
Enterprise COBOL for z/OS and OS/390

Compiler and Run-Time Migration Guide
Version 3 Release 1

GC27-1409-00

���

Enterprise COBOL for z/OS and OS/390

Compiler and Run-Time Migration Guide
Version 3 Release 1

GC27-1409-00

���

First Edition (November 2001)

This new edition replaces and makes obsolete the previous edition, GC26-4764-05. The technical changes for this
edition are summarized under “Summary of Changes” and are indicated by a vertical bar to the left of a change.

This edition applies to IBM Enterprise COBOL for z/OS and OS/390 Version 3 Release 1 (5655-G53) and to any
subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the
correct edition for the level of the product.

You can order publications online at www.ibm.com/shop/publications/order, or order by phone or fax. IBM
Software Manufacturing Solutions takes publication orders between 8:30 a.m. and 7:00 p.m. EST (Eastern Standard
Time). The phone number is (800)879-2755. The fax number is (800)445-9269.

Order publications through your IBM representative or the IBM branch office serving your locality.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!:

Before using this information and the product it supports, be sure to read the general
information under “Appendix N. Notices” on page 323.

Contents

About this book ix
Acknowledgement ix
Using your documentation x

Enterprise COBOL for z/OS and OS/390 x
Language Environment element of z/OS Version 1
Release 1 or later x
Language Environment element of OS/390
Version 2 Release 10 xi
How to send your comments xi

Summary of changes xiii
Changes to the Migration Guide xiii

Changes in GC27-1409-00, November 2001. . . xiii
Changes in GC26-4764-05, September 2000. . . xiii

Summary of changes to the COBOL compilers . . xiv
Changes in IBM Enterprise COBOL for z/OS
and OS/390 xiv
Changes in COBOL for OS/390 & VM Version 2
Release 2 xiv
Changes in COBOL for OS/390 & VM Version 2
Release 1 xvi

Part 1. Overview 1

Chapter 1. Do I need to recompile? . . . 3
Migration basics 3

Run-time migration 3
Source migration 4

Service support for OS/VS COBOL and VS COBOL II
programs 4

Changing OS/VS COBOL programs 5

Chapter 2. Introducing the new compiler
and run time 7
Product relationships—compiler, run time, debug . . 7
Comparison of COBOL compilers 8
Language Environment’s run-time support for other
programs 9
Advantages of the new compiler and run time . . 10
Suggestions for incremental conversions 15
Changes with the new compiler and run time . . . 16

CMPR2 compiler option not available 16
FLAGMIG compiler option not available . . . 16
ANALYZE compiler option not available . . . 16
SOM-based object-oriented COBOL not available 16
Integrated CICS translator available 17

General conversion tasks 17
Planning your strategy 17
Moving to the Language Environment run time 17
Upgrading your source to Enterprise COBOL . . 18
Adding Enterprise COBOL programs to existing
applications 19

Part 2. Conversion strategies. . . . 21

Chapter 3. Planning the move to
Language Environment 23
Preparing to move to the Language Environment
run-time library 23

Installing Language Environment 23
Assessing storage requirements 23
Educating your programmers about Language
Environment 26

Taking an inventory of your applications 27
Vendor tools, packages, and products. 27
COBOL applications 27
Assigning complexity ratings 28
Setting up conversion/no-conversion categories 30

Deciding how to phase Language Environment into
production mode 30

Multilanguage conversion 30
Determining how applications will have access to
the library 31

Setting up a regression testing procedure 33
Take performance measurements 34

Cutting over to production use 35

Chapter 4. Planning to upgrade source
programs 37
Preparing to upgrade your source 37

Installing Enterprise COBOL 37
Assessing storage requirements 37
Deciding which conversion tools to use and
install them 38
Educating your programmers on new compiler
features. 38

Taking an inventory of your applications 39
Taking an inventory of vendor tools, packages,
and products 39
Taking an inventory of COBOL applications . . 39
Prioritizing your applications 40
Setting up upgrade/no upgrade categories . . . 43
Setting up a conversion procedure. 43

Making application program updates 47

Part 3. Moving existing applications
to Language Environment 51

Chapter 5. Running existing
applications under Language
Environment 53
Set recommended default Language Environment
run-time options. 53

Recommended run-time options for non-CICS
applications 53
Recommended run-time options for CICS
applications 56

Invoking existing applications 58

© Copyright IBM Corp. 1991, 2001 iii

||

|
||

||
||
||
||
||
||

For non-CICS applications 58
For CICS applications 59

Link-editing existing applications 59
Obtaining a system dump or a CICS transaction
dump 60

Method 1: Specify the TERMTHDACT run-time
option 60
Method 2: Specify an abnormal termination exit 61

Getting compatible abend behavior 62
Ensuring the compatibility of return-code values . . 62

Chapter 6. Moving from the OS/VS
COBOL run-time 63
Determining which programs require link-editing . 64

Applications with COBOL programs compiled
with RES 64
Applications with COBOL programs compiled
with NORES 64
Applications with COBOL programs compiled
with RES and NORES 65

Determining which programs require upgrading . . 65
On CICS 65
On non-CICS 65

Comparing run-time options and specification
methods 66

Specifying Language Environment run-time
options 66
Comparing OS/VS COBOL and Language
Environment run-time options 68

Closing files in non-COBOL and OS/VS COBOL
programs 68

Other environments 69
Running in a reusable run-time environment . . . 69

Using ILBOSTP0. 70
Managing dump services 70

OS/VS COBOL symbolic dumps 70
System storage dumps and CICS transaction
dumps 70
Language Environment formatted dumps . . . 71

Using ILBOABN0 to force an abend 71
Using SORT or MERGE in OS/VS COBOL programs 72
Understanding SYSOUT output changes. 72

SYSOUT output with RECFM=FB 72
OS/VS COBOL trace output sequence 73

Communicating with other languages 73
Additional CICS considerations. 74

Chapter 7. Moving from the VS COBOL
II run-time 75
Determining which programs require link-editing . 76

Applications with COBOL programs compiled
with RES 76
Applications with COBOL programs compiled
with NORES 76
Programs that use ILC. 77
Statically calling IGZCA2D or IGZCD2A . . . 77

Determining which programs require upgrading . . 77
CICS 77
Non-CICS 78

Comparing run-time options and specification
methods 78

Specifying Language Environment run-time
options 79
Specifying VS COBOL II run-time options . . . 81
Comparing VS COBOL II and Language
Environment options 82

Closing files in non-COBOL and OS/VS COBOL
programs 83

Other environments 83
Running in a reusable run-time environment . . . 84

Precautions if establishing a reusable
environment under IMS 84
Using IGZERRE 85
Using ILBOSTP0. 85
Using RTEREUS 85

Managing messages, abend codes, and dump
services. 86

Run-time messages 86
Timing of abend for run-time detected errors . . 87
Abend codes 88
Using CEEWUCHA 88
Dump services 89

Using ILBOABN0 to force an abend 90
Using SORT or MERGE 91

In OS/VS COBOL programs. 91
In VS COBOL II subprograms 91

Understanding SYSOUT output changes. 92
DISPLAY UPON SYSOUT and DD definitions . . 92
SYSOUT output with RECFM=FB 92
OS/VS COBOL trace output sequence 92

