix can range from 01 to 99. When you specify the application
names (virtual terminal names) this way, it enables you to use the
COUNT= parameter on the DEFINE TELNETD command. With the
COUNT= parameter, you can define up to 99 telnet daemons with a
single DEFINE TELNETD command.

• If you are using TN3270E, the TN3270E client may select LU names.
You MUST have VTAM definitions corresponding to those LU
names or the TN3270E client cannot log on to VTAM applications.

VTAM Definitions

Example

Chapter 5 Configuring the Telnet Daemon

73

As you define your telnet daemons, you should consider the following
VTAM characteristics:

• Each logical session requires a VTAM application ID. The ID appears
as an LU name to the target application and must be acceptable to it.
There is no difference in the way that it talks to the virtual terminal
and the physical 3270 terminal.

• Each telnet daemon creates and opens a VTAM ACB when it is
initialized. This implies that VTAM definitions must be active before
you execute the DEFINE TELNETD command that creates the virtual
terminal. We recommend that you copy sample member TCPAPPL.B
from PRD2.TCPIP to PRD2.CONFIG and tailor the member in
PRD2.CONFIG. Once you have defined all of your virtual terminals,
you can place TCPAPPL in the ATCCONxx member of
PRD2.CONFIG (or whatever sublibrary you use for VTAM
customization).

• When VTAM runs under VSE/ESA Version 2.1 or higher, it requires
one megabyte of dataspace storage for initialization and one additional
megabyte of dataspace storage for each partition that connects with
VTAM. TCP/IP FOR VSE, therefore, increases by one megabyte the
amount of dataspace storage that VTAM requires. To increase
VTAM’s storage, modify the DSPACE parameter on the EXEC card
in the VTAM startup procedure. Depending on your system dataspace
definitions (which you can display with the QUERY DSPACE
console command), you may need to increase the system dataspace
size. You can use the SYSDEF DSPACE command to do this.

• If you run multiple TCP/IP partitions, VTAM requires one additional
megabyte for each partition that runs telnet daemons. See the IBM
publication VSE Program Directory for VSE/ESA for a discussion of
VTAM dataspace requirements.

• When VTAM runs under VSE/ESA Version 2.1 or higher, you must
specify a DSPACE value on the EXEC IPNET JCL statement that
starts the TCP/IP FOR VSE partition. We recommend a default value
of DSPACE=2M. If you receive messages indicating that VTAM has
a dataspace buffer shortage, you can increase the DSPACE value by
one megabyte.

Each telnet daemon can use either a dedicated buffer or pooled buffers.
In dedicated mode, a daemon obtains a 16K buffer when a session is
requested. This buffer is used for all I/O operations for the duration of
the session. Dedicated buffer pools are more efficient than shared pools.

In pool mode, a 16K buffer is obtained from a buffer pool only when it is
needed for I/O. Because of how TCP/IP FOR VSE is designed, input from
the terminal is already completely in memory (in other storage) before
the I/O buffer is needed.

VTAM Considerations

Buffer Pools

Chapter 5 Configuring the Telnet Daemon

74

For outbound traffic, a buffer is obtained when VTAM indicates that data
is waiting. The buffer is retained for the length of time required to obtain
the data from VTAM and to pass it to the socket interface. In this way,
one buffer can serve many daemons.

Base your decision about pool mode use on whether you have enough
storage in the TCP/IP FOR VSE partition to support dedicated buffer
pools. The buffer pools are all allocated in 31-bit storage.

Chapter 5 Configuring the Telnet Daemon

75

Defining a Telnet Daemon

Each telnet session requires the definition of one daemon. As soon as it is
defined, the daemon uses the specified APPL name (terminal ID) to
connect with VTAM. Connection with a target application such as CICS
does not occur until a session is actually requested by a user.

TN3270E implements two types of telnet daemons. The listener daemon
listens on a specified TCP/IP port (for example, PORT 23). When it
receives an incoming request, it passes the request to an eligible effector
daemon. The effector daemon is responsible for managing the session
between the TN3270E client and the VTAM application. You must have
one listener daemon for each TCP/IP port that you want to use for
incoming telnet traffic and you must have one effector daemon for each
concurrent session.

TN3270E requires the coordination of resource definitions. The
TN3270E client selects the LU name but the installation must still have a
virtual terminal of that name defined to VTAM and a TN3270E effecter
daemon within TCP/IP FOR VSE that specifies that LU name using the
TERMNAME parameter. Many VSE sites use the terminal name for
security and it is important to note that while TCP/IP FOR VSE provides
client-specified LU names, the specification of the LU name by the client
can still be rigorously controlled by the installation.

When client software running on a remote platform requests a TN3270
session, the client indicates the 3270 model number (2, 3, 4, or 5) that it
wants to emulate. The daemon then selects an appropriate LOGMODE
entry from those specified in its definition. TCP/IP FOR VSE defaults to
the following LOGMODEs:

Terminal Type LOGMODE Name
3278-2 S3270

3279-3 D4B32783

3278-4 D4B32784

3278-5 D4B32785

These LOGMODEs are shipped with VSE/ESA in the default member
ISTINCLM.Z in PRD1.BASE. Some VSE/ESA installations use the
LOGMODE table that VSE/ESA supplies in member IESINCLM in
ICCF library 59. If you use the ICCF member, you must specify
appropriate values for the LOGMODE3, LOGMODE4, and
LOGMODE5 parameters for each telnet daemon that you define.

Note: All LOGMODEs used by TN3270 must be defined as non-SNA.

LOGMODEs

Chapter 5 Configuring the Telnet Daemon

76

Regardless of the connection method, you must define each LU name
(that is, the telnet VTAM application ID) to each CICS you want to use.
To do this, you can either use CICS Auto Install or code a TCT entry for
each LU name.

If you use the Auto Install feature of CICS, each LU is defined when a
connection is attempted. The terminal’s characteristics are determined
from the bind information passed by VTAM. Because bind information
is obtained from the LOGMODE used by the telnet daemon, be sure that
you are using the correct ones. Specifically, make sure that each
LOGMODE entry is appropriate for the 3270 model being emulated and
that the LOGMODE specifies a non-SNA local device. If you are having
difficulties connecting to CICS, one place to look for information about
why CICS might be rejecting the bind is in the Inspect Message Log
option in the VSE Interactive User Interface (IUI). This display shows
the netname and model name of the terminal that CICS is attempting to
Auto Install.

To view the characteristics of the model name, you need to use the
CEDA facility in CICS and locate the GROUP where your CICS
terminal types are defined. In a typical VSE/ESA system, the default
group is VSETYPE, and the CICS command you use to view all of the
CICS terminal types would be CEDA EXPAND GR(VSETYPE).

If you are not using Auto Install, you must code a TCT entry or make an
RDO definition for each LU name to be supported. Be sure that
TRMTYPE=3270 is coded (non-SNA).

CICS

Auto Install

TCT

Chapter 5 Configuring the Telnet Daemon

77

Controlling the IP Address

When a TN3270 client (for example, a terminal user) requests a telnet
session and does not specify an LU name, the first available daemon is
normally assigned. This may be undesirable for several reasons. You
may want to enforce certain session properties based on the originating
IP address, or you may want to restrict the number of sessions permitted
with some applications. In addition, you may have a security policy that
is based on CICS terminal identifiers or VTAM NETNAMEs. You can
associate a VTAM terminal name with an IP address in one of the
following ways:

• By creating daemon pools

• By specifying address patterns

• By allowing the client to specify the VTAM terminal name using
TN3270E

You can use port numbers to create separate pools of telnet daemons. By
convention, telnet requests are sent to port 23. There is, however, no
requirement for this, and most telnet client software permits you to
specify the target port number. This approach allows you to establish
different daemon pools with different characteristics. The drawback is
that the end user must know which port to select.

You can specify an IP address pattern for each daemon. In this case, the
daemon establishes a session with an IP address only if it matches the
pattern. The CONNECT_SEQUENCE command setting determines the
process used to select a telnet daemon.

IP addresses can match based on a complete specification, a match on
subnet, or a match on network number. A daemon with a 0.0.0.0
specification matches any request.

When CONNECT_SEQUENCE is set to OFF (the default), the first
daemon that matches any test is assigned. The IPADDR= is completely
ignored, and any client can connect without any IP address matching.

When CONNECT_SEQUENCE is set to ON, TCP/IP FOR VSE selects a
telnet daemon (and corresponding terminal name) on a best-fit basis
using the following algorithm:

1. TCP/IP FOR VSE attempts an exact match of the IP address of the
incoming request with the IP address of each telnet daemon
(IPADDR= on DEFINE TELNETD).

2. If step 1 fails, TCP/IP FOR VSE attempts to match the network and
subnetwork values of the incoming request with a generic network
and subnetwork address based on the IPADDR parameter of each
telnet daemon.

Creating Daemon Pools

Specifying Address
Patterns

CONNECT_SEQUENCE
OFF

CONNECT_SEQUENCE
ON

Chapter 5 Configuring the Telnet Daemon

78

3. If step 2 fails, TCP/IP FOR VSE attempts to match the network
portion of the incoming request with a generic network number
based on the IPADDR parameter of each telnet daemon.

4. If step 3 fails, TCP/IP FOR VSE matches the IP address of the
incoming request with an IPADDR of 0.0.0.0 on the IPADDR of a
telnet daemon. If the IPADDR is omitted on the DEFINE TELNETD
command, an IPADDR of 0.0.0.0 is assumed.

Note: The SET MASK command has no effect on the selection process.

For example, assume the following partial definitions exist with
CONNECT_SEQUENCE ON:

DEFINE TELNETD,ID=AAAA,COUNT=3, IP=10.108.34.10
DEFINE TELNETD,ID=BBBB,COUNT=40, IP=10.32.0.0
DEFINE TELNETD,ID=CCCC,COUNT=100,IP=10.0.0.0
DEFINE TELNETD,ID=DDDD,COUNT=200,IP=0.0.0.0

Incoming client requests would be serviced in the following sequence:

• Clients with IPADDR 10.108.034.10 would connect to ID=AAAA.

• Clients with IPADDR 10.32.nnn.nnn would connect to ID=BBBB.

• Clients with IPADDR 10.nnn.nnn.nnn would connect to ID=CCCC,
other than the 10.108.034.101 and 10.32.nnn.nnn addresses that are
serviced by ID=AAAA and ID=BBBB.

TCP/IP FOR VSE also considers the total count per daemon:

• If the number of clients exceeds the ID=AAAA count (3), then the
client with IPADDR 10.108.034.010 would connect into ID=BBBB.

• If the number of clients exceeds the ID=BBBB count (40), then clients
with IPADDR=10.32.*.* would connect into ID=CCCC.

• If the number of clients exceeds the ID=CCCC count (100), then
clients would connect into ID=DDDD.

If there were no ID=DDDD defined that allowed any clients to connect
to it—it has the default setting of IPADDR=0.0.0.0—the client
connection requests that did not match the ID=AAAA, ID=BBBB, or
ID=CCCC IPADDR= settings would be rejected.

Specify CONNECT_SEQUENCE ON in the following situations:

• To guarantee that an incoming telnet request is always associated with
a given telnet daemon and its associated terminal name.

Example

Recommendations

Chapter 5 Configuring the Telnet Daemon

79

• To limit the number of telnet daemons available to TCP/IP hosts on a
given network and subnetwork.

CONNECT_SEQUENCE ON may result in slightly higher CPU
utilization during telnet connection requests.

Note that even after a connection is established, the IP address, port
number, user ID, and password of the person trying to log in is passed to
the security exit. A rejection could still occur at that point.

When the TN3270E client attempts to connect to TCP/IP FOR VSE, it
must specify a port (normally port 23) that a TN3270 listener daemon is
listening on. The IP address of the TN3270E client must be able to
connect to the TN3270E listener, meaning that it cannot be excluded by
the IPADDR parameter of the TN3270E listener daemon.

To confirm that your listener daemon is listening on port 23, and to see
whether it places restrictions on the IP addresses that can connect to it,
you can issue the TCP/IP operator command QUERY TELNETDS.
When the connection is established, the TN3270E listener daemon
attempts to locate a TN3270E effecter daemon (DEFINE
TELNETD,TN3270=E) that is eligible to process the request. The
TN3270E effecter daemon is deemed eligible if its TERMNAME
matches the terminal name specified by the incoming TN3270E session.

Using TN3270E

Chapter 5 Configuring the Telnet Daemon

80

Telnet Menu

Each daemon can connect the end user directly to an application or can
present the user with a menu. Menus provide additional flexibility,
including the ability to require a user ID and password. The most
common TN3270 target application under VSE is CICS.

TCP/IP FOR VSE provides functionality similar to that available with
VTAM’s USS table and the USSMSG10 display. When you provide a
TCP/IP FOR VSE telnet menu, inbound telnet users can choose available
applications with a simple command or PF key. The menu facility in
TCP/IP FOR VSE provides the following features:

• Easy application selection

• Network solicitation screen

• Message of the day

• Security. This feature permits you to request a user ID and password
before you allow access to any applications. This security check
supplements the user ID and password that is required to access a
specific application.

A TCP/IP FOR VSE telnet menu consists of a set of 80-byte records
stored as a library member. Each table provides a definition of one
24 × 80 screen image. Each definition includes a list of hot keys and the
actions to be taken.

To define telnet menus to TCP/IP FOR VSE, use the DEFINE MENU
command. Once defined, the menu can be included in the definition of a
telnet daemon. To change a menu, you must (1) make the change in the
source member, (2) issue the DELETE MENU command, and then
(3) reissue the DEFINE MENU command. You do not have to cycle the
telnet daemons. Users see the new menu automatically the next time they
connect to the daemon.

Each telnet menu definition member consists of the following sections:

1. The first, the header section, contains a series of keyword definitions.
These definitions include define-action keys and placeholders used
in the second section.

2. The second section consists of a 24 × 80 screen image. You must
have EXACTLY 24 lines in the second section or the menu
definition will fail.

How to Code

Menu Definition Sections

Chapter 5 Configuring the Telnet Daemon

81

The header section of a screen definition consists of a series of keyword
definitions. Each definition begins in column one of a new record.
Keywords must be in upper case. Blank lines are ignored in this section.
Lines beginning with an asterisk (*) are assumed to be comments and are
ignored. The last statement in the header section must be IMAGE.

Keyword Description
IMAGE This keyword indicates the end of the header

section. Exactly 24 records must follow the
IMAGE keyword. These records are used to
generate the screen image.

HI=char The specified character is replaced with a high-
intensity attribute in the screen image section.

LO=char The specified character is replaced with a normal-
intensity attribute in the screen image section.

VAR=char This character identifies certain predefined
dynamic values that can be displayed in the screen
section. The values are described in “Variables” on
page 83.

INPUT=char This character identifies certain predefined
dynamic values that can be displayed and modified
in the screen section. The values are described in
“Variables” on page 83.

CMDLINE=char This character identifies the start of a command
line. You must terminate the command line with
another attribute character. The command line may
be any length; however, only the first 80 characters
are examined during an input operation. Be sure
that the command line area does not overlap the
area reserved for error messages.

MSGLINE=n This keyword sets the first screen line (1 to 23) of a
two-line area where errors are displayed. The
default is line 23. This area must not overlap the
command line.

CHAR=c=string This statement may be coded as many times as
required to define a series of command letters.
Valid values for c are A–Z and 0–9. When the user
enters the command character, the value of string is
executed as a command.

PFnn=string This statement may be coded as many times as
required to equate a series of command strings to
PF keys.

Header Section

Chapter 5 Configuring the Telnet Daemon

82

Keyword Description
PAn=string This statement may be coded as many times as

required to equate a series of command strings to
PA keys.

CLEAR=string This statement assigns a command string to the
CLEAR key. In practice, you probably want to
assign either the REFRESH or EXIT command.

TRIES=n If user IDs and passwords are checked, n is the
number of failures permitted before the user is
disconnected. The value of n can range from
1 to 255.

A user can enter commands in the following three ways:

• By entering them explicitly in the menu command line, assuming that
a command line is available.

• By entering a single character in the menu command line, if the
character has been equated to a command string.

• By pressing a PF or PA key that has a command string equated to it.

Command strings consist of one or more commands. Commands are
separated from each other by one or more blanks. Command operands
are enclosed in parentheses and immediately follow the command,
without any intervening blanks. Commands are not case sensitive.

The following table lists commands and their descriptions. Only the
capitalized portion of a command needs to be entered, although the entire
entered string is checked for correctness.

Command Description
LOGON Attempts to complete a logon operation. Its

execution is always deferred until all other
commands in the current command string are
processed.

APPLication(name)
APPLid(name)

Sets the name of the application to which logon
is attempted.

USERid(name)
ID(name)

Sets the user ID to the indicated value. This
value is validated when the LOGON command is
processed.

Entering Screen
Commands

Chapter 5 Configuring the Telnet Daemon

83

Command Description

PASSword(string)
PSWD(string)

Sets the password to the indicated value. This
value is validated when the LOGON command is
processed.

REFRESH Causes a redisplay of the screen. This command
is normally assigned to the CLEAR key.

DATA Allows you to pass DATA into the VTAM
application. This is analogous to using the
DATA keyword on the VTAM LOGON
command. The VTAM application must support
the use of the DATA parameter.

EXIT, QUIT, or
LOGOFF

Terminates the telnet session.

Variables are keyword values that you can include in a screen definition
to display information and/or permit the user to enter replacement values.
Whether or not a field is available for change depends upon the escape
character that precedes the keyword.

Variables used for display do not include 3270 attribute characters.
Those specified as input fields have lead and terminating 3270 attributes
automatically generated and the values appear as high intensity (except
for the PASSWORD variable, which is not displayed).

There must be sufficient room on a line to completely display the
variable and any generated attributes. Variables may not span lines.

Each variable name may be used only once as an output field and once as
an input field in a single screen. The following table shows supported
variables.

Variable Input?
Required
Characters Contents

USERID YES 16 The user ID to be associated
with this session

PASSWORD YES 16 The password associated
with the user ID

IPADDR NO 15 The network address of this
session

APPL YES 8 The application name
scheduled for use by the
logon function

Variables

Chapter 5 Configuring the Telnet Daemon

84

Variable Input?
Required
Characters Contents

LOGMODE NO 8 The LOGMODE to be used
by the LOGON function

LUNAME NO 8 The VTAM logical unit
name to be used for this
session

A failed logon attempt, such as one caused by an invalid or inactive
application, terminates the telnet session. The failed logon does not,
however, produce an error message.

Chapter 5 Configuring the Telnet Daemon

85

The following definition file example shows how single-character
selection of allowable values is implemented.

HI=#
LO=$
VAR=@
CMDLINE=?
INPUT=+
PF3=EXIT
PF10=LOGON
CLEAR=REFRESH

CHAR=A=LOGON APPL(DBDCCICS)
CHAR=B=LOGON APPL(TESTCICS)

CHAR=E=EXIT

MSGLINE=23
TRIES=3
IMAGE
 #CSI International$
 TCP/IP for VSE TN3270 Menu

 Luname:@LUNAME IP Addr:@IPADDR

 Logmode: @LOGMODE
 Application: @APPL

 User ID: +USERID
 Password: +PASSWORD

 #Enter letter$of desired application:
 #A$- Production CICS (DBDCCICS)
 #B$- Test CICS (TESTCICS)

 #Enter letter =>? $

 $Press#PF3$or enter#E$ to EXIT

Single-Character-Input
Menu Example

Chapter 5 Configuring the Telnet Daemon

86

The resulting menu screen appears below. The colors in the screen may
vary depending on the TN3270 client configuration. In this example, the
magenta color represents highlighted text. The pale green lettering
represents normal text.

 CSI International
 TCP/IP for VSE TN3270 Menu

 Luname: TELN02 IP Addr: 100.000.095.095

 Logmode: S3270
 Application: DBDCCICS

 User ID:
 Password:

 Enter letter of desired application:
 A - Production CICS (DBDCCICS)
 B - Test CICS (TESTCICS)

 Enter letter =>

 Press PF3 or enter E to EXIT

In the menu above, the user sees the initial screen. The initial
LOGMODE and application are taken from the telnet daemon definition.
The user is expected to fill in both the user ID and password information.
Note that the password field is generated automatically as a non-display
field.

In this example, the user could enter the APPL(name) directive to select
other applications not represented by single characters. For instance,
assume that the user enters the following command at the command
prompt (=>):

LOGON APPLID(MVSTSO)

TCP/IP FOR VSE attempts to log the user on to the VTAM application
MVSTSO.

Chapter 5 Configuring the Telnet Daemon

87

This definition file example is similar to the first one, but it shows the
use of PF keys.

HI=#
LO=$
VAR=@
CMDLINE=?
INPUT=+
PF1=EXIT
CLEAR=EXIT

PF10=LOGON APPL(DBDCCICS)
PF11=LOGON APPL(TESTCICS)

PF1=EXIT

MSGLINE=23
TRIES=3
IMAGE
 #CSI International$
 TN3270 Menu

 Luname:@LUNAME IP Addr:@IPADDR

 Logmode: @LOGMODE

 User ID: +USERID
 Password: +PASSWORD

 #Press PF key$to initiate logon:

 #PF 10$- Production CICS (DBDCCICS)
 #PF 11$- Test CICS (TESTCICS)

 $Press#PF1$or#CLEAR$to EXIT

PF-Key-Input Menu
Example

Chapter 5 Configuring the Telnet Daemon

88

The resulting menu appears below.

 CSI International
 TN3270 Menu

 Luname: TELN02 IP Addr: 100.000.095.095

 Logmode: S3270

 User ID:
 Password:

 Press PF key to initiate logon:

 PF 10 - Production CICS (DBDCCICS)
 PF 11 - Test CICS (TESTCICS)

 Press PF1 or CLEAR to EXIT

Using PF keys reduces the required keystrokes. Also, note that the lack
of a command line prevents the user from selecting unanticipated values.

Library PRD2.TCPIP contains the sample CSIMENU1, which you can
tailor to meet your requirements.

89

6
6. Configuring FTP Daemons

Overview

The File Transfer Protocol (FTP) enables you to transfer files between
VSE and remote systems such as UNIX, z/OS, VM, Microsoft
Windows®, AS/400, Linux, and even other VSE systems.

The VSE files you can transfer include

• VSAM (ESDS and KSDS) files

• Sequential disk files

• Tape files

• Librarian members

• VSE/POWER RDR/PUN/LST queue entries

• Hierarchical File System (HFS) files.

For an overall understanding of how the FTP protocol works, see
chapter 2, “FTP,” in the TCP/IP FOR VSE User Guide.

Chapter 6 Configuring FTP Daemons

90

Planning Considerations

Performing file transfers is simple, but the first thing that needs to be
considered is how the FTP transfer is initiated and controlled. If you
want to start and control the FTP file transfer from a remote system, then
you must first configure a FTP Server (daemon) on the VSE system.
Information on configuring and running a FTP server on VSE can be
found in the next section, “Introduction to Configuring an FTP Server
(Daemon).”

If you want to start and control the FTP transfer from VSE, then you can
use any of the FTP clients provided with TCP/IP FOR VSE. All of these
clients run on VSE. The remote system must also be enabled and running
an FTP server (daemon).

If you only want to use the batch FTP client (// EXEC FTPBATCH
program) to send or receive files from a remote system, then you do not
need to configure or define a FTP server (daemon) on VSE because the
client attaches and executes an FTP daemon automatically during the
FTPBATCH job’s execution. The FTP daemon attached by FTPBATCH
is terminated when the FTPBATCH job step is completed. See the
section “FTP as a Client on VSE” in the TCP/IP FOR VSE User Guide for
more information on starting and controlling FTP transfers from VSE.

As you activate FTP on VSE, you need to consider the following:

• How you want to configure an FTP server (daemon) on VSE:

 Internal FTP servers are created with the DEFINE FTPD
command

 External FTP servers are created with the // EXEC FTPBATCH
program

• Which security features are required, and how security is to be
handled. For more information on FTP security, see Chapter 9,
“Security.”

• How to control data transmission defaults using EXTTYPES.L

We examine each of these issues in the following sections from an
installation point of view.

Chapter 6 Configuring FTP Daemons

91

Introduction to Configuring an FTP Server (Daemon)

If you want to start and control the FTP transfer from a remote system,
then you must consult the documentation of the remote system for
information on the commands and interface that it provides. A common
example of a foreign client would be the Microsoft® Windows DOS FTP
command, and many PC and UNIX software companies provide easy-to-
use graphical FTP client interfaces. The TCP/IP FOR VSE automatic and
interactive FTP clients also require an FTP server to be active on VSE.

See the section “FTP as a Server on VSE” in the TCP/IP FOR VSE User
Guide for information on FTP server commands and replies when using
VSE as an FTP server.

The DEFINE FTPD command is used to create an internal FTP Server
(daemon). You must issue one DEFINE FTPD for each port that is
opened by remote FTP clients. The default port number is 21.

See DEFINE FTPD in the TCP/IP FOR VSE Command Reference for
information on the available parameters for this command. The minimum
recommended parameters are shown in the following syntax statement.

DEFine FTPd,ID=id[,PORT=num|21][,UNIX=YES|NO|BIN]
[,MAXACTive=n|3][,IDLETIME=ttt|0][,WELCOME=welcome.L]
[,EXTTYPES=YES|NO][,DYNFILES=YES|NO][,ZEROERROR=YES|NO]
[,UPPERCASE=NO|YES][,EXTRADATA=FAIL|WARN|IGNORE|ACCEPT]
[,SITELAST=NO|YES]

These parameters are described in the following table:

Parameter Description
DYNFILES=
[YES | NO]

The default (YES) allows users to specify dynamic
(autonomous) files, which are files that are not
defined to the TCP/IP FOR VSE file system. This
means that remote FTP users can transfer a local VSE
file directly by specifying its DLBL/TLBL and
bypass the TCP/IP FOR VSE file system. For tighter
security, you may want to specify DYNFILE=NO on
this server (port) to restrict access to only files
defined by the DEFINE FILE command. See the
TCP/IP FOR VSE User Guide for details on
autonomous files.

Note: The LOCAL_DLBL OFF command overrides
the default DYNFILE=YES and provides the same
restriction for all internal servers. It is run from the
global TCP/IP initialization deck. This command is
supported for compatibility with earlier releases.

Creating an Internal FTP
Server

Chapter 6 Configuring FTP Daemons

92

Parameter Description
EXTRADATA=
[FAIL | WARN |
IGNORE |
ACCEPT]

This option controls what is done when an incoming
text file has extra data at the end. “Extra data” (in a
text file only) is defined as a text string that is not
correctly ended with a CR/LF or other valid
delimiter. The values for this parameter are as
follows:

FAIL (the default): The transfer fails and is not stored
on VSE. An FTP343W warning message is
generated, and a 5xx failure code is sent to the client.

WARN: A warning message is generated, but the file
is stored on VSE. A normal code sent to the client.
The undelimited data is discarded.

IGNORE: No messages are generated. The
undelimited data is discarded.

ACCEPT: No messages are generated. The
undelimited data is accepted and stored as if it were
correctly delimited.

EXTTYPES=
[YES | NO]

Specifying NO suppresses using the EXTTYPES.L
overrides when transferring data. The default is YES.
See also SITELAST= below.

ID=id A 1- to 16-character alphanumeric name to identify
this daemon.

IDLETIME=
[ttt | 0]

Specifies a time-out interval for FTP sessions that are
open but where no command has been received. The
IDLETIME automatically terminates a session that is
left idle for more than the time interval determined by
the variable ttt. This variable is specified in
300th-second units. For example, setting IDLETIME
to 18000 would terminate an inactive FTP session
after one minute.

The default is zero, which means a remote user who
establishes an FTP session and walks away from the
PC would leave the session open indefinitely.

MAXACTIVE=
[n | 3]

This parameter establishes the number of concurrent
user sessions supported by the daemon. Once this
limit is reached, no new sessions are allowed to be
established until other sessions in use terminate.
Valid values of n range from 1 to 65535. The default
value is 3.

Chapter 6 Configuring FTP Daemons

93

Parameter Description
PORT=
[num | 21]

The TCP/IP port number for this FTP daemon to
monitor. The default is 21, but you might want an
FTP daemon listening to a different port. For
example, assume that you have an FTP daemon
listening at port 3021. If the FTP daemon on port 21
has reached the maximum number of active sessions,
and you need to transfer a file, you can point your
FTP client to port 3021 and establish an FTP
connection.

SITELAST=
[NO | YES]

Setting this option to YES allows SITE commands to
override DEFINE FILE parameter settings
(BLKSIZE, CC, CRLF, LRECL, RECFM, TRCC).
The default is NO.

Note: This option has no effect if EXTTYPES=YES
and the file type has a matching entry in
EXTTYPES.L. In that case, EXTTYPES overrides
are always used. See “Controlling Defaults Using
EXTTYPES.L” for information on the EXTTYPES
transfer values.

UNIX=
[YES | BIN |
NO]

Specify YES or BIN to start in UNIX mode:

• YES to tell the FTP daemon to start each session in
UNIX simulation mode. Binary transfers occur in
ASCII mode.

• BIN is the same as YES, but it is better because it
allows binary transfers to occur in binary mode.
This is useful when you use a graphical PC client
that understands the simulated UNIX directory
structure of TCP/IP FOR VSE, but you still want
true image/binary transfers to occur.

The default is NO.

UPPERCASE=
[NO | YES]

All replies are sent in mixed case by default.
Specifying YES causes all replies to be sent back to
the foreign FTP client in upper case. This may be
needed because of translation issues.

Chapter 6 Configuring FTP Daemons

94

Parameter Description
WELCOME=
member

The VSE member containing a message that is sent at
the start of each new session. This text is added to the
220 system message a remote client receives when it
connects into your VSE system. You can add text to
identify your company and display a help message.
The member.L must be catalogued in the LIBDEF
chain as part of the TCP/IP FOR VSE initialization.
Any text in columns 73 through 80 is ignored.

The following job shows how to catalog a message
member, in this case GREETING.L:

The example below shows how the message in
GREETING would appear to a remote FTP client.

Note: Using FTPD=NO on the ASECURITY
command blocks these messages and prevents new
FTP sessions. For details, see chapter 9, “Security,”
on page 133.

ZEROERROR=
[YES | NO]

Attempting to transfer an empty (null) file is
considered an error by default, and a 500-level error
message (a fatal error) is generated. Specify NO to
allow transferring an empty file.

// EXEC LIBR
ACC SUB=lib.sublib
CATALOG GREETING.L REPLACE=YES

WELCOME TO ABC CORPORATION’S VSE SYSTEM.
EMAIL XYZ@ABC.COM FOR HELP ON THIS FTP SERVER

/+
/*

220-TCP/IP for VSE Internal FTPDAEMN 02.01.07 20160310 02.34
 Copyright (c) 1995,20xx Connectivity Systems Incorporated

WELCOME TO ABC CORPORATION’S VSE SYSTEM.
EMAIL XYZ@ABC.COM FOR HELP ON THIS FTP SERVER

220 Ready for new user

Chapter 6 Configuring FTP Daemons

95

See the TCP/IP FOR VSE Command Reference for details on the
following commands that allow you to monitor and control an internal
FTP server (daemon):

• DEFINE FTPD

• DELETE FTPD

• QUERY FTPD

• QUERY ACTIVE TYPE=FTP

If you want to provide FTP services using a partition external to the
TCP/IP stack, FTPBATCH can be executed as a full-function, multiple-
session server. Using FTPBATCH this way achieves the following
advantages:

• File open and file close operations are moved to the external partition.
All I/O is accomplished outside of TCP/IP.

• The main TCP/IP stack partition is freed to focus on network activity.

• Recoverability is improved. The external FTP servers can be
terminated and restarted without affecting the main stack partition.

• Workloads are prioritized effectively. Multiple CPUs can be exploited
using the VSE turbo dispatcher, and the VSE PRTY (priority) and
other VSE commands can be used to control and monitor FTP
transfers.

Use the following JCL as guide to running an FTPBATCH server.

// JOB FTPB0021
// OPTION LOG,PARTDUMP
// OPTION SYSPARM='00'
The Assign's, Dlbls, and Extent's for all defined files
should be taken from TCP/IP startup job
// EXEC FTPBATCH,SIZE=FTPBATCH,PARM='FTPDPORT=21'
SET IDLETIME 36000
/*
/&

This example shows a basic configuration. The parameters and SET
commands you can use with FTPBATCH to configure a server are
described below.

Monitoring and
Controlling an Internal
FTP Server

Creating an External FTP
Server

Chapter 6 Configuring FTP Daemons

96

The following keyword parameters apply when configuring an
FTPBATCH server.

Parameter Description
ABORT=[YES|NO] Specifies whether the ABORT command is

allowed to prematurely terminate an active
transfer. The default is NO.

CASE=UPPER Specifies that all messages issued to
CONSOLE and SYSLST are translated to
upper case. (UPPER is the only valid value.)

COUNT= Synonym for MAXACT=

DATAPORT=num Data port number to be used for the local
VSE data connection. Applies only when
VSE is in the passive mode.

DEBUG=[ON|OFF] Sends debugging messages to SYSLST. The
default is OFF.

DUMP=[YES|NO] Specify YES to create a complete dump if the
FTPBATCH program abends. Use this
parameter when directed by CSI Technical
Support. The default is NO.

DYNFILE=[YES|NO] The default (YES) allows users to specify
dynamic (autonomous) files, which are files
that are not defined to the TCP/IP FOR VSE
file system. This means that remote FTP
users can transfer a local VSE file directly by
specifying its DLBL/TLBL and bypass the
TCP/IP FOR VSE file system. For tighter
security, you may want to specify
DYNFILE=NO on this server (port) to
restrict access to only files defined by the
DEFINE FILE command. See the TCP/IP
FOR VSE User Guide for more information on
autonomous files.

FTPDPORT=nnnn Required to create an FTPBATCH server.
This causes the FTPBATCH partition to stay
up and wait for connection requests from
foreign FTP clients.
Note: You can block autonomous file
transfers on this server (port) by using the
DYNFILE=NO parameter.

Parameters

Chapter 6 Configuring FTP Daemons

97

Parameter Description
ID=sysid Specifies the system ID of the TCP/IP FOR

VSE partition that is to serve as the local host
or client. Remember that you can have more
than one copy of TCP/IP FOR VSE running at
one time (such as production and test). The
default is 00.
If your installation uses a TCP/IP FOR VSE
ID other than 00, you must specify the sysid
value in any FTP batch job that you run.
Alternatively, you can specify the ID
parameter in a
// OPTION SYSPARM='sysid' job control
statement.

LIP=nnn.nnn.nnn.nnn Allows a different local IP address to be used
by FTPBATCH for use in VSE systems with
multiple local IP addresses.

MAXACT=nn Specifies the maximum number of FTP
sessions that can connect to FTPBATCH in
server mode. This number ranges from 1 to
28. The default is 16, which normally is
adequate to ensure that sessions can connect.
Although you can permit up to 28 concurrent
sessions, each session, as it becomes active,
requires additional system resources. You
must plan the size of the FTPBATCH server
partition accordingly.

