
Enterprise COBOL for z/OS

Customization Guide

Version 3 Release 4

GC27-1410-05

���

Sixth Edition (November 2006)

This edition applies to Enterprise COBOL for z/OS, Version 3 Release 4 (Program Number 5655-G53) and to all

subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Note!

Before using this information and the product it supports, be sure to

read the general information under “Notices,” on page 69.

Contents

Figures v

Tables vii

About this document ix

How to read the syntax diagrams ix

Using the macro planning worksheets x

How to send your comments xi

Accessibility xi

Using assistive technologies xi

Keyboard navigation of the user interface . . . xi

Accessibility of this document xii

Summary of changes xiii

Changes to this edition of this manual xiii

Major changes to Enterprise COBOL xiii

Version 3 Release 4, July 2005 xiii

Version 3 Release 3, February 2004 xiv

Version 3 Release 2, September 2002 xiv

Version 3 Release 1, November 2001 xv

Chapter 1. Planning to customize

Enterprise COBOL 1

Making changes after installation—why customize? . 1

Planning to modify compiler option default values . 1

Why make compiler options fixed? 2

Modifying compiler options and phases 3

Planning to place compiler phases in shared storage 5

Why place the compiler phases in shared storage? 5

Compiler phases and their defaults 6

Planning to create an additional reserved word table 10

Why create additional reserved word tables? . . 10

Controlling use of nested programs 10

Reserved word tables supplied with Enterprise

COBOL 10

Chapter 2. Enterprise COBOL compiler

options 13

Specifying COBOL compiler options 13

Conflicting compiler options 13

Compiler options for standards conformance . . . 14

Compiler options syntax and descriptions 14

ADATA 14

ADEXIT 15

ADV 15

ALOWCBL 16

ARITH 16

AWO 17

BUF 17

CICS 18

CODEPAGE 18

COMPILE 18

CURRENCY 19

DATA 20

DATEPROC 21

DBCS 22

DBCSXREF 22

DECK 23

DIAGTRUNC 24

DLL 24

DYNAM 25

EXPORTALL 25

FASTSRT 26

FLAG 26

FLAGSTD 27

INEXIT 29

INTDATE 29

LANGUAGE 30

LIB 30

LIBEXIT 31

LINECNT 31

LIST 31

LITCHAR 32

LVLINFO 32

MAP 33

MDECK 33

NAME 33

NSYMBOL 34

NUM 34

NUMCLS 35

NUMPROC 35

OBJECT 36

OFFSET 37

OPTIMIZE 37

OUTDD 38

PGMNAME 38

PRTEXIT 39

RENT 39

RMODE 40

SEQ 41

SIZE 41

SOURCE 42

SPACE 42

SQL 43

SQLCCSID 43

SSRANGE 44

TERM 44

TEST 45

THREAD 46

TRUNC 47

VBREF 48

WORD 49

XREFOPT 50

YRWINDOW 50

ZWB 51

Chapter 3. Customizing Enterprise

COBOL 53

Summary of user modifications 53

© Copyright IBM Corp. 1991, 2006 iii

||
||
||
||

||

 | |

 ~ ~

Changing the defaults for compiler options 54

Changing compiler options default module . . . 54

Creating an options module to override options

specified as fixed 55

Creating or modifying additional reserved word

tables 56

Creating or modifying a reserved word table . . 56

Coding control statements 57

Rules for coding control statements 57

Coding operands in control statements 58

Rules for coding control statement operands . . 58

ABBR statement 58

INFO statement 59

RSTR statement 59

Modifying and running JCL to create a new

reserved word table 60

Modifying and running non-SMP/E JCL . . . 60

Placing Enterprise COBOL modules in shared

storage 61

Tailoring the cataloged procedures to your site . . 62

Chapter 4. Customizing Unicode

support for COBOL 63

Installing, setting up, and activating Unicode

services 63

Creating a conversion image for COBOL 63

Example: programs that use object-oriented

syntax for Java interoperability 64

Example: program that uses Unicode data . . . 65

Considerations for COBOL DB2 programs 66

Example: JCL for generating a conversion image . . 66

Appendix. Notices 69

Programming interface information 70

Trademarks 70

List of resources 71

Enterprise COBOL for z/OS 71

z/OS Language Environment 71

Related publications 71

Softcopy publications 72

Index 73

iv Enterprise COBOL for z/OS V3R4 Customization Guide

Figures

1. Syntax format for IGYCOPT compiler options

and phases macro 3

2. Syntax format for reserved word processor

control statements 57

© Copyright IBM Corp. 1991, 2006 v

vi Enterprise COBOL for z/OS V3R4 Customization Guide

Tables

1. IGYCDOPT worksheet for options 3

2. IGYCDOPT program worksheet for compiler

phases 9

3. Conflicting compiler options 13

4. Entries for the LANGUAGE compiler option 30

5. Effect of RENT and RMODE on residency

mode 40

6. Effect of RMODE and RENT/NORENT on

residency mode 41

7. Summary of user modification jobs for

Enterprise COBOL 53

© Copyright IBM Corp. 1991, 2006 vii

viii Enterprise COBOL for z/OS V3R4 Customization Guide

About this document

This book is for systems programmers who are responsible for customizing

Enterprise COBOL for z/OS for their location. This book provides information

needed to plan for and customize Enterprise COBOL under z/OS. In addition, this

book can help to assess the value of Enterprise COBOL to your organization.

In this book, the generic term ″operating system″ is used when referring to z/OS.

You should have a knowledge of Enterprise COBOL and of your system’s

operating environment to use this book and ensure a successful customization of

Enterprise COBOL.

How to read the syntax diagrams

Throughout this book, syntax for the compiler options is described using the

structure defined below.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following table shows the meaning of symbols at the

beginning and end of syntax diagram lines.

 Symbol Indicates

>>– The syntax diagram starts here

–> The syntax diagram is continued on the next line

>– The syntax diagram is continued from the previous line

–>< The syntax diagram ends here

Diagrams of syntactical units other than complete statements start with the >–

symbol and end with the –> symbol.

v Required items appear on the horizontal line (the main path).

�� STATEMENT required item ��

v Optional items appear below the main path.

�� STATEMENT

optional item
 ��

v When you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item of the stack appears on the main

path. The default, if any, appears above the main path and is chosen by the

IGYCOPT macro if you do not specify another choice. In some cases, the default

is affected by the system in which the program is being run.

��

STATEMENT
 default-item

required choice 1

required choice 2

��

If choosing one of the items is optional, the entire stack appears below the main

path.

© Copyright IBM Corp. 1991, 2006 ix

�� STATEMENT

optional choice 1

optional choice 2

 ��

v An arrow returning to the left above the main line indicates an item that can be

repeated.

��

STATEMENT

�

 ,

repeatable item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

v Keywords appear in uppercase letters (for example, PRINT). They must be

spelled exactly as shown. Variables appear in all lowercase letters (for example,

item). They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or such symbols are

shown, they must be entered as part of the syntax.

v Use at least one blank or comma to separate parameters.

Using the macro planning worksheets

The planning worksheets in this book will help you prepare to customize

Enterprise COBOL. By completing them, you will be able to easily identify those

options that you want to change from the IBM-supplied default values. You might

also want to use the worksheets as a source from which to actually customize the

IBM-supplied default values.

The headings in each worksheet might differ slightly from each other. Refer to the

following list of definitions for an explanation of each specific column heading.

Worksheets are located on pages 3 and 9.

Option

The OPTION column identifies the options contained within a specific

installation macro. This column represents the options exactly as they are in

the macro.

Fixed

The FIXED column is used to identify the options that can not be overridden

by an application programmer. Enter an asterisk [*] into the Enter * for Fixed

only for those options that you want to be fixed.

Selection

The SELECTION column is for you to identify the value associated with each

option. In the space provided, enter the value you want to assign to each

option. Use the topic reference column to locate the specific information about

the option that will assist you in selecting the appropriate value.

IBM-Supplied Default

The IBM-SUPPLIED DEFAULT column identifies the value that is supplied for

the specified installation macro if the option is not altered. If the IBM-supplied

default is identical to the value that you desire for installation, you need not

modify that option within that specific macro.

Topic Reference

The PAGE REFERENCE column identifies the topic where you will find the

syntax diagram for and more specific information about the option.

About this book

x Enterprise COBOL for z/OS V3R4 Customization Guide

After you have completed the worksheets, identify those options that are different

from the IBM-supplied defaults. These are the items that you must code in the

installation macros. The worksheet entries have been positioned such that the order

of the entries will remain consistent with the actual coding semantics.

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality

information. If you have comments about this book or any other Enterprise

COBOL documentation, contact us in one of these ways:

v Fill out the Readers’ Comment Form at the back of this book, and return it by

mail or give it to an IBM representative. If the form has been removed, address

your comments to:

IBM Corporation

DTX/E269

555 Bailey Avenue

San Jose, CA

95141-9989

USA
v Fax your comments to this U.S. number: (800)426-7773.

v Use the Online Readers’ Comment Form at www.ibm.com/software/ad/rcf/.

Be sure to include the name of the book, the publication number of the book, the

version of Enterprise COBOL, and, if applicable, the specific location (for example,

page number) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The accessibility

features in z/OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS enable users to:

v Use assistive technology products such as screen readers and screen magnifier

software.

v Operate specific or equivalent features by using only the keyboard.

v Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products work with the user interfaces that are found in

z/OS. For specific guidance information, consult the documentation for the

assistive technology product that you use to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces by using TSO/E or ISPF. For information

about accessing TSO/E and ISPF interfaces, refer to the following publications:

v z/OS TSO/E Primer

v z/OS TSO/E User’s Guide

About this book

About this document xi

|

|
|
|

|

|
|

|

|

|

|
|
|

|

|
|

|

|

v z/OS ISPF User’s Guide Volume I

These guides describe how to use TSO/E and ISPF, including the use of keyboard

shortcuts or function keys (PF keys). Each guide includes the default settings for

the PF keys and explains how to modify their functions.

Accessibility of this document

The English-language XHTML format of this document that will be provided in

the IBM Problem Determination and Deployment Tools information center at

http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to

visually impaired individuals who use a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code

examples, and text that contains the period or comma picture symbols, you must

set the screen reader to speak all punctuation.

When you use JAWS for Windows, the links to accessible syntax diagrams might

not work. Use IBM Home Page Reader to read the accessible syntax diagrams.

About this book

xii Enterprise COBOL for z/OS V3R4 Customization Guide

|

|
|
|

|

|
|
|
|

|
|
|

|
|

Summary of changes

This section lists the major changes that have been made to the Enterprise COBOL

for z/OS product and this manual since IBM COBOL for OS/390 & VM Version 2

Release 2. Technical changes are marked in the text by a change bar in the left

margin.

Changes to this edition of this manual

This edition contains updates for the new compiler option SQLCCSID.

These changes are marked with the ″ ~ ″ symbol in the left margin.

Major changes to Enterprise COBOL

Version 3 Release 4, July 2005

v A new compiler option, SQLCCSID, which works in conjunction with the DB2

coprocessor, determines whether the CODEPAGE compiler option influences the

processing of SQL statements in COBOL programs.

v Several limits on COBOL data-item size have been significantly raised, for

example:

– The maximum data-item size has been raised from 16 MB to 128 MB.

– The maximum PICTURE symbol replication has been raised to 134,217,727.

– The maximum OCCURS integer has been raised to 134,217,727.
This support facilitates programming with large amounts of data, for example:

– DB2/COBOL applications that use DB2 BLOB and CLOB data types

– COBOL XML applications that parse or generate large XML documents
v Support for national (Unicode UTF-16) data has been enhanced. Several

additional kinds of data items can now be described implicitly or explicitly as

USAGE NATIONAL:

– External decimal (national decimal) items

– External floating-point (national floating-point) items

– Numeric-edited items

– National-edited items

– Group (national group) items, supported by the GROUP-USAGE NATIONAL

clause
v Many COBOL language elements support the new kinds of UTF-16 data, or

newly support the processing of national data:

– Numeric data with USAGE NATIONAL (national decimal and national

floating point) can be used in arithmetic operations and in any language

constructs that support numeric operands.

– Edited data with USAGE NATIONAL is supported in the same language

constructs as any existing edited type, including editing and de-editing

operations associated with moves.

– Group items that contain all national data can be defined with the

GROUP-USAGE NATIONAL clause, which results in the group behaving as

© Copyright IBM Corp. 1991, 2006 xiii

|

~
~
~

|
|

|

|

|

|

|

|

|
|
|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

an elementary item in most language constructs. This support facilitates use

of national groups in statements such as STRING, UNSTRING, and INSPECT.

– The XML GENERATE statement supports national groups as receiving data

items, and national-edited, numeric-edited of USAGE NATIONAL, national

decimal, national floating-point, and national group items as sending data

items.

– The NUMVAL and NUMVAL-C intrinsic functions can take a national literal

or national data item as an argument.
Using these new national data capabilities, it is now practical to develop COBOL

programs that exclusively use Unicode for all application data.

v The REDEFINES clause has been enhanced such that for data items that are not

level 01, the subject of the entry can be larger than the data item being

redefined.

v A new compiler option, MDECK, causes the output from library-processing

statements to be written to a file.

v DB2 coprocessor support has been enhanced. COBOL zoned decimal (USAGE

DISPLAY SIGN LEADING SEPARATE) data items and numeric Unicode

(USAGE NATIONAL SIGN LEADING SEPARATE) data items can be used as

DB2 host variables. The characters ″@″, ″#″, and ″$″ can be used in EXEC SQL

INCLUDE file names. XREF is improved.

v The literal in a VALUE clause for a data item of class national can be

alphanumeric.

Version 3 Release 3, February 2004

v XML support has been enhanced. A new statement, XML GENERATE, converts

the content of COBOL data records to XML format. XML GENERATE creates

XML documents encoded in Unicode UTF-16 or in one of several single-byte

EBCDIC or ASCII code pages.

v The compiler has been enhanced to support new or improved features of Debug

Tool:

– Performance is improved when you use COBOL SYSDEBUG files.

– You can more easily debug programs that use national data: When you

display national data in a formatted dump or by using the Debug Tool LIST

command, the data is automatically converted to EBCDIC representation

using the code page specified in the CODEPAGE compiler option. You can

use the Debug Tool MOVE command to assign values to national data items,

and you can move national data items to or from group data items. You can

use national data as a comparand in Debug Tool conditional commands such

as IF and EVALUATE.

– You can debug mixed COBOL-Java applications, COBOL class definitions, and

COBOL programs that contain object-oriented syntax.
v DB2 Version 8 SQL features are supported when you use the integrated DB2

coprocessor.

v The syntax for specifying options in the COBJVMINITOPTIONS environment

variable has changed.

Version 3 Release 2, September 2002

v The OPTIMIZE compiler option is now fully supported for programs containing

object-oriented syntax for Java interoperability.

v How Unicode and EBCDIC code pages are specified when using SQL statements

in COBOL programs has been enhanced:

xiv Enterprise COBOL for z/OS V3R4 Customization Guide

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

– When Unicode host variables (declared with USAGE NATIONAL) are used in

SQL statements, it is no longer necessary to specify the Unicode CCSID (1200)

explicitly for the variables using the SQL DECLARE VARIABLE statements.

– The CCSID in effect through the CODEPAGE compiler option now applies to

single- or double-byte EBCDIC host variables used in SQL statements without

explicit SQL DECLARE VARIABLE statements for the host variables.

Version 3 Release 1, November 2001

v Because of support for POSIX threads and asynchronous signal toleration, an

application can contain COBOL programs running in multiple threads within a

process. The new compiler option in support of threads and asynchronous signal

toleration is:

– THREAD
v A new national data type, national literals, intrinsic functions, and two new

compiler options provide basic runtime support for Unicode. The new compiler

option in support of the interoperation of symbols used in literals and PICTURE

clauses is:

– NSYMBOL

The new compiler option in support of national data types and literals is:

– CODEPAGE
v Object-oriented syntax now facilitates the interoperation of COBOL and Java

programs.

v Basic XML capabilities are added to COBOL.

v The CICS translator has been integrated with the compiler. The new compiler

option in support of integrated CICS translation is:

– CICS

For a history of changes to previous COBOL compilers, see Enterprise COBOL for

z/OS Compiler and Run Time Migration Guide.

Summary of changes xv

xvi Enterprise COBOL for z/OS V3R4 Customization Guide

Chapter 1. Planning to customize Enterprise COBOL

This chapter provides the following information for planning the customization of

Enterprise COBOL:

v Making changes after installation—why customize?

v Planning to modify compiler default values

v Planning to place Enterprise COBOL in shared storage

v Planning to create an additional reserved word table

If you’re installing IBM Debug Tool, you can decide whether to place its modules

in the shared storage and whether you want to set up your CICS® environment to

work with Debug Tool.

The information in this chapter helps you plan your customization. For the actual

customization procedures, see Chapter 3, “Customizing Enterprise COBOL,” on

page 53.

This chapter also contains worksheets to help you plan modifications to the

IBM-supplied default values within macros. See “Using the macro planning

worksheets” on page x for an explanation of the planning worksheets in this

manual.

Important

Confer with the application programmers at your site while you plan the

customization of Enterprise COBOL. Doing so will ensure that the

modifications you make serve their needs and support the applications being

developed.

Making changes after installation—why customize?

When you install Enterprise COBOL, you receive IBM-supplied defaults for

compiler options and phases and the reserved word table. You might want to

customize Enterprise COBOL to better suit the needs of application programmers

at your site.

After you install Enterprise COBOL, you can:

v Create additional reserved word tables

v Make the compiler options fixed

v Modify the default values for the compiler options

v Modify the residency values for the compiler phases

v Customize Unicode support for COBOL

The following sections discuss the planning you must do to customize Enterprise

COBOL for your site.

Planning to modify compiler option default values

Compiler option defaults and residency for compiler phases are set in the

IGYCDOPT program, as shown in Table 1 on page 3 and Table 2 on page 9. The

default options module, IGYCDOPT, is link-edited with AMODE (31) and RMODE

(ANY) during installation.

© Copyright IBM Corp. 1991, 2006 1

When you assemble COBOL customization parts, such as IGYCDOPT, you need

access to a system MACLIB. Typically, the MACLIB is found in SYS1.MACLIB. You

also need access to the COBOL MACLIB IGY.V3R4M0.SIGYMAC.

The IGYCDOPT program has two purposes: it lets you select and fix the defaults

for compiler options and specify which compiler phases are in shared storage. You

can accept the IBM-supplied compiler option values that you receive when you

install Enterprise COBOL, or you can modify them to better suit the needs of

programmers at your location. You can also choose whether or not your

application programmers will have the ability to override these options.

Note: The high-level qualifiers of IGY.V3R4M0 might have been changed when

Enterprise COBOL was installed.

If you identify compiler phases that reside in shared system storage, the compiler

can use the storage in the region for work areas. For a more detailed description of

why you might want to modify the phase defaults, see “Why place the compiler

phases in shared storage?” on page 5.

Why make compiler options fixed?

Enterprise COBOL can help you to set up your site’s unique programming

standards. For example, many sites select RENT as the preferred compiler option,

but have no easy way to enforce its use.

With Enterprise COBOL, you can use the IGYCDOPT program to specify that an

option is fixed and cannot be changed or overridden at compile time. Then, at

compile time, an attempt to override a fixed option is not allowed and results in a

diagnostic message with a nonzero compiler return code.

When certain options are fixed for consistent usage, there might be special

conditions that require the ability to bypass a fixed option. This change can be

made by assembling a temporary copy of the IGYCDOPT program with different

parameters. At compile time, if you use a JOBLIB or STEPLIB containing the

required IGYCDOPT module, you can bypass the fixed option. For example, if you

select the OPT (OPTIMIZE) option to be fixed—indicating that you always want

the COBOL compiler to generate optimized object code—and then need to exempt

an application from this requirement, you must reassemble the IGYCDOPT

program after you remove the asterisk parameter from the option. You then place

the resulting IGYCDOPT module in a temporary library to be accessed as a JOBLIB

or STEPLIB at compile time.