Communicating with other languages 93
General ILC considerations 93
COBOL and FORTRAN 94
COBOL and PL/I 94
COBOL and C/370 95

Initializing the run-time environment 96
Existing applications using LIBKEEP 96
Considerations for Language Environment
preinitialization 97

Determining storage tuning changes 97
Alternatives to IGZTUNE. 98
Considerations for SPOUT output 98

Additional CICS considerations. 99
Performance considerations 99
SORT interface change. 99
WORKING-STORAGE limits 99
VS COBOL II NORENT programs 100
IGZETUN or IGZEOPT and MSGFILE 100
CICS HANDLE commands and the
CBLPSHPOP run-time option 100
DISPLAY statement 102
CLER transaction 102

Undocumented VS COBOL II extensions 103

Chapter 8. Link-editing applications
with Language Environment 105
Applications comprised of NORES programs . . . 105

Implications of becoming RES-like 106
Applications comprised of RES programs 106

iv COBOL Migration Guide

||

Chapter 9. Upgrading Language
Environment release levels 107
Change in behavior for DATA(31) programs under
OS/390 Version 2 Release 9 or later 107
Missing CEEDUMP for applications with assembler
programs that use the DUMP macro under OS/390
Version 2 Release 8 108
Change in file handling for COBOL programs with
RECORDING MODE U under OS/390 Version 2
Release 10 108
Calling between assembler and COBOL under
OS/390 Version 2 Release 9 or later 109
Referencing symbolic feedback tokens 110

Part 4. Upgrading source
programs 111

Chapter 10. Upgrading OS/VS COBOL
source programs 113
Comparing OS/VS COBOL to Enterprise COBOL 113

Language elements that require change—quick
reference 114

Using conversion tools to convert programs to
COBOL 85 Standard 117

COBOL Conversion Tool (CCCA). 117
OS/VS COBOL MIGR compiler option 117
CMPR2 and FLAGMIG compiler options . . . 118

Language elements that require other products for
support 118

Report Writer 118
Language elements that are no longer implemented 119

ISAM file handling 119
BDAM file handling 120
Communication feature 121

Language elements that are not supported . . . 121
Undocumented OS/VS COBOL extensions that are
not supported 128
Language elements that changed from OS/VS
COBOL 137

Chapter 11. Compiling converted
OS/VS COBOL programs 153
Key compiler options for converted programs . . 153
Unsupported OS/VS COBOL compiler options . . 154
Prolog format changes 155

Chapter 12. Upgrading VS COBOL II
source programs 157
Determining which programs require upgrade
before compiling with Enterprise COBOL 157
Upgrading VS COBOL II programs compiled with
the CMPR2 compiler option 157
COBOL 85 Standard interpretation changes . . . 158

REPLACE and comment lines 158
Precedence of USE procedures. 158
Reference modification of a variable-length
group receiver 159

ACCEPT statement 160

New reserved words 160
Undocumented VS COBOL II extensions 161

Chapter 13. Compiling VS COBOL II
programs 163
Key compiler options for VS COBOL II programs 163

Compiling with Enterprise COBOL 163
Compiler options not supported in Enterprise
COBOL 163

Prolog format changes 164

Chapter 14. Upgrading IBM COBOL
source programs 165
Determining which programs require upgrade
before you compile with Enterprise COBOL . . . 165
Upgrading SOM-based object-oriented (OO)
COBOL programs 165
SOM-based object-oriented COBOL language
elements that are not supported 166

Compiler options IDLGEN and TYPECHK . . 166
SOM-based object-oriented COBOL language
elements that are changed 167
New reserved words in Enterprise COBOL . . . 167
Undocumented IBM COBOL extensions 168

Chapter 15. Compiling IBM COBOL
programs 169
Key compiler options for IBM COBOL programs 169
Compiler options not available in Enterprise
COBOL 170

Chapter 16. Migrating from CMPR2 to
NOCMPR2. 173
Upgrading programs compiled with the CMPR2
compiler option 173

ALPHABET clause of the SPECIAL-NAMES
paragraph 174
ALPHABETIC class 174
CALL . . . ON OVERFLOW 175
Comparisons between scaled integers and
nonnumerics 176
COPY ... REPLACING statements using
non-COBOL characters 177
COPY statement using national extension
characters 179
File status codes 180
Implicit EXIT PROGRAM 181
PERFORM return mechanism 183
PERFORM ... VARYING ... AFTER 185
PICTURE clause with "A"s and "B"s 187
PROGRAM COLLATING SEQUENCE 189
READ INTO and RETURN INTO 190
RECORD CONTAINS n CHARACTERS . . . 191
Reserved words 192
SET . . . TO TRUE 193
SIZE ERROR on MULTIPLY and DIVIDE . . . 195
UNSTRING operand evaluation 196
UPSI switches 202
Variable-length group moves 203

Contents v

|
||
|
|
||
|
|
||

|
||
|
||
|
||
||
|
||

||

|
||

Chapter 17. CICS conversion
considerations for COBOL source . . 207
Key compiler options for programs that run under
CICS 207
Migrating from the separate CICS translator to the
integrated translator 208

Integrated CICS translator 209
Base addressability considerations for OS/VS
COBOL programs 210

SERVICE RELOAD statements 210
LENGTH OF special register 210
Programs using BLL cells 211
Example 1: Receiving a communications area 212
Example 2: Processing storage areas that
exceede 4K 213
Example 3: Accessing chained storage areas . . 214
Example 4: Using the OCCURS DEPENDING
ON clause 215

Part 5. Adding Enterprise COBOL
programs to existing COBOL
applications 217

Chapter 18. Adding Enterprise COBOL
programs to existing COBOL
applications 219
Applications comprised of RES programs 219

Adding Enterprise COBOL programs that use
static CALL statements 219
CALL statements on non-CICS 220
CALL statements on CICS 221

Applications comprised of NORES programs . . . 221
Behavior before link-editing with Language
Environment 222
Behavior after link-editing with Language
Environment 222
Link-edit override requirement 222

Multiple load module considerations 222
OS/VS COBOL considerations. 222
VS COBOL II considerations 224

AMODE and RMODE considerations 224
Run-time considerations 226

ILBOSRV 226
TGT (Task Global Table) and RSA (Register Save
Area) conventions 226

Part 6. Appendixes 229

Appendix A. Commonly asked
questions and answers 231
Prerequisites. 231
Compatibility 231
Link-editing with Language Environment 233
Compiling with Enterprise COBOL 234
Language Environment services 235
Language Environment run-time options 236
Interlanguage communication 237
Subsystems 237

OS/390 238
z/OS 239
Performance. 239
Service 240

Appendix B. COBOL reserved word
comparison 241

Appendix C. Conversion tools for
source programs 259
MIGR compiler option 259

Language differences 259
Statements supported with enhanced accuracy 260
LANGLVL(1) statements not supported . . . 261
LANGLVL(1) and LANGLVL(2) statements not
supported 261