SSL=SERVER Enables SSL (secure encryption) for the
server. Requires activating the SecureFTP
optional feature.
The Internet Engineering Task Force (IETF)
has renamed SSL to TLS, and TLS= should
be used instead of SSL=. See TLS= for more
details. SSL= is still accepted to support older
jobs. SSL= and TLS= are synonyms.

SYSLOG=ON Specifies that all messages are directed to the
console and to SYSLST. (ON is the only
valid value.)

TAG=[YES|NO] Specify YES to add the task ID and
timestamp to all SYSLST output. The default
is NO.

Chapter 6 Configuring FTP Daemons

98

Parameter Description
TLS=SERVER Synonym for SSL=SERVER.

Note: Specifying TLS= instead of SSL= does
not affect the protocol version that is used.
The SET TLSxx command sets the minimum
protocol version to be allowed by a server.
For more information, see “SecureFTP for
VSE” in the TCP/IP FOR VSE Optional
Features Guide.

TRAN=translate-table Specifies a translate table name for ASCII-to-
EBCDIC translation on the data connection.
This setting does not override the
TRANSLATE parameter on the DEFINE
FILE command.
Note 1: Setting this parameter causes SITE
TRANSLATE commands to fail with a
“505 Translate value cannot be overridden”
error message.
Note 2: Use SET TELNTRAN to override
the translate table setting on the control
connection.

UNIX=[YES|BIN|NO] Controls operation in UNIX simulation
mode. Specify YES to tell the FTP daemon to
start each session in UNIX simulation mode.
Binary transfers occur in ASCII mode. The
default is NO.
BIN is the same as YES, but it is better
because it allows binary transfers to occur in
binary mode. This is useful when you want to
use the simulated UNIX directory structure of
TCP/IP FOR VSE while allowing true
image/binary transfers to occur.
Forward slashes may be used to separate
directory and file names in UNIX mode. For
more information on this mode, see chapter 1,
“Fundamentals of TCP/IP.”

WELCOME=member Name of a VSE library (‘.L’) member
containing site-specific text that is added to
the initial 220 message issued by
FTPBATCH. See WELCOME= on page 94.

ZEROERR=[YES|NO] Specifies whether a GET of an empty file
should be considered an error (YES) or
ignored (NO). The default is NO.

Chapter 6 Configuring FTP Daemons

99

The following SET commands apply when configuring FTPBATCH as a
server.

SET Command Description

SET BUFFCNT Synonym for SET BUFFMAX.

SET BUFFMAX
[nn|4]

This command is no longer used. If it is
specified, it is ignored.

SET BUFFSIZE
[nnnnnn|65536]

Sets the buffer size to use when sending data
buffers to the TCP/IP partition. The default
and minimum setting is 65536. The maximum
is 131072. For compatibility with older
releases, smaller values are allowed and not
flagged as an error. They are ignored,
however, and 65536 is always the smallest
value used.

SET CHAPCNT
[nn|32]

Used when running FTPBATCH as an
external FTP server. Each VSE subtask
handles an FTP session, and the VSE CHAP
command controls when a session is forced to
the lowest priority to allow other sessions to
have equal priority. In general, higher values
of nn lead to fewer changes in priorities
(CHAPs). The default is 32.

SET CONSOLE
operand

Manages how messages are displayed on the
VSE system console. The operand specifies
whether a message type is sent to the console
or suppressed. Only one operand from the
following list is allowed per command. Each
operand’s value defaults to the default setting
of the TCP/IP partition.

Operand Message Type
ALL | NONE All messages

WARN | NOWARN Warning

INFO | NOINFO Informational

DIAG | NODIAG Diagnostic

RESP | NORESP Response

SECURE |
NOSECURE

Security

UPPER All messages are
sent in upper case.

SET Commands

Chapter 6 Configuring FTP Daemons

100

SET Command Description

SET DATAWECB
[ON|OFF]

ON causes a wait-after-send on the send
buffer until it is successfully acknowledged
by the foreign FTP server. The default is
OFF. This command can be used to slow
down FTP transfers that may be overloading a
congested network.

SET DIAGNOSE
[ON|NODUMP|OFF|
 EVENTS|FILEIO]

Controls FTP diagnostics.
SET DIAGNOSE ON causes diagnostic
messages and dumps to occur. Sometimes the
dumps are not necessary and cause timing
problems, so if you want the diagnostic
messages but no dumps, you can issue a
SET DIAGNOSE NODUMP after the
SET DIAGNOSE ON to enable diagnostic
messages with no dumps.

Value Effect
ON Enables diagnostics (messages

and dumps) of FTP commands.

NODUMP Suppresses dumps. Issue
SET DIAGNOSE NODUMP
after SET DIAGNOSE ON.

OFF Disables diagnostics of FTP
commands. (The default).

EVENTS Enables diagnostics of
significant events during the
FTP processing.

FILEIO Enables dumps during file I/O
requests.

Chapter 6 Configuring FTP Daemons

101

SET Command Description

SET EXTRADAT
[FAIL|WARN|
 IGNORE|ACCEPT]

This option controls how extra data at the end
of a received text file is handled. “Extra data”
is defined as a character string not delimited
by a CR, LF, or other valid delimiter. The
settings are as follows:

Value Effect
FAIL The transfer fails and is not

stored on VSE. A warning
message (FTP343W) is
generated, and a 5xx failure
code is sent to the client.
(The default).

WARN A warning message is
generated, but the file is stored
on VSE. A 2xx normal code is
sent to the client. The
undelimited data is discarded.

IGNORE No messages are generated. The
undelimited data is discarded.

ACCEPT No messages are generated. The
undelimited data is accepted and
stored as if it were correctly
delimited.

SET EXTTYPES
[ON|OFF]

Enables or disables using EXTTYPE.L for
file transfer overrides. The default is ON
(enabled).
See also “SET SITELAST” on page 103.

SET FIOWAIT
[ON|OFF]

Forces file I/O to be single threaded (ON).
The default is OFF.

SET IDLETIME
[nnnnnn|0]

Sets the wait time before terminating an
inactive FTP session when using FTPBATCH
as a server. The value nn is the number of
300th-second intervals. The default is 0, which
causes the server to wait indefinitely.

SET LOGCONSL Synonym for SET CONSOLE.

SET [MSGXLEFT|
MSGXRGHT]

Causes timestamps to be placed to the left or
right of messages issued to SYSLST. The
default position is to the right.

Chapter 6 Configuring FTP Daemons

102

SET Command Description

SET MSGXLOG
[ON|OFF]

SET MSGXLOG ON can be used to echo
SYSLST output from FTPBATCH into a
sequential disk (SD) file. This can be used for
applications that want to ASSGN SYSLST to
a disk file for separate processing of output
from FTP commands such as a directory
listing. This, then, causes an open of an SD
file for output, and the FTPBATCH job
stream must also contain the ASSGN, DLBL,
and EXTENT JCL for the MSGXLOG file.
The output file is fixed in unblocked,
121-byte records to allow assigning IJSYSLS
to a disk file. The first byte of each record
contains the print carriage control and is
followed by the 120-byte print line. The
default is OFF.

SET PASVPORT
start-number tot-ports

Sets the starting port number (>4096) and the
total ports to be used for the data connection
when in passive mode. The highest number in
the range must less than 65536. This setting
overrides the values set by the PORTRANGE
command in the TCP/IP partition.

SET PULSE
[ON |OFF]

Specifies whether pulsing is on or off during a
GET or a PUT. The default is ON.

SET SENDFAST
[ON|OFF]

Causes SENDs to be issued without waiting.
When SENDFAST is set to ON and the
number of unacknowledged bytes is four
times the BUFFSIZE, a wait is issued to allow
the foreign FTP server to acknowledge the
sent data. The default is OFF.
Note: The default behavior for sending
buffers is to send a single buffer without
waiting and fill a second buffer while the
prior buffer is waiting for acknowledgement.
If the filling of the second buffer completes
before the prior buffer is completely
acknowledged, a wait is issued for it to
complete, and then the second buffer is sent.
Alternating between these two buffers is
recommended, and use of this command will
probably not lead to any significant
performance improvement. It could, in fact,
lead to network congestion and a closed-
window condition on the remote system,
causing an overall decrease in performance.

Chapter 6 Configuring FTP Daemons

103

SET Command Description

SET SENDSNOT Synonym for SET SENDFAST.

SET SENDWACK Synonym for SET DATAWECB.

SET SITELAST
[YES|NO]

Setting this option to YES allows SITE
commands to override the following
parameters on the DEFINE FILE command:
BLKSIZE, CC, CRLF, LRECL, RECFM, and
TRCC. The default is NO.
Note: If SET EXTTYPES ON (the default) is
used and the file type has a matching entry in
EXTTYPES.L, then this option has no effect
and EXTTYPES overrides are always used.
See “Transfer Overrides” on page 108 for
more information.

SET SSL ... Sets SSL30 as the minimum SSL/TLS
protocol version that clients are allowed to
use to connect in to this server. Requires
activating TCP/IP FOR VSE’s SecureFTP
optional feature. See the TCP/IP FOR VSE
Optional Features Guide for more
information on this SET command.
Note: SET TLSxx is recommended over
SET SSL. See SET_TLSxx on page 104.

SET STAMP
[NONE|LEFT|
RIGHT]

Specifies how to place timestamps in
messages sent to SYSLST.

Value Effect
NONE Turns off timestamps.

LEFT Puts timestamps to the left of
messages.

RIGHT Puts timestamps to the right of
messages. (The default)

SET TELNTRAN
table-name

Sets the translation table name to be used for
the control connection.
This value overrides the
SET TELNET_TRANSLATE setting for the
TCP/IP partition. For details, see
SET TELNET_TRANSLATE in the TCP/IP
FOR VSE Command Reference.

SET TERSE [ON|OFF] ON causes shortened (one-line) 150 and 226
messages to be used for GET and PUT
requests. The default is OFF.

Chapter 6 Configuring FTP Daemons

104

SET Command Description

SET TLS10 ...
SET TLS11 ...
SET TLS12 ...

Sets TLS 1.0, TLS 1.1, or TLS 1.2 as the
minimum SSL/TLS protocol version that
clients are allowed to use to connect in to this
server. Requires activating TCP/IP FOR VSE’s
SecureFTP optional feature. See the TCP/IP
FOR VSE Optional Features Guide for more
information.

You can issue a MSG xx,DATA=command from the VSE system
console to display status information or shut down the FTPBATCH
server. The partition ID xx must be specified along with a specific
command. Commands are described in the following table.

DATA= Command Description
ABORT ALLDATA Terminates all active data transfers for any

session with an open data connection.

SHUTDOWN Terminates the FTPBATCH server.

STATUS Same as STATUS SERVER, or just MSG xx.

STATUS DEBUG Displays debugging information for the
FTPBATCH server

STATUS EVENTS Causes an event report to be generated for
diagnosing a problem. Use only when
requested by CSI Technical Support.

STATUS SERVER Displays global information, including the
current number of active sessions and
maximum sessions allowed. It also displays
detailed information about each active FTP
session connected into this server.

STATUS
SUMMARY

Displays the total amount of data sent and
received by this server

Note:

When FTPBATCH initializes, either as a client or an external FTP
server, it makes a copy of the TCP/IP stack’s DEFINE FILE system
within the partition GETVIS of the FTPBATCH job. When it processes
files, FTPBATCH only refers to its own file system copy and not that of
the TCP/IP stack. Therefore, if you make changes to the TCP/IP stack’s
file system (a DEFINE/DELETE FILE) and you want these changes to
be reflected in the external FTPBATCH partition, you must shut down
FTPBATCH and restart it. Upon start up, it will again check the stack
and make a fresh copy of the file definition control blocks.

Controlling the
FTPBATCH Partition
from the Console

Chapter 6 Configuring FTP Daemons

105

The external FTPBATCH daemon can also be used to send and receive
files directly into a data space. The following sample JCL defines an
FTPBATCH server with a RAW data space:

* $$ JOB JNM=FTPBDSPS,CLASS=P,DISP=K
* $$ LST CLASS=A
// JOB FTPBDSPS
// OPTION LOG,PARTDUMP
// OPTION SYSPARM='00'
// LIBDEF PHASE,SEARCH=prd2.tcpip
// EXEC FTPBATCH,SIZE=FTPBATCH,PARM='FTPDPORT=3121'
DEFINE DSPACE RAW RAWDSPAC 2000
/*
/&
* $$ EOJ

The following command creates a data space the size of 2,000 4K pages,
or 8000K.

DEFINE DSPACE RAW RAWDSPAC 2000

The RAWDSPAC argument allows a single file to be pre-read into a data
space before it is sent to a foreign FTP server. The size of any file sent or
received into this data space must be 8000K or smaller. You can define
any size data space up to the maximum amount of virtual storage
available on your VSE system. This FTPBATCH data space server
attaches an FTP daemon and listens on port 3121 for an FTP request.

The following line defines the data space to use for the RAW option:

DEFINE DSPACE RAW RAWDSPAC 256

The size of the data space is the number of 4K pages. In this example,
256 × 4096 = 1,048,576 (or 1 MB). This definition is the same as the
following:

DEFINE DSPACE RAW RAWDSPAC 1M

or

DEFINE DSPACE RAW RAWDSPAC 1024K

Using FTPBATCH to
Create an External FTP
Server with RAW Data
Space

Chapter 6 Configuring FTP Daemons

106

As an example, here is a JCL that sends an SD file into a data space and
then to a foreign FTP server:

* $$ JOB JNM=FTPBPUTR,CLASS=A,DISP=D
* $$ LST CLASS=F,DEST=(,AFTPDRS)
// JOB FTPBPUTR
// OPTION LOG
// OPTION SYSPARM='00'
// ASSGN SYS007,502
// DLBL SAMTEST,'SDCREATE.TEST.FILE',,SD
// EXTENT SYS007
// LIBDEF PHASE,SEARCH=prd2.tcpip
// EXEC FTPBATCH,SIZE=FTPBATCH
SET SHUTDOWN ON
LOPEN
LUSER userid
LPASS password
OPEN nnn.nnn.nnn.nnn 3121
USER userid
PASS password
ASCII
QUOTE TYPE I
PUT %SAMTEST,SAM,FB,80,800 %RAWDSPAC,DSPACE,RAW,TESTNAME
CLOSE
LCLOSE
*
TIMEWAIT 3 WAIT A FEW SECONDS...
* * Now open the ftpd in the other partition with
* * the data space as the local ftp connection...
LOPEN nnn.nnn.nnn.nnn 3121
LUSER userid
LPASS password
OPEN foreign
USER userid
PASS password
BINARY
PUT %RAWDSPAC,DSPACE,RAW FTPBPUTR.TXT
LGOTOEOJ
CLOSE
LCLOSE
SHUTDOWN
/*
/&
* $$ EOJ

The key lines in this example are as follows:

• SET SHUTDOWN ON. This line causes the FTPBATCH job to require a
shutdown command to terminate. This allows multiple FTP opens and
closes to be issued without causing the job to terminate. SET
commands are issued before LOPEN.

• ASCII. This line causes the data being sent to the FTPBATCH server
to be translated from EBCDIC to ASCII. For example, this option is
used when the SD file to be zipped contains EBCDIC-displayable
characters and is being sent to a PC.

Chapter 6 Configuring FTP Daemons

107

• QUOTE TYPE I. This line tells the FTPBATCH server to assume the
data is binary. In this example, it was specified to translate the file
from EBCDIC to ASCII. Without a QUOTE TYPE I statement, the
FTPBATCH server would translate the received data back to
EBCDIC. One of the nice things about the FTPBATCH server is that
all data translation occurs before the data is sent, and you can use all
the standard FTP translation tables with it.

• PUT %SAMTEST,SAM,FB,80,800 %RAWDSPAC,DSPACE,RAW,TESTNAME.
This line causes the data to be read from the input SD file. It is
received and stored into the data space of the FTPBATCH server.

Note: These files are specified using autonomous-file syntax.
Autonomous files are files that have not been defined to the TCP/IP
FOR VSE file system using DEFINE FILE. For more information on
using this syntax in FTPBATCH statements, see the TCP/IP FOR VSE
User Guide, chapter 2, “FTP,” subsection “Autonomous Files.”

• CLOSE; LCLOSE. These two lines close the connection to the
FTPBATCH server and to the current local connection, respectively.
The data is stored in the data space owned by the FTPBATCH server.

• TIMEWAIT 3. This line causes a 3-second delay and allows the FTP
daemon attached in the partition to restart and listen on its port.

• LOPEN nnn.nnn.nnn.nnn 3121; LUSER userid; LPASS password.
These three lines connect to the FTPBDSPS partition as a local FTP
server, allowing the file to be read and sent from the data space to the
final remote FTP server destination.

• OPEN foreign; USER userid; PASS password. These lines
connect to the remote FTP server. This is the first operation
attempting to establish a connection to the remote PC or UNIX
system, for example. The file on VSE has already been completely
read and translated and is now sent to the final destination.

• BINARY. This line specifies that the data be treated as binary data. The
data space contains the translated data, and without this command it
would be translated twice.

• PUT %RAWDSPAC,DSPACE,RAW FTPBPUTR.TXT. This line takes the
translated copy of the file out of the data space and uses the external
file name FTPBPUTR.TXT on the remote FTP server.

• LGOTOEOJ. This line tells the server to go to the End of Job.

• CLOSE; LCLOSE. These lines close the connections.

• SHUTDOWN. This line is needed to terminate the job because
SET SHUTDOWN ON was previously issued in the JCL.

Chapter 6 Configuring FTP Daemons

108

Controlling Defaults Using EXTTYPES.L

The member EXTTYPES.L contains definitions that are used by FTP to
control file transfers. This section describes these definitions.

EXTTYPES.L is also used by the HTTP daemon and the EMAIL client.
For information about how the HTTP daemon uses MIME content-type
definitions, see chapter 8, “Configuring the HTTP Daemon.”

For information about how these definitions are used with the EMAIL
client, see the TCP/IP FOR VSE User Guide, chapter 6, “TCP/IP for VSE
Email,” subsection “Using Email Client Commands.”

There are times when you want TCP/IP FOR VSE to perform EBCDIC-
to-ASCII translation and times when you do not. In general, the FTP
client commands ASCII and BIN control the translation function:

• ASCII requests translation

• BIN prevents translation.

If you are transferring any kind of text file, you want to perform
translation. If you are transferring something that is already in EBCDIC,
such as a TCP/IP FOR VSE service pack, you need to prevent translation.

When TCP/IP FOR VSE emulates a UNIX system, the PC system
assumes that no matter what the user says, the file must be translated in
binary mode. Because VSE is really an EBCDIC system, we need some
way of overriding this behavior on the part of the PC. This is where the
EXTTYPES.L configuration file comes in. Definitions in EXTTYPES.L
can force ASCII-to-EBCDIC translation to occur even when you are
running in UNIX Emulation Mode.

When you transfer a file, its type is checked against records in
EXTTYPES.L. Each record maps a file type to a transfer type with
default values. You control which defaults are used for a file type by
specifying one of five transfer types. It is important to understand that
the EXTTYPES.L definitions override a user’s selections, regardless
of whether the user is in UNIX Emulation Mode, so use care when
modifying this file.

You can suppress using the EXTTYPES.L overrides by

• Using the SITE EXTTYPES OFF command to disable EXTTYPES
for a single session/FTPBATCH job.

• Using the SET EXTTYPES OFF command in an individual
FTPBATCH job or in the FTPBATCH.L member. This disables
EXTTYPES processing for all FTPBATCH jobs.

• Configuring an FTP server with the EXTTYPES=OFF parameter
setting.

File Types and
Translation

Transfer Overrides

Chapter 6 Configuring FTP Daemons

109

If you disable using EXTTYPES.L, or if EXTTYPES=ON but a
matching file type is not found in the member, processing proceeds as
follows:

• If SITELAST=NO (the default), then parameter settings on the file’s
DEFINE FILE statement take precedence over SITE commands.

• If SITELAST=YES, then the following SITE commands override the
parameter setting on the file’s DEFINE FILE statement:

SITE BLKSIZE

SITE CC

SITE CRLF

SITE LRECL

SITE RECFM

SITE TRCC

When EXTTYPES processing is in effect, default values for these
parameters are used. The next section describes the values associated
with each transfer type to which a file type may be mapped.

The EXTTYPES.L member contains comments and data records.
Comment lines contain an asterisk in column one and enable you to
annotate records in the file. Data records contain three positional fields.
These fields, which are separated by at least one blank, are as follows:

1. File type. TCP/IP FOR VSE determines whether the file type exactly
matches any portion of the public name on VSE. If it does, the
transfer type in the second positional field determines how the
transfer is performed. For more information on public names, see
chapter 1, “Fundamentals of TCP/IP.”

Refer to the EXTTYPES.L member in use on your system to
determine which transfer type is specified for each file type.

2. Transfer type. The values are BIN, BIN80, STRING, TEXT, and
TEXTC, as follows:

• BIN. Indicates that the file contains binary data and is to be
transferred without translation.

BIN Transfer Settings

TYPE=Binary, STRUCTURE=File, MODE=Stream

LRECL/BLKSIZE=4096

RECFM=S (string)

EXTTYPES.L Definitions

Chapter 6 Configuring FTP Daemons

110

• BIN80. Indicates that the file is to be transferred without
translation and that the data is to be divided into 80-byte chunks.
This is useful for putting binary data into VSE/POWER queues.

BIN80 Transfer Settings

TYPE=Binary, STRUCTURE=File, MODE=Stream

LRECL/BLKSIZE=4096 bytes (may be transformed to 80 bytes
by the POWER file I/O driver)

RECFM=FB

• STRING. Indicates that the TCP/IP FOR VSE FTP daemon is to

store the data in a VSE library using RECFM=SV. This transfer
type is used only when you are transferring data into a VSE
library.

STRING Transfer Settings

TYPE=Non-binary, STRUCTURE=File, MODE=Stream

LRECL/BLKSIZE=4096 bytes (may be transformed to 80 bytes
by the POWER file I/O driver)

RECFM=SV (string variable)

• TEXT. Indicates that the file is to be transferred using ASCII-to-

EBCDIC translation (or the reverse, as needed). Inbound data is
text, stored in EBCDIC.

TEXT Transfer Settings

TYPE: Non-binary, STRUCTURE: File, MODE: Stream

LRECL/BLKSIZE:
• Non-POWER files: 80 bytes
• POWER files: 80 bytes (the POWER I/O driver may override

this value for print-queue entries)

RECFM:
• Non-POWER files: FB
• POWER files: V

• TEXTC. Can be used to store records longer than 80 bytes. On

upload, it splits the record at column 79 and puts an ‘&’ in column
80 to indicate a split. When the file is downloaded or displayed in
the HTTPD daemon, the records are joined together.

Chapter 6 Configuring FTP Daemons

111

The TEXTC defaults are as follows:

TEXTC Transfer Settings

TYPE: Non-binary, STRUCTURE: File, MODE: Stream

LRECL/BLKSIZE: 80 bytes

RECFM:
• LIBR files: FB

• HFS files: V

• All others: VB

3. MIME content-type header. The TCP/IP FOR VSE FTP daemon

ignores this string, which is used by the HTTP daemon. MIME
stands for Multipurpose Internet Mail Extensions. This header
identifies file formats on the Internet. See chapter 8, “Configuring
the HTTP Daemon,” for more information.

There is one keyword parameter that you can specify on any record in
the EXTTYPES.L file. If you specify the keyword FTP=NO, the record
determines whether EBCDIC-to-ASCII translation should be performed
only when the file is requested by an HTTP daemon. When the file is
requested by an FTP daemon, the record does not determine whether a
translation is to be performed.

The EXTTYPES.L member is located in the TCP/IP FOR VSE install
library and is loaded each time you start an FTP daemon. If you change
EXTTYPES.L, you must delete and redefine all of your FTP daemons.
You do not need to bring down TCP/IP FOR VSE to do this.

To change EXTTYPES.L, first make a copy and keep this copy in a
configuration library. Then, change the copy in the new sublib only, and
keep the original as it was distributed in the install library. This protects
the modified copy from being overwritten when a new release is
installed. To use the modified copy, add the sublib that contains this copy
to your library search chain that is read when TCP/IP FOR VSE starts up.

Modifying EXTTYPES.L

Chapter 6 Configuring FTP Daemons

112

The following records are in the EXTTYPES.L member that is supplied
with TCP/IP FOR VSE.

File
Type

Transfer
Type

MIME Content
Type

AIF BIN audio/x-aiff
AIFC BIN audio/x-aiff
AIFF BIN audio/x-aiff
ASC TEXT text/plain
AU BIN audio/basic
AVI BIN video/x-msvideo
BIN BIN application/octet-stream
BINJOB BIN80 (FTP only)
BJB BIN80 (FTP only)
BMP BIN image/bmp
CAB BIN application/octet-stream
CLA BIN application/java
CLASS BIN application/java
CSS TEXTC text/css
CSV TEXT application/csv
DOC BIN application/msword
DUMP BIN (FTP only)
EXE BIN application/octet-stream
FLR TEXT x-world/x-vrml
GIF BIN image/gif
HTM TEXTC text/html
HTML TEXTC text/html
HTMLB BIN text/html
HTMLS STRING text/html
ICA TEXT application/x-ica
ICO BIN image/x-icon
JAR BIN application/octet-stream
JAVA BIN text/plain
JPE BIN image/jpeg
JPEG BIN image/jpeg
JPG BIN image/jpeg
JS TEXTC application/x-javascript
LOG TEXT text/plain
MID BIN audio/midi
MIDI BIN audio/midi
MOV BIN video/quicktime
MPE BIN video/mpeg
MPEG BIN video/mpeg
MPG BIN video/mpeg
MPGA BIN video/mpeg
MP2 BIN video/mpeg
MP3 BIN video/mpeg
OBJ BIN80 (FTP only)
PDF BIN application/pdf

(continued next page)

Default Member

Chapter 6 Configuring FTP Daemons

113

PHASE BIN (FTP only)
PNG BIN image/png
PRO TEXT application/octet-stream
PY TEXT application/x-pythonwin_py
QT BIN video/quicktime
RA BIN audio/x-realaudio
RAM BIN audio/x-pn-realaudio
RM BIN audio/x-pn-realaudio
RSS BIN application/xml
RTF BIN text/rtf
RTX BIN text/richtext
SHTML TEXTC text/html
SND BIN audio/basic
SWF BIN application/x-shockwave-flash
TAR BIN application/x-tar
TEXT TEXT text/plain
TIF BIN image/tiff
TIFF BIN image/tiff
TTF BIN application/octet-stream
TXT TEXT text/plain
VCF BIN application/octet-stream
WAV BIN audio/x-wav
WRL TEXT x-world/x-vrml
WRZ TEXT x-world/x-vrml
XLS BIN application/excel
XLT BIN application/excel
XML TEXTC application/xml
XSL TEXTC application/xml
ZIP BIN application/zip

Here are a few examples of how data is translated in an FTP transfer:

• You are transferring a PC file to a VSAM dataset. The VSAM dataset
has a public name defined to the TCP/IP FOR VSE file system as
VSAM.DON.TEXT. TCP/IP FOR VSE automatically performs an
ASCII-to-EBCDIC translation on this file because “TEXT” is the
third component of the public name.

• You are attempting to install a TCP/IP FOR VSE service pack. The
name of the PC file is TCPIP15E.BJB, and the public name of the file
into which you are trying to transfer the file is
POWER.RDR.ATCPIP15E.BJB. TCP/IP FOR VSE automatically
performs a BIN80 file transfer because that transfer type is specified
in the BJB file-type entry in the EXTTYPES.L member.

• You are transferring the text file JOHN.SND into a VSE library with a
public name of PRD2.SND. Even though the file you are attempting
to transfer is a text member, TCP/IP FOR VSE performs a binary file
transfer because the second component of the public name, SND,
matches a file type in the table that is mapped to the BIN transfer type.

Transfer Examples

114

7
7. Configuring the Line Printer

Daemon

Overview

The Line Printer Daemon (LPD) is a standard protocol that allows z/VSE
users with TCP/IP to accept print data from TCP/IP hosts using the Line
Printer Requester and Line Printer Daemon (LPR/LPD) protocols. After
the data arrives on VSE, it can be printed, stored in a VSE library, or
saved in a VSAM file.

Chapter 7 Configuring the Line Printer Daemon

115

Defining the LP Daemon

Use the DEFINE LPD command to initiate a line printer daemon
(server). This command has the following syntax:

DEFine LPD,PRinter=pname,Queue=pubname [,LIBrary=libname]
[,SUBlibrary=sublibname] [,TRANslate=name1]
[,HEXdump=YES|NO] [,USERid=id,PASSword=password]

LPDs enable remote hosts to send files to VSE/POWER or to VSE-based
datasets. The remote host must be capable of transmitting the files using
the LPR/LPD protocol (this is not FTP). You must define each virtual
printer that is supported.

The LPD parameters are described in the following table:

Parameter Description

PRinter=
pname

Specifies a 1- to 16-character printer name (case
sensitive). This name must be unique and be known to
external clients.

Queue =
pubname

Specifies the location to receive the output routed to this
daemon. This location must be a valid public name from
the TCP/IP FOR VSE file system. The sections that
follow provide additional information.

See the section “TCP/IP FOR VSE File System” on page
24 for information on defining public names.

LIBrary=
libname

Specifies a library to be used for temporary file storage.
If you do not specify a library name, incoming data is
stored temporarily in memory. This means that the
largest file that can be handled is limited to available
memory.

SUBlibrary=
sublibname

Specifies a sublibrary for temporary storage of a file.
This parameter is meaningful only if you have specified
a value for LIB=. If omitted, TCP/IP FOR VSE uses the
default sublibrary TEMP.

TRANslate=
name1

Specifies the name of the table to be used for ASCII-to-
EBCDIC translation.

HEXdump=
[YES | NO]

Enables an optional debugging dump. If set to YES,
inbound files are converted to hexadecimal dump
format. The contents of the control file are included.
This can be useful for debugging LPR/LPD errors. If set
to NO (the default), files are stored normally.

Chapter 7 Configuring the Line Printer Daemon

116

Parameter Description

USERid=id,
PASSword=
password

The user ID and password are 1- to 16-byte values
(default is $LPD). These strings are passed to the user-
defined security exit, and these fields can be omitted
from the DEFINE LPD if your exit does not need them.
Use them to meet in-house LPD security requirements.

The following display shows a sample command:

F8-043 IPN300I Enter TCP/IP Command
F8-043
F8-043 def lpd,printer=local,queue='power.lst.a',lib=prd2,sublib=save
F8-043 IPN444I Print Name: LOCAL
F8-043 IPN445I Queue: POWER.LST.A
F8-043 IPN446I Library: PRD2.SAVE
F8-043 IPN300I Enter TCP/IP Command

Notes:

• A single LPD can handle any number of simultaneous requests. By
default, the listings are buffered in memory until they are complete.
When complete, the listing is sent to its final destination. We
recommend that you specify a library and sublibrary for temporary
storage.

• The sublibrary used for temporary storage of incomplete files should
not be used for other purposes and should specify
REUSE=IMMEDIATE.

• See the TCP/IP FOR VSE Command Reference for information on the
following related commands.

Command Task Performed

DEFINE FILE Defines a file and associates it with a file I/O
driver

DEFINE USER Creates a user ID and password

DELETE LPD Terminates a Line Printer Daemon

QUERY FILES Displays the TCP/IP FOR VSE file system
contents

QUERY LPDS Displays the status of LPDs

Chapter 7 Configuring the Line Printer Daemon

117

Writing to a POWER queue is possible only if the special dataset name
POWER is assigned a public name using a DEFINE FILE command.
The remainder of this discussion assumes that you have followed the
recommended procedure of assigning the public name POWER to the
special dataset name POWER.

In the DEFINE LPD command, you must provide a QUEUE
specification that consists of public name POWER qualified with the
POWER queue and class. For example, you might specify
QUEUE='POWER.LST.A'.

When a client LPR establishes a link to the daemon, it may pass a
jobname. This is defined in the LPR protocol. If jobname meets the
syntactic requirements of a POWER job name, it is used in that manner.
Otherwise, a job name is constructed as LPDFAnnn, where nnn is the
three-digit job number transmitted by the LPR client (transmission of a
job number is required by the protocol).

QUEUE= must specify a fully qualified public name from the TCP/IP
FOR VSE file system (no directory structure is available for a KSDS).
Any records sent by the LPR client are passed to VSAM as an INSERT.
Except for special purposes, this type of operation has little use.

QUEUE= must specify a fully qualified public name from the TCP/IP
FOR VSE file system (no directory structure is available for an ESDS).
Records sent by the LPR client are appended to the end of the dataset.

QUEUE= must specify the public name assigned to a VSE library,
qualified with a sublibrary name. For example, if the public name is
PRD2 and the desired sublibrary is LST, then code QUEUE=PRD2.LST.
When a client LPR establishes a link to the daemon, it may pass a job
name. The job name is truncated to eight characters.

The member type is derived from the transmitted origin name (defined in
the protocol). If no name is available, or if it is unsuitable for use as a
member type, the word LISTING is used.

If a duplicate member exists, it is overwritten.

How LPR is used varies greatly by platform. Most LPR implementations
send a control file along with the data. The control file contains
information such as what to call the data file once it arrives, how to
format it, and so on. In addition, many LPR implementations can send
status-oriented commands to the LPD. TCP/IP FOR VSE supports the
following control file and status commands.

Command Description

SHORT Lists the jobs that are currently on the LPD
queue. The list includes job name and job
number.

Writing to VSE/POWER

Writing to a VSAM KSDS

Writing to a VSAM ESDS

Writing to a VSE Library

Supported LPR
Subcommands

Chapter 7 Configuring the Line Printer Daemon

118

Command Description

LONG Lists the jobs that are currently on the LPD
queue in a slightly longer format. The list
includes job name, job number, host name,
origin name, and other data. The list format
is the responsibility of the LPR client.

START Processes and ignores the START
PRINTER directive.

REMOVE TCP/IP FOR VSE does not support the
REMOVE LISTING directive.

CONTROL(ORIGIN) Records the origin of the print job.

CONTROL(JOBNAME) Records the name of the print job. The
jobname is an eight-character identifier that
is appended to the queue name. For
example, if the queue name is
POWER.LST.Z, the job name might be
POWER.LST.Z.MYJOB. TCP/IP FOR VSE
then appends the origin (if one was
specified) or the word LISTING. If the
queue name is POWER, this final part of the
job name is truncated. Note that the LPR
might specify an origin using a method that
you might not recognize. For example, the
LPR that is supplied with TCP/IP for VM
specifies your user ID as the origin.

CONTROL(HOST) Records the host for the print job. This
information is listed if the LPR client issues
the LONG command.

CONTROL(CLASS) Records the class of the print job. This
information is not used.

CONTROL(SOURCE) Records the source user ID of the print job.
This information is not used.

CONTROL(FORMAT) Formats the print listing. Formatting
includes ASCII-to-EBCDIC translation. In
addition, if the public file name has a
RECFM or LRECL associated with it, that
information is used to format the print file.
TCP/IP FOR VSE processes the CR, LF, and
HT ASCII characters, inserting the
appropriate EBCDIC characters into the
print stream.