Sample installation jobs

Enterprise COBOL provides two sample installation jobs that you can modify and

then use to change the defaults for compiler options. One sample job provides an

example of how to change the IBM-supplied defaults for compilers. The other

sample job provides an example of how to override compiler options that have

been fixed.

IGYWDOPT

Use this sample installation job to change the IBM-supplied defaults using

SMP/E.

IGYWUOPT

Use this sample installation job to create a module outside of SMP/E in

which you can specify different defaults if it becomes necessary to override

compiler options that have been fixed with the IGYCDOPT program.

Planning to Customize Enterprise COBOL

2 Enterprise COBOL for z/OS V3R4 Customization Guide

These jobs are located in the COBOL sample data set IGY.V3R4M0.SIGYSAMP.

Modifying compiler options and phases

If you plan to modify the values for compiler options and compiler phases, use the

IGYCOPT syntax format shown in Figure 1. The IBM-supplied default values are

shown both on the planning worksheets and immediately following each syntax

diagram. The syntax diagrams also show the default as explained in “How to read

the syntax diagrams” on page ix.

Compiler options and phases, and their defaults, are discussed in the following

sections. Review these options and phases and their default values to determine

the values that are most suitable for your applications.

IGYCDOPT worksheet for compiler options

The following worksheet will help you to plan and code the compiler options

portion of the IGYCDOPT program. To complete the worksheet, fill in the ″Enter *

for fixed″ and the ″Enter selection″ columns.

The IGYCDOPT worksheet also includes a section for compiler phases. That

section of the worksheet can be found in “IGYCDOPT worksheet for compiler

phases” on page 9, following the discussion on compiler phases.

Notes:

1. Coding the asterisk [*], when you modify a compiler option default value,

indicates that the option is to be fixed and cannot be overridden by an

application programmer.

2. The ALOWCBL, DBCSXREF, LVLINFO, and NUMCLS options cannot be

overridden at compile time. Therefore, the ″Enter * for fixed″ worksheet entries

for these options are blank.

3. The IBM-supplied default value for ADEXIT, INEXIT, LVLINFO, LIBEXIT, and

PRTEXIT is null. Therefore, the ″IBM-supplied default″ entries for these options

are blank.

4. The DUMP compiler option cannot be set through the IGYCDOPT program.

Unless changed at compile time, DUMP is always set to NODUMP.

 Table 1. IGYCDOPT worksheet for options

Compiler

option

Enter *

for fixed

Enter

selection

IBM-supplied

default

Syntax

description

ADATA= ____ __________ NO 14

ADEXIT= ____ __________ 15

ADV= ____ __________ YES 15

ALOWCBL= ____ __________ YES 16

ARITH= ____ __________ COMPAT 16

AWO= ____ __________ NO 17

BUF= ____ __________ 4K 17

IGYCOPT format

�� IGYCOPT

*

�

,

option

�

,

phase

 ��

Figure 1. Syntax format for IGYCOPT compiler options and phases macro

Planning to Customize Enterprise COBOL

Chapter 1. Planning to customize Enterprise COBOL 3

Table 1. IGYCDOPT worksheet for options (continued)

Compiler

option

Enter *

for fixed

Enter

selection

IBM-supplied

default

Syntax

description

CICS= ____ __________ NO 17

CODEPAGE= ____ __________ 1140 17

COMPILE= ____ __________ NOC(S) 18

CURRENCY= ____ __________ NO 19

DATA= ____ __________ 31 20

DATEPROC= ____ __________ NO 21

DBCS= ____ __________ Yes 22

DBCSXREF ____ __________ NO 22

DECK= ____ __________ NO 23

DIAGTRUNC= ____ __________ NO 24

DLL= ____ __________ NO 24

DYNAM= ____ __________ NO 25

EXPORTALL= ____ __________ NO 25

FASTSRT= ____ __________ NO 27

FLAG= ____ __________ (I,I) 26

FLAGSTD= ____ __________ NO 26

INTDATE= ____ __________ ANSI 29

INEXIT= ____ __________ 29

LANGUAGE= ____ __________ ENGLISH 30

LIB= ____ __________ NO 30

LIBEXIT= ____ __________ 31

LINECNT= ____ __________ 60 31

LIST= ____ __________ NO 31

LITCHAR= ____ __________ QUOTE 32

LVLINFO= ____ __________ 32

MAP= ____ __________ NO 33

MDECK= ____ __________ NO 33

NAME= ____ __________ NO 33

NSYMBOL= ____ __________ NATIONAL 34

NUM= ____ __________ NO 34

NUMCLS= ____ __________ PRIM 35

NUMPROC= ____ __________ NOPFD 35

OBJECT= ____ __________ YES 36

OFFSET= ____ __________ NO 37

OPT= ____ __________ NO 37

OUTDD= ____ __________ SYSOUT 38

PGMNAME= ____ __________ COMPAT 38

PRTEXIT= ____ __________ 39

RENT= ____ __________ YES 39

RMODE= ____ __________ AUTO 40

SEQ= ____ __________ YES 41

SIZE= ____ __________ MAX 41

SOURCE= ____ __________ YES 42

SPACE= ____ __________ 1 42

SQL= ____ __________ NO 43

SQLCCSID= ____ __________ YES 43

SSRANGE= ____ __________ NO 44

TERM= ____ __________ NO 44

TEST= ____ __________ NO 45

THREAD= ____ __________ NO 45

TRUNC= ____ __________ STD 47

VBREF= ____ __________ NO 48

Planning to Customize Enterprise COBOL

4 Enterprise COBOL for z/OS V3R4 Customization Guide

|||||

~

Table 1. IGYCDOPT worksheet for options (continued)

Compiler

option

Enter *

for fixed

Enter

selection

IBM-supplied

default

Syntax

description

WORD= ____ __________ *NO 49

XREFOPT= ____ __________ YES 50

YRWINDOW= ____ __________ 1900 50

ZWB= ____ __________ YES 51

Planning to place compiler phases in shared storage

You might want to make some load modules resident in a link-pack area in order

to minimize the search for them when an Enterprise COBOL program is run or

when the modules will be shared. You might also want to make some or all of the

compiler phases resident. Note that the term shared storage is used generally to

describe the link-pack area (LPA), the extended link-pack area (ELPA), or modified

link-pack area (MLPA). Except where specifically stated, all three terms are

referenced when link-pack area is used in the following sections.

Why place the compiler phases in shared storage?

All compiler modules, except the run dump modules (IGYCRDPR and IGYCRDSC)

and the reserved word utility (IGY8RWTU), are eligible for placement in the

shared storage of z/OS machines. All compiler phases except IGYCRCTL and

IGYCSIMD have RMODE(ANY) and AMODE(31). Since IGYCRCTL and

IGYCSIMD have RMODE 24, they can be placed in the LPA or MLPA, but not in

the ELPA. Shared storage is an area of storage that is the same for each virtual

address space. Information stored there can be shared and does not have to be

loaded in the user region because it is the same space for all users. By sharing the

information, more space is made available for the compiler work area.

Note: The Enterprise COBOL, COBOL for MVS & VM, COBOL for OS/390 & VM

and VS COBOL II compilers use the same module names; thus, only one set of

phases can be placed in the LPA for any given initialization of the operating

system.

The IGYCDOPT program indicates where each compiler phase is loaded—either

inside (IN) or outside (OUT) of the user region. By placing compiler phases in the

MLPA, the compiler has more storage available for the user’s program.

If you indicate that a phase will not reside in the user region, you must ensure that

you actually place the phase in shared storage. This information is used by the

compiler to determine how much storage to leave for the system to load compiler

phases in the user region. For a description of how to place a phase in shared

storage, see Initialization and Tuning manual for your particular operating system,

as listed under “Related publications” on page 71.

We recommend that the following four phases be placed in a shared storage area:

IGYCRCTL

because it is resident in the user region throughout compilation.

IGYCSIMD

because it is resident in the user region throughout compilation.

IGYCPGEN

because it is one of the two largest compiler phases.

Planning to Customize Enterprise COBOL

Chapter 1. Planning to customize Enterprise COBOL 5

IGYCSCAN

because it is the other of the two largest compiler phases.

You can select any or all compiler phases to be placed in shared storage based on

frequency of concurrent use and phase size. If your facility seldom uses the

compiler, there might be no advantage to installing any phases in shared storage.

However, if there are frequent compilations and sufficient MLPA storage is

available, making the entire compiler resident might be advantageous. If sufficient

shared storage is not available, priority should be given to IGYCRCTL and

IGYCSIMD, the two phases that are always resident in the user region during

compilation. Also, if sufficient shared storage is not available, priority should be

given to IGYCPGEN and IGYCSCAN, the largest compiler phases.

Another advantage of placing compiler phases in shared storage is that, at compile

time, the initialization logic allocates in the user region a storage block of sufficient

size to contain the largest phase not resident in shared storage. Minimizing the

space allocation for any given user region size means more space for the

compilation process (which allows larger programs to be compiled within a given

user region) and possibly a more efficient compilation. The IGYCPGEN and

IGYCSCAN compiler phases are approximately 250-KB larger than the next largest

compiler phase. Shared storage can make a significant difference if you are

compiling using the 760-KB minimum region size.

Compiler phases and their defaults

To indicate where each compiler phase is loaded in relation to the user region,

specify either IN or OUT. See “Why place the compiler phases in shared storage?”

on page 5, for more information about why you might or might not want to

change these defaults.

IN Indicates that the compiler phase is loaded into the user region from a

library available at compile time. The compiler reserves storage for the

phase from the value specified in the SIZE option.

 Even though IN is specified for a compiler phase, the phase still can be

placed into the shared system area. However, the compiler control phase

ensures that the main storage area reserved for compiler phases is large

enough to contain the largest phase for which IN is specified. This option

will cause some storage to be unused.

OUT Indicates that the compiler phase is not loaded into the user region from

the library, and therefore must reside in a shared system area, such as the

MLPA.

IGYCASM1

The Assembly 1 phase. It determines the object module storage, allocates

the permanent and temporary registers, and optimizes addressability for

data and procedure references. It also creates object text for data areas.

Syntax

�� ASM1= IN

OUT
 ��

IGYCASM2

The Assembly 2 phase. It completes preparation of the object program and

creates object text, listings, punch data sets, and tables for the debugging

feature.

Planning to Customize Enterprise COBOL

6 Enterprise COBOL for z/OS V3R4 Customization Guide

Syntax

�� ASM2= IN

OUT
 ��

IGYCDIAG

The diagnostic phase. It processes E-form text and generates compiler

diagnostics for source program errors. It includes IGYCDIAG plus the

following message modules: IGYCxx$D, IGYCxx$1, IGYCxx$2, IGYCxx$3,

IGYCxx$4, IGYCxx$5, and IGYCxx$8, where xx is EN, UE, or JA.

Syntax

�� DIAG= IN

OUT
 ��

IGYCDMAP

The DMAP phase. It prepares text for output requested by the MAP

option.

Syntax

�� DMAP= IN

OUT
 ��

IGYCFGEN

The file generation phase. It generates the control blocks for the FDs and

SDs defined in the program.

Syntax

�� FGEN= IN

OUT
 ��

IGYCINIT

The initialization phase. It does housekeeping to prepare for running of the

processing phases.

Syntax

�� INIT= IN

OUT
 ��

IGYCLIBR

The COPY phase. It processes library source text and does a syntax check

of the COPY, BASIS, and REPLACE statements.

Syntax

�� LIBR= IN

OUT
 ��

Planning to Customize Enterprise COBOL

Chapter 1. Planning to customize Enterprise COBOL 7

IGYCLSTR

The source listing phase. It prints the source listing with embedded

cross-reference and diagnostic information.

Syntax

�� LSTR= IN

OUT
 ��

IGYCMSGT

Represents the header text table and diagnostic message level tables. It

includes the following modules: IGYCxx$R, IGYCLVL0, IGYCLVL1,

IGYCLVL2, IGYCLVL3, and IGYCLVL8, where xx is EN, UE, or JA.

Syntax

�� MSGT= IN

OUT
 ��

IGYCOPTM

The optimizer phase. It restructures the PERFORM statements and

eliminates duplicate computations.

Syntax

�� OPTM= IN

OUT
 ��

IGYCOSCN

The option scanning phase. It determines the default options, processes the

EXEC PARM options, and processes the PROCESS (CBL) statements.

Syntax

�� OSCN= IN

OUT
 ��

IGYCPGEN

The procedure generation phase. It supplies code for all procedure source

verbs.

Syntax

�� PGEN= IN

OUT
 ��

IGYCRCTL

The resident control phase. It establishes the size of compiler common and

working storage, and performs initialization of program common storage.

Syntax

�� RCTL= IN

OUT
 ��

Planning to Customize Enterprise COBOL

8 Enterprise COBOL for z/OS V3R4 Customization Guide

IGYCRWT

The normal reserved word table.

Syntax

�� RWT= IN

OUT
 ��

IGYCSCAN

The scanning phase. It does syntax and semantic analysis of the source

program and translates the source to intermediate text.

Syntax

�� SCAN= IN

OUT
 ��

IGYCSIMD

The system interface phase for the Enterprise COBOL compiler. This phase

is called by all other compiler phases to perform system-dependent

functions.

Syntax

�� SIMD= IN

OUT
 ��

IGYCXREF

The XREF phase. It sorts user-names and procedure-names in EBCDIC

collating sequence.

Syntax

�� XREF= IN

OUT
 ��

IGYCDOPT worksheet for compiler phases

The following worksheet will help you to plan and code the phases portion of the

IGYCDOPT program. Circle the value that you plan to assign to each phase. For

more information on the values that can be assigned to each phase, see “Compiler

phases and their defaults” on page 6.

Note: All phase defaults are initially set to IN.

 Table 2. IGYCDOPT program worksheet for compiler phases

Phase Circle selection Syntax description

ASM1= IN / OUT 6

ASM2= IN / OUT 6

DIAG= IN / OUT 7

DMAP= IN / OUT 7

FGEN= IN / OUT 7

INIT= IN / OUT 7

LIBR= IN / OUT 7

LSTR= IN / OUT 8

Planning to Customize Enterprise COBOL

Chapter 1. Planning to customize Enterprise COBOL 9

Table 2. IGYCDOPT program worksheet for compiler phases (continued)

Phase Circle selection Syntax description

MSGT= IN / OUT 8

OPTM= IN / OUT 8

OSCN= IN / OUT 8

PGEN= IN / OUT 8

RCTL= IN / OUT 5

RWT= IN / OUT 9

SCAN= IN / OUT 6

SIMD= IN / OUT 9

XREF= IN / OUT 9

Planning to create an additional reserved word table

When you install Enterprise COBOL, you have access to the following reserved

word tables:

v IGYCRWT—The default reserved word table provided for your entire facility.

v IGYCCICS—A CICS-specific reserved word table, provided as an alternate

reserved word table (See “CICS reserved word table (IGYCCICS)”).

You can create additional reserved word tables after installation. (During

compilation, the value of the WORD compiler option determines which reserved

word table is used.)

Why create additional reserved word tables?

You can create additional reserved word tables to do the following:

v Translate the reserved words into another language, such as French or German.

v Prevent application programmers from using a particular Enterprise COBOL

instruction, such as GO TO.

v Control the usage of nested programs.

v Flag those that are not supported on CICS, such as READ and WRITE.

Controlling use of nested programs

To restrict the use of nested programs, without restricting any other COBOL

language features, modify the reserved word table. Do this with the INFO and

RSTR control statements. For instructions on how to make these modifications, see

“Creating or modifying a reserved word table” on page 56.

Reserved word tables supplied with Enterprise COBOL

These reserved word tables are on the installation tape:

v Default reserved word table

v CICS reserved word table

Default reserved word table (IGYCRWT)

The default reserved word table is described in an appendix of Enterprise COBOL

Language Reference.

CICS reserved word table (IGYCCICS)

Enterprise COBOL provides an alternate reserved word table specifically for CICS

application programs. It is set up so that COBOL words not supported under CICS

are flagged by the compiler with an error message.

Planning to Customize Enterprise COBOL

10 Enterprise COBOL for z/OS V3R4 Customization Guide

The CICS reserved word table is the same as the default reserved word table

except that the following COBOL words are marked as restricted (RSTR):

 CLOSE

DELETE

FD

FILE

FILE-CONTROL

INPUT-OUTPUT

I-O-CONTROL

MERGE

OPEN

READ

RERUN

REWRITE

SD

SORT

START

WRITE

SORT users

If you intend to use the SORT statement under CICS (Enterprise COBOL

supports an interface for the SORT statement under CICS), you must modify

the CICS reserved word table before using it. The words underlined above

must be removed from the list of words marked as restricted, because they

are required for the SORT function.

Using the table: To use the CICS reserved word table, you must specify the

WORD(CICS) compiler option. To have the CICS reserved word table used as the

default, you must set the default value of the WORD compiler option to

WORD=CICS.

Location of the table: The data used to create the CICS reserved word table is in

member IGY8CICS in IGY.V3R4M0.SIGYSAMP.

Note: The high-level qualifiers of IGY.V3R4M0 might have been changed when

Enterprise COBOL was installed.

Planning to Customize Enterprise COBOL

Chapter 1. Planning to customize Enterprise COBOL 11

Planning to Customize Enterprise COBOL

12 Enterprise COBOL for z/OS V3R4 Customization Guide

Chapter 2. Enterprise COBOL compiler options

This describes the compiler options whose default values you can change. The

notes that accompany some of the descriptions provide additional information

about these options, such as how they interact with other options during

compilation. This information might help you to make decisions about which

default values are appropriate for your installation. For more information on using

the compiler options, see Enterprise COBOL for z/OS Programming Guide.

Important

Confer with the application programmers at your site while you plan the

customization of Enterprise COBOL. Doing so will ensure that the

modifications you make serve their needs and support the applications being

developed.

Specifying COBOL compiler options

When you specify compiler options in the IGYCOPT macro, both the option name

and its value must be specified in uppercase. If you don’t specify the option name

in uppercase, both the option name and its value are ignored and the default value

is used instead. No error message is issued. If only the option value is not in

uppercase, an error message will be issued indicating that an invalid option value

has been specified.

Conflicting compiler options

If you specify certain compiler option values, a conflict with other compiler

options might result. Table 3 will help you resolve possible conflicts between

compiler options.

 Table 3. Conflicting compiler options

Compiler option Conflicts with:

CICS=YES RENT=NO

DYNAM=YES

LIB=NO

DBCS=NO NSYMBOL=NATIONAL

DBCSXREF=(other than NO) XREFOPT=NO

DLL=NO EXPORTALL=YES

DLL=YES DYNAM=YES

RENT=NO

DYNAM=YES CICS=YES

DLL=YES

EXPORTALL=YES

EXPORTALL=YES DLL=NO

DYNAM=YES

RENT=NO

LIB=NO CICS=YES

SQL=YES

© Copyright IBM Corp. 1991, 2006 13

Table 3. Conflicting compiler options (continued)

Compiler option Conflicts with:

LIST=YES OFFSET=YES

MDECK=YES LIB=NO

NSYMBOL=NATIONAL DBCS=NO

OBJECT=NO TEST=(other than NO)

OFFSET=YES LIST=YES

OPT=STD or OPT=FULL TEST=(other than NONE for hook location)

RENT=NO CICS=YES

DLL=YES

EXPORTALL=YES

THREAD=YES

SQL=YES LIB=NO

TEST=(other than NO) OBJECT=NO

TEST=(other than NONE for

hook-location suboption)

OPT=STD or OPT=FULL

THREAD=YES RENT=NO

WORD=xxxx FLAGSTD=(other than NO)

XREFOPT=NO DBCSXREF=(other than NO)

Compiler options for standards conformance

For information on specifying compiler options to conform with the COBOL 85

Standard, please refer to the Enterprise COBOL for z/OS Programming Guide.