Other programs that aid conversion 262
Report Writer for OS/2 and for Windows . . . 263
WebSphere Studio Asset Analyzer 263
COBOL and CICS/VS Command Level
Conversion Aid (CCCA). 263
CICS Application Migration Aid 265
COBOL Report Writer Precompiler 265
The Edge Portfolio Analyzer 266
Vendor products 266

Appendix D. Applications with COBOL
and assembler 267
Determining requirements for calling and called
assembler programs 267

Calling assembler programs 267
Called assembler programs 268
SVC LINK and COBOL run unit boundary . . 268

Run-time support for assembler COBOL calls on
non-CICS. 269
Run-time support for assembler COBOL calls on
CICS 270
Converting programs that use ESTAE/ESPIE for
condition handling 271

Error handling routines in existing programs 271
Converting programs that change the program
mask 272
Calling assembler programs that expect a certain
program mask 273
Upgrading applications that use an assembler
driver 273

Convert the assembler driver 273
Modify the assembler driver 273
Use an unmodified assembler driver 273

Invoking a COBOL program with an MVS
ATTACH 274
Assembler loading and calling COBOL programs 275
Assembler programs that load and delete COBOL
programs 275
Freeing storage in subpools (z/OS and OS/390
only) 275
Invoking programs - AMODE requirements . . . 276

vi COBOL Migration Guide

|
||
||

||

Appendix E. Debugging tool
comparison 277
Debugging existing applications 277
Debugging migrated applications. 277

Applications with OS/VS COBOL programs . . 277
Applications with VS COBOL II programs. . . 277
Initiating Debug Tool 278

Command language comparison 279

Appendix F. Compiler option
comparison 283

Appendix G. Compiler limit
comparison 295

Appendix H. Preventing file status 39
for QSAM files 301
Processing existing files 301

Defining variable-length records 301
Defining fixed-length records 302
Converting existing files that do not match the
COBOL record 302
Processing new files 302
Processing files dynamically created by COBOL 303

Appendix I. Overriding linkage editor
defaults 305
When not to override the default settings 305

When to override the default settings 305
How to override the defaults 305

Appendix J. Link-edit example 307

Appendix K. DB2 coprocessor
integration. 311

Appendix L. IMS considerations . . . 315

Unsupported VS COBOL II features 315
BLDL user exit unsupported 315

Compiler options relevant for programs run on
IMS 315
Compiling and linking COBOL programs for
running under IMS 315
ENDJOB/NOENDJOB compiler option
requirements 316

Preloading requirements. 317
Last used state behavior under Language
Environment 317
When programs remain in the last-used state 317

Recommended modules for preload 317
Enterprise COBOL programs 318
OS/VS COBOL programs 318

Condition handling using CBLTDLI on IMS . . . 318
Differences with IMS Version 2 and Version 3 318

Performance consideration when running OS/VS
COBOL programs 319
Using a GTF trace to determine which modules are
loaded. 319
DFSPCC20 modification unsupported 319

Appendix M. TSO considerations . . . 321
Using REXX execs 321

Appendix N. Notices 323
Programming interface information 323
Trademarks 324

Bibliography. 325
IBM Enterprise COBOL for z/OS and OS/390 . . 325
Language Environment for z/OS 325
Language Environment for OS/390 325
Related publications 325

Glossary 327

Index 353

Contents vii

viii COBOL Migration Guide

About this book

This book provides information to help you to move from a pre-Language
Environment run-time library to IBM Language Environment for z/OS or for
OS/390 and to upgrade your source programs to IBM Enterprise COBOL for z/OS
and OS/390.

Terminology clarification
In this book, we use the term Enterprise COBOL as a general reference to:
v IBM Enterprise COBOL for z/OS and OS/390

In this book, we use the term IBM COBOL as a general reference to:
v COBOL/370 Version 1 Release 1
v COBOL for MVS & VM Version 1 Release 2
v COBOL for OS/390 & VM Version 2 Release 1
v COBOL for OS/390 & VM Version 2 Release 2

Table 1. COBOL compiler name, version, release and product numbers

Compiler Release level Product number

COBOL/370 Version 1 Release 1 5688-197

COBOL for MVS & VM Version 1 Release 2 5688-197

COBOL for OS/390 & VM Version 2 Release 1 5648-A25

COBOL for OS/390 & VM Version 2 Release 2 5648-A25

COBOL for z/OS and OS/390 Version 3 Release 1 5655-G53

To aid in moving your run-time to Language Environment, this book provides
information on how to run existing VS COBOL II and OS/VS COBOL load
modules under Language Environment, including link-edit requirements for
support and recommended run-time options for compatible behavior.

To aid in upgrading your source programs to the COBOL 85 Standard supported
by Enterprise COBOL, this book provides descriptions of the language differences
between the COBOL 74 Standard and the COBOL 85 Standard. It also describes the
IBM conversion tools available to aid in converting your source programs to
Enterprise COBOL programs.

For both types of conversion—run-time and source—this book describes sample
strategies and scenarios.

Acknowledgement
IBM would like to acknowledge the assistance of the GUIDE COBOL Migration
Task Force in the preparation of the OS/VS COBOL to VS COBOL II Migration
Guide. The task force provided ideas, experience-derived information, and
perceptive comments on the subject of OS/VS COBOL to VS COBOL II conversion.

© Copyright IBM Corp. 1991, 2001 ix

|

The information received from this previous conversion experience, as well as
input from many experienced OS/VS COBOL and VS COBOL II IBM customers,
aided in the development of this Compiler and Run-Time Migration Guide. Without
such assistance, this book would have been much more difficult to develop.

Using your documentation
The publications provided with Enterprise COBOL and Language Environment are
designed to help you do COBOL programming under z/OS or OS/390.

Enterprise COBOL for z/OS and OS/390
Table 2. The COBOL for z/OS and OS/390 publications

Task Information Order number

Evaluate the product Fact Sheet GC27-1407

Understand warranty information Licensed Program Specifications GC27-1411

Install the compiler under z/OS Program Directory for z/OS and
OS/390

GI10-8423

Install the compiler under OS/390 Program Directory for z/OS and
OS/390

GI10-8423

Understand product changes—upgrade source to COBOL
for z/OS and OS/390 and run time to Language
Environment

Compiler and Run-Time
Migration Guide

GC27-1409

Customize Enterprise COBOL for z/OS and OS/390 Customization Guide GC27-1410

Prepare and test your programs and get details on compiler
options

Programming Guide SC27-1412

Get details on COBOL syntax and specifications of language
elements

Language Reference SC27-1408

Language Environment element of z/OS Version 1 Release 1
or later

Table 3. The Language Environment element of z/OS publications

Task Information Order number

Evaluate the product Concepts Guide SA22-7567

Install Language Environment z/OS Program Directory GI10-0670

Understand Language Environment program models and
concepts

Programming Guide SA22-7561

Find syntax for Language Environment run-time options and
callable services

Programming Reference SA22-7562

Debug applications that run with Language Environment, get
details on run-time messages, and diagnose problems with
Language Environment

Debugging GuideRun-Time MessagesGA22-7560
SA22-7566

Migrate applications to Language Environment Run-Time Migration Guide GA22-7565

Develop interlanguage communication (ILC) applications Writing Interlanguage
Applications

