
Programmer’s Guide

Version 2 Release 2

TCP/IP is a communications facility that
permits bi-directional communication

between VSE-based software and
software running on other platforms

equipped with TCP/IP.

This manual describes the application
programming interfaces available with

TCP/IP FOR VSE.

Published October 2017
Copyright © by CSI International

Copyright © 1996–2017 by CSI International

All Rights Reserved

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to the restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

This material contains confidential and proprietary material of Connectivity
Systems, Inc., hereafter referred to as CSI International and CSI, and may not be
used in any way without written authorization from CSI International. This
material may not be reproduced, in whole or in part, in any way, without prior
written permission from CSI International.

Permission is hereby granted to copy and distribute this document as follows:

• Each copy must be a complete and accurate copy.

• All copyright notices must be retained.

• No modifications may be made.

• The use of each copy is restricted to the evaluation and/or promotion of
CSI International’s TCP/IP FOR VSE product or in accordance with a
license agreement.

TCP/IP FOR VSE Programmer’s Guide
Version 2 Release 2
October 2017

Published by CSI International

Phone: 800-795-4914

Fax: 740-986-6022

Internet: http://www.csi-international.com

Product questions: info@csi-international.com

Technical support: support@csi-international.com

Review comments: documentation@csi-international.com

http://www.csi-international.com/
mailto:info@csi-international.com
mailto:support@csi-international.com
mailto:documentation@csi-international.com

i

Monday through Friday, 9:00 A.M. through 5:00 P.M. EST/EDT.

Telephone: Toll Free in the USA
Worldwide

800-795-4914
740-420-5400

Email: support@csi-international.com

Web: http://csi-international.com/problemreport_vse.htm

After business hours and 24 hours on Saturday and Sunday:

Telephone: Toll Free in the USA:
Worldwide:

800-795-4914
740-420-5400

CSI International provides support to address each issue according to
its severity.

During Business Hours

Emergency Service 24/7

CSI International Technical Support

mailto:support@csi-international.com
http://csi-international.com/problemreport_vse.htm

ii

Updates to This Manual

The following table describes updates to this manual. Updates may be
identified by a fix number in CSI International’s support database.

October 2017

ID Change Description Page

 Chapter 6, SSL/TLS for VSE APIs, “Secure Socket Layer API”:

• For each function, added a reference to Appendix C:
TLS 1.2 Enhancement.

• Added a note about TLS 1.2 to “Hardware Assist Options
Settings.”

• gsk_initialize(): Added the TLS 1.2 protocol to sec_types.

• gsk_secure_soc_init(): Added the TLS 1.2 protocol
to sec_type.

125

125

132

138

 Appendix A: $SOCKOPT Options Phase:

• Updated options for TLS 1.2.

• Added section: “New $SOCKOPT Settings for TLS 1.2.”

196

201

 Appendix C: TLS 1.2 Enhancement:

Added Appendix C to cover TLS 1.2 support.

208

iii

Table of Contents

To return from a hyperlink jump, press <Alt> <◄>

CSI International Technical Support .. i

Updates to This Manual ... ii

1. SOCKET Assembler API .. 1
SOCKET Macro .. 1

Syntax ... 1
function Operand .. 2
type Operand .. 4
Keyword Parameters ... 5
Global Constant Area .. 8
Connecting to TCP/IP FOR VSE .. 8
Return Codes .. 8
SRBLOK DSECT ..10
Opening a Connection ..12
Receiving Data ..13
Status ...15
Close Connection ...17

Control Connection ...18
Resolving Symbolic Names...18

Sample Programs ..22

2. BSD Socket Interface ..23
Overview ...23

Languages ...23
What is a Socket? ...24

Definition ...24
Socket vs. Port ...24

Using Socket Functions ...26
TCP Server ...26
TCP Client ..26
Connecting to TCP/IP ...27

Function Descriptions ..28

Table of Contents

iv

abort() ...28
accept() ..28
bind() ..29
close() ...30
connect() ..31
getclientid() ..31
gethostbyaddr() ...32
gethostbyname() ...32
gethostid() ..33
gethostname() ...33
getpeername() ...34
getsockname() ..34
getsockopt() ...35
getversion() ..35
givesocket() ..36
listen() ...37
receive(), recv() ...38
recvfrom() ..39
select() ...40
selectecb() ..41
selectex() ...42
send() ..43
sendto() ...44
seterrs_default() ..45
seterrs_socket() ...45
setsockopt() ..46
setsysid()..47
shutdown() ...47
socket() ..48
takesocket() ..49

Storage Functions ...50
bcopy() ..50
bzero() ...50
htonl() ...51
htons() ...51
inet_addr() ...51
inet_lnaof() ..52

C Definitions ..53
Definitions File ..53
Address Tag Struct ...53
IPv4 Address Struct..53
Client ID Struct ...53
Macros ...54

Table of Contents

v

Assembler Definitions ...56
Address Structures ...56
Sample Programs ...56

Error Handling ...58
Return Codes and Error Numbers...58
Error Number Descriptions ...58
Assembler and COBOL Programs ..59

Application Debugging ..60

3. High Level Pre-Processor API ..61
Overview ...61

Running Legacy JCL ..61
Pre-compiler Processing ...62
Compiling Your Program ..64

Using the Pre-Processor ...65
Execution Order...65
Parameters ..65
Pre-Processor Return Codes ..67
Pre-Processor Statements ..67
Identifying Tag ..68
Command Verbs ..69
Line Termination ...79

Error Checking ...81
XOBLOK Control Block ..81
Error Determination ...83

Connections and Data Transmission ..84
Active Connection Example ..84
Passive Connection Example ...85
Receiving Data ..85
Sending Data ...87
Closing a Connection ...88
Using WAIT(NO) ..88

Sample Programs ..90
COBOL EXEC TCP Example ...90
COBOL EXEC FTP Example ...93
COBOL EXEC CLIENT LPR Example ..96
PL/1 EXEC TCP Example ..99
PL/1 Notes .. 100

4. REXX Sockets API ... 101
Overview ... 101
REXX Calls ... 102

Variables .. 102
Return Codes ... 104

Table of Contents

vi

Timeout Function ... 105
Socket Types .. 106
Coding REXX Calls .. 108

OPEN ... 108
CLOSE ... 109
SEND ... 110
RECEIVE ... 111
ABORT .. 111
STATUS ... 112

Obtaining Network Information .. 113
Starting a Control Connection ... 113
Starting a Client Connection .. 114

5. Common Gateway Interfaces ... 115
Overview ... 115
Using CGIs with VSE ... 116

Defining a CGI to VSE ... 116
Using the CGILOAD Utility ... 116
Deleting a CGI .. 117

Assembler CGIs ... 118
Example ... 118

REXX CGIs ... 121
Programming... 121
Execution Requirements ... 122
Example ... 122

6. SSL/TLS for VSE APIs .. 124
Overview ... 124
Secure Socket Layer (SSL) and Transport Layer Security (TLS) API .. 125

Hardware Assist Options Settings .. 125
Error Codes ... 126
Functions .. 126
gsk_free_memory() ... 127
gsk_get_cipher_info() .. 128
gsk_get_dn_by_label()... 130
gsk_initialize() .. 131
gsk_secure_soc_close().. 134
gsk_secure_soc_init() .. 136
gsk_secure_soc_read() ... 142
gsk_secure_soc_reset() .. 144
gsk_secure_soc_write().. 145
gsk_uninitialize() .. 146
gsk_user_set() .. 147

Table of Contents

vii

CryptoVSE API .. 148
Overview .. 148
cry_3des_cbc_encrypt() ... 149
cry_3des_cbc_decrypt() ... 150
cry_aes128_cbc_encrypt() .. 151
cry_aes128_cbc_decrypt() .. 152
cry_aes128_ecb_encrypt() .. 153
cry_aes128_ecb_decrypt() .. 154
cry_aes192_cbc_encrypt() .. 155
cry_aes192_cbc_decrypt() .. 156
cry_aes192_ecb_encrypt() .. 157
cry_aes192_ecb_decrypt() .. 158
cry_aes256_cbc_encrypt() .. 159
cry_aes256_cbc_decrypt() .. 160
cry_aes256_ecb_encrypt() .. 161
cry_aes256_ecb_decrypt() .. 162
cry_des_cbc_encrypt() ... 163
cry_des_cbc_decrypt() ... 164
cry_des_encrypt() ... 165
cry_des_decryt() ... 166
cry_gen_random() ... 167
cry_get_cert_info() .. 168
cry_hmac_md5() ... 169
cry_hmac_sha() .. 170
cry_initialize() .. 171
cry_md5_hash() .. 172
cry_rsa_encrypt() .. 173
cry_rsa_decrypt() .. 174
cry_rsa_genprvk() ... 175
cry_rsa_signature_create() ... 176
cry_rsa_signature_verify() ... 177
cry_sha_hash() ... 178
cry_sha2_hash() .. 179
cry_universal_print_encode() ... 180
cry_universal_print_decode() ... 181

Common Encryption Cipher Interface ... 182
Calling the CIALCECI Stub .. 182
Request Area ... 183
Return Codes ... 185
Encryption Pseudocode... 185
Encryption Flow .. 188
Decryption Pseudocode .. 189
CIALSEED JCL .. 190

Table of Contents

viii

Cipher Suite Selection .. 193
Debugging Problems ... 194
Programming Notes .. 195

Appendix A: $SOCKOPT Options Phase ... 196
Using $SOCKOPT ... 196
Default Phase .. 196
Example 1: Setting the Stack ID .. 197
Example 2: Setting the Default Cipher Suite .. 198
BSD Interface Options .. 199
SSL/TLS Interface Options ... 201
New $SOCKOPT Settings for TLS 1.2 ... 201

Appendix B: $SOCKDBG Debugging Phase ... 203
Using $SOCKDBG .. 203
Sample Job .. 203
Keyword Settings ... 204
Example 1: BSD Application Output .. 206
Example 2: SSL/TLS Application Output ... 206
Controlling $SOCKDBG Messages .. 207

Appendix C: TLS 1.2 Enhancement ... 208
Overview .. 208
Using TLS 1.2 ... 208
Entry Points .. 209
Support for Older Protocol Versions ... 209
Cipher Suite Values.. 210
Pseudo Random Facility (PRF) .. 211
TLSVSE Macro Settings ... 211

1

1
1. SOCKET Assembler API

SOCKET Macro
The SOCKET macro is the lowest level interface to TCP/IP FOR VSE.
Because it is an Assembler interface, it gives the Assembler programmer
more flexibility than any other programming interface. You can use the
SOCKET macro to communicate with TCP, UDP, TELNET, and FTP.
The SOCKET macro also acts as a general-purpose client interface.

The syntax of the SOCKET macro follows. The defaults are underlined.

The caller must meet the following requirements:

• AMODE must be 24 or 31.

• RMODE must be 24 or ANY.

Also, the SOCKET macro issues SVCs that must be executed in an
enabled state.

Syntax

label SOCKET function,type,
ACTIVE=[YES|NO],
CICS=[YES|NO],
DATA=[(address,length)|NULL],
DESC=descriptor,
ECB=resultarea,
ECB2=2ndecbaddr,
FAST=[YES|NO],
FOIP=[0|foreignipaddr],
FOPORT=[0|foreignportnum],
ID=[00|nn],
LOPORT=[0|localportnum],
MF=[E|L],
MFG=soparea,
NEGOT=[YES|NO],
TIMED=[YES|NO],
TIMEOUT=[36000|timevalue],
USESYS=[YES|NO],
WAIT=[YES|NO]

Chapter 1 SOCKET Assembler API

2

The first operand of the SOCKET macro is function, which indicates the
function of the macro. The following table describes the valid values.

function
Value Description
ABORT When you specify ABORT, all pending sends and receives are

aborted and the socket is closed. This is an abnormal close and
may cause a reset message to appear at the other side of the
connection.

CLOSE When you specify CLOSE, the specified connection is closed.
The close operation is intended to be graceful in the sense that
outstanding SENDs are transmitted until all data is sent. It is
acceptable to issue several SEND calls followed by a CLOSE
call and to expect all data to be sent to the destination. The user
can close the connection at any time.

Because closing a connection requires communication with the
foreign socket, connections can remain in the closing state for a
short time.

DSECT When you specify DSECT, the SOCKET macro produces the
SRBLOK DSECT. The SRBLOK DSECT maps the 56-byte
result area specified by the ECB operand.

OPEN When you specify OPEN, you must also specify whether the
connection is PASSIVE or ACTIVE.

If you set PASSIVE=YES, you are listening for an incoming
connection. A passive open can have either a fully specified
foreign socket (FOIP=nnn.nnn.nnn.nnn and FOPORT=nnnnn)
waiting for a specific client connection, or an unspecified
foreign socket (FOIP=0 and FOPORT=0) waiting for any client
connection. A server application normally begins with a
passive open on a preassigned port number and then waits for
client connections. To connect to the server application, a client
must know the server's IP address and port number.

If you set ACTIVE=YES, the procedure to establish the
connection begins immediately. A client application normally
begins with an active open and then attempts to connect to a
specific server application that is passively listening (waiting
for client connections). The client’s IP address and port number
are sent to the server during active open processing, thus
enabling the server to send data back to the client.

function Operand

Chapter 1 SOCKET Assembler API

3

function
Value Description
RECEIVE When you specify RECEIVE, a receiving buffer is filled with

all available data or as much data as it can hold. For example,
if you specify 2000 bytes and only 100 arrive, then 100 bytes
are received; the remaining buffer is empty. Also, if you
specify 100 bytes but 2000 bytes are sent, then 100 bytes are
received and the remaining 1900 bytes require additional
RECEIVES. The SRECB of the result area is posted when the
receiving buffer contains data, and the SRCOUNT field of the
result area contains the length of the received data.

There is no inherent structure in the data stream. The
application must issue multiple RECEIVEs until the correct
amount of data is retrieved. Also, if you expect and specify a
given amount, the amount received may still be less if the
sending stack divides the data. You must design the application
program to dynamically determine when incoming data
segments are complete. To do this, you can include a length
prefix or use unique delimiters.

SEND When you specify SEND, the data contained in the specified
user buffer is sent. The SRECB of the result area is posted
when the data buffer is accepted by the TCP/IP FOR VSE
partition.

SET_SYSID When you specify SET_SYSID, you enable the macro to alter
the default TCP/IP FOR VSE stack ID to which the application
program connects. If you specify USESYS=YES on the OPEN
request and the // OPTION SYSPARM='xx' contains a
two-byte value, that specification overrides the SET_SYSID
command.

To make application testing easier, we recommend that you use
the // OPTION SYSPARM=xx and USESYS=YES instead of
the SET_SYSID command to specify the TCP/IP FOR VSE
stack.

STATUS When you specify STATUS, you receive a data block
containing the following information: local socket, foreign
socket, local connection name, receive window, send window,
connection state, number of buffers awaiting acknowledgment,
number of buffers pending receipt, urgent state, and
transmission timeout. Based on the connection state or the
implementation itself, some of this information may not be
available or meaningful.

The DSECT that maps this data is named STATBLK. It is
mapped by the STATBLK macro.

Chapter 1 SOCKET Assembler API

4

The SOCKET macro’s second operand is type, which indicates the
connection type you are using. The following table describes the valid
values.

type Value Description

CLIENT Connects to the general-purpose client manager. The client
manager executes in the TCP/IP FOR VSE partition and controls
the functions of some independent protocols. For example, an
application program using the general client manager can
manipulate LPR.

CONTROL Connects to a control manager. The control manager allows an
application program to request system services from the
TCP/IP FOR VSE partition. For example, you can use the
control interface to translate a domain name to an IP address.

FTP Connects to FTP. The FTP client manager executes in the
TCP/IP FOR VSE partition and manages the FTP session. After
the open request is complete, an application program can send
FTP commands and receive responses to those commands
across the connection. This enables an application program to
manipulate an FTP client session.

TCP Uses the TCP interface to connect and communicate. This
enables you to establish a TCP connection in client or server
mode so you can transfer a TCP data stream to or from an
application program.

TELNET Connects to a TELNET client manager. The TELNET client
manager executes in the TCP/IP FOR VSE partition and
manages the TELNET protocol. After a TELNET open
completes, data is sent and received as a TELNET stream. The
application program does not need to worry about ASCII-to-
EBCDIC translation or the details of TELNET option
negotiations.

UDP Allows you to transmit or receive a UDP datagram from a
foreign port and IP address. Because UDP is not a connection-
based system, it passes data in the form of blocks called
UDP datagrams.

type Operand

Chapter 1 SOCKET Assembler API

5

The remaining parameters in the SOCKET macro are keyword operands.
These are described in the following table:

Keyword Description
ACTIVE=
[YES|NO]

Indicates whether TCP/IP FOR VSE should attempt to
connect with a foreign host or wait for a foreign host to
connect with it (listen state). If YES, the connection is
established. If you specify UDP as your connect value, no
actual connection is established. The default is NO.

CICS=[YES|NO] Indicates whether the SOCKET macro should generate code
that works in the CICS environment. If YES, the
appropriate EXEC CICS calls are generated to replace the
standard operating system GETVIS and WAIT calls.
The default is NO.

DATA=
[(address,length) |
NULL]

Identifies either a block of data to be transmitted or an area
to be used for a receive operation. You can specify a simple
'string' for a transmission. When you refer to a data buffer,
you must specify the address and length as shown in the
macro format. These fields can refer to a fullword
containing the address or to a register containing the address
((reg1),(reg2)). If you specify the keyword value NULL
with a receive request, you receive a completion signal
without any transfer of data, and you can schedule
subsequent receives to retrieve the data. There is no default.

DESC=descriptor Identifies the thread of operation. This field must point to a
fullword in storage in which the descriptor value can be
stored, and this descriptor must be passed to all subsequent
SOCKET calls for the open connection. In other words,
after a connection is established, any number of
independent SOCKET calls can be made to the connection,
but all of them must use the DESC field to identify the open
connection.

The descriptor is established by the OPEN call and is the
address of the socket work area (SOWORK). This area is
obtained dynamically, used for all additional SOCKET
calls, and then released by the CLOSE call. There is no
default.

ECB=resultarea Points to a 14-fullword area containing SOCKET macro
results. After a SOCKET request completes, the results are
stored in the specified area. This area is initialized by the
SOCKET call. There is no default.

Keyword Parameters

Chapter 1 SOCKET Assembler API

6

Keyword Description
ECB2=2ndecbaddr Points to a second ECB. This fullword ECB is posted at

SOCKET macro completion. To control the wait on
SOCKET operations, an application can use either the
original ECB result area or this second ECB area. There is
no default.

Unlike the ECB= parameter, this ECB is not initialized by
the SOCKET call. This means that many concurrent
operations may share the same ECB2= value, and when it is
posted, the application can examine the individual ECB=
fields to determine the completed operation(s).

FAST=[YES|NO] For FAST=NO (the default), the send or close ECB is
posted when the remote host acknowledges the request.

If FAST=YES is specified on either the CLOSE or SEND
functions, the ECB is posted immediately and there is no
waiting for the remote host to respond.

FOIP=
[0|foreignipaddr]

Identifies the foreign IP address that TCP/IP FOR VSE is to
connect with or transmit to. This keyword must be used in
an active open call. The default is 0. If you code a value for
a PASSIVE connection (ACTIVE=NO), then that value is
used as a mask to limit incoming connections to a specific
host.

FOPORT=
[0|foreignportnum]

Identifies the foreign port number that TCP/IP FOR VSE is
to connect with or transmit to. This keyword must be used
in an active open call. The default is 0.

ID=[00|nn] Identifies a two-digit system ID assigned to a TCP/IP FOR
VSE partition. When you start a TCP/IP FOR VSE partition,
you can use the parameter string on the EXEC statement to
specify a system ID. When you use the ID keyword on the
SOCKET macro, all SOCKET requests are transmitted to
the TCP/IP FOR VSE partition that matches the ID you
specify. The default is 00.

LOPORT=
[0|localportnum]

Identifies the local port number to be used when
establishing a TCP connection. If you specify 0, which is
the default, TCP/IP FOR VSE assigns an available local port
number. Assignment begins at 4096 and proceeds upward.
Port numbers should not be reused with the same IP
addresses for at least several minutes. This ensures that stale
datagrams from a closed connection do not pollute a later
connection. In general, clients (ACTIVE=YES) should
specify 0 and servers (ACTIVE=NO) should specify the
number of their well-known port.

Chapter 1 SOCKET Assembler API

7

Keyword Description
MF=[E|L] Sets the macro format. Specify L to create the global

constant area and E to execute all other functions. The
default is E.

MFG=soparea Identifies the address of the SOCKET parameter area,
which is used to pass the addresses of the request
parameters to TCP/IP FOR VSE. To make your program
fully reentrant, you can define the area in which you want
the parameter list to be built. The length of this area is 72
bytes. It can be reserved by using the following code:

There is no default.

NEGOT=[YES|NO] Indicates whether TELNET connections are permitted to
negotiate session attributes. When you specify YES, the
negotiation is permitted. The default is YES.

TIMED=[YES|NO] Indicates whether this socket operation is subject to the
TIMEOUT= value. When you specify YES, monitoring is
activated. If the time specified in the TIMEOUT keyword
elapses without data being received from the remote host,
the receive is posted as complete and control returns to the
calling program. This is especially useful for limiting
RECEIVE and Passive OPEN (listen) socket requests,
which can require an indefinite amount of time to complete.
The default is NO.

TIMEOUT=
[36000|t imevalue]

Specifies the time allowed for the stack to respond to a
socket request. The value is the number of 300th-second
intervals. A value of 18000 specifies 60 seconds. The
default is 36000, or 2 minutes.

USESYS=
[YES|NO]

Indicates whether the application’s JCL can use the
// OPTION SYSPARM=xx statement to identify the TCP/IP
FOR VSE partition to connect to. If YES, the statement is
permitted. If the SET_SYSID command has been issued,
USESYS=YES overrides it. The default is NO.

WAIT=[YES|NO] Indicates whether the SOCKET macro should generate an
appropriate WAIT for the completion of the operation. If
YES, a WAIT is generated. If NO, the SOCKET macro
completes as soon as the request has been queued to the
stack partition. In this case, you must code a separate WAIT
to ensure that the operation completes. The default is NO.

SOPAREA DS (SOPLEN)X PARAMETER AREA

Chapter 1 SOCKET Assembler API

8

The Global Constant area is required for all SOCKET macro operations
within an application. This area contains constant information required
by all SOCKET operations for communication with the TCP/IP FOR VSE
partition. The following SOCKET macro creates the global constant area
and sets the ID of the desired TCP/IP FOR VSE partition:

TCP/IP FOR VSE can execute in multiple partitions at one time. To use
the SOCKET macro, you must identify a specific TCP/IP FOR VSE stack
ID in the global constant area. To change the partition you are
communicating with, you must modify this area. The following
statement shows how to change the TCP/IP FOR VSE stack identifier to
which your application connects.

In this statement, newid refers to a two-byte area containing the new
stack ID for SOCKET operations. All SOCKET operations that follow
are directed to the specified stack. For example, using

connects to the partition running stack ID 01. (Of course, instead of using
=C'01', you can specify a two-byte field name that contains the value.
No length checking is done by the macro.) Specifying USESYS=YES on
a SOCKET open request overrides the SET_SYSID specification if a
// OPTION SYSPARM='01' statement is used in the JCL of the partition
running the application.

Register 15 contains the return codes. You should check the return code
after each SOCKET call to determine whether your request processed
successfully. The codes are defined with equates in the SOCKET macro.

You must determine whether register 15 contains zero or a non-zero
value. If zero is returned, this means that you have been able to use the
interface. It does not mean that your request was successful. You must
wait for the stack to return a response by issuing a WAIT against the
SRECB field. After the SRECB is posted, check the return code in the
SRCODE field that is contained in the SRBLOK response area. This
value indicates whether the request succeeded. The SRCODE values are
explained in the next section.

If register 15 contains a non-zero value, it means that your socket request
could not be scheduled. This may indicate invalid or inconsistent
parameters, logic errors, or that the requested stack partition is not
available. For some register 15 return codes, you must also examine the
value in register 0. This value may indicate the specific problem.

Global Constant Area

Connecting to TCP/IP
FOR VSE

Return Codes

label SOCKET ID=00,MF=L

label SOCKET SET_SYSID,newid

SOCKET SET_SYSID,=C'01'

Chapter 1 SOCKET Assembler API

9

The register 15, register 0 code combinations and their meanings are
described in the following table.

Reg 15
Value

Reg 0
Value Meaning

0 The request is successfully scheduled. After the
ECB= field is posted, SRCODE contains the
completion status.

4 x Failure to obtain storage. Register 0 contains the
return code from the storage call (GETVIS).

8 The requested stack is unavailable. See the register 0
value (1, 2, or 3).

1 SCBLOK was not found. This indicates that TCP/IP
FOR VSE has not been initialized since the last IPL.

2 The stack is not running or is shutting down.

3 The SQBLOK eyecatcher is wrong. This indicates
corruption in one of the key TCP/IP control blocks.
You may need to cycle the stack partition to recover.

9 2 The SCBLOK eyecatcher is wrong. This may
indicate a storage corruption problem with a critical
TCP/IP control block. Cycling one of the TCP/IP
FOR VSE stacks may correct the problem.

10 3 The SQBLOK pointer in SCBLOK is zero. This
means that the socket request could not find an
active stack with a matching SYSID value.

11 4 The stack is shutting down.

12 The DESCRIPTOR field is zero (except for OPEN)

14 6 The SOQUEUE field in SOWORK is zero. This may
indicate that the socket call was issued (1) before the
OPEN completed, (2) after a CLOSE was issued, or
(3) with an invalid DESCRIPTOR value.

15 1 The SQSOCKET field in SQBLOK is zero. This
generally means that the stack is initializing.

16 x Cannot obtain storage. Register 0 contains the
GETVIS return code.

17 x Storage release error. Register 0 contains the
FREEVIS or IPSTOR return code.

Chapter 1 SOCKET Assembler API

10

Reg 15
Value

Reg 0
Value Meaning

24 x The SUBSID call failed. Register 0 contains the
SUBSID return code.

28 The SOPARM parameter list is invalid. See the
register 0 value (1, 2, 3, or 4).

1 The eyecatcher (“SO”) is invalid.

2 The version is invalid (not 1).

3 The release is invalid (not 2, 3, or 4).

4 The descriptor field is zero (all calls).

Every SOCKET request generates a response that is returned in a 56-byte
area that you provide. The first fullword of this area serves as an ECB
that allows the application program to wait for the request to complete.

The format of the SRBLOK can be found in the SRBLOK macro and is
subject to change from release to release. Typically, new fields are added
to the end of the block for compatibility.

The DSECT fields are described in the following table.

Field Description
SRECB This fullword is the primary ECB for the request operation. When the

SOCKET request completes, the ECB is posted. The SOCKET macro
also provides a mechanism for a second ECB to be posted along with
the SRECB. The second ECB is not contained within the response area.

SRLOPORT After an open request is complete, this halfword contains the local port
number that is assigned to the connection.

SRFOPORT After an open request is complete, this halfword contains the foreign
port number that is assigned to the connection.

SRFOIP After an open request is complete, this fullword contains the foreign IP
address of the connecting system.

SRCOUNT After a receive request completes, this halfword field contains the
number of bytes that were transferred.

SRFLAGS These flags alert the application program to a specific action or
operation that has occurred. They are discussed in more detail where
necessary.

SRBLOK DSECT

Chapter 1 SOCKET Assembler API

11

Field Description
SRCODE This field contains the return code for each SOCKET request. The codes

and their meanings are listed below. The hexadecimal equivalent of each
code is in parentheses.

Code Meaning

0 (0) The socket request completed normally.

4 (4) Connection not found (does not apply to OPEN). The
connection has terminated and the related control blocks are
gone. For a RECEIVE, this means that the remote host issue
issued a FIN and all data on the connection has been retrieved.

8 (8) Connection has been RESET.

12 (0C) A timed OPEN or RECEIVE reached the specified time-out
value without completing.

16 (10) The descriptor field contains nulls. This request should have
failed to schedule. This may indicate a wrong use of the
SOCKET macro or other API.

20 (14) Duplicate use of an ECB. This request shares an ECB and
SRBLOK with another running socket request.

24 (18) General failure during an OPEN.

28 (1C) The TCP/IP FOR VSE stack is shutting down.

32 (20) For a STATUS call, the return area is too short to return the
STATBLK.

36 (24) A SEND was issued after a CLOSE or a FIN.

40 (28) The connection was not established when a SEND or a
RECEIVE was issued.

44 (2C) A CLOSE was issued, but there was still data waiting to be
received (by a RECEIVE). The queued data is discarded.

48 (30) There was a storage shortage in the TCP/IP FOR VSE partition.

52 (34) The operation was terminated because an ABORT was issued.

SRTERMTY Contains the agreed-on terminal type after a TELNET open request is
negotiated.

Chapter 1 SOCKET Assembler API

12

Before you can communicate, you need to open a connection. A
connection can be active or passive. An active connection seeks out the
specified partner and actively negotiates the connection. A passive
connection takes no action and simply waits to receive a connection
request from the remote end.

The following example opens an active connection.

In this example, TCP/IP FOR VSE is asked to establish a connection with
a foreign system whose IP address is held in the fullword IPADDR and
whose foreign port number is 65. After the connection is established, the
fullword SOCKDESC must be passed to all subsequent SOCKET calls
for this connection. This is the only call that is required to establish a
complete connection with the foreign system.

After the SRECB contained in the result area is posted, the connection is
ready for send and receive activity. An active connection request must
complete within a timeout period. The timeout keyword is omitted, so
the timeout value defaults to two minutes. If the connection is not
complete within two minutes, the SRECB is posted and an error
condition is set in the SRCODE field of the result area.

The following example opens a passive connection.

Opening a Connection

Active Connect

Passive Connect

label SOCKET OPEN,TCP, *
 ACTIVE=YES, *
 FOIP=IPADDR, *
 FOPORT=65, *
 DESC=SOCKDESC, *
 ECB=RESULTS
 LTR R15,R15 Test the return
 BNZ ERROR Failure, then...
 WAIT RESULTS
 USING SRBLOK,RESULTS
 CLI SRCODE,0
 BNE ERROR

label SOCKET OPEN,TCP, *
 PASSIVE=YES, *
 LOPORT=65, *
 DESC=SOCKDESC, *
 ECB=RESULTS
 LTR R15,R15 Test the return
 BNZ ERROR Failure, then...
 WAIT RESULTS
 USING SRBLOK,RESULTS
 CLI SRCODE,0
 BNE ERROR

Chapter 1 SOCKET Assembler API

13

In this example, the application program directs TCP/IP FOR VSE to
listen for a connection request to arrive at port 65. When a connection
request arrives, the connection is completed, and the request is posted as
complete.

Notice that the foreign port and IP address are not specified. This allows
any remote user’s connection request to be accepted.

After the connection is established, further connection requests for this
local port number are rejected unless there are other server programs
waiting on this same local port number. In this example, the listen
connection established waits forever for a connection request. If this is
not desirable, TIMEOUT= may be used to force a completion even if no
connection request is received.

After a connection completes, the next logical step is to receive or send
data. The following example uses the SOCKET macro to receive data
from a foreign host.

In this example, the SOCKET macro queues a request to receive
information from the foreign host. You can have many receive requests
queued on the same connection. Each request must provide its own
separate result area (ECB=), but it must refer to the same descriptor word
(DESC=). Each request is processed in the order it was queued, and data
is passed to the application as it arrives. The maximum information that
can be received in one request is 65,535 bytes. Because it is unusual for
64K of information to arrive at one time, such a specification would
waste memory. Generally, information is received in pieces no larger
than the MTU size of the link. The amount of data received is returned in
the SRCOUNT field.

Receiving Data

label SOCKET RECEIVE,TCP, *
 DATA=(INBUFF,INLEN), *
 DESC=SOCKDESC, *
 ECB=RESULTS
 LTR R15,R15 Test the return
 BNZ ERROR Failure, then...
 WAIT RESULTS
 USING SRBLOK,RESULTS
 CLI SRCODE,0
 BNE ERROR
 MVC INGOT(2),SRCOUNT
 .
 .
 .
INBUFF DC A(BUFFER)
INLEN DC F'4096'
INGOT DC H'0'
BUFFER DS CL4096

Chapter 1 SOCKET Assembler API

14

It is important to note that TCP is a stream-oriented protocol, and
iteration is necessary when receiving a stream of data. This is a
significant difference from most VSE I/O operations and requests that
are record oriented or block oriented. A disk or tape VSE I/O operation
issues a read request, waits on an ECB for completion, checks for errors,
and then has the entire record or block available for processing. A TCP
stream application may send 4096 bytes of data to a receiving
application. The receiving application may get the full 4096 bytes in one
receive, or it may get 2000 bytes, then 1000 bytes, and then 1096 bytes
in three separate receive requests. TCP guarantees that it delivers bytes in
sequence, but it does not guarantee that it delivers bytes in the same
groups in which they are sent.

To handle a TCP data stream, the receiving application must continue to
issue receive requests to the input stream until the agreed upon data
structure indicates that all data is received. For example, TELNET and
FTP protocols use a carriage return/line feed indicator in the data stream
to indicate the end of a command or record.

The receiving application continues to loop through receive requests and
to add data to a buffer until the carriage return/line feed indicators are
detected in the data stream. At that point, the receiving application
knows that it has received a complete command or record that can be
processed. You must carefully preserve left-over data, as this is the first
part of the next record.

The following example uses the SOCKET macro to send data across a
connection.

In this example, 45 bytes of data are sent across the connection to the
foreign system. The SRECB is posted in the result area when the data has
arrived at the desired location. The send request must refer to the
descriptor word (DESC=) that was created during OPEN processing.

Sending Data

 MVC OUTLEN(4),=F'45'
 SOCKET SEND,TCP, *
 DATA=(OUTBUFF,OUTLEN), *
 DESC=SOCKDESC, *
 ECB=RESULTS
 LTR R15,R15 Test the return
 BNZ ERROR Failure, then...
 WAIT RESULTS
 USING SRBLOK,RESULTS
 CLI SRCODE,0
 BNE ERROR

 .
 .
 .

OUTBUFF DC A(BUFFER)
OUTLEN DC F'4096'
BUFFER DS CL4096

Chapter 1 SOCKET Assembler API

15

Send requests are processed in the order in which they are issued. The
maximum buffer size that can be used is 65,535 bytes. Regardless of
size, each send request accepted by the TCP/IP FOR VSE partition is
broken into different size pieces for actual transmission.

To speed-up data transmission, you may not want to wait for each SEND
request to be acknowledged by the remote host before proceeding. In this
case, you would fill a large buffer, issue a SEND (without waiting), refill
the buffer, and then wait for the first to complete. For maximum
efficiency, use two ECB= areas and alternate them. This ensures that
there is always data ready to be sent.

Sometimes you need to obtain information about a connection or
operation prior to its completion. To do this, use the STATUS call.

Status

 SOCKET OPEN,TCP, *
 DESC=DATADESC, *
 PASSIVE=YES, *
 ECB=DATAECB
 LTR R15,R15
 BNZ PASVF421
*
* Wait for 1 second
*
PASVLIST XC PASVTECB(4),PASVTECB
 SETIME 1,PASVTECB
 WAIT PASVTECB
*
* Let's do a status call
*
 LA R1,PASVCCBL
 ST R1,PASVADDR
 MVC PASVLEN(4),=A(STBLOKLN)
 SOCKET STATUS,TCP, *
 DESC=DATADESC, *
 DATA=(PASVADDR,PASVLEN), *
 ECB=PASVRECB
 LTR R15,R15
 BNZ PASVF421
 LA R1,PASVRECB
 WAIT (1)
 USING SRBLOK,PASVRECB
 CLI SRCODE,SRSTGOOD
 BNE ERROR
*
* Check that the connection...
*
 USING STATBLK,PASVCCBL
 LA R5,60
TRYAGIN DS 0H
 CLI STSTATE,STSTLIST
 BE GOTPORT
 LA R3,TIMEECB
 SETIME 2,TIMEECB
 WAIT TIMEECB
 BCT R5,TRYAGIN

Chapter 1 SOCKET Assembler API

16

In this example, a status call is used to determine the local port number
that was assigned and the local IP address of TCP/IP FOR VSE. The local
port number could have been determined when the first foreign client
connected to the VSE server application. When the VSE server
application issues a passive OPEN, the application program can wait
until a foreign client connects and the OPEN is complete. At this point,
the result area contains the local port number (SRLOPORT), the foreign
port number (SRFOPORT), and the foreign IP address (SRFOIP).

For some server applications, for example, FTP, you need to know the
local port number or the local IP address before clients are connected.
Also, the local IP address is not returned in the result area and must be
obtained by a status call.

In the example above, we issue a status request before any foreign clients
have connected to our VSE server application, and we save the local port
number and local VSE IP address after the connection is in a listening
state.