Compiler options syntax and descriptions

The syntax diagrams on the following topics describe each modifiable compiler

option. The text below each diagram describes the effect of selecting a specific

parameter.

Notes:

1. The DUMP option is not in this list. Unless you change it at compile time,

DUMP is always set to NODUMP. This option is not for general use; it is used

only at the request of an IBM representative.

2. Coding the asterisk [*] , when you modify a compiler option default value,

indicates that the option is to be fixed and cannot be overridden by an

application programmer.

ADATA

Syntax

��

ADATA=

*

 NO

YES

��

Default

ADATA=NO

Enterprise COBOL compiler options

14 Enterprise COBOL for z/OS V3R4 Customization Guide

||

YES

Produces the Associated Data file with the appropriate records.

NO

Does not produce the Associated Data file.

Notes:

1. The ADATA option can be specified only at invocation through the option list,

on the PARM field of JCL, as a command option, or as an installation default.

2. Selection of the Japanese language option might result in DBCS characters

written records in the Associated Data file.

3. Specification of NOCOMPILE(W|E|S) might stop compilation prematurely,

resulting in a loss of specific Associated Data records.

4. Specification of INEXIT prohibits identification of the compilation source file

for the Associated Data file.

ADEXIT

Syntax

�� ADEXIT=

name

*

 ��

Default

No exit is specified.

name

Identifies a module to be used with the EXIT compiler option. When the

suboption for this user exit is specified, the compiler loads that module and

calls it for each record that is written to the Associated Data file. For more

information, see Enterprise COBOL for z/OS Programming Guide.

ADV

Syntax

��

ADV=

*

 YES

NO

��

Default

ADV=YES

YES

Adds one byte to the record length for the printer control character. This

option might be useful to programmers who use WRITE. . .ADVANCING in

their source files. The first character of the record does not have to be explicitly

reserved by the programmer.

NO

Does not adjust the record length for WRITE. . .ADVANCING. The compiler

uses the first character of the specified record area to place the printer control

character. The application programmer must ensure that the record description

allows for this additional byte.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 15

Notes:

1. With ADV=YES, the record length on the physical device is one byte larger

than the record description length in the source program.

2. If the record length for the output file is not defined in the source code,

COBOL ensures that the DCB parameters are appropriately set.

3. If ADV=YES is specified, and the record length for the output file has been

defined in the source code, the programmer must specify the record description

length as one byte larger than the source program record description. The

programmer must also specify the block size in correct multiples of the larger

record size.

4. If the LINAGE clause is specified in a file description (FD), the compiler treats

that file as if ADV=YES has been specified.

ALOWCBL

Syntax

��

ALOWCBL=
 YES

NO

��

Default

ALOWCBL=YES

YES

Allows the use of the PROCESS (or CBL) statements in COBOL programs.

NO

Diagnoses the use of PROCESS (or CBL) statements in a program as an error.

Notes:

1. ALOWCBL cannot be overridden at compile time because it cannot be included

in the PROCESS (or CBL) statement.

2. The PROCESS (or CBL) statement specifies compiler-option parameters within

source programs. If your installation requirements do not allow compiler

options to be specified in a source program, specify ALOWCBL=NO.

ARITH

Syntax

��

ARITH=

*

 COMPAT

EXTEND

��

Default

ARITH=COMPAT

COMPAT

Specifies 18 digits as the maximum precision for decimal data.

EXTEND

Specifies 31 digits as the maximum precision for decimal data.

Enterprise COBOL compiler options

16 Enterprise COBOL for z/OS V3R4 Customization Guide

AWO

Syntax

��

AWO=

*

 NO

YES

��

Default

AWO=NO

YES

Activates the APPLY-WRITE-ONLY clause for any file within the program that

is physical sequential with variable block format regardless of whether or not

the APPLY-WRITE-ONLY clause is specified in the program.

 Performance consideration: Using AWO=YES generally results in fewer calls to

Data Management Services for runtime files when handling input and output.

NO

Does not activate the APPLY-WRITE-ONLY clause for any file within the

program that is physical sequential with variable block format unless the

APPLY-WRITE-ONLY clause is specified in the program.

BUF

Syntax

��

BUF=

*

 4K

integer

integerK

��

Default

BUF=4K

integer

Specifies the amount of dynamic storage, in bytes, to be allocated to each

compiler work file buffer. The minimum value is 256 bytes.

 Performance consideration: Using a large buffer size usually improves the

performance of the compiler.

integerK

Specifies the amount of dynamic storage to be allocated to buffers in

increments of 1-K (1024) bytes.

Notes:

1. BUF and SIZE values are used by the compiler to determine how much storage

to use during compilation. The amount allocated to the buffers is included in

the amount of main storage available to the compiler for the SIZE option.

2. BUF cannot exceed the track capacity for the device used, nor can it exceed the

maximum allowed by data management services.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 17

CICS

Syntax

��

CICS=

*

 NO

YES

��

Default

CICS=NO

NO

When the NO option is specified, any CICS statements that are found in the

source program are diagnosed and discarded.

YES

If a COBOL source program contains CICS statements and has not been

preprocessed by the CICS translator, the YES option must be specified.

Notes:

1. The CICS compiler option can contain CICS suboptions. The CICS suboptions

delimiter can be quotes or apostrophes. CICS suboptions cannot be specified as

a COBOL installation default.

2. You can specify the CICS compiler option in any of the compiler option

sources: installation defaults, compiler invocation, or PROCESS or CBL

statements.

CODEPAGE

Syntax

�� CODEPAGE=

*
 integer ��

Default

CODEPAGE (1140)

ccsid

ccsid must be a valid coded character set identifier (CCSID) number that

identifies an EBCDIC code page.

Notes:

1. The CODEPAGE option specifies the code page used for encoding:

v Contents of alphanumeric and DBCS data items at run time

v Alphanumeric, national, and DBCS literals in a COBOL source program
2. The default CCSID 1140 is an equivalent of CCSID 37 (EBCDIC Latin-1, USA)

but includes the Euro symbol.

COMPILE

Syntax

Enterprise COBOL compiler options

18 Enterprise COBOL for z/OS V3R4 Customization Guide

��

COMPILE=

*

 S

NOC(

E

)

W

YES

��

Default

COMPILE=NOC(S)

YES

Indicates that you want full compilation, including diagnostics and object code.

NOC

Indicates that you want only a syntax check.

NOC(W)

NOC(E)

NOC(S)

Specifies an error message level: W is warning; E is error; S is severe. When an

error of the level specified or of a more severe level occurs, compilation stops,

and only syntax checking is done for the balance of the compilation.

Note: Specifying NOCOMPILE might affect the Associated Data file by stopping

compilation prematurely, resulting in loss of specific messages.

CURRENCY

Syntax

��

CURRENCY=

*

 NO

literal

��

The COBOL default currency symbol is the dollar sign ($). The CURRENCY option

allows you to define an alternate default currency symbol.

Default

CURRENCY=NO

literal

Represents the default currency symbol that you want to use in your program.

 The literal must be a nonnumeric literal representing a one-byte EBCDIC

character that must not be any of the following:

v Digits zero (0) through nine (9)

v Uppercase alphabetic characters: A B C D P R S V X Z

v Lowercase alphabetic characters a through z

v The space

v Special characters: * + - / , . ; () = ″

v Uppercase alphabetic character G, if the COBOL program defines a DBCS

item with the PICTURE symbol G. The PICTURE clause will not be valid for

that DBCS item because the symbol G is considered to be a currency symbol

in the PICTURE clause.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 19

v Uppercase alphabetic character N, if the COBOL program defines a DBCS

item with the PICTURE symbol N. The PICTURE clause will not be valid for

that DBCS item because the symbol N is considered to be a currency symbol

in the PICTURE clause.

v Uppercase alphabetic character E, if the COBOL program defines an external

floating-point item. The PICTURE clause will not be valid for the external

floating-point item because the symbol E is considered to be a currency

symbol in the PICTURE clause.

 The literal (including hex literal) syntax rules are as follows:

v The literal delimiters can be either quotes or apostrophes regardless of any

option setting for literal delimiters.

v When an apostrophe (’) is to be the currency sign, the embedded apostrophe

must be doubled, that is, two apostrophes must be coded to represent one

apostrophe within the literal. For example:

’’’’ or "’’"

v The format for a hex literal specification is as follows:

X’H1H2’ or X"H1H2"

where H1H2 is a valid hexadecimal value representing a one-byte EBCDIC

character conforming to the rules for the currency sign literal as described

above. Alphabetic characters in the hex literal must be in uppercase.

Note: Hex values of X’20’ or X’21’ are not allowed.

NO

Indicates that no alternate default currency sign is provided through the

CURRENCY option, and the dollar sign will be used as the default currency

sign for the program if the CURRENCY option is not specified at compile time.

 The value NO provides the same results for the source program as omitting

the CURRENCY SIGN clause in the COBOL source program.

Notes:

1. You can use the CURRENCY option as an alternative to the CURRENCY SIGN

clause (which is specified in the COBOL source program) for selecting the

currency symbol that you use in the PICTURE clause of your COBOL program.

2. When both the CURRENCY option and the CURRENCY SIGN clause are used

in a program, the symbol that is specified in the CURRENCY SIGN clause is

the currency symbol in a PICTURE clause when that symbol is used (even if

the CURRENCY option is fixed {*}).

DATA

Syntax

��

DATA=

*

 31

24

��

Default

DATA=31

31 Causes allocation of user data areas, such as working storage and FD record

areas, from unrestricted storage or in space acquired by a GETMAIN with the

Enterprise COBOL compiler options

20 Enterprise COBOL for z/OS V3R4 Customization Guide

LOC=ANY option. Specifying this option can result in storage being acquired

in virtual addresses either above or below the 16-MB line. The operating

system generally satisfies the request with space in virtual addresses above the

16-MB line, if it is available.

24 Causes allocation of user data areas in virtual addresses below 16 megabytes in

storage acquired by a GETMAIN with the LOC=BELOW option.

 Specify DATA=24 for programs compiled with the RENT option that are

passing data parameters to programs in 24-bit mode. This includes the

following cases:

v An Enterprise COBOL program is passing items in its WORKING-STORAGE

to an AMODE 24 program.

v An Enterprise COBOL program is passing, by reference, data items received

from its caller to an AMODE 24 program. DATA=24 is required even when

the data received is below the 16-MB line.

Otherwise, the data might not be addressable by the called program.

Notes:

1. When a program is compiled with the RENT option, the DATA option controls

how space for WORKING-STORAGE and parameter lists is acquired.

2. The DATA option has no effect on programs compiled with the NORENT

option.

DATEPROC

Syntax

��

DATEPROC=

*

 NO

FLAG

(

NOFLAG

)

NOTRIG

,

TRIG

��

The DATEPROC option determines whether the compiler will perform date

processing using the DATE FORMAT clause and other language constructs.

Default

DATEPROC=NO, or DATEPROC(FLAG,NOTRIG) if only DATEPROC is

specified.

FLAG

Recognizes the DATE FORMAT clause and performs automatic date

processing. In addition, specifying DATEPROC=FLAG flags, either with an

information-level message or a warning-level message as appropriate, each

statement that uses or is affected by date processing.

NOFLAG

Recognizes the DATE FORMAT clause and performs automatic date

processing. Statements that use or are affected by date processing are not

flagged with information-level or warning-level messages.

TRIG

Recognizes the DATE FORMAT clause and performs date processing based on

automatic windowing that the compiler applies to operations on windowed

date fields. The automatic windowed date fields are sensitive to specific trigger

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 21

or limit values in the date fields and in other nondate fields. These specific

values represent dates that are not valid and that can be tested for or used as

upper or lower limits.

NOTRIG

Recognizes the DATE FORMAT clause and performs date processing based on

automatic windowing that the compiler applies to operations on windowed

date fields. The automatic windowed date fields are not sensitive to specific

trigger or limit values in the date fields and in other nondate fields. Only the

value of the year part of dates is relevant to automatic windowing.

NO

Treats the DATE FORMAT clause as comments and disables automatic date

processing. In the case of the new intrinsic functions, specifying

DATEPROC=NO generates object code that returns a default value whenever a

new intrinsic function is used.

Note:

Error-level and severe-level messages are issued regardless of whether

DATEPROC=FLAG or DATEPROC=NOFLAG is specified.

DBCS

Syntax

��

DBCS=

*

 YES

NO

��

Default

DBCS=YES

YES

Recognizes X'0E' and X'0F' in a nonnumeric literal and treats them as shift-out

and shift-in control characters for delimiting DBCS data.

NO

Does not recognize X'0E' and X'0F'as shift-out and shift-in control characters in

a nonnumeric literal.

Notes:

1. The presence of DBCS data inside the nonnumeric literal might cause the

compiler to disallow certain uses of that literal. For example, DBCS characters

are not allowed as program names or DDNAMES.

2. DBCS=NO conflicts with NSYMBOL(NATIONAL).

DBCSXREF

Syntax

��

DBCSXREF=
 NO

(

R

,xx

)

N

,yy

,zz

��

Enterprise COBOL compiler options

22 Enterprise COBOL for z/OS V3R4 Customization Guide

Default

DBCSXREF=NO

NO

Specifies that no ordering program is used for cross-reference of DBCS names.

If the XREF phase is specified, a cross-reference listing of DBCS names is

provided based on their physical order in the program.

R Specifies that the DBCS Ordering Support Program (DBCSOS) is loaded into

the user region.

N Specifies that the DBCS Ordering Support Program (DBCSOS) is loaded into a

shared system area such as the MLPA.

xx Names a load module of the relevant ordering program to produce DBCS cross

references. It must be eight characters in length.

yy Names an ordering type. It must be two characters in length. The default

ordering type defined by the specified ordering program occurs if this

parameter is omitted.

zz Names the encode table that the specified ordering type uses. It must be eight

characters in length. The default encode table that is associated with the

particular ordering type occurs if this parameter is omitted.

Notes:

1. The DBCS Ordering Support Program (DBCSOS) must be installed to specify

anything other than DBCSXREF=NO.

2. If R is specified and the SIZE value is anything other than MAX, ensure that

the user region is large enough to accommodate both the compiler and

ordering program.

3. Specifying both XREFOPT=NO and DBCSXREF with an ordering program

results in a nonzero return code while attempting to assemble the

customization macro.

4. The assembly process terminates when validation diagnoses:

v A parameter length that is not valid

v Characters other than 'R' and 'N'

v Missing parameters after a comma

v Missing 'yy' when 'zz' is specified

DECK

Syntax

��

DECK=

*

 NO

YES

��

Default

DECK=NO

YES

Places the generated object code in a file defined by SYSPUNCH.

NO

Sends no object code to SYSPUNCH.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 23

DIAGTRUNC

Syntax

��

DIAGTRUNC=

*

 NO

YES

��

Default

DIAGTRUNC=NO

YES

Causes the compiler to issue a severity-4 (warning) diagnostic message for

MOVE statements with numeric receivers when the receiving data item has

fewer integer positions than the sending data item or literal.

NO

Does not cause the compiler to produce a severity-4 message.

Notes:

1. The diagnostic is also issued for moves to numeric receivers from alphanumeric

data names or literal senders, except when the sending field is reference

modified.

2. There is no diagnostic for COMP-5 receivers, nor for binary receivers when you

specify the TRUNC(BIN) option.

DLL

Syntax

��

DLL=

*

 NO

YES

��

Default

DLL=NO

YES

Generates an object module that is enabled for dynamic link library (DLL)

support. DLL enablement is required if the program is part of a DLL,

references DLLs, or contains object-oriented COBOL syntax (for example,

INVOKE statements, or class definitions).

 Specification of the DLL option requires that the NODYNAM option and

RENT options are also used.

NO

Generates an object module that is not enabled for DLL usage.

Enterprise COBOL compiler options

24 Enterprise COBOL for z/OS V3R4 Customization Guide

DYNAM

Syntax

��

DYNAM=

*

 NO

YES

��

Default

DYNAM=NO

YES

Dynamically loads subprograms that are invoked through the CALL literal

statement.

 Performance consideration: Using DYNAM=YES eases subprogram

maintenance because the application is not relink-edited if the subprogram is

changed. However, individual applications with CALL literal statements can

experience some performance degradation due to a longer path length.

NO

Includes, in the calling program, the text files of subprograms called with a

CALL literal statement into a single module file.

Notes:

1. The DYNAM option has no effect on the CALL identifier statement at compile

time. The CALL identifier statement always compiles to a dynamic call.

2. Do not specify DYNAM=YES for applications running under CICS.

EXPORTALL

Syntax

��

EXPORTALL=

*

 NO

YES

��

Default

EXPORTALL=NO

YES

Automatically exports certain symbols when the object deck is link-edited to

form a DLL.

 Specification of EXPORTALL requires that the DLL, RENT, and NODYNAM

options are also used.

NO

Does not export any symbols.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 25

FASTSRT

Syntax

��

FASTSRT=

*

 NO

YES

��

Default

FASTSRT=NO

YES

Specifies that the IBM DFSORT™ licensed program or comparable product

performs input and output when you use either the USING or GIVING option.

 Performance consideration: Using FASTSRT=YES eliminates the overhead, in

terms of CPU time usage, of returning to Enterprise COBOL after each record

is processed. However, there are restrictions that you must follow if you

choose to use this option. (For a detailed description of the restrictions, see

Enterprise COBOL for z/OS Programming Guide.)

NO

Specifies that Enterprise COBOL does the input and output for the sort and

merge.

Notes:

1. If FASTSRT is in effect at compile time, the compiler verifies that the FASTSRT

interface can be used for all restrictions except these two:

v A device other than a direct-access device must be used for sort work files.

v The DCB parameter of the DD statement for the input file or output file

must match the file description (FD) of the file.
2. If FASTSRT cannot be used, the compiler generates a diagnostic message and

prevents the sort program from performing I/O when using either the USING

or GIVING options. Therefore, it might be to your advantage to specify YES as

the default.

FLAG

Syntax

��

FLAG=

*

 (x)

y

,

NO

��

Default

FLAG=(I,I)

Note: The second severity level used in this syntax must be equal to or higher

than the first.

x I|W|E|S|U

 Specifies that errors at or above the severity level specified are flagged and

written at the end of the source listing.

Enterprise COBOL compiler options

26 Enterprise COBOL for z/OS V3R4 Customization Guide

ID Type Return Code

I Information 0

W Warning 4

E Error 8

S Severe error 12

U Unrecoverable error 16

y I|W|E|S|U

 The optional second severity level specifies the level of syntax messages

embedded in the source listing in addition to being at the end of the listing.

NO

Indicates that no error messages are flagged.

Notes:

1. If the messages are to be embedded, SOURCE must be specified at compile

time. Embedded messages enhance productivity because they are placed after

the referenced source statement.

2. Specification of FLAG(W|E|S) might result in the loss of entire classes of

messages from the Events records in the Associated Date file. See Enterprise

COBOL for z/OS Programming Guide for more information.

FLAGSTD

Syntax

��

FLAGSTD=

*

 NO

(x

)

y

,O

��

Default

FLAGSTD=NO

x Can be M, I, or H to specify flagging for a FIPS COBOL subset or standard.

M = ANS minimum subset of Standard COBOL.

I = ANS intermediate subset, composed of those additional intermediate

subset language elements that are not part of the ANS minimum

subset.

H = ANS high subset, composed of those additional high subset language

elements that are not part of the ANS intermediate subset.

y Can be any one or two combinations of D, N, or S to further define the level of

flagging produced.

D Specifies ANS Debug module Level 1

N Specifies ANS Segmentation Module Level 1

S Specifies ANS Segmentation Module Level 2 (S is a superset of N.)