SA22-7563

About this book

x COBOL Migration Guide

Language Environment element of OS/390 Version 2 Release
10

Table 4. The Language Environment element of OS/390 publications

Task Information Order number

Evaluate the product Concepts Guide GC28-1945

Install Language Environment OS/390 Program Directory GI10-4001-08

Customize Language Environment OS/390 Customization SC28-1941

Understand Language Environment program models and
concepts

Programming Guide SC28-1939

Find syntax for Language Environment run-time options
and callable services

Programming Reference SC28-1940

Debug applications that run with Language Environment,
get details on run-time messages, and diagnose problems
with Language Environment

Debugging Guide and Run-Time
Messages

SC28-1942

Migrate applications to Language Environment Run-Time Migration Guide SC28-1944

Develop interlanguage communication (ILC) applications Writing Interlanguage
Applications

SC28-1943

How to send your comments
Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this book or any other Enterprise
COBOL documentation, contact us in one of these ways:
v Fill out the Readers’ Comment Form at the back of this book, and return it by

mail or give it to an IBM representative. If the form has been removed, address
your comments to:

IBM Corporation, Department HHX/H3
555 Bailey Avenue
San Jose, CA 95141-1099
USA

v Fax your comments to this U.S. number: (800)426-7773.
v Use the Online Readers’ Comment Form at www.ibm.com/software/ad/rcf/.

Be sure to include the name of the book, the publication number of the book, the
version of Enterprise COBOL, and, if applicable, the specific location (for example,
page number) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

About this book

About this book xi

xii COBOL Migration Guide

Summary of changes

Changes to the Migration Guide
This section lists the key changes that have been made to this book, the Compiler
and Run-Time Migration Guide, as a result of changes to COBOL compilers and
run-time libraries.

The latest technical changes are marked by a revision bar in the left margin.

Changes in GC27-1409-00, November 2001

Compiler
v Removed various compiler options including the CMPR2 compiler option
v Added new reserved words
v Added information about the new integrated CICS translator
v Removed SOM-based OO COBOL syntax and programming model
v Added information on migrating to the Enterprise COBOL compiler

Run Time
v Added information about the change in behavior for DATA(31) programs
v Added information about CEEDUMP absent from applications with assembler

programs that use the DUMP macro
v Added information about the change in file handling for COBOL programs with

RECORDING MODE U
v Added information about calling between assembler and COBOL

Changes in GC26-4764-05, September 2000

Compiler
v Added newly discovered undocumented extensions and improved many

existing entries in “Chapter 10. Upgrading OS/VS COBOL source programs” on
page 113

v Added new reserved words
v Added information on migrating to the V2R2 compiler

Run time
v Added discussion of the new default for run-time option ABTERMENC (ABEND

for Language Environment for OS/390 V2R9 and later) and the new suboptions
for TERMTHDACT available in Language Environment for OS/390 V2R7 and
later

v Added information about Language Environment region-wide run-time options
v Updated the virtual storage requirements
v Updated the CICS considerations:

– Performance
– SORT interface change
– DISPLAY statement

v Updated information on upgrading Language Environment release levels

© Copyright IBM Corp. 1991, 2001 xiii

|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

Miscellaneous maintenance and editorial changes have been made.

Summary of changes to the COBOL compilers
This section lists the key changes that have been made to IBM host COBOL
compilers.

The latest technical changes are marked by a revision bar in the left margin.

Changes in IBM Enterprise COBOL for z/OS and OS/390
v Multithreading support: toleration of POSIX threads and signals, permitting

applications with COBOL programs to run on multiple threads within a process
v Interoperation of COBOL and Java by means of object-oriented syntax,

permitting COBOL programs to instantiate Java classes, invoke methods on Java
objects, and define Java classes that can be instantiated in Java or COBOL and
whose methods can be invoked in Java or COBOL

v Ability to call services provided by the Java Native Interface (JNI) to obtain
additional Java capabilities, with a copybook JNI.cpy and special register
JNIENVPTR to facilitate access

v Basic support for Unicode provided by NATIONAL data type and national (N,
NX) literals, intrinsic functions DISPLAY-OF and NATIONAL-OF for character
conversions, and compiler options NSYMBOL and CODEPAGE
– Compiler option CODEPAGE to specify the code page used for encoding

national literals, and alphanumeric and DBCS data items and literals
– Compiler option NSYMBOL to control whether national or DBCS processing

should be in effect for literals and data items that use the N symbol
v Basic XML support, including a high-speed XML parser that allows programs to

consume inbound XML messages, verify that they are well formed, and
transform their contents into COBOL data structures; with support for XML
documents encoded in Unicode UTF-16 or several single-byte EBCDIC code
pages

v Support for compilation of programs that contain CICS statements, without the
need for a separate translation step
– Compiler option CICS, enabling integrated CICS translation and specification

of CICS options
v VALUE clauses for BINARY data items that permit numeric literals to have a

value of magnitude up to the capacity of the native binary representation, rather
than being limited to the value implied by the number of 9s in the PICTURE
clause

v A 4-byte FUNCTION-POINTER data item that can contain the address of a
COBOL or non-COBOL entry point, providing easier interoperability with C
function pointers

v The following support is no longer provided (as documented in this Migration
Guide):
– SOM-based object-oriented syntax and services
– Compiler options CMPR2, ANALYZE, FLAGMIG, TYPECHK, and IDLGEN

Changes in COBOL for OS/390 & VM Version 2 Release 2
v Enhanced support for decimal data, raising the maximum number of decimal

digits from 18 to 31 and providing an extended-precision mode for arithmetic
calculations

xiv COBOL Migration Guide

|

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|
|

|
|

|

|

v Enhanced production debugging using overlay hooks rather than compiled in
hooks, with symbolic debugging information optionally in a separate file

v Support for compiling, linking, and executing in the OS/390 UNIX System
Services environment, with COBOL files able to reside in the HFS (hierarchical
file system)

v Toleration of fork(), exec(), and spawn(); and the ability to call UNIX/POSIX
functions

v Enhanced input-output function, permitting dynamic file allocation by means of
an environment variable named in SELECT. . . ASSIGN, and the accessing of
sequentially organized HFS files including by means of ACCEPT and DISPLAY

v Support for line-sequential file organization for accessing HFS files that contain
text data, with records delimited by the new-line character

v COMP-5 data type, new to host COBOL, allowing values of magnitude up to the
capacity of the native binary representation

v Significant performance improvement in processing binary data with the
TRUNC(BIN) compiler option

v Support for linking of COBOL applications using the OS/390 DFSMS binder
alone, with the prelinker required only in exceptional cases under CICS

v Diagnosis of moves (implicit or explicit) that result in numeric truncation
enabled through compiler option DIAGTRUNC

v System-determined block size for the listing data set available by specifying
BLKSIZE=0

v Limit on block size of QSAM tape files raised to 2 GB
v Support under CICS for DISPLAY to the system logical output device and

ACCEPT for obtaining date and time
v Support for the DB2 coprocessor enabled through the SQL compiler option,

eliminating the need for a separate precompile step and permitting SQL
statements in nested programs and copybooks

v Support for the millennium language extensions now included in the base
COBOL product

Changes in COBOL for OS/390 & VM V2 R1 Modification 2
v New compiler option ANALYZE to check the syntax of embedded SQL and

CICS statements
v Extension of the ACCEPT statement to cover the recommendation in the

Working Draft for Proposed Revision of ISO 1989:1985 Programming Language
COBOL

v New intrinsic date functions to convert to dates with a four-digit year
v The millennium language extensions, enabling compiler-assisted date processing

for dates containing two-digit and four-digit years

Requires IBM VisualAge Millennium Language Extensions for OS/390 & VM
(program number 5648-MLE) to be installed with your compiler.