An example of an application that uses a status call is the FTP protocol.
It uses a control connection and a data connection on different ports. The
control connection is usually on standard port 21 and foreign clients
connect to it there. When a user PUTs or GETs a file, however, a
separate data connection is opened and a STATUS call is issued to
determine the port number assigned to the data connection. After the port
number is determined, the FTP port command is sent on the control
connection to the foreign client so that it knows the port number assigned
to the data connection. The foreign client then opens its side of the data
connection, and FTP commands can continue to be sent and received on
the control connection (theoretically) even while a large file is being
transferred on the separate data connection.

You can use the STATBLK macro to map information returned from a
STATUS call. The STATBLK macro completely replaces the CCBLOK
macro that was distributed with prior releases of TCP/IP FOR VSE. For
compatibility, adding the “CC=YES” parameter to the STATBLK macro
call equates the old CCBLOK field names to their STATBLK
counterparts.

The STATBLK DSECT maps the connection control block from the
TCP/IP FOR VSE partition to the caller’s local storage. It contains many
fields that are intended for internal use and are not helpful in this
situation. The fields listed in the following table are useful.

Field Description
STSTATE Connection status

STLOIP Local IP address

STLOPORT Local port number

STATBLK DSECT

Chapter 1 SOCKET Assembler API

17

Field Description
STFOIP Foreign IP address

STFOPORT Foreign port number

After you finish using a connection, you should close it. The following
example shows a close operation:

This is a simple operation that only requires a descriptor and a result
area. Although the close operation is queued behind any outstanding
send operations, it is good practice to allow previously queued requests
to complete before you issue the close.

Close Connection

 SOCKET CLOSE,TCP, *
 DESC=DATADESC, *
 ECB=DATAECB
 LTR R15,R15
 BNZ ERROR
*
* Wait for completion
*
 WAIT (1)
 LA R1,DATAECB
 USING SRBLOK,DATAECB
 CLI SRCODE,0
 BNE ERROR

Chapter 1 SOCKET Assembler API

18

Control Connection
We have discussed how you can use the SOCKET macro for TCP
connections. You can also use it to communicate directly with TCP/IP
FOR VSE, which maintains a control manager in its partition. Using the
SOCKET facility, you can send requests to the Control Manager and
obtain the results.

TCP/IP FOR VSE contains a local name server (see DEFINE NAME in
the TCP/IP FOR VSE Command Reference) and a domain name client
(see the SET DNS1 command). This enables you to assign symbolic
names to actual TCP/IP addresses. Symbolic names are easier to
remember than IP addresses, and you can reassign a name to a different
address.

To request the IP address associated with a symbolic name, send the
following command to the control manager:

The control manager looks for the name in the local name server and
then in the domain name client, and it returns this block of data:

You can request an IP address or host name using the commands
described in the following table. Text input should contain the command
and operand and should be delimited with a newline (x15). The
command and the operand data should be separated by one or more
blanks.

Command Input Output
GETHOSTBYADDR IPv4 address in

EBCDIC text
characters

Blank-delimited domain
name

GETHOSTBYNAME Domain name
in EBCDIC
text characters

19 bytes of data containing:
• 4-byte binary IPv4 address
• 15-byte text IPv4 domain

address (nnn.nnn.nnn.nnn)

GETHOSTNAME None Blank-delimited text name of
the local VSE system

Resolving Symbolic
Names

GETHOSTBYNAME name

IPADDR DS F IP Address in binary
IPADDRC DS CL15 IP Address in display format

Chapter 1 SOCKET Assembler API

19

Command Input Output
GETHOSTID None 19 bytes of data containing:

• 4-byte binary IPv4 address
• 15-byte text IPv4 address

of the local VSE system

Like all SOCKET operations, the first order of business is to open a
connection. This is shown in the following example.

At this point, the connection is established, and the control manager is
waiting for the application to transmit a command for execution. No IP
address or port information is specified in the open call. This is because
no connection to a foreign host is necessary. The only connection
required is with the TCP/IP FOR VSE partition.

The next step is to code the command to be passed to the control
manager. This is shown in the following example.

Note that an end-of-command character (an EBCDIC newline) is
included.

HOSTNAME SOCKET OPEN,CONTROL, Open the connection *
 DESC=CONTDESC, Descriptor *
 ECB=CONTECB ECB Address
 LTR R15,R15 Test the return code
 BNZ ERROR Bad, then error
 LA R1,CONTECB Address the ECB
 WAIT (1)
*
* * Check the results
*
 USING SRBLOK,R1
 CLI SRCODE,SROPGOOD Was the open good?
 BNE ERROR If no, exit with error
 DROP R1

* * Set up the command
 MVC CONTBUFF(CMDL),CMD Move command to buffer
 LA R3,CMDL Command length (w/NL)

...

 CMD DC C'GETHOSTBYNAME CSI-INTERNATIONAL.COM'
 DC X'15' End-of-command (NL)
 CMDL EQU *-CMD Length of entire cmd

Chapter 1 SOCKET Assembler API

20

Next, send the command to the control manager. You do this exactly as
if the data is destined for a foreign host.

At this point, the control manager has received the command and is
executing it. The results of the command are returned as data.

To obtain the results, issue a receive request. Although you can issue the
receive before the send (leaving it queued), the following example shows
it issued in sequence:

Now that you have received the results of the command execution, you
can extract them from the reply.

*
* * Send the command
 ST R3,CONTLEN Save the length
 LA R4,CONTBUFF Address the buffer
 ST R4,CONTADDR Save the address
 SOCKET SEND,CONTROL, Send the command *
 DATA=(CONTADDR,CONTLEN), Identify the data *
 DESC=CONTDESC, Descriptor *
 ECB=CONTECB ECB Address
 LTR R15,R15 Test the return code
 BNZ ERROR Bad, then error
 LA R1,CONTECB Address the ECB
 WAIT (1)
*
* * Check the response
 USING SRBLOK,R3
 CLI SRCODE,SRSEGOOD Was the send good?
 BNE ERROR No, then exit w/error
 DROP R1

*
* * Let's get the response
 MVC CONTLEN(4),=F'100' Set the length
 LA R4,CONTBUFF Address the buffer
 ST R4,CONTADDR Save the address
 SOCKET RECEIVE,CONTROL, Receive the response*
 DATA=(CONTADDR,CONTLEN), Identify the data *
 DESC=CONTDESC, Descriptor *
 ECB=CONTECB ECB Address
 LTR R15,R15 Test the return code
 BNZ ERROR Bad, then error
 LA R1,CONTECB Address the ECB
 WAIT (1)
*
* * Check the results
*
 USING SRBLOK,R1
 CLI SRCODE,SRREGOOD Was the receive good?
 BNE ERROR No, then exit w/error
 DROP R1

Chapter 1 SOCKET Assembler API

21

This is shown in the following example:

You must now issue a close operation to terminate the connection with
the control manager. If you leave the connection open, you can make
additional requests over the same connection. You can close the
connection as shown in the following example:

*
* * Copy the data from the buffer
 MVC IPADDR(4),CONTBUFF Copy the IP Address
 MVC IPADDRC(15),CONTBUFF+4 Copy the Char IP Addrs

*
* * Close the control
 SOCKET CLOSE,CONTROL, Close the connection *
 DESC=CONTDESC, Descriptor *
 ECB=CONTECB ECB Address
 LTR R15,R15 Test the return code
 BNZ ERROR Bad, then OK, move on
 LA R1,CONTECB Address the ECB
 WAIT (1)

Chapter 1 SOCKET Assembler API

22

Sample Programs
The source code for the following sample programs can be downloaded
from CSI International’s website, www.csi-international.com.

Program Description
Assembler Server
SAMSERVR

This sample server program is written in assembler
language and performs the following tasks:

• Initializes and attaches three VSE subtasks
• Opens a passive TCP connection and waits for a

command from a client application
• Dispatches one of the attached VSE subtasks to

process the command and sends a reply to the client
application that sent the command

Assembler Client
SAMCLINT

This sample client program is written in assembler
language and performs the following tasks:

• Opens an active TCP connection to the server
• Reads a command from SYSIPT
• Sends the command to the server
• Issues a receive for the reply and displays the reply

on SYSLST

Microsoft Visual Basic
Client for Windows®

This sample client performs the following tasks:

• Opens an active TCP connection to the
SAMSERVR on VSE

• Displays a Windows GUI interface for sending
commands to VSE

• Sends a command from the Windows GUI to VSE
• Displays the VSE reply in a list view format on the

Windows GUI

http://www.csi-international.com/

23

2
2. BSD Socket Interface

Overview
The de facto standard application programming interface (API) for
TCP/IP applications is the BSD socket interface. Although this API was
developed for the BSD Unix operating system in the early 1980s, it has
been implemented on a wide variety of non-Unix systems. For TCP/IP
FOR VSE, the BSD socket interface is simply referred to as the BSD
interface.

There was no official RFC standard for the BSD Interface for IPv4, but
RFC3493, “Basic Socket Interface Extensions for IPv6,” now contains a
standard definition for IPv6 and addresses compatibility with the IPv4 de
facto standard. VSE’s implementation of the interface does not provide
all of the variations of the defined functions, but it attempts to parallel
the z/VM and z/OS interfaces as needed.

The BSD interface can be used in C, Assembler (often referred to as
Basic Assembler Language, or BAL), COBOL, and other languages that
support standard call/save linkage conventions. It is also valid for use
with either batch or CICS programs. The interface determines at run time
whether the program is under CICS control and, if it is, uses CICS
services. The language environment (LE) is also dynamically detected
for LE-conforming applications.

Languages

Chapter 2 BSD Socket Interface

24

What is a Socket?
The BSD interface is the universally accepted standard for writing client
and server socket applications that use the TCP/IP protocol. Applications
using the BSD interface are commonly referred to as socket applications.
Much information is available on how to create socket applications using
the interface’s well-known functions. Before you begin using these
functions to develop socket applications, you must understand the
concept of a socket.

The term socket has been used in many ways, and it is important to
understand the meaning within the context of TCP/IP FOR VSE’S BSD
interface. A socket is a dynamically allocated control block that is
assigned a unique socket number. An application passes the socket
number to various functions (listen, accept, send, receive, close, etc.) to
control a single TCP/IP connection. In essence, the socket number is a
handle that allows the application to function independently of TCP/IP
control block structures.

The socket number is dynamically associated with a specific port when
the connection is established. You can use a socket to request
information from TCP/IP, wait for an incoming connection request, or to
send and receive data across the network. A unique socket number is
required for each connection used by an application. When the
application closes the connection, the socket number (and corresponding
socket control block) is returned to the pool of available sockets.

The term socket is sometimes confused with port number. In this
discussion of the BSD interface, the two terms have completely different
meanings. This difference may be easier to understand by describing
each term in the context of a BSD server and a client application.

In a BSD server application, the socket function is used to allocate and
assign a unique socket number. The bind function is then used to
associate that socket number with a specific TCP/IP port. The BSD
server would have multiple connections with remote clients using unique
socket numbers, but it would have the same port number for all the client
connections. The port number for a server is usually a constant between
1 and 65,535 that is known by the client applications wanting to connect
to the server. By comparison, socket numbers are unique between 1 and
8,192 and are known only by the server application.

In a BSD client application, the socket function is also used to
dynamically allocate and obtain a unique socket number. The connect()
function is then called with a remote IP address and port number
parameters. The client application must know or obtain the port number
of the server application before it issues its connect request.

Definition

Socket vs. Port

Chapter 2 BSD Socket Interface

25

The local port number of a client application usually is assigned
dynamically, and most client applications do not know or care what local
port number is used. They simply use the dynamically assigned socket
number and remote port number to communicate with the remote server
application. The client really only needs to know the IP address and port
number of the remote server application to connect to it.

Chapter 2 BSD Socket Interface

26

Using Socket Functions
Socket functions allow application programs to communicate with the
TCP/IP FOR VSE partition. You can use the socket functions for both
server and client applications. The examples in this section show the
order in which various socket functions are called so that you can see
how the functions work in a BSD socket program. This section also
includes information on connecting to a specific TCP/IP FOR VSE stack.

The examples below are not detailed but convey a general understanding
of the concepts involved. Each function is described in a later section.

A typical TCP server application will take the following actions:

• Allocate a socket with a socket() call.

• Initialize the sockaddr structure only with the desired port number.
The remainder of the IP address is cleared to zeros.

• Bind the allocated socket to a specific port number with a bind() call.

• Issue a listen() call to send the initial passive open request to the
TCP/IP FOR VSE partition.

• Issue an accept() call so that the server waits (blocks) until a client
connects. When a client application sends a connect request to the
server port, the accept allocates a new socket for the client, reissues
the passive open on the original socket number, and then returns
control to the BSD server application with the new socket number.

• Process the client request by taking the following actions:

1. Issue a receive() call to retrieve client data.

2. Process the client data.

3. Issue a send() call to respond to the client.

4. Issue a close() call to close the new socket.

• Return to the accept() call to wait for another client request.

• Issue a close() call when the server is shut down to close the original
socket and terminate the server application.

A typical TCP client application will take the following actions:

• Obtain a socket number with a socket() call.

• Connect to a remote host with a connect() call using the socket
number obtained from the socket() call.

TCP Server

TCP Client

Chapter 2 BSD Socket Interface

27

• Send data to the remote host with a send() call using the same socket
number that was used for the connect() and obtained from the
socket() call.

• Issue a receive() call to wait for a reply using the same socket number
that was used for the send() request.

• Process the received data.

• Close the connection using the same socket number that was used for
the connect() call.

By default, your program connects with the TCP/IP FOR VSE partition
assigned to stack ID 00. The ID assignment is made in the parameter
field of the TCP/IP FOR VSE EXEC statement. The default value for the
ID is 00.

If you want to connect to a different TCP/IP FOR VSE partition for
testing or other purposes, you can use the setsysid() function to change
the stack ID. This function is described in the next section.

Another way to specify a stack ID is to include the following // OPTION
statement in your program’s JCL:

In this example, 01 is the two-digit ID of the desired stack.

You can override the default ID and the one defined in the
// OPTION SYSPARM statement by specifying a stack ID in a custom
options phase ($SOCKOPT). You can create this phase by modifying
default settings. See “Appendix A: $SOCKOPT Options Phase,”
page 196, for details on setting options in a custom options phase.

Connecting to TCP/IP

// OPTION SYSPARM='01'

Chapter 2 BSD Socket Interface

28

Function Descriptions
This section lists and describes the socket functions and their return
codes. The entry point for Assembler, COBOL and other languages is
also listed for each function. For information on the errno variable, see
the section “Error Handling” on page 58.

The abort() function immediately terminates the connection with a reset
(RST). Any outstanding send or receive requests are also terminated and
posted complete with a negative result. After the abort() is completed,
the connection is closed and the socket is available to be reused. The
syntax is as follows:

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the abort completed
successfully. A -1 indicates an error, and errno contains
the reason.

socket The socket number to be aborted.

For Assembler, COBOL and other languages, call the IPNRABRT entry
point.

The accept() function accepts a connect request from a remote client and
returns the socket number to be used for the session. The syntax is as
follows:

The variables are described in the following table.

Variable Description

rc The socket number assigned to the accepted session is
returned. A value of -1 indicates that an error has
occurred, and the variable errno contains additional
information.

listen The socket number used by a listen() call.

abort()

accept()

int abort(int);
rc = abort(socket);

int accept(int,struct sockaddr *,int *);

rc = accept(listen,&sockaddr,&length);

Chapter 2 BSD Socket Interface

29

Variable Description

sockaddr Points to a sockaddr structure or NULL. If a pointer is
provided, it contains the address of the accepted host.

length Points to an integer that contains the length of the
sockaddr structure. This value is required if sockaddr is
specified. The system replaces the original contents of
length with the sockaddr length.

Usage Notes:

• There is no correspondence between the listen socket number and the
returned session socket number.

• Control is not returned to your program until a session request is
received on the listen socket. If you do not want to be suspended, use
the select() function.

• The UDP protocol does not recognize the accept() function.

• You must accept() sessions with all requesters. You can, however,
close undesirable connections immediately.

For Assembler, COBOL and other languages, call the IPNRACCP entry
point.

The bind() function assigns an IP address or port number to a socket.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates success. A -1 indicates
that an error has occurred, and the variable errno has
more information.

socket The socket number to be labeled.

sockaddr Points to a sockaddr structure that contains a port and/or
IP address.

length The length of the sockaddr structure.

Usage Notes:

• If you specify port 0 in a bind request, the system assigns an available
port.

bind()

int bind(int,struct sockaddr *,int);

rc = bind(socket,&sockaddr,length);

Chapter 2 BSD Socket Interface

30

• This function is affected by the $OPTBNDX option in $SOCKOPT.
See “Appendix A: $SOCKOPT Options Phase,” page 196, for details
on setting options in a custom options phase.

For Assembler, COBOL and other languages, call the IPNRBIND entry
point.

The close() function closes a connection and releases allocated
resources. The socket is returned to the system.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the close completed
successfully. A -1 indicates that an error has occurred,
and the variable errno contains more information.

socket The socket number to be closed.

Usage Notes:

• If you are reading from a socket and you close it while data is
pending, the connection is reset rather than closed. This alerts the
other host to an error condition. This situation occurs only with TCP
connections and not with UDP connections.

• This function is affected by the $OPTCNFW option in $SOCKOPT.
See “Appendix A: $SOCKOPT Options Phase,” page 196, for details
on setting options in a custom options phase.

For Assembler, COBOL and other languages, call the IPNRCLOS entry
point.

close()

int close(int);

rc = close(socket);

Chapter 2 BSD Socket Interface

31

The connect() function establishes a connection with a remote client or
server. Status information is not returned until the connection completes.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the connect
completed successfully. A -1 indicates that an error has
occurred, and the variable errno has more information.

socket The socket number to be used for the connection.

sockaddr Points to a sockaddr structure that contains the address of
the remote client or server you want to connect to. This
value can be NULL if the bind() function has already
supplied the information.

length The length of the sockaddr structure. This value can be
NULL if sockaddr is NULL.

For Assembler, COBOL and other languages, call the IPNRCONN entry
point.

The getclientid() function returns the identifier by which the calling
application is known to the TCP/IP FOR VSE partition. The clientid that
is returned is used in the givesocket() and takesocket() functions.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the function
completed successfully. A -1 indicates that an error has
occurred, and the variable errno has more information.

domain The requested address domain.

clientid Pointer to a clientid structure that is to contain the
identifier.

For Assembler, COBOL and other languages, call the IPNRGETC entry
point.

connect()

getclientid()

int connect(int,struct sockaddr *,int);

rc = connect(socket,&sockaddr,length);

int getclientid(int domain,struct clientid *,int);

rc = getclientid(domain,&clientid);

Chapter 2 BSD Socket Interface

32

The gethostbyaddr() function takes an IP address and returns the
symbolic name associated with it.

The variables are described in the following table:

Variable Description

rc The symbolic name associated with an IP address, or a -1
if the address is not found.

ipaddr The pointer to the IP address.

ipaddr_len The length of ipaddr in bytes.

domain The pointer to the address domain support (AF_INET).

For Assembler, COBOL and other languages, call the IPNRGHBA entry
point.

The gethostbyname() function looks up a symbolic name and returns its
IP (network) address.

The variables are described in the following table:

Variable Description
rc The IP (network) address associated with the name or

a -1 if the name is not found.

string A zero-delimited text string.

For Assembler, COBOL and other languages, call the IPNRGETN entry
point.

gethostbyaddr()

gethostbyname()

unsigned long gethostbyaddr(char *,int,int);

rc = gethostbyaddr(ipaddr,ipaddr_len,domain);

unsigned long gethostbyname(char *);

rc = gethostbyname(&string);

Chapter 2 BSD Socket Interface

33

The gethostid() function returns the IP address currently used by the
local TCP/IP FOR VSE host.

The address returned is the one established by the SET IPADDR
command. This is also true of multi-homed hosts.

For Assembler, COBOL and other languages, call the IPNRGETH entry
point.

The gethostname() function acquires the local host’s assigned name, if
one exists.

The variables are described in the following table:

Variable Description
rc The return code. A 0 indicates that the local host name

has been returned. A -1 indicates that an error has
occurred or that no name is assigned to the local host.

buffer Points to a buffer in which the zero-delimited name is
returned. Under TCP/IP FOR VSE, this buffer must be at
least 17 bytes long.

length The length of the buffer.

The function determines the local host’s name by locating the local
host’s address as determined by the SET IPADDR command. The
function then scans the name table that was created with command
DEFINE NAME,ID=xxx,IPADDR=xxx until it finds a match for the local
host’s address. If it finds a match, it returns the associated name entry.

For Assembler, COBOL and other languages, call the IPNRGETA entry
point.

gethostid()

gethostname()

unsigned long gethostid();

ipaddr = gethostid();

int gethostname(char *, int);

rc = gethostname(&buffer,length);

Chapter 2 BSD Socket Interface

34

The getpeername() function returns the foreign IP address and port of
the peer connected to a socket.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the function
completed successfully. A -1 indicates that an error has
occurred, and the variable errno has more information.

socket The socket number.

sockaddr Points to a sockaddr structure that is to contain the
foreign IP address and port.

length The sockaddr structure’s length in bytes.

For Assembler, COBOL and other languages, call the IPNRGETP entry
point.

The getsockname() function returns the local IP address and port of a
socket.

The variables are described in the following table:

Variable Description
rc The return code. A 0 indicates that the function

completed successfully. A -1 indicates that an error has
occurred, and the variable errno has more information.

socket The socket number.

sockaddr Points to the sockaddr structure that is to contain the
local IP address and port.

length Points to a variable containing the length of the sockaddr
structure.

For Assembler, COBOL and other languages, call the IPNRGETS entry
point.

getpeername()

getsockname()

int getpeername(int, struct sockaddr *,int);

rc = getpeername(socket,&sockaddr,length);

int getsockname(int,struct sockaddr *,int);

rc = getsockname(socket,&sockaddr,&length);

Chapter 2 BSD Socket Interface

35

The getsockopt() function updates the return area and length with the
value of the requested option.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the function completed
successfully. A -1 indicates that an error has occurred, and
the variable errno has more information.

p1 Pointer to the socket number.

p2 Pointer to the code level for the related option.

p3 Pointer to the requested option.

p4 Pointer to the return area for the requested option’s value.

p5 Pointer to the return area length.

For Assembler, COBOL and other languages, call the IPNRGETO entry
point.

The getversion() function updates the return area with the version of
TCP/IP FOR VSE that is currently active. The value returned is dependent
on the passed return area length.

Eight-Byte Return Area. When the passed return area length is eight
bytes, the returned area consists of the following parts:

• Four bytes containing the displayable characters “1.5E,” “1.5F,”
“1.5G,” “2.1x,” or “2.2x,” where x is the modification level (0 to 9).

• Four bytes containing the binary hexadecimal value that is internally
associated with the four-byte character string that precedes it.

The product version values that may be output are as follows.

Character Format Binary Format
1.5E X'00010501'

1.5F X'00010502'

1.5G X'00010503'

2.1x X'000201xx' (see text)

2.2x X'000202xx' (see text)

getsockopt()

getversion()

int getsockopt(int *,int *,int *,char *,int *)

rc = getsockopt(&p1,&p2,&p3,&p4,&p5)

Chapter 2 BSD Socket Interface

36

For version 2 in binary format, xx is the modification level and ranges
from 00 to 99, depending on the maintenance level active on the system.

Twenty-Byte Return Area. When the passed return area length is 20
bytes, the returned area contains the following:

• 8 bytes: character version (vv.rr.mm) of the TCP/IP stack

• 8 bytes: character version (vv.rr.mm) of the BSD interface
(IPNRBSDC)

• 4 bytes: hexadecimal version (00vvrrmm) of the TCP/IP stack

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the function
completed successfully. A -1 indicates that an error has
occurred, and the variable errno contains more
information.

p1 Pointer to the return area for the version.

p2 Pointer to the return area length. The length is a fullword
containing either 8 or 20.

For Assembler, COBOL and other languages, call the IPNRVERS entry
point.

The givesocket() function makes the specified socket available to a
takesocket() function issued by another program. Any socket can be
given. Typically, givesocket() is used by a master program that obtains
sockets by means of an accept() call and gives them to application
programs that handle one socket at a time.

givesocket()

int getversion(int *,int *)
rc = getversion(&p1,&p2)

int givesocket(int,struct clientid *);

rc = givesocket(socket,&clientid);

Chapter 2 BSD Socket Interface

37

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates that the function
completed successfully. A -1 indicates that an error has
occurred, and the variable errno contains more
information.

socket The socket number.

clientid Pointer to a clientid structure specifying the program that
is to receive the socket.

Givesocket/takesocket processing is affected by the $OPTGTSP option
in $SOCKOPT. See “Appendix A: $SOCKOPT Options Phase,”
page 196, for details on setting options in a custom options phase.

For Assembler, COBOL and other languages, call the IPNRGIVE entry
point.

The listen() function instructs the system to monitor a port for
connection requests from remote hosts.

The variables are described in the following table.

Variable Description

rc The return code. A 0 indicates that a listen condition has
been established and will continue for the requested
number of events. A -1 indicates that an error has
occurred, and the variable errno contains more
information.

socket The socket number to be associated with the listen. This
socket contains the port number to be used.

backlog The maximum number of incoming connections to be
queued. See the Usage Notes for more information.

Usage Notes:

• This function is used with TCP requests; it does not apply to UDP
requests.

listen()

int listen(int,int);

rc = listen(socket,backlog);

Chapter 2 BSD Socket Interface

38

• The value of backlog is overridden in the following cases:

1. If QUEDMAX in $SOCKOPT equals 0, then backlog is ignored
and the value is set by the PORTQUEUE command.

2. If QUEDMAX in $SOCKOPT is greater than 0 but less than the
value of backlog, then the value of QUEDMAX is used.

By default, the QUEDMAX keyword is set to 0. See “Appendix A:
$SOCKOPT Options Phase,” page 196, for details on setting options
in a custom options phase.

• If you are going to use the PORTQUEUE command, then you must
ensure that QUEDMAX=0 in $SOCKOPT to allow the command to
control the queuing of inbound connection requests (SYNs). See “Port
Queuing” in the “Performance” chapter of the TCP/IP FOR VSE
Installation Guide for information on the PORTQUEUE command.

When clients attempt to connect to a port in a listen state, the request
can be rejected. Most clients then retry the connection attempt at some
configured number of times for a specific time period before
giving up.

The TCP/IP DIAGNOSE CONNREJ command can be used to
diagnose whether inbound connection requests are being rejected.
Rejected requests may be retried and still be successful, but
connection queuing can be implemented to avoid client connection
rejections by a server on a specific port.

For Assembler, COBOL and other languages, call the IPNRLIST entry
point.

The receive() function enables your program to receive data sent from a
remote host. This function does not return control until the data is
transferred.

The variables are described in the following table.

Variable Description

result If the function completes successfully, this field contains
the length of the received data. A value of -1 indicates
that an error has occurred, and the variable errno
contains more information.

socket The socket number to be used for the receive() function.

buffer Points to the buffer to be used for receiving the data.

receive(), recv()

int receive(int,char *,int,int);

result = receive(socket,&buffer,length,flags);

Chapter 2 BSD Socket Interface

39

Variable Description

length The length of the buffer.

flags Provided for compatibility. Code zero as a placeholder.

Usage Notes:

• If you are using UDP and a datagram is too large to fit in the area
provided, the excess bytes are discarded.

• After you issue the receive() function, control is not returned until the
data is placed in your buffer and is available. To test for availability,
use one of the select() functions.

• This function is affected by the $OPTXNBK option in $SOCKOPT.
See “Appendix A: $SOCKOPT Options Phase,” page 196, for details
on setting options in a custom options phase.

For Assembler, COBOL, other languages, call IPNRRECV entry point.

The recvfrom() function is similar to the receive() function, but it
includes additional parameters and is used only in UDP applications.

The variables are described in the following table:

Variable Description

result If the function completes successfully, this field contains
the length of the received data. A value of -1 indicates
that an error has occurred, and the variable errno
contains additional information.

socket The socket number to be used for the receive() function.

buffer Points to the buffer to be used for receiving the data.

len The length of the buffer.

flags Provided for compatibility. Code zero as a placeholder.

sockaddr Points to a sockaddr structure that contains a port and/or
IP address.

s_len The length of the sockaddr structure.

For Assembler, COBOL and other languages, call the IPNRREFR entry
point.

recvfrom()

int recvfrom(int,char *,int,int,struct sockaddr *,length);

result = recvfrom(socket,&buffer,len,flags,&sockaddr,s_len);

Chapter 2 BSD Socket Interface

40

The select() function examines a subset of your program’s sockets and
indicates which ones are ready to be processed.

The variables are described in the following table:

Variable Description

tot After completion, the function returns the total number
of sockets that are ready for processing. Only sockets
flagged for examination are included. A value of -1
indicates that an error has occurred, and the variable
errno contains more information.

num Specifies the highest socket number to be examined.
Socket numbers up to 8000 are valid, so setting a
reasonable value reduces overhead.

read Points to a bit string that indicates which sockets are to
be examined for available data for reading. Each 1 bit
causes the corresponding socket to be examined. If the
socket has no read-eligible data, the bit is turned off.
NULL indicates that the string is not used.

write Points to a bit string that indicates which sockets are to
be examined for availability for writing. Each 1 bit
causes the corresponding socket to be examined. If the
socket is not available for writing, the bit is turned off.
NULL indicates that the string is not used.

exc Points to a bit string that indicates which sockets are to
be examined for pending exceptions. Each 1 bit causes
the corresponding socket to be examined. If the socket
has no pending exception, the bit is turned off. NULL
indicates that the string is not used.

time Points to a time structure that indicates how long the
select() function should wait. If this value is NULL,
select() does not return control until at least one socket
is ready to process. Otherwise, control is returned when
one or more sockets are ready or when the time interval
expires, whichever is sooner.

For Assembler, COBOL and other languages, call the IPNRSELE entry
point.

select()

int select(int,fd_set *,fd_set *,fd_set *,struct timeval *);

tot = select(num,&read,&write,&exc,&time);

Chapter 2 BSD Socket Interface

41

The selectecb() function examines a subset of your program’s sockets
and determines which ones are ready for processing. This function is
similar to the select() function except that an ECB indicates that a socket
is ready.

The variables are described in the following table.

Variable Description

tot At completion, tot contains the total number of sockets
ready for processing. Only sockets flagged for
examination are included. A value of -1 indicates that an
error has occurred, and the variable errno contains
additional information.

num Specifies the highest socket number to be examined.
Numbers up to 8000 are valid, so setting a reasonable
value reduces overhead.

read Points to a bit string that indicates which sockets are to
be examined for read-eligible data. Each 1 bit causes the
corresponding socket to be examined. If the socket has
no read-eligible data, the bit is turned off. NULL
indicates that the string is not used.

write Points to a bit string that indicates which sockets are to
be examined for write-eligible data. Each 1 bit causes the
corresponding socket to be examined. If the socket has
no write-eligible data, the bit is turned off. NULL
indicates that the string is not used.

exc Points to a bit string that indicates which sockets are to
be examined for pending exceptions. Each 1 bit causes
the corresponding socket to be examined. If the socket
has no pending exception, the bit is turned off. NULL
indicates that the string is not used.

time Points to a time structure that indicates how long the
selectecb() can remain outstanding. If this value is
NULL, selectecb() monitors the sockets indefinitely or
until one becomes ready. Otherwise, the ECB is posted
when at least one socket is ready or when the time
interval expires, whichever is sooner.

ecb Points to an ECB that is posted when at least one socket
is ready to process or when the optional time interval has
expired.

selectecb()

int selectecb(int,fd_set *,fd_set *,fd_set *,struct timeval *,int *);

tot = selectecb(num,&read,&write,&exc,&time,&ecb);

Chapter 2 BSD Socket Interface

42

Usage Notes:

• The selectecb() function always returns control immediately. There is
no implied wait even when no sockets are ready for processing.

• When you issue selectecb(), the ECB address is noted within each
socket selected by the bit strings. The ECB is posted each time a
selected socket is ready for processing. To determine which sockets
are ready, use any select() function.

• If you reissue selectecb(), all sockets specified are updated to point to
a new ECB.

• After an ECB is assigned to a socket, it cannot be removed. The only
way to work around this restriction is to assign a different (or dummy)
ECB to the socket.

• If you specify a time value and it ends before a socket becomes ready,
the pending selectecb() function terminates and the ECB is posted.

For Assembler, COBOL, and similar languages, call the IPNRSECB
entry point.

The selectex() function examines a subset of your program’s sockets and
determines which ones are ready for processing. The selectex() is similar
to select(), but it includes an ECB that can be used to terminate the
implied wait.

The variables are described in the following table:

Variable Description

tot After completion, the selectex() function returns the
total number of sockets that are ready for processing.
Only sockets flagged for examination are included. If an
error occurs, a -1 is returned, and variable errno contains
additional information.

num Specifies the highest socket number to be examined.
Socket numbers up to 8000 are valid, so setting a
reasonable value reduces overhead.

read Points to a bit string that indicates which sockets are to
be examined for read-eligible data. Each 1 bit causes the
corresponding socket to be examined. If the socket has
no read-eligible data, the bit is turned off. NULL
indicates that the string is not used.

selectex()

int selectex(int,fd_set *,fd_set *,fd_set *,struct timeval *,int *);

tot = selectex(num,&read,&write,&exc,&time,&ecb);

Chapter 2 BSD Socket Interface

43

Variable Description

write Points to a bit string that indicates which sockets are to
be examined for write-eligible data. Each 1 bit causes the
corresponding socket to be examined. If the socket is not
available for writing, the bit is turned off. NULL
indicates that the string is not used.

exc Points to a bit string that indicates which sockets are to
be examined for pending exceptions. Each 1 bit causes
the corresponding socket to be examined. If the socket
has no pending exception, the bit is turned off. NULL
indicates that the string is not used.

time Points to a time structure that indicates how long the
selectex() should wait. If this value is NULL, selectex()
does not return until at least one socket is ready to
process. Otherwise, control is returned when one or more
sockets are ready or when the time interval expires,
whichever is sooner.

ecb Points to a single ECB or a list of ECBs. Multiple user
ECBs are allowed in selectex() when the $OPTMECB
option is set in $SOCKOPT. See “Appendix A:
$SOCKOPT Options Phase,” page 196, for details on
setting options in a custom options phase.
In addition to being terminated by a ready socket or time
interval expiration, selectex() also returns when the ECB
is posted.

For Assembler, COBOL and other languages, call the IPNRSELX entry
point.

The send() function transmits data to a remote host.

The variables are described in the following table:

Variable Description

bytes_sent If the call is successful, the number of bytes sent. A
value of -1 indicates that an error has occurred, and the
variable errno contains additional information.

socket The socket number to be used for the transmission.

msg Points to a buffer containing the data to be transmitted.

send()

int send(int,char *,int,int);

bytes_sent = send(socket,&msg,length,flags);

Chapter 2 BSD Socket Interface

44

Variable Description

length The length of the data to transmit.

flags Provided for compatibility. Code 0 as a placeholder.

By default, data is sent without waiting for an acknowledgement for
improved performance. This can be overridden by removing the
$OPTSNWT option setting in $SOCKOPT. See “Appendix A:
$SOCKOPT Options Phase,” page 196, for details on setting options in a
custom options phase.

For Assembler, COBOL and other languages, call the IPNRSEND entry
point.

The sendto() function can be used by UDP applications to send data to a
remote host. It is similar to the send() function but has two additional
parameters.

The variables are described in the following table:

Variable Description

bytes_sent If the call is successful, this is the number of bytes sent.
A value of -1 indicates that an error has occurred, and the
variable errno contains additional information.

socket The socket number to be used for the transmission.

buffer Points to a buffer containing the data to be transmitted.

len The length of the data to transmit.

flags Provided for compatibility purposes. Code zero as a
placeholder.

sockaddr Points to a sockaddr structure that contains a port and/or
IP address.

ad_len The length of the sockaddr structure.

For Assembler, COBOL and other languages, call the IPNRSETO entry
point.

sendto()

int sendto(int,char *,int,int,struct sockaddr *,length);

bytes_sent = sendto(socket,&buffer,len,flags,&sockaddr,ad_len);

Chapter 2 BSD Socket Interface

45

The seterrs_default() function indicates the default locations for the
errno and iprc variables.

The variables are described in the following table:

Variable Description

rc The return code. This is always zero.

errno Points to the integer (fullword) variable that is to receive
errno values. You can override this value for a particular
socket with the seterrs_socket() function.

iprc Points to the integer (fullword) variable that is to receive
iprc values. You can override this value for a particular
socket with the seterrs_socket() function.

By default, the errno and iprc variables reside in the socket driver
program, and there is only one copy in each partition. If you want your C
program to be reentrant, you must provide your own copies of these two
variables.

For Assembler, COBOL and other languages, call the IPNRERRD entry
point.

The seterrs_socket() function indicates the locations for the errno and
iprc variables to be used for calls involving the specified socket.