O Specifies that obsolete elements occurring in any of the sets above are flagged

NO

Specifies that no FIPS flagging is accomplished.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 27

Notes:

1. The following elements are flagged as nonconforming nonstandard IBM

extensions to the COBOL 85 Standard:

v Language syntax, such as the DATE FORMAT clause, used by the COBOL

automatic date-processing facilities (as enabled by the DATEPROC compiler

option)

v Language syntax for object orientation and improved interoperability with

C/C++

v Use of the PGMNAME=LONGMIXED compiler option
2. When FIPS flagging is specified, informational messages in the source program

listing identify:

v Whether the language element is obsolete, nonconforming standard, or

nonconforming nonstandard (language elements that are both obsolete and

nonconforming are flagged as obsolete only)

v The clause, statement, or header containing the nonconforming or obsolete

syntax

v The source program line and an indication of the starting column within that

line

v The level or optional module to which the language element belongs
3. FIPS flagging is suppressed when any error diagnosed as level E or higher

occurs.

4. Interaction of FLAGSTD and other compiler options:

v If the following compiler options are explicitly or implicitly specified in a

program, FLAGSTD=(other than NO) issues a warning message during

compile time:

 ADV=NO

DATEPROC=(other than NO)

DBCS=YES

DYNAM=NO

FASTSRT=YES

LIB=NO

LITCHAR=APOST

NUM=YES

NUMPROC=PFD

SEQ=YES

TRUNC=OPT or BIN

WORD=(other than NO or RWT)

ZWB=NO

v Specifying the following options together with FLAGSTD=(other than NO),

while attempting to assemble the customization macro, results in a nonzero

return code.

 ADV=NO

DATEPROC=(other than NO)

DBCS=YES

DYNAM=NO

LIB=NO

LITCHAR=APOST

NUM=YES

NUMPROC=PFD

SEQ=YES

TRUNC=OPT or BIN

WORD=(other than NO or RWT)

ZWB=NO

5. FLAGSTD might produce events records in the Associated Data file for FIPS

standard conformation messages. Error messages are not guaranteed to be

sequential in regard to source record numbers.

Enterprise COBOL compiler options

28 Enterprise COBOL for z/OS V3R4 Customization Guide

INEXIT

Syntax

�� INEXIT=

*

name
 ��

Default

No exit is specified.

name

Identifies a module to be used with the EXIT compiler option. When the

suboption for this user exit is specified, the compiler loads that module and

calls it to obtain source statements instead of reading the SYSIN data set. When

the option is supplied, the SYSIN data set is not opened. For more specific

information, see Enterprise COBOL for z/OS Programming Guide.

Note:

Specification of INEXIT prohibits identification of the compilation source file.

INTDATE

Syntax

��

INTDATE=

*

 ANSI

LILIAN

��

Default

INTDATE=ANSI

ANSI

Uses the ANSI COBOL Standard starting date for integer date format dates

used with date intrinsic functions. Day 1 = Jan 1, 1601.

 With INTDATE(ANSI), the date intrinsic functions return the same results as in

COBOL/370™ Release 1.

LILIAN

Uses the Language Environment Lilian starting date for integer date format

dates used with date intrinsic functions. Day 1 = Oct 15, 1582.

 With INTDATE(LILIAN), the date intrinsic functions return results compatible

with the Language Environment date callable services. These results are

different from those in COBOL/370 Release 1.

Notes:

1. When INTDATE(LILIAN) is in effect, CEECBLDY is not usable because you

have no way to turn an ANSI integer into a meaningful date using either

intrinsic functions or callable services. If you code a CALL literal statement

with CEECBLDY as the target of the call with INTDATE(LILIAN) in effect, the

compiler diagnoses this and converts the call target to CEEDAYS.

2. If you set your installation option to INTDATE(LILIAN), you should recompile

all of your COBOL/370 Release 1 programs that use intrinsic functions to

ensure that all of your code uses the lilian integer date standard. This method

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 29

is the safest, because you can store integer dates, pass them between programs,

and even pass them from PL/I to COBOL to C programs and have no

problems.

LANGUAGE

Syntax

�� LANGUAGE=

*
 XX ��

Default

LANGUAGE=EN

XX

Specifies the language for compiler output messages. Entries for this parameter

might be selected from the following list.

 Table 4. Entries for the LANGUAGE compiler option

Entry Language

EN or ENGLISH Mixed case U.S. English

JA, JP, or JAPANESE Japanese

UE or UENGLISH Uppercase U.S. English

Notes:

1. The LANGUAGE option name must consist of at least the first two identifying

characters. Other characters following the first two identifiers can be used;

however, only the first two are used to determine the language name.

2. This compiler option does not affect the language in which runtime messages

are displayed. For more information on runtime options and messages, refer to

z/OS Language Environment Programming Guide.

3. Some printers use only uppercase and might not accept output in mixed case

(LANGUAGE=ENGLISH).

4. To specify the Japanese language option, the Japanese National Language

Feature must be installed.

5. To specify the English language option (mixed-case English), the U.S. English

Language Feature must be installed.

6. If your installation provides a language other than those listed above, and you

select it as your installation’s default, you must specify at least the first two

characters of the language name. These two characters must be alphanumeric.

7. The selection of Japanese, together with specification of the EVENTS option or

the ADATA option, might result in DBCS characters being written to error

identification records in the Associated Data file.

LIB

Syntax

��

LIB=

*

 NO

YES

��

Enterprise COBOL compiler options

30 Enterprise COBOL for z/OS V3R4 Customization Guide

Default

LIB=NO

YES

Indicates that the source program contains COPY or BASIS statements.

NO

Indicates that the source program doesn’t contain COPY or BASIS statements.

LIBEXIT

Syntax

�� LIBEXIT=

*

name
 ��

Default

No exit is specified.

name

Identifies a module used with the EXIT compiler option. When the suboption

for this user exit is specified, the compiler loads that module and calls it to

obtain COPY statements instead of reading the SYSLIB or library-name data

set. When the option is supplied, the SYSLIB and library-name data sets are

not opened. For more specific information, see Enterprise COBOL for z/OS

Programming Guide.

LINECNT

Syntax

��

LINECNT=

*

 60

integer

��

Default

LINECNT=60

integer

Specifies the number of lines to be printed on each page of the compiler source

code listing. Three of the lines are used to generate headings. For example, if

you specify LINECNT=60, 57 lines of source code are printed on each page of

the output listing, and 3 lines are used for headings.

Note: The LINECNT installation option is equivalent to the LINECOUNT

compile-time option.

LIST

Syntax

��

LIST=

*

 NO

YES

��

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 31

Default

LIST=NO

YES

Produces a listing that includes:

v The assembler-language expansion of source code

v Information about working storage

v Global tables

v Literal pools

NO

Suppresses this listing.

Note: The LIST and OFFSET compiler options are mutually exclusive. Setting

OFFSET=YES and LIST=YES results in a nonzero return code and an error message

during assembly of the customization macro.

LITCHAR

Syntax

��

LITCHAR=

*

 QUOTE

APOST

��

Default

LITCHAR=QUOTE

QUOTE

Use QUOTE if you want the figurative constant [ALL] QUOTE or [ALL]

QUOTES to represent one or more quotation mark (") characters. QUOTE

conforms to the COBOL 85 Standard.

APOST

Use APOST if you want the figurative constant [ALL] QUOTE or [ALL]

QUOTES to represent one or more apostrophe (’) characters.

Notes:

1. Either quotes or apostrophes can be used as literal delimiters, regardless of

whether the APOST or QUOTE option is in effect.

2. The delimiter character used as the opening delimiter for a literal must be used

as the closing delimiter for that literal.

LVLINFO

Syntax

�� LVLINFO=

xxxx
 ��

Default

No characters are specified.

xxxx

Identifies the one to four alphanumeric characters that are inserted into the

Enterprise COBOL compiler options

32 Enterprise COBOL for z/OS V3R4 Customization Guide

listing header following the release number (the last 4 bytes of the signature

area). This option might be used to identify “compiler level” information

within the listing header.

MAP

Syntax

��

MAP=

*

 NO

YES

��

Default

MAP=NO

YES

Maps items declared in the DATA DIVISION. Map output includes:

v DATA DIVISION map

v Global tables

v Literal pools

v Program statistics

v Size of the program’s working storage and its location in the object code if

the program is compiled without the RENT compiler option

NO

Mapping is not performed.

MDECK

Syntax

��

MDECK=

*

 NO

COMPILE

YES(

NOCOMPILE

)

��

Default

MDECK=NO

COMPILE

Compilation continues normally after library processing and generation of the

MDECK output file.

NOCOMPILE

Compilation ends after library processing is completed and the expanded

source program file is written.

NAME

Syntax

��

NAME=

*

 NO

NOALIAS

ALIAS

��

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 33

|

|

||||||||||||||||||||||||||||||||

|

|
|

|
|
|

|
|
|

Default

NAME=NO

NOALIAS

Appends a linkage editor NAME statement (NAME modname(R)) to each

object module created in a batch compilation. The module name (modname) is

derived from the PROGRAM-ID statement according to the rules for forming

external module names.

ALIAS

Precedes the NAME statement corresponding to the PROGRAM-ID with a

linkage editor ALIAS statement for each ENTRY statement in the program.

NO

Does not append linkage editor NAME statements.

Notes:

1. The NAME option allows you to create multiple modules in a program library

with a single batch compilation. This can be useful for dynamic calls.

NSYMBOL

Syntax

��

NSYMBOL=

*

 NATIONAL

DBCS

��

Default

NSYMBOL=NATIONAL

DBCS

Use DBCS when data items are defined with the PICTURE clause consisting

only of the PICTURE symbol N and without the USAGE clause. Such data

items are treated as if the USAGE DISPLAY-1 clause were specified. Literals of

the form N″. . .″ or N’. . .’ are treated as DBCS literals.

NATIONAL

Use NATIONAL when data items are defined with the PICTURE clause

consisting only of the PICTURE symbol N and without the USAGE clause.

Such data items are treated as if the USAGE NATIONAL clause were specified.

Literals of the form N″. . .″ or N’. . .’ are treated as national literals.

Notes:

1. The NSYMBOL(DBCS) option is compatible with previous releases of IBM

COBOL. The NSYMBOL(NATIONAL) option handles the N symbol

consistently with the 200x COBOL standard.

2. NSYMBOL(NATIONAL) forces the DBCS option.

NUM

Syntax

��

NUM=

*

 NO

YES

��

Enterprise COBOL compiler options

34 Enterprise COBOL for z/OS V3R4 Customization Guide

Default

NUM=NO

YES

Uses the line numbers from the source program rather than compiler-generated

line numbers for error messages and procedure maps.

NO

Uses the compiler-generated line numbers for error messages and procedure

maps.

Notes:

1. If COBOL programmers use COPY statements and NUM=YES is in effect, they

must ensure that the source program line numbers and the COPY member line

numbers are coordinated.

NUMCLS

Syntax

��

NUMCLS=
 PRIM

ALT

��

Default

NUMCLS=PRIM

ALT

Specifies the sign representations that are recognized as valid by the numeric

class test for data items that are defined:

v As signed (with an “S” in the PICTURE clause)

v Using DISPLAY or COMPUTATIONAL-3 (packed-decimal)

v Without the SEPARATE phrase on any SIGN clause

Processing with ALT accepts hexadecimal A through F as valid.

PRIM

Processing with PRIM accepts hexadecimal C, D, and F as valid.

Notes:

1. The numeric class test is affected by how both the NUMPROC and the

NUMCLS options are specified.

2. The NUMCLS option is effective only for NUMPROC=MIG or

NUMPROC=NOPFD. NUMPROC=PFD specifies more strict rules for valid sign

configuration.

NUMPROC

Syntax

��

NUMPROC=

*

 NOPFD

MIG

PFD

��

Default

NUMPROC=NOPFD

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 35

MIG

Aids in migrating OS/VS COBOL application programs to Enterprise COBOL.

Processing with MIG entails these actions:

v Using existing signs for comparison and arithmetic operations

v Generating preferred signs for the results of MOVE and arithmetic

operations (These results meet the criteria for using NUMPROC=PFD.)

v Performing numeric rather than logical comparisons

NOPFD

Repairs signs on input. After repair is performed, the signs meet the criteria for

NUMPROC=PFD.

PFD

Optimizes the generated code, especially when OPT=STD or OPT=FULL. No

explicit sign repair is performed. Note that NUMPROC=PFD has stringent

criteria to produce correct results. To use NUMPROC=PFD:

v The sign position of unsigned numeric items must be X'F'.

v The sign position of signed numeric items must be either X'C' if positive or

zero, or must be X'D' if negative.

v The sign position of separately signed numeric items must be either '+' if

positive or zero, or '-' if otherwise.

Elementary MOVE and arithmetic statements in Enterprise COBOL always

generate results with these preferred signs; however, group MOVEs and

redefinitions might produce nonconforming results. The numeric class test can

be used for verification. With NUMPROC=PFD, a numeric item fails the

numeric class test if the signs do not meet the preferred sign criteria.

 Performance consideration: Using NUMPROC=PFD generates significantly

more efficient code for numeric comparisons. For most references to COMP-3

and DISPLAY numeric data items, using NUMPROC=MIG and

NUMPROC=NOPFD generates extra code because of sign “fix-up” processing.

This extra code might also inhibit some other types of optimizations. Before

setting this option, consult with your application programmers to determine

the effect on the application program’s output.

Notes:

1. Both the NUMPROC and NUMCLS options affect the numeric class test. With

NUMPROC=MIG or NUMPROC=NOPFD, the results of the numeric class test

are controlled by how NUMCLS is set. When NUMPROC=PFD, a data item

must meet the preferred sign criteria to be considered numeric.

OBJECT

Syntax

��

OBJECT=

*

 YES

NO

��

Default

OBJECT=YES

Enterprise COBOL compiler options

36 Enterprise COBOL for z/OS V3R4 Customization Guide

YES

Places the generated object code in a file defined by SYSLIN.

NO

Places no object code in SYSLIN.

Note: The OBJECT=NO option conflicts with all values for TEST other then NO.

OFFSET

Syntax

��

OFFSET=

*

 NO

YES

��

Default

OFFSET=NO

YES

Produces a condensed PROCEDURE DIVISION listing. The procedure portion

of the listing will contain line numbers, verb references, and the location of the

first instruction generated for each verb. In addition, the following are

produced:

v Global tables

v Literal pools

v Program statistics

v Size of the program’s working storage, and its location in the object code if

the program is compiled with the NORENT compiler option

NO

Does not condense the listing or produce the items listed above.

Note: The LIST and OFFSET compiler options are mutually exclusive. Setting

OFFSET=YES and LIST=YES results in a nonzero return code when attempting to

assemble the customization macro. See “Conflicting compiler options” on page 13

for more information on conflict resolution.

OPTIMIZE

Syntax

��

OPT=

*

 NO

STD

FULL

��

Default

OPT=NO

NO

Specifies that your code is not optimized.

STD

Generates optimized object code.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 37

Performance consideration: Using OPT=STD or OPT=FULL generally results in

more efficient runtime code.

FULL

Discards any unused data items and does not generate code for any VALUE

clauses for these data items. If the OPT(FULL) and MAP option are both

specified, discarded data items will have a BL number of XXXX in the MAP

output indicating that the number is not used.

Notes:

1. The OPTIMIZE compiler option is now fully supported for programs

containing object-oriented syntax for Java interoperability.

2. If you want to debug optimized object code using Debug Tool, the only

hook-location subparameter allowed for the TEST option is NONE. Any other

combination results in a nonzero return code and an error message during

installation.

3. Optimization is turned off if an S-level error or higher occurs.

OUTDD

Syntax

��

OUTDD=

*

 SYSOUT

ddname

��

Default

OUTDD=SYSOUT

ddname

Specifies the ddname of the file used for runtime DISPLAY output.

Notes:

1. See Language Environment Programming Reference description of the MSGFILE

runtime option to see how OUTDD interacts with MSGFILE.

2. Change the default for this option if, at run time, you expect to have a conflict

with another product that requires SYSOUT as a ddname.

PGMNAME

Syntax

��

PGMNAME=

*

 COMPAT

LONGMIXED

LONGUPPER

��

Default

PGMNAME=COMPAT

LONGMIXED

Program names are processed as is, without truncation, translation, or folding

to uppercase.

LONGUPPER

Program names are folded to uppercase by the compiler but otherwise are

processed as is, without truncation or translation.

Enterprise COBOL compiler options

38 Enterprise COBOL for z/OS V3R4 Customization Guide

COMPAT

Program names are processed in a manner compatible with COBOL/370

Release 1, and VS COBOL II.

Notes:

1. The PGMNAME option controls the handling of names used in the following

contexts:

v Program names defined in the PROGRAM-ID paragraph

v Program entry point names on the ENTRY statement

v Program name references in calls to nested programs and static calls to

separately compiled programs

v Program name references in the static SET procedure-pointer TO ENTRY

literal statement

v Program name references in CANCEL of a nested program
2. Class and method names are not affected by the PGMNAME option.

3. For more specific information, see Enterprise COBOL for z/OS Programming

Guide.

PRTEXIT

Syntax

�� PRTEXIT=

*

name
 ��

Default

No exit is specified.

name

Identifies a module to be used with the EXIT compiler option. When the

suboption for this user exit is specified, the compiler loads that module and

calls it instead of writing to the SYSPRINT data set. When the option is

supplied, the SYSPRINT data set is not opened. For more specific information,

see the Enterprise COBOL for z/OS Programming Guide.

RENT

Syntax

��

RENT=

*

 YES

NO

��

Default

RENT=YES

YES

Indicates that the object code produced for a COBOL program is reentrant.

Using RENT=YES enables the program to be placed in shared storage for

running above the 16-MB line. However, this option causes the compiler to

generate additional code to ensure that the application program is reentrant.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 39

NO

Indicates that the object code produced for a COBOL program is to be

nonreentrant.

Notes:

1. Programs must be compiled with RENT=YES or RMODE(ANY), if they will be

run in virtual storage addresses above 16-MB.

2. The RENT compiler option is required for programs that are run on CICS.

3. Programs compiled with Enterprise COBOL always have AMODE(ANY). The

RMODE assigned to a program depends on the RENT/NORENT and RMODE

compiler options. Valid combinations include:

 Table 5. Effect of RENT and RMODE on residency mode

RENT/NORENT

setting

RMODE

setting

Residency

mode assigned

RENT AUTO RMODE ANY

RENT ANY RMODE ANY

RENT 24 RMODE 24

NORENT AUTO RMODE 24

NORENT ANY RMODE ANY

NORENT 24 RMODE 24

4. When the THREAD compiler option is specified, the RENT compiler option

must also be specified. If THREAD and NORENT are specified at the same

level of precedence, the RENT option is forced on.

RMODE

Syntax

��

RMODE=

*

 AUTO

24

ANY

��

Default

RMODE=AUTO

AUTO

Specifies that a program will have RMODE 24 if NORENT is specified, and

RMODE ANY if RENT is specified.

24 Specifies that a program will have RMODE 24 whether NORENT or RENT is

specified.

ANY

Specifies that a program will have RMODE ANY whether NORENT or RENT

is specified.

Notes:

1. Enterprise COBOL NORENT programs that pass data to programs running in

AMODE 24 must be either compiled with the RMODE (24) option or

link-edited with RMODE 24. The data areas for NORENT programs will be

above the 16-MB line or below the 16-MB line depending on the RMODE of the

program, even if DATA(24) has been specified. DATA(24) applies to programs

compiled with the RENT option only.

Enterprise COBOL compiler options

40 Enterprise COBOL for z/OS V3R4 Customization Guide

2. Programs compiled with Enterprise COBOL always have AMODE ANY. The

RMODE assigned to a program depends on the RMODE and RENT/NORENT

compiler options. Valid combinations include:

 Table 6. Effect of RMODE and RENT/NORENT on residency mode

RMODE

setting

RENT/NORENT

setting

Residency

mode assigned

AUTO RENT RMODE ANY

AUTO NORENT RMODE 24

ANY RENT RMODE ANY

ANY NORENT RMODE ANY

24 RENT RMODE 24

24 NORENT RMODE 24

SEQ

Syntax

��

SEQ=

*

 YES

NO

��

Default

SEQ=YES

YES

Checks that the source statements are in ascending alphanumeric order by line

number.