119

8
8. Configuring the HTTP Daemon

Overview

TCP/IP FOR VSE’s HTTP daemon allows your VSE installation to
support its own website that can be accessed by popular web browsers
such as Microsoft’s Internet Explorer®.

A single HTTP daemon can serve many users. There is no requirement to
define multiple HTTP daemons.

In general, TCP/IP FOR VSE’s web server provides the typical features
that you would expect from any web server. These features include, but
are not limited to, the following functions:

• Displaying static web pages. A static web page is coded using a
standard web page markup language such as HTML and XML. By
using facilities such as SSI (Server Side Includes) and special
internally defined variables within the web page, the static file that is
served to the client can appear to be dynamic. In reality, however, it
does not contain variable data. As with any web page, you may have
interactive forms embedded in the static text to generate dynamic
pages.

• Displaying dynamic web pages that are based on data residing in VSE.
The TCP/IP FOR VSE web server contains support for the Common
Gateway Interface (CGI) protocol, using Assembler or REXX as the
foundation for creating dynamic pages. This means that you can have
programs run as a subtask of the TCP/IP FOR VSE HTTP daemon.
These programs can create HTML dynamically and pass it back to the
browser. Using these techniques, you can create HTML output based
on live data that resides directly on your VSE system.

Web Server Functions

Chapter 8 Configuring the HTTP Daemon

120

• Running non-mainframe programs stored on VSE such as Java
applets, .NET, and JavaScript files. Keep in mind that such items,
although stored on VSE, are not VSE programs and are using VSE as
a repository to deliver these files to the client. In addition, a web page
stored on VSE can refer to applets and graphics that are residing on
non-VSE platforms. To HTTPD, these are simply files that are
delivered, but to the end-user they may be simple animated graphic
displays or complicated, full-blown socket applications.

A single web page can contain one or more of each of these categories.

While you can certainly use VSE to display static documents, the real
power of the TCP/IP FOR VSE web server is in its programming
interfaces. See the TCP/IP FOR VSE Programmer’s Guide for
information about how to create CGI programs that run with the TCP/IP
FOR VSE HTTP daemon.

Chapter 8 Configuring the HTTP Daemon

121

Defining the HTTP Daemon

To define and initialize an HTTP daemon, issue the following command:

DEFine HTTpd,ID=name,ROOT='pubname'

There are many more parameters, but these are the minimum required for
defining the HTTP daemon. See the TCP/IP FOR VSE Command
Reference for a complete listing and description of each parameter.

Note:

If you use the HTTP daemon with security on, you are required to have a
special user ID defined to your TCP/IP FOR VSE system, as follows:

DEFINE USER,ID=$WEB,PASS=$WEB,WEB=YES

See the section “Security” on page 132 for more information on this
topic.

See the TCP/IP FOR VSE Command Reference for information about the
following commands:

• DELETE HTTPD

• QUERY HTTPDS

DEFINE HTTPD
Command

Related Commands

Chapter 8 Configuring the HTTP Daemon

122

HTML Files

Web pages consist of HTML code and other objects such as sounds and
pictures. When a web client receives a particular web page, it determines
what other objects it wants to request and does so, sometimes in parallel
with other HTTP requests. It is the job of the HTTP daemon to locate
and access the various HTML, graphics, and other files that are being
requested as they arrive to VSE.

Before you define an HTTP daemon, you must specify a default library
to contain the HTML files and other web objects. You must specify the
public name for this library in the ROOT= parameter on the DEFINE
HTTPD command. The library you select must be defined to the TCP/IP
FOR VSE file system.

The HTTP daemon is responsible for sending files that are requested by
web browsers. The requests can come directly from the Uniform Record
Locator (URL), or they can come from HTML tags in other HTML
documents. In either case, the HTTP daemon needs to make sense of the
request and return the requested object, such as a JAVA applet, a sound
clip, or a file.

From a VSE perspective, web browsers assume that the entities serving
the requested documents use hierarchical file systems. Because this may
not be the case, TCP/IP FOR VSE must emulate this type of system to the
browser. An administrator setting up a VSE-based website must
understand this process in order to name the files appropriately.

When TCP/IP FOR VSE receives a request for a file from a web browser,
it must determine the exact name of the file. To do this, the HTTP
daemon uses the following algorithm:

1. It starts with the string the user typed into the URL following the IP
address of the VSE machine. It appends this name to the root name.
It then appends the string “.INDEX.HTML” to the result.

2. The resulting name is processed left to right until a fully qualified
name is located. The fully qualified name is assumed to be a library.
The next-to-last qualifier is used as the member name, and the last
qualifier is used as the member type.

3. Unused qualifiers are considered to be extraneous and are discarded.
This means that the appended .INDEX.HTML is ignored if the file
name built from the first two steps is a fully qualified file name. If
the name built by the first two steps references a public name only,
the appended .INDEX.HTML is used to find the complete file name.

4. If the requested file does not exist, the HTTP daemon retries the
search without using the root value. It assumes that the requested file
is a fully qualified public name. You can prevent this second search
by coding CONFINE=YES in the DEFINE HTTPD command.

File Location

File Location Algorithm

Chapter 8 Configuring the HTTP Daemon

123

Here are some examples. To begin, assume that your HTTP daemon is
defined with the following command:

DEFINE HTTPD,ID=HTTP1,ROOT='PRD2.HTML',CONFINE=YES

In addition, assume that the IP address of your VSE machine is
192.168.0.9 and your web browser is pointed at HTTP://192.168.0.9/.

Using the information above, TCP/IP FOR VSE begins to build a fully
qualified file name. It begins with the root you specified, which is
PRD2.HTML. It appends everything to the right of the final ‘/’. In this
case, there is nothing after the slash, so the name is still PRD2.HTML.
TCP/IP FOR VSE then appends .INDEX.HTML and returns the HTML
code stored in sublibrary PRD2.HTML, member INDEX.HTML,
because the fully qualified file name is PRD2.HTML.INDEX.HTML.

For the second example, assume that your web browser is pointed at
HTTP://192.168.0.9/MYPAGE.HTML.

TCP/IP FOR VSE starts at the root you specified, which is PRD2.HTML.
It appends everything to the right of the final ‘/’, which is
MYPAGE.HTML, thus forming the file name
PRD2.HTML.MYPAGE.HTML. TCP/IP FOR VSE then appends
.INDEX.HTML to the right of this string, forming the name
PRD2.HTML.MYPAGE.HTML.INDEX.HTML. But, because the first
four qualifiers represent a fully qualified public name, the remaining two
qualifiers are discarded. Therefore, the HTML document that is returned
resides in PRD2.HTML.MYPAGE.HTML.

For the third example, assume that your web browser is pointed at
HTTP://192.168.0.9/PRD1.MACLIB.WTO.A.

TCP/IP FOR VSE starts at the root you specified, which is PRD2.HTML.
It appends everything to the right of the final ‘/’, yielding a file name of
PRD2.HTML.PRD1.MACLIB.WTO.A. TCP/IP FOR VSE appends
.INDEX.HTML to the right of this string and attempts to open the file. In
fact, TCP/IP FOR VSE attempts to load a member name of
PRD1.MACLIB in library PRD2.HTML. In all likelihood, this fails.

If you specified CONFINE=YES, the search stops here, and the web
browser receives error 404 FILE NOT FOUND. If you specified
CONFINE=NO, the search begins again.

This time, instead of starting at the root, TCP/IP FOR VSE begins with a
null string, appends everything to the right of the final ‘/’, and derives a
file name of PRD1.MACLIB.WTO.A. As in Example 2, .INDEX.HTML
is appended. Because the first four qualifiers form a valid fully qualified
public name, the .INDEX.HTML is discarded. The web browser receives
a copy of WTO.A, which is in VSE sublibrary PRD1.MACLIB.

File Location Examples

Example 1

Example 2

Example 3

Chapter 8 Configuring the HTTP Daemon

124

Although this scheme may seem a bit convoluted, it is enormously
flexible. The ROOT parameter is not required to point to a VSE
sublibrary. For example, say that you want to create multiple web
applications named Webappl1 and Webappl2. You want both
applications to be accessible to your web browser clients, but you do not
want to have a main menu with links. You can (1) define a VSE library
named HTML with sublibraries Webappl1 and Webappl2, (2) define this
library to the TCP/IP FOR VSE file system, and (3) use the command in
Example 4 below to define the HTTP daemon.

The fourth example uses the following HTTP daemon definition:

DEFINE HTTPD,ID=WEBAPPL,ROOT='HTML',CONFINE=YES

In this example, assume that your web browser is pointed at
HTTP://192.168.0.9/Webappl1 and that the DEFINE command used in
our third example is in effect.

TCP/IP FOR VSE starts with the root HTML and appends everything to
the right of the ‘/’, forming the public name HTML.WEBAPPL1.
TCP/IP FOR VSE appends .INDEX.HTML and attempts to open
HTML.WEBAPPL1.INDEX.HTML, which is probably the name you
want.

The fifth example points out the type of problem that can occur when
you specify file names the way we did in Example 4. For this example,
assume that your web browser is pointed at HTTP://192.168.0.9/ .

TCP/IP FOR VSE starts with the root HTML and appends everything to
the right of the ‘/’, which is nothing. TCP/IP FOR VSE appends
.INDEX.HTML, forming a public name of HTML.INDEX.HTML. This
name does not mean anything to the TCP/IP FOR VSE file system.
Because you specified CONFINE=YES, the search ends with error 404
FILE NOT FOUND.

As you can see, the standard file location algorithm works well when
your HTML document names fit into the standard eight-character by
eight-character member name format that is supported by VSE
sublibraries. Sometimes you cannot choose the names assigned to
different portions of your web applications. For example, you may port a
web application from another platform that has names longer than eight
characters.

Most web applications have objects (usually non-textual objects) that fall
into this category. Because you cannot fit those names into the VSE
Librarian structure, your options are to modify the names of the files in
the application or use a VSAM-based pseudo-directory structure for your
application.

Example 4

Example 5

Non-Standard File
Names

Chapter 8 Configuring the HTTP Daemon

125

To use a VSAM-based structure, follow these steps:

1. Define a VSE user catalog to hold the components such as HTML,
video, and sound for the application. You can use an existing user
catalog for this purpose.

2. Add the DLBL for your VSAM catalog to standard labels, to the
partition label area, or to the TCP/IP FOR VSE startup JCL. The
DLBL must be formatted so that the CAT= indicator points back to
itself. For example, if you use a DLBL for IJSYSUC, then you must
also have the parameter CAT=IJSYSUC.

3. Define your user catalog to the VSE file system as
TYPE=VSAMCAT. For example, the following command defines
the user catalog to the TCP/IP FOR VSE file system:

DEFINE FILE,PUBLIC='VSAMCAT',DLBL=IJSYSUC,TYPE=VSAMCAT

4. Define your HTTP daemon using your VSAMCAT definition as the

root. The following definition accomplishes this:

DEFINE HTTPD,ID=HTTP1,ROOT='VSAMCAT',CONFINE=NO

5. Define all the components of your application such as HTML files,

JPG files, and WAVV files as individual VSAM files. For example,
if you want your application initiated with member INDEX.HTML,
you need to define a VSAM cluster with a name of INDEX.HTML
and catalog it to the VSAM catalog that is referenced by the
DEFINE FILE statement above.

Here is an example:

// JOB CATALOG INDEX.HTML
// DLBL OUTFILE,'INDEX.HTML',,VSAM,CAT=IJSYSUC
// EXEC IDCAMS
 DELETE -
 INDEX.HTML -
 PURGE
 DEFINE CLUSTER (NAME -
 (INDEX.HTML) -
 NONINDEXED RECFM(F) -
 RECORDSIZE(80 80) -
 RECORDS(100 100) -
 REUSE -
 VOLUMES(SYSWK1)) -
 DATA (NAME -
 (INDEX.HTML.D) REUSE) -
 CATALOG -
 (VSESP.USER.CATALOG)
 REPRO INFILE(SYSIPT,ENV(RECFM(F))) -
 OUTFILE(OUTFILE) REPLACE
/*
/&

Chapter 8 Configuring the HTTP Daemon

126

With text it is straightforward to populate these VSAM files. With
binary data, such as in JPG files and sound files, it is more difficult.
You need to execute the DEFINE CLUSTER without the REPRO
statements. Then you need to use FTP to PUT the data in binary
form into the cluster area.

6. There may be some component names that are longer than eight
characters. If this is the case, you must break the name into eight-
character chunks before you do the definition. Here are examples:

• TN3270PAINT.CLASS is defined as TN3270PA.INT.CLASS.
Note that TCP/IP FOR VSE always respects a dot in the file name
and only breaks longer component names into eight-character
units.

• MYREALLYLONGSOUNDFILE.WAVV is defined as
MYREALLY.LONGSOUN.DFILE.WAVV

There are two more things you need to know:

• First, VSAM limits the file length to 44 characters (periods included).

• Second, unlike the Librarian method of defining the root directory for
the HTTP daemon, the VSAMCAT method does not automatically
append INDEX.HTML to the file name. Instead, TCP/IP FOR VSE
checks whether the file name your web browser is requesting contains
a dot (.). If the name does not contain a dot, TCP/IP FOR VSE appends
INDEX.HTML to the name.

These restrictions do not apply to the HFS (Hierarchical File System).

The examples in this section assume that an HTTP daemon is defined as
follows:

DEFINE HTTPD,ID=HTTP1,ROOT='VSAMCAT',CONFINE=YES

Assume that your web browser is pointed at HTTP://192.168.0.9/.

TCP/IP FOR VSE starts at the root, which is the VSAM catalog, and
appends everything to the right of the slash. In this case, nothing is
appended because there is nothing to the right of the slash. Next, it
appends .INDEX.HTML because the requested file name (again, in this
case, nothing) did not contain a dot. TCP/IP FOR VSE attempts to locate
a VSAM cluster called INDEX.HTML in the catalog pointed to by the
public name VSAMCAT.

Assume that your web browser is pointed at
HTTP://192.168.0.9/MYPAGE.HTML.

TCP/IP FOR VSE starts at the root, which is the VSAM catalog, and
appends everything to the right of the slash. This returns a name of

Non-Standard File
Examples

Example 1

Example 2

Chapter 8 Configuring the HTTP Daemon

127

VSAMCAT.MYPAGE.HTML. Because the requested file name contains
a period, TCP/IP FOR VSE does not append .INDEX.HTML and returns
the contents of the file contained in the VSAM cluster MYPAGE.HTML
in the user catalog pointed to by VSAMCAT.

Each webpage consists of text with embedded HTML tags. There are
three distinct levels of HTML with additional extensions supported by
Netscape® and Internet Explorer. The HTTP daemon is unaware of page
content and does not care about the HTML version. It merely ships the
data to the browser at the browser’s request.

When a request is received from a browser, the document that is returned
is assigned a member type. TCP/IP FOR VSE always assumes the
member type is denoted by the characters to the right of the final slash or
dot in the file name. For example, the file INDEX.HTML is assigned a
file type of HTML, whereas the file /USR/HTML/JOHNMILL.JPG is
assigned a file type of JPG.

A web browser may fetch any type of member; however, the browser
itself relies on the member type to indicate how it should be processed.
In general, any member containing HTML-delimited text should have a
file type of HTML.

There is, of course, the issue of EBCDIC-to-ASCII translation. How
does an HTTP daemon know whether to convert a given file from
EBCDIC to ASCII and, just as important, when NOT to convert a file
from EBCDIC to ASCII? The HTTP daemon uses the same approach
that FTP uses, namely, the parameter file named EXTTYPES.L.

The member EXTTYPES.L is located in your TCP/IP FOR VSE partition
search chain. It is loaded every time you start an HTTP daemon. To
change it, you must delete and redefine all of your HTTP daemons, but
you do not have to bring down TCP/IP FOR VSE. The two types of
records in the file are comments and data records. Comments begin with
an asterisk in column one and allow you to annotate records in the file.

Data records contain three fields in positional order. The three fields are
delineated by at least one blank. The three fields in EXTTYPES.L are
file type, transfer type, and MIME-type header. These fields are as
follows:

1. File type. TCP/IP FOR VSE determines if the file type matches the
file that is requested by the web browser. If it does, it uses the data in
the second positional field to determine how to perform the transfer.

2. Transfer type. The transfer types used by the HTTP daemon are as
follows:

• BIN (BINARY). The file is to be transferred without translation.

• TEXT. The file is to be transferred with ASCII-to-EBCDIC
translation. The data is text and is stored in EBCDIC.

Member Types and
Translation

Member Types

Translation

Chapter 8 Configuring the HTTP Daemon

128

• TEXTC. This type can be used to store records longer than 80
bytes. On upload, it splits the record at column 79 and puts an ‘&’
in column 80 to indicate a split. When the file is downloaded or
displayed in the HTTPD daemon or Entrée, the records are joined
together.

3. MIME content-type header. The HTTP daemon does not use the
MIME type (transfer-type) header but passes it along to the web
browser by prefixing it to the data that is passed. In this way, the web
browser knows how to process the file. The MIME-type headers that
may be used depend on the web browser. If the MIME-type string is
missing from a file-type record in the EXTTYPES.L file, the HTTP
daemon ignores the line. (Some lines are used only by FTP.)

The following sample record maps the “PDF” file type to the “BIN”
transfer type and the “application/pdf” MIME content type.

PDF BIN application/pdf

See “Default Member” on page 112 for a complete listing of the default
file types.

Here are two examples that show how EXTTYPES.L is used by the
HTTP daemon:

• Your web browser attempts to access PRD1.MACLIB.WTO.A. The
HTTP daemon determines that the file type is ‘A’ and performs a
lookup. Because a file type of ‘A’ is not defined to your web browser,
a default MIME type of “plain text” is assumed.

• Your web browser attempts to access PRD2.HTML.VSEPICT.JPG.
The HTTP daemon determines that the file type is JPG and, using
EXTTYPES.L, sees that it needs to transfer this file to the browser in
binary with a MIME type of “image/JPEG.”

You can prepare graphics files with any software you want. Typically,
this is done on a PC. After you create an image, you must place it in the
appropriate VSE library.

The graphic image is stored in a string member the same way that phases
or other binary data are stored. The easiest way to load your graphic data
into a member is to use FTP. Be sure that your FTP client transmits the
file with TYPE set to BINARY and record format set to ‘S’.

Hint: If your PC-based FTP client has no provision for issuing SITE
commands, perform the transfer using TCP/IP FOR VSE’s CICS or batch
FTP client, or simply name the file with an extension defined in
EXTTYPES.L.

HTTP Examples

Graphics Files

Loading

Chapter 8 Configuring the HTTP Daemon

129

To display a page of data, a web browser must fetch the HTML text page
and all of the referenced graphic files. To speed up the process, some
web browsers open multiple TCP/IP connections and download all of the
graphics files simultaneously. Although this technique works well with
more primitive platforms, the complexities of VSE limit its usefulness. In
fact, once the available bandwidth is filled, opening additional
connections slows the process while consuming additional machine
resources. For this reason, you may want to set browser options that limit
the number of concurrent sessions used by the client software.

In general, you need to limit the number of sessions only if you notice
performance problems. Such noticeable problems would be partial data,
web pages with pieces missing, or frames with error messages. If you
cannot configure your web browser to get around this, then you should
define multiple HTTP daemons. Then, if one daemon is busy, the other
takes up the load. Usually, three daemons can handle this type of load in
such an environment. You should, of course, test an appropriate number
for your site if you encounter these types of problems.

The Common Gateway Interface (CGI) is a provision of the HTTP
standard that allows you to display dynamically generated information.
Starting with a static web page, HTML tags inform the browser to
request execution of a CGI script. (In our case, this is an Assembler or a
REXX program.) If user-entered data is provided through the use of
HTML form tags, it is also uploaded as a parameter string.

When the request reaches the HTTP daemon, the requested CGI script or
phase is fetched and the uploaded parameter string is passed to it for
processing. The CGI script is expected to return either a dynamically
constructed HTML page or the name of a static page to be fetched by the
browser.

See the TCP/IP FOR VSE Programmer’s Guide for information on how to
create CGI scripts.

Displaying Data

CGI

Chapter 8 Configuring the HTTP Daemon

130

Server Side Includes

The TCP/IP FOR VSE HTTP daemon includes a function known as a
Server Side Include (SSI). An SSI enables you to include HTML lines
from another file in the current transaction. For example, you might have
HTML lines that define your corporate logo. You would not want to
include these lines in every document. Instead, you can include them
from a common file.

The syntax of the Server Side Include directive is

<!-INCLUDE filename >
<!-INCLUDE FILE="filename" >
<!-EXEC CGI="cginame?parms">

The variables are as follows:

Variable Description

filename Specifies the fully qualified public name of any file
defined to the TCP/IP FOR VSE file system

cginame Specifies any CGI defined to TCP/IP FOR VSE using the
DEFINE CGI command

parms Specifies parameters to the CGI

When the TCP/IP FOR VSE HTTP daemon sees an include filename
directive using either syntax, it immediately opens the referenced file and
begins reading additional HTML lines from that location. When the
HTTP daemon finishes reading the referenced file, it continues reading
the original file. There is no practical limit to the number of included
files.

When the HTTP daemon sees an EXEC CGI directive, it immediately
calls the referenced CGI and waits for the CGI to finish returning HTML
lines. When the CGI finishes returning HTML lines, the HTTP daemon
continues reading from the original file.

There are special variables that are generated by HTTPD for passing
back to a CGI to use. Each variable contains a piece of the directory
location. For example, if the CGI is invoked from a root of
"PRD2.HTML", then &1 will contain "PRD2" and &2 will contain
"HTML" that is passed to the CGI.

Name Meaning

&1, &2, &3,
&4, &5, &6

First through sixth piece of the file name being
returned to the client

Introduction

Syntax

How it Works

CGI Variables

Chapter 8 Configuring the HTTP Daemon

131

There are special names you can embed in your HTML that are passed
back to the client. The HTTP daemon changes the names into an
associated value, as follows:

Name Meaning

&IP IP address of the HTTP daemon

&FOIP IP address of the web browser (client)

&LOPORT Port of the HTTP daemon

&FOPORT Port of the web browser (client)

There are two special commands that you can pass as part of your URL
request. For HTTP, a question mark (‘?’) terminates the access string and
allows you to append one or more “GET” parameters. You can use the
commands in the table below individually or together as parameters. Use
an ampersand (‘&’) to join a second parameter.

Command Description Equivalent FTP Command

CSI_PDF=ON|OFF The file is
converted to PDF
before delivery.

SITE PDF

CSI_CC=ON|OFF Carriage control
is enabled

SITE CC

For example, to access a POWER print file called “TCPIP,” convert it to
a PDF, and use the carriage control of that file, you might issue

HTTP://192.168.1.9/POWER/LST/A/TCPIP?CSI_PDF=ON&CSI_CC=ON

The CSI_PDF=ON command causes a PDF file instead of a plain text
file to be delivered to the user. The CSI_CC=ON command enables
carriage control for this print file.

These commands can also be embedded as hidden command fields so
that the user just needs to click on a link to initiate the conversion.

The "OFF" value for each command can be used as a convenience. For
example, you can make a field on a page called "&CSI_PDF" and have
two radio buttons associated with it called "On" and "Off". When the
user selects either option and presses a SUBMIT button, it generates a
"&CSI_PDF=value" that is passed to the HTTPD.

HTTPD Variables

URL Commands

Chapter 8 Configuring the HTTP Daemon

132

Security

Traditionally, web sites are open and unsecured. Because web-browsing
software does not pass user ID or password information, security is
difficult to enforce.

Using the CONFINE=YES parameter on the DEFINE HTTPD command
limits access to the file specified by the ROOT parameter of the same
command. If ROOT specifies a partially qualified name, then access is
limited to files lower in the directory tree.

If you have provided a security exit, it is called before each fetch
operation. The IP address of the requester is passed, as well as the name
of the file that is requested. For a higher level of security, you can code
SECURE=YES on the DEFINE HTTPD command. You must also copy
three provided HTML documents (PASSWORD.HTML,
VIOLATED.HTML, and BLANKING.HTML) to the daemon’s root
directory or to the directory specified by the LIB= and SUBLIB=
parameters on the DEFINE HTTPD command. After you do this, the
HTTP daemon performs the following tasks:

• When a new network IP address requests an HTML document, the
PASSWORD.HTML document is shipped instead. This document is a
form that requests the user ID and password.

• The user ID and password are processed with the level of security
currently in effect for TCP/IP FOR VSE.

• If the security check fails, the VIOLATED.HTML document is
shipped. The next request displays the PASSWORD.HTML document
again.

• If the security check passes, the requested document is shipped and
the user’s IP address is entered into a table of valid network addresses.

• Additional requests for documents are honored as long as the network
address remains in the authorized table.

• If no request is received within the time limit that is defined on the
TIMEOUT= parameter of the DEFINE HTTPD command, the
expiring address is removed from the table. The next request requires
the user to reenter the user ID and password.

• A user can manually expire a network address by linking to the non-
existent document LOGOUT or by using the URL HTTP://
ip-addr/logout, where ip-addr is the address of TCP/IP FOR VSE.

The contents of the three HTML documents can be customized as
desired. The only restriction is that the form data appearing in
PASSWORD.HTML must remain unchanged.

133

9
9. Security

Overview

TCP/IP FOR VSE has opened VSE communication paths to virtually
every other computer platform in existence. With this new openness, you
might find that you also have new security concerns.

Although TCP/IP FOR VSE is not a security product, it does provide
numerous functions that secure system resources. In this chapter, we
describe the functions we provide and discuss their pros and cons. This
information enables you to make informed decisions about security and
about which functions you can safely provide to the end user. In general,
any security implementation must consider the following issues:

• Defining user IDs and passwords.

• Definitions of the resources you want to protect. These resources can
be a functional entity such as an application or a physical entity such
as a file.

• Authorizations defining which users can perform which functions and
which users can access which resources.

Important! By default, security is off, and any user ID or password is
accepted. If you do not know whether security is active, issue the
following command immediately:

QUERY SECURITY

If the response indicates that security is OFF, immediately issue the
following command:

SECURITY ON MODE=WARN AUTO=ON

Chapter 9 Security

134

This command activates security in WARN mode, and a message log is
created that can help identify the user IDs being used and resources
accessed. It still allows all logins and accesses because MODE=WARN
is specified.

Remember that issuing the SECURITY OFF command leaves your
system completely exposed to hackers and unauthorized users.

Details of securing your TCP/IP FOR VSE system are covered in the
following sections.

Chapter 9 Security

135

SECURITY Command

The TCP/IP FOR VSE SECURITY command is used to control and
manage TCP/IP FOR VSE security. This command contains one or more
options, separated by blanks or commas, that define or modify current
security settings. The global command options are described in the
following table.

Option Description

ON/OFF Activates or deactivates global security processing
in the TCP/IP partition

BATCH=ON/OFF Activates or deactivates security processing in
external batch partitions (for example,
FTPBATCH)

ARP=ON/OFF Controls ARP request checking

IP=ON/OFF Controls IP address checking

MODE=
WARN/FAIL

Controls whether security failures are allowed with
a “warning” or refused with a “failure”

LOGGING=
ALL/FAIL/NONE

Controls logging of security requests. The user-
supplied Security Exit may set a flag to force
logging of specific requests.

DUMP=
ALL/FAIL/NONE

Controls dumping of the entire SXBLOK following
a failed security request. NONE suppresses
dumping; FAIL causes dumping when a security
failure occurs; and ALL causes dumping of failures
in both FAIL and WARN modes. The SXBLOK
security exit block is described in a later section.

LOCK All security settings are locked to their current
values

The command options for controlling a User-Created Security Manager
are as follows.

Option Description

EXIT=ON/OFF Controls loading and activating the User Security
manager

PHASE= Specifies the name of the User Security Manager
phase

XDATA= Specifies a 40-byte character string to be passed to
the User Security manager with each call

Chapter 9 Security

136

Option Description

ASMDATE= Assembly date of the user security manager (1 to 8
characters)

ASMTIME= Assembly time of the user security manager (1 to 8
characters)

VERSION= Version of the user security manager (1 to 8
characters)

LEVEL= Modification level of the user security manager (1
to 8 characters)

The command options for controlling the CSI-provided Automatic
Security Manager are described in the following table.

Option Description

AUTO=ON/OFF Controls loading and activating the automatic
security manager

ADATA= Specifies a 40-byte character string to be passed to
the automatic security manager with each call.

Chapter 9 Security

137

Defining User IDs

After a SECURITY ON has been issued, the first and easiest security
that must be implemented is to activate user identification with
passwords. A user ID and a password are required before the system
allows access to secured TCP/IP FOR VSE applications such as FTP,
Telnet, and HTTPD.

TCP/IP FOR VSE enables you to explicitly or implicitly define user IDs
and passwords. You can explicitly create user IDS using the TCP/IP FOR
VSE DEFINE USER command, or you can create a ‘user security
manager’ to implicitly define users to TCP/IP FOR VSE. The security
manager gets control and can permit or deny access based on user IDs
and passwords, regardless of whether the user IDs and passwords are
defined with DEFINE USER command. See the section “User-Created
Security Manager” for more information on defining user IDs implicitly.

The explicit mechanism used to define user IDs is TCP/IP FOR VSE’s
DEFINE USER command. The syntax of this command is as follows.

DEFINE USER,ID=id[,PASSWORD=passwd][,DATA='data']
[,FTP=YES/NO] Controls FTP access by this user
[,LPR=YES/NO] Controls LPR access by this user
[,WEB=YES/NO] Controls Web page access this user
[,TELNET=YES/NO] Controls Telnet menu access
[,ROOT='directory'] Restricts the user ID to a
 specific directory

You can issue this command anywhere you can issue TCP/IP FOR VSE
operator commands. This may include the console, an include deck, the
IPNETCMD command processor, or the TCP/IP FOR VSE initialization
deck. This implies the following loopholes in security:

• Anyone who can issue VSE operator commands can define user IDs.
To prohibit the use of the VSE operator console as a mechanism
for issuing TCP/IP FOR VSE operator commands, use the
SET PASSWORD command in the TCP/IP FOR VSE initialization
deck.

• If you choose to define your user IDs in the TCP/IP FOR VSE
initialization deck, anyone with access to the initialization deck also
has access to all user IDs and all passwords.

• When the DEFINE USER command is entered from the console, the
password specified in the DEFINE USER statement displays on
SYSLST. You can suppress the password by starting the command
with a ‘+’ character. Any command that starts with a ‘+’ does not
display on SYSLST.

Explicitly Defining User
IDs

Chapter 9 Security

138

Despite these limitations, the DEFINE USER command can provide
effective protection for identifying who is accessing TCP/IP FOR VSE
resources.

The PASSWORD option can be any value up to 16 bytes, and it is not
case sensitive when being checked before calling the security manager,
although the user security manager could enforce case sensitivity.

This command supports limiting a user ID to the following functions:

Option Description

FTP=YES/NO Controls FTP access by this user

LPR=YES/NO Controls LPR access by this user

WEB=YES/NO Controls Web page access by this user

TELNET=YES/NO Controls Telnet menu access by this user

If NONE of the above options is explicitly coded, then ALL functions
are permitted. If any of the above options are used, then the default for
all un-coded options is “NO.” Here are three examples:

• The user has access to everything:

DEFINE USER ID=ABC,PASS=XYZ

• The user has access to FTP only:

DEFINE USER ID=ABC,PASS=XYZ,FTP=YES

• The user does not have access to anything:

DEFINE USER ID=ABC,PASS=XYZ,FTP=NO

A root directory can be defined for a user with the DEFINE USER
command using the ROOT= option. This restricts the user to that
directory or lower. For example, to restrict a user ID to only the
VSE/POWER LST queue class D, you could enter:

DEFINE USER,ID=ABC,PASS=XYZ,.ROOT='/POWER/LST/D',FTP=YES

Setting a ROOT of ‘/’ or ‘\’ starts the user in either UNIX or VSE mode,
respectively.

Note that using the ROOT= parameter requires that SECURITY ON be
active.

Chapter 9 Security

139

FTP Security

For files that are defined to the TCP/IP FOR VSE file system and are
accessible through a public name, you must either activate the automatic
security manager or code a user security manager to restrict access to the
files. If you do not use a security manager, then any FTP user can access
such files for both reading and writing.

The TCP/IP FOR VSE FTP client and servers also allow files to be
transferred without previously defining them to the file system. This type
of file transfer is referred to as autonomous FTP. The files you transfer in
autonomous FTP are specified by a ‘%’ followed by a DLBL/TLBL
(DDNAME) or data space name. See the TCP/IP FOR VSE User Guide
for more information on specifying autonomous files in FTP.

There are two mechanisms for using autonomous FTP:

• You can use the FTP batch client, invoked by // EXEC FTPBATCH,
and run the FTP in an external partition.

• You can use an internal or external FTP server, which is a daemon
invoked by DEFINE FTPD or // EXEC FTPBATCH, respectively,
and a remote FTP client.

Each of these choices has security ramifications. If you run the FTP in
the TCP/IP FOR VSE partition, the TCP/IP FOR VSE security exit is
called and is passed the DLBL that is being transferred as well as the
user ID and password of the local user ID used to run the job. Your
security exit must be coded to deal with autonomous FTP.

Your VSE security package may also be involved in this scenario. Any
time TCP/IP FOR VSE attempts to open a file, your VSE security
package (if you have one) must check whether the TCP/IP FOR VSE
partition is authorized to open the file. TCP/IP FOR VSE does not do
anything that bypasses your installation’s VSE security system.

If, on the other hand, you run your FTP using // EXEC FTPBATCH, the
VSE OPEN for the file is performed in the partition running
FTPBATCH, and standard VSE security applies. If the partition running
FTPBATCH is allowed to open the file, then TCP/IP FOR VSE permits
its use, and if the partition running FTPBATCH is not allowed to open
the file, FTPBATCH does not permit its use.

FTP Autonomous Files

Chapter 9 Security

140

By default, all users are allowed to bypass the TCP/IP FOR VSE file
system and access local VSE files using autonomous FTP. To restrict
remote users’ access to only files that have been defined to TCP/IP FOR
VSE by the DEFINE FILE command, use the DYNFILE=NO parameter.
This parameter can be used when configuring an FTPBATCH server
(// EXEC FTPBATCH,PARM='FPTDPORT=nnn') or an internal server
(DEFINE FTPD). Each FTP server can be configured individually to
allow or deny transferring autonomous files on its associated port.

Note:

The LOCAL_DLBL OFF command provides the same restriction for all
internal FTP servers and is supported for compatibility with earlier
releases. You run this command from the global TCP/IP initialization
member.

Chapter 9 Security

141

HTTP Security

The HTTP daemon is also capable of allowing users to read files. TCP/IP
FOR VSE provides a function that allows you to force HTTP daemon
users to log on with a user ID and a password. Any time a web client
attempts to access a file, TCP/IP FOR VSE calls the security exit and does
an authorization check. You can use the same logic to authorize HTTP
access to files and FTP access to files, although the security exit may
also be coded to differentiate between the two protocols.