The variables are described in the following table:

Variable Description

rc The return code for the operation. This is always zero.

socket The socket to be associated with the variables.

errno Points to the integer (fullword) variable that is to receive
errno values.

iprc Points to the integer (fullword) variable that is to receive
iprc values.

seterrs_default()

seterrs_socket()

int seterrs_default(int *,int *);

rc = seterrs_default(&errno,&iprc);

int seterrs_socket(int,int *,int *);

rc = seterrs_socket(socket,&errno,&iprc);

Chapter 2 BSD Socket Interface

46

By default, the errno and iprc variables reside in the socket driver
program, and there is only one copy per partition. If you want your C
program to be reentrant, you must provide your own copies of these two
variables. The values coded with seterrs_socket() override those set with
seterrs_default().

For Assembler, COBOL and other languages, call the IPNRERRS entry
point.

The setsockopt() function allows you to set various option values
available in a socket.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates success. A -1 indicates an
error occurred, and variable errno has more information.

socket The number of the socket to be modified.

sol_socket The level of the call. This is the only permitted value.

option The option to be set. Valid values are as follows:

• SO_NONBLOCK: Sets the current socket to non-
blocking for connects. When a connect() is issued
without this option, the calling program is placed into
a wait state until the connection request completes.
This option enables the connect() to return
immediately to the calling program, which uses a
select for the socket write bit string to test for
successful completion.

• SO_LISTCHKC: Limits the number of connections
allowed on a listening socket. The number of
connections allowed is determined by the optional
count parameter of the listen() function. If you do not
set this option, the number of connections is unlimited
(which is the default).

• SO_REUSEADR: Allows multiple sockets to be
bound to the same port. By default, a bind() function
fails if another socket is already bound to the port
specified in the bind request.

data Points to an area containing option-dependent data. This
field is ignored.

setsockopt()

int setsockopt(int,int,int,char *,int);

rc = setsockopt(socket,sol_socket,option,&data,length);

Chapter 2 BSD Socket Interface

47

Variable Description

length The length of the option-dependent data. This field is
ignored.

For Assembler, COBOL and other languages, call the IPNRSETS entry
point.

The setsysid() function can be used to set the ID of the TCP/IP FOR VSE
stack you want your program to communicate with. This allows the
program to override the default ID. See the section “Connecting to
TCP/IP,” page 27, for more information on setting the stack ID.

The variables are described in the following table:

Variable Description

rc The result contains the binary stack ID being used. A
value of -1 indicates that an error has occurred, and the
variable errno contains more information.

id The stack id is the first and only parameter passed. The
passed value must be 2 character bytes from 00 to 99.
Optionally, you can pass the characters “GETS” to
obtain the stack ID currently in use.

For Assembler, COBOL and other languages, call the IPNRSYID entry
point.

Under TCP/IP FOR VSE, the shutdown() function works exactly like the
close() function, terminating all processing over a socket and returning
the socket to the system.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates success. A -1 indicates
that an error has occurred, and the variable errno
contains more information.

socket The socket number to be closed.

setsysid()

shutdown()

int setsysid(char);

rc = setsysid(id);

int shutdown(int,int);

rc = shutdown(socket,how);

Chapter 2 BSD Socket Interface

48

Variable Description

how Under some implementations, this value controls the
functions of the sockets that are to be terminated. This
parameter is ignored.

For Assembler, COBOL and other languages, call the IPNRSHUT entry
point.

The socket() function acquires a socket. The syntax is as follows:

The variables are described in the following table:

Variable Description

number If the call is successful, this is the number of the newly
obtained socket. A value of -1 indicates that an error has
occurred, and the variable errno contains additional
information.

domain The domain in which the socket is to be used. This must
be coded as “AF_INET”.

type The type of socket to be obtained. Supported types are
SOCK_STREAM for TCP transmission
SOCK_DGRAM for UDP transmission

protocol The transmission protocol to be used. Supported
protocols are

IPPROTO_TCP for reliable TCP
IPPROTO_UDP for unreliable UDP

For Assembler, COBOL and other languages, call the IPNRSOCK entry
point.

socket()

int socket(int,int,int);

number = socket(domain,type,protocol);

Chapter 2 BSD Socket Interface

49

The takesocket() function acquires a socket from another program.
Typically, the other program passes its client ID and socket descriptor
and/or process ID to your program through your program’s startup
parameter list.

The variables are described in the following table:

Variable Description

rc The return code. A 0 indicates success. A -1 indicates
that an error has occurred, and the variable errno
contains more information.

clientid Points to the clientid structure that identifies the
application from which you are taking a socket.

socket The socket number.

For Assembler, COBOL and other languages, call the IPNRTAKE entry
point.

takesocket()

int takesocket(struct clientid *,int);

rc = takesocket(&clientid,socket);

Chapter 2 BSD Socket Interface

50

Storage Functions
This section describes utility functions that provide subroutines for
variable and bit manipulations. The entry point for Assembler and other
high level languages is listed for each function.

The bcopy() function copies one variable into another.

The variables are described in the following table:

Variable Description

source Points to the source variable

target Points to the target variable

length The integer length of both the source and the target

Usage Notes:

• The copy is performed with MVCL. Large variables are copied
efficiently.

• The entire variable storage is copied, not just the occupied portion of
character strings.

• The specified length cannot exceed the length of either the source or
the target variable. If it does, storage overlays and random failures can
occur.

For Assembler, COBOL and other languages, call the IPNRBCOP entry
point.

The bzero() function clears the specified storage and fills it with binary
zeros. No value is returned.

The variables are described in the following table:

Variable Description

store Points to the variable to be filled with zeros

length The length of the area to be cleared

bcopy()

bzero()

void bcopy(const void *,void *,int);

bcopy(&source,&target,length);

void bzero(void *,int);

bzero(&store,length);

Chapter 2 BSD Socket Interface

51

The specified length cannot exceed the variable length. If it does, a larger
storage area is cleared.

For Assembler, COBOL and other languages, call the IPNRBZER entry
point.

The htonl() function translates a long integer (four bytes) from the
computer’s internal byte order into network byte order. Because these are
identical, the function executes as a simple assignment statement.

For Assembler, COBOL and other languages, call the IPNRNILF entry
point.

The htons() function translates a short integer from the computer’s
internal byte order into network byte order. Because these are identical,
the function executes as a simple assignment statement.

For Assembler, COBOL and other languages, call the IPNRNILH entry
point.

The inet_addr() function converts a printable dotted-decimal IP
(network) address to its binary equivalent.

The variables are described in the following table:

Variable Description

addr The returned network address. A value of -1 indicates
that the source string could not be converted.

string Points to a zero-delimited string containing the address
to be converted.

The source string consists of one to four integers separated by periods.
The resulting binary value is four bytes in length.

htonl()

htons()

inet_addr()

unsigned long htonl(unsigned long);

target = htonl(source);

unsigned short htons(unsigned short);

target = htons(source);

unsigned long inet_addr(char *);

addr = inet_addr(&string);

Chapter 2 BSD Socket Interface

52

The integers are assigned to the individual bytes as explained in the
following table:

Integers Bytes

Four integers Each integer is assigned to one byte in the final
string.

Three integers The left-most two integers are assigned to one byte
each. The final integer is stored in two bytes as a
16-bit value.

Two integers The left integer is stored as a byte. The second
integer is stored in three bytes as a 24-bit value.

One integer The value is stored as a single 32-bit value.

For Assembler, COBOL and other languages, call the IPNRINAD entry
point.

The inet_lnaof() function examines a binary IP (network) address and
returns only the host portion.

The variables are described in the following table:

Variable Description

host The host number

ipaddr A binary network address

For Assembler, COBOL and other languages, call the IPNRINLN entry
point.

inet_lnaof()

unsigned long inet_lnaof(struct in_addr);

host = inet_lnaof(ipaddr);

Chapter 2 BSD Socket Interface

53

C Definitions
C programs should include the socket.h file. This file contains all the
function definitions, parameters, variables, and structures needed for
creating a C-language socket application. These definitions include the
address structures described in this section. Refer to the socket.h file for
the complete set of definitions.

The sockaddr variable maps an address tag for a socket. An address tag
enables you to place information into a socket or retrieve existing
information from a socket. This structure is as follows.

For convenience, the IPv4 socket address structure is remapped by
sockaddr_in with additional granularity. This structure is as follows:

The following clientid structure can be used to identify an application.

Definitions File

Address Tag Struct

IPv4 Address Struct

Client ID Struct

struct sockaddr
 unsigned short sa_family; /* Set to AF_INET for IPv4 */
 /* or AF_INET6 for IPv6 */
 char sa_data[14]; /* Address data */

struct sockaddr_in /* IPv4 socket address structure */
 short sin_family; /* Always set to AF_INET */
 unsigned short sin_port; /* Port number */
 unsigned long sin_addr; /* Network (IP) address */
 char sin_zero[8]; /* Pad, binary zeros */

struct clientid
 int domain(4)
 char jobnmae(8)
 char taskname(8)
 char type(1)
 char taskid(1)
 unsigned short partitionid(2)
 int token(4)

Chapter 2 BSD Socket Interface

54

The following macro instructions are included in the C socket.h file.
These macros provide compatibility with other implementations and can
simplify complex coding operations.

This macro turns on a single bit in a string. It is used in conjunction with
the select() function.

The variables are described in the following table:

Variable Description

n The one-based bit number

p Points to a bit string

This macro turns off a single bit in a string. It is used in conjunction with
the select() function.

The variables are described in the following table:

Variable Description

n The one-based bit number

p Points to a bit string

This macro tests a single bit in a string and determine its status. A value
of 1 (true) is generated if the bit is turned on.

The variables are described in the following table:

Variable Description

n The one-based bit number

p Points to a bit string

Macros

FD_SET

FD_CLR

FD_ISSET

FD_SET(n,p *)

FD_CLR(n,p *)

FD_ISSET(n,p *)

Chapter 2 BSD Socket Interface

55

This macro copies a bit string.

The variables are described in the following table:

Variable Description

f Points to the source string

t Points to the target string, which must be the same length
as the source string

This macro fills an entire bit string with binary zeros.

The variable is described in the following table:

Variable Description

p Points to a bit string

FD_COPY

FD_ZERO

FD_COPY(f *,t *)

FD_ZERO(p *)

Chapter 2 BSD Socket Interface

56

Assembler Definitions
The following address structures can be used to develop Assembler
socket programs:

Sample server and client programs are available to show how socket
functions can be called from an Assembler language program. The
source code for these programs is in the file SAMPBSDC.ZIP, which
you can download from CSI International at www.csi-international.com.

These programs are described below.

The BSDSERVR sample server program in SAMPBSDC.ZIP performs
the following tasks:

• Initializes and attaches three VSE subtasks.

• Invokes the socket() function call to create a socket.

• Invokes the bind() function to port 6045 for the created socket.

• Invokes the listen() function to wait for a request from a client
application named BSDCLINT.

Address Structures

Sample Programs

Server

*
* * sockaddr_in IPv4 socket address structure
USOCKIN DSECT
UFAMILY DS H
UPORT DS H
UIPADDR DS F
*
* * sockaddr_in6 IPv6 socket address structure
U6SOCKIN DSECT
U6LENGTH DS XL1 Length of this structure
U6FAMILY DS XL1 Protocl family
U6PORT DS XL2 UDP or TCP port number
U6FLOW DS XL4 IPv6 flow info(not used)
U6IPV4AD EQU U6FLOW IPv4 address(32-bits)
U6IPV6AD DS XL16 IPv6 address(128-bits)
U6SCOPE DS XL4 Scoped interfaces(not used)
U6L EQU *-U6LENGTH Length of this area
AF_INET EQU 2 Protocol family for IPv4
AF_INET6 EQU 19 Protocol family for IPv6
SOCK_STREAM DC F'1' TCP stream socket
SOCK_DGRAM DC F'2' UDP datagram socket
*
* For assembler programs, the errno is returned in:
 ENTRY IPERRNO
IPERRNO DS F
*
* For assembler programs, the iprc is returned in R15 and:
 ENTRY IPRETCD
IPRETCD DS F

http://www.csi-international.com/

Chapter 2 BSD Socket Interface

57

• Dispatches one of the attached VSE subtasks to process the command
and sends a reply to the client application that sent the command.

The BSDCLINT sample client program in SAMPBSDC.ZIP performs
the following tasks:

• Invokes the socket() function call to create a socket.

• Invokes the connect() function to the BSDSERVR.

• Reads a command from SYSIPT.

• Invokes the send() function to send a command to BSDSERVR.

• Invokes the receive() function to receive a reply from BSDSERVR.

• Invokes the close() function to close the connection.

Client

Chapter 2 BSD Socket Interface

58

Error Handling
The iprc and errno variables record the completion status of the
functions. The iprc variable contains the return code, and errno contains
the error number (reason) code. For most functions, a return code (iprc)
of 0 indicates successful completion, and -1 indicates the request failed.
For failed requests, the error number (errno) can be examined to
determine the cause of the failure.

If a socket function returns with return code of -1, the error number in
variable errno indicates why the function failed. The following table lists
the error numbers, the associated Assembler equates, and their
descriptions.

Errno errno Equate Message

100 EINTERNAL /* Internal error */

113 EBADF /* Parameter not valid */

118 EFAULT /* Bad address or buffer N/A */

121 EINVAL /* Invalid parameter */

122 EIO /* Socket closed */

127 ENFILE /* System file table is full */

129 ENOENT /* No such socket */

132 ENOMEM /* Not enough memory */

134 ENOSYS /* Function not implemented */

158 EMVSPARM /* Bad parameter */

183 EVSE /* Not supported in VSE */

1102 EWOULDBLOCK /* Request would block */

1103 EINPROGRESS /* Socket connection in progress */

1104 EALREADY /* Previous connection request incomplete */

1106 EDESTADDRREQ /* Socket is not yet bound to a local */

1109 ENOPROTOOPT /* No Option Recognized */

1112 EOPNOTSUPP /* Socket call not supported */

1114 EAFNOSUPPORT /* Address family not support */

1115 EADDRINUSE /* Address or port in use */

1117 ENETDOWN /* Ipnet Shutting Down */

1121 ECONNRESET /* Connection reset/closed by peer */

Return Codes and Error
Numbers

Error Number
Descriptions

Chapter 2 BSD Socket Interface

59

Errno errno Equate Message

1122 ENOBUFS /* No buffers available */

1123 EISCONN /* Socket is already connected */

1124 ENOTCONN /* Socket not connected */

1127 ETIMEDOUT /* Connection request timed out */

1152 ECANCELED /* Socket cancel */

For Assembler and other high level languages, the iprc and errno values
are returned into the IPRETCD and IPERRNO locations, respectively.
Assembler programs must include the following storage definitions to
reserve 4-byte areas for these entry points:

If these external references are unresolved EXTRNs in the link-edit, then
the return code and error number are not available to the application.
Your application can then use the seterrs_default() and the
seterrs_socket() functions to dynamically set the addresses for the return
code (iprc) and error number (errno).

This means that there is one copy of each variable in each partition, and
your program is not reentrant if it uses them. To make your application
reentrant, you should still resolve IPRETCD and IPERRNO in static
program storage, but then use the seterrs_default() or the
seterrs_socket() function to assign dynamic storage for the iprc and
errno variables.

Assembler and COBOL
Programs

ENTRY IPRETCD
IPRC DS F 4-byte area reserved for BSD return code

ENTRY IPERRNO
ERRNO DS F 4-byte area reserved for BSD error number

Chapter 2 BSD Socket Interface

60

Application Debugging
To help debug your socket program, or to analyze the functions and their
results, you can create a debugging options phase ($SOCKDBG). You
can use this phase without making any modifications to your program.
When the trace is active, messages can be sent to the VSE system
console (SYSLOG) and/or to the assigned printer (SYSLST) of the
partition in which the application is executing.

See “Appendix B: $SOCKDBG Debugging Phase,” page 203, for details
on enabling debugging messages and data dumps by specifying options
in a custom $SOCKDBG debugging phase.

61

3
3. High Level Pre-Processor API

Overview
CSI International’s pre-processor application programming interface
(API) provides a language-independent method of performing TCP/IP
communications from your application program. The following steps
describe how you use this facility.

1. Write your program as you normally would.

2. Insert language-independent calls to external routines provided
by TCP/IP FOR VSE, if you want to use TCP/IP.

3. Pass your program through the TCP/IP FOR VSE pre-processor.
The pre-processor replaces the language-dependent calls with
code appropriate for the language you are using.

4. If necessary, pass your program through other pre-processors.
These pre-processors may be provided by IBM or other vendors.

5. Compile your program.

In this chapter we show sample jobs that pre-process and compile a
program. We then explain how to use the pre-processor and how to set
up the connections and transmit the data. Finally, we provide sample
programs coded in COBOL and PL/1.

The name of the pre-processor’s executable is IPNETPRE. Prior to
release 1.5F, the phase name was IPNETRAN. If you use the
IPNETRAN phase name in 1.5F and later releases, IPNETRAN simply
loads IPNETPRE and passes control to it. This approach allows users to
continue running JCLs that were written prior to release 1.5F.

IPNETPRE uses options that were not needed by IPNETRAN. To ensure
that existing JCLs can be used without modification, you can store
parameter values in the VSE library member IPNETPRE.L. These values
are then used as the defaults. The IPNETPRE parameters are described in
the section “Using the Pre-Processor” on page 65.

Running Legacy JCL

Chapter 3 High-Level Pre-processor API

62

After you code your application program and pass it through the TCP/IP
FOR VSE pre-processor, you often must pass the output from CSI’s pre-
compiler through one or more pre-compilers provided by IBM or other
vendors. The example in this section shows one way to do this.

The following JCL runs job SAMPLE1, which generates job SAMPLE2.
Job SAMPLE2 places the pre-compiled output of the TCP/IP FOR VSE
pre-processor in the library member $PRECOMP.WORK.

Pre-compiler Processing

* $$ JOB JNM=SAMPLE1,CLASS=4,DISP=D
* $$ LST CLASS=P,DISP=D
* $$ PUN CLASS=A,DISP=I
// JOB SAMPLE1
// OPTION NOSYSDUMP,LOG,DECK
// LIBDEF *,SEARCH=(PRD2.TCPIP)
// EXEC ASSEMBLY
 PUNCH '* $$ JOB JNM=SAMPLE2,CLASS=A,DISP=D'
 PUNCH '* $$ LST CLASS=P,DISP=D'
 PUNCH '// JOB SAMPLE2'
 PUNCH '// EXEC LIBR'
 PUNCH 'ACCESS SUBLIB=PRD2.TCPIP'
 PUNCH 'CATALOG $PRECOMP.WORK REPLACE=YES'
 END
/*
// EXEC IPNETPRE,PARM='LANG=COBOL,ENV=CICS'
 Your Program...
 ...

/*
// OPTION DECK
// EXEC ASSEMBLY
 PUNCH '/+'
 PUNCH '/*'
 PUNCH '/&&'
 PUNCH '* $$ EOJ'
 END
/*
/&
* $$ EOJ

Chapter 3 High-Level Pre-processor API

63

The example JCL below runs job SAMPLE3, which executes the IBM
CICS COBOL pre-processor using the contents of library member
$PRECOMP.WORK as input. This job generates job SAMPLE4, which
replaces the contents of input library member $PRECOMP.WORK with
the output from the pre-processor.

You must repeat the process for each preprocessor that you need to run.

* $$ JOB JNM=SAMPLE3,CLASS=4,DISP=D
* $$ LST CLASS=P,DISP=D
* $$ PUN CLASS=A,DISP=I
// JOB SAMPLE3
// OPTION NOSYSDUMP,LOG,DECK
// LIBDEF *,SEARCH=(PRD2.TCPIP)
// EXEC ASSEMBLY
 PUNCH '* $$ JOB JNM=SAMPLE4,CLASS=A,DISP=D'
 PUNCH '* $$ LST CLASS=P,DISP=D'
 PUNCH '// JOB SAMPLE4'
 PUNCH '// EXEC LIBR'
 PUNCH 'ACCESS SUBLIB=PRD2.TCPIP'
 PUNCH 'CATALOG $PRECOMP.WORK REPLACE=YES'
 END
/*
// EXEC DFHECP1$,PARM='CICS'
* $$ SLI MEM=$PRECOMP.WORK,S=PRD2.TCPIP
/*
// OPTION DECK
// EXEC ASSEMBLY
 PUNCH '/+'
 PUNCH '/*'
 PUNCH '/&&'
 PUNCH '* $$ EOJ'
 END
/*
/&
* $$ EOJ

Chapter 3 High-Level Pre-processor API

64

After all pre-processing is complete, the pre-processed library member is
passed to a compiler, as shown in the following example. In this sample
JCL, the library member $PRECOMP.WORK is passed to the COBOL
compiler. The object deck is link-edited and cataloged to the library as
phase SAMPLE. Note that any other language compiler or assembler
could be invoked in place of COBOL.

Note: Do not use the “CBL DYNAM” option when compiling any
COBOL program that will be invoking the API.

Compiling Your Program

* $$ JOB JNM=SAMPLE5,CLASS=A,DISP=D
* $$ LST CLASS=P,DISP=D
// JOB SAMPLE5
// LIBDEF *,SEARCH=(PRD2.TCPIP,SPLIB2.PROD)
// LIBDEF PHASE,CATALOG=PRD2.TCPIP
// OPTION CATAL
 PHASE SAMPLE,*
/*
// OPTION LIST,LISTX,XREF
// EXEC FCOBOL
* $$ SLI MEM=$PRECOMP.WORK,S=PRD2.TCPIP
/*
/*
// EXEC LNKEDT
/&
* $$ EOJ

Chapter 3 High-Level Pre-processor API

65

Using the Pre-Processor
This section explains how to use the pre-processor. It covers

• Execution order when using a CICS pre-processor

• Pre-processor parameters

• Pre-processor statements and syntax

Always run the TCP/IP pre-processor before the CICS pre-processor.
The TCP/IP FOR VSE pre-processor generates EXEC CICS statements
that are replaced by the CICS pre-processor.

When you execute the pre-processing program (IPNETPRE), you can
specify a number of parameters on the PARM field of the EXEC
statement, along with an optional DEBUG parameter if you are
encountering any problems.

Alternatively, you can include these parameter definitions within the
IPNETPRE.L library member. You can use the CATALOG command to
do this, as shown in the following example:

The IPNETPRE parameters are described in the following table.

Parameter Description

CC=
[ON|OFF]

CC=ON forces an 81-byte output format with the first byte
containing blanks. IPNETPRE is designed to output card
images. If IJSYSPH is reassigned to a non-UR device type, it
uses the appropriate length for that device type (80 bytes with no
prefix for non-CC, and 81-bytes for CC). Some OEM products,
however, may prevent the automatic length adjustment. The
CC=ON setting allows you to correct this problem. Use this
setting only if needed. The default is OFF.

DEBUG=
[ON|OFF]

DEBUG=ON tells the API to output a large number of
diagnostic messages when your application (not IPNETPRE) is
running. It assists in debugging application problems with
TCP/IP calls.
To disable these messages, you must recompile your code with
DEBUG=OFF. The default is OFF.

Execution Order

Parameters

CATALOG IPNETPRE.L REP=Y EOD=/+
DEBUG=OFF
CC=ON
/+

Chapter 3 High-Level Pre-processor API

66

Parameter Description

END-EXEC=
[YES|NO]

END-EXEC=NO overrides the default requirement to end each
“EXEC protocol command” statement with an “END-EXEC”
line. Command operands are on separate lines. When the pre-
compiler comes to a string that is not a valid operand, it assumes
the EXEC has reached the end.

This parameter provides compatibility with how IBM processes
the EXEC call. The default is YES. See “Line Termination,”
page 79, for related information.

Note: When END-EXEC=NO, any invalid operand in your code
signals that the EXEC is ended. This may lead to syntax errors.

ENV=env ENV sets the environment in which the finished program is to
execute. Valid values for env are as follows:

BATCH The program is to execute in batch mode

CICS The program is to execute under CICS

LANG=lang LANG sets the language to be processed. Valid values for lang
are as follows:

COBOL For F-level COBOL, COBOL II, COBOL
for VSE

PL1 For PL/I

ASSEMBLER For Assembler F or High-Level Assembler

Note: Although Assembler programs can use this pre-processor,
we recommend using the SOCKET macro interface for finer
controls within an Assembler environment.

QUIET QUIET specifies that only important messages are output. This
parameter is not set to a value.

TRACE=
[ON|OFF]

TRACE=ON enables an “EXEC CICS TRACE” call to be
generated within TCP/IP calls. If an “EXEC protocol
TRACE(value)” is inserted into the application’s code, then the
value in the source code is used. Using this parameter provides a
value when none is already set in the source code. The default is
OFF.

UPPER UPPER specifies that all output is in upper case rather than
mixed case. This parameter is not set to a value.

Chapter 3 High-Level Pre-processor API

67

The IPNETPRE return codes are described in the following table.

Return
Code Description

0 No errors were found in the input. IPNETPRE translated
your EXEC calls into code native to the language specified
by the LANG parameter. The next step is for you to compile
your program.

12 One of the following errors was detected:
• LANG is set to an unsupported language.
• ENV is set to an unsupported environment.

16 One or more errors were detected in your input. To find the
errors, review the contents of the punch file produced by
IPNETPRE.

24 IPNETPRE was unable to load its message file. You
probably do not have PRD2.TCPIP or PRD1.BASE in the
search chain for the partition running IPNETPRE.

All pre-processor statements contain the following elements:

• An identifying tag that specifies the call’s protocol.

• A command verb that identifies the TCP/IP operation to be performed.

• Optional operands specific to the chosen command verb. Each
operand is placed on a separate line.

• A closing tag that indicates the end of the statement. This tag may
include an optional terminator. See “Line Termination,” page 79, for
more information.

The following format is used for COBOL, PL/1, and Assembler:

Pre-Processor Return
Codes

Pre-Processor
Statements

EXEC id verb
 operand1
 operand2
END-EXEC[terminator]

Chapter 3 High-Level Pre-processor API

68

The identifying tag (id) on the EXEC statement identifies the TCP/IP
calls to the pre-processor and must be a valid protocol value. The pre-
processor examines each “EXEC id” statement and replaces it with
language-dependent code that performs the specified functions.

The valid values for id are described in the table below.

id Value Description

TCP EXEC TCP connects and communicates using the TCP
interface. This allows a TCP connection to be
established in a client or server mode, and it allows a
TCP data stream to be transferred to or from the
application program.

FTP EXEC FTP connects to FTP. An FTP client manager is
loaded into the TCP/IP FOR VSE partition to handle the
FTP session. After the open request finishes, the
application program sends FTP commands and receives
responses to those commands across the connection.
This allows the application program to manipulate an
FTP client session from a program.

CLIENT EXEC CLIENT connects with the general-purpose client
manager. This client manager, within the TCP/IP FOR
VSE partition, controls the function of a number of
independent protocols. For example, LPR can be
manipulated from the application program using the
general client manager accessed by this service type.

UDP EXEC UDP connects and communicates using the UDP
interface. This allows a UDP connection to be
established in a client or server mode, and it allows a
UDP “connectionless” data stream to be transferred to or
from the application program.

TELNET EXEC TELNET communicates using the TELNET
interface and protocol. TELNET is not just TCP with
translation added, but it is also a protocol. This allows a
TCP-like connection to be established in a client or
server mode, and it allows a TCP data stream to be
transferred to or from the application program. Because
it is TELNET, it also checks certain handshaking bits
and may disable translation if the other end requires it.

CONTROL EXEC CONTROL communicates with the stack’s
internal control client and is used to request DNS
information, run TCP commands, and more. It is not a
true protocol because it does not send a datagram outside
of the stack’s system. This protocol is not the same as
the “EXEC protocol CONTROL” command.

Identifying Tag

Chapter 3 High-Level Pre-processor API

69

The command verbs you can use are summarized in the following table.

verb Value Description

CONTROL

Controls pre-compiler execution. It does not generate
code as other commands do. It sets options internal to
IPNETPRE.

OPEN Opens a connection

CLOSE Completes processing and closes a connection

SEND Sends data

RECEIVE Receives data

ABORT Aborts the connection

STATUS Gets the status of a specific connection

Each of these verbs and their operands are described in the following
sections. Many of the verbs use an operand called RESULTAREA,
which is described next.

The RESULTAREA operand is used by several command verbs and
defines the 56-byte work field used by the application program. The
following table shows the RESULTAREA structure. See the
programming examples at the end of this chapter for more information
on how to code these fields in COBOL.

Field Name Field Length Field Description

ECB Fullword An ECB that is posted when the
operation is complete

Local Port Halfword The local port number assigned by
the system

Foreign Port Halfword The foreign port number

Foreign
Address

Fullword The IP (network) address of the
remote host

Bytes Returned Halfword The number of bytes placed in the
input buffer

Flags Byte Internal flag settings

Return Code Byte The return code for the operation

Terminal 40 bytes Terminal LU information

Command Verbs

RESULTAREA

Chapter 3 High-Level Pre-processor API

70

When you use RESULTAREA in your programs, you need to specify the
definitions for fullword, halfword, and address correctly. The following
table shows how to do this in COBOL, PL/1, and Assembler. See the
programming examples at the end of the chapter for reference.

Field Type COBOL PL/1 Assembler

Fullword PICTURE X(4) FIXED BIN(31) DS F

Halfword PICTURE 9(4)
COMP

FIXED BIN(15) DS H

Address DATA NAME VARIABLE DS XLnn

The CONTROL verb allows you to specify options that control the
operation of the pre-compiler. The syntax is as follows:

The operands are described in the following table:

Operand Description

DOUBLE Directs the pre-processor to generate literals
using double quotes (" "). The default is to use
single quotes.

TRACE([YES|NO]) YES directs the pre-processor to generate CICS
trace table entries. The default is NO.

The return codes are described in the following table:

Return Code Description

0 No syntax problems.

4 A syntax error was detected.

The OPEN verb allows you to open a connection. You can specify a
complete IP address or just a port. The operands permit you to actively
connect with a remote host or establish a passive listening connection
that waits for the remote host to initiate the connection.

OPEN and the other commands do not obey the “CICS” parameter if you
code it. This parameter is controlled completely by IPNETPRE and is not
included in the list of subparameters below.

CONTROL Verb

OPEN Verb

CONTROL DOUBLE
 [TRACE(YES|NO)]

Chapter 3 High-Level Pre-processor API

71

The OPEN verb’s syntax is as follows:

Notice the phrase “or any number for COBOL or PL/1.” The value
entered causes a “MOVE value TO field” to be generated, and so the
length of the holding area, or even the use of an actual number itself, is
not a problem for COBOL or PL/1. For Assembler, however, the “MVC”
is used. In that case, either the =F'value' or =H'value' constants can be
used, or it should be a field with the exact characteristic noted in the
syntax statement above. For example, a halfword is used to move a
halfword, and a fullword is used to move a fullword.

The operands are described in the following table:

Operand Description

FOREIGNPORT
(halfword)

Identifies the number of the foreign port TCP/IP FOR VSE
is to connect with or transmit to. It is used with the
ACTIVE operand to specify the foreign port to connect
with. It is a required operand and there is no default.

FOREIGNIP
(4-byte char)

Use with the ACTIVE operand to specify the network
address of the remote host to connect to. This is a 4-byte
character field, not a numeric field.

Use with the PASSIVE operand to specify a network
address that may connect with this application. In passive
mode, the address can be a specific IP address or a
generic IP address. To code a generic IP address, specify
a zero in any one of the octets that comprise the address.
For example, specify a foreign IP address of 192.168.1.0
(X'C0A80100') to allow any address on the 192.168.1
subnet to connect to the application.

OPEN FOREIGNPORT(halfword for assembler,
 or any number for COBOL or PL/1)
 FOREIGNIP(4-byte character)
 LOCALPORT(halfword for assembler,
 or any number for COBOL or PL/1)
 RESULTAREA(field name)
 DESCRIPTOR(fullword)
 [ACTIVE|PASSIVE]
 TIMEOUT(fullword for assembler,
 or any number for COBOL or PL/1)
 [WAIT(YES|NO)]
 ERROR(label)
 SYSID(2-byte character field)

Chapter 3 High-Level Pre-processor API

72

Operand Description

LOCALPORT
(halfword)

Specifies the port number to be used at the local end. If
not specified or if set to zero, the system assigns you a
port from the available pool. Generally, if you are writing
a TCP server application (meaning that you are using
PASSIVE mode), you need to specify the local port so
that the foreign host knows which port to connect to.

If you are connecting to another host (meaning that you
are using ACTIVE mode), the local port generally is of
no consequence.

RESULTAREA
(field name)

Specifies a 56-byte structured area in your program that is
to contain the results of various EXEC TCP operations.
The structure is shown earlier in this chapter. Use the
name of the field, not a pointer to a field.

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must point to
a fullword in storage where the descriptor value can be
stored, and this descriptor must be passed to all
subsequent socket calls for the open connection. In other
words, once a connection has been established, any
number of independent socket calls can be made to that
connection, but all of them must use the descriptor field
to reference the open connection.

[ACTIVE|
PASSIVE]

ACTIVE (the default.) Actively and immediately
establishes a connection to a remote host. A client
application usually starts with an active open and
attempts to connect to a specific server application that is
passively listening (waiting for clients to connect to it).
The client’s IP address and port number are sent to the
server application during the active open processing. The
server can then transmit data to the client since it has the
client’s IP address and port number.

PASSIVE. Listens for an incoming connection. A passive
open may use either a fully specified foreign socket
(FOREIGNIP(n.n.n.n) and FOREIGNPORT(0)) to wait
for a specific client to connect with, or an unspecified
foreign socket (FOREIGNIP(0) and FOREIGNPORT(0))
to wait for any client connection.
A server application normally starts with a passive open
on a preassigned port number and waits for clients to
connect to it. The exception to this is UDP, which is
“connectionless,” and so the OPEN completes
immediately. The user at that point should queue up a
RECEIVE request. To connect to this server application,
the client must know the server’s IP address and port
number. This operand is the opposite of the ACTIVE
operand.

Chapter 3 High-Level Pre-processor API

73

Operand Description

TIMEOUT
(fullword)

Specifies the time allowed for an active OPEN operation
to complete. If the operation does not complete within
this time, control is returned to your program. The value
is the number of 300th-second intervals. 18000, for
example, specifies one minute. To determine the value for
a 2-minute timeout, use this calculation:

2 minutes x 60 x 300 = 36000

For a PASSIVE open, the timeout parameter specifies the
maximum amount of time the foreign host is given to
complete the connection once a SYNC request is
received. A value of 0 means it never times out in this
circumstance.

WAIT([YES|
NO])

Indicates whether control is to be returned to your
program before the requested operation is complete.
Specify YES (the default) to return control only when the
operation is complete. Specify NO to return control as
soon as the operation is scheduled. If you specify NO,
you must wait on the XOAECB yourself.

CICS Indicates the program is a CICS application.

ERROR(label) Specifies a branch location. If an error occurs, an
immediate branch is taken to the specified label.

SYSID(nn) Specifies the TCP/IP FOR VSE system identifier of the
system making the request. The default is 00. You must
specify a SYSID value if your installation is running
TCP/IP with a system identifier other than 00. The value
should be in a 2-byte character field. Coding it as a
numeric may result in a connection failure (use =X'00'
rather than 00 in Assembler, for example).

For return code information, see “Error Checking” on page 81.

The CLOSE verb completes processing and closes an existing
connection. Closing a connection is intended to be a graceful operation:
outstanding SENDs continue to be transmitted until all data is sent. It is
acceptable to issue several SENDs followed by a CLOSE and to expect
all the data to be sent to the destination. The user can close the
connection at any time. Because closing a connection requires
communication with the foreign socket, connections can stay in the
closing state for a short time.

A CLOSE no longer requires a WAIT condition to occur, and so none is
generated. Because CLOSE always generates a good return code, no
ERROR field is required. While you may code those parameters, they are
ignored and are not listed in the table below.

CLOSE Verb

Chapter 3 High-Level Pre-processor API

74

You must not generate your own WAIT within your application or your
program will remain in a wait state. The SYSID value is established by
the OPEN command, so if it is coded, it is ignored as well. The syntax is
as follows:

The operands are described in the following table:

Parameter Meaning

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must
point to a fullword in storage where the descriptor
value from a previously issued OPEN call was
stored.

RESULTAREA
(field name)

Specifies a 56-byte structured area in your program
to contain the results of various EXEC TCP
operations. The structure is shown earlier in this
chapter.

For return code information, see “Error Checking” on page 81.

The SEND verb transmits data. When you issue this command, the data
contained in the indicated user buffer is sent. The ECB of the
RESULTAREA is posted when the data buffer is accepted by the TCP/IP
partition. Because the SYSID value is established at OPEN time and
IPNETPRE controls the “CICS(value)” process, those parameters, while
accepted, are ignored and are not listed in the table below. The syntax is
as follows:

The operands are described in the following table:

Operand Description

FROM
(string-address)

Specifies the address of a buffer containing the
data to be transmitted. Use the LENGTH operand
to indicate the amount of data in the buffer.