NO

Does not perform sequence checking.

Notes:

1. If both SEQ and NUM are in effect at compile time, the sequence is checked

according to numeric, rather than alphanumeric, collating sequence.

SIZE

Syntax

��

SIZE=

*

 MAX

integer

integerK

��

Default

SIZE=MAX

integer

Specifies the amount of virtual storage available, in bytes. The minimum

acceptable value is 778240.

integerK

Specifies the amount of virtual storage available in 1024-byte (K) increments.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 41

The minimum acceptable value is 760-KB.

MAX

Requests all available space in the user region for use during the compilation.

For extended architecture, the compiler obtains the largest contiguous block of

free storage above the 16-MB line.

Notes:

1. Using SIZE=MAX simplifies compiler invocation by eliminating the need to

determine a specific value for the SIZE option.

2. Do not use SIZE=MAX if, when you invoke the compiler, you require it to

leave a specific amount of unused storage available in the user region.

3. SIZE=MAX in Extended Architecture allows the compiler to obtain all available

above-the-line storage in the user region and below-the-line storage for work

file buffers and compiler modules that must be below the 16-MB line. This

allocation occurs unless tuning is done for the extended architecture

environment. Therefore, you might not want to fix this option at SIZE=MAX at

installation.

SOURCE

Syntax

��

SOURCE=

*

 YES

NO

��

Default

SOURCE=YES

YES

Indicates that you want a listing of the source statements in the

compiler-generated output. This listing also includes any statements embedded

by COPY.

NO

Source statements do not appear in the output.

Note: The SOURCE compiler option must be in effect at compile time if you want

embedded messages in the source listing.

SPACE

Syntax

��

SPACE=

*

 1

2

3

��

Default

SPACE=1

1 Provides single spacing for the source statement listing.

2 Provides double spacing for the source statement listing.

3 Provides triple spacing for the source statement listing.

Enterprise COBOL compiler options

42 Enterprise COBOL for z/OS V3R4 Customization Guide

SQL

Syntax

��

SQL=

*

 NO

YES

��

Default

SQL=NO

NO

Specify to have any SQL statements found in the source program diagnosed

and discarded.

 Use SQL=NO if your COBOL source programs do not contain SQL statements,

or if the separate SQL preprocessor will be used to process SQL statements

before invocation of the COBOL compiler.

YES

Use to enable the DB2 coprocessor capability and to specify DB2 suboptions.

You must specify the SQL option if your COBOL source program contains SQL

statements and it has not been processed by the DB2 precompiler.

Notes:

1. You can specify the SQL option in any of the compiler option sources: compiler

invocation, PROCESS/CBL statements, or installation defaults.

2. Use either quotes or apostrophes to delimit the string of DB2 suboptions.

3. DB2 suboptions cannot be specified as part of customizing the SQL option.

(DB2 suboptions are supported only when the SQL compiler option is specified

as an invocation option or on a CBLor PROCESS card.) However, default DB2

options can be specified when you customize the DB2 product installation

defaults.

4. The SQL=YES option conflicts with the LIB=NO option.

SQLCCSID

Syntax

��

SQLCCSID=

*

 YES

NO

��

Default

SQLSSCID=YES

YES

Indicates that the CODEPAGE compiler option setting will influence the

processing of SQL statements within the source program when the integrated

DB2 coprocessor (SQL compiler option) is used.

NO

Indicates that the CODEPAGE compiler option setting will not influence the

processing of SQL statements within the source program when the integrated

DB2 coprocessor is used. Only COBOL statements will be sensitive to the

CCSID specified in the CODEPAGE option.