The USERID and PASSWORD parameters are included in the DEFINE
HTTPD command. These parameters allow you to specify a default user
ID and password for “unsecured pages.” The defaults for both are
“$WEB”. This user ID and password must be defined using DEFINE
USER with an access attribute of “WEB=YES”.

DEFINE HTTPD
Command

Chapter 9 Security

142

Telnet Security

TCP/IP FOR VSE can provide a level of security for using the telnet
facility. Because telnet is simply a conduit to an application, it is
expected that the application requires a user ID and password if these are
needed.

If you choose to provide a telnet logon menu, you may require a user ID
and password field on the menu. (If these fields are omitted, they are not
required.) See chapter 5, “Configuring the Telnet Daemon,” page 70, for
more information about defining a telnet menu.

You can also associate a particular IP address with a specified LU name.
This also enables you to deny or restrict telnet access based on the
originator’s IP address. Remember that the IP address is a mechanism
that is under the client’s control.

If you code your telnet menu to allow access only to selected VTAM
applications, other VTAM applications are inaccessible from TCP/IP
FOR VSE. If you code your telnet menu to allow a generic logon, then
any application is accessible.

Chapter 9 Security

143

Security Exit Points

TCP/IP FOR VSE provides security exit points for comprehensive
security control. You may provide a routine that is called at various
points in TCP/IP FOR VSE processing, including validation of user IDs
and passwords and access to resources by a specific user ID.

A security manager is called from a security exit point, and based upon
the security manager’s return code, the operation is permitted, warned, or
denied. The security exit can also log the accessed resource. The
following security managers can be activated with the SECURITY
command:

• TCP/IP FOR VSE automatic security manager

• User-created security manager

• IBM-provided security manager

• Other vendor-provided security manager.

Regardless of which security manager is activated, the TCP/IP FOR VSE
exit passes control and information about the resource being accessed in
a common security exit block (SXBLOK). Although you can create your
own “user security manager,” you should first take a close look at the
automatic security exit provided with TCP/IP FOR VSE. It is the quickest
and easiest to implement, and it is maintained and updated for you
automatically by CSI International. The SXBLOK fields are described in
a later section.

The automatic security manager and one other security manager may be
active (user created, IBM provided, or other vendor provided).

Security managers are activated and controlled with the SECURITY
command. See the TCP/IP FOR VSE Command Reference for details.

The flow of a security exit request may be important, depending on
which security managers are used and activated. Following is the
security flow through the various security managers.

1. A TCP/IP FOR VSE application, such as FTP, creates an SXBLOK
control block in the security exit.

2. The User ID/password (if present) is checked against DEFINE
USER information. The result is set in SXBLOCK along with a
default return code.

3. If specified, “Automatic” processing is performed. The result is set
in SXBLOK and overrides any return code set in step 2.

4. If specified, user exit processing is performed. The user exit may
consider the result of the preceding steps or it may override it.

Security Managers

Security Request Flow

Chapter 9 Security

144

Auto Security Manager

Automatic security is activated with the SECURITY AUTO=ON
command. “Automatic” security means that many users do not need to
create and maintain their own security exits.

The ASECUrity command provides control for system-level resources
where no user ID and password have been established. The controls are

• ASECUrity ICMP=YES/NO

Allows (YES) or prevents (NO) VSE from responding to incoming
ICMP PING requests. This is useful for stopping sweeps that are
commonly used to find active machines on a TCP/IP network. This
control does not affect ping requests that originate on VSE.

• ASECUrity FTPD=YES/NO

Controls connection requests to the FTP Daemon. NO stops new FTP
sessions from being accepted by the VSE FTP Daemon. This
parameter may be used to temporarily stop new FTP sessions without
deleting your FTP daemons. Already-established FTP sessions are not
affected. YES: Commands are processed normally.

When a foreign client connects to the FTP Daemon, a “220-welcome”
message is immediately sent to the foreign client. Executing
ASECUrity FTPD=NO prevents sending the 220 message (and any
user-defined WELCOME= message) and the connection request is
simply terminated. This can be useful for preventing “banner
grabbing” to find out where an FTP service is active.

• ASECUrity WEBL=YES/NO

Web Logon Screen Request. For WEBL=YES: The HTTP daemon
maintains a minimal level of access security based on the network
address. To do this, the daemon maintains a table of “active” IP
addresses. When a request is received from an address not in the table,
the daemon automatically displays a page that requests a user ID and
password. These values are checked through the standard TCP/IP FOR
VSE mechanisms. If valid, the IP address is added to the table and the
original request is transmitted. The IP address is removed from the
table when explicitly requested (a request made for
“BLANKING.HTML”) or when the HTTPD inactivity timer
(TIMEOUT=) expires. For WEBL=NO: No automatic security
checking is performed.

• ASECUrity SCAN=YES/NO

HTTPD Scanblock Request. For SCAN=YES: If a remote user
attempts to open a connection to the HTTP daemon, even partially (a
half open), and then ends the connection without sending any data,
TCP/IP FOR VSE tracks this event and blocks the user’s IP address
after a predetermined number of such calls. The maximum number of

ASECURITY Command

Chapter 9 Security

145

such calls is always 3 unless BLOCKIP=YES and BLOCKCNt is set
to either 1 or 2. See also BLOCKIP=. An HTTP908W message is
always issued when a half-open connection is attempted. The
ACCESS command can be used to reset the block for an IP address.

• ASECUrity BLOCKIP=YES/NO

This parameter enables IP address blocking after the allowed number
of security violations occurs. This number is set by BLOCKCNt=. If
BLOCKIP=NO, then the IP address is not blocked after this number
of security violations. The default (YES) is to block the address. The
ACCESS command can be used to reset the block for an IP address.

• ASECUrity BLOCKCNt=count

This is the value used by BLOCKIP to determine the maximum
number of security violations before blocking that IP address. The
count can range from 1 to 255. The default is zero (never).

• ASECUrity ARP=YES/NO

Requires SECURITY ARP=ON to be in effect already. Specifying
ARP=NO prevents TCP/IP FOR VSE from responding to inbound
ARP requests. This could be useful for stopping all current inbound
activity due to an ARP attack. But, its use should only be temporary
because it can cause a loss of service for legitimate applications.

• ASECUrity IPAV=YES/NO

Requires SECURITY IP=ON to be in effect already. Specifying
IPAV=NO immediately prevents processing of all incoming IP
datagrams. This is a drastic step, but one that might prove useful if
you are in the middle of an Internet attack, as in a Denial of Service
attempt. This parameter is different from ARP=, which is limited to
ARP requests.

• ASECUrity FTPC=YES/NO

For FTPC=NO: This command is similar to ASECURITY FTPD=
except that opening a control session is permitted, but all commands
that can be issued prior to user ID/password validation are rejected
with “500 Command rejected.” The commands that are not allowed
are USER, PASS, ACCT, QUIT, REIN, SYST, HELP, NOOP, PBSZ,
PROT, and AUTH. If FTPC=YES, commands are processed
normally.

Automatic Security can be used in conjunction with the existing DEFINE
USER command to allow or prevent specific user access to data. To take
advantage of this feature, you can specify a string of Y/N characters with
the DATA= parameter on DEFINE USER to indicate allowed and
forbidden actions based on the equates normally passed to the automatic
security exit. See the section “Security Exit Block (SXBLOK),”
page 149, for more information on these equates.

Chapter 9 Security

146

Here are three examples of user ID definitions:

• “Superman” can do anything:

DEFINE USER,ID=SUPERMAN,PASSWORD=LOIS123, -
DATA=YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

• An FTP read-only user can be defined by permitting only the
functions for SXTYPASS, SXTYREAD, SXTYCMD, SXTYOPDI,
SXTYRDD, SXTYCWDL, SXTYCWD, and SXTYFCMD:

DEFINE USER,ID=FTPREADO,PASSWORD=READONLY, -
DATA=YYNNNNNNYNNNNNYYYNNNNNNNNYNNYNNNNNNNNNNN -
ROOT='/POWER/LST/A',FTP=YES

• By adding SXTYWRIT, SXTYDEL, SXTYREN, SXTYCRT,
SXTYAPPE, SXTYMKD, and SXTYRMD functions, we have a user
ID that can also write and “control” files and directories:

DEFINE USER,ID=FTPWRITE,PASSWORD=WRITETOO, -
DATA=YYYNNNNNYYYYNYYYYNNNNNNYYYNNYNNNNNNNNNNN -
ROOT='/HFS001/CSIVSEDW',FTP=YES

Chapter 9 Security

147

User-Created Security Manager

If you have a security exit in place, one of the parameters passed to the
exit is SXPASSVF. This parameter indicates whether the password is
valid according to information from DEFINE USER. If a user ID or
password is invalid, the user security exit can still decide to accept it. In
fact, you can include a user ID/password table in the user security
manager and use this table in addition to (or instead of) the user IDs
created with the explicit DEFINE USER command. The sample security
manager SECEXIT.A implements this approach.

Note that this technique still does not protect user IDs and passwords
from prying eyes. For example, someone could still dump out the
SECEXIT phase and peruse your user ID/password table. Of course,
depending on how complicated you wish to make your exit, you can
define your user IDs and passwords in an external table, encrypt the
passwords in the table, and load the table when the security exit is
initialized. Following this methodology, your user IDs and passwords are
less likely to be compromised.

Before leaving the subject of user IDs and passwords, we need to briefly
touch on the DATA= parameter of the DEFINE USER command. The
only function of the DATA= parameter is to take the specified string and
pass it to the user security exit on behalf of the user. Therefore, the
security exit can make decisions based on the contents of the DATA=
parameter. The sample security exit SECEXIT.A implements a scheme
in which a user is granted an increased level of access to data when the
DATA= parameter contains the word PRIV. You can use the sample exit
as a model for building your own security exit.

The TCP/IP FOR VSE user security manager provides the capability of a
security check based on a hardware address. The user security manager
can examine the MAC address of each requester and decide whether to
grant the request for access. You can use an exclusion list to prevent
access by specific devices. You can use an inclusion list to allow for the
possibility of someone connecting an unauthorized device to the cable.

The hardware addresses of many Ethernet cards can be customized.
Therefore, network security alone is not an effective defense against
hackers or unauthorized users.

Two sample security exits are included in the materials loaded during the
installation process. The first is called SECEXIT.A and demonstrates
some of the processing you can perform in a security exit. The second is
called SECPOWER.A and demonstrates a security exit that is targeted at
a very specific function.

Implicitly Defining User
IDs Defined In the User
Security Manager

Network Security in a
User Security Manager

Sample User Security
Manager Code

Chapter 9 Security

148

The requirements for coding a security exit are as follows:

• It must be written in assembler language

• It must be reentrant

• It is called in the TCP/IP FOR VSE partition

• Registers, upon entry, contain the following data:

 Register 15: Entry point

 Register 14: Return address

 Register 13: Standard save area

 Register 1: Address of the Security Exit Block (SXBLOK)

• Registers must be restored prior to return.

• Upon return, Register 15 contains the result code, as follows:

 0: The requested action is approved

 4: The requested action is denied

You must ensure that you release all dynamically acquired storage before
you return control to TCP/IP FOR VSE.

The exit routine is called for each of the following three events:

• Immediately after the exit is loaded into storage and enabled

• Before each operation that is subject to security considerations

• Immediately before deactivation of the exit.

The first call is intended to permit the exit to prepare its environment.
This includes connections to external security software and loading
tables. For continuity, the exit is provided with two double words of
storage (initially set to zero) that are passed to the exit on each
subsequent call. The initialization call is synchronous. This means that
no additional calls are made to the exit until it is fully initialized.

During its operational phase, the exit is called before each user request
that may be subject to security concerns. The type of action being
requested is passed to the exit.

If the exit is to be terminated (for example, before being refreshed), a
special call is made to permit the exit to clean up its environment. This
might include disconnecting from external security software, releasing
storage, or other tasks.

General Coding
Requirements

Operation

Chapter 9 Security

149

To refresh the security exit, follow these steps:

1. Delete the existing exit with the SECURITY EXIT=OFF command.

2. Reassemble and relink the new version of the exit.

3. Define the new exit with the SECURITY PHASE=nnn XDATA=xxx
EXIT=ON command.

The SXBLOK control block is created for each call to the security exit. It
contains complete information about the requested operation. The user-
written security exit can check fields in SXBLOK and make decisions
based on their settings.

The following table contains a summary of the SXBLOK fields.
Remember that returning a zero in register 15 indicates a pass condition
at all times, while setting this register to a non-zero value causes the
application to assume that the security call has failed (unless otherwise
noted). For example, setting the value to 4 or 8 (or any other non-zero
value) when validating a user for FTP access results in the FTP client
rejecting the user request. In this case, the client would interpret the
return code of 4 from the user exit as a rejection request.

Field Name Description

SXID This is a six-byte field that contains the value “SXBLOK”. If it does not
contain this value, then storage has been overlaid or is corrupted. In that
case, the security exit should output a warning message, set a bad return
code, and exit.

SXVERS This one-byte field is used for checking stack version compatibility. The
exit can be coded to check for certain features based on the following
equates:

• SXVERS0: The exit is running on the earliest version of the stack
that supports a security exit.

• SXVERS1: The stack is a later version but is earlier than 1.5E.

• SXVERS2: The stack is at version 1.5E or later.

Other equates may be added in the future. The equate SXVERSC is
always set to the most current version number. You can compare
SXVERS to the equate SXVERSC; if it is lower, then it is an earlier
version. If it is higher, then you should recommend that the exit be
reassembled to be consistent with the rest of the stack.

Security Exit Block
(SXBLOK)

Chapter 9 Security

150

Field Name Description

SXTYPE This one-byte field contains the equate number corresponding to the
function requested by the exit. For example, if someone wants to issue a
“CD” or a “CWD” command in a client such as FTP, EMAIL, or LPR,
then SXTYPE would be set to “9” (the equate SXTYCWD).

The valid equate numbers are listed below along with their names and
meanings. Some equates are omitted because they either have not been
implemented or have been made obsolete by other values.

1: SXTYPASS. A password has been provided by the user, and a
request is being made to validate it. Check the settings in SXUSERID,
SXPASSWD, and other fields to determine whether you want to permit
access or not.

2: SXTYREAD. A request has been made to issue an OPEN for INPUT
(READ) for a specific file. Check the values in SXUSERID,
SXFNAME, and the file name parts in SXDPIE1 through SXSPIE22.

3: SXTYWRIT. A request has been made to issue an OPEN for
OUTPUT (WRITE) for a specific file. Check the values in SXUSERID,
SXFNAME, and the file name parts in SXDPIE1 through SXSPIE22.

5: SXTYSTRT. This is set if the security exit is being loaded for the
first time. You may choose to load a table into storage or just output a
startup message at this point. This occurs when the EXIT is set to ON
while the automated exit process is set to OFF.

6: SXTYSHUT. This is the value set when the security exit is being
unloaded. You may choose to free some storage allocated at startup
time, simply output a message, or do nothing at all. This occurs when
the EXIT is set to ON while the automated exit process is set to OFF.

9: SXTYCMD. This contains the FTP SITE command issued by the
user. This call encompasses all FTP commands (SITE, CWD, etc.).

10: SXTYDEL. A request has been issued to delete a file from LIBR,
POWER, BIM-EDIT, or VSAMCAT. If this file is not set to read-only,
you may want to check SXUSERID as well as SXFNAME and the file
name parts at SXDPIE1 through SXSPIE22.

11: SXTYREN. A request has been made to rename a LIBR or
BIM-EDIT member. If this file is not set to read-only, you may want to
check SXUSERID as well as SXFNAME and the file name parts at
SXDPIE1 through SXSPIE22.

13: SXTYEXEC. A request has come from the FTPD to execute a
REXX program from that daemon.

Chapter 9 Security

151

Field Name Description

SXTYPE
(continued)

14: SXTYAPPE. The FTPD wants to perform an APPEND operation
against a file. If this file is not set to read-only, you may want to check
SXUSERID as well as SXFNAME and the file name parts at SXDPIE1
through SXSPIE22.

18: SXTYSHEL. The REXECD or RSHD wants to execute a REXX
program.

19: SXTYICMP. A remote site wants to ping your system. You can
choose to reply.

20: SXTYLOGI. Someone wants to log into one of your servers such as
FTPD. Check the USERID and PASSWORD and decide if you want to
permit this login to proceed.

22: SXTYWEBL. A remote user has sent a request to the HTTPD. If
you require them to login to the service, then a login menu is presented
to the client and must be filled in before the request is serviced.

24: SXTYMKD. A request has been made to create a directory. If this
file area is not set to read-only, you may want to check SXUSERID as
well as SXFNAME and the file name parts at SXDPIE1 through
SXSPIE22.

25: SXTYRMD. A request has been made to remove an existing
directory. If this area is not set to read-only, you may want to check
SXUSERID as well as SXFNAME and the file name parts at SXDPIE1
through SXSPIE22.

26: SXTYCWSL. A request has been made by FTPD to change
working directories. The user ID, password, and desired positioning are
passed to the user.

27: SXTYSTAU. This is set if the security exit is being loaded for the
first time. You may choose to load a table into storage or just output a
startup message at this point. This occurs when the automated exit
process is set to ON.

28: SXTYSHAU. This is the value set when the security exit is being
unloaded. You may choose to free some storage allocated at startup
time, output a message, or do nothing at all. This occurs when the
automated exit process is set to ON.

29: SXTYFCMD. This value is set when any FTP command is being
processed. (This does not apply to the SITE command, which is handled
by SXTYCMD.)

30: SXTYCGI. HTTPD is about to issue a CGI call from a specific user.
You can confirm and accept or reject this request.

SXPASSVF This one-byte field is set by the user when an SXTYPASS request
occurs. If it is set to SXPASSGD, then your exit approved the password.
If the field is set to SXPASSBD, then the password failed.

Chapter 9 Security

152

Field Name Description

SXVALID1

(Note:
SXVALID2
is not used.)

This one-byte field indicates the service type requesting a password
check. The equates and the associated services are as follows:

• SXV1FTP: FTP client or server

• SXV1LPR: LPR client or server

• SXV1WEB: HTTPD server

• SXV1TEL: TELNETD

• SXV1EMAI: Email client.

SXFNAME This is the one- to seven-character DLBL of the file being processed.

SXDPIE1 −
SXDPIE22

SXSPIE1 −
SXSPIE22

These fields contain directory and file name information. There are two
22-field groups. Each group is eight bytes long. SXDPIE[1-22] contains
the directory information, and SXSPIE[1-22] contains the file name
parts.

For example, “POWER.LST.A.TEST.00123.000” has “POWER” in
SXDPIE1, “LST” in SXDPIE2, and “A” in SXDPIE3. “TEST” is in
SXSPIE1, “00123” is in SXSPIE2, and “000” is in SXSPIE3. If the
name piece is longer than eight bytes, the first byte has X'00', the next
three bytes contain the name’s length, and the next four bytes contain a
pointer to the name.

SXWORD When the “SECURITY PHASE=, DATA=” command is issued, it is
stored in a control block where the first double word contains phase
information and the next 40 bytes contain the “DATA=” value. You can
use this pointer to find the attributes of this general information.

SXUID
SXGID
SXFILUID
SXFILGID

These fields contain values if UID/GID is enabled during the DEFINE
NAME and DEFINE FILE processes. These UID and GID settings are
provided for UNIX compatibility. If you choose not to define a “UID”
or a “GID” in your DEFINE FILE or DEFINE NAME settings, then the
associated fields are not set.

SXPERMIS This one-byte flag indicates whether the DEFINE FILE had Group,
User, or “other” read and/or write permissions enabled. This is provided
for UNIX compatibility as part of DEFINE FILE and may or may not
be set. It is useful when there is a READ/WRITE request on a file.

SXPATH This 320-byte field contains the CWDL value when validation is
requested to check whether a user can go to a particular area.

SXRETCD This fullword field is set if a previous process that took control before
your exit set this value.

SXLOIPAD This field contains the local IP address.

Chapter 9 Security

153

Field Name Description

SXLOPORT This halfword field contains the local port ID of the server that is
passing control to the security exit.

SXFLAG1 This one-byte field lets you enable certain options that are returned to
the primary security system before returning control to the calling client
or server. The primary (non-internal) item of interest here is
SXF1NERR (the returned code is not to be seen as an error).

SXFROOT This field is set if “ROOT=” is defined for the specific user.

SXPROCS This field contains the identifier of the client or server type issuing the
call. It is similar to SXVALID1, but it is for other than PASSWORD.

Chapter 9 Security

154

A sample SXBLOK DSECT appears below.

SXID DS CL6'SXBLOK' Eyecatcher
SXVERS DS X Security Version Number
SXVERS0 EQU 0 - Version 0
SXVERS1 EQU 1 - Version 1
SXVERS2 EQU 2 - Version 2 (1.5 Level E)
SXVERSC EQU 2 - Current version
*
SXTYPE DS X Security Request Type
SXTYPASS EQU 1 - Password Check
SXTYREAD EQU 2 - Read Check
SXTYWRIT EQU 3 - Write Check
SXTYUPDT EQU 4 - Update Check
SXTYSTRT EQU 5 - Startup Security
SXTYSHUT EQU 6 - Shutdown Security
SXTYHARD EQU 7 - Hardware Address Verify
SXTYIP EQU 8 - IP Address Verify
SXTYCMD EQU 9 - FTP SITE command check
SXTYDEL EQU 10 - Delete check
SXTYREN EQU 11 - Rename check
SXTYCRT EQU 12 - Create check
SXTYEXEC EQU 13 - EXEC command check
SXTYAPPE EQU 14 - APPEND check
SXTYOPDI EQU 15 - OPDIR check
SXTYRDD EQU 16 - RDDIR check
SXTYCWD EQU 17 - CWD Check
SXTYSHEL EQU 18 - SHELL Check
SXTYICMP EQU 19 - ICMP check
SXTYLOGI EQU 20 - Daemon LOGIN request
SXTYRPC EQU 21 - RPC Request
SXTYWEBL EQU 22 - Web Logon Screen Request
*
* The following types were added in Version 2
*
SXTYSCAN EQU 23 - HTTPD SCANBLOCK request
SXTYMKD EQU 24 - Make directory
SXTYRMD EQU 25 - Remove directory
SXTYCWDL EQU 26 - Last CWD
SXTYSTAU EQU 27 - Startup-auto-exit
SXTYSHAU EQU 28 - Shutdown-auto-exit
SXTYFCMD EQU 29 - FTP command check
SXTYCGI EQU 30 - CGI call via HTTP
*
SXUSERID DS CL16 Userid
SXHARDAD EQU SXUSERID,6 Hardware Address (MAC)
SXPASSWD DS CL16 Password
SXDATA DS CL40 User data (from DEFINE USER)
SXSECDAT DS CL40 Data string from the SECURITY cmd
SXPROTO DS CL8 Protocol Name
SXIPADDR DS F IP Address
SXIPPORT DS H Port Number
SXFTYPE DS X Type of file

SXBLOK DSECT

Chapter 9 Security

155

SXFTDIRE EQU X'01' - Directory
SXFTLIBR EQU X'02' - Library
SXFTKSDS EQU X'03' - KSDS VSAM File
SXFTRRDS EQU X'04' - RRDS VSAM File
SXFTICCF EQU X'05' - ICCF File
SXFTKDIR EQU X'06' - KSDS VSAM Directory
SXFTPSEU EQU X'07' - Pseudo Entry
SXFTPOWR EQU X'08' - POWER Entry
SXFTTAPE EQU X'09' - Tape Entry
SXFTBIME EQU X'0A' - Bim-edit Entry
SXFTFALC EQU X'0B' - Falcon Entry
SXFTCOND EQU X'0C' - Condor Entry
SXFTVPDS EQU X'0D' - VSEPDS Entry
SXFTCGI EQU X'0E' - CGI Entry
SXFTVOLL EQU X'0F' - Vollie Entry
SXFTCAF EQU X'10' - CAF Entry
SXFTCGIB EQU X'11' - CGI-BAL Entry
SXFTCGIL EQU X'12' - CGI-COBOL Entry
SXFTCGIC EQU X'13' - CGI-C Entry
SXFTCGIR EQU X'14' - CGI-REXX Entry
SXFTCGIP EQU X'15' - CGI-PLI Entry
SXFTCAFF EQU X'16' - CAF-FILE Entry
SXFTCAFP EQU X'17' - CAF-PROG Entry
SXFTESDS EQU X'C1' - ESDS VSAM File
SXFTDIRU EQU X'C2' - Directory for User driver
SXFTDIR EQU X'C4' - Direct Access File
SXFTVCAT EQU X'C5' - VSAM Catalog
SXFTVTOC EQU X'C6' - VTOC Directory
SXFTTCUU EQU X'C7' - Tape unit device
SXFTHFS EQU X'C8' - HFS Entry (Added, Ver 2)
SXFTZIP EQU X'E9' - Zip archive
SXFTGZIP EQU X'EA' - GZip archive
SXFTDSPC EQU X'EB' - Normal(non-zip/gz) dspace
SXFTSEQ EQU X'E2' - Sequential File
*
SXPASSVF DS X Password verification status:
SXPASSGD EQU X'FF' - Password Good
SXPASSBD EQU X'00' - Password Failed
 DS CL4 Reserved
SXFNAME DS CL8 DLBL of file
*
SXDPIE DS 0CL176 Dataset name:
SXDPIE1 DS CL8 Dataset Name Piece 1
SXDPIE2 DS CL8 Dataset Name Piece 2
SXDPIE3 DS CL8 Dataset Name Piece 3
SXDPIE4 DS CL8 Dataset Name Piece 4
SXDPIE5 DS CL8 Dataset Name Piece 5
SXDPIE6 DS CL8 Dataset Name Piece 6
SXDPIE7 DS CL8 Dataset Name Piece 7
SXDPIE8 DS CL8 Dataset Name Piece 8
SXDPIE9 DS CL8 Dataset Name Piece 9
SXDPIE10 DS CL8 Dataset Name Piece 10
SXDPIE11 DS CL8 Dataset Name Piece 11
SXDPIE12 DS CL8 Dataset Name Piece 12

Chapter 9 Security

156

SXDPIE13 DS CL8 Dataset Name Piece 13
SXDPIE14 DS CL8 Dataset Name Piece 14
SXDPIE15 DS CL8 Dataset Name Piece 15
SXDPIE16 DS CL8 Dataset Name Piece 16
SXDPIE17 DS CL8 Dataset Name Piece 17
SXDPIE18 DS CL8 Dataset Name Piece 18
SXDPIE19 DS CL8 Dataset Name Piece 19
SXDPIE20 DS CL8 Dataset Name Piece 20
SXDPIE21 DS CL8 Dataset Name Piece 21
SXDPIE22 DS CL8 Dataset Name Piece 22
*
SXSPIE DS 0CL176 SubDirectory Name:
SXSPIE1 DS CL8 SubDirectory Name Piece 1
SXSPIE2 DS CL8 SubDirectory Name Piece 2
SXSPIE3 DS CL8 SubDirectory Name Piece 3
SXSPIE4 DS CL8 SubDirectory Name Piece 4
SXSPIE5 DS CL8 SubDirectory Name Piece 5
SXSPIE6 DS CL8 SubDirectory Name Piece 6
SXSPIE7 DS CL8 SubDirectory Name Piece 7
SXSPIE8 DS CL8 SubDirectory Name Piece 8
SXSPIE9 DS CL8 SubDirectory Name Piece 9
SXSPIE10 DS CL8 SubDirectory Name Piece 10
SXSPIE11 DS CL8 SubDirectory Name Piece 11
SXSPIE12 DS CL8 SubDirectory Name Piece 12
SXSPIE13 DS CL8 SubDirectory Name Piece 13
SXSPIE14 DS CL8 SubDirectory Name Piece 14
SXSPIE15 DS CL8 SubDirectory Name Piece 15
SXSPIE16 DS CL8 SubDirectory Name Piece 16
SXSPIE17 DS CL8 SubDirectory Name Piece 17
SXSPIE18 DS CL8 SubDirectory Name Piece 18
SXSPIE19 DS CL8 SubDirectory Name Piece 19
SXSPIE20 DS CL8 SubDirectory Name Piece 20
SXSPIE21 DS CL8 SubDirectory Name Piece 21
SXSPIE22 DS CL8 SubDirectory Name Piece 22
*
* Note: the SXCMDAD field is provided for compatibility
* purposes only. It should be replaced with a
* direct reference to the SXSITCMD field.
*
SXCMDLEN EQU SXDPIE1+0,4 Site Command length (fullword)
SXCMDAD EQU SXDPIE1+4,4 Addr of Site command text
SXSITCMD EQU SXDPIE2,168 Site Command text
*
SXWORD DS A Address of User Fullword
SXUID DS F UID value of the user
SXGID DS F GID value of the user
SXFILUID DS F UID value of the file
SXFILGID DS F GID value of the file

Chapter 9 Security

157

*
SXPERMIS DS X File Permissions flag
SXGWRITE EQU X'80' - Group write on
SXGREAD EQU X'40' - Group read on
SXUWRITE EQU X'20' - User write on
SXUREAD EQU X'10' - User read on
SXOWRITE EQU X'08' - Other write on
SXOREAD EQU X'04' - Other read on
*
SXPATH EQU *,320 Current path info
 DS CL80 Original path field
*
* End of Version 1 SXBLOK
*
 DS CL240 SXPATH extension
SXRETCD DS F Return code from previous routines
SXLOIPAD DS F Local IP addr
SXLOPORT DS H Local Port
*
SXHBLOCK DS X Return flags for IP blocking:
SXBLOKIP EQU X'01' - Block IP from everything
SXBLOKLG EQU X'02' - Add block to permanent log
SXBLOKWA EQU X'04' - Add info to attack log
*
SXFLAG1 DS X Control flags:
SXF1DMP EQU X'80' - Dump SXBLOK to log
SXF1LOG EQU X'40' - Log SXBLOK to log
SXF1NERR EQU X'20' - Return code is NOT an error
SXF1EXTR EQU X'08' - This request from external partition
SXF1CNTL EQU X'04' - "Control" request
SXF1AUTO EQU X'02'
SXF1EXIT EQU X'01' Exit "control" request
*
SXFROOT DS CL64 FTP Root path
SX@MSGX DS A Address of message writer
*
SXPROCS DS X Process type:
*
SXPGEN EQU 0 - Generic process
SXPFTP EQU 1 - FTP
SXPLPR EQU 2 - LPR
SXPWEB EQU 3 - WEB
SXPTEL EQU 4 - Telnet
SXPSMTP EQU 5 - SMTP
SXPPOP3 EQU 6 - POP3
SXPEMAIL EQU 7 - EMAIL (client)
SXPLPD EQU 8 - LPD
*
SXMAILNM DS CL17 POP3 lib.sublib name
*
* End of Version 2 SXBLOK
*
SXBLOKLN EQU *-SXBLOK,*-SXBLOK

Chapter 9 Security

158

Vender-Provided Exits

IBM provides a security exit. The functions and facilities of this security
exit are explained in IBM manual TCP/IP for VSE/ESA — IBM Program
Setup and Supplementary Information (SC33-6601-02). The security exit
is called BSSTISX, and it can be used with the Basic Security Manager
(BSM) in VSE. The BSSTISX exit provides the following basic
functions:

• Validation of user IDs and passwords using information maintained in
the VSE Interactive Interface (II) and stored in
VSE.CONTROL.FILE.

• File Access Control, which limits file access to users defined as
administrators. If you run your VSE system with SEC=YES, you can
also have BSSTISX issue RACROUTE requests to determine whether
a user is authorized to access a given file.

• VSE/POWER Access Control, which limits access to users defined as
administrators or to users with user IDs that match those of the
POWER queue entry.

If this security exit is used, it must be activated with the following
command:

SECURTY ON EXIT=ON PHASE=BSSTISX

When using this exit, no user-created or other vendor-provided security
exit can be used.

CSI International does not support BSSTISX. Refer questions about this
exit and its use to an IBM representative.

Other VSE system software vendors and consultants have created
security exits that can be used with TCP/IP FOR VSE.

If this type of security exit is used, it must be activated using the
following command:

SECURTY ON EXIT=ON PHASE=vendor-phase-name

No user-created exit or other vendor-provided security exit may be used.

Please contact the vendor supplying the exit for information on its
implementation.

IBM

Other Vendors

Chapter 9 Security

159

Security Changes in 1.5E

Significant changes were made to security processing and control in
TCP/IP FOR VSE in release 1.5E. These changes are described here for
those upgrading from any release prior to 1.5E. Although we have made
every attempt to provide backward compatibility, we highly encourage
you to examine the new commands and facilities and use them to provide
a secure environment for your data processing.

All processes now run under user IDs and passwords, either explicitly or
by default. If you make no other changes, you MUST provide the
following commands in your initialization deck:

DEFINE USER,ID=$WEB,PASSWORD=$WEB,WEB=YES

DEFINE USER,ID=$LPR,PASSWORD=$LPR,LPR=YES

DEFINE USER,ID=$EVENT,PASSWORD=$EVENT,LPR=YES

DEFINE USER,ID=$LPD,PASSWORD=$LPD,LPD=YES

DEFINE USER,ID=$EMAIL,PASS=$EMAIL

Note that 1.5D user security exits see the same data in 1.5E and later
releases and continue to run and provide the same level of security.
Additional calls, with additional data, are made under the later releases.
With additional coding, security exits can recognize and control a larger
variety of requests.

Following is a list of security enhancements for 1.5E and later releases.

1. Logging: Results of security decisions can now be written to the log
(routing code SECURITY). Available modes are All, Failed, and
None.

2. All changes to security parameters are logged.

3. Security can be operated in Fail and Warn modes.

4. Overhead has been reduced.

5. “Automatic” security is now available for all files, based upon the
values provided with DEFINE USER commands. See the section
“Auto Security Manager” for more details.

6. Control and monitoring of security functions are consolidated in the
SECURITY and the QUERY SECURITY commands.

7. The user-provided Security Exit may send messages to the security
log using an address vector passed in the SXBLOK.

8. Security settings can be locked to prevent tampering.

Required Commands

Enhancements

Chapter 9 Security

160

9. FTPBATCH security no longer relies on loading the user exit into
the FTPBATCH partition. This potential security exposure is
eliminated by having FTPBATCH pass security calls to the target
stack partition using the protected libraries and routines. Logging
and control is handled by the stack routines automatically and by a
stack-based user exit using the security settings set by the customer.

10. The installation-provided security exit may now contain identifying
information that is verified when the phase is loaded.

11. User IDs can now be associated with specific uses. For example,
having a valid ID for TN3270 access does not automatically permit
FTP access.

12. Security requests passed to the user exit now contain the type of
usage requested, for example, FTP or LPR.

13. The VSE/POWER user ID and password can be specified using
“SET POWERUSERID=” and “SET POWERPASSWORD=”,
respectively. The default user ID remains SYSTCPIP, and the default
password remains XL8'00'

14. Automation (event) processing now uses a default user ID and
password. The $EVENT/$EVENT values may be overridden by
DEFINE EVENT. The default ID and password are passed to client
processes and are used for security calls unless overridden in a script.