SEND Verb

CLOSE DESCRIPTOR(fullword)
 RESULTAREA(field name)

SEND FROM(string-address)
 LENGTH(fullword)
 RESULTAREA(field name)
 DESCRIPTOR(fullword)
 [WAIT(YES|NO)]
 ERROR(label)

Chapter 3 High-Level Pre-processor API

75

Operand Description

LENGTH
(fullword)

Tells TCP/IP FOR VSE how much data to send
along the connection. This is a required
parameter. There is no default.

RESULTAREA
(address)

Specifies a 56-byte structured area in your
program to contain the results of various EXEC
TCP operations. The structure is shown earlier in
this chapter.

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must
point to a fullword in storage where the descriptor
value from a previously issued OPEN call was
stored.

WAIT([YES|NO]) Indicates whether control is to be returned to your
program before the requested operation is
complete. Specify YES to return control only
when the operation is complete. Specify NO to
return control as soon as the operation is
scheduled. If you specify NO, you must wait on
the XOAECB yourself.

ERROR(label) Specifies a branch location. If an error occurs, an
immediate branch is taken to the specified label.

For return code information, see “Error Checking” on page 81.

The RECEIVE verb receives data over an open connection to a remote
host. Depending on your buffer’s length, you may receive a complete or
partial transmission. You may need to issue multiple consecutive
RECEIVEs to obtain a complete transmission. The syntax is as follows:

The operands are described in the table below.

RECEIVE Verb

RECEIVE TO(field name)
 LENGTH(fullword)
 RESULTAREA(address)
 DESCRIPTOR(fullword)
 TIMEOUT(fullword)
 [WAIT(YES|NO)]
 ERROR(label)

Chapter 3 High-Level Pre-processor API

76

Operand Description

TO(field name) Specifies the buffer to receive data sent from the
remote host. Use the LENGTH operand to
indicate the length of the area. When a RECEIVE
operation completes, the length of data actually
received is contained in the RESULTAREA. This
is a required operand. There is no default.

LENGTH
(fullword)

Tells TCP/IP FOR VSE how much data you want
to receive in this request. When a RECEIVE
operation completes, the length of the received
data is contained in the RESULTAREA. If you do
not have enough data queued to your application
to fill the buffer, TCP/IP FOR VSE returns
whatever data is available and adjusts the length in
the RESULTAREA.
Caution: If your LENGTH is bigger than your
buffer, you run the risk of overlaying storage that
you won’t destroy in your program.

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must
point to a fullword in storage where the descriptor
value can be stored, and this descriptor must be
passed to all subsequent socket calls for the open
connection. In other words, once a connection has
been established, any number of independent
socket calls can be made to the connection, but all
of them must use the descriptor field to reference
the open connection.

TIMEOUT
(fullword)

Specifies the time allowed for a RECEIVE
operation to complete. Once this time is exceeded,
control is returned to your program. The value is
the number of 300th-second units. 18000, for
example, specifies one minute. To determine the
value for a 2-minute timeout, use this calculation:

2 minutes x 60 x 300 = 36000

The default is to wait forever for the RECEIVE to
complete.

WAIT([YES|NO]) Indicates whether control is to be returned to your
program before the requested operation is
complete. Specify YES to return control only
when the operation is complete. Specify NO to
return control as soon as the operation is
scheduled. If you specify NO, you must wait on
the XOAECB yourself.

ERROR(label) Specifies a branch location. If an error occurs, an
immediate branch is taken to the specified label.

Chapter 3 High-Level Pre-processor API

77

Operand Description

RESULTAREA
(address)

Specifies a 56-byte structured area in your
program to contain the results of various
EXEC TCP operations.

The ABORT verb closes an existing connection. Unlike the CLOSE
verb, however, it is similar to taking an axe to a communication line.
There may be a delay in the elimination of the SOCKET, and the session,
from the point of view of the other side, was interrupted and may go into
some sort of recovery. When you cannot terminate a connection
gracefully, then this is the way to do it. If you issue an ABORT, then you
cannot issue a CLOSE because the connection no longer exists. An
internal monitor tries to clean up the leftovers that result from killing the
session. The syntax is as follows:

The operands are described in the following table:

Parameter Meaning

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must
point to a fullword in storage where the descriptor
value from a previously issued OPEN call was
stored.

RESULTAREA
(field name)

Specifies a 56-byte structured area in your
program to contain the results of various EXEC
TCP operations. The structure is shown earlier in
this chapter.

WAIT([YES|NO]) Indicates whether control is to be returned to your
program before the requested operation is
complete. Specify YES to return control only
when the operation is complete. Specify NO to
return control as soon as the operation is
scheduled. If you specify NO, you must wait on
the XOAECB yourself.

ERROR(label) Specifies a branch location. If an error occurs, an
immediate branch is taken to the specified label.

For return code information, see “Error Checking” on page 81.

ABORT Verb

ABORT DESCRIPTOR(fullword)
 RESULTAREA(field name)
 [WAIT(YES|NO)]
 ERROR(label)

Chapter 3 High-Level Pre-processor API

78

The STATUS verb directs the API to issue a SOCKET STATUS call
against an existing socket. It returns the CCBLOK into the buffer
indicated for the application program to review. This is not done to check
whether a SOCKET call is complete or not; that can be done by checking
the ECB. Rather, it is used to gather control block details that would be
useful, such as after issuing an OPEN with a local port number of zero,
meaning that a port number will be assigned to it by the stack.

This allows you to obtain the assigned port number before there is any
connection. Most programs rarely need this. But if your program does,
remember that the information returned is a raw control block. You must
map it back to the layout defined in the STATBLOK.A macro that comes
with the product. You must produce this layout if it is needed.

The syntax of STATUS is as follows:

The operands are described in the following table:

Operand Description

TO(field name) Specifies the buffer to receive data sent from the
remote host. Use the LENGTH operand to indicate
the area’s length. When a STATUS operation
completes, the length of the received data is
contained in the RESULTAREA. This is a required
operand.

LENGTH
(halfword)

Tells TCP/IP FOR VSE how much data you want to
receive in this request. When a STATUS operation
completes, the length of data actually received is
contained in the RESULTAREA. If you do not have
enough data queued to your application to fill the
buffer, TCP/IP FOR VSE returns whatever data is
available and adjusts the length in the
RESULTAREA.

Caution: If your LENGTH is bigger than your
buffer, you risk overlaying storage in the program
that you don’t intend to destroy.

STATUS Verb

STATUS TO(field name)
 LENGTH(halfword)
 RESULTAREA(address)
 DESCRIPTOR(fullword)
 WAIT(YES)
 ERROR(label)

Chapter 3 High-Level Pre-processor API

79

Operand Description

DESCRIPTOR
(fullword)

Identifies the thread of operation. This field must
point to a fullword in storage where the descriptor
value can be stored, and this descriptor must be
passed to all subsequent socket calls for the open
connection. In other words, once a connection has
been established, any number of independent socket
calls can be made to the connection, but all of them
must use the descriptor field to reference the open
connection.

WAIT(YES) Indicates whether control is to be returned to your
program before the requested operation is complete.
Specifying YES returns control only when the
operation is complete. Because this is just an
in-memory move, always code YES.

ERROR(label) Specifies a branch location. If an error occurs, an
immediate branch is taken to the specified label. The
only type of error would be if the CCBLOK does not
exist, which would mean the SOCKET does not
exist.

RESULTAREA
(address)

Specifies a 56-byte structured area in your program
to contain the results of various EXEC TCP
operations. The structure is shown earlier in this
chapter.

For return code information, see “Error Checking” on page 81.

Generated COBOL and PL/1 code lines may require termination with the
appropriate punctuation mark. This terminator is referred to as a full stop
or an implicit scope terminator. It ends on-going conditions. The
COBOL terminator is a period (.); the PL/1 terminator is a semicolon (;).

Specifying a terminator after the END-EXEC (only) in pre-processor
statements causes that punctuation to be added to the generated
statements. For example, if the END-EXEC is followed with a period,
then all the generated statements, with the exception of a continued
statement, will end with a period. If a valid terminator (a period or a
semicolon) is missing, then no punctuation is generated.

Line Termination

Chapter 3 High-Level Pre-processor API

80

The example below shows the effect of using “END-EXEC.” (with a
period) on generated COBOL statements.

Note 1: If END-EXEC=NO in the IPNETPRE parameter list, then the
pre-processor checks each operand in the “EXEC protocol command”
statement for a terminator. If the last operand ends with a terminator,
then that ending punctuation is added to the generated statements. The
terminator must be used only on the last operand. If it is used on another
operand, then the pre-processor ends the EXEC statement at that point.
The following example shows how a period is specified as a terminator
in a pre-processor statement when END-EXEC=NO.

Note 2: If an “EXEC TCP” (for example) is made part of a conditional
(IF) statement, adding an ending punctuation would terminate the IF and
possibly change the logic of the statement. In the following pre-processor
example, a terminator is not specified after the END-EXEC to avoid
adding punctuation to the generated code.

MOVE 'Y' TO XOWAIT.
MOVE 'N' TO CICS.
...other code
IF XOCODE > 0 THEN
 GO TO ERROR-AREA.

EXEC TCP OPEN FOREIGNPORT(0000)
 LOCALPORT(LOCAL_PORT)
 RESULTAREA(RESULTS)
 SYSID('00')
 DESCRIPTOR(MYDESC)
 PASSIVE(YES)
 WAIT(YES).
...other code

IF SOMETHING = "Y" THEN
 EXEC TCP
 operand1
 operand2
 END-EXEC
ELSE
 CALL SOMETHING-ELSE.

Chapter 3 High-Level Pre-processor API

81

Error Checking
While we do not want any errors to occur in our TCP/IP processing,
there may, of course, come a time when your program has a problem.
Perhaps the TCP/IP stack is down, the DNS server is down, or some
other problem occurs. It is important to have a centralized
ERROR-reporting routine in your program that reports the problem and
provides you with useful information before recovering or terminating.

In the case of a PL/1 or COBOL program, an XOBLOK control block is
inserted into your code automatically when you run it through
IPNETPRE. Assembler programs need to have an XOBLOK macro
somewhere in the program to cause this control block to be generated.
Using DSECT=YES makes this value a DSECT you can map back to a
storage area, while DSECT=NO codes this control block within program
storage.

The XOBLOK is initialized at OPEN time, and each TCP/IP verb call
(for example, OPEN or SEND) causes small parts of this control block to
be set before the block is passed back to the API. The API, in turn, sets
various fields in XOBLOK before returning control back to the
application program. If an error occurs, the values in certain XOBLOK
fields are important. These fields are described in the table below.

XOBLOK
Field Description

XOAPIV1 An 8-byte character field containing the version/release
of IPNETPRE that generated the code.

XOAPIV2 An 8-byte character field containing the version/release
of the API that tried to service the code.

XOCALLID A numeric halfword indicating which EXEC within
your program caused the problem. For example, if you
had an EXEC TCP CONTROL followed by an
EXEC TCP OPEN, and the problem was in the
EXEC TCP SEND (the third EXEC), then
XOCALLID would contain X'0003'.

XOREG1 Operation field. This value identifies where the failure
occurred so that the codes can be interpreted properly.
Even-numbered values are assigned if an operation
failed to schedule.
Odd-numbered values are assigned if the operation
completed with errors.

XOBLOK Control Block

Chapter 3 High-Level Pre-processor API

82

XOBLOK
Field Description

XOCODE /
XORCODE

Return code field. For convenience, two fields are
provided: XOCODE is a halfword field, and
XORCODE is a one-byte field.
For even XOREG1 values (2–12), XOCODE’s value
means the same as the SOCKET macro return code in
register 15. (This value is not in register 15.) For odd
XOREG1 values, XOCODE’s value is in SRCODE.

XOREG0 Reason code field. This value may clarify the meaning
of the XOCODE value. For some XOCODE values,
XOREG0 contains the IBM return code if the failure
occurred during an IBM call, such as GETMAIN.
For even XOREG1 values, the XOCODE, XOREG0
code combinations have the same meanings as the
register 15, register 0 codes. (See the next section for
information on how to look up these codes.)

The contents of these fields should be made available to the user so that
problems can be debugged. The first three fields may be needed by CSI’s
technical support group if you are unable to solve the problem. The
XOREG1, XOCODE, XOREG0 fields can be used to identify the error.

API calls set the following XOREG1 codes.

XOREG1 Operation

2 OPEN SOCKET scheduled

3 OPEN SOCKET completed

4 SEND SOCKET scheduled

5 SEND SOCKET completed

6 RECEIVE SOCKET scheduled

7 RECEIVE SOCKET completed

8 STATUS SOCKET scheduled

9 STATUS SOCKET completed

10 ABORT SOCKET scheduled

11 ABORT SOCKET completed

12 CLOSE SOCKET scheduled

13 CLOSE SOCKET completed

14 XOBLOK validation failure

Chapter 3 High-Level Pre-processor API

83

Use the XOREG1 code and the following table to interpret the codes in
XOCODE and XOREG0. Look up the values of those fields in the
indicated table to determine the error. The listed tables are in chapter 1,
“SOCKET Assembler API.”

If XOREG1
contains...

then XOCODE
contains...

and XOREG0
contains...

Look up the error
in this table:

2, 4, 6, 8, 10,
or 12

a Register 15
value

a Register 0
value

Reg15,Reg0 Codes
(page 9)

3, 5, 7, 9, 11,
or 13

an SRCODE
value

 SRCODE Field
(page 11)

14, see table
below.

If XOREG1 = 14, use the table below to interpret the XOCODE value.

XOCODE Meaning

3 “EXEC CICS WAIT” initiated a timeout.

16 The XODESC field is null for any operation except an
OPEN, or it is NOT null when an OPEN call is made.

20 XOBLOK is NOT null for an OPEN call. This may
indicate that the XOBLOK field is already being used for
another connection.

24 The contents of XOCOMMND are invalid.
XOCOMMND is used to pass commands such as OPEN
and CLOSE to the API.

28 The contents of XOACCESS are invalid. XOACCESS is
used to pass the specified protocol (TCP or UDP) to the
API.

Error Determination

Chapter 3 High-Level Pre-processor API

84

Connections and Data Transmission
You must open a connection before you can communicate. Connections
can be either active or passive. An active connection seeks out the
specified partner and actively negotiates the connection. A passive
connection takes no action on its own but rather waits to receive a
negotiation request from the remote end.

In the following example, TCP/IP FOR VSE is asked to establish a
connection with a foreign system whose IP address is held in fullword
IPADDRESS and whose foreign port number is 2000. The fullword
SOCKDESC must be passed to all subsequent EXEC TCP calls for this
connection once it has been established. This is the only call necessary to
establish a complete connection with the foreign system. Once the RECB
(contained in the result area) is posted, the connection is ready for send
and receive activity.

An active connection request must be complete within a timeout period.
Because the TIMEOUT= specification is omitted, the timeout value
defaults to two minutes. If the connection is not complete within two
minutes, the RECB is posted, and an error condition is set in the RCODE
field.

(continued next page)

Active Connection
Example

 05 IPADDRESS.
 10 IPAD1 PICTURE X.
 10 IPAD2 PICTURE X.
 10 IPAD3 PICTURE X.
 10 IPAD4 PICTURE X.
 05 HALFWORD PICTURE 9(4) COMP.
 05 HALFWORD-X REDEFINES HALFWORD.
 10 BYTE1 PICTURE X.
 10 BYTE2 PICTURE X.
 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 SOCKDESC PICTURE X(4).
*
* Setup IPADDRESS to hold 172.20.10.10 in binary
 MOVE 172 TO HALFWORD.
 MOVE BYTE2 TO IPAD1.
 MOVE 20 TO HALFWORD.
 MOVE BYTE2 TO IPAD2.
 MOVE 10 TO HALFWORD.
 MOVE BYTE2 TO IPAD3.
 MOVE 10 TO HALFWORD.
 MOVE BYTE2 TO IPAD4.

Chapter 3 High-Level Pre-processor API

85

(continued)

In the following example, the application program requested that TCP/IP
FOR VSE listen for the arrival of a connection request at port 2500. When
a connection request arrives, the connection is completed and this request
is posted as complete. Notice the foreign port and IP address are not
specified. This allows any remote user’s connection request to be
accepted.

After the connection is established, further connection requests for this
local port number are rejected unless there are other server programs
waiting for this same local port number. Unlike an active connection,
there is no timeout period while waiting for a connection request. Once a
request arrives, however, the timeout values are observed for completing
the connection.

After a connection is established, the next step is to receive or send data.
This section shows how to use EXEC TCP RECEIVE to receive data
from the foreign host.

In the example below, the EXEC TCP RECEIVE queues a request to
receive information from the foreign host. You may have many receive
requests queued on the same connection. Each request must provide its
own RESULTAREA but refer to the same DESCRIPTOR. Each request
is processed in the order it is queued, and data is passed to the
application as it arrives. The maximum information that can be received
in one request is 65,535 bytes. Because it is unusual for 64K of data to
arrive at one time, such a specification wastes memory.

Passive Connection
Example

Receiving Data

*
* Attempt to open a connection at 172.20.10.10 port 2000
 EXEC TCP OPEN FOREIGNPORT(2000)
 FOREIGNIP(IPADDRESS)
 LOCALPORT(0)
 RESULTAREA(RESULTS)
 DESCRIPTOR(SOCKDESC)
 ACTIVE
 WAIT(YES)
 ERROR(BAD-OPEN)
 END-EXEC.

* Attempt to open a passive connection
*
 EXEC TCP OPEN FOREIGNPORT(0)
 FOREIGNIP(0)
 LOCALPORT(2500)
 RESULTAREA(RESULTS)
 DESCRIPTOR(SOCKDESC)
 PASSIVE
 ERROR(BAD-OPEN)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

86

The received information generally arrives in pieces no larger than the
link’s MTU size. The amount of data received is returned in the
RCOUNT field.

It is important to remember that TCP is a stream-oriented protocol, and
iteration is required when receiving a data stream. This is very different
from most I/O operations and requests that are record or block oriented.
A disk or tape VSE I/O operation issues a read request, waits for an ECB
to signal completion, checks for errors, and then has the entire record or
block available for processing. A TCP stream application may send 4096
bytes of data to a receiving application all in one receive, or it may
receive 2000 bytes, then 1000 bytes, and then 1096 bytes in three
separate receive requests. TCP guarantees to deliver the bytes in
sequence, but it does not guarantee to deliver them in the grouping in
which they were sent.

To handle a TCP stream, the receiving application must loop on the input
stream until the agreed-upon data structure is received. An example of an
agreed-upon data structure is the telnet or FTP protocol, in which a
carriage return/line feed in the data stream indicates the end of a
command or record.

The receiving application is then coded to loop, receiving the data stream
into a buffer until the carriage return/line feed characters are detected in
the stream. At that point, the receiving application knows it has received
a complete command or record that can then be processed.

The following example shows how to receive data from a foreign host:

 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 SOCKDESC PICTURE X(4).
 05 BUFFER.
 10 WORKAREA PICTURE X(512).
*
* Receive a piece of data
*
 EXEC TCP RECEIVE
 TO(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(SOCKDESC)
 WAIT(YES)
 ERROR(BAD-RECEIVE)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

87

The example below shows how to transmit data across a connection. In
this example, 512 bytes of data are sent across the connection to the
foreign system. The RECB in the RESULTAREA is posted when the
data is accepted by the TCP/IP partition, but it does not mean the data
buffer has arrived at the desired location. The send request must refer to
the DESCRIPTOR created during the EXEC TCP OPEN processing.
Send requests are processed in the order they are issued. The maximum
buffer size is 65,535 bytes. Regardless of the buffer size used, when each
send request is accepted by the TCP/IP partition, it is broken into
different-sized pieces for actual transmission.

Sending Data

 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 SOCKDESC PICTURE X(4).
 05 BUFFER.
 10 WORKAREA PICTURE X(512).
*
* Sends a piece of data
 EXEC TCP SEND
 FROM(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(SOCKDESC)
 WAIT(YES)
 ERROR(BAD-SEND)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

88

After you are done with the connection you must close it. The following
example shows how to do this. This is a simple operation that requires
only the DESCRIPTOR and the RESULTAREA. Although the CLOSE
operation is queued behind any outstanding SEND operations, it is good
practice to allow previously queued SEND and RECEIVE requests to
complete before issuing a CLOSE.

In some cases, you may want to use WAIT(NO) as one of the parameters
in your TCP/IP FOR VSE application to manually wait within the
program. When your application calls the API, the API sets a value in
XOAECB that points to a field containing a pointer. In a non-CICS
application, you would load the address in XOAECB into a register and
invoke the WAIT macro from IBM. For a CICS application, the
XOAECB field can be used as a parameter in the normal CICS WAIT
EXTERNAL request.

The three examples below show how this works for each program type.
The XOAECB field contains the pointer the statement requires. “NEV”
is a fullword field that contains a ‘1’. You can insert a ‘2’ into NEV if
you choose to wait on a second ECB. In that case, you must update the
area to which XOAECB points. The area already contains one ECB
pointer in the first fullword, and there is room to include a second ECB
pointer.

The following examples will work for batch or CICS with the exception
of the issuing of the WAIT. COBOL and PL/1 cannot issue a WAIT call
because of how they are designed to function, but must instead call an
assembler routine written by the user to do that WAIT for them. The
assembler example could run in a batch partition by replacing the single
CICS call to issuing the IBM “WAIT” macro, as noted above.

Closing a Connection

Using WAIT(NO)

 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 SOCKDESC PICTURE X(4).
*
* Close the connection
 EXEC TCP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(SOCKDESC)
 ERROR(BAD-CLOSE)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

89

The following example is coded in PL/1:

The following example is coded in COBOL:

Note: Do not use quotes around the two-byte SYSID value.

The following example is coded in Assembler:

The API gives the same result when WAIT(YES) is used. So, unless you
need to use a second ECB in your ECBLIST, coding WAIT(YES) is
much simpler.

Note: Never code WAIT(YES) on a CLOSE. The stack controls the
waiting.

PL/1 Example

COBOL Example

Assembler Example

EXEC TCP OPEN FOREIGNPORT(0000)
 LOCALPORT(LOCAL_PORT)
 RESULTAREA(RESULTS)
 SYSID('00')
 DESCRIPTOR(MYDESC)
 PASSIVE(YES)
 WAIT(NO);
/* */
IF XORCODE ^= '00000000'B THEN GOTO RETPROG;
EXEC CICS WAIT EXTERNAL ECBLIST(XOAECB) NUMEVENTS(NEV);

EXEC TCP OPEN FOREIGNPORT(0000)
 LOCALPORT(LOCAL_PORT)
 RESULTAREA(RESULTS)
 SYSID(00)
 DESCRIPTOR(MYDESC)
 PASSIVE(YES)
 WAIT(NO).
IF XORCODE > ZERO THEN GOTO RETPROG.
EXEC CICS WAIT EXTERNAL ECBLIST(XOAECB) NUMEVENTS(NEV).

EXEC TCP OPEN FOREIGNPORT(0000)
 LOCALPORT(LOCAL_PORT)
 RESULTAREA(RESULTS)
 SYSID('00')
 DESCRIPTOR(MYDESC)
 PASSIVE(YES)
 WAIT(NO)
ICM R15,15,XORCODE
BNZ RETPROG
EXEC CICS WAIT EXTERNAL ECBLIST(XOAECB) NUMEVENTS(NEV)

Chapter 3 High-Level Pre-processor API

90

Sample Programs
The following sample programs show the same functions in different
programming languages. In each case, note the special techniques used to
manipulate the data.

Note: The EXEC TCP command is shown in the following examples. If
non-binary data is transferred and EDCDIC-ASCII translation is needed
in both directions, you can use the EXEC TELNET command unless you
want to perform your own in-program translation. For information on
command parameters, refer to the appropriate COBOL reference manual.

COBOL EXEC TCP
Example

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLE2.
 AUTHOR. JOHN R.
 INSTALLATION. WORTHINGTON OHIO.
 DATE-WRITTEN. AUGUST 2, xxxx.
 DATE-COMPILED.

 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-370.
 OBJECT-COMPUTER. IBM-370.

 DATA DIVISION.
 EXEC TCP CONTROL DOUBLE(NO)
 END-EXEC.
 WORKING-STORAGE SECTION.
 01 WORK-AREA-ONE.
 05 PART1 PICTURE 9(4) COMP.
 05 PART2 PICTURE 9(4) COMP.
 05 PART3 PICTURE 9(4) COMP.
 05 PART4 PICTURE 9(4) COMP.
 05 IPADDRESS.
 10 IPAD1 PICTURE X.
 10 IPAD2 PICTURE X.
 10 IPAD3 PICTURE X.
 10 IPAD4 PICTURE X.
 05 HALFWORD PICTURE 9(4) COMP.
 05 HALFWORD-X REDEFINES HALFWORD.
 10 BYTE1 PICTURE X.
 10 BYTE2 PICTURE X.
 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 MYDESC PICTURE X(4).
 01 LOCAL-PORT PICTURE 9(4) COMP.
 01 BUFFER.
 05 WORKAREA PICTURE X(512).

Chapter 3 High-Level Pre-processor API

91

 PROCEDURE DIVISION.
 BEGIN.

 * *
 * First Test *
 * *

 *
 * Setup IPADDRESS to hold 172.20.10.10 in binary
 *
 MOVE 172 TO HALFWORD.
 MOVE BYTE2 TO IPAD1.
 MOVE 20 TO HALFWORD.
 MOVE BYTE2 TO IPAD2.
 MOVE 10 TO HALFWORD.
 MOVE BYTE2 TO IPAD3.
 MOVE 10 TO HALFWORD.
 MOVE BYTE2 TO IPAD4.
 *
 * Attempt to open a connection at 172.20.10.10 port 2000
 *
 EXEC TCP OPEN FOREIGNPORT(2000)
 FOREIGNIP(IPADDRESS)
 LOCALPORT(0)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ACTIVE
 WAIT(YES)
 ERROR(SECOND-TEST)
 END-EXEC.
 DISPLAY 'Open has completed'.
 *
 * Receive a piece of data
 *
 EXEC TCP RECEIVE
 TO(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(SECOND-TEST)
 END-EXEC.
 DISPLAY 'Receive has completed'.
 *
 * Close the connection
 *
 EXEC TCP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(SECOND-TEST)
 END-EXEC.
 DISPLAY 'Close has completed'.

 * *
 * Second Test *
 * *

Chapter 3 High-Level Pre-processor API

92

 SECOND-TEST.
 *
 * Attempt to open a connection
 *
 MOVE 2000 TO LOCAL-PORT.
 EXEC TCP OPEN FOREIGNPORT(0)
 FOREIGNIP(0)
 LOCALPORT(LOCAL-PORT)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 PASSIVE
 WAIT(YES)
 ERROR(ERROR-SPOT)
 END-EXEC.
 DISPLAY 'Second Open has completed'.
 *
 * Display the foreign IP address
 *
 MOVE RFOIP TO IPADDRESS.
 MOVE IPAD1 TO BYTE2.
 MOVE HALFWORD TO PART1.
 MOVE IPAD2 TO BYTE2.
 MOVE HALFWORD TO PART2.
 MOVE IPAD3 TO BYTE2.
 MOVE HALFWORD TO PART3.
 MOVE IPAD4 TO BYTE2.
 MOVE HALFWORD TO PART4.
 DISPLAY PART1 '.' PART2 '.' PART3 '.' PART4
 *
 * Receive a piece of data
 *
 EXEC TCP SEND
 FROM(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR-SPOT)
 END-EXEC.
 DISPLAY 'Second Receive has completed'.
 *
 * Close the connection
 *
 EXEC TCP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(ERROR-SPOT)
 END-EXEC.
 DISPLAY 'Second Close has completed'.

 STOP RUN.

 ERROR-SPOT.

 STOP RUN.

Chapter 3 High-Level Pre-processor API

93

COBOL EXEC FTP
Example

IDENTIFICATION DIVISION.
 PROGRAM-ID. CICSFTP.
 AUTHOR. EBASS.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 EXEC TCP CONTROL DOUBLE(NO)
 TRACE(YES)
 END-EXEC.
 WORKING-STORAGE SECTION.
 01 MESSAGES.
 05 WTO PIC X(60).
 01 SEND-AREA-ONE.
 05 SUSERID PIC X(32) VALUE 'CSI'.
 05 SPASSWRD PIC X(32) VALUE 'CSI'.
 05 SCMD1 PIC X(8) VALUE 'QUIT'.
 01 RECV-AREA-ONE.
 05 RUSERID PIC X(21)
 VALUE 'Enter Foreign User ID'.
 05 HUSERID PIC X(21) VALUE SPACES.
 05 RPASSWRD PIC X(22)
 VALUE 'Enter Foreign Password'.
 05 HPASSWRD PIC X(22) VALUE SPACES.
 05 RCMD1 PIC X(30)
 VALUE '220 Service ready for new user'.
 05 HCMD1 PIC X(30) VALUE SPACES.
 05 IPADDRESS.
 10 IPAD1 PICTURE X.
 10 IPAD2 PICTURE X.
 10 IPAD3 PICTURE X.
 10 IPAD4 PICTURE X.
 05 HALFWORD PICTURE 9(4) COMP.
 05 HALFWORD-X REDEFINES HALFWORD.
 10 IPBYTE1 PICTURE X.
 10 IPBYTE2 PICTURE X.
 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 MYDESC PICTURE X(4).
 01 LOCAL-PORT PICTURE 9(4) COMP.
 01 IBUFFER.
 05 IP-WORKI PICTURE X(32) VALUE SPACES.
 01 OBUFFER.
 05 IP-WORKA PICTURE X(512) VALUE SPACES.
 01 TCP-ECB2 PICTURE X(4).
 PROCEDURE DIVISION.
 MOVE 192 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD1.
 MOVE 168 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD2.
 MOVE 141 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD3.
 MOVE 18 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD4.

Chapter 3 High-Level Pre-processor API

94

 OPEN-FTP.
 MOVE 'API1 - FTP OPEN 1 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE 6200 TO LOCAL-PORT.
 EXEC FTP OPEN
 FOREIGNPORT(21)
 FOREIGNIP(IPADDRESS)
 LOCALPORT(LOCAL-PORT)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ACTIVE
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RUSERID EQUAL HUSERID.
 PERFORM SEND-USER THRU SEND-USER-EXIT.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RPASSWRD EQUAL HPASSWRD.
 PERFORM SEND-SPASSWRD THRU SEND-SPASSWRD-EXIT.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD1 EQUAL HCMD1.
 PERFORM SEND-SCMD1 THRU SEND-SCMD1-EXIT.
 PERFORM CLOSE-FTP.
 SEND-USER.
 MOVE 'API1 - FTP SEND SUSER ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SUSERID TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-USER-EXIT.
 SEND-SPASSWRD.
 MOVE 'API1 - FTP SEND SPASSWRD ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SPASSWRD TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SPASSWRD-EXIT.
 SEND-SCMD1.
 MOVE 'API1 - FTP SEND SCMD1' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SCMD1 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD1-EXIT.
 SEND-IT.
 EXEC FTP SEND
 FROM(IBUFFER)
 LENGTH(32)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 SEND-IT-EXIT.

Chapter 3 High-Level Pre-processor API

95

 RECEIVE-IT.
 *
 * I AM ONLY GUARANTEED 1 BYTE ON THIS RECEIVE
 * AND MAY HAVE TO DO MULTIPLE RECEIVES
 * IF FIXED AND WAIT(YES) IS USED, THEN I MUST WAIT
 * TIL THE ENTIRE BUFFER IS FILLED BEFORE BEING POSTED
 *
 MOVE 'API1 - FTP RECEIVE IT' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 EXEC FTP RECEIVE
 TO(OBUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 MOVE OBUFFER TO WTO, HUSERID, HPASSWRD, HCMD1.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 RECEIVE-IT-EXIT.
 CLOSE-FTP.
 MOVE 'API1 - FTP CLOSE 1 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 EXEC FTP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 STOP RUN.
 ERROR-SPOT2.
 MOVE 'API1 - FTP ERROR 1 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 STOP RUN.

Chapter 3 High-Level Pre-processor API

96

COBOL EXEC CLIENT
LPR Example

IDENTIFICATION DIVISION.
 PROGRAM-ID. CICSLPR.
 AUTHOR. EBASS.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 EXEC TCP CONTROL DOUBLE(NO)
 TRACE(YES)
 END-EXEC.
 WORKING-STORAGE SECTION.
 01 MESSAGES.
 05 WTO PIC X(60).
 01 SEND-AREA-ONE.
 05 SCMD1 PIC X(32) VALUE 'LPR'.
 05 SCMD2 PIC X(32) VALUE 'SET HOST=VM'.
 05 SCMD3 PIC X(32) VALUE 'SET PRINTER=LOCAL'.
 05 SCMD4 PIC X(32) VALUE 'CD POWER.LST.L'.
 05 SCMD5 PIC X(32) VALUE 'PRINT LPRBATCH'.
 01 RECV-AREA-ONE.
 05 RCMD1 PIC X(25)
 VALUE 'Client manager connection'.
 05 HCMD1 PIC X(25) VALUE SPACES.
 05 RCMD2 PIC X(10)
 VALUE 'LPR Ready:'.
 05 HCMD2 PIC X(10) VALUE SPACES.
 05 RCMD3 PIC X(10)
 VALUE 'LPR Ready:'.
 05 HCMD3 PIC X(10) VALUE SPACES.
 05 RCMD4 PIC X(10)
 VALUE 'LPR Ready:'.
 05 HCMD4 PIC X(10) VALUE SPACES.
 05 RCMD5 PIC X(10)
 VALUE 'LPR Ready:'.
 05 HCMD5 PIC X(10) VALUE SPACES.
 05 IPADDRESS.
 10 IPAD1 PICTURE X.
 10 IPAD2 PICTURE X.
 10 IPAD3 PICTURE X.
 10 IPAD4 PICTURE X.
 05 HALFWORD PICTURE 9(4) COMP.
 05 HALFWORD-X REDEFINES HALFWORD.
 10 IPBYTE1 PICTURE X.
 10 IPBYTE2 PICTURE X.
 05 RESULTS.
 10 RECB PICTURE X(4).
 10 RLOPORT PICTURE 9(4) COMP.
 10 RFOPORT PICTURE 9(4) COMP.
 10 RFOIP PICTURE X(4).
 10 RCOUNT PICTURE 9(4) COMP.
 10 RFLAGS PICTURE X.
 10 RCODE PICTURE X.
 10 RTERMTY PICTURE X(40).
 05 MYDESC PICTURE X(4).
 01 LOCAL-PORT PICTURE 9(4) COMP.
 01 IBUFFER.
 05 IP-WORKI PICTURE X(32) VALUE SPACES.
 01 OBUFFER.
 05 IP-WORKA PICTURE X(80) VALUE SPACES.
 01 TCP-ECB2 PIC X(4).
 PROCEDURE DIVISION.
 MOVE 'API1 - START CICSLPR ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

97

 MOVE 192 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD1.
 MOVE 168 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD2.
 MOVE 0 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD3.
 MOVE 7 TO HALFWORD.
 MOVE IPBYTE2 TO IPAD4.

 OPEN-FTP.
 MOVE 'API1 - LPR CLIENT OPEN ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE 0 TO LOCAL-PORT.
 EXEC CLIENT OPEN
 FOREIGNPORT(0)
 FOREIGNIP(IPADDRESS)
 LOCALPORT(LOCAL-PORT)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ACTIVE
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD1 EQUAL HCMD1.
 PERFORM SEND-SCMD1 THRU SEND-SCMD1-EXIT.
 MOVE SPACES TO WTO, HCMD2, HCMD3, HCMD4, HCMD5.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD2 EQUAL HCMD2.
 PERFORM SEND-SCMD2 THRU SEND-SCMD2-EXIT.
 MOVE SPACES TO WTO, HCMD3, HCMD4, HCMD5.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD3 EQUAL HCMD3.
 PERFORM SEND-SCMD3 THRU SEND-SCMD3-EXIT.
 MOVE SPACES TO WTO, HCMD4, HCMD5.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD4 EQUAL HCMD4.
 PERFORM SEND-SCMD4 THRU SEND-SCMD4-EXIT.
 MOVE SPACES TO WTO, HCMD5.
 PERFORM RECEIVE-IT THRU RECEIVE-IT-EXIT
 UNTIL RCMD5 EQUAL HCMD5.
 PERFORM SEND-SCMD5 THRU SEND-SCMD5-EXIT.
 PERFORM CLOSE-CLIENT.
 SEND-SCMD1.
 MOVE 'API1 - FTP SEND SCMD1 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SCMD1 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD1-EXIT.
 SEND-SCMD2.
 MOVE 'API1 - FTP SEND SCMD2 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SCMD2 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD2-EXIT.
 SEND-SCMD3.
 MOVE 'API1 - FTP SEND SCMD3' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.