Changes in COBOL for OS/390 & VM V2 R1 Modification 1
v Extensions to currency support for displaying financial data, including:

– Support for currency signs of more than one character
– Support for more than one type of currency sign in the same program
– Support for the euro currency sign, as defined by the Economic and Monetary

Union (EMU)

Summary of changes xv

Changes in COBOL for OS/390 & VM Version 2 Release 1
v Support has been added for dynamic link libraries (DLLs)
v Due to changes in the SOMobjects product that is delivered with OS/390 Release

3, changes in the JCL for building object-oriented COBOL applications were
required.

v The INTDATE compiler option is no longer an installation option only--it can
now be specified as an option when invoking the compiler.

xvi COBOL Migration Guide

Part 1. Overview

© Copyright IBM Corp. 1991, 2001 1

2 COBOL Migration Guide

Chapter 1. Do I need to recompile?

Ideally, programs should be compiled with a supported compiler (recommended is
IBM Enterprise COBOL for z/OS and OS/390) and run with a supported run-time
library (Language Environment). You can reach this ideal state gradually, in a fully
supported manner by starting with a:
1. Run-time migration followed optionally at some future date by a
2. Compiler migration

For most programs, you do not need to recompile to ensure that they continue
working properly or have service support. For details on programs that must be
upgraded, see:
v “Determining which programs require upgrading” on page 65 for OS/VS

COBOL programs running with the OS/VS COBOL run-time
v “Determining which programs require upgrading” on page 77 for OS/VS

COBOL and VS COBOL II programs running with the VS COBOL II run-time
v “Determining which programs require upgrade before you compile with

Enterprise COBOL” on page 165 for IBM COBOL programs

The remainder of this chapter explains when and why you might want to migrate
your applications (run-time or source). It includes the following topics:
v Migration basics
v Service support for OS/VS COBOL and VS COBOL II programs

Migration basics
The migration process involves run-time migration (moving your applications to a
new run-time) and source migration (upgrading your source programs). As part of
the migration process, you’ll also need to do inventory assessment and testing. As
stated previously, you are not required to migrate your run-time and source
concurrently.

For more details on the migration process, see “General conversion tasks” on
page 17.

Run-time migration
Every COBOL program requires run-time library routines to execute. They may be
statically linked to the load modules (compiled with the NORES compiler option)
or dynamically accessed at execution time (compiled with the RES compiler
option).

Moving to Language Environment
If you are starting with load modules consisting of programs compiled with the
NORES option and link-edited with the OS/VS COBOL run-time library or the VS
COBOL II run-time library, then you will need to use REPLACE linkage editor
control statements to replace the existing run-time library routines with the
Language Environment versions. If you start with object programs (non-linked),
then you just need to link-edit with Language Environment.

© Copyright IBM Corp. 1991, 2001 3

If the programs are compiled with the RES option, make the Language
Environment library routines available at execution time in place of the OS/VS
COBOL or VS COBOL II library routines by using LNKLST, LPALST, JOBLIB, or
STEPLIB.

Do not make more than one COBOL run-time library available to your applications
at execution time. For example, there should be one and only one COBOL run-time
library, such as SCEERUN for Language Environment, in LNKLST. If you have
more than one you will either get hard-to-find errors or you will have an unused
load library in your concatenation. In addition, if you have more than one run-time
library in your concatenation, then you have an invalid configuration that is not
supported by IBM.

For additional information on moving your run-time to Language Environment,
see:
v “Chapter 5. Running existing applications under Language Environment” on

page 53
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
v “Chapter 7. Moving from the VS COBOL II run-time” on page 75

Source migration
Source migration is not required for most programs and can occur after you have
moved your OS/VS COBOL or VS COBOL II programs to run with Language
Environment.

Source migration usually consists of upgrading the source language level used
(such as from the COBOL 74 Standard supported by OS/VS COBOL to the COBOL
85 Standard supported by Enterprise COBOL). Source migration is also required in
a few instances to enable your applications to run under Language Environment.

Many conversion tools exist to aid in upgrading your source code. For details, see
“Appendix C. Conversion tools for source programs” on page 259.

Service support for OS/VS COBOL and VS COBOL II programs
IBM will continue to provide service support for the execution of programs
compiled with the OS/VS COBOL and VS COBOL II compilers when these
programs use the Language Environment run-time library versions of the COBOL
library routines.

For example, the library routines for OS/VS COBOL programs exist in the OS/VS
COBOL, the VS COBOL II, and the Language Environment run-time libraries.
OS/VS COBOL programs running with the OS/VS COBOL library or the VS
COBOL II run-time library are not supported by IBM service. If your OS/VS
COBOL programs are running using a supported release of the Language
Environment run-time library, your programs are supported by IBM service.

OS/VS COBOL programs running under CICS require special support from the
CICS product to run as well as support from Language Environment. In the CICS
TS (Transaction Server) release that follows CICS TS Version 2 Release 2, this
special support will not be available. OS/VS COBOL programs will not run under
CICS after CICS TS 2.2 even with Language Environment as their COBOL run-time
library. We strongly recommend upgrading any OS/VS COBOL programs that run
under CICS to Enterprise COBOL as soon as possible.

Do I need to recompile?

4 COBOL Migration Guide

Changing OS/VS COBOL programs
Although the OS/VS COBOL compiler is no longer supported, the programs that
were generated by it are supported if they are running under Language
Environment. Once you have moved your run-time to Language Environment, you
can run your source code through a source conversion tool, such as the COBOL
and CICS Conversion Aid (CCCA) and then compile using the Enterprise COBOL
compiler.

For more information on CCCA, see “Appendix C. Conversion tools for source
programs” on page 259.

Do I need to recompile?