15. LPR processing now sets a default user ID/password of $LPR/$LPR.
These values are passed to security processing unless they are
overridden explicitly by the user or by a script.

Commands defined on pre-1.5E releases are still valid. Existing
initialization decks and procedures continue to function as in the earlier
releases. Pre-1.5E commands can be replaced, however, with the current
SECURITY command, as shown in the following table.

Pre-1.5E Command Current Equivalent Command

DEFINE SECURITY SECURITY PHASE=nnn XDATA=xxx
 EXIT=ON

DELETE SECURITY SECURITY EXIT=OFF

SECURITYARP SECURITY ARP=

SET SECURITYARP= SECURITY ARP=

SECURITYIP SECURITY IP=

SET SECURITYIP= SECURITY IP=

SECURITY ONX SECURITY ON BATCH=ON

Equivalent Security
Commands

Chapter 9 Security

161

For example, the command sequence

DEFINE SECURITY,DRIVER=USEREX,DATA='ABCD'
SET SECURITY_ARP=ON
SET SECURITY_IP=ON
SET SECURITY ON

can be replaced with

SECURITY ON,PHASE=USEREX,XDATA='ABCD',ARP=ON,IP=ON, EXIT=ON

The following output is generated by the QUERY SECURITY
command:

IPN253I << TCP/IP TCP/IP Security Settings >>
IPN750I Security Processing: Disabled
IPN750I ARP Checking: Disabled
IPN750I IP Address Checking: Disabled
IPN751I Auto Data: Undefined
IPN751I Exit Data: Undefined
IPN750I Automatic Security: Disabled
IPN750I Security Exit: Undefined
IPN750I Batch Security: Disabled
IPN752I Security Mode: Fail Log: Fail Dump: Fail

This display, generated with both RESPONSE and SECURITY routings,
summarizes all security information. The QUERY OPTIONS command
does not show the redundant security information. The QUERY ALL
command includes the security settings.

Note:

See the TCP/IP FOR VSE Messages manual for an explanation of the
message fields.

QUERY SECURITY
Command

Chapter 9 Security

162

Alternative Security Methods

TCP/IP FOR VSE can control access to FTP and Telnet daemons on VSE
by using the IPADDR parameter on the DEFINE FTPD and DEFINE
TELNETD commands. The IPADDR parameter restricts the IP
addresses that can connect with a given daemon. This parameter’s use
generally is associated with creating a pool of FTP or telnet daemons that
service a subset of users, but it can also be used to prevent certain IP
addresses from accessing certain applications. IP addresses are
completely under the control of the end user. Therefore, using
IPADDR alone is not an effective defense against hackers or
unauthorized users.

You should also consider using cryptography to encrypt data being sent
over the Internet when transmitting confidential information. The
SSL/TLS protocol is implemented in the HTTPD, FTPD, and TelnetD
daemons from CSI International. See the DEFINE commands for each of
these daemons, and refer to the TCP/IP FOR VSE Optional Features
Guide for detailed information on implementing and using secure
communications (SSL/TLS).

NETWORK Security with
IP Addresses

Using Cryptography with
SSL/TLS Protocols

163

10
10. Operation

Overview

For the most part, TCP/IP FOR VSE runs as a server task with no
operations intervention. Occasionally, it requires the attention of an
operator. This chapter discusses the following TCP/IP FOR VSE
operations issues:

• Initialization

• Message management

• Command interfaces

• Shutdown processing

• Restart processing

• Waiting for TCP/IP to be active with the CHECKTCP utility

• TCP/IP event publishing

Chapter 10 Operation

164

Initialization

TCP/IP FOR VSE must run in its own partition. The partition can be
either static or dynamic. As you set up the TCP/IP FOR VSE partition,
you need to answer the following questions:

• How big should I make the partition?

• What priority should I give the partition?

The TCP/IP FOR VSE partition uses seven real VSE subtasks. The
product contains a multi-tasking engine. The engine implements up to
65,536 pseudo tasks and does its own dispatching. These pseudo tasks do
not count when you calculate the system task count.

The TCP/IP FOR VSE partition is generally all that is required to run
TCP/IP. All daemons run in the partition. Client software, such as the
FTP client, runs in the requester’s partition and communicates cross-
partition with TCP/IP FOR VSE. This is true when the client runs in a
VSE batch job and also when the client runs as a CICS transaction.
Socket applications from third-party vendors also run in their own
partitions.

TCP/IP FOR VSE is a large product with a lot of options. You specify
these options with a series of operator commands. These commands
generally are stored in a configuration parameter file. This file, including
a description of where TCP/IP FOR VSE finds the name of the file, is
discussed later in this chapter.

To initialize TCP/IP FOR VSE, run the following job:

* $$ JOB JNM=TCPIP,CLASS=8,DISP=K
* $$ LST CLASS=A,DISP=D
// JOB TCPIP
// LIBDEF *,SEARCH=(PRD2.CONFIG,PRD2.TCPIP)
// EXEC PROC=DTRICCF
// SETPFIX LIMIT=400K
// EXEC IPNET,SIZE=IPNET,PARM='ID=00,INIT=IPINIT00'
/&
* $$ EOJ

As you tailor the TCP/IP FOR VSE startup JCL, you must consider the
following issues:

• Search order. The search order for TCP/IP FOR VSE phases, library
members, parameter files, and so forth is defined in the LIBDEF
parameter. Be sure to specify LIBDEF * so that TCP/IP FOR VSE gets
parameters from the libraries defined in the search order and not just
phases.

Partition Structure

Initialization JCL

Chapter 10 Operation

165

Important:

We strongly recommend that you have one library for configuration
data, including your TCP/IP FOR VSE authorization codes, exits,
parameter files, library initialization members, and so on. We also
recommend that you have a second library that contains text members
and phases that you obtained from CSI International. Because our
maintenance strategy is based on complete system replacement, it is
easy for you to inadvertently overwrite your library initialization
member and other important files simply by applying a TCP/IP FOR
VSE service pack.

In the above examples, you should place your customized files in
PRD2.CONFIG and reserve PRD2.TCPIP for library members and
phases that we send you. During operation, you can use the QUERY
PROGRAMS command to obtain a list of all loaded phases and the
sublibrary from which each was loaded.

• // EXEC PROC=DTRICCF statement. This statement is required only
if you plan to use FTP to transfer files out of ICCF.

• // SETPFIX LIMIT=400K statement. The value specified as the PFIX
limit determines the amount of storage that can be page fixed by the
program running in the partition. TCP/IP FOR VSE requires that
storage for IO operations be page fixed. If you do not allocate enough
page-fixed storage, TCP/IP FOR VSE cannot run and fails. Because the
value specified by // SETPFIX is a limit and not an absolute value,
you have nothing to lose by specifying a value larger then TCP/IP FOR
VSE could ever need. For this reason, we recommend a value of
400K. Changing the value of the page fix limit does not help to solve
most TCP/IP FOR VSE storage-related problems.

• DLBL and EXTENT cards. You may choose to include DLBL and
EXTENT cards in the TCP/IP FOR VSE startup JCL. Once you do this,
you can make the associated files accessible to the TCP/IP FOR VSE
file system using the DEFINE FILE command.

• // EXEC IPNET. This statement initializes the TCP/IP FOR VSE
partition. You can specify optional parameters in the PARM field of
the // EXEC IPNET card. The parameters you can use are described in
the table below.

Chapter 10 Operation

166

// EXEC IPNET Parameters

Parameter Description

ID Enables you to specify a two-digit identifier for this
copy of TCP/IP FOR VSE. If you run multiple copies
of TCP/IP FOR VSE in the same VSE image, you must
assign a unique two-digit numeric code to each. This
code permits the TCP/IP FOR VSE partitions to
communicate with each other.

The default is 00. If you are running only one copy of
TCP/IP FOR VSE, we highly recommend that you
assign a SYSID of 00 to it. This is because, by default,
all client software provided with TCP/IP FOR VSE
attempts to establish communication with the SYSID 00
TCP/IP FOR VSE. If you assign a different value, you
need to specify an ID= parameter every time you use a
VSE client.

INIT Enables you to specify the member name to be used as
the initial source of TCP/IP FOR VSE’s initialization
parameters. The coded one- to eight-character member
name is searched for as a ‘.L’ book.

The default is IPINITxx.L, where xx is the two-digit
system identifier from the ID= parameter (or its
default). For example, if your TCP/IP FOR VSE
SYSID is 00, TCP/IP FOR VSE pulls its parameters
from IPINIT00.L unless you specify the INIT=
parameter.

UPCASE Translates all console messages to upper case.
TCP/IP FOR VSE translates some initialization console
messages to upper case, even when this parameter is
not specified, because some VSE consoles cannot
display lower-case characters.

Chapter 10 Operation

167

Message Management

TCP/IP FOR VSE uses the VSE console as its command and control
device and, therefore, sends a large number of messages to the console
and SYSLST.

Each message is assigned an importance level or type shown in the table
below. A single-letter routing code that normally corresponds to this
message type is appended to the message identifier. Routing code
examples include ‘I’, ‘E’, and ‘D’. For example, the diagnostic message
“IPN123D” is assigned the ‘D’ routing code.

Each message’s importance level or type is specified in the TCP/IP FOR
VSE Messages manual by the first word in the message description, for
example, “(Diagnostic).”

Message Type Description

Critical Messages that contain information of the highest
importance. These messages require immediate
attention.

Vital Slightly less important than “Critical”

Important Messages that convey information that should be
acted upon, but do not require immediate action

Informational Messages containing general status information

Warning Messages intended to alert you to an unusual but
foreseen situation

Response The response to an operator command (or command
entered by a script or the initialization deck)

Diagnostic Diagnostic messages, which are usually enabled and
disabled by the DIAGNOSE command

Security Messages that have security implications

Messages are written to the console and to one or more log files.
Additional log files can be created by the DEFINE LOG command.
Existing logs (and the console) can be controlled by using the MODIFY
LOG command. These commands are described below.

Note:

Starting in 1.5F, the MODIFY LOG command has replaced the
SET MESSAGE command. For backward compatibility, TCP/IP FOR
VSE still supports SET MESSAGE.

Message Routing

Message Logging

Chapter 10 Operation

168

Use this command to create a new log file. It has the following syntax:

DEFine LOG ID=id,TYPE=PRINTER,LOGICALUnit=lunit
[,LINELength=num] [,TIMEstamp=Left|Right|None] [,levels]

The arguments are as follows:

Parameter Description

ID A unique name to identify the log. The recommended
value is the same as “LOGICALUNIT”.

LINELength The number of displayable positions on each line.
Range is 40 to 132. The default is based on the
device. If a line exceeds this length, it is broken at a
blank and a continuation character (>) is appended.

LOGICALUnit The logical device to be used, for example,
“SYS021”. Can also be specified as “LU”.

TIMEstamp Timestamp placement with respect to each line.
Values are “Left” (the default), “Right”, and “None.”

TYPE The type of log. “PRINTER” is the only valid value.

levels Optional list of message levels/types to be added to or
subtracted from (with a “-NO” prefix) the types to be
logged. The default is to write all messages to the log.
The levels list is processed from left to right. For
example, “ALL,-NODIAG” specifies that all
messages except diagnostic messages are written to
this log. (This is the default for messages written to
the console.) The valid values are as follows:

CRITical
VITAL
WARNing
IMPORTant
INFOrmational
RESPonse
DIAGnose
SECurity
ALL (“-NO” does not apply)
NONE (“-NO” does not apply)

DEFINE LOG

Chapter 10 Operation

169

Use this command to change an existing log file. The syntax is

MODify LOG,ID=id [,LINELength=num]
[,TIMEstamp=Left|Right|None][,levels]

The arguments are described in the table below.

Parameter Description

ID The name of the log to change. Specifying “CONSOLE”
changes the console logging.

LINELength The number of displayable positions on each line. The
range is 4 to 132 (no effect for CONSOLE). When a line
exceeds this length, it is broken at a blank and a
continuation character (>) is appended.

TIMEstamp The timestamp placement. Values are LEFT, RIGHT,
and NONE (no effect for CONSOLE).

levels See the levels description for DEFINE LOG.

Note:

To suppress console traffic by message number, see the section
“Message Suppression” below.

Use this command to determine the current log status.

TCP/IP FOR VSE can translate all messages to upper case before they are
displayed. If you want all messages to display in upper case, issue the
following command:

UPCASE ON

You can issue this command in the TCP/IP FOR VSE initialization deck
or from the VSE console. To return to mixed case console output, you
can issue the following command:

UPCASE OFF

MODIFY LOG

QUERY LOGS

Message-Case
Translation

Chapter 10 Operation

170

TCP/IP FOR VSE contains a message-suppression facility that allows you
to suppress individual messages from the VSE system console. To
suppress a message, issue the MESSAGE command in one of two ways:

MESsage MSGID=message-identifier,CONSOLE=N
-or-
MSG MSGID=message-identifier,CONSOLE=N

The message-identifier is the ID of the message you want to suppress,
such as “ABC123.” Omit the message’s importance indictor (routing
code), such as I, E, or D, at the end of the message identifier.

Like most TCP/IP FOR VSE commands, you can issue this command in
the TCP/IP FOR VSE initialization deck or through the console. See the
next section, “Command Interface,” for details on using the system
console.

Note:

Do not confuse the MESSAGE command synonym “MSG” with the
IBM command “MSG partition-id”.

To reverse the effect of the above command statement, you can issue the
following command:

MESsage MSGID=message-identifier,CONSOLE=Y

See the TCP/IP FOR VSE Command Reference for information on other
keyword parameters you can use with the MESSAGE command.

Message Suppression

Chapter 10 Operation

171

Command Interface

The TCP/IP FOR VSE console interface allows you to issue commands to
the TCP/IP partition in one of two ways:

• Through the VSE console

• Through the IPNETCMD batch program.

TCP/IP FOR VSE contains dozens of commands that enable you to
display, define, start, and stop most aspects of your TCP/IP environment.
These commands are documented in the TCP/IP FOR VSE Command
Reference. Most commands that can be entered in the TCP/IP FOR VSE
initialization job can also be entered at the VSE console. We discuss
each of these mechanisms in the following sections.

You can issue TCP/IP FOR VSE commands on the VSE system console
with a prompt or with the DATA= parameter of the VSE attention
routine (AR) MSG command.

To issue a command from a prompt, first enter the following VSE AR
command at the VSE system prompt.

MSG xx

where xx is the ID of the partition in which VSE is running.

The MSG command produces the following TCP/IP FOR VSE command
prompt:

yy-zzzz IPN300A Enter TCP/IP Command

where

• yy is the partition ID

• zzzz is the reply number that you use to enter your command

Once the TCP/IP FOR VSE command prompt appears, you can issue
TCP/IP FOR VSE commands through the console by replying to the
message.

For example, assume that the following message is displayed on your
console:

F8-0090 IPN300A Enter TCP/IP Command

Issuing Commands
through the VSE
Console

Using a TCP/IP Prompt

Chapter 10 Operation

172

You can enter the following reply to display the status of telnet sessions:

90 Q TELNETDS

To eliminate the TCP/IP FOR VSE command prompt, reply to the
message with a null string. You can also prevent your operators from
eliminating the command prompt. To maintain the command prompt
even when the null string is entered, issue the following command:

CONSOLE_HOLD ON

To issue a TCP/IP command from the console with the DATA=
parameter, enter the following VSE AR command statement:

MSG xx,DATA=tcp-ip_command

where xx is the ID of the partition in which VSE is running.

This method can be used only if no outstanding console read is active on
the VSE system console for the TCP/IP partition. To suppress a currently
active console read, you can issue:

CONSOLE_HOLD OFF

A “IPN482I TCP/IP for VSE reply ID will not be maintained” message
should then be displayed. After replying with EOB to this message, you
should then be able to issue the “MSG xx,DATA= ” command.

For example, you can enter the following command to display the status
of FTP sessions (internal FTP daemons) in the TCP/IP FOR VSE
partition:

MSG xx,DATA=Q FTPD

In general, TCP/IP FOR VSE commands that you enter on the console are
displayed on SYSLST. You can suppress the display for sensitive
commands by beginning the command with a plus sign (+).

The example below shows how to suppress the PASSWORD command
from the SYSLST display. Note that sensitive material entered by the
operator can still appear on the console and in SYSLOG.

This display and logging is controlled by VSE and cannot be prevented
by TCP/IP FOR VSE.

DEFINE USER,ID=JOHN, -
+PASSWORD=DECAF

Using MSG with the
DATA= Parameter

Suppressing Entered
Strings

Chapter 10 Operation

173

TCP/IP FOR VSE allows a user to issue commands to the TCP/IP FOR
VSE partition through a batch job named IPNETCMD. To run
IPNETCMD, use the following JCL:

* $$ JOB JNM=IPNETCMD,CLASS=0,DISP=D
* $$ LST CLASS=A
// JOB IPNETCMD
// LIBDEF *,SEARCH=(PRD2.TCPIP)
// EXEC IPNETCMD,PARM='ID=xx'
 TCP/IP for VSE command 1
 TCP/IP for VSE command 2
/*
/&
* $$ EOJ

The only parameter you can pass to the IPNETCMD facility is ID=xx,
where xx is the identifier of the TCP/IP FOR VSE partition that you are
sending the commands to.

If you use IPNETCMD, note the following:

• If you have enabled command security with the SET PASSWORD
command in the initialization deck, the TCP/IP FOR VSE password
must be the first command in the job stream.

• All output from your TCP/IP FOR VSE commands is sent to the
console.

• The IPNETCMD command processor attempts to issue ALL
commands in the input stream. It does not stop if it encounters an
invalid command.

• If DOWNCHECK is set to ON (meaning that you want to be
prompted for confirmation after a SHUTDOWN command is issued),
you cannot issue SHUTDOWN from IPNETCMD.

The return codes from the IPNETCMD batch job are as follows:

Return
Code Description

0 The IPNETCMD job was successful, and all commands
entered in the input stream were processed.

8 The IPNETCMD job had at least one command that was not
processed successfully. Consult the listing for the job to
determine which command failed. You also receive a return
code of 8 if the ID= parameter in the EXEC statement has a
syntax error. Finally, you receive this return code if the
TCP/IP FOR VSE system identifier specified in the ID=
parameter is inactive.

Issuing Commands
through IPNETCMD

Chapter 10 Operation

174

Return
Code Description

16 The IPNETCMD command processor encountered a severe
internal error. Please contact CSI Technical Support for help.

24 The IPNETCMD command processor encountered a severe
internal error while attempting to load an internal task.
Check to see if you are running the program in a large
enough partition (greater than 2 MB). If you are, call CSI
Technical Support for help.

Chapter 10 Operation

175

Shutdown Processing

TCP/IP FOR VSE should run until you specifically request termination.
You can terminate TCP/IP FOR VSE or application processing using one
of the following methods:

• Application (process) shutdown

• Normal shutdown

• Cancel

• Cancel with force

To terminate application processing gracefully, issue the QUIESCE ON
command. This command causes TCP/IP FOR VSE to reject socket
OPEN requests from applications and connection requests from external
hosts. Processing of established connections continues uninterrupted.
This permits work in progress to complete while new tasks are
prevented.

To cancel the QUIESCE ON command, issue QUIESCE OFF. When the
OFF option is used, socket OPEN requests and connection requests are
honored once again, and normal processing is resumed.

When QUIESCE ON is issued, TCP/IP FOR VSE responds as follows:

• Applications issuing socket OPEN requests are notified of a system
shutdown, and incoming connection requests are rejected with a
RESET. Depending on the host and the application, it may not be
possible to resume processing.

• A periodic console display shows the progress of terminating
processes. This display includes a count of active connections by local
port number. These messages are shown in the following example:

F4 0099 T101: IPN225I TCP/IP quiescing; connection requests are rejected
...
F4 0099 000D: IPI515I TCP/IP Stack QUIESCE progress
F4 0099 000D: IPI516I 1 connections active on port 21
F4 0099 000D: IPI516I 5 connections active on port 23
...
F4 0099 000D: IPI517I TCP/IP processing has been quiesced

The messages are displayed periodically until you issue QUIESCE
OFF or TCP/IP FOR VSE shuts down.

Application Shutdown

Chapter 10 Operation

176

To terminate TCP/IP FOR VSE normally, issue the SHUTDOWN
command as a TCP/IP FOR VSE operator command. The SHUTDOWN
process is controlled in that TCP/IP FOR VSE stops all TCP/IP-related
activities, link drivers, and processes before terminating. During the
shutdown process, messages indicate progress.

The TCP/IP partition should end with a return code of zero. Non-zero
return codes are used when the stack cannot issue messages to explain
the problem. These codes are issued when stack initialization fails.

The shutdown return codes are explained in the following table:

Return
Code Description

0 Normal completion

4 Unable to locate the messages skeleton member. This source
book (MESSAGES.M) is required. If it cannot be located,
IPNET terminates without issuing any messages. Check the
LIBDEF statement and make sure that the member is in the
search chain.

8 A GETSL macro failed while reading the message skeletons.
Ensure that the correct version of the MESSAGES.M
member is first in the search chain. Check the library for
damage. If necessary, reinstall TCP/IP FOR VSE and the
latest service pack.

12 Critical GETVIS shortage. Insufficient partition GETVIS
area is available to load the message skeletons. Increase the
partition size by at least 6 MB.

There are two points to keep in mind regarding shutdown processing:

• TCP/IP FOR VSE prompts you to ensure that you really want to shut
down the partition. The message you receive is:

IPN205A Are you sure you want to SHUTDOWN YES or NO

You can suppress this message with the following command:

DOWNCHECK OFF

• If you run VSE in a virtual machine, make sure that you do not

inadvertently issue the SHUTDOWN command to CP instead of to
TCP/IP FOR VSE.

Normal Shutdown

Chapter 10 Operation

177

If the TCP/IP FOR VSE partition becomes non-responsive, you may need
to cancel it. To do this, issue the following command:

CANCEL xx

Variable xx is the ID of the partition in which TCP/IP FOR VSE is
running. TCP/IP FOR VSE responds by going through a controlled
shutdown and terminating normally.

If the TCP/IP FOR VSE partition becomes non-responsive and the
CANCEL command has no effect, you may need to cancel with force. To
do this, issue the following command:

CANCEL xx,FORCE

Variable xx is the ID of the partition in which TCP/IP FOR VSE is
running. TCP/IP FOR VSE ends immediately. The TCP/IP FOR VSE error
exits do not get control, however, and the product may not terminate
cleanly. You should use the FORCE parameter only as a last resort
because the results are unpredictable.

Cancel

Cancel with Force

Chapter 10 Operation

178

Restart Processing

If TCP/IP FOR VSE ends without going through its normal shutdown
process, it probably did not have a chance to fully clean up its
environment. This can happen if the operator cancels the partition with
the FORCE parameter or if the partition abends. If this occurs, you may
have problems the next time you start TCP/IP FOR VSE. Sometimes the
product initializes and then detects that it was not shut down cleanly.
TCP/IP FOR VSE then runs a controlled shutdown and termination. At
the next restart, TCP/IP FOR VSE should initialize normally.

The following console listing shows the messages that TCP/IP FOR VSE
issues during a restart:

F4 0099 IPN100I TCP/IP VERSION 02.01.xx 03/03/16 22.56, INITIALIZING
F4 0099 IPN102I COPYRIGHT 1995,20xx (C) CONNECTIVITY SYSTEMS INC.
F4 0099 IPN209I Service Pack xxxx (APAR PK33472) has been applied. Pack >
F4 0099 status is GA
F4 0099 IPN119E Socket queue previously allocated to this partition
F4 0099 IPN146I TCP/IP Beginning Shutdown
F4 0099 IPN597I Shutdown Stage: 4: Network termination (max. 10 seconds)
F4 0099 IPN597I Shutdown Stage: 11: Subtask Terminations
F4 0099 IPN597I Shutdown Stage: 12: Operating System Interface Removal
F4 0099 IPN597I Shutdown Stage: 13: Printing Statistics
F4 0099 IPN597I Shutdown Stage: 14: Terminating Console Logging
F4 0004 EOJ PROD MAX.RETURN CODE=0000

This is a standard process that occurs whenever TCP/IP FOR VSE does
not terminate normally. For this process to work, TCP/IP FOR VSE must
restart in the same partition in which it ran before. If you try to start
TCP/IP FOR VSE in a different partition, it produces an error message
and shuts down. This is normal. To recover TCP/IP FOR VSE, you must
restart it in the same partition.

Chapter 10 Operation

179

CHECKTCP Utility

Some partitions depend on TCP/IP FOR VSE. You must verify that
TCP/IP FOR VSE is active before these partitions start. For example, if
you use the CICS web interface, you want to delay CICS initialization
until after TCP/IP FOR VSE starts. If a socket application relies on
TCP/IP FOR VSE, you need to ensure that it does not start before TCP/IP
FOR VSE is active.

The CHECKTCP utility helps you accomplish these objectives. You can
run CHECKTCP in any job stream that requires the use of TCP/IP FOR
VSE. CHECKTCP can wait for TCP/IP FOR VSE to become active (thus
delaying the entire job stream), or it can immediately terminate so that
you can take action based on a VSE conditional JCL.

The following sample job stream uses CHECKTCP:

* $$ JOB JNM=CHECKTCP,CLASS=Y,DISP=D
* $$ LST CLASS=A,DEST=(*,MSCHARE)
// JOB CHECKTCP
// LIBDEF *,SEARCH=PRD2.TCPIP
// EXEC CHECKTCP,SIZE=CHECKTCP,PARM='SYSID=00,WAIT=Y'
/*
/&
* $$ EOJ

The CHECKTCP parameters are as follows. Some parameters are not set
to a value.

Parameter Description

DEBUG Enables additional debugging messages

QUIET Suppresses output to SYSLOG

SYSID=nn Specifies the 2-byte SYSID of the TCP/IP FOR VSE
partition that you need to be active. The default is 00.

UPPER Forces messages to be issued in upper case

WAIT=[Y | N] Specifies whether CHECKTCP should wait for the
stack to become active. If WAIT=Y, CHECKTCP
keeps waiting until the stack is ready for SOCKET
applications to run. The only way to terminate the wait
is to issue a MSG xx command to the partition where
CHECKTCP is waiting. MSG terminates CHECKTCP
with a return code of 12.

If WAIT=N, CHECKTCP terminates immediately
with RC=4 (stack is not available) or RC=0 (stack is
available). The default is N.

Chapter 10 Operation

180

The CHECKTCP return codes are as follows:

Return
Code Description

0 The TCP/IP FOR VSE partition specified by the SYSID is
active.

4 The TCP/IP FOR VSE partition specified by the SYSID is
inactive. It shut down normally in its last run, or it was never
active.

8 The TCP/IP FOR VSE partition specified in the SYSID
parameter is inactive. It terminated abnormally in its last run
and is therefore awaiting restart and recovery processing.

12 The operator entered the command MSG xx in the
CHECKTCP partition, thus terminating the wait.

16 The TCP/IP FOR VSE partition specified in the SYSID
parameter is active but is not responding to socket requests.

Chapter 10 Operation

181

Event Publisher

The TCP/IP FOR VSE Event Publication Facility provides simplified
interfacing between TCP/IP-related events and automation processing.

Events are published by the PUBLISH macro. This macro, called from
inside or outside the TCP/IP partition, uses the standard SOBLOK
method to queue an event notification for publication. The target TCP/IP
partition processes each of the queued notifications and directs these
notifications to other processes. The processes include

• IMODs running under CSI-FAQS/ASO

• On- and off-platform processes with a socket connection to a
Publisher daemon.

A unique item number identifies each published item. The item
dictionary contains each assigned item number along with its format.

Items consist of an item header followed by a string of elements. Each
element consists of a

• Length field

• Type field

• Data field

The length field is a halfword containing the offset to the next element,
not counting the length field. For example, a length field of x'0000'
indicates a null element, with the next element length field immediately
following.

The element number is the second field in each element and is a
halfword value that uniquely identifies the element.

The last field contains the element’s value. This is entirely dependent on
the element number.

The following processing rules apply:

• All items are optional.

• Once an element is assigned a value/format, it will not change.

• No item or element may be used unless it appears in the dictionary.

• Items and elements may be used only as they appear in the dictionary.

• Any code that processes “published” data MUST ignore or accept
without error all items and elements as they are defined.

Item Format

Processing Rules

Chapter 10 Operation

182

Each published item begins with a fixed-format header block containing
the following fields:

Field Format Description

Length Unsigned halfword Length of entire item, not
counting the Length field

Version Unsigned byte Format version of this item,
currently X’01’

 1 byte Reserved

 1 fullword Reserved

Time TOD clock value
(DBL word)

TOD value at time of
publication (GMT)

Home IP IPv6 address (16 bytes) IP address of the stack
publishing the item

Offset Signed fullword Local offset from GMT for
TOD value

Class Classification flags (16 bits)

 2 bytes Reserved

Item Unsigned fullword The item number

In the following table, elements not included in brackets are always
present. Those shown within brackets are optional. Elements shown
within the same set of brackets will either be all present or all absent.
Elements not specified in the table must be parsed and ignored. The
“Status” column indicates the item’s current status: “D” indicates draft,
“P” indicates provisional, and “S” indicates standard.

Item Name Elements Status

1 FTP File Received 1, 2, 4, 6, 7 [,8] [,9 ,10] D

2 FTP File Sent 1, 2 [,3], 4, 6, 7 [,8] [,9 ,10] D

3 FTP File Sent 4, 7, 9, 10, 11, 12 D

Item Header

Item Dictionary

Chapter 10 Operation

183

In the following table, the “Status” column indicates the element’s
current status: “D” indicates draft, “P” indicates provisional, and “S”
indicates standard.

Num Name Elements Status

1 Foreign IP address Binary, 1 to 16 bytes, lead
zeros optional

D

2 Local File Name EBCDIC, 2 to n bytes. Byte
one contains the separator
character (\ / .), followed by the
name.

D

3 Foreign File Name EBCDIC, 2 to n bytes (see
element 2)

D

4 Completion and
reason codes

Binary, 4 bytes (2 bytes each) D

5 Record count Binary, 1 to 8 bytes D

6 Byte count Binary, 1 to 8 bytes D

7 Duration Binary, 1 to 8 bytes (lead zeros
optional) TOD format

D

8 User name EBCDIC, 1 to n bytes. D

9 Job name EBCDIC, 1 to n bytes D

10 Job number EBCDIC, 1 to n bytes D

11 Phase name EBCDIC, Values:
“FTPBATCH”, “CLIENT”,
others

D

12 User-specified token EBCDIC, 1 to n bytes D

You can cause selected publishing events to trigger CSI-FAQS/ASO
IMODs. The IMOD can then parse the elements and perform appropriate
automation tasks.

To activate IMOD triggering, use the following TCP/IP FOR VSE
command:

DEFINE PUBLISHER,ID=id,IMODLIST=member

Where member is a library “L” book with the following format:

Element Dictionary

Executing IMODs

Chapter 10 Operation

184

001 IMOD $FTPFRCV /* FTP FILE RECEIVED
002 IMOD $FTPFSNT /* FTP FILE SENT

The first field is the item number; the second is the keyword “IMOD”;
and the third is the IMOD name. The remainder of the record is treated
as a comment. Lines that begin with an asterisk (*) are treated as
comments.

See the TCP/IP FOR VSE Command Reference for information on the
following commands:

Command Description

DEFINE PUBLISHER Defines a Publisher daemon

DELETE PUBLISHER Terminates a Publisher daemon

QUERY PUBLISHER Displays the status of the Publisher
daemon

Related Commands

185

11
11. ASCII-to-EBCDIC Translation

Overview

TCP/IP FOR VSE has to work with three distinct file types. They are

• EBCDIC

• ASCII

• Binary, also referred to as image or image mode.

When working with EBCDIC and ASCII files, each byte’s absolute
value is interpreted as a particular symbol or usage. To interpret each
byte correctly, TCP/IP FOR VSE consults a map. For example, in an
EBCDIC-based system, the hex value C1 is interpreted as the letter “A.”

Binary files are never translated. For binary files, the values of the
individual bytes are absolute and have the same meaning regardless of
the platform.

The map between a hex value and a symbol is referred to as a code page.
Code pages are standardized mappings and are defined for a large
number of special uses, especially to accommodate symbols that are
specific to a nationality. The code pages used by TCP/IP FOR VSE are
the ones defined by IBM. Code pages are not code; they merely
document that a certain EBCDIC value or a certain ASCII value
represents a known symbol, such as the letter “A,” a US “$,” or the
European Euro symbol.

EBCDIC, the Extended Binary Code for Data Inter-Change, is an eight-
bit code developed by IBM for use on their computers. Its 256 characters
have a one-to-one correspondence with each possible byte value used in
the IBM architecture.

EBCDIC

http://www.csi-international.com/

Chapter 11 ASCII-to-EBCDIC Translation

186

ASCII, the American Standard Code for Information Interchange, is a
long-standing code that is used by most non-IBM mainframe computers.
Although ASCII is a seven-bit code with 128 characters, a non-official
extended ASCII code is in general use. The extended ASCII code
contains an additional 128 characters.

When data is transmitted between hosts that operate with different codes,
translation must occur. For example, FTP sessions must translate not
only the files being transmitted, but also the control information
(commands and responses).

Translations between EBCDIC and ASCII code pages can be tricky.
There are a variety of problems that can occur, including the following:

• TCP/IP’s default code is ASCII. This means that TCP/IP translates all
data to ASCII before it ships it, unless you specifically tell it to
translate the data in a different manner. If you FTP a file from one
TCP/IP FOR VSE site to another TCP/IP FOR VSE site without specific
translation instructions, the file is translated to ASCII, transmitted, and
retranslated to EBCDIC. If both ends of the connection do not use the
same reversible translation tables, then the received dataset is not a
mirror image of the transmitted file. You can solve this problem by
telling TCP/IP how to translate the data. In this case, for example, you
would tell TCP/IP to use EBCDIC for translation. Note that control
information and commands are always translated to ASCII for
transmission.

• UNIX clients assume that ASCII and binary are the same. This is
because the UNIX people got there first. If IBM had developed
TCP/IP, things would be different. EBCDIC and binary would be one
and the same. Unfortunately (for us) they didn’t and they aren’t. This
means that TCP/IP FOR VSE sometimes must make adjustments.
When a UNIX-based client requests a binary mode transmission, we
must decide if it should be real binary or ASCII-binary. We generally
make this determination based on the file name extension. For more
information on file name extensions, see the description of the
EXTTYPES.L parameter file in chapter 6, “Configuring FTP
Daemons.”

• Some records contain both text and binary (numeric) data. This
problem is beyond our control. When you need to transmit this type of
file, you need to make your own arrangements.

• Different systems use different record formats. Under VSE, records
exist as fixed length, variable length, and string. There are no
delimiters. All file types can contain text or binary data. When
shipped through TCP/IP, however, there are no fixed-length records
and, in general, the remote machine probably won’t support fixed-
length records.