Chapter 3 High-Level Pre-processor API

98

 MOVE SCMD3 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD3-EXIT.
 SEND-SCMD4.
 MOVE 'API1 - FTP SEND SCMD4 ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SCMD4 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD4-EXIT.
 SEND-SCMD5.
 MOVE 'API1 - FTP SEND SCMD5' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 MOVE SCMD5 TO IBUFFER.
 PERFORM SEND-IT THRU SEND-IT-EXIT.
 SEND-SCMD5-EXIT.
 SEND-IT.
 EXEC CLIENT SEND
 FROM(IBUFFER)
 LENGTH(32)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 SEND-IT-EXIT.
 RECEIVE-IT.
 * I AM ONLY GUARANTEED 1 BYTE ON THIS RECEIVE
 * AND MAY HAVE TO DO MULTIPLE RECEIVES
 * IF FIXED AND WAIT(YES) IS USED, THEN I MUST WAIT
 * TIL THE ENTIRE BUFFER IS FILLED BEFORE BEING POSTED
 MOVE 'API1 - CLIENT RECEIVE IT' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 EXEC CLIENT RECEIVE
 TO(OBUFFER)
 LENGTH(80)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 MOVE OBUFFER TO WTO, HCMD1,HCMD2,HCMD3,HCMD4,HCMD5.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 RECEIVE-IT-EXIT.
 CLOSE-CLIENT.
 MOVE 'API1 - CLIENT CLOSE ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 EXEC CLIENT CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(ERROR-SPOT2)
 END-EXEC.
 STOP RUN.
 ERROR-SPOT2.
 MOVE 'API1 - CLIENT ERROR ' TO WTO.
 EXEC CICS WRITE OPERATOR TEXT(WTO)
 END-EXEC.
 STOP RUN.

Chapter 3 High-Level Pre-processor API

99

PL/1 EXEC TCP Example SAMPLE4: PROCEDURE OPTIONS(MAIN);

 DCL IPADDRESS BINARY FIXED(31,0);
 DCL MYDESC CHAR(4);
 DCL 1 RESULTS,
 2 RECB CHAR(4),
 2 RLOPORT BINARY FIXED(15,0),
 2 RFOPORT BINARY FIXED(15,0),
 2 RFOIP CHAR(4),
 2 RCOUNT BINARY FIXED(15,0),
 2 RFLAGS CHAR(1),
 2 RCODE BIT(8),
 2 RTERMTY CHAR(40);
 DCL MYDESC CHAR(4);
 DCL LOCAL_PORT BINARY FIXED(15,0);
 DCL BUFFER CHAR(512);

/*---------------------------------------*
 * *
 * First Test *
 * *
 ---------------------------------------/
/*
 * Attempt to open a connection at 172.20.10.10 port 2000
 */
 EXEC TCP OPEN FOREIGNPORT(2000)
 FOREIGNIP(IPADDRESS)
 LOCALPORT(0)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ACTIVE
 WAIT(YES)
 ERROR(SECOND_TEST)
 END-EXEC;
/*
 * Receive a piece of data
 */
 EXEC TCP RECEIVE
 TO(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(SECOND_TEST)
 END-EXEC;
/*
 * Close the connection
 */
 EXEC TCP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(SECOND_TEST)
 END-EXEC;

Chapter 3 High-Level Pre-processor API

100

To use the TCP/IP interface with PL/1 for VSE/ESA for a program
originally written for DOS/VS PL/1, you must note an important
difference between DOS/VS PL/1 and PL/1 for VSE/ESA. The working
storage used by DOS/VSE PL/1 generally was pre-initialized, but the
working storage for PL/1 for VSE/ESA is not. To ensure that programs
originally written for DOS/VS PL/1 using the TCP/IP FOR VSE
preprocessor API continue to work in PL/1 for VSE/ESA, you must use
the following options on LE/VSE for these programs:

For more information on this topic and these options, see the PL/I VSE
Migration Guide, IBM Manual SC26-8056-01.

PL/1 Notes

SECOND_TEST:
/*---------------------------------------*
 * Second Test *

 * Attempt to open a connection
 */
 LOCAL_PORT = 2000;
 EXEC TCP OPEN FOREIGNPORT(0)
 FOREIGNIP(0)
 LOCALPORT(LOCAL_PORT)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 PASSIVE
 WAIT(YES)
 ERROR(ERROR_SPOT)
 END-EXEC;
/*
 * Display the foreign IP address
 */

/* Need code here..... */
/*
 * Receive a piece of data
 */
 EXEC TCP SEND
 FROM(BUFFER)
 LENGTH(512)
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 WAIT(YES)
 ERROR(ERROR_SPOT)
 END-EXEC;
/*
 * Close the connection
 */
 EXEC TCP CLOSE
 RESULTAREA(RESULTS)
 DESCRIPTOR(MYDESC)
 ERROR(ERROR_SPOT)
 END-EXEC;
RETURN;
 END SAMPLE4;

BATCH: STORAGE(00,NONE,00,64K)
CICS: STORAGE(00,NONE,00,0K)

101

4
4. REXX Sockets API

Overview
This chapter describes the REXX Sockets application programming
interface (API). This interface is similar to the other APIs in the
following ways:

• It enables you to write programs that interface with TCP/IP FOR VSE.

• It enables you to use TCP/IP FOR VSE services to communicate with
other TCP applications on the TCP/IP network.

REXX Sockets is an excellent prototyping tool for coding TCP/IP
applications.

Note: When a SOCKET OPEN executes, the API outputs two lines of
release information on SYSLOG. If you want to suppress these lines,
enable UPSI-1 in that job stream. This is true only if you are not running
the SOCKET API under the TCP/IP stack as part of a REXX-CGI
session.

Chapter 4 REXX Sockets API

102

REXX Calls
The calls you can make to REXX Sockets closely mirror the calls you
can make with the higher language interfaces discussed in the previous
chapters. REXX Sockets is enhanced with some REXX extensions,
including those that read and set variables.

The REXX calls perform the following tasks. Each call’s syntax is
described later in this chapter

Call Description

ABORT Immediately terminates the connection with the foreign
host.

CLOSE Terminates the connection between the REXX program
and the remote application.

OPEN Establishes a socket connection with TCP/IP FOR VSE.
If a client issues the call, it connects to a server. If a
server issues the call, it waits for a connection from a
client.

RECEIVE Accepts data from the remote application and makes it
available to your REXX program.

SEND Passes data from the REXX program to the remote
application.

STATUS Allows you to check the status of a specific TCP/IP
connection. This is useful for programs that function as
servers.

REXX calls set the REXX variables that are described in the following
table:

Variable Description

handle An output field containing a special pointer that is
returned from an OPEN call. This value is used as an
input field in subsequent calls. You can use handle as
the input name or you can use a different name that
contains the handle value. You may choose to copy this
value when you issue multiple socket OPENs in the
same program.

buffer An output field containing data returned from a
RECEIVE call.

Variables

Chapter 4 REXX Sockets API

103

Variable Description

errmsg An output field containing an error message. If an error
occurs, REXX Sockets puts the message in this variable
instead of sending it to SYSLOG or SYSLST. It is your
responsibility as a programmer to issue the message, say
errmsg, if there is a problem. If an error occurs while
errmsg is being set, the message is routed to SYSLOG.

loip An output field containing the local IP address that is
returned from a STATUS call. If you need to know the
local IP address before a connection is established, you
can use a control connection. Note that in a multi-
homing environment, the local IP address that is
obtained from STATUS represents the IP address that is
used for the connection. If you want the local IP address
as defined by the SET IPADDR command in the TCP/IP
FOR VSE initialization deck, you must use the control
connection to obtain it.

foip An output field containing the foreign IP address. It is
created or updated during a synchronous OPEN. If you
are using an asynchronous OPEN and a connection has
been established, then subsequent STATUS calls
update foip.

loport An output field containing the port number used by the
local TCP/IP system. Note that this may or may not be
the local port number that your application requested.

foport An output field containing the port number used by the
foreign TCP/IP system. It is created during a
synchronous OPEN. If you use an asynchronous OPEN,
it is created or updated by STATUS.

connstate An output field containing the current connection status.
It is returned from a STATUS call. The values contained
in connstate have the following meanings:
• If connstate is 1, the connection represented by handle

is a server application that is in a listening state. In
other words, it is waiting for someone to connect to it.

• If connstate is 4, a connection has been established.
The variables loip, foip, loport, and foport contain
valid data so that your program knows who connected
to it and on which port.

• If connstate is anything other than 1 or 4, then the
state is considered transitory, meaning that the socket
is no longer waiting for a connection and it is no
longer connected. If your program is to continue, it
must close and reopen the socket.

Chapter 4 REXX Sockets API

104

The following table shows how the REXX variables are used by the
REXX calls. Note the following indicators in the table:

• input means that the variable is used as input to the call.

• output means that the variable is used as output from the call.

• not used means that the variable is not used by the call.

Variable OPEN CLOSE SEND RECEIVE ABORT STATUS

handle output input input input input input

buffer not used not used not used output not used not used

errmsg output output output output output output

loip not used not used not used not used not used output

foip output not used not used not used not used output

loport not used not used not used not used not used output

foport output not used not used not used not used output

connstate not used not used not used not used not used output

The following return codes apply to the OPEN, CLOSE, SEND,
RECEIVE, and ABORT REXX calls.

Return
Code Description

0 Call was successful.

4 Timeout occurred.

8 Unspecified error. The variable errmsg contains the
error text.

12 Foreign IP address is unavailable.

16 Local TCP/IP system is down.

20 Unregistered version.

Return Codes

Chapter 4 REXX Sockets API

105

The STATUS REXX call uses the return codes in the following table:

Return
Code Description

0 Call was successful. The variable connstate contains
additional information. If connstate is 4 (meaning that you
have a valid connection), then the variables loip, foip, loport,
and foport contain valid information.

4 Call failed. This probably means that the variable handle is
not valid.

Each time you use a socket OPEN to start a new connection, you can set
a timeout value for that connection. The timeout value remains in effect
for the life of the connection. If you do not specifically set a timeout
value, the default value is used. You can have multiple connections open
at one time, and each connection uses the timeout value that was set
during its open.

Timeout Function

Chapter 4 REXX Sockets API

106

Socket Types
REXX Sockets allows you to code the socket types described in the
following table. You specify the socket type on the OPEN. The Auto
field in this table indicates whether a socket uses automatic translation.

Socket Type Description Auto

CLIENT A connection to the generic TCP/IP FOR VSE client
manager. The generic manager supports the Ping, LPR,
TRACERT, REXEC, EMAIL, and DISCOVER clients. For
more information, see “Obtaining Network Information” on
page 113.

For an example of a REXX Sockets application that uses a
client connection, see member REXXPING.Z in the TCP/IP
distribution library.

No

CONTROL A connection to a TCP/IP partition. You use the connection
to obtain information from the partition. For more
information, see Obtaining Network Information. For an
example of a REXX Sockets application that uses a control
connection, see member REXXCONT.Z in the TCP/IP
distribution library.

No

FTP A connection to a TCP/IP FOR VSE FTP client manager.
The client manager monitors an FTP session under control
of your program. Your program uses SEND to issue
commands to the client manager in the same way that you
issue commands to a TCP/IP FOR VSE FTP client. Your
program uses RECEIVE to obtain responses, which you can
analyze by looking at information returned in variable
buffer. Your program must follow standard FTP protocol,
which means that you must know when data is available
and when to issue a RECEIVE. Failure to follow FTP
protocol causes unpredictable and usually negative results.

For a list of FTP client commands, see the TCP/IP FOR VSE
User Guide. For an example of a REXX Sockets application
that uses an FTP socket, see member REXXFTP.Z in the
TCP/IP distribution library.

Yes

TCP A connection to a TCP application. Your program and the
TCP application must use the same protocol. This means
that your socket application and the partner socket
application must agree on communication specifications.
For example, your application must understand when it has
received an entire transmission by looking at the data it
receives.

No

Chapter 4 REXX Sockets API

107

Socket Type Description Auto

TELNET A connection to a TCP/IP FOR VSE telnet client manager.
The client manager monitors a telnet session under control
of your program. This socket type expects you to connect to
a telnet daemon at the remote end. After you connect, you
issue telnet commands and interrogate the responses.
TCP/IP FOR VSE always negotiates a terminal type of
Network Virtual Terminal (NVT). For all SEND calls, X'15'
is automatically appended to the end of the data unless the
data already ends with X'15'.

For an example of a REXX Sockets application that uses a
telnet socket, see member REXXTEL.Z in the TCP/IP
distribution library.

Yes

UDP A connection to a UDP application. Your program and the
UDP application must use the same protocol. This means
that your socket application and the partner socket
application must agree on communication specifications.
For example, your application must understand when it has
received an entire transmission by looking at the data it
receives.

No

Chapter 4 REXX Sockets API

108

Coding REXX Calls
In this section we explain how to issue each call. We also show the
syntax of each call and describe the parameters you can use. The
parameters shown for each call are positional. This means that you must
use a comma to hold the space if you omit a parameter.

The OPEN call establishes a socket connection with TCP/IP FOR VSE.
The syntax is as follows:

The variables are described in the following table:

Variable Description

type Socket type. Specify a type from the “Socket Types”
section on page 106.

loport Local port number. For a server function, loport
specifies the port number you plan to listen to. This is
ignored for CLIENT and CONTROL sessions.

foip Foreign IP address. For a client function, foip specifies
the IP address you plan to connect to. For a server
function, foip specifies a mask. TCP/IP FOR VSE uses
the mask to validate the IP address when it connects to
your server. The validation rules are the same rules that
apply to parameter IPADDR= on the DEFINE FTPD
and DEFINE TELNETD commands. See the TCP/IP
FOR VSE Installation Guide for more information.

foport Foreign port address. If foport is coded, it specifies the
port number you plan to connect to at the remote end. If
foport is omitted and you are coding a client function,
the default is loport. For a server function, omit foport.
If you omit foip, you must also omit foport.

sysid Two-digit ID of the TCP/IP FOR VSE partition. The
default is 00.

timeout Time allowed for the operation to complete. The value is
the number of 300th-second intervals. If a connection is
not established within this period, a timeout occurs. The
default is 36000, or 2 minutes.

OPEN

rc=SOCKET(type,'OPEN',loport,foip,foport,sysid,timeout,
 async,mode)

Chapter 4 REXX Sockets API

109

Variable Description

async Asynchronous indicator. Specify “N,” which is the
default, for a synchronous OPEN. Specify “N” if you are
coding a server function and you want your REXX
program to wait until a client actually connects to the
socket. Specify “N” if you are coding a client function.
Specify “Y” if you are coding a server function and you
want control immediately after TCP/IP FOR VSE
acknowledges your socket.

mode Type of OPEN. Specify CLIENT to issue an active open
and to attempt to connect to the server specified by foip
and foport. Specify SERVER to issue a passive open and
to wait (synchronously or asynchronously) for a client to
connect to you.

Your REXX program can open multiple sockets. The variable handle
uniquely identifies each socket to TCP/IP FOR VSE. When you open
multiple sockets, you must save handle after each OPEN. You must use
the correct handle for each subsequent function, such as SEND or
RECEIVE. In the examples that follow, we use the standard variable
name handle. You can, however, use a different variable name after you
copy the data to that name. If you are not opening multiple sockets, then
let REXX Sockets set handle and use it as shown in the examples.

You can specify servers only for UDP, TCP, and TELNET sessions.

The CLOSE call terminates a socket connection with TCP/IP FOR VSE.
The syntax is as follows:

The variables are described in the following table:

Variable Description

handle Identifying variable returned from a successful OPEN.

timeout Time allowed for the operation to complete. The value
is the number of 300th-second intervals. If this period
elapses and the connection has not terminated, a timeout
occurs. The default is the value used in the OPEN call.

CLOSE

rc=SOCKET(handle,'CLOSE',timeout)

Chapter 4 REXX Sockets API

110

The SEND call passes data from the REXX program to the remote
application. The remote application can be a partner TCP or UDP
application, or it can be a control, client, FTP or telnet connection
manager. The syntax is as follows:

The variables are described in the following table:

Variable Description

handle Identifying variable returned from a successful OPEN.

data The data you want to send.

timeout Time allowed for the operation to complete. The value is
the number of 300th-second intervals. If this period
elapses and the connection has not terminated, a timeout
occurs. The default is the value used in the OPEN call.

If SEND times out, issue a STATUS call to verify that the connection is
still valid. If SEND completes normally, it does not necessarily indicate
that the data was sent successfully. It simply means the data is queued
and will be sent by the TCP/IP FOR VSE partition.

REXX Sockets automatically appends X'15' to the end of your data if
both of the following are true:

1. The data does not already end with X'15' or a X'00', and

2. The connection type is CONTROL, CLIENT, FTP, or TELNET.

The X'15' is required because the listed components expect the
commands to end in an EBCDIC CR/LF.

The timeout value is only useful for TCP, UDP, or TELNET
connections.

SEND

rc=SOCKET(handle,'SEND',data,timeout)

Chapter 4 REXX Sockets API

111

The RECEIVE call accepts data from the remote application and makes
it available to your REXX program. The syntax is as follows:

The variables are described in the following table:

Variable Description

handle Identifying variable returned from a successful OPEN.

timeout Time allowed for the operation to complete. The value is
the number of 300th-second intervals. If this period
elapses and the connection has not terminated, a timeout
occurs. The default is the value used in the OPEN call.

The output variable buffer contains the data that is received. If RECEIVE
times out, buffer is saved with the null value. The null value is a length
of zero.

The timeout value is only useful for TCP or TELNET connections.

The ABORT call immediately terminates the connection with the foreign
host. The syntax is as follows:

The variables are described in the following table:

Variable Description

handle Identifying variable returned from a successful OPEN.

timeout Time allowed for the operation to complete. The value is
the number of 300th-second intervals. If this period
elapses and the connection has not terminated, a timeout
occurs. The default is the value used in the OPEN call.

Note the differences between CLOSE and ABORT:

• When you issue a CLOSE call, TCP/IP FOR VSE closes the
connection gracefully. To do this, it announces that it is about to close
the connection. The announcement enables the application on the
other end to respond appropriately, which could mean that it shuts
down or that it performs cleanup processing. TCP/IP FOR VSE then
closes the connection.

RECEIVE

ABORT

rc=SOCKET(handle,'RECEIVE',timeout)

rc=SOCKET(handle,'ABORT',timeout)

Chapter 4 REXX Sockets API

112

• When you issue an ABORT call, TCP/IP FOR VSE terminates the
connection immediately and then informs the application on the other
end that the connection is closed.

Use ABORT only for failing TCP or TELNET sessions and for no other,
and only during conditions where a CLOSE is ineffective.

The STATUS call allows you to check the status of a specific TCP/IP
connection. You can also use it to verify that the last socket operation
your program performed is complete. The syntax is as follows:

The variable is described in the following table.

Variable Description

handle Identifying variable returned from a successful OPEN.

STATUS

rc=SOCKET(handle,'STATUS')

Chapter 4 REXX Sockets API

113

Obtaining Network Information
You can make three types of calls to TCP/IP FOR VSE to obtain network
information:

Call Description

GETHOSTNAME Returns with the name of the TCP/IP FOR VSE
partition. No input parameters are required.

GETHOSTBYNAME Translates a name into an IP address. The source
of the IP address is the TCP/IP FOR VSE Domain
Name Client (if one is specified with the SET
DNS1 command) or the Internal Domain Name
Table (if one is specified with the DEFINE
NAME command). GETHOSTBYNAME takes
one parameter—the symbolic name to be
translated.

GETHOSTID Returns with the IP address of the TCP/IP FOR
VSE partition. This is the IP address as defined
by the SET IPADDR= initialization command,
and it does not take multi-homing considerations
into account. If you want the local IP address
that is currently used for a specific connection in
a multi-homing environment, you must issue the
SOCKET STATUS call after the connection is
established.

Before you can use these calls, you must set up a REXX Sockets control
session with the TCP/IP FOR VSE partition.

The following program shows how to start a control connection.

Starting a Control
Connection

/* Open a control connection to the TCP/IP for VSE partition*/
rc = SOCKET('CONTROL','OPEN') if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

/* Send the command string. Note that for control connections, TCP/IP for VSE
automatically includes X'15' at the end of the string */
rc = SOCKET(handle,'SEND','GETHOSTID')
if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

/* Receive the response from TCP/IP for VSE */
rc = SOCKET(handle,'RECEIVE') if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

/* Close the control connection */
rc = SOCKET(handle,'CLOSE')
if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

Chapter 4 REXX Sockets API

114

You can also open a connection to the TCP/IP FOR VSE client manager.
The client manager currently supports the Ping, LPR, TRACERT,
DISCOVER, REXEC, and EMAIL clients. To use these functions, you
must understand the command sequences the client manager expects.
The example below shows how a REXX program uses Ping.

You can code LPR jobs in the same way, but you must ensure that the
responses you code for are ones you receive. As with other automated
processes in your data center, responses can change with routine
maintenance.

Starting a Client
Connection

/* Open a client connection to the TCP/IP for VSE partition */
rc = SOCKET('CLIENT','OPEN') if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

/* The first interaction with the client connection must be the name of the
protocol you want to use, which is either PING or LPR */
rc = SOCKET(handle,'SEND','PING')
if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

/* Receive the response from TCP/IP for VSE. You might receive multiple lines
of response so you must loop until you receive the message PING Ready:. Send
each line to SYSLST in the meantime. */
Do forever
 rc = SOCKET(handle,'RECEIVE') if rc \= 0 then do ; say 'rc='rc 'errmsg='
errmsg ; exit
 if pos('PING Ready:',buffer) \= 0 then leave
 say buffer
end
/* Send a command to the Ping client */
rc = SOCKET(handle,'SEND','SET HOST=192.168.0.7')

/* Receive the results. The responses to the SET HOST command are a symbolic
representation of the IP address followed by the PING Ready prompt */
Do forever
 rc = SOCKET(handle,'RECEIVE') if rc \= 0 then do ; say 'rc='rc 'errmsg='
errmsg ; exit
 if pos('PING Ready:',buffer) \= 0 then leave
 say buffer
end
/* Send the Ping command to make TCP/IP for VSE really do a Ping */
rc = SOCKET(handle,'SEND','PING')

/* Analyze the response. You always receive 5 lines. Each line says that the
Ping was successful or that it failed. If any Ping fails, we report it. Else,
we avg Ping response times and report that */
Totms = 0
Do I = 1 to 5
 rc = SOCKET(handle,'RECEIVE')
 If pos('timeout',buffer) \=0 then,
 Do
 Say 'A ping request has timed out'
 Say buffer
 Exit
 End
 Parse var buffer 'Milliseconds:'ms
 Totms = totms + ms
End
Say 'Average Ping Response time was' totms/5

/* Close the client connection */
rc = SOCKET(handle,'CLOSE')
if rc \= 0 then say 'rc='rc 'errmsg=' errmsg

115

5
5. Common Gateway Interfaces

Overview
This chapter explains how to program a Common Gateway Interface, or
CGI. A CGI program is invoked by the TCP/IP FOR VSE HTTP daemon
in response to a request from a web browser. It is responsible for
returning the next webpage to the web browser. For information on
defining the HTTP daemon, see the TCP/IP FOR VSE Installation Guide.

The browser passes an assortment of parameters through the HTTP
daemon (HTTPD) and into the CGI. The CGI performs the requested
activity and returns a series of Hypertext Markup Language (HTML)
statements. The HTML statements enable the web browser to display an
attractive screen of information that can include graphics, sounds,
animation, and other elements.

Remember that webpages use HTML, but not all webpages use CGIs. A
simple webpage that displays static information doesn’t require a CGI.
Static information is information that does not change very often, such as
a list of employees within your company. In a case like this, the
information is stored one time. To access the information, the client
clicks on a person’s name. This action passes a GET request to the web
server, which tells it to load another webpage that provides even more
information. The web server obtains the webpage and passes it back to
the web browser for display.

A CGI program is required when you need to display dynamic
information. Dynamic information is information that changes every
time a webpage is displayed. For example, many webpages display a
counter when they are accessed. You’ve probably seen a webpage that
said something like, “The number of people that have accessed this page
since January 1 is 3,123.” How does this work? There is usually a small
file on the server that contains a number and a date. When you access the
webpage, it invokes a CGI that reads the file, increments the number,
saves the new value, and includes this information on the webpage
display.

Chapter 5 Common Gateway Interfaces

116

Using CGIs with VSE
TCP/IP FOR VSE implements a VSE type of approach to the CGI
process. For example, CGIs may be written in VSE languages such as
assembler and REXX. These program types are covered separately in
this chapter. The CGI facility takes advantage of VSE concepts such as
multiprocessing and can process requests quickly.

Assembler and REXX CGI programs run under the TCP/IP FOR VSE
stack, in the same partition. If you write a program that can disrupt the
stack, for example, one that uses an MWAIT macro or performs heavy
I/O functions, you should run the CGI external to the stack using the
CGILOAD utility. See “Using the CGILOAD Utility” below.

If a CGI runs under the stack, do not issue macros such as SETIME. If
you need to issue a “WAIT,” then the program should be written in
assembler and defined with a “TYPE=CGI-BAL.” The control block
passed to the assembler routine contains the address to the stack’s own
WAIT routine, which you should use instead of invoking the IBM WAIT
macro. As part of the call, a pointer to the internal WAIT routine within
the stack is passed for CGI-BAL to use.

Before you use a CGI, you need to define it to VSE using the DEFINE
CGI command. The syntax is as follows:

The parameters are described in the following table:

Parameter Description
'name' The phase name for programs, or the PROC name

for REXX

cgitype Specify CGI-BAL for an assembler program (the
FILEIOHD macro is not used), CGI-REXX for a
REXX program, or CGI for assembler CGIs that use
the TCP/IP FOR VSE file I/O driver design
requirements.

The program is not loaded into the CGI partition until a web browser
calls it.

The CGILOAD utility enables CGIs to run in an external partition. It
loads the CGI module into storage and opens a SOCKET to HTTPD.
When HTTPD needs to call a CGI, it first checks to see whether the CGI
is external to the stack. An external CGI takes precedence, so a CGI
loaded in the external partition is the one used. This allows you to test
and debug a CGI before letting it run under the stack.

Defining a CGI to VSE

Using the CGILOAD
Utility

DEFINE CGI,PUBLIC='name'[,TYPE=cgitype]

Chapter 5 Common Gateway Interfaces

117

The syntax is as follows:

The parameters are described in the following table:

Parameter Description
xx An alternate stack ID. The default is 00.

portnum A specific port number. This can be set if there is a
conflict with other servers. By default, a port is
selected automatically.

CGILOAD stores a port number in the specified partition. When HTTPD
scans partitions, it checks for a running CGILOAD. If one is found,
HTTPD checks the port that was opened, connects to it, and tells
CGILOAD to load and run the CGI there. All CGIs run in single-thread
mode. If multiple CGILOADs are running and you call a REXX CGI,
HTTPD forces it to a single thread. It does not do this for assembler
CGIs.

When you delete a CGI, you are deleting the module from storage. You
are not deleting the CGI definition. The next time the program is invoked
it is loaded into storage once again. This is useful when you want to
refresh a CGI. The syntax is as follows:

The parameter is described in the following table:

Parameter Description
'name' The phase name for assembler programs, or the

PROC name for REXX.

Deleting a CGI

// EXEC CGILOAD,PARM='[SYSID=00|xx][,PORT=portnum]'

DELETE CGI,PUBLIC='name'

Chapter 5 Common Gateway Interfaces

118

Assembler CGIs
If you plan to code a 31-bit assembler CGI, we recommend that you use
the parameter list documented in this section. It reduces the coding effort
significantly. The parameter list is mapped with the CGIDATA macro,
which is contained in PRD2.TCPIP. The CGIDATA DSECT is shown
below.

The CGI program below is coded in 31-bit assembler language.

Example

CGIDATA DSECT ,
CGIID DC CL6'CGBLOK' <--- Eyecatcher
CGIFPO DC H'0' <--- FPORT value
CGINAME DC CL16' ' <--- Incoming user ID
CGIPASS DC CL16' ' <--- Incoming password
CGIILEN DC F'0' <--- Input data length
CGIOLEN DC F'0' <--- Output data length
CGIIPT DS AL4 <--- Input area pointer
CGIOPT DS AL4 <--- Output area pointer
CGIACT DC F'0' <--- Actual data area size
CGIFIP DC F'0' <--- FOIP value
CGILIP EQU * <--- LOIP value
CGIDLENG EQU *-CGINAME <--- Length of the area

* --- * 00001000
* Program: CGIIPLD2 * 00002000
* * 00003000
* Purpose: Example of an assembler CGI program. * 00004000
* * 00005000
* Input: R2 = Pointer to control block pointer * 00006000
* Parms: See the CGIDATA control block layout * 00007000
* * 00008000
* Output: CGIOLEN indicates the returned length * 00009000
* CGIOPT points to the returned data * 00010000
* * 00011000
* CGILOAD needs to be active for this CGI to work. * 00012000
* --- * 00013000
 PUNCH ' PHASE CGIIPLD2,*' Name of the CGI 00014000
CGIIPLD2 CSECT , Start of the subroutine 00015000
 USING *,RF Addressability 00016000
 SAVE (14,12) Save incoming registers 00017000
 LR RC,RD Copy the savearea 00018000
 L RD,=A(SAVEAREA) Point to new area 00019000
 ST RD,8(RC) Save backward pointer 00020000
 ST RC,4(RD) Save forward pointer 00021000
 LR RC,RF Get the base 00022000
 DROP RF No longer needed 00023000
 USING CGIIPLD2,RC New base 00024000
 USING CGIPARM,R2 And map to the layout 00025000
 L R2,0(R2) Point to the data 00026000
* 00027000
* If this is the first time in, display some info and setup the value. 00028000
* 00029000
 CLI BODYJ,C' ' First time in ? 00030000
 BNZ GETLEN No...proceed 00031000

Chapter 5 Common Gateway Interfaces

119

 GETFLD FIELD=IPLTIME Get the IPLTIME STCK value 00032000
 GETIME CLOCK=YES Convert to a usable format 00033000
 STCM RE,12,MMDDYY Get the month 00034000
 STCM RE,3,MMDDYY+3 And the day 00035000
 STCM RF,12,MMDDYY+6 And the year 00036000
 ST R1,TIME Save the time 00037000
 ED HHMMSS(L'HHMMSS),TIME Unpack/format the time 00038000
 MVC HMS(8),HHMMSS+1 Put it in the message 00039000
 MVC BODYJ(40),MSG Insert the message here... 00040000
 MVC BODYNJ(40),MSG And here too 00041000
* 00042000
* Now we'll check the data passed 00043000
* 00044000
GETLEN CLC CGIILEN(4),=F'0' Is there data ? 00045000
 BZ DODEF No...do the default 00046000
 L R5,CGIIPT Point to the data 00047000
 CLI 5(5),C'Y' Java request ? 00048000
 BZ DOJAVA Yes...proceed 00049000
 CLI 5(5),C'N' No Java request ? 00050000
 BZ DOTEXT Yes...proceed 00051000
DODEF MVC CGIOLEN(4),DEFLEN Get the length 00052000
 MVC CGIOPT(4),=AL4(DEFPAGE) Point to the data 00053000
 B EXIT Return to HTTPD 00054000
* 00055000
* If JAVA=YES, then display info in Java format 00056000
* 00057000
DOJAVA MVC CGIOLEN(4),JAVALEN Get the length 00058000
 MVC CGIOPT(4),=AL4(JAVA) Point to the data 00059000
 B EXIT Return to HTTPD 00060000
* 00061000
* If JAVA=NO, then display info in text format 00062000
* 00063000
DOTEXT MVC CGIOLEN(4),TEXTLEN Get the length 00064000
 MVC CGIOPT(4),=AL4(NOJAVA) Point to the data 00065000
* 00066000
EXIT L RD,4(RD) Regain savearea 00067000
 LM RE,RC,12(RD) Regain the regs 00068000
 XR RF,RF Clear the return code 00069000
 BR RE Return to caller 00070000
* ---------------- Data Area -------------------- * 00071000
 LTORG , 00072000
SAVEAREA DS 9D 00073000
TIME DS F HHMMSSF RETURNED HERE 00074000
HHMMSS DC XL9'2120207A20207A2020' 00075000
* 00076000
MSG DC CL20'System was IPLed on ' 00077000
MMDDYY DC CL8'MM/DD/YY' 00078000
 DC CL4' at' 00079000
HMS DC CL8'HH:MM:SS' 00080000
* 00081000
DEFPAGE DC C'<HTML><HEAD><TITLE>CGIIPLD2 Test Page</TITLE>' 00082000
 DC C'</HEAD><BODY><FORM ACTION="CGIIPLD2" METHOD=GET">' 00083000
 DC C'<CENTER><H1>CGIIPLD2 Test Page</H1><H2><I>' 00084000
 DC C'Perform one of the following tests:<HR></I>' 00085000
 DC C'Cursor Selection Test

Pass the' 00086000
 DC C'<I>NOSCRIPT</I>' 00087000
 DC C'or the <I>SCRIPT' 00088000
 DC C'</I>parameter to CGIIPLD2<HR></I><H2>' 00089000
 DC C'Form SUBMIT Test
<I>
Select an option and' 00090000
 DC C'press the Test button that follows:
</I></H2>' 00091000

Chapter 5 Common Gateway Interfaces

120

Note:

Keep in mind that while the first fullword of R2 contains the parameter
block, there is also a second fullword that contains the address of the
TCP/IP FOR VSE internal WAIT routine. If you need to issue a WAIT,
load this second fullword to R15, point to your ECB in R1, and BASSM
into it. Again, this is only if you need to issue a WAIT.

Be aware that this only applies to the CGI-BAL type. The other
assembler format, the TYPE=CGI, differs in that its design requirements
are identical to a TCP/IP FOR VSE file I/O driver.

 DC C'<INPUT TYPE="radio" NAME="JAVA" VALUE="NO">' 00092000
 DC C'NOSCRIPT<INPUT TYPE="radio" NAME="JAVA" ' 00093000
 DC C'VALUE="YES"> SCRIPT' 00094000
 DC C'<INPUT TYPE="submit" name="SUBMIT" value="Test">' 00095000
 DC C'<HR></FORM></BODY></HTML>' 00096000
DEFLEN DC AL4(*-DEFPAGE) 00097000
* 00098000
JAVA DC C'<HTML><HEAD><TITLE>CGIIPLD2 Test Page</TITLE>' 00099000
 DC C'</HEAD><BODY>' 00100000
 DC C'<SCRIPT LANGUAGE="JavaScript">' 00101000
 DC C'<!-- Hide from non-JAVA browsers',X'0D25' 00102000
 DC C'alert("' 00103000
BODYJ DC CL40' ' 00104000
 DC C'");',X'0D25' 00105000
 DC C'// Stop Hiding -->',X'0D25' 00106000
 DC C'</SCRIPT>' 00107000
 DC C'Return to menu' 00108000
 DC C'</BODY></HTML>' 00109000
JAVALEN DC AL4(*-JAVA) 00110000
* 00111000
NOJAVA DC C'<HTML><HEAD><TITLE>CGIIPLD2 Test Page</TITLE>' 00112000
 DC C'</HEAD><BODY><H1><HR>' 00113000
BODYNJ DC CL40' ' 00114000
 DC C'<HR></H1>Return to menu' 00115000
 DC C'</BODY></HTML>' 00116000
TEXTLEN DC AL4(*-NOJAVA) 00117000
* ---------------- Dummy Sections --------------------- * 00118000
 CGIDATA DSECT=YES Define the parameter 00119000
 IPW$EQU 00120000
 END CGIIPLD2 End of program 00121000

Chapter 5 Common Gateway Interfaces

121

REXX CGIs
REXX is an excellent language for prototyping CGI applications. In this
section, we explain how to code a REXX program and show an example.

Your REXX program receives the following parameters:

• UserID

• Password

• Data

• FOIP

• FOPORT

• LOIP

• LOPORT

If security is off, the user ID and password are both set to
ANONYMOUS. After the REXX program receives the data, it processes
it and then returns the webpage. To do this, you invoke the HTML()
function.

To illustrate the power and simplicity of this interface, consider the
following sample program. This program allows the user to enter VSE
console commands and receive the response from the web browser. As
explained above, you receive the user ID, password, data, and other
fields. A standard header for your program might appear as follows:

In this example, we are not interested in the LOIP, and so there is no
need to reference it. Data passed to the CGI is formatted by the web
browser. The web browser passes the parameters in the order they are
received. This includes the parameter name, preceded by an ampersand
(&) and followed by an equal sign (=), and then the data. This sequence
repeats until there is no more data. For example, assume you send three
fields named ONE, TWO, and THREE, and the fields contain,
respectively, the data strings 111, 222, and 333. The data your program
receives is in the following format:

Programming

/* Get the passed parameters */
userid=arg(1)
password=arg(2)
data=arg(3)
foip=arg(4)
/* */

&ONE=111&TWO=222&THREE=333

Chapter 5 Common Gateway Interfaces

122

Once you have the information and have processed it, you need to send
data back to the HTTP daemon.

To do this, you use the REXX HTML function. For example, to send
back a simple “Thank you” response, you could use the following code:

That is all there is to writing a simple REXX CGI. The amount of data
can be large and contained in a single HTML() call, or it can be small
and use several HTML() calls. Fewer calls are faster, but not
significantly so.