Chapter 1. Do I need to recompile? 5

6 COBOL Migration Guide

Chapter 2. Introducing the new compiler and run time

This chapter provides an overview of the Enterprise COBOL compiler, (IBM
Enterprise COBOL for z/OS and OS/390) and the common run time (Language
Environment) and introduces you to the terminology used throughout this book.
This chapter includes information on the following:
v Product relationships—compiler, run time, debug
v Comparison of COBOL compilers
v Language Environment’s run-time support for other programs
v Advantages of the new compiler and run time
v Obstacles to upgrading to the new compiler and run time
v Major changes with the new compiler and run time
v General conversion tasks

Terminology clarification
In this book, we use the term Enterprise COBOL as a general reference to:
v IBM Enterprise COBOL for z/OS and OS/390 Version 3 Release 1

In this book, we use the term IBM COBOL as a general reference to:
v COBOL/370 Version 1 Release 1
v COBOL for MVS & VM Version 1 Release 2
v COBOL for OS/390 & VM Version 2 Release 1
v COBOL for OS/390 & VM Version 2 Release 2

Product relationships—compiler, run time, debug
IBM Enterprise COBOL for z/OS and OS/390 is IBM’s strategic COBOL compiler
for the zSeries platform and System 390. Enterprise COBOL is comprised of
features from IBM COBOL, VS COBOL II, and OS/VS COBOL with additional
features such as multithread enablement, Unicode, XML parsing capabilities,
object-oriented COBOL syntax for Java interoperability, integrated CICS translator,
and integrated SQL and DB2 coprocessors. Enterprise COBOL, as well as IBM
COBOL and VS COBOL II, supports the COBOL 85 Standard. Some features such
as the CMPR2 compiler option and SOM-based object-oriented COBOL syntax that
IBM COBOL supported are no longer available with Enterprise COBOL.

Language Environment provides a single language run-time environment for
COBOL, PL/I, C, and FORTRAN. In addition to support for existing applications,
Language Environment also provides common condition handling, improved
interlanguage communication (ILC), reusable libraries, and more efficient
application development. Application development is simplified by the use of
common conventions, common run-time facilities, and a set of shared callable
services. Language Environment is required to run Enterprise COBOL programs.

Debugging capabilities are provided by Debug Tool. Debug Tool provides
significantly improved debugging function over previous COBOL debugging tools,
and can be used to debug Enterprise COBOL programs, IBM COBOL programs, VS
COBOL II programs running under Language Environment, and other Language
Environment-conforming language programs including PL/I and C/C++.

© Copyright IBM Corp. 1991, 2001 7

|
|
|
|
|
|
|
|
|

Debug Tool is included with the full-function version of the compiler.

Figure 1 shows the relationship between IBM’s previous COBOL products and
Enterprise COBOL, Language Environment, and Debug Tool.

Comparison of COBOL compilers
Table 5 gives an overview of the functions available with the latest releases of
OS/VS COBOL, VS COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM,
and shows the new functions available with the Enterprise COBOL compiler.

Table 5. Comparison of COBOL compilers

OS/VS COBOL VS COBOL II
COBOL for MVS and
VM

COBOL for OS/390
and VM

Enterprise COBOL
for z/OS and OS/390

Java Interoperability,
XML support,
Integrated CICS
translator,
Multithreading
support,
Unicode

Support for:
DLLs
31 digits
DB2 coprocessor
OS/390 UNIX
Enhanced support for
Debug Tool

Support for:
DLLs
31 digits
DB2 coprocessor
OS/390 UNIX
Enhanced support for
Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to

’85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to

’85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:
C interoperability,
Intrinsic functions,
Amendment to

’85 Std,
Support for:
Language
Environment
Debug Tool

Figure 1. Product relationships—compiler, run time, and debug

Introducing the new compiler and run time

8 COBOL Migration Guide

|
|
|
|
|
|
|

Table 5. Comparison of COBOL compilers (continued)

OS/VS COBOL VS COBOL II
COBOL for MVS and
VM

COBOL for OS/390
and VM

Enterprise COBOL
for z/OS and OS/390

COBOL 85 Standard,
No intrinsic
functions, Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, SAA
flagging, Interactive
debugging
(full-screen mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, SAA
flagging, Interactive
debugging (full-screen
mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, SAA
flagging, Interactive
debugging (full-screen
mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, SAA
flagging, Interactive
debugging
(full-screen mode)

COBOL 74
Standard, 74 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging (line
mode)

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging
(line mode)

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging
(line mode)

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging
(line mode)

Table 6 lists the Language Environment release levels available for each operating
system.

Table 6. Language Environment release levels for Enterprise COBOL

Enterprise COBOL compiler Language Environment release

COBOL for z/OS and OS/390 z/OS Language Environment Version 1 Release 1 or later

OS/390 Language Environment Version 2 Release 10

Note: For a complete list of host versions and releases, see the Licensed Program Specifications for Language
Environment and for the compiler that you are using.

Language Environment’s run-time support for other programs
Figure 2 on page 10 shows the programs that are able to run under Language
Environment, which provides support for programs that currently run with the
OS/VS COBOL and VS COBOL II libraries. Language Environment also provides
support for other high-level languages.

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 9

|
|

|||

|

The release of Language Environment that you use depends on which host system
you are using. Table 7 lists the version of Language Environment required for each
operating system and the minimum operating system level required for Enterprise
COBOL.

Table 7. Language Environment release levels

Host system Language Environment release

OS/390 Version 2 Release 10 Language Environment element of OS/390

z/OS Version 1 Release 1 or later Language Environment element of z/OS

Note: For a complete list of host versions and releases, see the Licensed Program Specifications
for Language Environment.

Advantages of the new compiler and run time
The Enterprise COBOL compiler and Language Environment run time provide
additional functions over OS/VS COBOL, VS COBOL II, and IBM COBOL. Table 8
lists the advantages of the new compiler and run time and indicates whether they
apply to VS COBOL II, OS/VS COBOL, IBM COBOL, or all three.

Table 8. Advantages of Enterprise COBOL and Language Environment

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

Java interoperation Enterprise COBOL includes object-oriented COBOL
syntax that enables COBOL to interoperate with Java.

U U U

Support to run in
multiple threads

Enterprise COBOL has a toleration level of support
for POSIX threads and signals. With Enterprise
COBOL, an application can contain COBOL programs
running on multiple threads within a process.

U U U

Support for
Unicode

The COBOL Unicode support uses the product
OS/390 Support for Unicode.

U U U

Figure 2. Language Environment’s run-time support for other programs

Introducing the new compiler and run time

10 COBOL Migration Guide

|
|
|
|

|

|

|
|

|
|
|
|

|
|

Table 8. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

XML support Enterprise COBOL provides new statements for
parsing XML documents that allow programs to
transform the XML content into COBOL data
structures.

U U U

Integrated CICS
translator

The Enterprise COBOL compiler handles both native
COBOL and embedded CICS statements in the source
program.

U U *

Usability
enhancements

These enhancements include:

v Large literals in VALUE clauses on COMP-5 items
or BINARY items with TRUNC(BIN)

v Function-pointer data type

v Arguments specifying ADDRESS OF

U U U

COBOL language
improvements

Ability to perform math and financial functions in
COBOL, using Intrinsic Functions. You can replace
current routines written in FORTRAN or C with
native COBOL code, thus simplifying your
application logic.

U U

Above-the-line
support

Virtual Storage Constraint Relief (VSCR) allows your
programs to reside, compile, and access programs
below or above the 16-MB line.

U

QSAM buffers can be above the 16-MB line for
optimal support of DFSMS and data striping.

U U

COBOL EXTERNAL data can now be above the line. U U

31-digit support Enterprise COBOL added support for numbers up to
31 digits when the ARITH(EXTEND) option is used.