ASCII

Translation

Problems

Chapter 11 ASCII-to-EBCDIC Translation

187

Also, EBCDIC records always end with a new line (NL) character
(X'15'), and ASCII records end with a carriage return line feed pair
(X'0D0A'). These characters cannot be embedded in the records.

Binary files are treated as a single string of bytes, and such files have
no record structure. Thus, the choice of translation affects the record
format of the file. In practice, you can use FTP SITE commands to
help recreate the desired record formats.

Chapter 11 ASCII-to-EBCDIC Translation

188

Translation Options

TCP/IP FOR VSE provides several options for translating between ASCII
and EBCDIC. All options use standard translation tables. But, the choice
of table for each translation can be made in several ways.

An internal translation table with the name SYSTEM translates
commands, command responses, and status information processed by
TCP/IP FOR VSE clients and daemons. You have no control over the
definition and use of the SYSTEM table.

Following is the order of precedence for specifying the translation table
used for FTP file transmissions. The lowest priority is listed first. As you
proceed down the list, each level overrides the previous one.

• The translation table set as the system default table (set by the
DEFINE TRANSLATION command)

• SITE command

• TRANSLATE= parameter of the DEFINE FTPD command that
started the FTP daemon being used

• TRANSLATE= parameter of the DEFINE FILE command of the file
that is being transferred. This means that if you specify a
TRANSLATE parameter on the DEFINE FILE command, it cannot be
overridden when the user tries to transfer the file.

Following is the order of precedence for specifying the translation table
used for text files sent to web browsers. The lowest priority is listed first.
As you proceed down the list, each level overrides the previous one.

• The translation table set as the system default table (set by the
DEFINE TRANSLATION command)

• The TRANSLATE= parameter of the DEFINE HTTPD command

• The TRANSLATE= parameter of the DEFINE FILE command that
defines the file from which the page is being fetched.

Following is the order of precedence for specifying the translation table
used for files processed by LPR (and Auto-LPR). The lowest priority is
listed first. As you proceed down the list, each level overrides the
previous one.

• The translation table set as the system default table (set by the
DEFINE TRANSLATION command).

• The TRANSLATE= parameter of the DEFINE FILE command from
which the source is taken. For Auto-LPR, this is the file whose public
name is POWER.

Control Operations

FTP

HTTP

LPR

Chapter 11 ASCII-to-EBCDIC Translation

189

• The LPR SET TRANSLATE command.

Following is the order of precedence for specifying the translation table
used for files processed by the LPD daemon. The lowest priority is listed
first. As you proceed down the list, each level overrides the previous one.

• The translation table set as the system default table (set by the
DEFINE TRANSLATION command).

• The TRANSLATE= parameter of the DEFINE LPD command.

• The TRANSLATE= parameter of the DEFINE FILE command that
defines the file where the listing is to be placed. This includes the
POWER file.

TN3270 data streams are not translated because TN3270 clients operate
in EBCDIC mode. If characters do not display as desired, check the
client software’s documentation for information about selecting a
different code page.

Line-mode telnet sessions established with external daemons by TCP/IP
FOR VSE’s CICS-based and batch clients are translated using an
internally defined table. You can override the name of this translate table
by using the SET TELNET_TRANSLATE console command on TCP/IP
FOR VSE.

LPD

Telnet

Chapter 11 ASCII-to-EBCDIC Translation

190

Translation

TCP/IP FOR VSE accepts standard translation and null translation, which
are explained in this section.

TCP/IP FOR VSE ships with standard translation tables and code pages.
There are two types of translation tables, as follows:

• Single byte, sometimes referred to as SBCS. The member
IPXLATE.L contains a large number of single-byte translation tables.

• Double byte, sometimes referred to as DBCS. For double-byte
translation, we provide code pages in CHINA.L, JAPAN.L, and
KOREA.L. Because of their size, the DBCS code page tables are not
included in the installation job stream. You can obtain them from CSI
International’s FTP server, the CSI web page
www.csi-international.com/products/zVSE/TCP-IP/TCP-IP.htm, or
from an IBM PTF.

We strongly recommend that you do not modify the original
members. If you need a different translation table, copy the table that
most closely resembles what you need to a new library member, change
the new library member, and then add a definition for this new member
and table name(s) to your TCP/IP FOR VSE initialization member.

A single-byte translation member contains paired, bi-directional
EBCDIC/ASCII translation tables. Each record in the member is an
80-byte text record. The records are structured as follows:

• The first record in the member is a descriptor record that can contain
any type of text. When the member is processed, this record is read
and discarded.

• The following records consist of one or more translation tables. Each
translation table consists of the following records:

 An identifier record containing a 1- to 16-character entry name.

 A set of 16 records that defines the EBCDIC-to-ASCII table.

 A set of 16 records that defines the ASCII-to-EBCDIC table.

The records that define the translation tables consist of assembler-style
16-byte hexadecimal constants. There must be no leading blanks. A
comment may be added starting at column 45. The following line
contains a sample record:

X'000102030405060708090A0B0C0D0E0F'

Standard Translation

Single-Byte Member

http://www.csi-international.com/products/zVSE/TCP-IP/TCP-IP.htm

Chapter 11 ASCII-to-EBCDIC Translation

191

A double-byte member contains code page definitions in which each
character is identified by its symbolic name and is mapped to a two-byte
hexadecimal value. Each double-byte member contains a series of
EBCDIC and ASCII code pages. These code pages are arranged in a
columnar fashion. Each code page occupies a set of columns that spans
all of the records in the member. The records are structured as follows:

• The first record contains the code page names. The first field is the
string ID. This is followed by a series of code page names, separated
by one or more blanks. The code page numbers are standardized.

• The second record begins with the string LOW. This is followed by
the lowest hexadecimal value defined for each code page. Again, the
fields are separated by one or more blanks.

• The third record begins with the string HIGH. This is followed by the
highest hexadecimal value defined for each code page. Again, the
fields are separated by one or more blanks.

• The fourth record begins with the string FILL. The values that follow
are used to fill in all code page positions that are not explicitly
defined. Note that the fill value is associated with the target code page.

• The remaining records contain data points. The first field in each
record contains the symbolic name assigned to a character. The
remaining fields contain the hexadecimal value that maps each code
page to the character. If a character is not defined in a code page, the
string ‘****’ is used as filler.

The data point records occur in ascending collating sequence by
character name. If a character can be represented by more than one
hexadecimal value, the data point record can be repeated as often as
required with redundant values replaced by ****. When multiple
values are assigned to the same symbol, the value specified last is
considered to be the preferred value. Code pages containing duplicate
definitions for symbols do not yield reversible translations.

It is sometimes convenient to bypass translation. TCP/IP FOR VSE
defines a special translation table called the NULL translate table. When
TCP/IP FOR VSE encounters a request to perform translation using a
translate table named NULL, the translation routine is completely
bypassed. Note that there is no translate table called “NULL,” so if you
want NULL translation with one or two changes, you need to define a
custom translate table.

Double-Byte Member

Null Translation

Chapter 11 ASCII-to-EBCDIC Translation

192

The CSTRAN Macro

You can use the CSTRAN macro to generate translation table pairs and
to create the single-byte translation member. Its use is not required, and
you can code the ‘.L’ members directly if you want.

The macro provides the following functions:

• Generates any CSI International-provided table by specifying its
name.

• Permits you to code a table by providing overrides to a standard table.

• Generates the reverse translation table automatically after you specify
a table pair.

• Flags non-unique translations (those where two or more characters
translate to the same value).

The CSTRAN macro continues to support the previously documented
high-level assembler format. But, because there is no benefit over the
F-level assembler form, we now restrict our documentation to the single
form.

As you code the CSTRAN macro, be especially careful about commas,
equal signs, and continuation characters. Many technical support calls on
this subject are due to missing punctuation.

The format of the CSTRAN macro is shown below.

CSTRAN ['id',]NAME=name,FIRST=table, *
 [,CODEPG=pg][,UNIQUE=YES|NO][,REVERSE=YES|NO], *
 E2AX=' 0 1 2 3 4 5 6 7 8 9 A B C D E F', *
 E2A0='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh', *
 E2A1='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh', *
. . .
 E2AF='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh', *
 A2EX=' 0 1 2 3 4 5 6 7 8 9 A B C D E F', *
 A2E0='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh', *
 A2E1='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh', *
. . .
 A2EF='hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh hh'

Purpose

Syntax

Chapter 11 ASCII-to-EBCDIC Translation

193

The CSTRAN parameters have the following meanings:

Parameter Description

id A 1- to 40-byte identification string that occupies the
first record of the translation member. This field is
enclosed in single quotes. The field is ignored except for
the first occurrence of the CSTRAN macro in the
assembly.

NAME A 1- to 16-byte name to be applied to the generated
translation table pair. This name is the “ENTRY=” name
referred to by the DEFINE TRANSLATION command.

FIRST The value for this parameter, table, can be either E2A
(for EBCDIC to ASCII) or A2E (for ASCII to
EBCDIC). It determines which table is processed first.
This is an important consideration because the table that
is processed second may have the reverse of the first
table for its default values. When coding this value, do
not enclose it in quotes.

hh A two-digit hexadecimal field. Each sub-argument
keyword specifies values for 16 positions in a translation
table. Keywords E2An= (where n is a hexadecimal value
from 0 through F) define the EBCDIC to ASCII table
and keywords A2En= (where n is a hexadecimal value
from 0 through F) define the ASCII to EBCDIC table.

The two-digit hexadecimal values are separated from
each other by single spaces, and omitted values are
coded as two blanks. In this way, the table is coded as a
grid. You can code the keyword parameters in any order
and you can omit blank lines; however, coding
keywords in order makes reading the table easier.

E2AX
A2EX

Two special keywords are available for use as labels for
the columns of your tables. The values coded for these
two keywords are ignored and are not processed.

UNIQUE=
[YES | NO]

This parameter determines whether non-unique
translations are flagged as warnings. Non-unique
translations are those where two or more characters
translate to the same value, meaning that accurate
reverse translation of data is not possible. Coding NO
suppresses the warning messages. Coding YES (the
default) generates warning messages.

Chapter 11 ASCII-to-EBCDIC Translation

194

Parameter Description

pg This value specifies code pages to be used to generate
the translation tables. The values in the specified code
pages provide the starting point for building the tables.
Any value that you provide overrides the corresponding
code page value. The default value is “CSI.” Allowable
values are listed in “Code Pages” on page 195.

REVERSE=
[YES | NO]

After the macro generates the first translation table, it
normally reverses the values and generates the second
table. Any values you provide are then used as overrides
to these defaults. But, some translation tables are NOT
reversible. By coding REVERSE=NO, you force the
CSTRAN macro to use its internally defined default
tables for both E2A and A2E tables. You must then
explicitly provide your overrides for both translation
directions.

The CSTRAN macro processes all specified data before generating the
translation tables. You can code the tables in either order (the macro
always generates the ASCII-to-EBCDIC table first).

The macro uses the following algorithm:

• You specify the source for the default table values.

• The macro creates the default table for the specified translation
direction.

• The macro processes your data specifications as overrides to the
default table.

• The macro creates the second table’s default values by inverting the
first table unless you specify REVERSE=NO, in which case it uses the
internal default values.

• The macro processes your data specifications as overrides to the
derived (or default) second table. If you provide no data, the second
table exactly reverses the first table’s action (unless you specify
REVERSE=NO).

• If you specify UNIQUE=YES, either by code or by default, the macro
may provide a list of characters whose translations are not unique. The
list identifies situations where two or more characters translate to the
same value and, therefore, the translations cannot be reversed.

The output from the CSTRAN macro is the .L book used to load
translation tables. CSTRAN does not generate object code or TXT decks.
Do NOT submit the assembler output to the linkage edit; it will not work.

Macro Operation

Assembly Output

Chapter 11 ASCII-to-EBCDIC Translation

195

To load and use a translation table, use the DEFINE TRANSLATION
command. The command syntax for loading a single-byte table follows.

DEFine TRANslation,MEMber=mem[,NAMe=name][,ENTry=entryname]

DEFine TRANslation,DEFault=name

In this command, mem is the member name of the .L book that contains
the translation table(s) and entryname is the specific translate table that
you want to load. If you load a specific translate table, you can assign
this table a different name in storage using the NAME parameter. If you
omit the ENTRY field, all tables in the specified member are loaded and
they are assigned the same name in storage as the entryname.

To set the system default translation table, use the DEFAULT parameter
either by itself or appended to another DEFINE TRANSLATION.

Once a translation table is loaded, it cannot be deleted. You can,
however, redefine the table by loading it again.

The CSTRAN macro constructs tables based upon a number of IBM
standard code pages. You specify which code pages are used by means
of the CODEPG= parameter. The following table shows each value for
CODEPG= and the corresponding code pages generated. All of the
following tables are shipped in member IPXLATE.L. You can load them
by using the DEFINE TRANSLATION command and the Entry Name
from the table.

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

ARABIC_01 420864 420 864 420 Arabic
864 PC Data
* Enforced Subset Match

ARABIC_02 420864 420 864 420 Arabic
864 PC Data
* Customized Round Trip

ARABIC_03 420864 420 864 420 Arabic
864 PC Data
* Round Trip Algorithm One

ARABIC_04 4201089 420 1089 420 Arabic
1089 Arabic (ISA 8859-6)

ARABIC_05 4201256 420 1256 420 Arabic
1256 PC Data
1256 MS Windows

BALTIC_01E B56901RT 1156 901 Multi with Euro (PC) (Round Trip)

Activating a Table

Code Pages

Chapter 11 ASCII-to-EBCDIC Translation

196

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

BALTIC_02E B56901ES 1156 901 Multi with Euro Enforced Subset

BALTIC_03E B565353RT 1156 5353 Multi with Euro MS Windows
Round Trip

BALTIC_04E B656353ES 1156 5353 Multi with Euro MS Windows
Enforced Subset

BELGIUM_01 500437 500 437 500 International Latin-1
437 PC Data, PC Base
* Customized Round Trip

CHINA_01 037A43 037 1043 037 USA, CANADA − CECP
1043 Traditional Chinese Extended
− PC

CHINA_02 8361114 836 1114 836 Simplified Chinese Extended
1114 Republic of China (ROC) −
PC

CHINA_03 8361115 836 1115 836 Simplified Chinese Extended
1115 People’s Republic of China
(PRC) − PC

DN 02E 1142858 1142 858 1142 Denmark, Norway ECECP
858 PC Multilingual with Euro

DN_01 277437 277 1252 277 Denmark, Norway
437 PC Multilingual

DN_02 277850 277 1252 277 Denmark, Norway
850 PC Data MLP
222 Latin-1 Countries

DN_03 2771252 277 1252 277 Denmark, Norway
1252 MS Windows, Latin-1

DN_03E 11425348 1142 5348 1142 Denmark, Norway ECECP
(Euro)
1252 MS Windows, Latin-1 (Euro)

DN_03E 11435348 1143 5348 1143 Finland, Sweden ECECP
1252 MS Windows, Latin-1 (Euro)

FRANCE_01 297437 297 437 297 France − CECP
437 PC − Multilingual

Chapter 11 ASCII-to-EBCDIC Translation

197

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

FRANCE_02 297850 297 850 297 France − CECP
850 PC Data MLP
222 Latin-1 Countries

FRANCE_02E 1147858 1147 858 1147 France ECECP
858 PC Multilingual with Euro

FRANCE_03 297A52 297 1252 297 France − CECP
1252 MS Windows, Latin-1

FRANCE_03E 11475348 1147 5348 1147 France ECECP (Euro)
1252 MS Windows, Latin-1 (Euro)

FS_01 278437 278 1252 278 Finland, Sweden
437 PC Multilingual

FS_02 278850 278 1252 278 Finland, Sweden
850 PC Data MLP
222 Latin-1 Countries

FS_02E 1143858 1143 858 1143 Finland, Sweden ECECP
858 PC Multilingual with Euro

FS_03 2781252 278 1252 278 Finland, Sweden
1252 MS Windows, Latin-1

GERMAN_01 273437 273 437 273 Germany, Austria − CECP
437 PC − Multilingual

GERMAN_02 273850 273 850 273 Germany, Austria − CECP
850 PC Data MLP
222 Latin-1 Countries

GERMAN_02E 1141858 1141 858 1141 Austria, Germany ECECP
858 PC Multilingual with Euro

GERMAN_03 273A52 273 1252 273 Germany, Austria − CECP
1252 MS Windows, Latin-1

GERMAN_03E 11415348 1141 5348 1141 Germany, Austria − CECP
1252 MS Windows, Latin-1 (Euro)

INTER_01 5001252 500 1252 500 International Latin-1
1252 MS Windows, Latin-1

INTER_01E 1148858 1148 858 1148 International ECECP (Euro)
1252 MS Windows, Latin-1 (Euro)

Chapter 11 ASCII-to-EBCDIC Translation

198

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

INTER_02 500850 500 850 500 International Latin-1
850 PC Data MLP
222 Latin-1 Countries

INTER_02E 11485348 1148 5348 1148 International ECECP (Euro)
1252 MS Windows, Latin-1 (Euro)

ITALY 02E 1144858 1144 858 1144 Italy ECECP
858 PC Multilingual with Euro

ITALY_01 280437 280 437 280 Italy − CECP
437 PC − Multilingual

ITALY_02 280850 280 850 280 Italy − CECP
850 PC Data MLP
222 Latin-1 Countries

ITALY_03 280A52 280 1252 280 Italy − CECP
1252 MS Windows, Latin-1

ITALY_03E 11445348 1144 5348 1144 ITALY ECECP (Euro)
1252 MS Windows, Latin-1 (Euro)

JAPAN_01 10271041S 1027 1041 1027 Japanese Latin, extended Host
1041 Japanese PC Data, extended
* Enforced Subset

JAPAN_02 10271041R 1027 1041 1027 Japanese Latin, extended Host
1041 Japanese PC Data, extended
* Round trip algorithm 2

JAPAN_03 1027897 1027 897 1027 Japanese Latin, extended Host
897 Japanese PC Data SB
* Customized Enforced Subset

JAPAN_04 1027290 1027 n/a 1027 Japanese Latin, extended Host
290 Japanese Katakana, extended
host
* Round trip

JAPAN_05 2901041S 290 1041 290 Japanese Katakana, extended
host
1041 Japanese PC Data, extended
* Enforced Subset

Chapter 11 ASCII-to-EBCDIC Translation

199

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

JAPAN_06 2901041R 290 1041 290 Japanese Katakana, extended
host
1041 Japanese PC Data, extended
* Round trip algorithm 2

JAPAN_07 290897 290 897 290 Japanese Katakana, extended
host
897 Japanese PC Data SB

KOREA_01 8331040 833 1040 833 Korean, extended host SB
1040 Korean Extended − PC
* Enforced Subset

KOREA_02 8331088 833 1088 833 Korean, extended host SB
1088 Korean PC Data SB
* Enforced Subset Match (default)

KOREA_03 8331126 833 1126 833 Korean, extended host SB
1126 Windows Korean PC Data
Single-Byte
* Enforced Subset

OS_01 10471252S 1047 1252 1047 Latin-1/ Open Systems
1252 MS Windows, Latin-1
* Enforced Subset

OS_02 10471252R 1047 1252 1047 Latin-1/ Open Systems
1252 MS Windows, Latin-1
* Round Trip

OS_03 1047437S 1047 437 1047 Latin-1/ Open Systems
437 PC Data, PC Base
* Enforced Subset

OS_04 1047437R 1047 1252 1047 Latin-1/ Open Systems
437 PC Data, PC Base
* Round Trip

OS_05 10471252S 1047 1252 1047 Latin-1/ Open Systems
850 PC Data MLP
222 Latin-1 Countries
* Round Trip

SPAIN 02E 1145858 1145 858 1145 SPAIN, Latin America
ECECP
858 PC Multilingual with Euro

Chapter 11 ASCII-to-EBCDIC Translation

200

IPXLATE.L
Entry Name CODEPG= EBCDIC ASCII Comment

SPAIN_01 284437 284 437 284 Spain (Latin America) − CECP
437 PC - Multilingual

SPAIN_02 284850 284 850 284 Spain (Latin America) − CECP
850 PC Data MLP
222 Latin-1 Countries

SPAIN_03 284A52 284 1252 284 Spain (Latin America) − CECP
1252 MS Windows, Latin-1

SPAIN_03E 11455348 1145 5348 1145 SPAIN, Latin America
ECECP (Euro)
1252 MS Windows, Latin-1 (Euro)

UK_ENG_01 285437 285 437 285 United Kingdom − CECP
437 PC - Multilingual

UK_ENG_02 285850 285 850 285 United Kingdom – CECP
850 PC Data MLP
222 Latin-1 Countries

UK_ENG_02E 1146858 1146 858 1146 UK ECECP (Euro)

UK_ENG_03 285A52 285 1252 285 United Kingdom − CECP
1252 MS Windows, Latin-1

UK_ENG_03E 11465348 1146 5348 1146 UK ECECP (Euro)
858 PC Multilingual with Euro.

US_ENG_01 037437 037 437 037 USA, CANADA − CECP
437 PC - Multilingual

US_ENG_02 037850 037 850 037 USA, CANADA − CECP
850 PC Data MLP
222 Latin-1 Countries

US_ENG_02E 0378501140858 0371140 850858 037 USA, CANADA − CECP
850 PC Data MLP
222 Latin-1 Countries
1140 USA, Canada – ECECP
858 PC - Multilingual with Euro

US_ENG_03 037A52 037 1252 037 USA, CANADA − CECP
1252 MS Windows, Latin-1

US_ENG_03E 1140858 1140 5348 1140 USA, Canada – ECECP
1252 MS Windows, Latin-1 (Euro)

Chapter 11 ASCII-to-EBCDIC Translation

201

Coding Example

The following job stream generates a user-defined table named USER1.
This table is identical to the CSI-provided US_ENG_03 table except that
it provides equivalents for the ASCII DC3, GS, and US characters.

* $$ JOB JNM=CREATE,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
* $$ PUN CLASS=0,DISP=I
// JOB CREATE
// LIBDEF *,SEARCH=PRD2.TCPIP
// OPTION DECK
// EXEC ASSEMBLY
 PUNCH '* $$ JOB JNM=CATALOG,CLASS=A,DISP=D'
 PUNCH '* $$ LST CLASS=A,DISP=D'
 PUNCH '// JOB CATALOG'
 PUNCH '// EXEC LIBR,PARM=''ACC SUB=PRD2.TCPIPCFG'''
 PUNCH 'CATALOG USER1.L REPLACE=YES'
 CSTRAN NAME=USER1,FIRST=A2E,CODEPG=0371252, *
 A2EX=' 0 1 2 3 4 5 6 7 8 9 a b c d e f', *
 A2E0=' ', 0
 A2E1=' 3B 1D 1F', 1
 A2E2=' ', 2
 A2E3=' ', 3
 A2E4=' ', 4
 A2E5=' ', 5
 A2E6=' ', 6
 A2E7=' ', 7
 A2E8=' ', 8
 A2E9=' ', 9
 A2EA=' ', a
 A2EB=' ', b
 A2EC=' ', c
 A2ED=' ', d
 A2EE=' ', e
 A2EF=' FF'
 PUNCH '/+'
 PUNCH '/*'
 PUNCH '/&&'
 PUNCH '* $$ EOJ'
 END
/*
/&
* $$ EOJ

This example causes two jobs to execute. The first, CREATE, executes
the assembler and processes the CSTRAN macro specifications. The
assembler also processes the PUNCH statements to wrap the CSTRAN
output in JCL and control statements to generate the job CATALOG.
This second job actually stores the translation table in the designated
library.

Source Job

Chapter 11 ASCII-to-EBCDIC Translation

202

We decided to specify the ASCII-to-EBCDIC values and allow the
macro to generate the corresponding EBCDIC to ASCII values
automatically. Also, we coded the entire ASCII-to-EBCDIC table,
although we could have omitted those lines without overrides.

The macro permits including the header keyword A2EX=. This helps
place your definitions in a grid. We also chose to code the row value as
the continuation character (column 72).

We did not code any E2An= keywords as we wanted the reverse table to
be auto generated.

The following display shows the contents of USER1.L, which was
generated by the preceding example. A label was added to the first data
line.

DESCRIPTIVE COMMENT.
USER1
X'000102039C09867F978D8E0B0C0D0E0F' This label begins at column 45
X'101112009D8508871819928F1C1D1E1F'
X'80818283840A171B88898A8B8C050607'
X'909116939495960498999A9B14159E1A'
X'20A0E2E4E0E1E3E5E7F1A22E3C282B7C'
X'26E9EAEBE8EDEEEFECDF21242A293BAC'
X'2D2FC2C4C0C1C3C5C7D1A62C255F3E3F'
X'F8C9CACBC8CDCECFCC603A2340273D22'
X'D8616263646566676869ABBBF0FDFEB1'
X'B06A6B6C6D6E6F707172AABAE6B8C6A4'
X'B57E737475767778797AA1BFD0DDDEAE'
X'5EA3A5B7A9A7B6BCBDBE5B5DAFA8B4D7'
X'7B414243444546474849ADF4F6F2F3F5'
X'7D4A4B4C4D4E4F505152B9FBFCF9FA00'
X'5CF7535455565758595AB2D4D6D2D3D5'
X'30313233343536373839B3DBDCD9DAFF'
X'00010203372D2E2F1605250B0C0D0E0F'
X'1011123B3C3D322618193F271C1D1E1F'
X'405A7F7B5B6C507D4D5D5C4E6B604B61'
X'F0F1F2F3F4F5F6F7F8F97A5E4C7E6E6F'
X'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6'
X'D7D8D9E2E3E4E5E6E7E8E9BAE0BBB06D'
X'79818283848586878889919293949596'
X'979899A2A3A4A5A6A7A8A9C04FD0A107'
X'202122232415061728292A2B2C090A1B'
X'30311A333435360838393A3B04143EFF'
X'41AA4AB19FB26AB5BDB49A8A5FCAAFBC'
X'908FEAFABEA0B6B39DDA9B8BB7B8B9AB'
X'6465626663679E687471727378757677'
X'AC69EDEEEBEFECBF80FDFEFBFCADAE59'
X'4445424643479C485451525358555657'
X'8C49CDCECBCFCCE170DDDEDBDC8D8EFF'

Generated Table

Chapter 11 ASCII-to-EBCDIC Translation

203

Double-Byte Character Sets

The Chinese, Japanese, and Korean alphabets are too large to be
represented by an eight-bit byte. To support these alphabets, double-byte
character sets (DBCS) were developed.

In DBCS, the most-used characters are assigned one-byte values. Other
characters are assigned two-byte (16-bit) representations. Two escape
characters, shift-out (SO) and shift-in (SI), usually (but not always)
control switching between the two character sets.

On the mainframe, EBCDIC DBCS records generally begin in single-
byte mode. An SO character marks the start of double-byte mode. An SI
character returns to single-byte mode. Although a record can end while
in double-byte mode, transmittal to an ASCII platform usually requires
adding carriage-return and line feed characters as a record delimiter.
Because these are single-byte characters, an SI may be needed if a record
ends in double-byte mode.

On an ASCII platform, ASCII DBCS data is structured quite differently
from its mainframe counterpart. First, datasets are merely a stream of
bytes and have no actual record orientation. Normally, however, a
delimiting character is used to break the data into logical records.

ASCII DBCS data does not normally contain SO or SI characters. Each
DBCS character is identified by the value of its first (high-order) byte.
To visualize how this works, first consider a single-byte character set
(SBCS) code page. There are 256 possible values, each representing one
character. In a DBCS character set, each of the values may still represent
a single character OR they may represent a one-byte escape character
with the following byte used for an additional 256 characters. In this
way, a DBCS character set may contain from 256 to 65,536 characters.

Converting DBCS data streams between ASCII and EBCDIC presents a
problem: what do we do with the SO/SI delimiters? By default, we
remove them when translating to ASCII and add them back when
translating to EBCDIC. Unfortunately, this means that there is no longer
a one-to-one correspondence in the position of data bytes in the input and
output files.

To retain this property, we allow for adding placeholders in the ASCII
data stream. The following three possible placeholder characters have
been defined:

• EBCDIC SO and SI. In this mode, the EBCDIC SO (X'0E') and SI
(X'0F') characters are retained and are included in the ASCII dataset.

• ASCII SO and SI. In this mode, the ASCII equivalents of SO (X'1E')
and SI (X'1F') take the place of their EBCDIC equivalents.

Where Used

DBCS Data Structure:
EBCDIC

DBCS Data Structure:
ASCII

Conversion Problems

Chapter 11 ASCII-to-EBCDIC Translation

204

• Blanks. Finally, we can remove the EBCDIC SO and SI characters
and replace them with an ASCII space character (X'20'), thus
preserving the data character spacing.

When translating such a dataset back to EBCDIC, we still detect DBCS
characters by their first-byte values. But, we replace the leading and
trailing placeholders with SO and SI rather than lengthening the data.

While translating data in placeholder mode, we validate the presence of
the appropriate placeholder in the input data stream. An improper
placeholder results in the termination of data transfer.

Mixing single-byte and double-byte characters means that byte-
addressed accessing of data is not possible. For example, if we were to
extract byte 983 from a data stream, we could not easily determine if it
was a single-byte character or the second half of a double-byte character.
This means that all such extractions must scan backwards to a SO or SI
character (EBCDIC) or to a known single-byte character (ASCII) and
then proceed forward to the desired location. Also note that it becomes
even more difficult to position a data stream by character number than by
byte, due to the mixture of single-byte and double-byte characters.

To make life a little easier, there are some byte values that never occur as
either the first or second byte in a double-byte character. Some of these
are as follows:

• SO (X'0E')

• SI (X'0F')

• NL (X'15')

• CR (X'0D')

• LF (X'0A')

Single-byte translation is controlled by a standard translation table pair
(EBCDIC to ASCII, ASCII to EBCDIC). TCP/IP FOR VSE includes
suitable single-byte tables in the IPXLATE.L book. You are free to
customize these tables or to add additional tables as needed. But, you
should use great care in doing so.

Each pair of double-byte translation tables requires 256K bytes of
storage. They are generated from code pages supplied by CSI
International in cooperation with IBM.

Each code page consists of a list of named symbols and their associated
numeric values. Because some symbols may be represented by more than
one numeric value, provision is made to translate all acceptable values
for a given symbol to the target value. During reverse translation, the
character converts to its preferred value.

Other Considerations

Single-Byte Translation
Tables

Double-Byte Translation
Tables and Code Pages

Chapter 11 ASCII-to-EBCDIC Translation

205

To generate a DBCS translation table, you specify an EBCDIC and an
ASCII code page. The symbols are matched automatically and are used
to build the translation table. You assign a name to the resulting double-
byte translation table, which also pairs it with a single-byte translation
table. In this manner, only a single name is required to specify a
translation table pair.

TCP/IP FOR VSE ships three code page source files named CHINA.L,
JAPAN.L, and KOREA.L. Each file contains the code pages relevant to
the associated nationality.

Each code page file consists of 80-byte records, each containing
positional fields. The fields are blank-delimited. Multiple blanks are
compressed to single blanks during processing. The records are
structured as follows:

• The first record contains the name of each code page. The data
associated with each code page continues in a vertical structure
beneath the code page name.

• The second record contains the lowest value assigned in the code
page.

• The third record contains the highest value assigned in the code page.

• The fourth record contains the default (or fill) character to be used in
each table position that is not explicitly defined.

• The remaining records contain the individual code points. The first
field is the symbol name. The remaining fields define the two-byte
hexadecimal values. If a symbol is undefined in a particular code
page, its value is specified as ****. The code point records are sorted
by symbol name in ascending order. If more than one value is required
for a given symbol, the symbol name is repeated on multiple,
consecutive records. In code pages that do not have additional values,
the **** placeholder is coded. Where multiple values are supplied, the
value coded last is considered to be the preferred value and is the
value assigned when translating to the code page in question.

Three code page files are provided for DBCS support:

• CHINA.L

• JAPAN.L

• KOREA.L

These files are in member DBCS01 and may be obtained from CSI
International (TCP/IP for VSE web page; click on “Chinese, Japanese,
Korean language support” to access DBCS01.BJB) or IBM. You need to
obtain and load the appropriate member into your VSE library.

Code Page Source Files

Obtaining the Double-
Byte Code Page Files

http://www.csi-international.com/products/zVSE/TCP-IP/TCP-IP.htm

Chapter 11 ASCII-to-EBCDIC Translation

206

When TCP/IP FOR VSE begins execution, table US_ENG_03 is loaded
from member IPXLATE.L and is made the default translation table. This
table provides a single-byte base suitable for most common translation
needs. You may want to load additional single-byte tables for your own
use, and you need to load one or more single-byte tables to associate with
double-byte tables.

You can find a comprehensive list of all SBCS translation tables earlier
in this chapter.

To create and load a DBCS translation table, you must use the DEFINE
TRANSLATION command. To illustrate, we use the following example.
We are creating a Japanese double-byte translation table. The single-byte
translation is handled by SBCS table JAPAN_09. The double-byte table
converts between EBCDIC code page 300 and ASCII code page 301.

First, we load and name the single-byte table:

DEFINE TRANSLATION,TYPE=SINGLE,MEMBER=IPXLATE, -
ENTRY=JAPAN_09,NAME=JAPAN_DBCS

Next, we load the double-byte table:

DEFINE TRANSLATION,TYPE=DOUBLE,MEMBER=JAPAN, -
NAME=JAPAN_DBCS,EBCDIC=300,ASCII=301

Finally (and optionally), we make this table the default:

DEFINE TRANSLATION,DEFAULT=JAPAN_DBCS

It is not always appropriate to make a double-byte translation table the
default for the entire system. Remember that you can always use the FTP
SITE command to explicitly select a double-byte translation table.

There are several ways to specify a translation table. The most general is
to make a particular table the system default. To do this, use the DEFINE
TRANSLATION command, as follows:

DEFINE TRANSLATION,DEFAULT=name

This may or may not be appropriate for your installation. FTP users can
override the above specification with the SITE command.

To force a translation table on FTP users, you can code the
TRANSLATE= parameter in the DEFINE FTPD command, as follows:

DEFINE FTPD,TRANSLATE=name,...

Activating DBCS
Support

Using DBCS Translation

Chapter 11 ASCII-to-EBCDIC Translation

207

A translation table specified in this way cannot be overridden with a
SITE command.

Translation tables can also be associated with datasets, as shown here:

DEFINE FILE,PUBLIC='xxx.yyy.zzz',TRANSLATE=name

This specification takes precedence over that coded with the DEFINE
FTPD command, and it cannot be overridden with a SITE command.
The same physical file can be defined multiple times with different
names and different translation tables.

EBCDIC data streams always use SO/SI to bracket DBCS character
strings. There is no restriction on the value of the first byte of a DBCS
character, except that it cannot be SI or SO, CR, LF, or NL. Other values
may also be reserved, such as X'00' and X'FF'.

ASCII data streams never use SO/SI but instead rely on the value of the
first byte of the DBCS pair. Thus, there must be a “hole” in the SBCS
code page to accommodate each range of 256 DBCS characters.

During standard translation, SO/SI characters must be added or removed
as appropriate.