As with an assembler program, you must take the following actions
before you can run your CGI:

1. Catalog your REXX program in a VSE library that is in the LIBDEF
search chain for your TCP/IP FOR VSE CGILOAD partition. This is a
program, not a document, so it does not need to be in the sublibrary
that contains your HTML documents. If you do put it in the HTML
sublibrary, make sure the HTML sublibrary is part of the LIBDEF
search chain, as shown in the following example:

2. Define an HTTPD. If you keep all of your webpages for HTTP
daemon HTTP1 in PRD2.HTML and you use a REXX program
named VSECOM, you could use the control statements in the
following example:

The following REXX program functions as a VSE console in a web
browser.

Execution Requirements

Example

rc=HTML('<HTML><TITLE>Response</TITLE><BODY>')
rc=HTML('<H2><I>Thank you</I></H2>')
rc=HTML('</BODY></HTML>')

// LIBDEF *,SEARCH=(PRD1.BASE,USR.HTML)

DEFINE CGI,PUBLIC='VSECOM',TYPE=CGI-REXX
DEFINE HTTPD,ID=HTTP1,ROOT='PRD2.HTML',CONFINE=NO
DEFINE FILE,PUBLIC='PRD2',DLBL=PRD2,TYPE=LIBRARY

Chapter 5 Common Gateway Interfaces

123

CATALOG VSECOM.PROC
/*Program: VSECOM
 Purpose: Demonstrate how to code a sample CGI: TCP/IP for VSE.
 This CGI will:
 1) Send a dynamic screen to the user
 2) Read a passed VSE command entered by the user
 3) Return data back to the Web browser
 Description: This program is an example of how to code a REXX-CGI.
*/
userid=arg(1) /* Get the passed user name */
password=arg(2) /* Get the passed password */
data=arg(3) /* Get the passed command */
foip=arg(4) /* 15-byte IP-address string */
inlen=length(data) /* Get the length passed */

if inlen=0 then do /* A null length returns this screen*/
 x=HTML('text/html;') /* Required to force MIME type HTML */
 x=HTML('<HTML><HEAD><TITLE>'
 x=HTML('VSE Console Command Processor</TITLE></HEAD>')
 x=HTML('<BODY TEXT="#993300" BGCOLOR="#66FF99"><CENTER>')
 x=HTML('<H2><I>')
 x=HTML('VSE Console Command Processor')
 x=HTML('</I></H2></CENTER><P><HR>')
 x=HTML('<FORM METHOD=GET ACTION="VSECOM">')
 x=HTML('Input:<INPUT TYPE="text" NAME="COMMAND" SIZE=25>')
 x=HTML('
<HR></BODY></HTML>')
 exit
 end

parse upper var data request 9 command /* Data was passed */
ADDRESS CONSOLE /* Activate interface */
'ACTIVATE NAME CGICONR PROFILE REXNORC'
'CART USCHI'
command /* Pass command to VSE */
rc = GETMSG(msg.,'RESP','USCHI',,5) /* Get the response */

x=HTML('text/html;') /* Required to force MIME type HTML */
x=HTML('<HTML><HEAD><TITLE>') /* Pass back headings */
x=HTML('VSE Console Command Processor</TITLE></HEAD>')
x=HTML('<BODY TEXT="#993300" BGCOLOR="#66FF99"><CENTER>')
x=HTML('<H2><I>')
x=HTML('VSE Console Command Processor')
x=HTML('</I></H2></CENTER><P><HR>')
x=HTML('<FORM METHOD=GET ACTION="VSECOM">')
x=HTML('Input:<INPUT TYPE="text" NAME="COMMAND" SIZE=25>')
x=HTML('
<HR>')
x=HTML('<PRE>')

i = 1 /* Insert the response */
do while i <= msg.0
 x=HTML(msg.i)
 i=i+1
 end

x=HTML('</BODY></HTML>') /* And the HTML footer */

ADDRESS CONSOLE 'DEACTIVATE CGICONR' /* Deactivate interface*/
exit

124

6
6. SSL/TLS for VSE APIs

Overview
The SSL/TLS for VSE feature provides three APIs for developing
cryptographically secure TCP/IP socket applications:

• Secure Socket Layer API (page 125)

This API allows you to develop SSL/TLS-enabled applications on the
VSE platform using functions that can be called within Assembler, C,
and other languages that use standard call/save linkage conventions.

For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

• CryptoVSE API (page 148)

This API allows you to implement cryptographic algorithms in a VSE
application.

• Common Encryption Cipher Interface (page 182)

This API allows you to control the encryption algorithm and key
values used in an application without changing the application itself.
Functions in this API can be called from within Assembler, COBOL,
or other high level languages using standard call/save linkage
conventions.

The SSL/TLS for VSE feature is provided with TCP/IP FOR VSE, but it
must be activated with a product key. See the “SSL/TLS for VSE”
chapter in the TCP/IP FOR VSE Optional Features Guide for more
information. That chapter also contains an introduction to the SSL/TLS
protocol.

Chapter 6 SSL/TLS for VSE APIs

125

Secure Socket Layer (SSL) and Transport Layer Security
(TLS) API

You can use the SSL/TLS for VSE API to develop SSL/TLS-enabled
applications on the VSE platform. The traditional SSL/TLS handshake
between an SSL/TLS-enabled client and an SSL/TLS-enabled server
follows this process:

1. The server allocates a socket, binds to a port, performs a listen, and
issues an accept.

2. The client connects to the server (for example, the VSE application
program) and sends a hello message with the highest release level of
the protocol that it supports and an ordered list of preferred cipher
suites.

3. The server, running on VSE, passes control to the secure socket
initialization routine, which performs the actual SSL/TLS handshake.
During the handshake, the server responds to the client’s hello
message by choosing the release level of the protocol and the cipher
suite that will be used during the session. The server also sends its
X.509v3 PKI certificate. Next, a very secure and complex function
generates the key material that is used for encryption, decryption, and
message authentication.

4. After the handshake successfully completes, the connection is ready
to securely exchange data using the secure socket read and write
functions of the SSL/TLS for VSE API.

The SSL/TLS for VSE API is closely modeled after the C functions of
the OS/390 SSL Programming Guide and Reference (IBM manual
number SC24-5877). Applications written to conform to these
specifications are easily ported into VSE. The functions described on the
following pages can be called from the Assembler and the C
programming languages.

You can set several options that affect the exploitation of hardware
assists that are used in many of the SSL/TLS and cryptographic
functions. These options, described in the table below, are set using
keyword values in the $SOCKOPT options phase. See “Appendix A:
$SOCKOPT Options Phase,” page 196, for details on setting options in a
custom options phase.

Option Setting Description

SSLFLG2=$OPTSNHC Do not use hardware cryptography for RSA
operations. Setting this option suppresses the
use of hardware cryptography for RSA
cipher algorithm requests. See also Notes
below.

Hardware Assist Options
Settings

Chapter 6 SSL/TLS for VSE APIs

126

Option Setting Description

SSLFLG2=$OPTSNZA Never issue CP Assist Cryptographic
Function (CPACF) z/architecture hardware
instructions. See also Notes below.

SSLFLG2=$OPTSFZA Always issue CPACF z/architecture
hardware instructions. See also Notes below.
Use caution when choosing this option. If the
hardware instructions are not available, an
operation exception program-check abend
will occur in the application.

Notes:

1. When the TLS 1.2 version of the protocol is negotiated, the hardware
assists for both RSA and CPACF must be available, and the
$OPTSNHC, $OPTSNZA, and $OPTSFZA settings are ignored.

2. Normally, z/ architecture CPACF hardware instructions are detected
automatically and used when available. The $OPTSNZA and
$OPTSFZA options allow you to suppress or force, respectively, the
use of CPACF hardware cryptographic instructions.

The SSLVSE.A member contains terse explanations of most of the codes
returned by SSL functions when an error occurs. This member is in the
TCP/IP FOR VSE library. For further analysis, see the section
“Debugging Problems” on page 194.

The SSL/TLS for VSE API’s functions are described on the following
pages of this section.

Error Codes

Functions

Chapter 6 SSL/TLS for VSE APIs

127

This function is maintained for portability of OS/390 applications. It is
not used by the SSL/TLS for VSE API. The syntax is as follows.

The parameters are described in the following table:

Parameter Description

address Pointer to the memory that is to be freed. The address
was passed to the application by a previous call to an
SSL function.

reserved Reserved for future use. Code a null.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• This function is not currently used.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRFMEM entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_free_memory()

#include <sslvse.h>
void gsk_free_memory(void * address,
 void * reserved);

Chapter 6 SSL/TLS for VSE APIs

128

This function requests cipher-related information for SSL/TLS for VSE.
The information determines the encryption level that the system can
support and returns a list of cipher specifications that SSL can use. This
allows an application to determine, at run time, the level of SSL
encryption that the installed application can request.

The syntax is as follows.

The parameters are described in the following table:

Parameter Description

level Determines the type of cipher information to be
returned. The types are as follows:

• GSK_LOW_SECURITY. Causes only exportable cipher
information to be returned. This value is useful when
setting up SSL communications with systems that
may be located outside of the U.S. and Canada and in
any area where strong cryptographic functions are not
available.

• GSK_HIGH_SECURITY. Causes exportable and
domestic cipher information to be returned.

See the v3cipher_specs and cipher_specs fields in
the gsk_soc_init_data structure, in the function
gsk_secure_soc_init(), for a list of valid cipher values.

sec_level Pointer to the gsk_sec_level data area.

reserved Reserved for future use. Code a null.

The gsk_sec_level structure specifies information about the level of
cryptography that is available on the system. The application must
allocate the memory necessary for this structure. On successful return,
the contents of the structure are set.

The gsk_sec_level data area has the following structure:

gsk_get_cipher_info()

#include <sslvse.h>
int gsk_get_cipher_info(int level,
 gsk_sec_level * sec_level, void * reserved);

typedef struct gsk_sec_level {
 int version; /* Output: System SSL version */
 char v3cipher_specs[64]; /* Output: The sslv3 cipher specs allowed */
 char v2cipher_specs[32]; /* Output: The sslv2 cipher specs allowed */
 int security_level; /* Output: Initially one of */
 /* GSK_SEC_LEVEL_US, */
 /* GSK_SEC_LEVEL_EXPORT, */
 /* GSK_SEC_LEVEL_EXPORT_FR */
 } gsk_sec_level;

Chapter 6 SSL/TLS for VSE APIs

129

The fields in the gsk_sec_level structure are described in the table below.

Field Description

version Specifies the version of System SSL that is
being used. This returns the value
GSK_VERSION3 as defined in <sslvse.h>.

v3cipher_specs[64] Specifies the SSL/TLS cipher specs that are
acceptable on the system. This data is contained
in the v3cipher_specs field in the
gsk_soc_init_data structure that is passed on the
gsk_secure_soc_init() call.

v2cipher_specs[32] The SSL/TLS for VSE implementation does not
support SSLv2, and the v2cipher_specs contain
null information.

security_level Specifies the level of encryption that is
acceptable on the system. One of the following
values, as defined in <sslvse.h>, is returned in
this field:

GSK_SEC_LEVEL_US
GSK_SEC_LEVEL_EXPORT

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• You can use gsk_get_cipher_info() to determine the valid values that
are specified in the cipher_specs of the gsk_soc_init_data area used by
gsk_secure_soc_init().

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRGCIN entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

Chapter 6 SSL/TLS for VSE APIs

130

This optional function allows you to identify the member name
containing the private key and certificates. The syntax is as follows:

The parameter is described in the following table:

Parameter Description

label Points to a null-terminated character string of the
library member contained in the key ring lib.sublib.
The member name must be eight characters or less in
length and be terminated with a null character (x'00').

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is a pointer to a
character string that identifies the library member
name.

Zero or a
negative value

An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• For Assembler, use the macro SSLVSE to generate the required data
areas and call the IPCRGDBL entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_get_dn_by_label()

#include <sslvse.h>
char * gsk_get_dn_by_label(char * label);

Chapter 6 SSL/TLS for VSE APIs

131

This function sets the overall SSL/TLS for VSE environment for the
current partition. After the function completes successfully, the
application is ready to call SSL/TLS for VSE interfaces and create and
use secure socket connections.

The syntax is as follows:

The parameter is described in the following table:

Parameter Description

init_data Pointer to the gsk_init_data area

The gsk_init_data area has the following structure:

gsk_initialize()

#include <sslvse.h>
int gsk_initialize(gsk_init_data * init_data);

typedef struct gsk_init_data {
 char * sec_types; /* Minimum security protocol: */
 char * keyring; /* Key ring file name */
 char * keyring_pw; /* Key ring password */
 char * keyring_stash; /* File name - stashed passwrd */
 long V2_session_timeout; /* Number of seconds for SSLV2 */
 long V3_session_timeout; /* Number of seconds for SSLV3 */
 char * LDAP_server; /* Name or IP addr of X500 host*/
 int LDAP_port; /* Port number of X500 host */
 char * LDAP_user; /* User name for X500 host */
 char * LDAP_password; /* Password of X500 host */
 gsk_ca_roots LDAP_CA_roots; /* Which CA roots to use */
 gsk_auth_type auth_type /* Client authentication type */
 } gsk_init_data;

Chapter 6 SSL/TLS for VSE APIs

132

The fields in the gsk_init_data structure are described in the table below.

Field Description

sec_types Specifies a null-terminated character string that
identifies the minimum acceptable security protocol
version to be used. The value must be in upper case
characters. Valid values are:

• SSL30 for version 3.0 of the protocol. This conforms
to the SSL 3.0 standard as defined by Netscape,
which has now been turned over to the IETF and
renamed TLS.

• TLS10 for version 3.1 of the protocol. This conforms
to TLS 1.0 protocol as defined in RFC2246.

• TLS11 for version 3.2 of the protocol. This conforms
to TLS 1.1 protocol as defined in RFC4346.

• TLS12 for version 3.3 of the protocol. This conforms
to TLS 1.2 protocol as defined in RFC5246.

Note: Clients should set this field to the highest
protocol version they can support.
Servers should set this field to the lowest protocol
version they are willing to accept.

keyring Optionally specifies a null-terminated character string
that identifies the lib.sublib in which the private key
and certificates are stored. The lib name must be 7
characters or less, followed by a period, followed by
the sublib name, and terminated with a null character
(x'00').
A null pointer causes the private key and certificates to
be read from the default sequential disk files.

keyring_pw Not used.

keyring_stash Not used.

V2_session_timeout Not used.

V3_session_timeout Specifies the number of seconds in which a server
allows a client to reconnect without performing a full
SSL handshake. The recommended setting for this field
is 86400, which is the number of seconds in 24 hours.
A setting of 0 effectively disables the fast reconnect
option and causes higher CPU consumption during the
handshake process because it requires all clients to
perform a full SSL handshake.

LDAP_server Not used.

LDAP_port Not used.

Chapter 6 SSL/TLS for VSE APIs

133

Field Description

LDAP_user Not used.

LDAP_password Not used.

gsk_ca_roots Specifies which CA roots to use for client certificate
authentication. Valid values are 0 and 1. When an
application wants to allow client authentication with
certificates issued by the same certificate authority as
VSE, it should use a value of 1.

gsk_auth_type Specifies the method to use for verifying the client’s
certificate. This field is used only when field
gsk_ca_roots is set to 1. Valid values are

0 for Client_auth_local
1 for Client_auth_strong_over_ssl
2 for Client_auth_strong
3 for Client_auth_passthru

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• You can make multiple calls to gsk_initialize() as long as you call
gsk_uninitialize() to clean up the existing SSL/TLS for VSE
environment before the next call.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRINIT entry point contained in the IPCRYPTS object
deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

Chapter 6 SSL/TLS for VSE APIs

134

This function ends a secure socket connection and frees all SSL/TLS for
VSE resources for that connection. The syntax is as follows:

The parameter is described in the following table:

Parameter Description

user_socket Points to the gsk_soc_data structure returned from the
gsk_secure_soc_init() call.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Security note:

This note describes a measure to prevent hacker truncation attacks.
TCP/IP FOR VSE always sends a close_notify alert as required by the
protocol specification, but other non-VSE applications may not comply
with the specification. This can cause an application on VSE to hang
during session termination while waiting for a close_notify alert. To
avoid this problem, TCP/IP FOR VSE does not require a close_notify
alert to be received to complete a close.

You can change this default behavior by setting the keyword SSLFLG1
to $OPTSRQC in the $SOCKOPT options phase. When this option is
set, TCP/IP FOR VSE requires a close_notify alert to be received during a
gsk_secure_soc_close. This means that a secure socket close will not
complete successfully unless a close_notify alert is received from the
non-VSE application.

CSI International recommends that all customers use the $OPTSRQC
option to prevent truncation attacks. Each site must weigh the risk of
problems caused by applications that do not comply with the protocol’s
specification of exchanging close_notify alerts before terminating a
connection. If you do not set this option, then your applications may be
susceptible to truncation attacks.

See “Appendix A: $SOCKOPT Options Phase,” page 196, for details on
setting options in a custom options phase.

gsk_secure_soc_close()

#include <sslvse.h>
void gsk_secure_soc_close(gsk_soc_data * user_socket);

Chapter 6 SSL/TLS for VSE APIs

135

Usage Notes:

• This function frees all storage referenced by the user_socket
parameter.

• The user application must close all socket descriptors opened by any
socket API. This function does not close any open socket descriptors.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRSCLS entry point contained in the IPCRYPTS object
deck. See the SSLSERVR and SSLCLINT sample programs for
detailed specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

Chapter 6 SSL/TLS for VSE APIs

136

This function initializes the data areas necessary for SSL/TLS for VSE to
initiate or accept a secure socket connection. After the function
completes successfully, a handle is returned to the application. Other
calls using this secure socket connection must use this handle.

The syntax is as follows:

The parameter is described in the following table:

Parameter Description

soc_init_data Pointer to the gsk_soc_init_data area

During the call, a complete SSL handshake is performed based on the
input specified in the gsk_soc_init_data structure. While SSL/TLS for
VSE performs the mechanics of the SSL handshake, the application must
supply the routines necessary to transport the SSL data during the SSL
handshake, as well as for all subsequent read/write operations. See the
Usage notes below for information on disallowing fast resumes.

The gsk_soc_init_data structure specifies characteristics of the secure
socket connection. In addition, SSL/TLS for VSE uses this structure to
return information about the secure socket connection after it is
established. The gsk_soc_init_data area has the following structure:

gsk_secure_soc_init()

#include <sslvse.h>
gsk_soc_data * gsk_secure_soc_init(
 gsk_soc_init_data * soc_init_data);

typedef struct gsk_soc_init_data {
 int fd; /* Socket descriptor */
 gsk_handshake hs_type; /* Client or server handshake */
 char * DName; /* Key ring entry name */
 char * sec_type; /* Type of security protocol used
 to protect this socket */
 char * cipher_specs; /* Cipher specs choice and order
 for SSLV2 */
 char * v3cipher_specs; /* Cipher specs choice and order
 for SSLV3 */
 int (* skread) /* User-defined READ func pointer */
 (int fd, void * buffer, int numbytes);
 int (* skwrite) /* User-defined WRITE func pointer*/
 (int fd, void * buffer, int num_bytes);
 unsigned char cipherSelected[3]; /* V2 CipherSpec used */
 unsigned char v3cipherSelected[2]; /* V3 CipherSpec used */
 int failureReasonCode; /* Failure reason code */
 gsk_cert_info * cert_info; /* Used during client authentication*/
 gsk_init_data * gsk_data; /* Required for password exchange
 during DName negotiation */
 } gsk_soc_init_data;

Chapter 6 SSL/TLS for VSE APIs

137

The fields in the gsk_soc_init_data structure are described in the table
below.

Field Description

fd Socket descriptor for this connection. The socket
descriptor address is passed to the application
routines specified in fields skread and skwrite. These
application-supplied routines use the socket
descriptor as required to read/write SSL data.

Note 1: No socket calls are issued by SSL/TLS for
VSE using the socket descriptor. It is the address of a
token that is passed to the user-provided socket read
and write exit routines. You may store the address of
a dynamic work area as the socket descriptor, and
when your exit gets control you have easy
addressability to your work area containing the your
actual socket descriptor.
Note 2: The socket must be created, opened, and
connected before calling gsk_secure_soc_init().

hs_type Specifies how the SSL handshake is performed. Valid
values are
• GSK_AS_SERVER to perform the SSL handshake as a

server without client authentication.
• GSK_AS_SERVER_WITH_CLIENT_AUTH to perform

the SSL handshake as a server that requires client
authentication.

• GSK_AS_CLIENT to perform the SSL handshake as a
client with or without client authentication.

• GSK_AS_CLIENT_NO_AUTH to perform the SSL
handshake as a client without client authentication.

DName Points to a null-terminated character string of the
library member name for the .cert, .root, and .prvk
files to be read from the keyring lib.sublib. The
member name must be eight characters or less in
length and must terminate with a null character
(x'00'). To use sequential disk files, specify
SDFILES.

Chapter 6 SSL/TLS for VSE APIs

138

Field Description

sec_type After a socket is successfully connected, this contains
a pointer to a null-terminated character string that
identifies the security protocol version set by the
server application during the handshake process:

• SSL30 for version 3.0 of the protocol. This
conforms to the SSL 3.0 standard as defined by
Netscape.

• TLS31 for version 3.1 of the protocol. This
conforms to TLS 1.0 protocol as defined in
RFC2246.

• TLS11 for version 3.2 of the protocol. This
conforms to TLS 1.1 protocol as defined in
RFC4346.

• TLS12 for version 3.3 of the protocol. This
conforms to TLS 1.2 protocol as defined in
RFC5246.

cipher_specs Specifies a null-terminated character string that
contains the list of SSL Version 2.0 ciphers in order
of usage preference.
This field is NOT USED by SSL/TLS for VSE.

v3cipher_specs Specifies a null-terminated character string that
contains the list of SSL/TLS ciphers in order of usage
preference. Valid values are:

01 for RSA-NULL-MD5
02 for RSA-NULL-SHA
08 for RSA-SDES040-SHA
09 for RSA-SDES056-SHA
0A for RSA-TDES168-SHA
2F for RSA-AES128-SHA
35 for RSA-AES256-SHA

You can use any combination of these values in any
order. The level of cryptography installed on the
system may render some values invalid. See
gsk_get_cipher_info() for information about
determining the cipher specs supported by the system.
If you specify a NULL value for cipher_specs, the
default SSL/TLS cipher specs are used. The default
ciphers are dependent on the SSLCIPH keyword
setting in $SOCKOPT.
See “Appendix A: $SOCKOPT Options Phase,”
page 196, for details on setting options in a custom
options phase.

Chapter 6 SSL/TLS for VSE APIs

139

Field Description

skread Points to an application-provided routine that
performs a read function for SSL/TLS for VSE. The
parameters for this routine must be defined as
specified in skread. This application-provided routine
must use standard linkage conventions. SSL/TLS for
VSE uses the skread routine while performing the
SSL handshake during the gsk_secure_soc_init() call
and the gsk_secure_soc_read() call. The skread
routine contains the following code, which uses the
sockets recv() call to read the data for the SSL
connection:
int skread(int fd, void &data, int len) {
return(recv(fd, data, len, 0)); }

The skread routine must return one of the following:

• A positive value to indicate the number of bytes
received

• A negative value to indicate that an error
occurred

If the return code is set to zero, the
gsk_secure_soc_init() function will reissue the call to
skread until either a positive or a negative return code
is received.

skwrite Points to an application-provided I/O routine that
performs a write function for SSL/TLS for VSE. The
parameters for this routine must be defined as
specified in skwrite. This application-provided I/O
routine must use standard linkage conventions.
SSL/TLS for VSE uses the skwrite routine while
performing the SSL handshake during the
gsk_secure_soc_init() call and the
gsk_secure_soc_write() call. The skwrite routine
contains the following code, which uses the sockets
send() call to write the data for the SSL connection:
int skwrite(int fd, void &data, int len) {
return(send(fd, data, len, 0)); }

The skwrite routine must return one of the following:
• A positive value to indicate the number of bytes

sent
• A negative value to indicate that an error

occurred

If the return code is set to zero, the SSL connection
will be terminated.

Chapter 6 SSL/TLS for VSE APIs

140

Field Description

cipherSelected Specifies the architected SSL version 2.0 cipher spec
value selected for this session. SSL/TLS for VSE
does not support the SSL 2.0 standard.

V3cipherSelected Specifies the architected SSL version 3.0 cipher spec
value selected for this session, for example,
0X00,0X09.

failureReasonCode Specifies the failure reason code for
gsk_secure_soc_init().

cert_info Specifies the Distinguished Name components from
the client’s certificate. This parameter is valid only
when client authentication is requested for a server
using SSL. At successful completion, this field
contains a pointer to the following structure, which is
also contained in <sslvse.h>:

typedef struct gskcertinfo {
 char * cert_body; /* Base64 certificate body */
 int cert_body_len; /* Length of base64 cert body */
 char * sessionID; /* Session ID for this connection */
 int newSessionID; /* Flag to indicate if new session*/
 char * serial_num; /* Certificate Serial number */
 char * common_name; /* Common Name of client */
 char * locality; /* Locality */
 char * state_or_province; /* State or Province */
 char * country; /* Country */
 char * org; /* Organization */
 char * org_unit; /* Organizational unit */
 char * issuer_common_name; /* Issuer’s common name */
 char * issuer_locality; /* Issuer’s locality */
 char * issuer_state_or_province; /* Issuer’s sta or prov */
 char * issuer_country; /* Issuer’s country */
 char * issuer_org; /* Issuer’s organization */
 char * issuer_org_unit; /* Issuer’s organizational unit*/
} gsk_cert_info;

gsk_data Points to the gsk_init_data structure. You must
specify the address of the same gsk_init_data
structure that was used during the gsk_initialize()
function call.

Chapter 6 SSL/TLS for VSE APIs

141

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is a pointer to a
structure of type gsk_soc_data. Save this pointer: the
structure is used in subsequent SSL/TLS for VSE
operations. The gsk_soc_data structure is defined in
<sslvse.h> as follows:
typedef struct _gsk_soc_data {
 void * sk_SSLHandle;
 } gsk_soc_data;

Zero or a
negative value

An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• You can block fast resumes by setting the keyword SSLFLG1 to
$OPTSNFR (Fast Resume Not Allowed) in the $SOCKOPT options
phase. Setting this option causes an SSL/TLS server application to
reject all fast resume requests. Fast resume can improve performance,
but some sites may consider it to be a security exposure. When fast
resume is disabled, a full SSL/TLS handshake is performed for all
session negotiations.

See “Appendix A: $SOCKOPT Options Phase,” page 196, for details
on setting options in a custom options phase.

• The socket descriptor must be open and connected before you call this
routine. For socket operations, this implies that a client must perform
the socket() and connect() calls before the gsk_secure_soc_init()
call. For servers, this implies that the server must perform the
socket(), bind(), listen(), and accept() calls before the
gsk_secure_soc_init() call.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRSINI entry point contained in the IPCRYPTS object
deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

Chapter 6 SSL/TLS for VSE APIs

142

This function receives data on a secure socket connection using the
application-specified read routine.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

user_socket Pointer to gsk_soc_data

data_buffer Pointer to user-supplied buffer in which the data is to
be stored

buffer_length Specifies the length of data_buffer

The return codes are as follows:

Return Code Description

Zero or a
positive value

Successful completion. The value is the number of
bytes read.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The maximum length of the data returned cannot exceed 32K. This is
because SSL is a record-level protocol in which the largest record
allowed is 32K minus the necessary SSL record headers.

• Mixing calls to gsk_secure_soc_read() and any of the socket read
function’s receive calls, while possible, is not recommended. This
requires very close matching of operations between client and server
programs. If any portion of an SSL record is read using a socket read
function, a fatal SSL protocol error is detected when the next
gsk_secure_soc_read() is performed.

• SSL/TLS for VSE can be mixed with socket reads and writes, but they
must be performed in matched sets. If a client application writes 100
bytes of data using one or more of the socket send calls, then the
server application must read exactly 100 bytes of data using one or
more of the socket receive calls. This is also true for
gsk_secure_soc_read() and gsk_secure_soc_write().

gsk_secure_soc_read()

#include <sslvse.h>
int gsk_secure_soc_read(gsk_soc_data * user_socket,
 void * data_buffer,
 int buffer_length);

Chapter 6 SSL/TLS for VSE APIs

143

• Because SSL is a record-oriented protocol, it must receive an entire
record before it is decrypted and any data is returned to the
application. Thus, a select() can indicate that data is available to be
read, but a subsequent gsk_secure_soc_read() can hang while waiting
for the remainder of the SSL record to be received.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRSRED entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

Chapter 6 SSL/TLS for VSE APIs

144

This function refreshes the security parameters, such as encryption keys,
for a session. You can also use it to resume or restart a cached session.

The syntax is as follows:

The parameter is described in the following table:

Parameter Description

user_socket Points to the gsk_soc_data structure returned from the
gsk_secure_soc_init() call.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• Use gsk_secure_soc_reset() when a client or server needs to reset the
SSL environment. Call gsk_secure_soc_reset() only after a successful
call to gsk_secure_soc_init(). Also, use gsk_secure_soc_reset() when
resuming or restarting a connection for an SSL session that was
cached and when resetting the keys used for that connection.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRSRST entry point contained in the IPCRYPTS object
deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_secure_soc_reset()

#include <sslvse.h>
int gsk_secure_soc_reset(gsk_soc_data * user_socket);

Chapter 6 SSL/TLS for VSE APIs

145

This function sends data on a secure socket connection using the
application-specified write routine. The syntax is as follows:

The parameters are described in the following table:

Parameter Description

user_socket Pointer to gsk_soc_data.

data_buffer Pointer to the user-supplied buffer in which the data
to be written is stored.

buffer_length Specifies the length of data_buffer. The maximum
allowed is 65536 bytes.

The return codes are as follows:

Return Code Description

Zero or a
positive value

Successful completion. The value is the number of
bytes written.

Negative value Error occurred. See “Debugging Problems” page 194.

Usage Notes:

• If the application data sent to an SSL/TLS for VSE application is more
than 32K, you must make multiple calls to gsk_secure_soc_read() in
order to read the entire block of application data.

• SSL/TLS for VSE reads and writes can be mixed with socket reads
and writes, but they must be performed in matched sets. If a client
application writes 100 bytes of data using one or more of the socket
send calls, then the server application must read exactly 100 bytes of
data using one or more of the socket receive calls. This is also true for
gsk_secure_soc_read() and gsk_secure_soc_write(). If a write buffer
is separated into multiple buffers, the remote site of the secure socket
connection must perform enough gsk_secure_soc_read() operations
to read the complete buffer.

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRSWRT entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_secure_soc_write()

#include <sslvse.h>
int gsk_secure_soc_write(gsk_soc_data * user_socket,
 void * data_buffer, int buffer_length);

Chapter 6 SSL/TLS for VSE APIs

146

This function removes the current overall settings for the SSL
environment. It removes fields such as session timeout values and SSL
protocols.

The syntax is as follows:

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• Use gsk_uninitialize() when you need to reset the System SSL
environment settings. Then, use gsk_initialize() to create a new set of
System SSL environment settings.

• You must close all SSL sessions that were created using the current
System SSL environment before you call gsk_uninitialize().

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRUNIN entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_uninitialize()

#include <sslvse.h>
int gsk_uninitialize(void);

Chapter 6 SSL/TLS for VSE APIs

147

This function is not used by the SSL/TLS for VSE API, but it is
maintained for portability of OS/390 applications.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

user_data_fid Specifies the action to perform.

user_input_data Specifies information required for the requested
action.

reserved A reserved field; specify it as null.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Non-zero An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• For Assembler, use macro SSLVSE to generate the required data areas
and call the IPCRUSET entry point contained in the IPCRYPTS
object deck. See the SSLSERVR and SSLCLINT sample programs for
detailed Assembler interface specifications.

• For information on TLS 1.2 protocol support, see “Appendix C:
TLS 1.2 Enhancement” on page 208.

gsk_user_set()

#include <sslvse.h>
int gsk_user_set(int user_data_fid,
 void * user_input_data,
 void * reserved);

Chapter 6 SSL/TLS for VSE APIs

148

CryptoVSE API
SSL/TLS for VSE provides a cryptographic API that you can use to
implement cryptographic algorithms in a VSE application. The
algorithms provide confidentiality, authentication, and integrity of data in
the applications.

There are many good websites and books that discuss cryptography, and
it is beyond the scope of this document to provide a comprehensive
treatment of the subject. To learn more about the algorithms
implemented in this API and how they are used, see “Published
Standards” and “References” in the “SSL/TLS for VSE” chapter in the
TCP/IP FOR VSE Optional Features Guide.

This API provides the following cryptographic services:

• Data encryption:

AES 128, 192, and 256 based on FIPS Pub 197

DES based on FIPS Pub 46-3

Triple DES based on ANSI X9.52 Triple DES

RSA PKCS #1 also contained in RFC2313

• Message Digests:

MD5 based on RFC1321

SHA-1 based on FIPS Pub 180-1

• Message Authentication:

HMAC based on RFC2104

• Digital Signatures:

RSA PKCS #1 with either a SHA1 or MD5 message digest

• Miscellaneous:

Universal printable-character encoding

Random-number generation (RNG)

SSL/TLS pseudo RNG as documented in RFC2246

The functions that make up the cryptographic API are described in the
following pages of this section.

Note: You must issue the cry_initialize() call before issuing any other
crypto calls. This call initializes the environment for cryptography
functions.

Overview

Chapter 6 SSL/TLS for VSE APIs

149

This function uses the Triple DES algorithm in CBC (Cipher Block
Chaining) mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes.

• The key length must be 32 bytes. The first 8 bytes contain the
initialization vector, which is followed by the 24-byte key.

• For Assembler, call the CRYTDESE vcon with the same parameters.

cry_3des_cbc_encrypt()

#include <sslvse.h>
int cry_3des_cbc_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

150

This function uses the Triple DES algorithm in CBC (Cipher Block
Chaining) mode to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes.

• The key length must be 32 bytes. The first 8 bytes contain the
initialization vector, followed by the 24-byte key.

• For Assembler, call the CRYTDESD vcon with the same parameters.

cry_3des_cbc_decrypt()

#include <sslvse.h>
int cry_3des_cbc_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

151

This function uses the AES 128 algorithm in CBC (Cipher Block
Chaining) mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 32 bytes. The first 16 bytes contain the
initialization vector, followed by the 16-byte key.

• For Assembler, call the CRYA12EC vcon with the same parameters.

cry_aes128_cbc_encrypt()

#include <sslvse.h>
int cry_aes128_cbc_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

152

This function uses the AES 128 algorithm in CBC (Cipher Block
Chaining) mode to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 32 bytes. The first 16 bytes contain the
initialization vector, followed by the 16-byte key.

• For Assembler, call the CRYA12DC vcon with the same parameters.

cry_aes128_cbc_decrypt()

#include <sslvse.h>
int cry_aes128_cbc_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

153

This function uses the AES 128 algorithm in ECB (Electronic Feedback)
mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 16 bytes.

• For Assembler, call the CRYA12EE vcon with the same parameters.

cry_aes128_ecb_encrypt()

#include <sslvse.h>
int cry_aes128_ecb_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

154

This function uses the AES 128 algorithm in ECB (Electronic Feedback) mode
to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 16 bytes.

• For Assembler, call the CRYA12DE vcon with the same parameters.

cry_aes128_ecb_decrypt()

#include <sslvse.h>
int cry_eas128_ecb_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

155

This function uses the AES 192 algorithm in CBC (Cipher Block
Chaining) mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description
Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 40 bytes. The first 16 bytes contain the
initialization vector, followed by the 24-byte key.

• For Assembler, call the CRYA19EC vcon with the same parameters.

cry_aes192_cbc_encrypt()

#include <sslvse.h>
int cry_aes192_cbc_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

156

This function uses the AES 192 algorithm in CBC (Cipher Block
Chaining) mode to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 40 bytes. The first 16 bytes contain the
initialization vector, followed by the 24-byte key.

• For Assembler, call the CRYA19DC vcon with the same parameters.

cry_aes192_cbc_decrypt()

#include <sslvse.h>
int cry_aes192_cbc_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

157

This function uses the AES 192 algorithm in ECB (Electronic Feedback)
mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description
input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 24 bytes.

• For Assembler, call the CRYA19EE vcon with the same parameters.

cry_aes192_ecb_encrypt()

#include <sslvse.h>
int cry_aes192_ecb_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

158

This function uses the AES 192 algorithm in ECB (Electronic Feedback) mode
to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 24 bytes.

• For Assembler, call the CRYA19DE vcon with the same parameters.

cry_aes192_ecb_decrypt()

#include <sslvse.h>
int cry_aes192_ecb_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

159

This function uses the AES 256 algorithm in CBC (Cipher Block
Chaining) mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 48 bytes. The first 16 bytes contain the
initialization vector, followed by the 32-byte key.

• For Assembler, call the CRYA25EC vcon with the same parameters.

cry_aes256_cbc_encrypt()

#include <sslvse.h>
int cry_aes256_cbc_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

160

This function uses the AES 256 algorithm in CBC (Cipher Block
Chaining) mode to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 48 bytes. The first 16 bytes contain the
initialization vector, followed by the 32-byte key.