Enterprise COBOL compiler options

Chapter 2. Enterprise COBOL compiler options 43

~

~

~~~~~~~~~~~~~~~~~~~~~~~

~

~
~

~
~
~
~

~
~
~
~
~



Notes:   

1.   The  SQLCCSID  option  has  an  effect  only  when  you  use  the  integrated  DB2  

coprocessor  (SQL  compiler  option).  

2.   The  NOSQLCCSID  option  is recommended  for  applications  that  require  the  

highest  compatibility  with  the  behavior  of  the  DB2  precompiler.  

3.   For  details  on  the  SQLCCSID  option,  see  the  Enterprise  COBOL  for  z/OS  

Programming  Guide.

SSRANGE 

Syntax  

��
 

SSRANGE=
 

*

 NO 

YES
 

��

 

Default  

SSRANGE=NO  

YES  

Generates  code  that  checks  subscripts,  reference  modifications,  variable-length  

group  ranges,  and  indexes  in the  source  program  at run time  to  ensure  that  

they  do  not  refer  to  storage  outside  the  area  assigned.  It also  verifies  that  a 

table  with  ALL  subscripting,  specified  as a function  argument,  contains  at least  

one  occurrence  in  the  table.  

 The  generated  code  also  checks  that  a variable-length  item  does  not  exceed  its  

defined  maximum  length  as  a result  of  incorrect  setting  of  the  OCCURS  

DEPENDING  ON  object.  

 Performance  consideration:  If SSRANGE=YES  at  compile  time,  object  code  size  

is increased  and  there  will  be  an  increase  in  runtime  overhead  to  accomplish  

the  range  checking.  

NO  

No  code  is  generated  to perform  subscript  or  index  checking  at run time.

Notes:   

1.   If  the  SSRANGE  option  is in  effect  at compile  time,  the  range-checking  code  is  

generated.  

2.   Range-checking  can  be  inhibited  at run time  by  specifying  the  Language  

Environment  runtime  option  CHECK(OFF).  However,  the  range-checking  code  

still  requires  overhead  and  is dormant  within  the  object  code.  

3.   The  range-checking  code  can  be  used  optionally  to aid  in  resolving  any  

unexpected  errors  without  recompilation.

TERM 

Syntax  

��
 

TERM=
 

*

 NO 

YES
 

��

 

Enterprise COBOL compiler options
 

44 Enterprise  COBOL  for z/OS V3R4  Customization  Guide

~

~
~

~
~

~
~



Default  

TERM=NO  

YES  

Specifies  that  the  progress  and  diagnostic  messages  are  sent  to  the  SYSTERM  

file,  which  defaults  to  the  user’s  terminal  unless  specified  otherwise.  

NO  

Specifies  that  no  messages  are  sent  to  the  SYSTERM  file.

Note:  If  TERM  is  specified  in  the  source  program,  a SYSTERM  DD  statement  must  

also  be  specified  for  each  application  program.  

TEST 

Syntax  

��
 

TEST=
 

*

 NO 

(
 

hook
 

,
 

symbol
 

,
 

inclusion
 

)
 

��

 

Default  

TEST=NO  

Other  than  NO  

Produces  object  code  that  can  be  run using  Debug  Tool. 

 You must  specify  values  for  the  hook,  symbol  and  inclusion  suboptions:  

 hook  values:  

ALL  Activates  the  generation  of all  compiled-hooks.  Hooks  are  generated  at  

all  statements,  all  path  points,  and  all  program  entry  and  exit  points.  In  

addition,  if either  the  DATEPROC=FLAG  option  or  

DATEPROC=NOFLAG  option  is in  effect,  hooks  are  generated  for  all 

date-processing  statements.  

NONE  

Suppresses  the  generation  of  all  compiled  hooks.  TEST(NONE)  is  

compatible  with  the  OPT  compiler  option.  

STMT  Hooks  are  generated  at every  statement  and  label,  as  well  as  at all  

program  entry  and  exit  points.  In  addition,  if either  the  

DATEPROC=FLAG  option  or  DATEPROC=NOFLAG  option  is in  

effect,  hooks  will  be  generated  for  all  date-processing  statements.  

PATH Hooks  are  generated  at all  path  points,  including  program  entry  and  

exit  points.  

BLOCK  

Hooks  are  generated  at all  program  entry  and  exit  points.

 symbol  values:  

SYM  Activates  generation  of  symbolic  dictionary  information  tables.  

NOSYM  

Deactivates  generation  of symbolic  dictionary  information  tables.

 inclusion  values:  

Enterprise COBOL compiler options
 

Chapter  2. Enterprise  COBOL compiler  options  45



SEPARATE  

Generate  the  debugging  information  tables  in a data  set  separate  from  

your  object  program.  You can  specify  SEPARATE  only  if you  also  

specify  SYM  as  the  value  for  the  symbol  sub-option.  

NOSEPARATE  

Include  the  debugging  information  tables  in your  object  program.

 Performance  consideration:  Because  TEST=(a  hook-location  suboption  other  

than  NONE)  generates  additional  code,  it can  cause  significant  performance  

degradation  at  run time  when  used  in  a production  environment.  

NO  

Produces  object  code  that  cannot  be  symbolically  debugged  using  Debug  Tool.

Notes:   

1.   If  you  specify  TEST=  (other  than  NONE  for  the  hook-location  suboption),  the  

following  options  are  put  into  effect  at  compilation  time:  

   OBJ=YES  

   OPT=NO
2.   Only  hook  location  NONE  is  compatible  with  the  OPT  compiler  option.  See  

“Conflicting  compiler  options”  on  page  13  for  more  conflict  resolution  

information.  

3.   Programmers  might  notice  an  increase  in  run time  for  programs  compiled  with  

any  hook-location  suboption  other  than  NONE.  

4.   A date-processing  statement  is any  statement  that  references  a date  field,  or  any  

EVALUATE  or  SEARCH  statement  WHEN  phrase  that  references  a date  field.  

5.   For  production  programs,  compile  your  programs  with  

TEST(NONE,SYM,SEPARATE)  if you  do  not  want  to increase  the  size  of  your  

production  modules,  but  still  get  minimum  debugging  capability.

THREAD 

Syntax  

��
 

THREAD=
 

*

 NO 

YES
 

��

 

Default  

THREAD=NO  

NO  

Use  NO  if you  want  to  indicate  that  a COBOL  program  is not  enabled  for  

execution  in  a Language  Environment  enclave  with  multiple  POSIX  threads  or  

PL/I  tasks.  

YES  

Use  THREAD  if you  want  to indicate  that  a COBOL  program  is enabled  for  

execution  in  a Language  Environment  enclave  with  multiple  POSIX  threads  or  

PL/I  tasks.

Notes:   

1.   When  the  THREAD  compiler  option  is specified,  the  program  is enabled  for  

use  in  a threaded  application.  However,  it  can  still  be  used  in  nonthreaded  

applications.  For  example,  you  can  run a program  that  was  compiled  with  the  

Enterprise COBOL compiler options
 

46 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



THREAD  option  in  the  CICS  environment,  if the  application  does  not  contain  

multiple  POSIX  threads  or  PL/I  tasks  at run time.  

2.   When  the  THREAD  compiler  option  is  specified,  runtime  performance  might  

be  degraded  because  of  the  serialization  logic  that  is automatically  generated.  

3.   When  the  THREAD  compiler  option  is  specified,  the  RENT  compiler  option  

must  also  be  specified.  If THREAD  and  NORENT  are  specified  at the  same  

level  of  precedence,  the  RENT  option  is forced  on.  

4.   For  COBOL  programs  to  run in a threaded  application,  all  COBOL  programs  in  

the  run unit  must  be  compiled  with  the  THREAD  compiler  option  specified.  

5.   When  the  THREAD  compiler  option  is  specified,  the  following  language  

elements  are  not  supported.  If any  of the  following  language  elements  are  

specified,  they  are  diagnosed  as errors:  

v   Nested  programs  

v   INITIAL  phrase  in  the  PROGRAM-ID  clause  

v   ALTER  statement  

v   DEBUG-ITEM  special  register  

v   GO  TO  statement  without  a procedure  name  

v   RERUN  

v   STOP  literal  statement  

v   Segmentation  module  

v   USE  FOR  DEBUGGING  statement  

v   WITH  DEBUGGING  MODE  clause  

v   SORT  or  MERGE  statements
6.   When  you  compile  programs  with  the  THREAD  compiler  option,  the  following  

special  registers  are  allocated  upon  each  invocation:  

v   ADDRESS-OF  

v   RETURN-CODE  

v   SORT-CONTROL  

v   SORT-CORE-SIZE  

v   SORT-FILE-SIZE  

v   SORT-MESSAGE  

v   SORT-MODE-SIZE  

v   SORT-RETURN  

v   TALLY 

v   XML-CODE  

v   XML-EVENT

TRUNC 

Syntax  

��
 

TRUNC=
 

*

 STD 

OPT
 

BIN

 

��

 

Default  

TRUNC=STD  

Enterprise COBOL compiler options
 

Chapter  2. Enterprise  COBOL compiler  options  47



STD  

Conforms  to  the  COBOL  85  Standard.  

 Controls  the  way  arithmetic  fields  are  truncated  during  MOVE  and  arithmetic  

operations.  The  TRUNC  option  applies  only  to binary  (COMP)  receiving  fields  

in  MOVE  statements  and  in  arithmetic  expressions.  When  TRUNC=STD  is in 

effect,  the  final  intermediate  result  of an  arithmetic  expression,  or  of  the  

sending  field  in  the  MOVE  statement,  truncates  to  the  number  of digits  in the  

PICTURE  clause  of  the  binary  receiving  field.  

OPT  

The  compiler  assumes  that  the  data  conforms  to  PICTURE  and  USAGE  

specifications.  The  compiler  manipulates  the  result  based  on  the  size  of  the  

field  in  storage  (halfword  or  fullword).  

 TRUNC=OPT  is recommended,  but  it should  be  specified  only  when  data  

being  moved  into  binary  areas  does  not  have  a value  with  larger  precision  

than  that  defined  by  the  binary  item  PICTURE  clause.  Otherwise,  truncation  of  

high-order  digits  might  occur.  The  truncation  results  are  dependent  on  the  

particular  code  sequence  generated  and  might  not  be  the  same  in  OS/VS  

COBOL  and  Enterprise  COBOL.  

BIN  

Should  not  be  used  as  an  installation  default.  Specifies  that:  

1.   Output  binary  fields  are  truncated  only  at the  S/390  halfword,  fullword,  

and  doubleword  boundaries,  rather  than  at COBOL  base  10  picture  limits.  

2.   Input  binary  fields  are  treated  as S/390  halfword,  fullword,  and  

doubleword,  and  no  assumption  is made  that  the  values  are  limited  to  

those  implied  by  the  base  10  PICTURE  clause.  

3.   DISPLAY  converts  and  outputs  the  full  content  of binary  fields  with  no  

truncation  to  the  PICTURE  description.

 Performance  consideration:  Using  TRUNC=OPT  does  not  generate  extra  code  and  

generally  improves  performance.  However,  both  TRUNC=BIN  and  TRUNC=STD  

generate  extra  code  whenever  a BINARY  data  item  is changed.  TRUNC=BIN  is 

usually  the  slower  of these  options.  

Notes:   

1.   Setting  this  option  affects  program  runtime  logic;  that  is,  the  same  COBOL  

source  program  can  give  different  results,  depending  on  the  option  setting.  

Verify  whether  your  COBOL  source  programs  assume  a particular  setting  for  

correct  running.  

2.   TRUNC=BIN  is the  recommended  option  when  interfacing  with  other  products  

that  have  S/390-format  binary  data  (such  as  CICS,  DB2,  FORTRAN,  and  PL/I).  

This  is  especially  true if there  is a possibility  of having  more  than  9 digits  in  a 

fullword  or  more  than  4 digits  in  a halfword.

VBREF 

Syntax  

��
 

VBREF=
 

*

 NO 

YES
 

��

 

Enterprise COBOL compiler options
 

48 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



Default  

VBREF=NO  

YES  

Produces  a cross-reference  of  all  verb  types  in  a source  program  to the  line  

numbers  where  they  are  found.  VBREF=YES  also  produces  a summary  of  how  

many  times  each  verb  was  used  in  the  program.  

NO  

Does  not  produce  a cross-reference  or  verb-summary  listing.

WORD 

Syntax  

��
 

WORD=
 

*

 NO 

xxxx
 

CICS

 

��

 

Default  

WORD=*NO  

NO  

Indicates  that  no  alternative  reserved  word  table  is to be  used  as  the  default.  

xxxx  

Specifies  an  alternative  default  reserved  word  table  to be  used  during  

compilation.  xxxx  represents  the  ending  characters  (can  be  1 to  4 characters  in 

length)  of  the  name  of  the  reserved  word  table  used.  The  first  4 characters  are  

IGYC.  The  last  4 characters  cannot  be  any  one  of  the  character  strings  listed  

below,  nor  can  any  of  them  contain  the  dollar  sign  character  ($).  

 ASM1  

ASM2  

DIAG  

DMAP  

DOPT  

FGEN  

INIT  

LIBO  

LIBR  

LSTR  

LVL0 

LVL1 

LVL2 

LVL3 

LVL8 

OPTM  

OSCN  

PGEN  

RCTL  

RDPR  

RDSC  

RWT 

SAW 

SCAN  

SIMD  

XREF  

  

CICS  

A CICS-specific  word  table,  IGYCCICS,  is provided  as  an  alternate  reserved  

word  table.  For  a description,  see  “CICS  reserved  word  table  (IGYCCICS)”  on  

page  10.

Notes:   

1.   The  default  for  the  WORD  option  is specified  with  an  asterisk.  When  the  

option  is installed  with  the  default  (WORD=*NO),  the  application  programmer  

cannot  override  the  option  at  compile  time  to  specify  an  alternative  reserved  

word  table.  

2.   Specification  of  WORD  affects  the  interpretation  of  input  reserved  words.  

System  names  (such  as  UPSI  and  SYSPUNCH)  and  the  42  intrinsic  function  

names  should  not  be  used  as  aliases  for  reserved  words.  If a function  name  is 

specified  as an  alias  through  the  reserved  word  table  ABBR  control-statement,  

that  function  name  will  be  recognized  and  diagnosed  by  the  compiler  as  a 

reserved  word  and  the  intrinsic  function  will  not  be  performed.  

Enterprise COBOL compiler options
 

Chapter  2. Enterprise  COBOL compiler  options  49



3.   Changing  the  default  value  of  the  WORD=XXXX  option  conflicts  with  all  

values  for  FLAGSTG  other  than  no.

XREFOPT 

Syntax  

��
 

XREFOPT=
 

*

 FULL 

SHORT
 

NO

 

��

 

Default  

XREFOPT=FULL  

SHORT  

Produces  only  the  explicitly  referenced  variables  in  the  cross-reference  listing.  

FULL  

Produces  both  a sorted  and  embedded  cross-reference  listing.  If SOURCE=YES  

is also  specified,  the  listing  line  numbers  cross-reference  recurrences  of 

particular  data-names.  

NO  

Suppresses  the  cross-reference  listing.

Notes:   

1.   The  XREFOPT  option  sets  the  default  value  for  the  compiler  option  XREF.  

2.   The  XREFOPT=NO  option  conflicts  with  values  for  DBCSXREF  other  than  NO.

YRWINDOW  

Syntax  

��
 

YRWINDOW=
 

*

 1900 

integer
 

��

 

Default  

YRWINDOW=1900  

integer  

Specifies  the  first  year  of the  100-year  window  used  by  COBOL  windowed  

date  fields,  and  may  be  one  of  the  following:  

v   An  unsigned  decimal  integer  from  1900  through  1999.  

v   A negative  decimal  integer  from  -1 through  -99,  representing  an  offset  from  

the  current  year  at run time.  The  current  year  is determined  for  each  

compilation  unit  when  it is first  initialized,  or  reinitialized  after  execution  of 

a CANCEL  statement  that  refers  to  the  compilation  unit.

Notes:   

1.   YRWINDOW  has  no  effect  unless  DATEPROC=FLAG  or  

DATEPROC=NOFLAG  is specified.  

2.   At  run time,  two  conditions  must  be  true: 

a.   The  100-year  window  must  have  its  beginning  year  in  the  1900s.  

Enterprise COBOL compiler options
 

50 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



b.   The  current  year  must  lie  within  the  100-year  window  for  the  compilation  

unit.
3.   All  windowed  dates  have  a year  relative  to  the  base  year. For  example,  if the  

base  year  were  specified  as  1965,  all  windowed  year  values  would  be  

interpreted  as years  within  the  100-year  window  of 1965  to  2064,  inclusive.  So,  

a windowed  year  value  of  67  would  represent  the  year  1967,  whereas  a 

windowed  year  value  of  05  would  represent  the  year  2005.  

If  the  base  year  were  specified  as -30,  then  the  window  would  depend  on  when  

the  application  were  run. Running  it during  2000  would  give  a 100-year  

window  of  1970  through  2069.  So,  a windowed  year  value  of  70  would  

represent  the  year  1970,  whereas  a windowed  year  value  of  69  would  represent  

the  year  2069.  

4.   The  YRWINDOW  installation  option  is equivalent  to  the  YEARWINDOW  

compile-time  option.

ZWB 

Syntax  

��
 

ZWB=
 

*

 YES 

NO
 

��

 

Default  

ZWB=YES  

YES  

Removes  the  sign  from  a signed  external  decimal  (DISPLAY)  field  when  

comparing  this  field  to  an  alphanumeric  field  at  run time.  

NO  

Does  not  remove  the  sign  from  a signed  external  decimal  (DISPLAY)  field  

when  comparing  this  field  to  an  alphanumeric  field  at run time.

Notes:   

1.   Setting  this  option  affects  program  runtime  logic;  that  is,  the  same  COBOL  

source  program  can  give  different  results,  depending  on  the  option  setting.  

Verify  whether  your  Enterprise  COBOL  source  programs  assume  a particular  

setting  to  run correctly.  

2.   Application  programmers  use  ZWB=NO  to  test  input  numeric  fields  for  

SPACES.

Enterprise COBOL compiler options
 

Chapter  2. Enterprise  COBOL compiler  options  51



Enterprise COBOL compiler options
 

52 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



Chapter  3.  Customizing  Enterprise  COBOL  

You can  make  modifications  to Enterprise  COBOL  only  after  installation  of the  

product  is complete.  One  of the  modifications  is made  using  an  SMP/E  

USERMOD.  If  you  do  not  ACCEPT  Enterprise  COBOL  into  the  distribution  

libraries  before  applying  the  USERMOD,  you  will  not  be  able  to  use  the  SMP/E  

RESTORE  statement  to  remove  your  USERMOD.  Do  not  accept  your  USERMOD  

into  the  distribution  libraries.  You might  want  to  remove  your  USERMOD  if you  

find  that  it does  not  suit  the  needs  of  the  programmers  at  your  site.  

You will  have  to  remove  your  USERMOD  before  applying  service  to  the  modules  

that  it  changes.  In  this  case,  you  will  probably  want  to  reapply  your  USERMOD  

after  successful  installation  of  the  service.  

 

 

Important  

Make  sure  that  Enterprise  COBOL  serves  the  needs  of  the  application  

programmers  at  your  site.  Confer  with  them  while  you  plan  the  

customization  of Enterprise  COBOL.  Doing  so  will  ensure  that  the  

modifications  you  make  at  install  time  best  support  the  application  programs  

being  developed  at your  site.

Note:   All  information  for  installing  Enterprise  COBOL  is included  in  the  Program  

Directory  provided  with  the  product.  

Summary of user modifications 

Installation  of Enterprise  COBOL  places  a number  of  sample  modification  jobs  in  

the  target  data  set  IGY.V3R4M0.SIGYSAMP.  Table 7 shows  the  names  of the  sample  

modification  jobs,  which  are  described  in  detail  in the  following  sections.  

The  sample  modification  jobs  that  IBM  provides  are  not  customized  for  your  

particular  system.  You must  customize  them.  

Copy  members  from  IGY.V3R4M0.SIGYSAMP  into  one  of  your  personal  data  sets  

before  you  modify  and  submit  them  so  that  you  have  an  unmodified  backup  copy  

if you  make  changes  that  you  want  to  abandon.  

Descriptions  of  possible  modifications  appear  in  the  comments  in  the  JCL.  You can  

use  TSO  to  modify  and  submit  the  job.  Save  the  modified  JCL  for  future  

IGYWMLPA  reference.  

 Table 7. Summary  of user  modification  jobs  for Enterprise  COBOL  

Description  

Customization  

job  Page  

Change  compiler  module  IGYWDOPT  54 

Create  an  options  module  to override  compiler  options  

specified  as fixed  

IGYWUOPT  55 

Create  additional  reserved  word  table  IGYWRWD  56 

Place  Enterprise  COBOL  modules  in shared  storage  IGYWMLPA  61
 

 

© Copyright  IBM Corp. 1991, 2006 53



Changing the defaults for compiler options 

To change  the  defaults  for  compiler  options  or  create  a compiler-options  module  to  

override  fixed  options,  copy  the  source  of  options  module  IGYCDOPT  from  

IGY.V3R4M0.SIGYSAMP  into  the  appropriate  job  in  place  of  the  two-line  comment.  

Then  change  the  parameters  on  the  IGYCOPT  macro  call  to  match  the  compiler  

options  that  you  have  selected  for  your  installation.  Observe  the  following  

requirements  in  coding  your  changed  IGYCOPT  macro  call:  

v   Place  continuation  character  (X  in  the  source)  must  be  present  in  column  72  on  

each  line  of  the  IGYCOPT  invocation  except  the  last  line.  The  continuation  line  

must  start  in  column  16.  You can  break  the  coding  after  any  comma.  

v   Do  not  put  a comma  in  front  of the  first  option  in  your  macro.  

v   Specify  options  and  suboptions  in uppercase.  Only  suboptions  that  are  strings  

can  be  specified  in  mixed  case  or lowercase.  For  example  both  LVLINFO=(Fix1)  

and  LVLINFO=(FIX1)  are  acceptable.  

v   If  one  of  the  string  suboptions  contains  a special  character,  (for  example,  an  

embedded  blank  or  unmatched  right  or  left  parenthesis),  the  string  must  be  

enclosed  in  apostrophes  (’),  not  in  quotes  (″).  A  null  string  can  be  specified  with  

either  contiguous  apostrophes  or  quotes.  

To obtain  an  apostrophe  (’)  or  a single  ampersand  (&)  within  a string,  two  

contiguous  instances  of  the  character  must  be  specified.  The  pair  is  counted  as  

only  one  character  in determining  whether  the  maximum  allowable  string  length  

has  been  exceeded  and  in  setting  the  effective  length  of  the  string.  

v   Avoid  unmatched  apostrophes  in  any  string  that  uses  apostrophes.  The  error  

cannot  be  captured  within  IGYCOPT  itself.  Instead,  the  assembler  produces  a 

message  such  as:  

IEV03   ***  ERROR  ***   NO ENDING  APOSTROPHE  

This  message  bears  no  spatial  relationship  to the  offending  suboption.  

Furthermore,  none  of  the  options  are  properly  parsed  if this  error  is committed.  

v   Code  only  the  options  whose  default  value  you  want  to change.  The  IGYCOPT  

macro  supplies  the  IBM-supplied  defaults  for  any  option  that  you  do  not  code.  

See  “IGYCDOPT  worksheet  for  compiler  options”  on  page  1-4  for  a worksheet  

to  help  you  plan  your  default  compiler  options.  See  “Enterprise  COBOL  

compiler  options”  on  page  1-24  for  descriptions  of  the  options.  

v   Place  an  END  statement  after  the  macro  instruction.

Changing compiler options default module 

Use  the  sample  job  IGYWDOPT  to  change  the  defaults  for  the  Enterprise  COBOL  

compiler  options.  Use  the  information  in Chapter  2,  “Enterprise  COBOL  compiler  

options,”  on  page  13  to  select  your  default  values.  

If you  coded  OUT  as  the  value  for  any  compiler  phase  options,  be  sure  to place  

these  phases  in  shared  storage  before  compiling  a program  by  using  your  new  

compiler  options  default  module.  See  “Compiler  phases  and  their  defaults”  on  

page  6 and  “Placing  Enterprise  COBOL  modules  in shared  storage”  on  page  61  for  

more  information.  

Customizing Enterprise COBOL
 

54 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



To  modify  the  JCL  for  IGYWDOPT,  do  these  steps:  

1.   Add  a job  card  appropriate  for  your  site.  

2.   Add  a JES  ROUTE  card  if required  for  your  site.  

3.   Replace  the  two  comment  lines  in  IGYWDOPT  with  a copy  of the  source  

for  IGYCDOPT  found  in  IGY.V3R4M0.SIGYSAMP.  

4.   Code  parameters  on  the  IGYCOPT  macro  statement  in  IGYCDOPT  to 

reflect  the  values  you  have  chosen  for  your  installation-wide  default  

compiler  options.  