An optional protocol permits the SO/SI characters to be retained as
placeholders in the ASCII stream. When translated in this manner, the
EBCDIC and ASCII data streams have the same length (except for the
ASCII end-of-record delimiters).

Note that these placeholders are not used when translating back to
EBCDIC. Instead, we rely on the first-byte values; however, the
appropriate placeholder must be present or an invalid data stream
condition exists and the transfer stops.

Note:

When transferring a DBCS data file from a PC to VSE, the destination
file must be able to contain records larger than the specified LRECL for
the file. This is needed because SO/SI characters are added for each
record containing DBCS characters. When CRLF=OFF, the ASCII byte
stream is split into records using the specified LRECL value. The data is
then translated to EBCDIC using SITE SOSI CONVERT, which inserts
2 bytes for each DBCS string included in the record. Therefore, the
destination file on VSE must be defined with a record length of
LRECL + 2 or, if multiple (n) DBCS strings are included in SBCS, with
a record length of LRECL + (n × 2).

DBCS Behavior with FTP

Chapter 11 ASCII-to-EBCDIC Translation

208

SO/SI handling is controlled by the SITE command. The following chart
shows specific SITE commands and their meanings:

Command Description

SITE SOSI CONVERT This is the default and indicates that the data
stream is converted and that SO/SI characters
are added or removed as appropriate.

SITE SOSI KEEP SO/SI characters are retained as placeholders
in the ASCII stream.

SITE SOSI XLATE SO/SI characters are retained as placeholders
in the ASCII stream but are translated to
their ASCII equivalents of X'1E' and X'1F'.

SITE SOSI BLANK SO/SI characters are retained as placeholders
in the ASCII stream but are translated to
ASCII spaces of X'20'.

SITE SOSI NONE SO/SI characters are not present in the
EBCDIC data. Every pair of bytes is treated
as DBCS. This mode is referred to as the
graphic character set.

TCP/IP FOR VSE release 1.5 and higher enables DBCS support for FTP
and HTTP.

The TN3270 protocol passes data without translation and permits using
DBCS data streams, provided that your TN3270 client is DBCS enabled.

SITE Command

Enabling DBCS Support

209

12
12. Performance

Overview

In this chapter, we focus on TCP/IP FOR VSE performance and resource
utilization. We cover the following topics:

• Concepts you must understand to tune your system effectively

• Performance statistics and where to find them

• Performance enhancement

• Port queuing, also known as connection queuing.

As with any performance discussion, our suggestions are guidelines, and
your results will vary. Truly maximizing TCP/IP FOR VSE performance
requires an in-depth knowledge of a variety of areas as well as your
particular system. This chapter provides basic information you need to
get started.

Chapter 12 Performance

210

TCP/IP Concepts

Before you can tune your TCP/IP FOR VSE system, you need to
understand some TCP/IP concepts. This section covers the following
concepts and why they affect performance:

• Data flow

• MTU size

• TCP segment size

• TCP window size

• Retransmissions

Because TCP/IP FOR VSE’s basic function is to communicate by moving
data, it is important to understand how data flows through TCP/IP FOR
VSE. You may have heard TCP/IP implementations referred to as the
stack. The idea behind this term is that a chunk of data flows through
many levels of processing before reaching its ultimate destination. They
typically begin at the highest level (the application) and move to the
lowest level (in our case, the link drivers), with a number of levels in
between. These levels, as a unit, are referred to as the stack.

An important aspect of the stack’s architecture is that each layer is
concerned only with its own processing. For example, the IP layer does
not care whether the datagram it is packaging for the protocol layer uses
TCP, UDP, or another protocol. The IP layer’s sole interest is to package
the protocol segments into datagrams and then pass them to the transport
layer. The way the transport layer moves datagrams across the network is
not relevant to the IP layer.

The TCP/IP FOR VSE stack is described in the following table:

Stack Level Description

Application The highest level in the stack is the application level.
This level includes clients, daemons, and all user-
written programs.

In the stack architecture, each application sees the rest
of the stack as simply a doorway to another
application. See the TCP/IP FOR VSE Programmer’s
Guide for more information about application
programming interfaces.

Data Flow

Chapter 12 Performance

211

Stack Level Description

Protocol The second highest level in the stack is the protocol
level. The protocol level lies between the application
and the IP level. Although there is no limit to the
number of protocols that can be made available, for our
purposes we will consider only the User Data Protocol
(UDP) and the Transmission Control Protocol (TCP).

UDP processing is straightforward. Data from the
application is packaged with identifying information
and then passed to the IP layer for further processing.
When the remote stack’s protocol layer receives a UDP
packet, it interprets the header in formation and passes
the data on to the appropriate application. UDP makes
no guarantee that the data will arrive in the same
sequence it was sent or even that it will arrive at all.

TCP processing, on the other hand, incorporates a
series of controls that ensure that all data received from
an application will reach the remote application in
exactly the same order it was sent without duplication
or omission.

IP The third highest level in the stack is the IP level. It is
the IP layer’s responsibility to add the appropriate
header information to complete the datagram before
passing it to the transport layer. This header primarily
contains the IP addresses of both hosts.

If necessary, the IP layer will fragment a datagram into
multiple pieces that do not exceed the maximum
permitted size. Conversely, on the receiving end the IP
layer will reassemble fragments into a complete
datagram before passing it to the protocol layer.

Transport The lowest level in the stack is the transport level. It is
composed of the link drivers that handle the physical
I/O to the control units. The transport layer is
concerned with moving datagrams onto and off of the
physical network. In the case of a VSE host, the
transport mechanism may consist of Ethernet, a token
ring, CTCA, or other method. Depending upon the
network’s architecture, a single datagram may traverse
several transport layers during its travels.

This table shows how data flows from the highest level to the lowest
level. This is the process used when TCP/IP FOR VSE sends data to other
hosts. Of course, the process is reversed for inbound packets, where data
flows up the stack instead of down.

Chapter 12 Performance

212

The Maximum Transmission Unit (MTU) size is the number of bytes
that can be sent over the physical media without requiring fragmentation.
This value is generally fixed by hardware, as follows:

Adapter Default Minimum Maximum

Ethernet 1500 576 1500

Token Ring 1500 576 Depends on speed of the ring:
 4 Mbit/sec ~ 4000
16 Mbit/sec ~ 8000

FDDI 1500 576 2000

The maximum MTU size for an Ethernet connection is 1500, which
means that datagrams as large as 1500 bytes can fit into a single Ethernet
frame. In general, larger MTU sizes are preferable as long as they do not
exceed the maximum for the physical device. Larger MTU sizes permit
more data to be transmitted in fewer transmission units.

The following detrimental effects can occur if you choose an
inappropriate MTU size:

• If you use a smaller MTU size, such as the minimum of 576 bytes,
you still have to send the same amount of data. However, it takes
more transmission units to accommodate the data. More transmission
units mean more I/Os for the link driver to handle, more
acknowledgements for TCP to handle, more processing in general,
and therefore more network overhead. That is, performance suffers.

• If you use a larger MTU size than the complete physical path can
handle, IP packets are broken into fragments of a size that is
acceptable to the most restrictive part of the network. Fragmentation is
bad for the following reasons:

 Some TCP/IP implementations do not accept fragmented packets,
and the packets are discarded. As retransmissions are attempted,
performance suffers.

 Fragmentation requires more work for the IP layer on the other
side of the connection because (even if it supports fragmentation)
it needs to gather all pieces of the datagram, which are
transmitted separately, and reassemble them before it passes them
to the TCP level. This causes unacceptable delays for the
application on the other side of the connection. Again,
performance suffers.

TCP/IP FOR VSE does not allow you to set an MTU size that exceeds the
capability of the physical device. Also, the MTU size is meaningful only
for outbound datagrams.

MTU Size

Chapter 12 Performance

213

An appropriate MTU size should be specified on each DEFINE LINK
and DEFINE ADAPTER statement. This value will serve as a ceiling for
all datagrams being sent through that link. In addition, a reduced MTU
size may be specified on each DEFINE ROUTE statement.

For example, a VSE system communicates with VM by a CTCA link.
The VM TCP/IP stack is then connected to the outside world by an
Ethernet link. To obtain the best performance, we would set the MTU
size for the CTCA link to its maximum value of 64K. To prevent
fragmentation, however, we would include DEFINE ROUTE statements
for all destinations reachable by the Ethernet link. On these statements,
we would override the MTU value with a more reasonable value of 1500.

The DISCOVER client may be used to help determine the optimal MTU
size. For details, see the TCP/IP FOR VSE User Guide, chapter 5, “Ping,
Traceroute, DISCOVER Clients.”

A TCP segment is the largest unit of TCP data that the remote host will
except in a single datagram. In practice, this unit cannot be larger than
the MTU size minus 40 bytes. The 40 bytes is required because it is the
combined length of the TCP and IP headers. When a TCP connection is
established, each host informs the other of the maximum segment size
that it will accept. To prevent fragmentation, the largest maximum
segment size (MSS) that TCP/IP FOR VSE will request or honor is 40
bytes less than the MTU size.

By default, TCP/IP FOR VSE always requests an MSS value of MTU -40.
If the remote host requests a larger value, it will be reduced to MTU -40.
You can use the SET MAXIMUM_SEGMENT command to establish an
explicit default value, or you can code the MSS parameter on your
DEFINE ROUTE statements.

The TCP window is the quantity of data the receiving TCP accepts
without waiting for an acknowledgement. The TCP window is a simple
concept but one that is frequently misunderstood. Before discussing the
TCP window in detail, we first need to understand some basic concepts.

The most important aspect of TCP is data reliability. Every bite in the
TCP connection from beginning to end must be accounted for and be
received in the same order that it was sent. To achieve this, the TCP
protocol assigns a number to each byte in a connection. The range of
numbers assigned to a particular connection is referred to as its sequence
set. The TCP header always contains the sequence number of the first
data byte in the packet as well as the number of bytes in the packet. Even
if the data length is zero, the sequence number must still be present so
that the packet can be properly placed within the sequence set. This strict
numbering of transmitted data ensures that every character in the data
stream will be received exactly as intended without duplication or
omission.

TCP Segment Size

TCP Window Size

Chapter 12 Performance

214

Because it is always possible for an individual datagram to be corrupted
or lost somewhere on the network, a method was devised that allows the
sending stack to ensure receipt of each packet by the target stack. This is
accomplished by including an acknowledgment field in the TCP header.
When a TCP datagram is constructed, the acknowledgment field is set to
the sequence number of the next expected byte to be received. If the
incoming acknowledgment is lower than the highest numbered data byte
sent, then the sending stack can precisely determine which datagram was
lost and can begin retransmission at that point.

A problem arises when the sending stack delivers data more quickly than
the receiving stack can process it. As each datagram is acknowledged,
more datagrams are sent. While it is completely valid under the protocol
for the receiving stack to simply throw away excess datagrams without
acknowledging them, this could result in a flood of duplicate datagrams
being retransmitted until an acknowledgment is sent. To prevent this, an
additional field called the receive window was added to the TCP header.

The receive window works like this: When the receiving stack sends an
acknowledgment, it sends two values. The ACK field contains the
sequence number of the next expected data byte. The window field
contains a numeric value which, when added to the ACK value, yields a
value that is one greater than the highest sequence number that may be
sent. If data arrives that is “outside the window,” it is discarded and the
current ACK and window values are sent in response.

There are several rules related to windows. Perhaps the most important
rule is that the ending sequence number may never decrease in value.
Another way of stating this is that once a stack has advertised a window
for a certain amount of data, this may be viewed as a commitment. The
stack may not change its mind and reduce the endpoint of the window.
Any reference to a stack “closing the window” is incorrect. The intended
meaning of such a statement is that the stack allowed the window to
close by not extending the value of the ending byte.

Other rules concern the avoidance of Silly Window Syndrome (SWS).
SWS occurs when the receiving stack advertises a window that is just a
few bytes in size, and the sending stack immediately sends a small
datagram to fill it. This behavior is so damaging that both sending and
receiving stacks are expected to observe certain behaviors and to avoid
others.

One behavior to avoid is the “shrinking window.” Once a maximum size
has been established for the window, it must always be returned to that
size after it has been allowed to close. By the same token, the sending
stack should not resume transmission until the window has regained its
full size. Of course, there are exceptions. The guiding principle is to
minimize the number of packets required to transmit the data.

Chapter 12 Performance

215

The optimum size for the receive window varies depending on the
platform. A device with limited memory may choose a window size that
is only large enough to contain a few data packets. VSE, on the other
hand, works best with large window values (~64K). Before selecting a
small window size, remember that the optimum size for a datagram is the
MSS.

To manage the TCP window size, you need to know how to set it and
display its current value, both on the VSE side and the partner TCP side.

The following table summarizes this information for some popular
platforms:

Platform Setting the Window Displaying the Window

TCP/IP DEFINE ROUTE command DIAGNOSE PERFORM

QUERY CONNECTION

QUERY ROUTE

AIX 4.3 NO (network option)
recv_space AIX command

NO (network option)
command reports the
parameter

OS/400 CHGTCPA command
(change TCP attributes)

CHGTCPA command also
displays the attribute

Windows Registry Entry (Windows 7):

HKEY_LOCAL_MACHINE\
SYSTEM\CurrentControlSet\
services\Tcpip\...

REGEDIT command

A TCP/IP packet is retransmitted when it is not acknowledged. It does
not matter why the transmission failed. When TCP/IP FOR VSE discovers
that it needs to retransmit a packet, it enters retransmission mode for the
connection. While in retransmission mode, TCP/IP FOR VSE does not
transmit any more packets on the connection until all previously
transmitted packets have been acknowledged.

If you use DIAGNOSE PERFORM, you can see how many times
TCP/IP FOR VSE entered the retransmission mode during a TCP
connection, as well the total number of retransmitted blocks and the total
wall clock time in retransmission mode.

Remember that TCP/IP FOR VSE can control retransmissions only on
outbound connections. Each TCP implementation has its own controls.

Retransmissions

Chapter 12 Performance

216

Some of these controls are described in the following table:

Platform Retransmission Control

TCP/IP FOR VSE As described above

AIX 4.3 NO (network option) rto_length, rto_limit, rto_low,
and rto_high commands

OS/400 Cannot be set, but it can be displayed for TCP
connections

To analyze retransmissions and help diagnose performance problems,
TCP/IP FOR VSE provides a diagnostics display. To enable it, enter the
following command:

DIAGNOSE PERFORM

When this command is issued, you receive output at the end of each TCP
connection. The output looks similar to the following display:

IPT340D Connection Summary: F: 192.168.1.66/21 L: 192.168.1.161/4103 State: Closed BSD: 0
IPT345D Open by IPNAFTPC in F4 Ident: C5506D3320A7B000
IPT341D Start: 13:45:21 End: 13:45:22 Duration: 0.577 IPT343D Route: LOCAL; MTU: 1,500;
Send MSS: 1,460 (1,460); Recv MSS: 1,460; Buffer: 65,534/1,825
IPT347D Variable Retrans; Init: 1,000/1,000; Limit: 500/2,000; Delay: 500; Retries: 50
IPT349D Pulse: Enabled; Interval: 60 sec; Count: 0
IPT342D Send IS: 502A3321 FIN: 502A3380 Data: 94
IPT344D Send: 18 blocks, 96 bytes. Retrans: 0 blocks, 0 bytes. Eff: 11%
IPT346D Retransmit mode 0 times. Cost: 0 seconds.
IPT358D Maximum Send window: 65,535; Closed: 0; Time closed: 0.000
IPT348D Retran Start: 1,000; Times: 0; Current: Off; Blocks: 0; Cost: 0 sec
IPT352D Roundtrip: Min: 2 ms; Max: 11 ms; Last: 6 ms
IPT342D Recv IS: 4C000C52 FIN: 4C000D77 Data: 292
IPT344D Recv: 9 blocks, 294 bytes. Duplicate: 0 blocks, 0 bytes. Eff: 44%
IPT358D Maximum Recv window: 65,534; Closed: 0; Time closed: 0.000
IPT356I Total sockets: RECV: 6 (292); SEND: 4 (94); STAT: 5; CLOSE: 1 ABORT: 0 CNTL: 0

Each message field is described in the TCP/IP FOR VSE Messages.

To obtain performance statistics, issue the following command:

QUERY STATS

The following display shows sample output:

Statistics Command

Chapter 12 Performance

217

IPN253I ((TCP/IP Operational Statistics))
IPN516I FTP Daemons = 3
IPN516I - Current Active = 1
IPN516I - Maximum Active = 1
IPN516I - Current Buffers = 0
IPN516I - Maximum Active Buffers = 4
IPN516I Telnet Daemons = 33
IPN516I - Current Active = 0
IPN516I - Maximum Active = 0
IPN516I - Current Buffers = 0
IPN516I - Maximum Active Buffers = 0
IPN516I LP Daemons = 3
IPN516I HTTP Daemons = 1
IPN516I FTP Sessions = 2
IPN516I Telnet Sessions = 0
IPN516I LPR Requests = 0
IPN516I HTTP Requests = 0
IPN516I TCP Inbound Rejections = 0
IPN516I FTP Files Sent = 1
IPN516I FTP Files Received = 1
IPN516I FTP File Bytes Sent = 230.5 K
IPN516I FTP File Bytes Received = 230.5 K
IPN516I Telnet Bytes Sent = 0
IPN516I Telnet Bytes Received = 0
IPN516I TCP Bytes Sent = 234.8 K
IPN516I TCP Bytes Received = 230.7 K
IPN516I UDP Bytes Sent = 0
IPN516I UDP Bytes Received = 0
IPN516I IP Bytes Sent = 250.1 K
IPN516I IP Bytes Received = 245.4 K
IPN516I Storage Cushion Releases = 0
IPN516I Received Blocks = 0
IPN516I - Inbound Datagrams = 0
IPN516I - Non-IP = 0
IPN516I - Misrouted IP = 0
IPN516I - Arps = 0
IPN516I - Arp Requests = 0
IPN516I Transmitted Blocks = 0
IPN516I - Outbound Datagrams = 0
IPN516I - Arp Requests = 0
IPN516I - Arp Replies = 0

Each measurement is described in the following table:

Measurement Description

FTP Daemons Number of FTP daemons active in the system. FTP
daemons consume storage, so you should not define
more than you need for concurrent FTP activity

FTP Current
Active

Number of FTP daemons active at the time you
issue the command

Chapter 12 Performance

218

Measurement Description

FTP Maximum
Active

Highest number of concurrently active FTP
daemons since TCP/IP FOR VSE initialization. Use
this value to adjust the number of FTP daemons you
define.

FTP Current
Buffers

Number of FTP transfer buffers in use at the time
you issue the command

FTP Maximum
Active Buffers

Highest number of FTP transfer buffers that were
ever in use at one time. Use this value to adjust the
number of FTP transfer buffers.

Telnet Daemons Number of telnet daemons active in the system.
Telnet daemons consume storage and CPU
resources, so you should not define more than you
need for concurrent telnet activity.

Telnet Current
Active

Number of telnet daemons active at the time you
issue the command. Note that a telnet daemon is
active even if the user is merely staring at the
TCP/IP FOR VSE telnet menu.

Telnet Maximum
Active

Highest number of concurrently active telnet
daemons since TCP/IP FOR VSE initialization. Use
this value to adjust the number of telnet daemons
you define.

Telnet Current
Buffers

Number of telnet transfer buffers in use at the time
you issue the command. This value refers only to
shared buffers. Telnet buffers using dedicated pools
are not counted.

Telnet Maximum
Active Buffers

Highest number of telnet transfer buffers that were
ever in use at one time. Use this value to adjust the
number of telnet transfer buffers. Only telnet
daemons using the shared pool are counted.

LP Daemons Number of defined line printer daemons

HTTP Daemons Number of defined HTTP daemons

FTP Sessions Total number of FTP sessions since TCP/IP FOR
VSE initialization

Telnet Sessions Total number of telnet sessions since TCP/IP FOR
VSE initialization

LPR Requests Total number of LPR requests since TCP/IP FOR
VSE initialization

Chapter 12 Performance

219

Measurement Description

HTTP Requests Total number of web requests since TCP/IP FOR
VSE initialization

TCP Inbound
Rejections

Number of times a request was rejected because
TCP/IP FOR VSE could not find an application
listening to the requested port

FTP Files Sent Total number of files sent from VSE to a remote
system

FTP Files
Received

Total number of files received by VSE from a
remote system

FTP File Bytes
Sent

Total number of bytes sent by outbound FTP
requests

FTP File Bytes
Received

Total number of bytes received by inbound FTP
requests

Telnet Bytes Sent Total number of bytes sent by outbound TN3270
requests (such as screen updates)

Telnet Bytes
Received

Total number of bytes received by inbound TN3270
requests (such as data entered in 3270 sessions)

TCP Bytes Sent Total number of TCP bytes sent since TCP/IP FOR
VSE initialization

TCP Bytes
Received

Total number of TCP bytes received since TCP/IP
FOR VSE initialization

UDP Bytes Sent Total number of UDP bytes sent since TCP/IP FOR
VSE initialization

UDP Bytes
Received

Total number of UDP bytes received since TCP/IP
FOR VSE initialization

IP Bytes Sent The total number of bytes sent since TCP/IP FOR
VSE initialization

IP Bytes
Received

The total number of bytes received since TCP/IP
FOR VSE initialization

Storage Cushion
Releases

Number of times TCP/IP FOR VSE released storage
because it detected a short-on-storage condition. If
this value is not zero, consider running TCP/IP FOR
VSE in a larger partition. For more information, see
the next section, “Performance Factors.”

Chapter 12 Performance

220

Measurement Description

Received Blocks Valid for LCS interfaces only. Total number of
blocks received from the LCS device.

Received Inbound
Datagrams

Valid for LCS interfaces only. Total number of
datagrams received from the LCS device. Note that
you might have multiple datagrams in a block.

Received Inbound
Datagrams –
Non-IP

Valid for LCS interfaces only. Total number of
datagrams TCP/IP FOR VSE received that were not
related to IP traffic. This value should be zero. If it
is not, consider filtering and eliminating this traffic
at the control unit layer. Examples of non-IP
datagrams include IPX traffic and Microsoft
Networking (NetBEUI) traffic. To determine the
type of traffic, run a TCP/IP FOR VSE trace. For
more information, see the TRAFFIC and the
DEFINE TRACE commands in the TCP/IP FOR
VSE Command Reference.

Received Inbound
Datagrams –
Misrouted IP

Valid for LCS interfaces only. Total number of
datagrams received by TCP/IP FOR VSE that were
destined for another IP address. If you are not
running TCP/IP FOR VSE with GATEWAY ON,
this value should be zero.

Received Inbound
Datagrams –
ARPs

Valid for LCS interfaces only. Total number of
ARPs received by TCP/IP FOR VSE.

Received Inbound
Datagrams – ARP
requests

Valid for LCS interfaces only. Total number of
ARP requests received by TCP/IP FOR VSE.

Transmitted
Blocks

Valid for LCS interfaces only. Total number of
blocks transmitted over the LCS interface.

Transmitted
Blocks –
Outbound
Datagrams

Valid for LCS interfaces only. Total number of
datagrams transmitted over the LCS interface. Note
that multiple datagrams can be contained in a single
block.

Transmitted
Blocks – ARP
requests

Total number of ARPs that TCP/IP FOR VSE sent
out over the LCS interface.

Transmitted
Blocks – ARP
replies

Total number of ARP requests that were replied to.

Chapter 12 Performance

221

Performance Factors

In the previous sections of this chapter we described TCP/IP FOR VSE
concepts and performance measurements and how these relate to system
performance. In this section, we explain how to improve performance by
maximizing storage utilization. We also describe how to improve FTP
and TN3270 performance.

TCP/IP FOR VSE uses both 24-bit and 31-bit partition GETVIS in its
normal processing. This section helps you estimate the minimum amount
of storage required for the TCP/IP partition. As the TCP/IP FOR VSE
partition becomes more active, it gradually uses more and more storage.
In general, once TCP/IP FOR VSE obtains storage, it does not free it
unless it encounters a short-on-storage condition.

TCP/IP FOR VSE does not directly allocate storage in the general
subpool. All TCP/IP FOR VSE GETVIS allocations are tagged with
unique subpool IDs. The following table shows a few of the subpools
that TCP/IP FOR VSE uses:

Subpool Related Use

LDBLOK Program loading

TKBLOK Task blocks within the TCP/IP FOR VSE partition

IBBKxxxx IBBLOKs, which contain IP data as it flows through the
partition. The variable xxxx represents the size

TNBLOK TN3270 daemon

TCP/IP FOR VSE allocates only the storage that it needs. We recommend
that you begin with a minimum partition size of 32 MB. You should then
use the QUERY STORAGE command to examine how the storage is
being used.

If you are having storage problems and need a detailed explanation of
how your storage is being used, contact CSI Technical Support for
assistance.

The basic goal of the FTP mechanism in TCP/IP FOR VSE is to move
your data as fast as possible, and we do this without regard to CPU
requirements. You can, however, control the performance of your FTP
sessions to some extent.

The following factors affect FTP transfer performance:

• Fixed-block sequential files transmit the fastest, followed by VSAM
files and then by librarian members. VSE/POWER file transfers and
non-blocked sequential files are slowest. When defining VSAM files,

Storage Utilization

FTP Performance

Chapter 12 Performance

222

a larger number of buffers on the IDCAMS DEFINE statement will
result in better performance over a smaller number of buffers.

• Choice of control unit counts.

• Path counts. Do not expect high speed transfers if you are using a slow
network or transmitting data over the Internet. Connection-related
parameters such as MTU, MSS, and window size can also greatly
affect the speed and efficiency of transmission.

• Dispatching priority counts. TCP is a time-dependent protocol.
Running your stack at a low priority will result in increased overhead
and connection failures.

See the TCP/IP FOR VSE User Guide for more information on the FTP
protocol and options that may affect FTP performance.

FTPBATCH is used to send and receive files from an external partition,
and it provides the following performance features:

• All open/close and I/O processing occurs in the FTPBATCH partition,
freeing up the TCP/IP stack partition to focus on the network
processing.

• Multiple processors can be exploited when using the VSE turbo
dispatcher.

• The VSE PRTY command can be used to control its priority and the
sharing of CPU resources with other partitions.

• FTPBATCH dynamically attaches its own FTP daemon, so no
daemon is needed in the TCP/IP partition for the FTPBATCH job.

Sometimes it is just as important to slow FTP down. For example,
assume that you are transmitting a 10GB file in an FTPBATCH job and
you do not really care if it takes 10 minutes or 30 minutes. To keep FTP
from consuming all of your CPU resources and saturating the network
with data, you can slow it down. But first, it might be useful to
understand how FTPBATCH normally processes the sending of data to a
foreign FTP server.

Normally, and with the default settings, FTPBATCH will work with two
transfer buffers to overlap sending data and waiting for data to be
acknowledged by the foreign stack. The process is as follows:

1. Fill transfer buffer 1

2. Send transfer buffer 1 to the foreign FTP server

3. Fill transfer buffer 2 (network busy with transfer buffer 1)

4. Send transfer buffer 2 to the foreign FTP server

FTPBATCH Performance

Chapter 12 Performance

223

5. Wait for transfer buffer 1 to be acknowledged by the foreign FTP
server

These steps are repeated until all the data has been sent and
acknowledged. The goal is to keep the pipe (the network) full. This can
cause the FTP processing to saturate the network with data and slow
down other interactive IP applications like HTTP and Telnet.

To slow down FTPBATCH, you can add the following command to the
SYSIPT JCL immediately after the // EXEC FTPBATCH line:

SET SENDWACK ON

This command causes all data in the sent buffer to be acknowledged
before sending the next transfer buffer. The following behavior results:

1. Fill transfer buffer 1.

2. Send transfer buffer 1 to the foreign server.

3. Wait for transfer buffer 1 to be acknowledged by the foreign FTP
server.

These steps are repeated until all the data has been sent and
acknowledged.

The following issues apply to TN3270 performance.

Each telnet daemon can use either a dedicated buffer or pooled buffers.
In dedicated mode, a daemon obtains a 16K buffer when a session is
initiated. This buffer is used for all I/O operations throughout the session.

In pool mode, a 16K buffer is obtained from a buffer pool only when it is
needed for I/O. Input from the terminal is already completely in memory
(in IBBLOK storage) before the I/O buffer is needed. For outbound
traffic, a buffer is obtained when VTAM indicates that data is waiting.
The buffer is retained for the length of time required to obtain the data
from VTAM and to pass it to the socket interface. Thus, one buffer can
serve many daemons.

Base your decision about pool mode use on whether you have enough
storage in the TCP/IP FOR VSE partition to support dedicated buffer
pools. The buffer pools are all allocated in 31-bit storage.

For every telnet daemon you define, TCP/IP FOR VSE allocates and
manages internal control blocks that represent the daemon.

Some TN3270 clients automatically reconnect when a session is
terminated. This option offers convenience and transparency to the end
user, but it may also cause a looping condition if an unforeseen state
occurs.

TN3270 Performance

Buffer Pools

Telnet Daemons

Chapter 12 Performance

224

If you read the chapter on configuring TN3270 sessions, you know that
TCP/IP FOR VSE offers a number of options for associating IP addresses
with LU names. One such option is to use the CONNECT_SEQUENCE
command. If you use CONNECT_SEQUENCE=ON, you will
experience slightly higher CPU utilization during new session requests.

See chapter 5, “Configuring the Telnet Daemon,” page 70, for more
information.

Chapter 12 Performance

225

Port Queuing

Connection queuing is an important issue that affects application
performance. In this section, we describe the TCP/IP FOR VSE port
queuing facility and the commands you use to manage and monitor it.

Standard TCP/IP processing is simple. Each connection consists of a
series of interactions between two applications that occur in the
following order:

1. Application A issues a Passive OPEN (listen).

2. Application B issues an Active OPEN.

3. The applications issue other SENDs and RECEIVEs as appropriate.

4. Each application issues a CLOSE.

In general, the application that issues the passive OPEN (listen) is
considered the server and the application issuing the active OPEN is the
client. An example is a web server, which issues its listen on the well-
known port 80. When a browser (the client) requests a web page, it
issues an active OPEN to port 80 and sends its request. Once the server
returns a response or rejects the request because of security settings, the
connection is closed and the server reissues its listen to await the next
client’s request.

In practice, it is difficult to manage connection requests that occur when
the server is already processing another request (that is, when there is no
listen in effect). This occurs, for example, when two clients try to
connect to a server when only one OPEN port is available. The first
client to connect will succeed, and the other will fail. The rules that
govern the stack are quite explicit and require it to forcefully reject
(RESET) any connection request that cannot be paired immediately with
an existing listen connection.

To overcome this problem, servers often are configured to maintain
multiple listen connections on the same local port. As each passive
OPEN completes, the server immediately replaces it with another OPEN.
Connection processing can then overlap to any degree allowed. For
example, CSI International’s HTTP daemon, which does not implement
port queuing, opens several sockets with the same port number. It scans
each one until an ECB is posted, indicating that one of the sockets has
connected to port 80. At this point, the primary HTTP task spawns a
subtask and passes the socket descriptor to it. The subtask then begins to
do a SOCKET RECEIVE using this socket descriptor. The main HTTP
task, having multiple sockets in wait mode, will allocate another socket,
add it to the chain of available sockets, and repeat the process of
scanning, waiting, and passing a socket descriptor to a subtask.

Background

Chapter 12 Performance

226

Unfortunately, this type of programming is difficult, and it still permits
some requests to be dropped because of processing delays at the
application level. It is even more difficult to change the number of
connection requests accepted (the queuing depth) without modifying the
program’s code. The port queuing facility addresses these problems.

To use the port queuing facility, you must first determine the port
number on which connection requests are to be queued. For example, a
web-server application would choose the well-known port 80. Once the
port is designated as eligible for queuing, incoming connection requests
that cannot be paired with existing listen connections are assigned
automatically to a blank listen connection provided by the stack. This
connection is negotiated by proxy with a closed window. When the
server eventually issues a listen, the next opened-by-proxy connection is
assigned, the window is opened to its normal value, and processing
continues in the expected manner.

Port queuing is enabled, modified, and disabled by the PORTQUEUE
command. This command may be executed only after TCP/IP FOR VSE
has fully started. To run it from the TCP/IP FOR VSE initialization
member, use the command “INCLUDE lib_member,DELAY” and place
the PORTQUEUE command in lib_member. Here is the syntax:

PORTQueue PORT=num[,TIMEOUT=sec][,DEPTH=nn]

The parameters are described in the following table.

Parameter Description

PORT=num The port number for which queuing is to be
controlled. Valid values range from 1 to 65536. There
is no default.

TIMEOUT=sec The amount of time a queued connection is held
waiting for the server to reissue a listen. The
connection is reset when the wait time exceeds this
value. Valid values range from 1 to 60 seconds.
If TIMEOUT is not specified, then the value is left
unchanged.

DEPTH=nn The maximum number of connections that may be
queued at any time. Once this number is reached,
additional incoming requests are refused. Valid
values range from 0 (no queuing) to 100.
If DEPTH is not specified, then the value is not
changed. In this case, a value must be set initially to
enable port queuing. Any new value overrides the
existing setting.
To disable port queuing, set DEPTH=0.

Queuing Strategy

PORTQUEUE Command

Chapter 12 Performance

227

Note:

To use port queuing with BSD socket applications, QUEDMAX must be
set to 0 (the default) in $SOCKOPT. For more information, see the
TCP/IP FOR VSE Programmer’s Guide, Appendix A: “$SOCKOPT
Options Phase.”

Use the QUERY PORTQUEUE operator command to display queuing
settings, as follows:

Query PORTQUEUE

This command can be issued at any time to display the current queuing
parameter settings. In addition, it shows the following information for
each port:

• Connection requests queued

• Connection requests accepted

• Connection requests terminated by the requestor

• Connection requests terminated as stale (timed out).

The command also shows the following statistics. This information is
useful for adjusting the queuing parameters to achieve best performance.

• Average wait time for successful requests

• Average time before requestor disconnect

• Maximum achieved queuing depth.

Query Command

228

Appendix A:

Technical Support

Statement of Intent

CSI International wants to set the standard for technical support. To this
end, we provide support 24 hours a day, 365 days a year. You can obtain
support in a variety of ways, and we are constantly upgrading both our
product and our documentation. We welcome all comments and
suggestions.

You can send comments on this manual or other TCP/IP FOR VSE
documents to documentation@csi-international.com.

Obtaining Support

If you obtained TCP/IP FOR VSE from IBM, request technical support
through your normal IBM support channel.

If you are a customer of CSI International in North America, contact CSI
International directly. Our technical support number is 800-795-4914.

If you are outside the U.S., obtain first-level support from the agent
serving your locale. If you cannot determine how to contact your agent,
contact CSI International directly at +1-740-420-5400.

Our technical support line is answered 24 hours a day, 7 days a week,
including holidays.

You are free to call us any time. Our normal work hours are Monday
through Friday, 9:00 AM to 5:00 PM Eastern Time. We ask that you
present non-critical problems and questions during these times.

Email inquiries are handled promptly.