• For Assembler, call the CRYA25DC vcon with the same parameters.

cry_aes256_cbc_decrypt()

#include <sslvse.h>
int cry_aes256_cbc_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

161

This function uses the AES 256 algorithm in ECB (Electronic Feedback)
mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 32 bytes.

• For Assembler, call the CRYA25EE vcon with the same parameters.

cry_aes256_ecb_encrypt()

#include <sslvse.h>
int cry_aes256_ecb_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

162

This function uses the AES 256 algorithm in ECB (Electronic Feedback) mode
to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 16 bytes.

• The key length must be 32 bytes.

• For Assembler, call the CRYA25DE vcon with the same parameters.

cry_aes256_ecb_decrypt()

#include <sslvse.h>
int cry_aes256_ecb_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

163

This function uses the DES algorithm in CBC (Cipher Block Chaining)
mode to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes.

• The key length must be 16 bytes. The first 8 bytes contain the
initialization vector, followed by the 8-byte key.

• For Assembler, call the CRYDECBE vcon with the same parameters.

cry_des_cbc_encrypt()

#include <sslvse.h>
int cry_des_cbc_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

164

This function uses the DES algorithm in CBC (Cipher Block Chaining)
mode to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes.

• The key length must be 16 bytes. The first 8 bytes contain the
initialization vector, followed by the 8-byte key.

• For Assembler, call the CRYDECBD vcon with the same parameters.

cry_des_cbc_decrypt()

#include <sslvse.h>
int cry_des_cbc_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

165

This function uses the DES algorithm to encrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the key data for the encryption.

key_length Length of the key data for the encryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes, and the key length must
be 8 bytes.

• For Assembler, call the CRYDESEC vcon with the same parameters.

cry_des_encrypt()

#include <sslvse.h>
int cry_des_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

166

This function uses the DES algorithm to decrypt the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the key data for the decryption.

key_length Length of the key data for the decryption.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The data length must be a multiple of 8 bytes, and the key length must
be 8 bytes.

• For Assembler, call the CRYDESDC vcon with the same parameters.

cry_des_decryt()

#include <sslvse.h>
int cry_des_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

167

This function uses a crypto-coprocessor hardware card to generate a
random number.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Pointer to the random data area.

input_length Length of the random data area. The maximum
is 2048.

key Must be supplied but is not used.

key_length Must be supplied but is not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the actual
number of random bytes generated and should be
equal to the passed input length.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• This function requires a crypto-coprocessor card.

• For Assembler, call the CRYGENRA vcon with the same parameters.

cry_gen_random()

#include <sslvse.h>
int cry_gen_random(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

168

This function retrieves subject and issuer information from a PKI
X.509v3 certificate.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input X.509v3 certificate to be
decoded.

input_length Length of the input certificate.

key Reference to the area to contain the certificate
information.

key_length Length of the certificate information area. It must be
greater than 64 bytes.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
certificate information returned.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The certificate information that is returned is the same as the cert_info
structure that is returned from a gsk_secure_soc_init with client
authentication.

• For Assembler, call the CRYGCRIN vcon with the same parameters.

cry_get_cert_info()

#include <sslvse.h>
int cry_get_cert_info(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

169

This function creates an MD5 keyed hash, also known as a MAC
(Message Authentication Code) of the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the hash.

input_length Length of the input data for the hash.

key Reference to the key data for the MAC.

key_length Length of the key data for the MAC.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• A 16-byte MD5 MAC is returned in the user-supplied work area.

• For Assembler, call the CRYHMMD5 vcon with the same parameters.

cry_hmac_md5()

#include <sslvse.h>
int cry_hmac_md5(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

170

This function creates a SHA keyed hash, also known as a MAC
(Message Authentication Code) of the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the hash.

input_length Length of the input data for the hash.

key Reference to the key data for the MAC.

key_length Length of the key data for the MAC.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• A 20-byte SHA-1 MAC is returned in the user-supplied work area.

• For Assembler, call the CRYHMSHA vcon with the same parameters.

cry_hmac_sha()

#include <sslvse.h>
int cry_hmac_sha(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

171

This function initializes the environment for cryptography functions.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Not used.

input_length Not used.

key Not used.

key_length Not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• This initialization call must be made before you issue any other crypto
calls.

• This call opens and reads the RSA certificate, root, and key files.

• For Assembler, call the CRYINITI vcon with the same parameters.

cry_initialize()

#include <sslvse.h>
int cry_initialize(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

172

This function uses the MD5 (RSA Message Digest 5) algorithm to create
a hash of the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the hash.

input_length Length of the input data for the hash.

key Must be supplied but is not used.

key_length Must be supplied but is not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• A 16-byte MD5 hash is returned in the user-supplied work area.

• For Assembler, call the CRYMD5HA vcon with the same parameters.

cry_md5_hash()

#include <sslvse.h>
int cry_md5_hash(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

173

This function uses the RSA PKCS #1 version 1.5 algorithm to encrypt
the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be encrypted.

input_length Length of the data to be encrypted.

key Reference to the RSA key to be used.

key_length Length of the RSA key data.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
RSA encrypted block. The encrypted block overlays
the input data area.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• If the key length is zero, then the RSA key is read from the PRVKFIL
key file.

• If the key length is not zero, then the caller must supply the RSA key.

• The RSA key size determines the size of the encrypted block. When
using a 512-bit key, the encrypted block is 64 bytes. When using a
1024-bit key, the encrypted block is 128 bytes.

• For Assembler, call the CRYRSAEC vcon with the same parameters.

cry_rsa_encrypt()

#include <sslvse.h>
int cry_rsa_encrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

174

This function uses the RSA PKCS #1 version 1.5 algorithm to decrypt
the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the data to be decrypted.

input_length Length of the data to be decrypted.

key Reference to the RSA key to be used.

key_length Length of the RSA key.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
decrypted data. The decrypted data overlays the input
data area.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• If the key length is zero, then the RSA key is read from the PRVKFIL
key file.

• If the key length is not zero, then the caller must supply the RSA key.

• For Assembler, call the CRYRSADC vcon with the same parameters.

cry_rsa_decrypt()

#include <sslvse.h>
int cry_rsa_decrypt(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

175

This function uses a crypto-coprocessor card to generate an RSA private
key.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

area Pointer to the RSA private key area.

area_length Length of the RSA private key area.

key Must be supplied but is not used.

key_length Pointer to a fullword area that contains the size of the
RSA private key to be generated. This must be 1024,
2048, or 4096.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the number of
bytes in the generated RSA key blob. The area then
contains the generated RSA private key blob.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• This function requires a crypto-coprocessor card.

• For Assembler, call the CRYGRSAP vcon with the same parameters.

cry_rsa_genprvk()

#include <sslvse.h>
int cry_rsa_genprvk(&area, area_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

176

This function creates a digital signature based on the RSA PKCS #1
version 1.5 standard.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the signature.

input_length Length of the input data.

key Reference to the RSA key to be used.

key_length Length of the RSA key.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
RSA signature block. The signature block overlays
the input data area.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• If the key length is zero, then the RSA key is read from the PRVKFIL
key file.

• If the key length is not zero, then the caller must supply the RSA key.

• The RSA key size determines the size of the signature block. When
using a 512-bit key, the signature block is 64 bytes. When using a
1024-bit key, the signature block is 128 bytes.

• For Assembler, call the CRYRSASC vcon with the same parameters.

cry_rsa_signature_create()

#include <sslvse.h>
int cry_rsa_signature_create(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

177

This function verifies a digital signature based on the RSA PKCS #1
version 1.5 standard.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the signature
verification.

input_length Length of the input data.

key Reference to the RSA key to be used.

key_length Length of the RSA key.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
signature data. The signature block overlays the input
data area.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• If the key length is zero, then the RSA key is read from the PRVKFIL
key file.

• If the key length is not zero, then the caller must supply the RSA key.

• For Assembler, call the CRYRSASV vcon with the same parameters.

cry_rsa_signature_verify()

#include <sslvse.h>
int cry_rsa_signature_verify(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

178

This function uses the SHA (Secure Hash Algorithm) to create a hash of
the passed data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the hash.

input_length Length of the input data for the hash.

key Must be supplied but is not used.

key_length Must be supplied but is not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• A 20-byte SHA-1 hash is returned in the user-supplied work area.

• For Assembler, call the CRYSHAHA vcon with the same parameters.

cry_sha_hash()

#include <sslvse.h>
int cry_sha_hash(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

179

This function creates a SHA-256 message hash from the passed input
data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Pointer to the input data area.

input_length Length of the input data area.

key Must be supplied but is not used.

key_length Must be supplied but is not used.

workarea Reference to a work area.

work_length Length of the work area. It must be at least 256 bytes
long.

The return codes are as follows:

Return Code Description

Zero Successful completion. A 32-byte, SHA 256-bit hash
is returned in the work area.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• This function requires hardware support for the KLMD instruction,
which should be available on a z10 or higher processor. Check with
your IBM hardware provider to verify that your system supports this
function.

• For Assembler, call the CRYSHA2H vcon with the same parameters.

cry_sha2_hash()

#include <sslvse.h>
int cry_sha2_hash(&input, input_length, &key,
 key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

180

This function converts binary data into universally printable
characters.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the encoding.

input_length Length of the input data.

key Must be specified but is not used.

key_length Must be specified but is not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Zero Successful completion.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The input data length must be 48 bytes.

• The 64 bytes of universally printable characters are returned in the
user-supplied work area.

• For Assembler, call the CRYUPENC vcon with the same parameters.

cry_universal_print_encode()

#include <sslvse.h>
int cry_universal_print_encode(&input, input_length,
 &key, key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

181

This function converts universally printable characters back to binary
data.

The syntax is as follows:

The parameters are described in the following table:

Parameter Description

input Reference to the input data for the decoding.

input_length Length of the input data.

key Must be specified but is not used.

key_length Must be specified but is not used.

workarea Reference to a work area.

work_length Length of the passed work area. It must be at least
256 bytes long.

The return codes are as follows:

Return Code Description

Positive value Successful completion. The value is the length of the
binary data.

Negative value An error occurred. See the section “Debugging
Problems” on page 194.

Usage Notes:

• The input data length must be 64 bytes.

• The 48 bytes of binary data are returned in the user-supplied work
area.

• For Assembler, call the CRYUPDEC vcon with the same parameters.

cry_universal_print_decode()

#include <sslvse.h>
int cry_universal_print_decode(&input, input_length,
 &key, key_length, &workarea, work_length);

Chapter 6 SSL/TLS for VSE APIs

182

Common Encryption Cipher Interface
The Common Encryption Cipher Interface (CECI) is an interface
applications can call from Assembler, COBOL, or other high level
languages using standard call/save linkage conventions. It is designed to
separate the coding of the encryption algorithm and key values used in an
application program from the application itself. A separate phase is
created that contains the cipher algorithm and key-seed values from
which the keys are generated. Encryption and decryption can then be
performed in the application, and the key seed and algorithm can be
changed without having to change the application. You also can add a
secure hash (SHA-1 or SHA-2) to guarantee integrity of each encrypted
data block. You define the phase name and specify the default cipher and
key-seed number that applications can use in a CIALSEED JCL.

This interface meets specific auditing requirements of the VISA CISP
standard. This standard has been incorporated into the more
encompassing “Payment Card Industry (PCI) Data Security Standard”
(DSS), which is published and enforced by the Payment Card Industry
Security Standards Council. More information on this standard is
available at www.pcisecuritystandards.org.

To implement the interface, your application must call the CIALCECI
stub and pass the request area as the first parameter for all requests. The
CIALCECI stub loads and calls the CIALCECZ phase, which performs
the work. These components are distributed with the TCP/IP FOR VSE
2.2 software. The application must include the TCP/IP lib.sublib in the
phase libdef search chain in the partition where the application is
running.

In Assembler programs, the stub can be called as follows:

In COBOL programs, the stub can be called using the CALL command,
as follows:

Calling the CIALCECI
Stub

 LA R1,MEMADSCT Address of request area
 ST R1,PARM1 Store request area addr as 1st parm
 LA R1,PARMLIST Set address of parmlist into R1
 L R15,=V(CIALCECI) Load entry address of CIALCECI stub
 BASR R14,R15 Enter CIALCECI
....
PARMLIST DS 0F
PARM1 DS F
PARM2 DS F
PARM3 DS F
PARM4 DS F

CALL 'CIALCECI' USING CIALCECI-RQSTAREA

http://www.pcisecuritystandards.org/

Chapter 6 SSL/TLS for VSE APIs

183

All calls require a request area to be passed using standard call/save
linkage. The request area fields for COBOL and Assembler are listed in
the following sections. A list of the COBOL constants follows the
COBOL fields list.

Note: In this chapter, request area fields are referenced by their COBOL
name. The corresponding Assembler name follows in parentheses.

The field CIALCECI-EYE-CATCHER (MEMAEYEC) must be set to
“MEMAEYEC” and placed at the beginning of the request area.

The COBOL request area fields are as follows:

The COBOL request area constants are as follows:

Request Area

COBOL Fields

COBOL Constants

01 CIALCECI-RQSTAREA.
 05 CIALCECI-EYE-CATCHER PIC X(8).
 05 CIALCECI-RQSTAREA-LEN PIC S9(8) COMP.
 05 CIALCECI-REQ-CODE PIC S9(8) COMP.
 * 0 - INITIALIZE REQUEST
 * 4 - CREATE CIPHER KEY
 * 8 - ENCRYPT BLOCK
 * 12 - ENCRYPT DONE
 * 16 - DECRYPT BLOCK
 * 20 - ERASE KEY
 * 24 - RELEASE TOKEN
 05 CIALCECI-RC PIC S9(4) COMP.
 * 0 - REQUEST SUCCESSFULLY PROCESSED
 05 CIALCECI-EXRC PIC S9(4) COMP.
 * 2 - ENCRYPT DATA BUFFERED NO DATA BLK TO WRITE
 * 4 - ENCRYPT DATA BUFFERED WRITE DATA BLOCK
 05 CIALCECI-ERROR-DISP PIC S9(8) COMP.
 05 CIALCECI-ERROR-REASON PIC X(8).
 05 CIALCECI-KEY-PHASE PIC X(8).
 05 CIALCECI-MAX-BLKSIZE PIC S9(8) COMP.
 05 CIALCECI-TOKEN PIC S9(8) COMP.
 05 CIALCECI-CURRENT-CIPHER PIC S9(8) COMP.
 05 CIALCECI-CURRENT-KEY-NBR PIC S9(8) COMP.
 05 CIALCECI-DATA-LEN PIC S9(8) COMP.
 05 CIALCECI-DATA-ADDR USAGE IS POINTER.
 05 CIALCECI-OUTPUT-LEN PIC S9(8) COMP.
 05 CIALCECI-OUTPUT-ADDR USAGE IS POINTER.
 05 CIALCECI-CIPHER-DESC PIC X(16).
 05 FILLER PIC X(8).

01 CIALCECI-CONSTANTS.
05 CAILCECI-REQ-INIT PIC S9(4) COMP VALUE +0.
05 CAILCECI-REQ-GEN-KEY PIC S9(4) COMP VALUE +4.
05 CAILCECI-REQ-ENCRYPT PIC S9(4) COMP VALUE +8.
05 CAILCECI-REQ-ENCRYPT-DONE PIC S9(4) COMP VALUE +12.
05 CAILCECI-REQ-DECRYPT PIC S9(4) COMP VALUE +16.
05 CAILCECI-REQ-ERASE-KEY PIC S9(4) COMP VALUE +20.
05 CAILCECI-REQ-REL-TOKEN PIC S9(4) COMP VALUE +24.
05 CAILCECI-RC-HAVE-DATA PIC S9(4) COMP VALUE +4.

Chapter 6 SSL/TLS for VSE APIs

184

The Assembler request area fields are listed in the following table.
Equate field names are indented.

Field Name Storage Description
MEMADSCT DSECT OD

MEMAEYEC DS CL8 Eye catcher

MEMALENG DS F Length of this request block

MEMARQST DS F Request code

MEMAINIT EQU 0 Initialize request

MEMACRKY EQU 4 Create cipher key

MENAEBLK EQU 8 Encrypt block

MEMAEDON EQU 12 Encrypt done

MEMADBLK EQU 16 Decrypt block

MEMAXKEY EQU 20 Erase key

MEMARTOK EQU 24 Release token

MEMARCOD DS H Return code

MEMARCOK EQU 0 Request successful

MEMAEXRC DS H Extended return code

MEMAE002 EQU 2 Good MEMAEBLK, no data write

MEMAE004 EQU 4 Good MEMAEBLK, data to write

MEMAEDSP DS F Error displacement

MEMAERSN DS CL8 Error reason (displayable)

MEMAKYPH DS CL8 Key phrase phase name
(CIALSEED)

MEMAMAXB DS F Maximum block size

MEMATOKN DS F Token for all requests

MEMACIPH DS F Current cipher

MEMAKNUM DS F Current key number

MEMALDAT DS F Length of passed data

MEMA@DAT DS A Address of passed data

MEMALOUT DS F Length of output data

Assembler Fields

Chapter 6 SSL/TLS for VSE APIs

185

Field Name Storage Description
MEMA@OUT DS A Address of output data

MEMACIDE DS CL16 Cipher description

 DS D Reserved

MEMARQSL EQU *-MEMAEXRC Length of the entire request area

The application should check the return code after completing each call
to the CIALCECI stub. For assembler programs, this is in R15. For
COBOL programs, this is in the COBOL-reserved RETURN-CODE
field. The CIALCECI-RC (MEMARCOD) field also contains the return
code unless the request area does not start with the required
MEMAEYEC eye-catcher. In both cases (in R15 and in RETURN-
CODE), a value of 0 indicates that the request was processed
successfully.

If a request fails with a non-zero return code, a CCZ601 error message is
issued that contains the reason the request failed. The reason code is also
set in the CIALCECI-ERROR-REASON (MEMAERSN) field in the
request area. The displacement of the error in the CIALCECZ phase is
set in the CIALCECI-ERROR-DISP (MEMAEDSP) field.

There is an exception such that if the CDLOAD for the
CIALCECZ.phase fails, then the return code is set to -101. In this case,
the CIALCECI-RC (MEMARCOD) field is not set.

This section describes pseudocode to implement encryption in an
application. You must make the following requests. The remainder of
this section explains each step.

1. Initialize request

2. Create key material request

3. Encrypt-data request

4. Encrypt-done request

5. Erase-key request

6. Release-token request

For the initialize request, the application must set the following fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-INIT (MEMAINIT).

• CIALCECI-MAX-BLKSIZE (MEMAMAXB) must contain the
maximum block size that is passed by the application. This value must
be a multiple of 16, and it must be between 256 and 65536 (64K).

Return Codes

Encryption Pseudocode

1. Initialize

Chapter 6 SSL/TLS for VSE APIs

186

• CIALCECI-KEY-PHASE (MEMAKYPH) must contain the name of
the generated phase that defines the cipher and available key seeds.
See the section CIALSEED JCL for more information on generating
this phase. Key seeds are explained in the next step.

After the initialize completes, the request area contains the address of a
token that has been allocated. You must pass the same request area and
only change the fields needed for a specific request.

This request causes key seed phrase data you specify in the CIALSEED
JCL to be input to a pseudo-random-function (PRF) generator. This
generator creates the key material for the cipher being used.

What is a PRF generator and why do we use it? Different cipher
algorithms require different amounts (number of bytes) of key material.
We can use a PRF generator with any phrase to generate the right
amount of key material for a selected cipher. Part of the input to the
generator is a seed phrase you select that can be any alphanumeric or
binary value. This approach creates a very secure key and does not leave
the key’s actual value exposed.

You can define multiple seed phrases in the CIALSEED JCL. Each seed
phrase definition is associated with a key number. You must set a default
key number in the JCL from this group of phrase definitions. You also
must set a default cipher algorithm/hash.

For the create-key request, the application must set the following fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-GEN-KEY (MEMACRKY).

• CIALCECI-CURRENT-CIPHER (MEMACIPH) and
CIALCECI-CURRENT-KEY-NBR (MEMAKNUM) are set to the
default cipher/hash and key number, respectively, during the previous
initialize request from the values defined in the CIALSEED-generated
phase.

You can override the default values in an application by setting these
request area fields to other valid values. The cipher/hash combinations
you can select are listed in the sample JCL in a later section. The key
number you use must be defined in the CIALSEED-generated phase. See
Cipher Suite Selection for more information on selecting an appropriate
cipher/hash combination.

You can pass any number of bytes less than or equal to the
CIALCECI-MAX-BLKSIZE (MEMAMAXB) value.

For the encrypt-data request, the application must set the following
fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-ENCRYPT (MEMAEBLK).

2. Create Key

3. Encrypt Data

Chapter 6 SSL/TLS for VSE APIs

187

• CIALCECI-DATA-LEN (MEMALDAT) must be set to the length of
the data to be encrypted. It must be greater than zero and less than or
equal to the value of CIALCECI-MAX-BLKSIZE (MEMAMAXB),
which was set during the previously issued initialize request.

The encrypt-data request also requires two other parameters to be passed
in the parameter list:

• The second parameter is the address of the input data to be encrypted.

• The third parameter is the address of the output buffer for encrypted
data.

The output buffer area should be allocated equal to the
CIALCECI-MAX-BLKSIZE (MEMAMAXB) size.

If the request completes successfully, that is, CIALCECI-RC
(MEMARCOD) equals ZERO, then a return code of 2 or 4 is set in
CIALCECI-EXRC (MEMAEXRC). These codes have the following
meanings.

Return
Code Description

2 The application’s data was buffered, but a full encrypted
block is not available yet for the application to write.

4 The application’s data was buffered, and now a full encrypted
block is available for the application to write. The length of
the encrypted block is set in the CIALCECI-OUTPUT-LEN
(MEMALOUT) field. The output buffer passed as the third
parameter of the encrypt-data request contains the encrypted
block of data for the application to write out to a disk, tape, or
other device. The encrypted block may have a SHA-1 or a
SHA-2 hash on the end of each block, depending on the
cipher used.

Once the application has sent all of the data to be encrypted, it must
make an encrypt-done request. No input data is passed in this request,
and it is similar to a close request.

For this request, the application must set CIALCECI-REQ-CODE
(MEMARQST) equal to CAILCECI-REQ-ENCRYPT-DONE
(MEMAEDON).

If the request completes successfully, that is, CIALCECI-RC
(MEMARCOD) equals ZERO, then an extended return code of 2 or 4 is
set in CIALCECI-EXRC (MEMAEXRC). These codes have the
following meanings:

4. Encrypt Done

Chapter 6 SSL/TLS for VSE APIs

188

Return
Code Description

2 There is no encrypted data block for the application to write.

4 There is a final encrypted data block for the appl. to write.
The size of this last encrypted block is probably smaller than
the value of CIALCECI-MAX-BLKSIZE (MEMAMAXB).
The length of this block is set in the CIALCECI-OUTPUT-
LEN (MEMALOUT) field. The output buffer passed as the
third parameter of the prior encrypt-data request contains the
last encrypted block of data for the application to write out to
a disk, tape, or other device.

The erase-key request clears the current key to binary zeros in memory.
For this request, the application must set CIALCECI-REQ-CODE
(MEMARQST) equal to CAILCECI-REQ-ERASE-KEY
(MEMAXKEY).

The release-token request releases the allocated token storage. For this
request, the application must set CIALCECI-REQ-CODE
(MEMAEXRC) equal to CAILCECI-REQ-REL-TOKEN
(MEMARTOK).

Data is buffered internally based on the value of CIALCECI-MAX-
BLKSIZE (MEMAMAXB). CECI adds a pad of 1 to 15 bytes plus a
32-byte hash on the end of each block encrypted with a SHA-1, SHA-2,
or null hash. As you pass data to be encrypted, you are notified that a full
encrypted block is ready to be written.

This is also true for CIALCECI-REQ-ENCRYPT-DONE
(MEMAEDON), which almost always completes with the last encrypted
block for you to write. All blocks prior to the last one are equal to
CIALCECI-MAX-BLKSIZE (MEMAMAXB). The last block is less
than or equal to this size. Because CECI buffers the data on encrypt-data
requests, there may or may not be a partial buffer of data when the
encrypt-done request is issued. It may be that the last encrypt-data
request returns an encrypted block and nothing is left over after the done
request. In that case, a return code of 2 is set in CIALCECI-EXRC
(MEMARCOD).

For example, if CIALCECI-MAX-BLKSIZE (MEMAMAXB) is set to
4096 and you send 4063 bytes during an encrypt, you would receive
CIALCECI-EXRC equal to CIALCECI-RC-HAVE-DATA with the
CIALCECI-OUTPUT-LEN field equal to 4096. This block, when
decrypted, would contain your 4063 bytes of data, a one-byte pad with
x01, and then a 32-byte area on the end with a SHA-1, SHA-2, or null
hash. When decrypted, you would receive a length of 4063 (padding and
hash removed). On the CIALCECI-REQ-ENCRYPT-DONE
(MEMAEDON) request, you would receive CIALCECI-EXRC
(MEMARCOD) equal to CIALCECI-RC-NO-DATA (MEMAE002).

5. Erase Key

6. Release Token

Encryption Flow

Chapter 6 SSL/TLS for VSE APIs

189

You must make the following requests to implement decryption in an
application:

1. Initialize request

2. Create-key request

3. Decrypt-data request

4. Erase-key request

5. Release-token request

Detailed information on each step follows.

For the initialize request, the application must set the following fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-INIT (MEMAINIT).

• CIALCECI-MAX-BLKSIZE (MEMAMAXB) must contain the
maximum block size that was used during the encryption process by
the application. This value must be a multiple of 16, and it must be
between 256 and 65536 (64K).

• CIALCECI-KEY-PHASE (MEMAKYPH) must contain the phase
name of the generated cipher and key seeds.

After the initialize completes, the request area contains the address of a
token that has been allocated. You must pass the same request area and
only change the fields needed for a specific request.

For the create-key request, the application must set the following fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-GEN-KEY (MEMACRKY).

• CIALCECI-CURRENT-CIPHER (MEMACIPH) and CIALCECI-
CURRENT-KEY-NBR (MEMAKNUM) are set to the default cipher
and key number, respectively, which were set during the previous
initialize request.

If these fields were set to other values in the application at encryption (in
the create-key request), they must be set to the same values here.

Decryption Pseudocode

1. Initialize

2. Create Key

Chapter 6 SSL/TLS for VSE APIs

190

You must decrypt each block separately to decrypt the previously
encrypted data. For the decrypt-data request, the application must set the
following fields:

• CIALCECI-REQ-CODE (MEMAEXRC) must be set to
CAILCECI-REQ-DECRYPT (MEMADBLK).

• CIALCECI-DATA-LEN (MEMALDAT) must be set to the length of
the block being decrypted, which should be the same as the value of
CIALCECI-MAX-BLKSIZE (MEMAMAXB) used during the
encryption process (except for the last block of data in the file).

The second parameter passed in the parm list is the address of the
encrypted block to be decrypted. The third parameter passed is the
address at which the decrypted data is to be stored upon successful
completion. This third parameter can be the same as the second
parameter, in which case the data is decrypted in place.

After a successful decrypt request, the actual length of the decrypted data
(minus the pad and hash) is set in the CIALCECI-OUTPUT-LEN
(MEMALOUT) field.

The erase-key request clears the current key to binary zeros in memory.
For this request, the application must set CIALCECI-REQ-CODE
(MEMAEXRC) equal to CAILCECI-REQ-ERASE-KEY
(MEMAXKEY).

The release-token request releases the allocated token storage. For this
request, the application must set CIALCECI-REQ-CODE
(MEMAEXRC) equal to CAILCECI-REQ-REL-TOKEN
(MEMARTOK).

You must edit and run a CIALSEED JCL to generate a phase and create
required definitions. These definitions are described below. Each is used
in a sample JCL that appears in the next section.

Phase Name. The CIALSEED JCL generates the phase that an
application must specify in the CIALCECI-KEY-PHASE
(MEMAKYPH) field in the request area. A PUNCH command is used to
define the phase name.

WARNING: If the phase defined in the CIALSEED JCL is deleted,
any data encrypted with its ciphers and key values will be
permanently lost.

You must establish appropriate procedures for maintaining,
recovering, and destroying this critical phase. The following scenarios
show the importance of good procedures in managing this phase.

3. Decrypt Data

4. Erase Key

5. Release Token

CIALSEED JCL

Definitions

Chapter 6 SSL/TLS for VSE APIs

191

Good Example: The data center is in an unfriendly country and must
be evacuated suddenly. You simply delete this phase, and all data
encrypted with the CECI interface is secure and unusable by
unfriendly invaders. You also have a copy of the phase at a secure,
remote location that authorized persons can access.

Bad Example: You implemented the API in a production environment
and a natural disaster occurs that destroys the data center. Your data is
backed up and ready to be restored at a disaster recovery site, but you
neglected to include the CIALSEED-generated source code or phase
into your disaster recovery plans. The restored data is encrypted and
cannot be deciphered. Effectively, the data is lost.

Seed Phrases and Key Numbers. The CIALSEED macro and SEED
statement defines both a key seed phrase and an associated key number.
The PHRASE keyword can be set to any alphanumeric value up to 255
bytes long. The XPHRAS keyword can be set to any binary value
(represented in hex EBCDIC characters). Each phrase must be enclosed
in single quotes. You can define multiple phrases/key numbers.

Default Key Number. The CIALSEED macro and DEFLTKY keyword
sets the default key-seed number used by applications. If you change
keys or start an encrypt/decrypt operation, you must issue
CAILCECI-REQ-GEN-KEY (MEMACRKY) using a key number
defined in the CIALSEED-generated phase.

Default Cipher. The DEFLTCI keyword sets the default cipher
algorithm and hash. The cipher/hash combinations you can select are
listed in comments in the sample JCL. Applications can override this
value in the create-key request.

See the section “Cipher Suite Selection,” page 193, for more information
on selecting a cipher/hash combination.

Chapter 6 SSL/TLS for VSE APIs

192

The following JCL is an example you can examine and modify. The
phase it generates is named “SEEDSAMP.”

Strings representing the cipher, hash, and cipher-mode combinations you
can select are listed in the file comments. For example, the first entry in
the list is ACNULSH1.

Example

// JOB CIALSEED
// OPTION CATAL
// LIBDEF *,CATALOG=lib.sublib
// EXEC ASMA90,SIZE=ASMA90
 PUNCH ' PHASE SEEDSAMP,* '
SEEDSAMP CIALSEED BEGIN,DEFLTKY=1,DEFLTCI=ACA12SH1
*
* * Available cipher equates for DEFLTCI=
* ACNULSH1 08 NULL-SHA1 (no encrypt)
* ACDESNUL 12 SDES-NULL CBC mode
* ACDESSH1 16 SDES-SHA1 CBC mode
* ACTDENUL 20 TDES-NULL CBC mode
* ACTDESH1 24 TDES-SHA1 CBC mode
* ACA12NUL 28 AES128-NULL CBC mode
* ACA12SH1 32 AES128-SHA1 CBC mode
* ACA19NUL 36 AES192-NULL CBC mode
* ACA19SH1 40 AES192-SHA1 CBC mode
* ACA25NUL 44 AES256-NULL CBC mode
* ACA25SH1 48 AES256-SHA1 CBC mode
* ACA12SH2 52 AES128-SHA2 CBC mode
* ACA19SH2 56 AES192-SHA2 CBC mode
* ACA25SH2 60 AES256-SHA2 CBC mode
* AEA12SH1 64 AES128-SHA1 ECB mode
* AEA19SH1 68 AES192-SHA1 ECB mode
* AEA25SH1 72 AES256-SHA1 ECB mode
* AEA12SH2 76 AES128-SHA2 ECB mode
* AEA19SH2 80 AES192-SHA2 ECB mode
* AEA25SH2 84 AES256-SHA2 ECB mode
* AEDESNUL 88 SDES-NULL ECB mode
* AEDESSH1 92 SDES-SHA1 ECB mode
* AETDENUL 96 TDES-NULL ECB mode
* AETDESH1 100 TDES-SHA1 ECB mode
*
 CIALSEED SEED,KEY=1, X
 PHRASE='SEEDSAMP sample key phrase 1'
 CIALSEED SEED,KEY=2, X
 PHRASE='SEEDSAMP sample key phrase 2'
 CIALSEED SEED,KEY=3, X
 PHRASE='SEEDSAMP sample key phrase 3'
 CIALSEED SEED,KEY=4, X
 XPHRAS='04F9C16E02BA6620CB1DE0F6671348C190220AD331CB'
 CIALSEED SEED,KEY=5, X
 XPHRAS='D409712E823A2617C011E6F6371548C99112468321BB'
 CIALSEED END
 END
/*
// EXEC LNKEDT,SIZE=512K
/*
/&

Chapter 6 SSL/TLS for VSE APIs

193

You must select a cipher suite and related values carefully:

• Choose a cipher strength that meets your auditing standards but does
not require an excessive CPU overhead. Generally speaking, the
stronger the cipher, the higher the CPU overhead.

Selecting a cipher that is supported by a cryptographic hardware assist
(CPACF) can greatly reduce the CPU overhead. The available
hardware assists can be checked by issuing the following z/VSE
command to the security server partition:

The available block ciphers are Data Encryption Standard (DES) and
Advanced Encryption Standard (AES). AES has replaced DES and is
more efficient and secure. For more information on cryptographic
algorithms, go to http://csrc.nist.gov/groups/ST/toolkit/index.html.

• Choose the hash type—SHA or null—to use with the cipher. The SHA
hash adds some CPU overhead, but it provides integrity for the
encrypted data. The AES and DES block encryption ciphers provide
secrecy and confidentiality for data, but they do not prevent the
encrypted data from being modified. The secure hash (SHA)
guarantees that the encrypted data has not been modified.

• Choose the operational mode for the encryption cipher—either
Electronic Feedback (ECB) or Cipher Block Chaining (CBC) mode.

In ECB mode, each block is independently encrypted, and any
randomly accessed block can be decrypted. But blocks containing the
same values always encrypt to the same exact values. DES uses an
8-byte block, and AES uses a 16-byte block. So, assuming you use the
DES cipher in ECB mode, if you encrypted a 4K block of binary
zeros, you would see exactly the same 8-byte encryption pattern for
each 8-byte block in the 4K area.

The CBC mode addresses the problem of repeating patterns by adding
an initialization vector to the generated key material. This 8 (DES) or
16 (AES) vector is then exclusive OR’d with the first 8 (DES) or 16
(AES) block of data being encrypted. The next and subsequent blocks
are then always exclusive OR’d with the prior encrypted block. This
makes the encrypted data much more secure than it would be in ECB
mode, but it also means you cannot randomly decrypt any block in the
file. The chained blocks must be decrypted from beginning to end.

Cipher Suite Selection

MSG FB,DATA=STATUS=CRYPTO
 BST223I CURRENT STATUS OF THE SECURITY TRANSACTION SERVER:
 ADJUNCT PROCESSOR CRYPTO SUBTASK STATUS:
 AP CRYPTO SUBTASK STARTED : NO
 CPU CRYPTOGRAPHIC ASSIST FEATURE:
 CPACF AVAILABLE : YES
 INSTALLED CPACF FUNCTIONS:
 DES, TDES-128, TDES-192
 AES-128
 SHA-1, SHA-256
END OF CPACF STATUS

http://csrc.nist.gov/groups/ST/toolkit/index.html

Chapter 6 SSL/TLS for VSE APIs

194

Debugging Problems
For errors generated by the SSL API, terse explanations of most error
codes are contained in the member SSLVSE.A, which is in the TCP/IP
FOR VSE library.

To debug errors produced by the SSL API or the CryptoVSE API, you
can create a custom $SOCKDBG.PHASE to generate diagnostic
information. You can then send this information to CSI technical support
for a detailed analysis of the problem.

To enable diagnostics, use the following keyword settings in a custom
$SOCKDBG phase. This custom phase must be placed in a test lib.sublib
that is located before the default phase in the search chain.

Keyword Setting Result

FL02=$DBGISON Activates diagnostics for all components (for
example, BSD and SSL)

MSGT=$DBGALL Specifies that all message categories should be
logged (for example, diagnostic and critical)

SSLD=$DBGSDMP Creates a dump of SSL/TLS handshake records

CIAL=$DBGSDMP Creates a dump of cryptographic input and
output areas

See “Appendix B: $SOCKDBG Debugging Phase,” page 203, for
information on other keyword settings and the steps to modify this phase.
This appendix also contains an example of a modified $SOCKDBG
phase.

Chapter 6 SSL/TLS for VSE APIs

195

Programming Notes
The following notes apply when developing SSL/TLS-enabled
applications:

• Programs must include the IPCRYPTS.OBJ deck in their link edit
JCL. This is a small stub program that loads the IPCRYPTO phase to
process the request. When new maintenance is available, you do not
have to link edit the user application again.

• The C language linkage standard is used to pass all parameters.