U U *

OS/390 UNIX
system services
support

The cob2 command can be used to compile and link
COBOL programs in the OS/390 UNIX shell. COBOL
programs can call most of the C language functions
defined in the POSIX standard.

U U

Strategic IBM
compiler

Any future performance improvements or language
enhancements for the z/OS platform, will only be
available with Enterprise COBOL and Language
Environment.

U U U

Error recovery
options

Programmers now have the ability to have
application-specific error-handling routines intercept
program interrupts, abends, and other
software-generated conditions for error recovery. This
is done using Enterprise COBOL programs with
Language Environment callable services to register
the user-written condition handlers. Language
Environment handles all condition management.

U U

Cost savings If your shop uses multiple languages, you could see a
cost savings by replacing multiple language run times
with the single Language Environment run time. Talk
with your IBM representative to evaluate the
potential cost savings based on the number of current
licenses and languages used by your shop.

U U

High-precision
math routines

Using Language Environment callable services, your
programs can return the most accurate results.

U U

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 11

|
|
|
|

|
|
|

|

|
|

|

|

Table 8. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

Support for
multiple MVS tasks

RES applications can now execute independently
under multiple MVS tasks. (For example, running two
Enterprise COBOL programs at the same time from
ISPF split screens.)

U U

Performance Faster arithmetic computations U

Faster dynamic and static CALL statements U

Improved performance of variable-length MOVEs U

Faster CICS performance if using the Language
Environment CBLPSHPOP run-time option to prevent
PUSH HANDLE and POP HANDLE for CALL
statements.

U

Improved performance for programs compiled with
TRUNC(BIN). COBOL for OS/390 & VM Release 2
added support to generate more efficient code when
the TRUNC(BIN) compiler option is used.

U U

Improved ILC With the common Language Environment library, ILC
is improved between COBOL and other Language
Environment-conforming languages. For example,
interlanguage calls between COBOL and other
languages are faster under Language Environment,
because there is significantly less overhead for each
CALL statement. Additionally, on CICS, you can use
the CALL statement to call PL/I or C programs in
place of EXEC CICS LINK.

U U

Character
manipulation

Improved bit and character manipulation using hex
literals. Improved flexibility with character
manipulation using reference modification

U

Top-down modular
program
development

Support for top-down modular program development
through nesting of programs and improved CALL
and COPY functions

U

Structured
Programming
Support

Support for structured programming coding through:
v Inline PERFORM statements
v The CONTINUE place-holder statement
v The EVALUATE statement
v Explicit scope terminators (for example: END-IF,

END-PERFORM, END-READ)

U

COBOL 85 Standard
conformance

Support for the COBOL 85 Standard U

Support for Amendment 1 (Intrinsic Functions
Module) of the COBOL 85 Standard

U U

Subsystem support Improved support for IMS, ISPF, DFSORT, DB2 U

Improved DB2
function

Enterprise COBOL includes support for DB2 stored
procedures.

U U

Support for the SQL coprocessor (available in DB2
Version 7)

U U *

Introducing the new compiler and run time

12 COBOL Migration Guide

Table 8. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

Improved CICS
interface

Enterprise COBOL includes CALL statement support
(for faster CICS performance than when using EXEC
CICS LINK) and eliminates the need for BLL cells.
See “Base addressability considerations for OS/VS
COBOL programs” on page 210.

U

Increased WORKING-STORAGE space for DATA(24)
and DATA(31) programs. For DATA(31), the limit is
128M. For DATA(24), the limit is the available space
below the 16-MB line.

U U

Support for
reentrancy

All OS/VS COBOL programs are nonreentrant. Only
reentrant programs can be loaded into shared storage
(LPA or Shared Segments).

U

Support for Debug
Tool

Debug Tool provides the following benefits:
v Interactive debugging of CICS and non-CICS

applications
v Interactive debugging of batch applications
v Full-screen debugging for CICS and non-CICS

applications
v Debugging of mixed languages in the same debug

session
v Ability to debug programs that run on the host
v Working in conjunction with VisualAge for

COBOL, the ability to debug host programs from
the workstation using a graphical user interface

U U

For COBOL for OS/390 & VM and later programs
only:

v Dynamic Debug feature which allows COBOL for
OS/390 programs compiled without hooks to be
debugged.

v The SEPARATE suboption added to the TEST
compiler option. Using this option produces a
separate debug file that Debug Tool uses when
debugging COBOL programs.

U U

Run-time options ABTERMENC and TERMTHDACT—allow you to
control error behavior.

U U

CBLQDA—allows you to control dynamic allocation
of QSAM files.

U

LANGUAGE—allows you to change language of
error messages.

U

RPTSTG—allows you to obtain storage usage reports. U

Storage options—allow you to control where storage
is obtained and the amount of storage used.

U U

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 13

|
|

|
|
|

|
|
|
|

Table 8. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

Compiler options The following compiler options are available to
Enterprise COBOL programs only:

v CICS - enables the integrated CICS translator
capability and specifies CICS options. NOCICS is
the default.

v CODEPAGE - specifies the code page used for
encoding contents of alphanumeric and DBCS data
items at run-time as well as alphanumeric, national,
and DBCS literals in a COBOL source program.

v NSYMBOL(NATIONAL, DBCS) - controls the
interpretation of the ″N″ symbol used in literals
and picture clauses, indicating whether national or
DBCS processing is assumed.

v THREAD - indicates that the COBOL program is to
be enabled for execution in an LE enclave with
multiple POSIX threads or PL/I tasks. The default
is NOTHREAD.

U U U

The following compiler options are available to
COBOL for OS/390 & VM and later programs only:

v DLL - enables the compiler to generate an object
module that is enabled for Dynamic Link Library
(DLL) support.

v EXPORTALL - instructs the compiler to
automatically export certain symbols when the
object deck is link-edited to form a DLL.

U U

The following compiler options are available to
COBOL for MVS & VM and later programs:

v CURRENCY - allows you to define a default
currency symbol for COBOL programs.

v OPTIMIZE(FULL) - OPTIMIZE with the new
suboption of FULL optimizes object programs and
provides improved run-time performance over both
the OS/VS COBOL and VS COBOL II OPTIMIZE
options. The compiler discards unused data items
and does not generate code for any VALUE clauses
for the discarded data items.

v PGMNAME(COMPAT,LONGUPPER,LONGMIXED)
controls the handling of program names in relation
to length and case.

v RMODE(AUTO,24,ANY)—allows NORENT
programs to reside above the 16-MB line.

U U

Introducing the new compiler and run time

14 COBOL Migration Guide

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Table 8. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage over

Advantage Notes
OS/VS

COBOL
VS II

COBOL
IBM
COBOL

Enterprise COBOL provides, as does IBM COBOL and
VS COBOL II, compiler options that give you added
control over compiler output, such as:
v Object code generation
v Compiler usage of virtual storage
v Listings, maps, and diagnostics
v Run-time debugging information
v Customized reserved word lists
v Processing COPY or BASIS statements
v Text of error messages
v Language of error messages

U

Note: * The integrated SQL coprocessor, integrated CICS translator, and 31-digit support were added as new
features to COBOL for OS/390 & VM Version 2 Release 2.