5.   Change  #GLOBALCSI  to  the  global  CSI  name.  

6.   Change  #TZONE  in  the  SET  BDY  statement  to the  target  zone  name.

 After  you  modify  the  IGYWDOPT  job,  submit  it.  You will  get  a condition  code  of 0 

if the  job  runs correctly.  Also  check  the  IGYnnnn  informational  messages  in  your  

listing  to  verify  the  defaults  that  will  be  in  effect  for  your  installation.  

Creating an options module to override options specified as 

fixed 

If  you  have  specified  some  options  as  fixed  in your  compiler  default  options  

module,  you  might  occasionally  find  an  application  that  needs  to override  a fixed  

option.  You can  provide  other  options  by  creating  a temporary  copy  of  the  options  

module  in a separate  data  set  that  can  be  accessed  as  a STEPLIB  or  JOBLIB  (ahead  

of  the  IGY.V3R4M0.SIGYCOMP  data  set)  when  the  application  is compiled.  Sample  

job  IGYWUOPT  creates  a default  options  module  that  is link-edited  into  a 

user-specified  data  set.  The  assembly  and  link-editing  take  place  outside  SMP/E  

control,  so  the  standard  default  options  module  is  not  disturbed.  

 

 

To  modify  the  JCL  for  IGYWUOPT,  do  these  steps:  

1.   Add  a job  card  appropriate  for  your  site.  

2.   Add  a JES  ROUTE  card  if required  for  your  site.  

3.   Replace  the  two  comment  lines  in  IGYWUOPT  with  a copy  of  the  source  

for  IGYCDOPT  found  in  IGY.V3R4M0.SIGYSAMP.  

4.   Change  the  parameters  on  the  IGYCOPT  macro  statement  in  IGYWUOPT  

to  reflect  the  values  that  you  have  chosen  for  this  fixed  option  override  

compiler-options  module.  

5.   If  you  chose  to  use  a different  prefix  than  the  IBM-supplied  one  for  the  

Enterprise  COBOL  target  data  sets,  check  the  SYSLIB  DD  statement  

(marked  with  '<<<<<') to  ensure  that  the  data  set  names  are  correct.  

6.   Change  DSNAME=YOURLIB  in  the  SYSLMOD  DD  statement  to  the  name  

of  the  partitioned  data  set  that  you  want  your  IGYCDOPT  module  linked  

into.  Note  that  an  IGYCDOPT  module  currently  in  the  chosen  data  set  

will  be  replaced  by  the  new  version.

 After  you  modify  the  IGYWUOPT  job,  submit  it. Both  steps  should  return  a 

condition  code  of  0 if the  job  runs successfully.  Also  check  the  IGYnnnn  

informational  messages  in  your  listing  to  verify  the  defaults  that  are  in  effect  when  

this  module  is used  in  place  of  the  standard  default  options  module.  

Customizing Enterprise COBOL
 

Chapter  3. Customizing  Enterprise  COBOL 55



Creating or modifying additional reserved word tables 

The  reserved  words  used  by  the  Enterprise  COBOL-compiler  are  maintained  in  a 

table  (IGYCRWT)  provided  with  the  product.  A  CICS-specific  reserved  word  table  

(IGYCCICS)  is provided  as  an  alternate  reserved  word  table.  See  “CICS  reserved  

word  table  (IGYCCICS)”  on  page  10.  You can  change  the  reserved  words  by  using  

the  reserved  word  table  utility  (IGY8RWTU),  thereby  creating  additional  reserved  

word  tables.  You can  also  modify  tables  that  you  previously  created.  

The  reserved  word  table  utility  accepts  control  statements  that  you  can  use  to  

create  or  modify  a reserved  word  table.  The  new  table  then  contains  the  reserved  

words  from  the  IBM-supplied  table  with  all  the  changes  that  you  have  applied.  

You can  make  the  following  types  of  changes  to reserved  word  tables:  

v   Add  an  alternative  form  of an  existing  reserved  word.  

v   Add  words  to  be  flagged  with  an  informational  message  whenever  they  are  

used  in  a program.  

v   Add  words  to  be  flagged  with  an  error  message  whenever  they  are  used  in  a 

program.  

v   Indicate  that  words  currently  flagged  with  an  informational  or  error  message  

should  no  longer  be  flagged.

Each  reserved  word  table  that  you  create  must  have  a unique  1- to  4-character  

identifier.  For  a list  of  1- to  4-character  strings  that  cannot  be  used,  see  the  

compiler  options  ″WORD=xxxx″.  

At  compile  time,  the  value  of the  compiler  option  WORD(xxxx)  identifies  the  

reserved  word  table  to  be  used.  xxxx  is the  unique  1-  to  4-character  identification  

that  you  specified  in  the  member  name  IGYCxxxx.  You can  create  multiple  

reserved  word  tables,  but  only  one  can  be  specified  at  compile  time.  

Note:   The  total  number  of  entries  in  a reserved  word  table  should  not  exceed  

1536  or  1.5-KB.  

Creating or modifying a reserved word table 

To create  or  modify  a reserved  word  table,  you  must  edit  a copy  of  the  appropriate  

source  file:  

v   Member  IGY8RWRD  in  IGY.V3R4M0.SIGYSAMP  (the  IBM-supplied  default  

reserved  word  table)  

v   Member  IGY8CICS  in  IGY.V3R4M0.SIGYSAMP  (the  IBM-supplied  CICS  reserved  

word  table)  

v   A user  file  (user-supplied  reserved  word  table)

You  must  also  modify  and  invoke  the  appropriate  non-SMP/E  JCL.  

Your file  should  have  four  parts:  Parts  I, II,  III,  and  IV.  Modify  the  file  and  

non-SMP/E  JCL  as  follows:  

1.   Make  a private  copy  of  the  file.  

2.   Skip  Part  I (all  lines  up  to  and  including  the  line  with  the  keyword  MOD).  

Make  no  alternations  in  this  part  of  the  file!  

3.   Edit  Part  II  by  placing  asterisks  in  column  1 of  the  lines  that  contain  CODASYL  

reserved  words  for  which  you  do  not  want  informational  messages  issued.  

Customizing Enterprise COBOL
 

56 Enterprise  COBOL  for z/OS V3R4  Customization  Guide

|
|



4.   Edit  Part  III  by  placing  asterisks  in  column  1 of  the  lines  that  contain  obsolete  

reserved  words  for  which  you  do  not  want  severe  messages  issued.  

5.   Edit  Part  IV  by  coding  additional  reserved  word  control  statements  that  create  

the  modifications  that  you  want,  as  described  under  “Coding  control  

statements.”  

6.   Modify  and  run the  JCL,  as  discussed  under  “Modifying  and  running  JCL  to 

create  a new  reserved  word  table”  on  page  60.  You also  must  create  a unique  1- 

to  4-character  identification  for  the  new  reserved  word  table  and  supply  it in 

the  JCL.

Coding control statements 

To create  a reserved  word  table,  you  must  understand  the  syntax  rules for  the  

control  statements  and  for  the  operands  within  control  statements.  

Figure  2 illustrates  the  format  for  coding  reserved  word  processor  control  

statements.  

 

As  shown  in  Figure  2, keywords  you  can  use  are:  

ABBR  Specifies  an  alternative  form  of  an  existing  reserved  word  

INFO  Specifies  words  that  are  to  be  flagged  with  an  informational  message  

whenever  they  are  used  in  a program  

RSTR  Specifies  words  that  are  to  be  flagged  with  an  error  message  whenever  

they  are  used  in  a program

Note:   All  words  that  you  identify  with  the  control  statement  keywords  INFO  and  

RSTR  are  flagged  with  a message  in  the  source  listing  of  the  Enterprise  COBOL  

program  that  uses  them.  Words  that  are  abbreviated  are  not  flagged  in  the  source  

listing  unless  you  have  also  specified  them  on  the  INFO  or  RSTR  control  

statements.  

Rules for coding control statements 

When  you  code  your  control  statements,  follow  these  rules: 

v   Begin  the  control  statement  in  column  1. 

v   Place  one  or  more  spaces  between  the  keyword  and  the  first  operand.  

v   When  specifying  a second  operand,  include  a colon  (:)  and  one  or  more  spaces  

after  the  first  operand.  

ABBR    reserved-word:  user-word  [comments]  

      [reserved-word:  user-word  [comments]]  

        ...
INFO    COBOL-word  [(0 | 1)] [comments]  

      [COBOL-word  [(0  | 1)]  [comments]]  

        ...
RSTR    COBOL-word   [(0  | 1)] [comments]  

      [COBOL-word  [(0  | 1)]  [comments]]  

        ...

Figure  2. Syntax  format  for  reserved  word  processor  control  statements

Customizing Enterprise COBOL
 

Chapter  3. Customizing  Enterprise  COBOL 57



v   Continue  a control  statement  by  putting  blanks  in  columns  1 through  5, 

followed  by  the  operand  or  operands,  to  make  additional  specifications.  

v   Specify  comments  by  putting  an  asterisk  (*)  in  column  1 of the  control  

statements.  You can  also  place  comments  on  the  same  line  as  the  control  

statement.  In  that  case,  however,  there  must  be  at least  one  space  following  the  

operand  or  operands  before  a comment  begins.  

v   To specify  more  than  one  change  within  a single  control  statement,  put  each  

additional  specification  on  a separate  line.  

v   Do  not  add  any  blank  lines.

Coding operands in control statements 

The  following  list  shows  the  types  of operands  that  you  will  be  coding  in  the  

control  statements:  

reserved-word  

An  existing  reserved  word.  

user-word  

A  user-defined  COBOL  word  that  is not  a reserved  word.  

comments  

Any  comments  that  you  want  to  put  on  the  same  line  with  the  control  

statement,  or  on  a separate  line  that  has  an  asterisk  in  column  1. 

COBOL-word  

A  word  of  up  to  30  characters  that  can  be  a system  name,  a reserved  word,  

or  a user-defined  word.

Rules for coding control statement operands 

When  you  code  the  control  statement  operands,  follow  these  rules: 

v   A user-word  can  be  used  in only  one  ABBR  statement  in  any  particular  reserved  

word  table.  

v   A reserved-word  specified  in an  ABBR  statement  can  also  be  specified  in  either  a 

RSTR  or  an  INFO  statement.  

v   A particular  reserved-word  can  be  specified  only  once  in an  ABBR  statement.  

v   A particular  COBOL-word  can  be  specified  only  once  in  either  a RSTR  or  an  

INFO  statement.

The  remaining  sections  provide  examples  for  coding  each  type  of  control  

statement.  

ABBR statement 

ABBR  reserved-word:  user-word  [comments]  

Defines  an  alternative  symbol  for  the  reserved  word  specified.  The  symbol  can  

be  used  when  you  code  a program.

Notes:   

1.   The  user-word  becomes  a reserved  word  and  can  be  used  in  place  of the  

reserved-word  specified  in  this  statement.  

2.   The  reserved-word  remains  a reserved  word  with  its  original  definition.  

3.   The  source  listing  shows  the  original  source—the  symbol  as  you  coded  it. 

4.   The  reserved  word  is used  in compiler  output—other  listings,  some  messages,  

and  so  forth.

Customizing Enterprise COBOL
 

58 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



In  the  following  example,  REDEF  and  SEP  become  abbreviations  that  can  be  used  

in  source  programs.  The  appropriate  reaction  to  the  use  of  REDEFINES  and  

SEPARATE  takes  place  when  the  source  program  is compiled.  

ABBR    REDIFINES:  REDEF  

SEPARATE:    SEP  

INFO statement 

INFO  COBOL-word[(0  | 1)]  [comments]  

This  statement  specifies  the  COBOL  words  that  are  to be  flagged  by  the  

compiler.  

 This  statement  can  also  be  used  to  control  the  use  of  nested  programs.  By  

selecting  either  1 or  0,  you  can  indicate  whether  a specific  COBOL-word  can  be  

used  only  once,  or  not  at all.  

0 Indicates  that  whenever  the  specified  COBOL-word  is  used,  the  0086  

informational  message  is issued.  

1 Indicates  that  the  specified  COBOL-word  can  be  used  once.  If it  is used  

more  than  once,  informational  message  0195  is issued.

 The  messages  are  handled  as information  (I)  messages.  The  compilation  condition  

is  not  changed.  

 Because  of  the  following  example,  when  the  IBM  extension  reserved  word  ENTRY  

is  used  in a program,  it will  be  flagged  with  message  0086.  

INFO   ENTRY  

RSTR statement 

RSTR  COBOL-word[(0  | 1)]  [comments]  

This  statement  specifies  COBOL  words  that  cannot  be  used  in  a program.  

 This  statement  can  also  be  used  to  control  the  use  of  nested  programs.  By  

selecting  either  1 or  0,  you  can  indicate  whether  a specific  COBOL-word  can  be  

used  only  once,  or  not  at all.  

0 Indicates  that  whenever  the  specified  COBOL-word  is  used,  message  

0084  is issued.  

1 Indicates  that  the  specified  COBOL-word  can  be  used  once.  If it  is used  

more  than  once,  severe  message  0194  is  issued.

Note:  The  following  reserved  words  can  be  restricted  with  the  1 option  only:  

   IDENTIFICATION  

   FD  

   ENVIRONMENT  

   DATA 

   WORKING-STORAGE  

   PROCEDURE  

   DIVISION  

   SECTION  

   PROGRAM-ID

 The  following  example  restricts  the  use  of  Boolean,  XD,  and  PARENT.  Use  of these  

will  cause  errors.  

Customizing Enterprise COBOL
 

Chapter  3. Customizing  Enterprise  COBOL 59



RSTR   BOOLEAN  

      XD 

      PARENT  

The  following  example  restricts  the  use  of GO  TO  and  ALTER.  Use  of these  will  

cause  errors.  

RSTR   GO 

      ALTER  

In  the  following  example,  the  reserved  word  table  generated  allows  usage  of all  

COBOL  85  Standard  language  except  nested  programs.  

RSTR  IDENTIFICATION(1)   only  allow  1 program  per compilation  unit  

RSTR  ID(1)               same  for the  short  form  

RSTR  PROGRAM-ID(1)       only  allow  1 program  per  compilation  unit  

RSTR  GLOBAL              do not  allow  this  phrase  at all 

Modifying and running JCL to create a new reserved word 

table 

The  JCL  that  you  use  to  create  a new  reserved  word  table  contains  STEP1,  STEP2,  

and  STEP3,  which  do  the  following,  respectively:  

   Run  the  reserved  word  table  utility  with  your  modified  table.  

   Assemble  your  modified  reserved  word  table.  

   Produce  a runtime  load  module  from  the  object  module.

After  you  run the  job,  a new  reserved  word  table  is created,  the  library  that  you  

specified  contains  the  new  table,  and  the  table  has  IGYC  plus  the  1-  to 4-character  

identification  that  you  specified.  

Modifying and running non-SMP/E JCL 

Use  sample  job  IGYWRWD  in  IGY.V3R4M0.SIGYSAMP  to  create  your  new  

reserved  word  table.  The  sample  job  is distributed  with  member  IGY8----  in  

IGY.V3R4M0.SIGYSAMP  as  the  input  to  the  reserve  word  utility,  and  creates  load  

module  IGYC----  in  IGY.V3R4M0.SIGYCOMP.  Before  you  run the  job,  do  the  

following:  

Customizing Enterprise COBOL
 

60 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



To  Modify  the  JCL  for  IGYWRWD,  do  these  steps:  

1.   Modify  the  job  statement  for  your  site.  

2.   Add  JES  ROUTE  records  if desired.  

3.   Change  the  data  set  name  on  the  STEPLIB  DD  statement  in  STEP1  to 

match  the  compiler  target  data  set  name  you  used  during  installation.  

4.   Do  one  of  the  following  steps  to  point  to  your  modified  reserved  word  

table:  

v   Change  the  data  set  name  in  //RSWDREAD  DD  DSN=...  to  the  data  

set  name  and  member  name  of  your  modified  reserved  word  table,  or  

v   Replace  the  RSWDREAD  DD  with  //RSWDREAD  DD  * and  insert  

your  modified  reserved  table  immediately  following  that  line.

Note:  For  specific  instructions,  see  the  comments  in  job  IGYWRWD.  

5.   Change  the  name  of  the  data  set  on  the  SYSLMOD  DD  statement  in  

STEP3  to  match  the  name  of  the  data  set  to  which  you  are  adding  your  

modified  reserved  word  table.  (The  data  set  name  on  the  SYSLMOD  DD  

statement  should  be  the  name  of the  compiler  target  data  set.)  Also,  you  

must  specify  the  name  of  your  modified  reserved  word  table  in  the  

parentheses  that  follow  the  data  set  name  on  the  SYSLMOD  DD  

statement.

 If,  after  you  run IGYWRWD,  you  receive  a nonzero  return  code  from  the  table  

utility,  use  the  error  messages  in  the  output  data  set  specified  on  the  RSWDPRNT  

DD  statement  to  correct  any  mistakes  and  rerun  the  job.  

Placing Enterprise COBOL modules in shared storage 

All  of  the  modules  in  IGY.V3R4M0.SIGYCOMP  that  are  reentrant  can  be  included  

in  shared  storage  by:  

v   Authorizing  the  data  set  IGY.V3R4M0.SIGYCOMP  

v   Including  IGY.V3R4M0.SIGYCOMP  in  the  LNKLSTnn  concatenation  (optional)  

v   Creating  an  IEALPAnn  member  in  SYS1.PARMLIB  that  lists  the  modules  to  be  

made  resident  in the  MLPA  when  the  system  is  IPLed

IGYWMLPA  is  installed  in  IGY.V3R4M0.SIGYSAMP  for  you  to  use  as  an  example  

in  creating  your  IEALPAnn  member.  

Under  z/OS,  you  do  not  need  to place  IGY.V3R4M0  in  the  LNKLSTnn  

concatenation  to  be  able  to load  modules  into  the  LPA. If  you  choose  not  to add  it 

to  the  LNKLSTnn  concatenation,  you  must  make  the  modules  that  are  not  included  

in  the  LPA available  to  steps  that  compile  Enterprise  COBOL  applications  by  one  of  

these  means:  

v   Copying  the  non-LPA  modules  to  a data  set  that  is in  the  LNKLSTnn  

concatenation  

v   Copying  the  non-LPA  modules  to  a data  set  that  can  be  used  as  a STEPLIB  or  

JOBLIB

Using  the  entire  IGY.V3R4M0.SIGYCOMP  data  set  as  a STEPLIB  or  JOBLIB  defeats  

the  purpose  of  placing  the  modules  in  the  LPA because  modules  are  loaded  from  a 

STEPLIB  or  JOBLIB  before  the  LPA is searched.  

Customizing Enterprise COBOL
 

Chapter  3. Customizing  Enterprise  COBOL 61



Modules  that  you  copy  into  another  data  set  are  not  serviced  automatically  by  

SMP/E  in  that  data  set.  You must  rerun  your  copy  job  after  you  apply  service  to  

Enterprise  COBOL  to  make  the  updated  modules  available  in  the  LNKLSTnn  data  

set  or  in  the  STEPLIB.  

Refer  to  the  following  publications  for  more  information  about  including  modules  

in  the  LPA: 

v   z/OS  MVS  Initialization  and  Tuning  Guide,  SA22-7591  

v   z/OS  MVS  Initialization  and  Tuning  Reference,  SA22-7592

If  you  are  placing  compiler  phases  in  shared  storage,  code  the  corresponding  phase  

options  with  the  value  OUT  when  you  run the  sample  job  IGYWDOPT  to change  

the  compiler  options  defaults.  See  “Changing  the  defaults  for  compiler  options”  on  

page  54  for  more  information.  

Tailoring  the cataloged procedures to your site 

You might  want  to  tailor  the  cataloged  procedures  IGYWC,  IGYWCL,  IGYWCLG,  

IGYWCG,  IGYWCPL,  IGYWCPLG,  IGYWCPG,  and  IGYWPL  for  use  at your  site.  

Changes  to  consider  are:  

v   Modifying  the  data  set  name  prefixes  if you  chose  to use  a different  prefix  than  

the  IBM-supplied  ones  for  Enterprise  COBOL  or  Language  Environment  target  

data  sets.  

v   Removing  the  STEPLIB  DD  statements  if you  have  placed  

IGY.V3R4M0.SIGCOMP  and  CEE.SCEERUN  in the  LINKLIST  concatenation.  

v   Changing  the  default  region  size  for  the  GO  steps  if most  of the  programs  at  

your  site  require  a larger  region  for  successful  execution.  

v   Changing  the  UNIT=parameter.

Customizing Enterprise COBOL
 

62 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



Chapter  4.  Customizing  Unicode  support  for  COBOL  

In  Enterprise  COBOL,  a national  data  type,  national  literals,  intrinsic  functions,  and  

compiler  options  provide  basic  runtime  support  for  Unicode.  Also,  COBOL  

object-oriented  syntax  for  Java  interoperability  and  XML  support  use  Unicode  

capabilities  implicitly.  COBOL  source  programs  continue  to  be  encoded  in  an  

EBCDIC  (SBCS  or  DBCS)  code  page.  

Before  you  can  compile  or run the  following  types  of  COBOL  programs,  you  must  

install,  activate  (initialize),  and  configure  Unicode  services  on  both  development  

systems  (where  programs  are  compiled)  and  production  systems  (where  programs  

are  run). 

v   COBOL  programs  that  use  object-oriented  syntax  to interoperate  with  Java  

v   COBOL  programs  that  contain  national  data  types,  national  literals,  or  

DISPLAY-OF  or  NATIONAL-OF  intrinsic  functions  

v   COBOL  programs  that  use  XML  GENERATE  statements  

If  the  required  conversion  support  is not  available,  a severity-3  Language  

Environment  condition  is raised  at  run time,  or  a compiler  diagnostic  is issued.  

Installing, setting up, and activating Unicode services 

Ensure  that  your  system  is  set  up  to activate  Unicode  Services  at  IPL  time.  To 

activate  Unicode  Services,  you  must  code  UNI=xx in the  IEASYS00  member  of 

SYS1.PARMLIB,  where  xx  identifies  the  CUNUNIxx parmlib  member  for  

configuring  the  conversion  environment  . Follow  the  instructions  in  the  following  

document:  z/OS  Support  for  Unicode:  Using  Conversion  Services  (SA22-7649)  at  

//publibz.boulder.ibm.com/epubs/pdf/iea2un41.pdf.  (z/OS  support  for  Unicode  

is  included  as part  of the  operating  system.)  

Creating a conversion image for COBOL 

After  the  system  has  been  set  up  with  Unicode  services,  you  must  create  and  

activate  a conversion  image  that  supports  the  use  of  Unicode  services  on  the  

system.  This  section  describes  how  to create  a conversion  image  that  supports  

COBOL  requirements.  

To create  a conversion  image,  invoke  the  conversion  image  generator  with  control  

statements,  each  of  which  results  in  the  inclusion  of the  following  items:  

v   The  conversion  table  for  the  specified  source  CCSID  and  target  CCSID  

v   The  conversion  technique  that  is to  be  used  for  the  conversion  

The  following  CCSID  pairs  are  required  for  COBOL  programs,  depending  on  the  

language  features  used:  

 

© Copyright  IBM Corp. 1991, 2006 63

|
|
|

|

|
|



Program  description  Source  CCSID  Target  CCSID  

The  program  uses  Unicode  data.  CCSID  that  is in effect  

through  the  CODEPAGE  

compiler  option  

CCSID  1200  (UTF-16)  

CCSID  1200  CCSID  that  is in effect  in 

the  CODEPAGE  compiler  

option  

The  program  contains  the  

NATIONAL-OF  intrinsic  function  

with  an explicit  CCSID  

specification.  

CCSID  that  is specified  in 

the  intrinsic  function  

CCSID  1200  

The  program  contains  the  

DISPLAY-OF  intrinsic  function  

with  an explicit  CCSID  

specification.  

CCSID  1200  CCSID  that  is specified  in 

the  intrinsic  function  

The  program  contains  

object-oriented  syntax  for  Java  

interoperability.  

CCSID  that  is in effect  

through  the  CODEPAGE  

compiler  option  

CCSID  1208  (UTF-8)  

CCSID  1200  CCSID  1208  

The  program  contains  XML  

GENERATE  statements.  

1140 and  the  CCSID  that  

is in effect  through  the  

CODEPAGE  compiler  

option  

CCSID  1200  

CCSID  1200  1140 and  the CCSID  that  

is in effect  through  the 

CODEPAGE  compiler  

option
  

The  conversion  technique  is  called  technique  search  order. COBOL  uses  the  default  

technique  search  order,  so  you  should  omit  the  technique  search  order  on  the  

control  statements  . For  example,  to  configure  the  conversion  table  for  CCSID  1140  

to  CCSID  1200  conversions  for  COBOL,  code  this  control  statement:  

CONVERSION  1140,1200;  