• When the function is called from an Assembler program, the
parameter list is always a list of addresses. The high-order bit of the
last parameter in the list must be turned on to indicate the end of the
parameter list.

• If a parameter is an address-type parameter, the address is stored
directly in the parameter list.

• If the parameter is a value-type parameter, the address of the value is
stored in the parameter list.

• All passed addresses are validated to ensure that they are within the
partition storage from which the request is issued. The following files
are used:

SSLVSE.H Header file for C/C++ language programs.

SSLVSE.A Macro file for BAL (Assembler) programs.

• Sample code is available from CSI at www.csi-international.com.

http://www.csi-international.com/

196

 Appendix A:

$SOCKOPT Options Phase

The BSD and the SSL/TLS interfaces in TCP/IP FOR VSE use options set
by the $SOCKOPT options phase. The $SOCKOPT.PHASE is
CDLOADed into the partition using these interfaces at run time, and the
phase can be customized to allow installation-specific values. The default
values should suffice for most installations, and CSI technical support
should be consulted before changing them. Examples in this appendix
show how new values can be defined. The options for the BSD socket
interface and the SSL/TLS interface are described in separate tables.

The $SOCKOPT phase is loaded based on the LIBDEF of the partition
loading it. This means that if you have multiple copies of the phase, the
first one found in a partition’s LIBDEF chain is the one used for that
partition. In general, you should install only one copy of the phase.

The sample job below creates an options phase with the current default
settings. This sample can be modified to create a custom
$SOCKOPT.PHASE.

Using $SOCKOPT

Default Phase

Appendix A: $SOCKOPT Options Phase

197

The following procedure shows how to override both the system-default
stack ID and the ID set by the // OPTION SYSPARM= statement in a
program’s JCL.

1. Copy and paste the sample job above into your local editor.

2. Modify the following keyword settings:

Keyword Edit the setting to...

BSDCFG1 Include $OPTUSYD (separate options with a ‘+’)

SYSID Specify a TCP/IP FOR VSE stack ID

3. Modify the CATALOG parameter to contain a lib.sublib in the phase

search chain of the partition in which the BSD application executes.

4. Run the modified job to create the custom $SOCKOPT.PHASE.

5. Cycle the partition in which the application (for example, CICS) is
running to force a reload of the newly created $SOCKOPT.PHASE.

Example 1: Setting the
Stack ID

// JOB $SOCKOPT
// OPTION CATAL
// LIBDEF *,SEARCH=lib.sublib
// LIBDEF *,CATALOG=lib.sublib
// EXEC ASMA90,SIZE=ASMA90,PARM='SZ(MAX-200K,ABOVE)'
 PUNCH ' PHASE $SOCKOPT,* '
$SOCKOPT CSECT
 SOCKOPT CSECT, Generate a csect X
 SYSID=00, TCP/IP sysid when BSDCFG1 contains $OPTUSYD X
 BSDCFG1=$OPTMECB+$OPTSNWT+$OPTNBSD, Options flag 1 X
 BSDCFG2=$OPTGTSP+$OPTCHKR, X
 BSDXPHS=IPNRBSDC, Name of BSD phase X
 CHKT=60, Check sockets seconds X
 CLST=30, Close timeout seconds X
 CSRT=30, Socket reuse seconds X
 QUEDMAX=0, Max queued connects allowed X
 RCVT=00, Receive timeout seconds X
 SNOWMAX=262144, 256K max for send nowait X
 SOCFLG1=00, Socket flag special options X
 SSLCIPH=A, SSL default cipher suites X
 SSLFLG1=00, SSL option flag 1 X
 SSLFLG2=00, SSL option flag 2 X
 SSLSTOR=80 SSL cached sessions
 END $SOCKOPT
/*
// EXEC LNKEDT,SIZE=512K
/*
/&

Appendix A: $SOCKOPT Options Phase

198

This example shows how to change the default cipher suite used by
SSL/TLS applications such as SecureFTP. The cipher suite is set during
the application’s gsk_secure_soc_init() call with the v3cipher_specs
parameter. If the SSL/TLS application sets this parameter to zero, then it
allows the system to use the default cipher suite.

Use the following procedure to override the default cipher suite.

1. Copy and paste the sample job into your local editor.

2. Replace the SSLCIPH setting with one of the following selections:

Cipher Selection Description

SSLCIPH=A Use all possible cipher suites

SSLCIPH=D1 Use only DES cipher suites

SSLCIPH=E1 Use only AES cipher suites

SSLCIPH=N1 Use only null cipher suites

SSLCIPH=W Use only weak cipher suites

SSLCIPH=M Use only medium cipher suites

SSLCIPH=S Use only strong cipher suites

SSLCIPH=H1 Use only hardware-assisted suites
1 Does not apply to TLS 1.2. See “New $SOCKOPT Settings for
TLS 1.2” on page 201.

3. Modify the CATALOG parameter to contain a lib.sublib in the phase
search chain of the partition in which the SSL/TLS application
executes.

4. Run the modified job to create the custom $SOCKOPT.PHASE.

5. Cycle the partition in which the application (for example, CICS) is
running to force a reload of the newly created $SOCKOPT.PHASE.

Keep in mind that some applications are configured to set the cipher suite
to be used. If they are doing this, then the value cannot be overridden by
modifying the $SOCKOPT.PHASE. Check with the application’s vendor
to verify how the cipher suite is set. This applies when the SSL30, the
TLS 1.0, or the TLS 1.1 protocol version is used.

Note: When the TLS 1.2 protocol version is used, you can override the
application’s default cipher suite even when the SIN@V3CS field
is not set to zero. To do this, use the SSLFLG1=$OPTCIPH option
setting. See “SSL/TLS Interface Options” on page 201.

Example 2: Setting the
Default Cipher Suite

Appendix A: $SOCKOPT Options Phase

199

The following table lists the option settings for the BSD interface.
Options for the BSDCFG1 and BSDCFG2 keywords can be
concatenated using a ‘+’ character.

Function Option Setting Description

Automatic
socket
cleanup

BSDCFG2=$OPTCHKR
CHKT=60

Setting these options causes disconnected but
unclosed (dead) sockets to be detected and made
available for reuse. CHKT=60 specifies a
nominal socket-checking interval of 60 seconds.
The socket is marked closed if the connection
has been terminated. It may be reused after the
CSRT interval.

Bind BSDCFG1=$OPTBNDX Have bind check external partitions. By default,
bind checks for a port already bound within just
the application’s partition. This option causes
bind to also check all other partitions for a port
already bound to a socket.

Close BSDCFG1=$OPTCNFW Close no FIN wait from foreign. The
application’s connection ends immediately upon
close. The TCP/IP stack sends a close request
(FIN) but discards any incoming datagrams. It
does not wait for a FIN from the foreign
connection.

CSRT=30 A socket that is closed from an abort, close, or
automatic cleanup becomes available for reuse
after the specified number of seconds.

Givesocket/
Takesocket

BSDCFG2=$OPTGTSP This option causes givesocket/takesocket
processing to occur in the same partition as the
request, not in the TCP/IP FOR VSE partition.
This improves the performance of applications
that use a listener transaction to pass connections
to other tasks.

BSD Interface Options

Appendix A: $SOCKOPT Options Phase

200

Function Option Setting Description

Listen QUEDMAX=qmax QUEDMAX=qmax affects the connection
queuing depth for applications that use the BSD
socket interface.

If qmax = 0 (the default), the PORTQUEUE
command can be used to control the number of
connection requests to be accepted and queued.

If qmax > 0, an application can specify a
queuing depth count in listen(), but if the
application’s value exceeds QUEDMAX, the
application’s value will not be used. See the
listen() function, page 37, and “Port Queuing”
in the “Performance” chapter in the TCP/IP FOR
VSE Installation Guide for details.

SOCFLG1=$OPTDNSQ SOCFLG1=$OPTDNSQ turns off queuing of
inbound connections when the server is not in a
listen state. This means that both the
QUEDMAX= value and the application’s value
will be ignored and new inbound connections
will be rejected until the server re-enters the
listen state.

Receive BSDCFG1=$OPTXNBK Extend non-blocking to all calls. In previous
releases a receive call could block even on a
non-blocking socket. This option extends the
non-block to receive calls. An ewouldblock
error number 1102 can occur during a receive
with this option setting.

Selectex BSDCFG1=$OPTMECB Allow multiple user ECBs in selectex. This is
the sixth parameter passed into a selectex call.
Without this option, the sixth parameter is
considered a single ECB address.

Send BSDCFG1=$OPTSNWT
SNOWMAX=262144

Setting these options allows up to 256K of
unacknowledged data to be sent before waiting
for an acknowledgement. When a CLOSE is
issued, all data is acknowledged before the
CLOSE completes.

System ID BSDCFG1=$OPTUSYD
SYSID={id}

Setting these options overrides the default stack
ID with id. See “Example 1: Setting the Stack
ID,” page 197.

Appendix A: $SOCKOPT Options Phase

201

The following table lists the option settings for the SSL/TLS interface.
Settings for the SSLFLG1 and SSLFLG2 keywords can be concatenated
using a ‘+’ character.

Function Option Setting Description

Cipher suite

Note: For
TLS 1.2, see
text below.

SSLCIPH={A|D|E|N|W
|M|S|H}

Override the default cipher suite used by
SSL/TLS applications. See “Example 2: Setting
the Default Cipher Suite,” page 198, for a
description of each suite-selection letter.

SSLFLG1=$OPTCIPH When TLS 1.2 is used, force an override of the
application’s cipher suite setting and use the
SSLCIPH= setting. See text below for details.

Close SSLFLG1=$OPTSRQC Require close_notify alert. See the
gsk_secure_soc_close() function on page 134.

Hardware
assist

Note: These
settings do
not apply to
TLS 1.2; see
text below.

SSLFLG2=$OPTSNHC Do not use hardware cryptography for RSA
operations.

SSLFLG2=$OPTSNZA Never issue CP Assist Cryptographic Function
(CPACF) z/architecture hardware instructions.

SSLFLG2=$OPTSFZA Always issue CPACF z/architecture hardware
instructions.
See also “Hardware Assist Options Settings” on
page 125.

Initialize SSLFLG1=$OPTSNFR Fast resume not allowed. See “Usage Notes”
under gsk_secure_soc_init(), page 141.

SSLFLG1=$OPTTLSX Only allow TLS 1.2 to be negotiated during
session initialization.

SSLSTOR=80 The maximum number of cached sessions stored
for an SSL/TLS server application. A value of
80 caches a maximum of 80 SSL/TLS sessions
that can then be reused by foreign clients that
use fast resume.
Using a value of 0 is equivalent to setting
SSLFLG1=$OPTSNFR. Each cached session
requires about 64K of 31-bit storage.

A custom $SOCKOPT.PHASE can be created to control the behavior of
the SSL/TLS protocols. It is CDLOADed into the partition in which the
application is running, and it therefore must be cataloged in a lib.sublib
in the application’s libdef phase search chain.

Changes to $SOCKOPT settings for the TLS 1.2 protocol are as follows.

SSL/TLS Interface
Options

New $SOCKOPT
Settings for TLS 1.2

Appendix A: $SOCKOPT Options Phase

202

• By default, older versions of the SSL/TLS protocol are allowed to be
used.

Using SSLFLG1 with the $OPTTLSX setting allows only TLS 1.2 to
be negotiated during session initialization—older versions of the
protocol are disallowed.

• By default, applications set the cipher suites they use with the
SIN@V3CS pointer during the session initialization. If this field is
zero, then the SSLCIPH= setting is used. The default is SSLCIPH=A,
which allows all supported cipher suites to be used.

For TLS 1.2, the SSLCIPH option allows the following settings:

 A is the default and allows all supported cipher suites to be used.

 S only allows strong cipher suites to be used.

 M only allows medium cipher suites to be used.

 W only allows weak cipher suites to be used.

In addition, you can override the application’s cipher suites by setting
SSLFLG1 with $OPTCIPH. With $OPTCIPH, the SSLCIPH setting
will override the application’s setting even when its SIN@V3CS field
is not zero.

• When the TLS 1.2 protocol version is negotiated, the hardware assists
for both RSA and CPACF must be available, and the SSLFLG2
setting—$OPTSNHC, $OPTSNZA, or $OPTSFZA—is ignored.

See also “Appendix C: TLS 1.2 Enhancement.”

203

 Appendix B:

$SOCKDBG Debugging Phase

You can debug and diagnose problems in BSD and SSL/TLS
applications by creating a custom $SOCKDBG phase. You can select the
diagnostic information you want to generate by editing a job that
catalogs this phase. The information includes messages that can be
issued to SYSLOG or SYSLST and dumps of parameters and control
blocks. These messages and dumps may be requested by CSI technical
support, which you can contact if you need help interpreting the
information.

The following sample job contains the current default settings. You can
modify this job to create a custom $SOCKDBG.PHASE. The next
sections explain how to edit and run this job to generate diagnostics.

Using $SOCKDBG

Sample Job

// JOB $SOCKDBG
// OPTION CATAL
// LIBDEF *,CATALOG=lib.sublib
// EXEC ASMA90,SIZE=ASMA90
 PUNCH ' PHASE $SOCKDBG,* '
 SOCKDBG CSECT, Generate BSD SSL/TLS debugging phase X
 FL01=$DBGWLST+$DBGWLOG, Messages to syslst and syslog X
 FL02=$DBGISON, Debug flag is on X
 FL03=$DBGIOFF, Connection diagnostics are off X
 MSGT=$DBGVITA+$DBGCRIT+$DBGIMPO+$DBGRESP, Message Types X
 DUMP=$DBGNONE, Diagnostic dumps $DBGNONE or $DBGSDMP X
 LSTCCW=09, CCW write command for syslst X
 SSLD=$DBGNONE, Diagnostics for SSL api parameters X
 CIAL=$DBGNONE Diagnostic dumps for Crypto functions/*
// EXEC LNKEDT,SIZE=512K
/*
/&

Appendix B: $SOCKDBG Debugging Phase

204

The following keyword settings control messages and dumps.

• Message routing. The FL01 keyword controls message routing:

FL01 Setting Result

$DBGWLST Writes messages to the assigned printer (SYSLST)
for the partition in which the application executes

$DBGWLOG Writes messages to the VSE system console

$DBGUPER Writes messages in upper case only

Note: Use $DBGWLOG with caution. It can increase traffic to the
VSE system console when MSGT=$DBGALL (see below) and slow
down the associated application’s performance. $DBGWLST is
recommended and is more efficient for high volume applications.

• SYSLST CCW operation code. The LSTCCW keyword sets the
CCW operation code to be used for writing messages to SYSLST. The
default is 09 for write and then space one line. LSTCCW=0B can be
specified to space one line and then write the message. This option
can prevent print overlays in some applications.

• Message source. The FL02 keyword specifies the message source:

FL02 Setting Result

$DBGISBS Enables messages for the BSD interface only

$DBGISON Enables messages for all components: BSD,
SSL/TLS, etc.

$DBGISSL Enables messages for the SSL/TLS components
only

$DBGISCI Enables messages for the cryptographic
component only

$DBGIOFF Disables debugging for all components

• Message type. The MSGT keyword specifies the message type(s):

MSGT Setting Message Type

$DBGALL All

$DBGCRIT Critical

$DBGVITA Vital

$DBGWARN Warning

$DBGIMPO Important

Keyword Settings

Appendix B: $SOCKDBG Debugging Phase

205

MSGT Setting Message Type

$DBGINFO Informational

$DBGRESP Response

$DBGDIAG Debug/diagnostic

$DBGSCTY Security related

See chapter 10, “Operation,” in the TCP/IP FOR VSE Installation
Guide for more information about these message types.

• Diagnostics flag. The FL03 keyword controls connection diagnostics:

FL03 Setting Result

$DBGDTCP Activates connection diagnostics for the
connections. The additional diagnostic
information is sent to TCP/IP’s SYSLST.

• Diagnostic dumps. The following settings create diagnostic dumps:

Keyword Setting Result

DUMP=$DBGSDMP Creates dumps using the SDUMP service
for applications that use the BSD
application programming interface

CIAL=$DBGSDMP Creates dumps using the SDUMP service
for applications that use the cryptographic
application programming interface

SSLD=$DBGSDMP Creates dumps using the SDUMP service
for applications that use the SSL/TLS
application programming interface

SSLD=$DBGSSLD Create dumps of the parameters passed to
the SSL/TLS application programming
interface. These are the standard parm list
values pointed to by R1 when requesting an
SSL/TLS service.

Note: By default, the SDUMPs go to the defined dump lib.subib in the
partition in which the associated application is running. Also, the
SDUMP header that identifies the dump contents is lost. Therefore,
always send the SDUMPs to SYSLST. To force SDUMPs directly to
SYSLST and preserve the headers, add this JCL statement:

 // OPTION NOSYSDMP

This statement is required if you plan to send SDUMPs to CSI
Technical Support because the SDUMP headers are critically
important to identifying the dumped contents.

Appendix B: $SOCKDBG Debugging Phase

206

You have a test BSD application. You want to see the flow from all the
functions used, but you do not want to send messages to the VSE system
console. Messages are to go to SYSLST only.

Use the following procedure.

1. Copy and paste the sample job into your local editor.

2. Modify the following keyword settings:

Keyword Use this setting Result

FL01 FL01=$DBGWLST Sends messages to SYSLST only

MSGT MSGT=$DBGALL Enables all messages to be issued

3. Modify the CATALOG parameter to contain a test lib.sublib in the

phase search chain of the partition in which the application executes.
The test lib.sublib must be located in the search chain before the
TCP/IP FOR VSE installation’s lib.sublib and PRD1.BASE, which
may contain the IBM-distributed version of $SOCKDBG.

4. Run the modified job to create the custom $SOCKDBG.PHASE.

5. Cycle the partition in which the application, such as CICS, is running
to force a reload of the newly created $SOCKDBG.PHASE.

You have a vendor-supplied SSL/TLS application, and CSI technical
support has requested that you send diagnostic dumps and messages to
SYSLST.

Use the following procedure.

1. Copy and paste the sample job into your local editor.

2. Modify the following keyword settings:

Keyword Use this setting Result

FL01 FL01=$DBGWLST Sends messages to SYSLST only

MSGT MSGT=$DBGALL Enables all messages to be issued

SSLD SSLD=$DBGSDMP Enables SSL diagnostic dumps

3. Modify the CATALOG parameter to contain a test lib.sublib in the

phase search chain of the partition in which the application executes.
The test lib.sublib must be located in the search chain before the
TCP/IP FOR VSE installation lib.sublib and PRD1.BASE, which may
contain the IBM-distributed version of $SOCKDBG.

4. Run the modified job to create the custom $SOCKDBG.PHASE.

Example 1: BSD
Application Output

Example 2: SSL/TLS
Application Output

Appendix B: $SOCKDBG Debugging Phase

207

5. Cycle the partition in which the application is running to force a
reload of the newly created $SOCKDBG.PHASE.

Additional notes:

• The SDUMPX macro is used to create the diagnostic dumps.

• The application’s JCL must include a // OPTION NOSYSDMP entry
to force a dump to SYSLST instead of the default dump library.

You can use the IBM z/VSE EZAAPI console command to turn
$SOCKDBG messages on and off dynamically. For CICS applications,
this command allows you to enable and disable debugging messages
without cycling CICS. Note that you cannot use this command to control
dumps in the debug phase.

The EZAAPI trace facility generates one or more trace messages for
each (IBM) EZASMI or EZASOKET socket call. It allows you to trace
these calls either for all partitions in the system or for selected partitions
and/or dynamic classes. You can direct trace messages to SYSLOG or
SYSLST.

The EZAAPI command has the following arguments:

Argument Description

? Display the command syntax

TRACE Display current trace settings

TRACE=ON Define and start or resume starting:
• (default with no trace defined yet): Define and start

a trace with the defaults ALL and SYSLST
• (default after EZAAPI TRACE=OFF): Resume

trace
• All: Define and start a trace for all partitions
• PART=(part,..): Define and start a trace for selected

partitions
• CLASS=(class,..): Define and start a trace for

selected dynamic classes

TRACE=OFF Suspend the current trace

TRACE=END End tracing, and clear all trace definitions

SYSLST Send trace output to SYSLST (if SYSLST is assigned)

SYSLOG Send trace output to SYSLOG

LOGLST Send trace output to SYSLOG and SYSLST

See the appropriate IBM z/VSE documentation for more information.

Controlling $SOCKDBG
Messages

208

 Appendix C:

TLS 1.2 Enhancement

TLS 1.2 was a major revision in the evolution of the Secure Socket Layer
(SSL) and Transport Layer Security (TLS) protocols. It is documented in
IETF RFC5246. Because the changes in TLS 1.2 are significant, support
for TLS 1.2 is in new, separate modules. This is to provide maximum
stability for applications currently using SSL 3.0, TLS 1.0, and TLS 1.1.
Applications are not required to make any changes and will function
without any changes.

Support for TLS 1.2 can be obtained by setting the INI@PROT of the
call to IPCRINIT to PROT0303, which is the internal TLS release value
for TLS 1.2. This will cause the current calls to invoke the modules for
TLS 1.2.

SSL/TLS VSE applications that want to support only TLS 1.2 can

• Include a new stub object deck, IPCRTLSS.OBJ, to obtain support for
only TLS 1.2, and

• Set an option in $SOCKOPT to only allow the usage of TLS 1.2. See
“New $SOCKOPT Settings for TLS 1.2” on page 201 for details.

Supporting only TLS 1.2 may be desirable when you want to create more
secure applications by not allowing the older, less secure versions of the
protocol to be used.

The implementation of TLS 1.2 also requires that external clients and
servers provide support for it. But many applications, like older versions
of web browsers, FTP clients, FTP servers, and TN3270 clients, may not
provide support for TLS 1.2 yet, and it is outside the control of the
z/VSE clients and servers that require this new, higher level of security.
When a business requires using TLS 1.2, outside vendors must be
contacted to provide support for TLS 1.2.

Overview

Using TLS 1.2

Appendix C: TLS 1.2 Enhancement

209

By default, the older entry points (IPCR*) will automatically pass control
to the new TLS 1.2 modules, but it can be more efficient to directly call
the new TLS 1.2 entry points that are resolved in the new
IPCRTLSS.OBJ module. The new TLSVSE.A macro should also be
used to generate the support for applications that want to support
TLS 1.2. See “TLSVSE Macro Settings,” page 211, for macro details.

New entry points should be used to invoke the usage of TLS 1.2. These
entry points are listed in the table below. They use the same input
parameters as documented for each function in “Secure Socket Layer
(SSL) and Transport Layer Security (TLS) API,” page 125.

C Function

Entry Point Name

New Old

gsk_initialize() TLSRINIT IPCRINIT

gsk_secure_soc_init() TLSRSINI IPCRSINI

gsk_secure_soc_read() TLSRSRED IPCRSRED

gsk_secure_soc_write() TLSRSWRT IPCRSWRT

gsk_secure_soc_close() TLSRSCLS IPCRSCLS

gsk_secure_soc_reset() TLSRSRSM IPCRSRST1

gsk_user_set() TLSRUSET IPCRUSET

gsk_free_memory() TLSRFMEM IPCRFMEM

gsk_get_cipher_info() TLSRGCIN IPCRGCIN

gsk_get_dn_by_label() TLSRGDBL IPCRGDBL

gsk_uninitialize() TLSRUNIN IPCRUNIN

1 Resumes a previously negotiated session.

Applications calling the new entry points will also still be able to provide
support for the older versions (SSL 3.0, TLS 1.0, and TLS 1.1) since the
code will automatically pass control to the older IPCRYPTO.PHASE
during the SSL/TLS session negotiation. Applications using the new
entry points above should also remove the IPCRYPTS.OBJ from their
link edit.

The important consideration is to guarantee the integrity and security of
connections, in that the older versions of the protocol can be susceptible
to various forms of attack such as rollbacks and other weaknesses. For
more detailed information on the security of the older protocol versions,
see https://en.wikipedia.org/wiki/Transport_Layer_Security#Security .
Google searches and other websites can also be referenced for more
information on the security exposures in the older versions of SSL
and TLS.

Entry Points

Support for Older
Protocol Versions

https://en.wikipedia.org/wiki/Transport_Layer_Security#Security

Appendix C: TLS 1.2 Enhancement

210

The question is not so much “Is the connection secure or not?”, but more
of “How secure is it?” Some of the older versions and encryption
algorithms such as DES are no longer considered strongly secured, but
also keep in mind that currently many clients and servers have not been
upgraded to support the new, more secure algorithms such as AES and
TLS 1.2. But this should change over time.

The SSL and TLS protocols allow a client to propose a list of cipher
suites to be used during session negotiation, and the server then selects
the cipher suite that will be used based on the client’s proposed list. If no
cipher suite is acceptable to the server, the session will NOT be
established. Most applications want to use the strongest available cipher
suites, but this will in general use more overhead (CPU processing time).

In addition, older cipher suites can become deprecated due to known
weaknesses being exploited. TLS 1.2 recommends no longer using the
DES algorithm, and TCP/IP FOR VSE does not support it when using
TLS 1.2. The older cipher suites for SSL 3.0, TLS 1.0, and TLS 1.1, as
documented in the Optional Features Guide, can still be used when using
the older versions of the protocol.

When TLS 1.2 is used, cipher suites supporting the DES algorithm have
been removed. TLS 1.2 support also requires the IBM hardware CP
Assist for Cryptographic Function (CPACF) feature for the SHA160,
SHA-256, AES128, and AES256 algorithms.

TCP/IP FOR VSE currently supports these cipher suites for TLS 1.2:

• All cipher suites

x2F = RSA_AES128CBC_SHA160

x35 = RSA_AES256CBC_SHA160

x3C = RSA_AES128CBC_SHA256

x3D = RSA_AES256CBC_SHA256

• Strong cipher suites

x3D = RSA_AES256CBC_SHA256

• Medium cipher suites

x35 = RSA_AES256CBC_SHA160

x3C = RSA_AES128CBC_SHA256

• Weak cipher suites

x2F = RSA_AES128CBC_SHA160

Note that when a client proposes a list of cipher suites, the suites are in
the client’s preferred order.

Cipher Suite Values

Introduction

Cipher Suites
for TLS 1.2

Appendix C: TLS 1.2 Enhancement

211

The following cases assume that a server is set to use the “All cipher
suites” above—2F, 35, 3C, 3D.

Case 1. If the client proposes (0A 3C 2F 3D), the server will choose the
first match, which is 3C.

Case 2. If the client proposes (0A 2F 3C 3D), the server will choose the
first match, which is 2F.

Note also that 0A is an older DES-based cipher suite that is not
supported in TLS 1.2.

The TLS 1.2 protocol specifications are defined in IETF RFC5246,
which has replaced the MD5/SHA-1 PRF with cipher-suite-specified
PRFs.

All cipher suites in this document use P_SHA256 as defined in
RFC5246, which can and should be referenced for details on this central,
critical function of the protocol.

The operands and values for the new TLSVSE macro are listed below.

• TLSVSE GENVTLS – will generate:
o IPCRTLSS DC CL8'IPCRTLSS'
o DC V(IPCRTLSS)
Usage Note: This should be used for applications wanting to support only

TLS 1.2.

• TLSVSE GENVWTLS – will generate:
o IPCRTLSS DC CL8'IPCRTLSS'
o DC V(IPCRTLSS)
o WXTRN IPCRYPTS Older stub
Usage Note: The above adds a weak external reference (WXTRN) for the

IPCRYPTS.OBJ. This can then be used to optionally allow
applications to support both TLS 1.2 and the older versions of
the protocol.

• TLSVSE GENTLS12 – will generate:
o SUITETAB DS 0F
o SUIT002F DC CL16'RSA_AES128_SH160',XL2'002F',CL2'2F'
o SUIT0035 DC CL16'RSA_AES256_SH160',XL2'0035',CL2'35'
o SUIT003C DC CL16'RSA_AES128_SH256',XL2'003C',CL2'3C'
o SUIT003D DC CL16'RSA_AES256_SH256',XL2'003D',CL2'3D'
o SUITENTL EQU 20 Length of a single tab entry
o SUITECNT EQU (*-SUITETAB)/SUITENTL Number of entries in table
o *
o PROTTABL DS 0F
o PROT0303 DC XL2'0303',CL5'TLS12',XL1'00' TLS 1.2 defined in RFC5246
o PROTENTL EQU 8 Length of a single tab entry
o PROTECNT EQU (*-PROTTABL)/PROTENTL Number of entries in table
Usage Note: The above are the cipher suites and protocol version for

supporting only TLS 1.2.

Suite Selection
Example

Pseudo Random Facility
(PRF)

TLSVSE Macro Settings

Appendix C: TLS 1.2 Enhancement

212

• TLSVSE GENVCON – will generate:
o IPCRYPTS DC CL8'IPCRYPTS'
o DC V(IPCRYPTS)
Usage Note: The above can be used for applications requiring support for

the older versions of the protocol (SSL 3.0, TLS 1.0, TLS 1.1).

• TLSVSE GENSUIT – will generate:
o SUITETAB DS 0F
o SUIT0000 DC CL16'NULL_NULL_NULL ',XL2'0000',CL2'00'
o SUIT0001 DC CL16'RSA_NULL_MD5 ',XL2'0001',CL2'01'
o SUIT0002 DC CL16'RSA_NULL_SHA ',XL2'0002',CL2'02'
o SUIT0008 DC CL16'RSA_SDES040_SHA ',XL2'0008',CL2'08'
o SUIT0009 DC CL16'RSA_SDES056_SHA ',XL2'0009',CL2'09'
o SUIT000A DC CL16'RSA_TDES168_SHA ',XL2'000A',CL2'0A'
o SUIT002F DC CL16'RSA_AES128_SHA ',XL2'002F',CL2'2F'
o SUIT0035 DC CL16'RSA_AES256_SHA ',XL2'0035',CL2'35'
o SUITENTL EQU 20 Length of a single tab entry
o SUITECNT EQU (*-SUITETAB)/SUITENTL Number of entries in table
Usage Note: The above can be used for applications requiring support for

the older cipher suites (SSL 3.0, TLS 1.0, and TLS 1.1).

• TLSVSE GENPROT – will generate:
o PROTTABL DS 0F
o PROT0300 DC XL2'0300',CL5'SSL30',XL1'00' SSL 3.0 created by Netscape
o PROT0301 DC XL2'0301',CL5'TLS10',XL1'00' TLS 1.0 defined in RFC2246
o PROT0302 DC XL2'0302',CL5'TLS11',XL1'00' TLS 1.1 defined in RFC4346
o PROT0303 DC XL2'0303',CL5'TLS12',XL1'00' TLS 1.2 defined in RFC5246
o PROTENTL EQU 8 Length of a single tab entry
o PROTECNT EQU (*-PROTTABL)/PROTENTL Number of entries in table
Usage Note: The above can be used for applications requiring support for

the older protocol versions (SSL 3.0, TLS 1.0, and TLS 1.1) and
TLS 1.2.

• TLSVSE GENCNST – will generate the combination of GENVTLS, GENVCON, GENSUIT,
and GENPROT in a single statement.

Usage Note: This can be used for applications wanting to support all the
possible protocol versions and cipher suites.

• TLSVSE INLINE – will generate the assembler request areas in line.

• TLSVSE DSECT – will generate the assembler request areas in dsects.

	TCP/IP for VSE Programmer's Guide
	Copyright
	Technical Support
	Updates to This Manual
	Table of Contents
	1. SOCKET Assembler API
	SOCKET Macro
	Syntax
	function Operand
	type Operand
	Keyword Parameters
	Global Constant Area
	Connecting to TCP/IP for VSE
	Return Codes
	SRBLOK DSECT
	Opening a Connection
	Receiving Data
	Status
	Close Connection

	Control Connection
	Resolving Symbolic Names

	Sample Programs

	2. BSD Socket Interface
	Overview
	Languages

	What is a Socket?
	Definition
	Socket vs. Port

	Using Socket Functions
	TCP Server
	TCP Client
	Connecting to TCP/IP

	Function Descriptions
	abort()
	accept()
	bind()
	close()
	connect()
	getclientid()
	gethostbyaddr()
	gethostbyname()
	gethostid()
	gethostname()
	getpeername()
	getsockname()
	getsockopt()
	getversion()
	givesocket()
	listen()
	receive(), recv()
	recvfrom()
	select()
	selectecb()
	selectex()
	send()
	sendto()
	seterrs_default()
	seterrs_socket()
	setsockopt()
	setsysid()
	shutdown()
	socket()
	takesocket()

	Storage Functions
	bcopy()
	bzero()
	htonl()
	htons()
	inet_addr()
	inet_lnaof()

	C Definitions
	Definitions File
	Address Tag Struct
	IPv4 Address Struct
	Client ID Struct
	Macros

	Assembler Definitions
	Address Structures
	Sample Programs

	Error Handling
	Return Codes and Error Numbers
	Error Number Descriptions
	Assembler and COBOL Programs

	Application Debugging

	3. High Level Pre-Processor API
	Overview
	Running Legacy JCL
	Pre-compiler Processing
	Compiling Your Program

	Using the Pre-Processor
	Execution Order
	Parameters
	Pre-Processor Return Codes
	Pre-Processor Statements
	Identifying Tag
	Command Verbs
	Line Termination

	Error Checking
	XOBLOK Control Block
	Error Determination

	Connections and Data Transmission
	Active Connection Example
	Passive Connection Example
	Receiving Data
	Sending Data
	Closing a Connection
	Using WAIT(NO)

	Sample Programs
	COBOL EXEC TCP Example
	COBOL EXEC FTP Example
	COBOL EXEC CLIENT LPR Example
	PL/1 EXEC TCP Example
	PL/1 Notes

	4. REXX Sockets API
	Overview
	REXX Calls
	Variables
	Return Codes
	Timeout Function

	Socket Types
	Coding REXX Calls
	OPEN
	CLOSE
	SEND
	RECEIVE
	ABORT
	STATUS

	Obtaining Network Information
	Starting a Control Connection
	Starting a Client Connection

	5. Common Gateway Interfaces
	Overview
	Using CGIs with VSE
	Defining a CGI to VSE
	Using the CGILOAD Utility
	Deleting a CGI

	Assembler CGIs
	Example

	REXX CGIs
	Programming
	Execution Requirements
	Example

	6. SSL/TLS for VSE APIs
	Overview
	Secure Socket Layer (SSL) and Transport Layer Security (TLS) API
	Hardware Assist Options Settings
	Error Codes
	Functions
	gsk_free_memory()
	gsk_get_cipher_info()
	gsk_get_dn_by_label()
	gsk_initialize()
	gsk_secure_soc_close()
	gsk_secure_soc_init()
	gsk_secure_soc_read()
	gsk_secure_soc_reset()
	gsk_secure_soc_write()
	gsk_uninitialize()
	gsk_user_set()

	CryptoVSE API
	Overview
	cry_3des_cbc_encrypt()
	cry_3des_cbc_decrypt()
	cry_aes128_cbc_encrypt()
	cry_aes128_cbc_decrypt()
	cry_aes128_ecb_encrypt()
	cry_aes128_ecb_decrypt()
	cry_aes192_cbc_encrypt()
	cry_aes192_cbc_decrypt()
	cry_aes192_ecb_encrypt()
	cry_aes192_ecb_decrypt()
	cry_aes256_cbc_encrypt()
	cry_aes256_cbc_decrypt()
	cry_aes256_ecb_encrypt()
	cry_aes256_ecb_decrypt()
	cry_des_cbc_encrypt()
	cry_des_cbc_decrypt()
	cry_des_encrypt()
	cry_des_decryt()
	cry_gen_random()
	cry_get_cert_info()
	cry_hmac_md5()
	cry_hmac_sha()
	cry_initialize()
	cry_md5_hash()
	cry_rsa_encrypt()
	cry_rsa_decrypt()
	cry_rsa_genprvk()
	cry_rsa_signature_create()
	cry_rsa_signature_verify()
	cry_sha_hash()
	cry_sha2_hash()
	cry_universal_print_encode()
	cry_universal_print_decode()

	Common Encryption Cipher Interface
	Calling the CIALCECI Stub
	Request Area
	Return Codes
	Encryption Pseudocode
	Encryption Flow
	Decryption Pseudocode
	CIALSEED JCL
	Cipher Suite Selection

	Debugging Problems
	Programming Notes

	Appendix A: $SOCKOPT Options Phase
	Using $SOCKOPT
	Default Phase
	Example 1: Setting the Stack ID
	Example 2: Setting the Default Cipher Suite
	BSD Interface Options
	SSL/TLS Interface Options
	New $SOCKOPT Settings for TLS 1.2

	Appendix B: $SOCKDBG Debugging Phase
	Using $SOCKDBG
	Sample Job
	Keyword Settings
	Example 1: BSD Application Output
	Example 2: SSL/TLS Application Output
	Controlling $SOCKDBG Messages

	Appendix C: TLS 1.2 Enhancement
	Overview
	Using TLS 1.2
	Entry Points
	Support for Older Protocol Versions
	Cipher Suite Values
	Pseudo Random Facility (PRF)
	TLSVSE Macro Settings