Where to Go

Availability

mailto:documentation@csi-international.com

Appendix A Technical Support

229

If you are inquiring about a problem, include as much information as
possible—what you were doing, how the system responded, whether any
ABENDs occurred, suspicious console messages, and so forth. Please be
specific, and always include your telephone number in case we have
questions.

You can use any of the following methods to contact us.

Email support@csi-international.com

Internet http://www.csi-international.com

Telephone 800-795-4914 (U.S. customers); +1-740-420-5400

When you contact technical support, be sure to provide the following:

• Your CSI account number and your company’s name

• Your name

• Your telephone number and email address

• Your z/VSE release level

• Your TCP/IP FOR VSE release and service level

• A description of the problem or question

If your question cannot be answered immediately, you will be assigned a
problem number. You will need this number if you send correspondence.

Severe or high-impact problems take precedence over minor problems or
installation and configuration questions. Although we do not expect to be
overloaded with calls at any particular time, this policy assures the best
possible support for all customers.

If you need to send documentation, use the following procedure:

1. Go to the z/VSE Problem Report web page at
www.csi-international.com/problemreport_vse.htm.

2. Follow the instructions for filling in a problem report, and note the
problem number.

3. Send the documentation using the information provided.

How to Contact Us

How to Report a Problem

mailto:support@csi-international.com
http://www.csi-international.com/
http://www.csi-international.com/problemreport_vse.htm

230

Appendix B:

Quickstart Guide

System Setup

This appendix outlines the steps to implement a typical TCP/IP FOR VSE
installation. It covers initial planning decisions you need to make, the
configuration commands you use, and configuration examples.

The first major decision you need to make when implementing TCP/IP
FOR VSE is control unit selection. We recommend the following units:

• IBM’s Open Systems Adapter (OSA)

• Third-party devices that support the LAN Channel Station (LCS) or
3172 protocol

• IBM’s OSA Express, also known as “the QDIO Mode of an OSA2”

Next, you must set up a TCP/IP network. If you already have a network
in place, ask your network administrator for an IP address, a subnet
mask, and appropriate routing information. You need to add this
information to your TCP/IP FOR VSE configuration file as outlined in
this guide.

If you do not have a TCP/IP network in place, then you have more
planning to do. There are many books available on setting up TCP/IP
configurations, and you may find a good book helpful at this time. If you
have a VSE mainframe and a few PCs that you plan to begin your
TCP/IP network with, we recommend using a class C network and IP
addresses 192.168.0.x, where x is a value from 001 to 255, and a subnet
mask of 255.255.255.0. You need to consider the physical cabling of
your network, for example, each PC needs an Ethernet card with a cable
to an Ethernet hub. You also need to assign an IP address to each PC.

You will need additional information to install TCP/IP on other entities
in the network, such as a printer or a UNIX machine.

Control Units

TCP/IP Network

http://publib.boulder.ibm.com/pubs/html/as400/ic2924/info/index.htm
http://publib.boulder.ibm.com/pubs/html/as400/ic2924/info/index.htm

Appendix B Quickstart Guide

231

Configuration Commands

Regardless of the device or network you use, some configuration
commands are almost universal. The following statements show typical
configuration commands that most installations need.

Configure files using the following commands. Each statement is
numbered for reference.

1 DEFINE FILE,TYPE=LIBRARY,DLBL=IJSYSRS,PUBLIC='IJSYSRS',READONLY
2 DEFINE FILE,TYPE=LIBRARY,DLBL=PRD1,PUBLIC='PRD1',READONLY
3 DEFINE FILE,TYPE=LIBRARY,DLBL=PRD2,PUBLIC='PRD2'
4 DEFINE FILE,TYPE=POWER,PUBLIC='POWER'

Each statement is explained below.

1. This statement defines the IJSYSRS library as part of the TCP/IP
FOR VSE file system. This file is defined by the DLBL statement
IJSYSRS. Users at remote sites access this library by the name
IJSYSRS. FTP clients cannot write to this library.

2. This statement defines the PRD1 library as part of the TCP/IP FOR
VSE file system. This file is defined by the DLBL statement PRD1.
Users at remote sites access this library by the name PRD1. FTP
clients cannot write to this library.

3. This statement defines the PRD2 library as part of the TCP/IP FOR
VSE file system. This file is defined by the DLBL statement PRD2.
Users at remote sites access this library by the name PRD2. FTP
clients can write to this library.

4. This statement defines a pseudo file to the TCP/IP FOR VSE file
system. Any files written to file name POWER are passed to
VSE/POWER. Users should specify the file name with additional
qualifiers, such as POWER.LST.A.

Configure daemons using these commands:

1 DEFINE FTPD,ID=FTPD,COUNT=3
2 DEFINE LPD,PRINTER=VSELST,QUEUE='POWER.LST.A', -
 LIBRARY=PRD2,SUBLIB=TEMPPRT
3 DEFINE TELNETD,ID=TELNET,TARGET=DBDCCICS, -
 TCPAPPL=TCP,COUNT=5

Each statement is explained below.

1. This statement defines one File Transfer Protocol (FTP) daemon
capable of supporting three concurrent user sessions. This means that
three file transfer sessions can operate concurrently.

File System

Daemons

Appendix B Quickstart Guide

232

2. This statement defines a line printer daemon. The queue name that
remote users specify when they want to send data to this printer is
VSELST. The data is sent to VSE/POWER because this is the public
name of a POWER file, as defined in the DEFINE FILE section.
Further, the POWER file is qualified to be the LST queue, class A.
While the file is being transmitted, it is temporarily stored in the
library with the file system public name of PRD2 in subfile
TEMPPRT. Note that the DEFINE FILE statement that created the
public name cannot have READONLY specified in its definition.

3. This statement generates five telnet daemons. They are named
TELNET01, TELNET02, TELNET03, TELNET04, and
TELNET05. These names are only used internally and their values
can be anything. Each daemon is assigned a VTAM application ID:
TCP01, TCP02, TCP03, TCP04, and TCP05. These IDs need to be
defined to VTAM. All of these daemons will attempt to connect to
the VTAM application DBDCCICS. All of these daemons will
monitor TCP/IP port 23, which is the default for telnet.

Define addresses using these commands:

1 SET IPADDR=192.168.000.001
2 SET MASK=255.255.255.0

Each statement is explained below.

1. The IP address must be assigned and set using this parameter. If you
are not familiar with TCP/IP and are not connecting to another
network or internet, then we suggest that you start by assigning
TCP/IP FOR VSE a class C network address (for example,
192.168.0.1). Avoid network and host numbers of zero or all binary
ones. These are generally reserved for special purposes.

2. If you use address masking, you must select a value that conforms to
the class of IP address assigned in statement two (SET IPADDR).
The mask indicates the portion of the IP address that will NOT be
used as the host number. To be useful, the mask must include the full
network number plus at least one bit. Do not forget to leave room for
the host number. A mask of 255.255.255.255 allows for 16,777,215
subnetworks but no hosts. Our suggestion is to define a single subnet
of at most 254 hosts in the range of 192.168.000.001 through
192.168.000.254. Of course, if you already have a TCP/IP network
in place, you should conform to your existing addressing structure.

Using a subnet mask is entirely optional. These masks are not
communicated outside the local stack. They are used solely as
shorthand notation when coding a routing table. See “Using
Subnetworking,” page 240, for an example.

Addresses

Appendix B Quickstart Guide

233

Network-Dependent Configuration

There are a wide number of possible network configurations. This
section presents several examples. You should be able to pattern your
system after one of these configurations and adjust it to fit.

As a suggestion, try configuring a simple subset of your network. After it
is working and you understand the principles, it is easy to expand your
configuration to include additional hardware.

A “3172” device, which includes 8232, LCS, OSA, and OSA2, may
contain multiple adapters, each representing a separate and unique
network connection. The example below shows a 3172 that contains two
adapters, an Ethernet, and a token ring using card slots 0 and 1,
respectively. Each adapter is connected to a network with a single PC.

This configuration can be defined using the following commands.

1 DEFINE LINK,ID=LINK01,DEV=380,MTU=1500
2 DEFINE ADAPTER,LINKID=LINK01,TYPE=ETHERNET, -
 NUMBER=0,IPADDR=192.168.0.1
3 DEFINE ADAPTER,LINKID=LINK01,TYPE=TOKENRING, -
 NUMBER=1,IPADDR=192.168.1.1
4 DEFINE ROUTE,ID=ROUTE01,LINKID=LINK01,ADAPTER=0, -
 IPADDR=192.168.0.2
5 DEFINE ROUTE,ID=ROUTE02,LINKID=LINK01,ADAPTER=1, -
 IPADDR=192.168.1.2

Each statement is explained below.

1. This statement defines link LINK01. It is a 3172 (OSA) controller.

2. This statement defines an Ethernet adapter within the 3172. The
LINKID=LINK01 parameter links this statement to the preceding
DEFINE LINK statement.

Connection Using a 3172
Device

Token Ring

VSE Host: 192.168.0.1 and
192.168.1.1

LAN Server:
192.168.0.2

PC: 192.168.1.2

3172

Ethernet

Appendix B Quickstart Guide

234

3. This statement defines a token ring adapter within the 3172. The
LINKID=LINK01 parameter links this statement to the preceding
DEFINE LINK statement.

4. This statement defines route ROUTE01. It specifies the PC’s
network address of 192.168.0.2 and binds it to a DEFINE LINK
(LINK01) statement. The ADAPTER=0 parameter identifies the
specific adapter within the 3172.

5. This statement defines route ROUTE02. It specifies the PC’s
network address of 192.168.1.2 and binds it to a DEFINE LINK
(LINK01) statement. The ADAPTER=1 parameter identifies the
specific adapter within the 3172.

This example can easily be extended to multiple devices on each of the
two networks by using “zero host” notation. Statements from the
previous example could be modified as follows:

4 DEFINE ROUTE,ID=ROUTE01,LINKID=LINK01,ADAPTER=0, -
 IPADDR=192.168.0.0
5 DEFINE ROUTE,ID=ROUTE02,LINKID=LINK01,ADAPTER=1, -
 IPADDR=192.168.1.0

These statements are explained below.

4. Because 192.168.0 and 192.168.1 are both class A networks, only a
single byte is available for the host number. Because host number 0
cannot be assigned to a device, we use the value as a generic,
representing any host. Thus, coding the zero-host IP address will
cause this DEFINE ROUTE to match traffic to any host on the
network.

5. This DEFINE ROUTE operates the same as statement 4 but is for
network 192.168.1.

You can also use SET MASK and DEFINE MASK to subdivide the host
number into a subnet and host. Although subnetwork numbers are
defined only for use by the local stack, they can provide useful shortcuts
when coding a routing table to support many devices.

Using Multiple
Devices

Appendix B Quickstart Guide

235

Few shops will want VSE to only communicate with devices appearing
on the local network. To route traffic to any device that is not on the
local network, for example, over the Internet, it must be routed to a local
device called a gateway, or router. This is shown in the example below.
How the gateway handles further routing is not our concern; we simply
need to send it datagrams and it will ensure that they are delivered.

This configuration can be defined using the following commands.

1 DEFINE LINK,ID=LINK01,...,IPADDR=192.168.1.5
2 DEFINE ROUTE,ID=LOCAL,LINKID=LINK01,IPADDR=192.168.1.0
3 DEFINE ROUTE,ID=REMOTE,LINKID=LINK01,IPADDR=0.0.0.0, -
 GATEWAY=192.168.1.1

These statements are explained below.

1. This statement defines a generic link. The IP address 191.168.1.5 is
used to identify all traffic to and from VSE over this link.

2. This DEFINE ROUTE uses zero-host notation to cause all traffic
destined for devices attached to the local network (192.168.1, hosts 1
through 255) to be sent directly to the intended device.

3. Any datagram that does not match the pattern for the local network
will match the generic zero-network/zero-host pattern. These are
then passed to the gateway device at 192.168.1.1 for further routing.

If this gateway were connected to the Internet, the statements in this
routing table would be sufficient to reach any device in the world.

Connection Using a
Gateway

PC: 64.138.5.32

Ethernet

Gateway:
192.168.1.1

Ethernet

VSE Host: 192.168.1.5

Appendix B Quickstart Guide

236

Complex System Example

The following system is a more complex example.

In this system, the mainframe-based VSE host connects to a variety of
hardware and software. Here is a description of the components:

• Two physical 3270 terminals are connected to CICS under VSE using
an existing SNA network. These terminals can access other network
applications using the TCP/IP FOR VSE telnet client.

• Two PCs are connected to a VM (or MVS) host, which in turn is
connected to TCP/IP FOR VSE by a CTCA. The VM’s TCP/IP is
connected to the PCs on network 131. When VM talks to VSE over
the CTCA, VSE will see it on network 130. VSE can reach the two
PCs by using the VM’s stack as a gateway.

• Network access is provided for a VSE/POWER-supported printer and
DASD files.

• A PC and a printer are attached to a LAN-based server/gateway. The
printer does not have an IP address as it is driven by LPD software in
the server. The gateway function passes data between the VSE’s
Ethernet and the PC’s Ethernet.

3270 3270

CICS

RS/6000

CTCA
PAIR Channel

Channel

Ethernet

POWER Printer

VM or MVS

LAN Printer

129.0.1.1 129.0.1.2 129.0.1.3

129.0.3.2

Server/Gateway
129.0.2.1
129.0.3.1

131.0.0.3

131.0.0.2

129.0.1.98

130.0.0.1

129.0.1.99

File
System

Internet
CLAW

VSE

130.0.0.60

129.0.2.98

Appendix B Quickstart Guide

237

• A channel-attached RS/6000 processor handles traffic addressed to
itself and to the PCs attached to its own local Ethernet. Because the
CLAW is a “direct pipe” to the RS/6000, there is no ambiguity when
the VSE end and the PCs share a common network number.

The next two sections describe how to configure TCP/IP FOR VSE to
support this system.

The following command set is the most straightforward way of defining
the system described above. Refinements to this command set are
described in the next section, “Using Subnetworking.”

1 DEFINE FILE,TYPE=LIBRARY,FNAME=IJSYSRS,PUBLIC='IJSYSRS',READONLY
2 DEFINE FILE,TYPE=LIBRARY,FNAME=PRD1,PUBLIC='PRD1',READONLY
3 DEFINE FILE,TYPE=LIBRARY,FNAME=PRD2,PUBLIC='PRD2'
4 DEFINE FILE,TYPE=POWER,PUBLIC='POWER'
5 DEFINE FTPD,ID=FTPD,COUNT=3
6 DEFINE LPD,PRINTER=VSELST,QUEUE='POWER.LST.A', -
 LIBRARY=PRD2,SUBLIB=TEMPPRT
7 DEFINE TELNETD,ID=TELNET,TARGET=DBDCCICS,TCPAPPL=TCP,COUNT=5
8 SET IPADDR=130.0.0.60
9 DEFINE LINK,ID=VM,TYPE=CTCA,DEV=024,MTU=1500,IPADDR=130.0.0.60
10 DEFINE LINK,ID=LAN,TYPE=ETHERNET,DEV=220,MTU=1500, -
 IPADDR=129.0.2.98
11 DEFINE LINK,ID=UNIX,TYPE=CLAW,DEV=040,MTU=1500,IPADDR=129.0.1.98
12 DEFINE ROUTE,ID=RTVM1,LINKID=VM,IPADDR=130.0.0.1
13 DEFINE ROUTE,ID=RTVM2,LINKID=VM,IPADDR=131.0.0.3
14 DEFINE ROUTE,ID=RTVM3,LINKID=VM,IPADDR=131.0.0.2
15 DEFINE ROUTE,ID=RTUX1,LINKID=UNIX,IPADDR=129.0.1.99
16 DEFINE ROUTE,ID=RTUX2,LINKID=UNIX,IPADDR=129.0.1.1
17 DEFINE ROUTE,ID=RTUX3,LINKID=UNIX,IPADDR=129.0.1.2
18 DEFINE ROUTE,ID=RTUX4,LINKID=UNIX,IPADDR=129.0.1.3
19 DEFINE ROUTE,ID=RTLAN1,LINKID=LAN,IPADDR=129.0.2.1
20 DEFINE ROUTE,ID=RTLAN2,LINKID=LAN,IPADDR=129.0.3.2, -
 GATEWAY=129.0.2.1
21 DEFINE ROUTE,ID=RTNET,LINKID=UNIX,IPADDR=0.0.0.0

The file system defined in statements 1 through 4 is available to all
clients connecting through TCP/IP, regardless of routing.

Each statement in this command set is explained below.

1. This statement defines library IJSYSRS as part of the TCP/IP FOR
VSE file system. This file is defined by DLBL statement IJSYSRS.
Users at remote sites access this library by the name IJSYSRS. FTP
clients cannot write to this library.

2. This statement defines library PRD1 as part of the TCP/IP FOR VSE
file system. This file is defined by DLBL statement PRD1. Users at
remote sites access this library by the name PRD1. FTP clients
cannot write to this library.

Basic Command Set

Appendix B Quickstart Guide

238

3. This statement defines library PRD2 as part of the TCP/IP FOR VSE
file system. This file is defined by DLBL statement PRD2. Users at
remote sites access this library by the name PRD2. FTP clients can
write to this library.

4. This statement defines a pseudo file to the TCP/IP FOR VSE file
system. Any files written to file name POWER are passed to
VSE/POWER. Users specify the file name with additional qualifiers,
such as POWER.LST.A.

5. This statement defines a File Transfer Protocol (FTP) daemon
capable of supporting three concurrent user sessions. This means that
three file-transfer sessions can operate concurrently.

6. This statement defines a line printer daemon. The public name that
remote users specify to send data to this virtual printer is VSELST.
The data is sent to VSE/POWER because this is the public name of a
POWER file, as defined in the DEFINE FILE section. Further, the
POWER file is qualified to be the LST queue, class A.

While the file is being transmitted, it is temporarily stored in the
library with the file system public name of PRD2, in subfile
TEMPPRT. Note that the DEFINE FILE statement that created the
public name may have READONLY in its definition. If so, then this
parameter pertains only to FTP access.

7. This statement generates five telnet daemons. They are named
TELNET01, TELNET02, TELNET03, TELNET04, and
TELNET05. These names are only used internally and their values
can be anything. Each daemon is assigned a VTAM application ID
of TCP01, TCP02, TCP03, TCP04, and TCP05. These IDs need to
be defined to VTAM. All of these daemons attempt to connect with
the VTAM application DBDCCICS. All of these daemons monitor
TCP/IP port 23, the default for telnet, for access requests.

8. A default IP address must be assigned and set by this parameter.
Because our example shows multiple network connections requiring
multiple IP addresses (multi-homing), we recommend that you
include a unique IP address for each link or adapter and not rely on
the default value.

Statements 9 through 11, described below, define the links that TCP/IP
FOR VSE uses to connect to other TCP/IP implementations.

9. This statement defines a CTC link to the VM (or MVS) system. The
MTU size of 1500 was chosen to be compatible with VM and all
other devices that we intend to reach from VM.

10. This statement defines a connection to a local Ethernet that is
populated by a single server/gateway. In practice, multiple servers,
gateways, and other devices will share the same Ethernet segment.
The MTU size of 1500 is the standard maximum for an Ethernet
network.

Appendix B Quickstart Guide

239

11. This statement defines a channel connection to an RS/6000 UNIX
processor using a CLAW interface. In addition to the PCs shown, a
variety of other workstations and printers may be present and
addressable. In this example, the RS/6000 is also connected to the
Internet in an unspecified way.

Note: If the VSE stack needs to be visible to the Internet, the IP
address used for the link must be an address provided by your
Internet service provider (ISP). This requirement does not apply to
the rare circumstance of connecting through a gateway that provides
network address translation (NAT).

Statements 12 through 21, described below, define the routes that are
used to reach the various devices. In this example, each device requires a
ROUTE statement. The next section, “Using Subnetworking,” explains
how to use subnetworking as a shortcut to these steps.

12. Arbitrary route name RTVM1 is assigned to direct traffic destined
for the VM stack to the CTCA link.

13. Route name RTVM2 directs traffic for the specified device to the
CTCA link connected to the VM stack. Once VM receives the
traffic, it uses its own routing tables to forward the messages to their
ultimate destination.

14. Route name RTVM3 is used similarly to RTVM2 but for IP address
131.0.0.2.

15. Arbitrary route name RTUX1 selects traffic for RS/6000-based
applications and sends it through the CLAW interface.

16. Route name RTUX2 causes anything addressed to the specified
address to be passed to the RS/6000 via the CLAW. Once there, the
RS/6000 continues the routing process and sends the data on its way.
Note that we have not included a “GATEWAY=” parameter because
the RS/6000 is the only destination directly reachable using the
CLAW, and that stack must inspect all traffic.

17. Route name RTUX3 is similar to RTUX2.

18. Route name RTUX4 is similar to RTUX2.

19. Route name RTLAN1 is selected for messages destined only for the
device with IP address 129.0.2.1. These messages are directed to the
Ethernet adapter and then directly to the device located on the local
Ethernet segment. Some of these messages may involve using the
attached printer.

20. Route name RTLAN2 is selected for messages destined only for the
device with IP address 129.0.3.2. These messages are directed to the
Ethernet adapter and then passed to the device identified by the
“GATEWAY=” parameter. The gateway is then responsible for
sending the messages on to their ultimate destination.

Appendix B Quickstart Guide

240

21. The final route name, RTNET, is assigned to the CLAW device. The
address 0.0.0.0 is a special form that matches any and all addresses
not otherwise present in the routing table. Messages handled by this
statement are sent to the RS/6000 using the CLAW. Once there, the
RS/6000 routes them (presumably) to other networks.

You can use subnetworking to configure routing with fewer commands.
The following numbered commands replace statements 12 through 21 in
the basic command set above.

12 SET MASK=255.255.255.0
13 DEFINE ROUTE,ID=RTVM1,LINKID=VM,IPADDR=130.0.0.1, -
 MTU=32768
14 DEFINE ROUTE,ID=RTVMX,LINKID=VM,IPADDR=131.0.0.0
15 DEFINE ROUTE,ID=RTUX1,LINKID=UNIX,IPADDR=129.0.1.99, -
 MTU=32768
16 DEFINE ROUTE,ID=RTLAN1,LINKID=LAN,IPADDR=129.0.2.0
17 DEFINE ROUTE,ID=RTLANX,LINKID=LAN,IPADDR=129.0.3.0, -
 GATEWAY=129.0.2.1
18 DEFINE ROUTE,ID=ALL,LINKID=UNIX,IPADDR=0.0.0.0

Each statement in this command set is explained below.

12. The SET MASK statement establishes a mask value that is applied to
each network address to obtain the subnetwork number. When
applying the mask, the network number portion of the address is
exempt, although by convention the mask includes it. The masked
portion of the host number is considered to be the subnetwork
number with the unmasked portion used as the host. However you
define and use the mask, remember that it is known only to the VSE
stack and is used solely for interpreting the route table.

13. Route RTVM1 specifically matches the full address of the VM host.
We include this route statement so that we can override the MTU
address and specify the maximum that the destination supports.

14. Route RTVMX is defined as all devices with a network number of
131. This is because the subnet number of 0 matches all subnets of
130, and a host number of 0 matches all hosts of the specified
network. We do not override the MTU size because the destinations
may require traversing network segments that do not support a larger
size.

15. Route RTUX1 is a specific match to reach applications and/or
servers that run on the RS/6000. This allows us to selectively
increase the MTU size to the maximum for the link.

16. Route RTLAN1 handles routing to all devices on the local Ethernet
segment of the LAN adapter, which is subnet 3 of network 129.

17. Traffic destined for any address of the form 129.0.3.xxx is sent to the
specified gateway, which should then route it to the correct device.

Using Subnetworking

Appendix B Quickstart Guide

241

18. Finally, any address that does not match one of the preceding routes
always matches the final generic address of 0.0.0.0. In this case,
anything that we have not provided for (and there are millions of
addresses we have not considered) is sent to the RX/6000 for
additional routing.

Appendix B Quickstart Guide

242

Selecting Other TCP/IP Software

Depending on the TCP/IP hosts in your network, you may need to obtain
partner TCP/IP applications. The available applications vary by platform.
The products described below have been tested with TCP/IP FOR VSE.

The appearance of a product in the list does not imply an endorsement.
Also, the fact that a product is not listed does not mean that it does not
work or has not been tested.

The following table lists Windows components.

Application Description / Where to Find It

TCP/IP Stack Included.

FTP Client (line mode) Included.

FTP Client (graphical) WS_FTP at https://www.ipswitch.com/secure-
information-and-file-transfer/wsftp-client.

FTP Daemon This is needed to run batch jobs on VSE that
FTP files to the Windows platform. FTP
daemons are available from full-function
TCP/IP suite products, such as Hummingbird,
or a product such as WFTPD.

TN3270 Client This is needed to connect to TCP/IP FOR
VSE’s TN3270 daemon. You can obtain full-
product TN3270 clients such as PASSPORT
or shareware TN3270 clients such as TN3270
Plus from www.sdisw.com. Another choice is
QWS3270 from www.jollygiant.com.

Telnet Daemon This is needed to issue DOS commands from
a VSE batch job, a VSE REXX program, or
CICS. Several telnet daemons are available as
shareware.

LPR Client and Line
Printer Daemon (LPD)

These are available from full-function TCP/IP
suite products or as shareware.

The following table lists UNIX components. There are several varieties
of UNIX.

Application Description / Where to Find

TCP/IP Stack Included.

FTP Client (line mode) Included.

FTP Client (graphical) Depends on the UNIX variant you are using.

Microsoft Windows®

UNIX

https://www.ipswitch.com/secure-information-and-file-transfer/wsftp-client
https://www.ipswitch.com/secure-information-and-file-transfer/wsftp-client
http://www.sdisw.com/
http://www.jollygiant.com/

Appendix B Quickstart Guide

243

Application Description / Where to Find

FTP Daemon This is needed to run batch jobs on a VSE that
uses FTP to send files to the UNIX platform.
All UNIX machines have FTP daemons.

TN3270 Client Depends on the UNIX variant you are using.
AIX and Linux both have TN3270 clients.

Telnet Daemon This is needed to issue UNIX commands or
shell scripts from a VSE batch job, a VSE
REXX program, or CICS. All UNIX
machines have telnet daemons.

LPR Client and Line
Printer Daemon (LPD)

Included.

The following table lists AS/400 components.

Application Description / Where to Find

TCP/IP Stack Included.

FTP Client (line mode) Included for most OS/400 file types.

FTP Client (graphical) Not available.

FTP Daemon Included for most OS/400 file types.

TN3270 Client Included.

Telnet Daemon Included in both full screen and NVT
(network virtual terminal) mode.
Unfortunately, NVT mode is very limited and
does not allow you to interface easily with the
OS/400 command language.

LPR Client and Line
Printer Daemon (LPD)

Included.

For more information on IBM products, see the web page
https://www.ibm.com/support/knowledgecenter/.

AS/400 with OS/400
Version 4.3 (iSeries)

https://www.ibm.com/support/knowledgecenter/

	TCP/IP for VSE Installation Guide
	Copyright
	Technical Support
	Updates to This Manual
	Table of Contents
	1. Fundamentals of TCP/IP
	Overview
	TCP/IP Protocol
	Why on VSE?

	Structure of TCP/IP
	Clients, Servers, and Daemons
	Host
	TCP and UDP
	IP

	IPv4 Network Addressing
	IP Address
	Address Notation
	Multiple Addresses
	Subnetworks
	Addressing Laws

	Routing and Gateways
	Routing and Gateways
	Fake Software Addresses
	Convenience
	Address Translation
	ARP
	Routing
	Gateways

	File Systems
	PC File Structure
	UNIX File Structure
	VSE File Structure

	TCP/IP for VSE File Structure
	Public Names
	Structure
	Syntax
	Qualifying Public Names

	2. Planning for Installation
	Overview
	Compatibility
	Storage Requirements

	Communication Adapters
	LCS Devices
	MTU Size
	Cisco Router
	Channel-Attached RS/6000
	CTC Adapter, 3088 MCCU, or Virtual Channel-to-Channel Adapter
	IOCP Gen

	Software Values
	Product Keys
	Network Address and Subnet Mask
	VSE/POWER LST Queue
	Telnet LU Names

	TCP/IP for VSE File System
	Defining Your File System
	Using Public Names
	Setting Up Your Directory
	Securing Your File System

	3. Installation
	Overview
	Step 1: Download and Extract Files
	Step 2: Install From the .AWS Virtual Tape
	Required Tools
	Procedure

	Step 3: Verify the Installation
	Verify the Release Level
	Verify the Product Phases (Optional)

	Step 4: Install TCP/IP for VSE Optional Features
	Step 5: Supply the Product Key
	Example

	Step 6: Configure VTAM
	Example

	Step 7: Configure CICS
	Set Up the CICS Interface
	Notes for Users of the VSE Interactive User Interface

	Step 8: Configure TCP/IP
	Library Initialization Member

	Optional Materials
	Documentation
	Preventive Maintenance

	4. Link Configuration
	Overview
	Hardware
	IOCP
	VM
	VSE
	TCP/IP

	Generic LCS Controllers
	Products
	Adapter Types
	Defining to TCP/IP
	Defining to VSE
	Defining to IOCP:Bus and Tag
	Defining to VM

	CLAW Interface Devices
	Defining to TCP/IP
	Defining to VSE
	Defining to VM
	Defining to IOCP:Bus and Tag
	Defining to IOCP:ESCON

	Virtual CTC Adapter: Connecting Under VM
	Defining to TCP/IP
	Defining to VSE
	Defining to VM
	Coupling the Adapters
	Defining to TCP/IP on VM

	Real CTC Adapter or 3088 MCCU
	Defining to TCP/IP
	Defining to VSE
	Defining to VM
	Defining to IOCP

	OSA Express
	Defining to TCP/IP
	Defining to VSE
	OSA Express Performance

	Cross-Partition Connections
	Connecting Two Partitions
	Specifying to TCP/IP
	Connection Considerations

	5. Configuring the Telnet Daemon
	Overview
	Configuration Commands
	Restrictions
	Features
	Required Resources

	VTAM Setup
	VTAM Definitions
	VTAM Considerations
	Buffer Pools

	Defining a Telnet Daemon
	LOGMODEs
	CICS

	Controlling the IP Address
	Creating Daemon Pools
	Specifying Address Patterns
	Using TN3270E

	Telnet Menu
	How to Code
	Menu Definition Sections
	Entering Screen Commands
	Variables
	Single-Character-Input Menu Example
	PF-Key-Input Menu Example

	6. Configuring FTP Daemons
	Overview
	Planning Considerations
	Introduction to Configuring an FTP Server (Daemon)
	Creating an Internal FTP Server
	Monitoring and Controlling an Internal FTP Server
	Creating an External FTP Server
	Controlling the FTPBATCH Partition from the Console
	Using FTPBATCH to Create an External FTP Server with RAW Data Space

	Controlling Defaults Using EXTTYPES.L
	File Types and Translation
	Transfer Overrides
	EXTTYPES.L Definitions
	Modifying EXTTYPES.L
	Default Member
	Transfer Examples

	7. Configuring the Line Printer Daemon
	Overview
	Defining the LP Daemon
	Writing to VSE/POWER
	Writing to a VSAM KSDS
	Writing to a VSAM ESDS
	Writing to a VSE Library
	Supported LPR Subcommands

	8. Configuring the HTTP Daemon
	Overview
	Web Server Functions

	Defining the HTTP Daemon
	DEFINE HTTPD Command
	Related Commands

	HTML Files
	File Location
	File Location Algorithm
	File Location Examples
	Non-Standard File Names
	Non-Standard File Examples
	Member Types and Translation
	Graphics Files

	Server Side Includes
	Introduction
	Syntax
	How it Works
	CGI Variables
	HTTPD Variables
	URL Commands

	Security

	9. Security
	Overview
	SECURITY Command
	Defining User IDs
	Explicitly Defining User IDs

	FTP Security
	FTP Autonomous Files

	HTTP Security
	DEFINE HTTPD Command

	Telnet Security
	Security Exit Points
	Security Managers
	Security Request Flow

	Auto Security Manager
	ASECURITY Command

	User-Created Security Manager
	Implicitly Defining User IDs Defined In the User Security Manager
	Network Security in a User Security Manager
	Sample User Security Manager Code
	General Coding Requirements
	Operation
	Security Exit Block (SXBLOK)
	SXBLOK DSECT

	Vender-Provided Exits
	IBM
	Other Vendors

	Security Changes in 1.5E
	Required Commands
	Enhancements
	Equivalent Security Commands
	QUERY SECURITY Command

	Alternative Security Methods
	NETWORK Security with IP Addresses
	Using Cryptography with SSL/TLS Protocols

	10. Operation
	Overview
	Initialization
	Partition Structure
	Initialization JCL

	Message Management
	Message Routing
	Message Logging
	Message-Case Translation
	Message Suppression

	Command Interface
	Issuing Commands through the VSE Console
	Issuing Commands through IPNETCMD

	Shutdown Processing
	Application Shutdown
	Normal Shutdown
	Cancel
	Cancel with Force

	Restart Processing
	CHECKTCP Utility
	Event Publisher
	Item Format
	Processing Rules
	Item Header
	Item Dictionary
	Element Dictionary
	Executing IMODs
	Related Commands

	11. ASCII-to-EBCDIC Translation
	Overview
	EBCDIC
	ASCII
	Translation
	Problems

	Translation Options
	Control Operations
	FTP
	HTTP
	LPR
	LPD
	Telnet

	Translation
	Standard Translation
	Single-Byte Member
	Double-Byte Member
	Null Translation

	The CSTRAN Macro
	Purpose
	Syntax
	Macro Operation
	Assembly Output
	Activating a Table
	Code Pages

	Coding Example
	Source Job
	Generated Table

	Double-Byte Character Sets
	Where Used
	DBCS Data Structure: EBCDIC
	DBCS Data Structure: ASCII
	Conversion Problems
	Other Considerations
	Single-Byte Translation Tables
	Double-Byte Translation Tables and Code Pages
	Code Page Source Files
	Obtaining the Double-Byte Code Page Files
	Activating DBCS Support
	Using DBCS Translation
	DBCS Behavior with FTP
	SITE Command
	Enabling DBCS Support

	12. Performance
	Overview
	TCP/IP Concepts
	Data Flow
	MTU Size
	TCP Segment Size
	TCP Window Size
	Retransmissions
	Statistics Command

	Performance Factors
	Storage Utilization
	FTP Performance
	FTPBATCH Performance
	TN3270 Performance

	Port Queuing
	Background
	Query Command

	Appendix A: Technical Support
	Statement of Intent
	Obtaining Support

	Appendix B: Quickstart Guide
	System Setup
	Control Units
	TCP/IP Network

	Configuration Commands
	File System
	Daemons

	Network-Dependent Configuration
	Connection Using a 3172 Device
	Connection Using a Gateway

	Complex System Example
	Basic Command Set
	Using Subnetworking

	Selecting Other TCP/IP Software
	Microsoft Windows®
	UNIX
	AS/400 with OS/400 Version 4.3 (iSeries)