The  selection  of  the  technique  search  order  that  COBOL  uses  is fixed:  application  

programs  cannot  change  it.  

Except  for  the  the  CCSID  pairs  required  for  object-oriented  syntax,  the  CCSID  pairs  

are  always  the  combination  of  CCSID  1200  and  another  CCSID.  

When  a program  contains  object-oriented  syntax  for  Java  interoperability,  the  

following  CCSID  pairs  are  required:  

v   CCSID  that  is specified  through  the  CODEPAGE  compiler  option  to  CCSID  1208  

v   CCSID  1200  to  CCSID  1208  

The  default  that  IBM  ships  for  the  CODEPAGE  compiler  option  is 1140  (EBCDIC  

Latin-1  with  the  euro  symbol.  

Example: programs that use object-oriented syntax for Java 

interoperability 

Consider  an  installation  that  has  applications  with  the  following  characteristics:  

 

64 Enterprise  COBOL  for z/OS V3R4  Customization  Guide

|
|
|
|
|
|

|



v   They  use  only  the  default  value  of the  CODEPAGE  compiler  option  (which  is 

CCSID  1140).  

v   They  do  not  specify  CCSID  values  explicitly  on  the  DISPLAY-OF  or  

NATIONAL-OF  intrinsic  functions.  

v   They  use  object-oriented  syntax  for  Java  interoperability.  

In  this  case,  configure  the  Unicode  services  with  (at  least)  the  following  set  of 

conversions:  

v   CCSID  1140  to  1200  

v   CCSID  1200  to  1140  

v   CCSID  1140  to  1208  

v   CCSID  1200  to  1208

Example: program that uses Unicode data 

The  following  example  uses  national  data  items  along  with  the  DISPLAY-OF  and  

NATIONAL-OF  intrinsic  functions   (the  text  in  bold  is not  part  of  the  source  

program):  

CBL  CODEPAGE(1140)  NSYMBOL(NATIONAL)  

Identification  Division.  

Program-ID.  Sample1.  

. . . 

Data  Division.  

Working-Storage  Section.  

01 Latin1-data  PIC  X(10).  

01 ASCII-Latin1-data  PIC  X(10).  

01 Japanese-MBCS-data  PIC  X(20).  

01 National-data  PIC  N(10)  Usage  National.  

. . . 

Procedure  Division.  

    . . . 

(1)  Move  ’ABCDE12345’  to Latin1-data  

(2)  Move  Latin1-data  to National-data  

(3)  Move  Function  DISPLAY-OF(National-data,1252)  

      To ASCII-Latin1-data  

(4)  Move  Function  DISPLAY-OF(National-data,1399)  

      To Japanese-MBCS-data  

    . . . 

(5)  Move  Function  NATIONAL-OF(Japanese-MBCS-data,  1399)  

      To National-data  

(6)  Display  National-data  

    . . . 

    Goback.  

This  program  requires  conversion  tables  for  the  following  CCSID  pairs:  

v   CCSID  1140  to  CCSID  1200  (the  CCSID  in  effect  for  the  CODEPAGE  compiler  

option  to  1200)  

v   CCSID  1200  to  CCSID  1140  (1200  to the  CCSID  in effect  for  the  CODEPAGE  

compiler  option)  

v   CCSID  1200  to  CCSID  1252  (required  for  the  DISPLAY-OF  function  in  statement  

3 above)  

v   CCSID  1200  to  CCSID  1399  (required  for  the  DISPLAY-OF  function  in  statement  

4 above)  

v   CCSID  1399  to  CCSID  1200  (required  for  the  NATIONAL-OF  function  in  

statement  5 above)

 

Chapter 4. Customizing  Unicode support for COBOL  65



Considerations for COBOL DB2 programs 

When  a COBOL  program  contains  DB2  SQL  statements,  you  need  to  configure  

Unicode  services  with  the  conversion  tables  that  DB2  requires  as  well  as  those  that  

COBOL  requires.  One  key  difference  for  DB2  is that  DB2  uses  the  conversion  

technique  search  order  ER  rather  than  the  default.  Therefore,  even  if COBOL  and  

DB2  require  conversions  between  the  same  CCSID  pair, you  must  create  two  

conversion  tables  for  the  pair:  one  for  COBOL  with  the  technique  search  order  

omitted  and  the  other  with  the  technique  search  order  ER.  

Recommendation:  To avoid  unnecessary  conversions  and  associated  performance  

overhead,  use  the  same  codepage  for  COBOL  applications  (specify  by  using  the  

CODEPAGE(nnnnn) compiler  option)  and  for  DB2  subsystem  parameters  and  

application  programming  defaults  (specify  in  DSNHDECP).  

For  additional  information  about  DB2  requirements  for  configuring  Unicode  

services,  see  the  DB2  library  at  www.ibm.com/software/data/db2/zos/
library.html.  In  particular,  see  the  following  publications  at www.ibm.com/
software/data/db2/zos/v8books.html  

v   DB2  UDB  for  z/OS  Version  8 Installation  Guide  

v   DB2  UDB  for  z/OS  Internationalization  Guide  (Unicode)

Example: JCL for generating a conversion image 

The  following  sample  batch  job  supports  the  following  three  types  of COBOL  

programs:  

v   A COBOL  program  that  contains  the  language  elements  shown  above  

v   A COBOL  program  that  contains  OO  syntax  for  Java  interoperability  

v   A COBOL  DB2  program  that  requires  conversions  between  CCSID  1200  and  

CCSID  1140  by  DB2  

This  sample  JCL  is  a variation  of  the  hlq.SCUNJCL(CUNJIUTL)  that  is provided  in  

the  Unicode  services  package.  

//CUNMIUTL  EXEC  PGM=CUNMIUTL  

//SYSPRINT  DD    SYSOUT=*  

//SYSUDUMP  DD    SYSOUT=*  

//SYSIMG    DD   DSN=UNI.IMAGES(CUNIMG01),DISP=SHR  

//TABIN     DD   DSN=UNI.SCUNTBL,DISP=SHR  

//SYSIN     DD   * 

  /****************************************************************/  

  /* Conversion  image  input  for  conversions  between  national       */ 

  /* data  (1200)  and  alphanumeric,  DBCS  or MBCS  data  with          */ 

  /* CCSID  in effect  for  CODEPAGE  compiler  option                  */ 

  /* Default  “technique  search  order”  is used  by COBOL             */ 

  /****************************************************************/  

  CONVERSION  1140,1200;  /* Latin-1  to UTF-16,  RECLM                */ 

  CONVERSION  1200,1140;  /* UTF-16  to Latin-1,  RECLM                */ 

  

  /****************************************************************/  

  /* Conversion  image  input  for  CCSIDs  specified                   */ 

  /* in DISPLAY-OF  and  NATIONAL-OF  intrinsic  functions             */ 

  /* DISPLAY-OF  requires  conversion  from  1200  to specified  CCSID   */ 

  /* NATIONAL-OF  requires  conversion  from  specified  CCSID  to  1200  */ 

  /* Default  “technique  search  order”  is used  by COBOL             */ 

  /****************************************************************/  

  CONVERSION  1200,1252;  /* UTF-16  to ASCII  Latin-1,  RECLM          */  

  CONVERSION  1200,1399;  /* UTF-16  to Japanese,  RECLM               */ 

  CONVERSION  1399,1200;  /* Japanese  to UTF-16,  RECLM               */ 

 

 

66 Enterprise  COBOL  for z/OS V3R4  Customization  Guide

|
|
|
|

|
|
|

|

|



/****************************************************************/  

  /*  Conversion  image  input  for  COBOL  OO support                   */ 

  /*  Default  “technique  search  order”  (RECLM)  is used  by COBOL     */ 

  /****************************************************************/  

  CONVERSION  1140,1208;  /* Latin-1  to UTF-8,  RECLM                 */ 

  CONVERSION  1200,1208;  /* UTF-16  to UTF-8,  RECLM                  */ 

  

  /****************************************************************/  

  /*  Conversion  image  input  for  DB2                                */ 

  /*  “technique  search  order”  used  by DB2  is ER                   */  

  /****************************************************************/  

  CONVERSION  1140,1200,ER;  /* Latin-1  to UTF-16,  ER               */ 

  CONVERSION  1200,1140,ER;  /* UTF-16  to Latin-1,  ER               */ 

/* 

COBOL  uses  the  character  conversion  services  but  not  the  case  conversion  or  the  

normalization  services  of  Unicode  services.  You do  not  need  to  include  CASE  or  

NORMALIZE  control  statements  for  the  conversion  image  creation  unless  other  

products  or  applications  require  them.  

 

Chapter 4. Customizing  Unicode support for COBOL  67



68 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



Appendix.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in 

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Corporation  

J46A/G4  

555  Bailey  Avenue  

San  Jose,  CA   95141-1003  

U.S.A.  

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade  Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106,  Japan  

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  INTERNATIONAL  

BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  PUBLICATION  ″AS  IS″  

WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  EXPRESS  OR  IMPLIED,  

INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  WARRANTIES  OF  

NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  FOR  A  PARTICULAR  

PURPOSE.  Some  states  do  not  allow  disclaimer  of express  or  implied  warranties  in  

certain  transactions,  therefore,  this  statement  may  not  apply  to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of  information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of the  

information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

J46A/G4

 

© Copyright  IBM Corp. 1991, 2006 69



555  Bailey  Avenue  

San  Jose,  CA  95141-1003  

U.S.A.  

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  information  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Programming interface information 

Enterprise  COBOL  for  z/OS  provides  no  macros  that  allow  a customer  installation  

to  write  programs  that  use  the  services  of  Enterprise  COBOL  for  z/OS.  

Attention:  Do  not  use  as programming  interfaces  any  Enterprise  COBOL  for  z/OS  

macros.  

Trademarks 

The  following  terms  are  trademarks  of the  IBM  Corporation  in  the  United  States  

and/or  other  countries  or  both:  

 CICS  

COBOL/370  

DB2  

DFSORT  

IBM  

Language  Environment  

OS/390  

S/390  

z/OS  

  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.  

Java  and  all  Java-based  trademarks  are  trademarks  of  Sun  Microsystems,  Inc.  in the  

United  States,  other  countries,  or  both.  

Unicode  

™ is  a trademark  of  the  Unicode  

® Consortium.  

UNIX  is a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

 

70 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



List  of  resources  

Enterprise COBOL for z/OS 

   Migration  Guide, GC27-1409  

   Customization  Guide, GC27-1410  

   Debug  Tool  User’s  Guide, SC18-7171  

   Debug  Tool  Reference  and  Messages,  SC18-7172  

   Fact  Sheet, GC27-1407  

   Language  Reference, SC27-1408  

   Licensed  Product  Specifications, GC27-1411  

   Programming  Guide, SC27-1412

z/OS Language Environment 

   z/OS  Language  Environment  Concepts  Guide, SA22-7567  

   z/OS  Language  Environment  Debugging  Guide, GA22-7560  

   z/OS  Language  Environment  Run-Time  Messages,  SA22-7566  

   z/OS  Language  Environment  Customization, SA22-7564  

   z/OS  Language  Environment  Programming  Guide, SA22-7561  

   z/OS  Language  Environment  Programming  Reference,  SA22-7562  

   z/OS  Language  Environment  Run-Time  Migration  Guide, GA22-7565  

   z/OS  Language  Environment  Writing Interlanguage  Communication  Applications, 

SA22-7563

Related publications 

   American  National  Standard  ANSI  INCITS  23-1985,  Programming  languages  - 

COBOL,  as amended  by  ANSI  INCITS  23a-1989,  Programming  Languages  - 

Intrinsic  Function  Module  for  COBOL, and  ANSI  INCITS  23b-1993,  Programming  

Languages  - Correction  Amendment  for  COBOL  

   CICS  Transaction  Server  Application  Programming  Guide, SC33-1687  

   CICS  Transaction  Server  Application  Programming  Reference, SC33-1688  

   CICS  Transaction  Server  Customization  Guide, SC33-1683  

   CICS  Transaction  Server  External  Interfaces  Guide,  SC33-1944  

   DBCS  Ordering  Support  Program  (DBCSOS):  Program  Description, N:SH18-0144  (in  

Japanese)  

   DB2  UDB  for  z/OS  Installation  Guide, GC18-7418  

   DB2  UDB  for  z/OS  Internationalization  Guide  (Unicode)  

   International  Standard  ISO  1989:1985,  Programming  languages  - COBOL, as  

amended  by  ISO/IEC  1989/AMD1:1992,  Programming  languages  - COBOL  - 

Intrinsic  function  module, and  ISO/IEC  1989/AMD2:1994,  Programming  languages  - 

Correction  and  clarification  amendment  for  COBOL  

   z/OS  MVS  Initialization  and  Tuning  Guide, SA22-7591  

   z/OS  MVS  Initialization  and  Tuning  Reference,  SA22-7592  

   z/OS  Support  for  Unicode:  Using  Conversion  Services, SA22-7649  

   IBM  SMP/E  for  z/OS  User’s  Guide, SA22-7773  

 

© Copyright  IBM Corp. 1991, 2006 71

|

|

|



IBM  SMP/E  for  z/OS  Reference, SA22-7772  

   TSO/E  Primer, SA22-7787  

   TSO/E  User’s  Guide, SA22-7794  

   ISPF  User’s  Guide  Volume  I, SC34-4822

Softcopy publications 

The  following  collection  kits  contains  IBM  COBOL  and  related  product  

publications.  

v   z/OS  collection,  SK3T-4269

 

72 Enterprise  COBOL  for z/OS V3R4  Customization  Guide

|

|

|

|



Index  

A
accessibility

of Enterprise  COBOL  xi 

of this document  xii 

using z/OS xi 

ADATA  compiler  option  14 

ADEXIT  compiler  option  15 

ADV compiler  option  15 

ALOWCBL  compiler  option  16 

ARITH compiler  option 16 

ASM1 phase 6 

ASM2 phase 7 

assistive  technologies  xi 

AWO compiler  option  17 

B
BUF compiler  option 17 

C
CBL statement  16 

CICS reserved word  table 10 

COMPILE  compiler  option 18 

compiler  options
conflicting  options  13 

default values  1 

description  of
ADATA  14 

ADEXIT  15 

ADV 15 

ALOWCBL  16 

ARITH 16 

AWO 17 

BUF 17 

COMPILE  18 

CURRENCY  19 

DATA  20 

DATEPROC  21 

DBCS 22 

DBCSXREF  22 

DECK  23 

DIAGTRUNC  24 

DLL 24 

DYNAM  25 

EXPORT 25 

FASTSRT 26 

FLAG 26 

FLAGSTD  27 

INEXIT  29 

INTDATE  29 

LANGUAGE  30 

LIB 30 

LIBEXIT  31 

LINECNT  31 

LIST 31 

LITCHAR  32 

LVLINFO  32 

MAP 33 

MDECK  33 

compiler  options  (continued)
description of (continued)

NAME 33 

NUM 34 

NUMCLS  35 

NUMPROC  35 

OBJECT 36 

OFFSET  37 

OPTIMIZE  37 

OUTDD  38 

PGMNAME  38 

PRTEXIT 39 

RENT 39 

RMODE  40 

SEQ 41 

SIZE 41 

SOURCE  42 

SPACE  42 

SQL 43 

SQLSSCID  43 

SSRANGE  44 

TERM 44 

TEST 45 

TRUNC  47 

VBREF 48 

WORD 49 

XREFOPT  50 

YRWINDOW  50 

ZWB 51 

fixed options  2 

modifying  3, 54 

planning  worksheet  3 

setting defaults  for 1, 54 

storage  allocation  17 

compiler  phases
defaults  for 6 

description  of
ASM1 6 

ASM2 7 

DIAG 7 

DMAP 7 

FGEN 7 

INIT 7 

LIBR 7 

LSTR 8 

MSGT 8 

OPTM 8 

OSCN 8 

PGEN 8 

RCTL 8 

RWT 9 

SCAN  9 

SIMD 9 

XREF 9 

fixed phases 5 

INOUT  parameters  6 

macro worksheet  9 

modifying  3 

placing  in shared storage 5 

CURRENCY  compiler  option  19 

customization
compiler options 13, 54 

installation  jobs
Enterprise  COBOL 53 

planning  for 1 

D
DATA  compiler option 20 

DATEPROC  compiler  option 21 

DBCS compiler  option  22 

DBCSXREF  compiler option 22 

Debug  Tool
producing object code for 45 

DECK compiler  option 23 

default  reserved word table 10 

default  values
compiler  options 1 

compiler phases 6 

DIAG  phase 7 

DIAGTRUNC  compiler option 24 

DLL compiler  option  24 

DMAP  phase 7 

DUMP  compiler  option  14 

DYNAM  compiler option 25 

E
ELPA

See shared storage  

Enterprise  COBOL
job modification  53 

error  messages
flagging  26 

EXPORT compiler  option  25 

F
FASTSRT  option  26 

FGEN phase 7 

fixed compiler  options  2 

FLAG  compiler  option 26 

FLAGSTD  compiler  option 27 

format  notation,  description  ix 

I
IGYCCICS  (CICS reserved  word 

table) 10 

IGYCDOPT
AMODE 31 and 1 

planning  worksheet  3 

RMODE  ANY and 1 

using with IGYCDOPT  program 1 

IGYCOPT
syntax format 3 

IGYCRWT (default reserved word 

table) 10 

index checking  44 

 

© Copyright  IBM Corp. 1991, 2006 73



INEXIT  compiler  option 29 

INIT phase 7 

INTDATE  compiler  option  29 

K
keyboard  navigation  xi 

keywords  x 

L
LANGUAGE  compiler  option 30 

LIB compiler  option 30 

LIBEXIT  compiler  option  31 

LIBR phase 7 

LINECNT  compiler  option  31 

LIST compiler  option  31 

LITCHAR  compiler  option 32 

LSTR  phase 8 

LVLINFO  compiler  option  32 

M
macro worksheets

See planning  worksheets  

macros
IGYCDOPT  (compiler  options)

planning  worksheet  3 

syntax format 3 

IGYCDOPT  (compiler  phases)
planning  worksheet  9 

syntax format 3 

MAP compiler  option  33 

MDECK  compiler  option 33 

messages,  flagging  26 

MLPA
See shared storage 

MSGT phase 8 

N
NAME compiler  option 33 

nested  programs 10 

notation,  syntax ix 

notice  information  69 

NUM  compiler  option  34 

NUMCLS  compiler  option 35 

NUMPROC  compiler  option 35 

O
object  code, reentrant 39 

OBJECT  compiler  option  36 

OFFSET  compiler  option 37 

OPTIMIZE  compiler  option  37 

optional  words ix 

OPTM phase 8 

OSCN  phase 8 

OUTDD  compiler  option  38 

P
PGEN phase 8 

PGMNAME  compiler  option 38 

phases,  compiler
defaults  for 6 

macro  worksheet  9 

modifying  3 

placing  in shared  storage 5 

planning  worksheets
description  of x 

IGYCDOPT  (compiler  options)  3 

IGYCDOPT  (compiler  phases) 9 

preface ix 

PROCESS  (CBL) statement  16 

PRTEXIT compiler  option 39 

publications  71 

R
RCTL  phase 8 

reentrant  object code 39 

RENT compiler  option  39 

required  words  ix 

reserved  word  table
contents  of 10 

creating or modifying  56 

nested programs 10 

planning  for 10 

specifying  an alternative  table 49 

supplied with Enterprise  COBOL
IGYCCICS  10 

IGYCNOOO  10 

IGYCRWT (default reserved word 

table) 10 

residency  mode 40 

RMODE  compiler  option  40 

rules for syntax notation  ix 

RWT phase 9 

S
sample  installation  jobs 2 

SCAN phase 9 

sequence  checking of line numbers  41 

SEQUENCE  compiler  option  41 

shared  storage
compiler phases in 5, 6 

placing  Enterprise  COBOL  modules  

in 61, 62 

planning  for 5 

SIMD  phase 9 

SIZE compiler  option  41 

SOURCE  compiler  option 42 

SPACE  compiler  option 42 

SQL compiler  option  43 

SQLCCSID  compiler  option  43 

SSRANGE  compiler  option 44 

stacked  words  ix 

subscript  checking  44 

symbols  for syntax notation  ix 

syntax  checking  19 

syntax  notation
COBOL  keywords x 

description  of ix 

repeat  arrows  x 

rules for ix 

symbols used in ix 

SYSLIN  36 

SYSOUT  38 

SYSPUNCH  23 

SYSTERM  45 

T
TERM compiler option 44 

TEST compiler  option  45 

THREAD  46 

TRUNC  compiler option 47 

U
user exit routine

ADEXIT compiler  option 15 

LIBEXIT option 31 

PRTEXIT option 39 

V
values, default

See default values 

VBREF compiler  option  48 

W
WORD  compiler option 49 

worksheets
See planning  worksheets  

X
XREF compiler option 50 

XREF phase 9 

XREFOPT  option 50 

Y
YRWINDOW  compiler option 50 

Z
ZWB compiler  option  51

 

74 Enterprise  COBOL  for z/OS V3R4  Customization  Guide



Readers’  Comments  —  We’d Like  to Hear  from  You  

Enterprise  COBOL  for z/OS  

Customization  Guide  

Version  3 Release  4 

 Publication  No.  GC27-1410-05  

 We appreciate  your  comments  about  this  publication.  Please  comment  on specific  errors  or omissions,  accuracy,  

organization,  subject  matter,  or  completeness  of this  book.  The  comments  you  send  should  pertain  to only  the 

information  in  this  manual  or product  and  the  way  in which  the  information  is presented.  

For  technical  questions  and  information  about  products  and  prices,  please  contact  your  IBM  branch  office,  your  

IBM  business  partner,  or your  authorized  remarketer.  

When  you  send  comments  to IBM,  you  grant  IBM  a nonexclusive  right  to use  or distribute  your  comments  in any  

way  it believes  appropriate  without  incurring  any  obligation  to you.  IBM  or any  other  organizations  will  only  use  

the  personal  information  that  you  supply  to contact  you  about  the  issues  that  you  state  on this  form.  

Comments:  

 Thank  you  for  your  support.  

Submit  your  comments  using  one  of these  channels:  

v   Send  your  comments  to the  address  on the  reverse  side  of this  form.  

If you  would  like  a response  from  IBM,  please  fill in the  following  information:  

 

Name
 

Address  

Company  or Organization
 

Phone  No. E-mail  address



Readers’ Comments — We’d Like to Hear from You
 GC27-1410-05

GC27-1410-05

���� 

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please  do not staple Fold and Tape

Fold and Tape Please  do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation 

Reader Comments 

DTX/E269 

555 Bailey Avenue 

San Jose, CA 

U.S.A. 95141-9989 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_


	Contents
	Figures
	Tables
	About this document
	How to read the syntax diagrams
	Using the macro planning worksheets
	How to send your comments
	Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Accessibility of this document


	Summary of changes
	Changes to this edition of this manual
	Major changes to Enterprise COBOL
	Version 3 Release 4, July 2005
	Version 3 Release 3, February 2004
	Version 3 Release 2, September 2002
	Version 3 Release 1, November 2001


	Chapter 1. Planning to customize Enterprise COBOL
	Making changes after installation—why customize?
	Planning to modify compiler option default values
	Why make compiler options fixed?
	Sample installation jobs

	Modifying compiler options and phases
	IGYCDOPT worksheet for compiler options


	Planning to place compiler phases in shared storage
	Why place the compiler phases in shared storage?
	Compiler phases and their defaults
	IGYCDOPT worksheet for compiler phases


	Planning to create an additional reserved word table
	Why create additional reserved word tables?
	Controlling use of nested programs
	Reserved word tables supplied with Enterprise COBOL
	Default reserved word table (IGYCRWT)
	CICS reserved word table (IGYCCICS)



	Chapter 2. Enterprise COBOL compiler options
	Specifying COBOL compiler options
	Conflicting compiler options
	Compiler options for standards conformance
	Compiler options syntax and descriptions
	ADATA
	ADEXIT
	ADV
	ALOWCBL
	ARITH
	AWO
	BUF
	CICS
	CODEPAGE
	COMPILE
	CURRENCY
	DATA
	DATEPROC
	DBCS
	DBCSXREF
	DECK
	DIAGTRUNC
	DLL
	DYNAM
	EXPORTALL
	FASTSRT
	FLAG
	FLAGSTD
	INEXIT
	INTDATE
	LANGUAGE
	LIB
	LIBEXIT
	LINECNT
	LIST
	LITCHAR
	LVLINFO
	MAP
	MDECK
	NAME
	NSYMBOL
	NUM
	NUMCLS
	NUMPROC
	OBJECT
	OFFSET
	OPTIMIZE
	OUTDD
	PGMNAME
	PRTEXIT
	RENT
	RMODE
	SEQ
	SIZE
	SOURCE
	SPACE
	SQL
	SQLCCSID
	SSRANGE
	TERM
	TEST
	THREAD
	TRUNC
	VBREF
	WORD
	XREFOPT
	YRWINDOW
	ZWB

	Chapter 3. Customizing Enterprise COBOL
	Summary of user modifications
	Changing the defaults for compiler options
	Changing compiler options default module
	Creating an options module to override options specified as fixed

	Creating or modifying additional reserved word tables
	Creating or modifying a reserved word table
	Coding control statements
	Rules for coding control statements
	Coding operands in control statements
	Rules for coding control statement operands
	ABBR statement
	INFO statement
	RSTR statement
	Modifying and running JCL to create a new reserved word table
	Modifying and running non-SMP/E JCL

	Placing Enterprise COBOL modules in shared storage
	Tailoring the cataloged procedures to your site

	Chapter 4. Customizing Unicode support for COBOL
	Installing, setting up, and activating Unicode services
	Creating a conversion image for COBOL
	Example: programs that use object-oriented syntax for Java interoperability
	Example: program that uses Unicode data

	Considerations for COBOL DB2 programs
	Example: JCL for generating a conversion image

	Appendix. Notices
	Programming interface information
	Trademarks

	List of resources
	Enterprise COBOL for z/OS
	z/OS Language Environment
	Related publications
	Softcopy publications

	Index
	Readers’ Comments — We'd Like to Hear from You