Suggestions for incremental conversions
If for any reason your shop is unable to upgrade to Enterprise COBOL and
Language Environment, you can still take incremental steps to prepare for
conversion when these obstacles no longer apply. For example:
v Evaluate the effort to move to Language Environment.
v Develop a conversion plan and long-range schedule.
v Convert your macro-level CICS programs to command-level programs. (For

guidance information, see “CICS Application Migration Aid” on page 265.)
v Code applications based on Enterprise COBOL and Language Environment

requirements to ease a future conversion. For example, specify the RES compiler
option instead of the NORES compiler option; all Enterprise COBOL programs
are RES. A “RES-conversion” is easier than a “NORES-conversion.” Link-editing
NORES applications with Language Environment can result in different
behavior, depending on how the programs in the application are coded. For
details, see “Chapter 8. Link-editing applications with Language Environment”
on page 105.

v Determine which applications contain ILC between C and COBOL. Verify that
the COBOL and C used are supported by Language Environment and make the
appropriate changes as described in the C Migration Guide. For details, see
“COBOL and C/370” on page 95.

v Determine which applications contain ILC between PL/I and VS COBOL II.
Verify that the COBOL and PL/I used are supported by Language Environment,
and link-edit the PL/I programs with the PL/I migration tool. For details, see
“COBOL and PL/I” on page 94.
The PL/I migration tool allows you to link-edit your PL/I programs gradually,
while still running on the PL/I run time. If you link-edit with the migration tool,
you do not have to link-edit before running under Language Environment.

v Convert all COBOL source code to COBOL 85 Standard.

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 15

|
|

Changes with the new compiler and run time
With Enterprise COBOL, you will find that existing COBOL applications are
affected by several areas such as removed compiler options, different default
compiler options, unsupported SOM-based OO COBOL, and an integrated CICS
translator. Following is a brief description of the removed or improved element
and the actions required to ensure compatibility.

CMPR2 compiler option not available
Enterprise COBOL does not provide the CMPR2 compiler option. Existing
programs compiled with CMPR2 must be converted to NOCMPR2 (1985 COBOL
Standard) in order to compile them with Enterprise COBOL.

For additional details, see:
v “Chapter 10. Upgrading OS/VS COBOL source programs” on page 113
v “Chapter 12. Upgrading VS COBOL II source programs” on page 157
v “Chapter 14. Upgrading IBM COBOL source programs” on page 165

FLAGMIG compiler option not available
Enterprise COBOL does not provide the FLAGMIG compiler option. FLAGMIG
requires CMPR2, which is not provided with Enterprise COBOL. To aid you with
migration to Enterprise COBOL, use a previous COBOL compiler that supports
FLAGMIG and CMPR2 to flag the statements that need to be converted, or use
CCCA.

For additional details, see:
v “Chapter 10. Upgrading OS/VS COBOL source programs” on page 113
v “Chapter 12. Upgrading VS COBOL II source programs” on page 157
v “Chapter 14. Upgrading IBM COBOL source programs” on page 165

ANALYZE compiler option not available
Enterprise COBOL does not support the ANALYZE compiler option. With IBM
COBOL, specification of the ANALYZE option allowed a syntax check of programs
that contained SQL or CICS statements. Specifying both the ANALYZE and
ADATA options created a SYSADATA file which could be analyzed by program
understanding tools. However, the program understanding tools are no longer
available in VisualAge COBOL, and Enterprise COBOL now supports SQL and
CICS statements through the SQL and CICS compiler options. The ADATA
compiler option can create a similar SYSADATA file without the need for further
analysis by program understanding tools.

SOM-based object-oriented COBOL not available
Enterprise COBOL does not support SOM-based OO COBOL; however, Enterprise
COBOL provides OO syntax to facilitate the interoperation of COBOL and Java
programs. The removal of SOM-based OO COBOL from Enterprise COBOL
includes the removal of the compiler options TYPECHK and IDLGEN because they
require SOM-based OO COBOL to run. Applications utilizing SOM-based OO
COBOL must be redesigned to upgrade to Java-based OO COBOL syntax or
redesigned as procedural (non-OO) COBOL.

For additional details and compatibility considerations, see:
v “Upgrading SOM-based object-oriented (OO) COBOL programs” on page 165

Introducing the new compiler and run time

16 COBOL Migration Guide

|

|
|
|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|

Integrated CICS translator available
Enterprise COBOL provides an integrated CICS translator that allows the
Enterprise COBOL compiler to handle both native COBOL statements and
embedded CICS statements in a source program. You can choose to migrate from
the separate CICS translator to the integrated CICS translator if you have CICS
Transaction Server Version 2 installed.

The CICS compiler option must be specified to enable the CICS translator to
process a COBOL source programs that contains CICS statements. For additional
details and compatibility considerations, see:
v “Chapter 17. CICS conversion considerations for COBOL source” on page 207

General conversion tasks
Depending on your shop’s needs, you will most likely need to complete one or
more of the general conversion tasks, which include:
v Planning your strategy
v Moving to the Language Environment run-time library
v Upgrading your source to Enterprise COBOL
v Adding Enterprise COBOL programs to existing applications

Planning your strategy
Before moving to the Language Environment run-time library and upgrading your
source programs to Enterprise COBOL, develop a conversion strategy. A thorough
strategy will help ensure a smooth transition to the new compiler and run time.

Your conversion strategy might be to move to Language Environment, and then
gradually recompile your existing applications with Enterprise COBOL as needed.
This book provides separate strategies for moving to the new run time and for
upgrading source. For details, see:
v “Chapter 3. Planning the move to Language Environment” on page 23
v “Chapter 4. Planning to upgrade source programs” on page 37

Moving to the Language Environment run time
You can run existing load modules under Language Environment and receive the
same results as with pre-Language Environment libraries. For important
compatibility information, see “Chapter 5. Running existing applications under
Language Environment” on page 53.

For information on moving applications that are running under the OS/VS COBOL
run time, see “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63.

For information on moving applications that are running under the VS COBOL II
run time, see “Chapter 7. Moving from the VS COBOL II run-time” on page 75.
(Because you might have been running OS/VS COBOL programs under the VS
COBOL II run time, this chapter duplicates the information from Chapter 5 that is
applicable to OS/VS COBOL programs running under the VS COBOL II run time.)

In some cases, you will need to link-edit existing applications with Language
Environment or upgrade programs to Enterprise COBOL. To determine which
programs require link-editing with Language Environment, see:
v “Determining which programs require link-editing” on page 64 for programs

running under the OS/VS COBOL run time

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 17

|

|
|
|
|
|

|
|
|

|

|

v “Determining which programs require link-editing” on page 76 for programs
running under the VS COBOL II run time

Link-editing programs with Language Environment can result in different
behavior, see “Chapter 8. Link-editing applications with Language Environment”
on page 105 for details.

To determine which programs must be upgraded to Enterprise COBOL, see:
v “Determining which programs require upgrading” on page 65 for programs

running under the OS/VS COBOL run time
v “Determining which programs require upgrading” on page 77 for programs

running under the VS COBOL II run time
v “Determining which programs require upgrade before you compile with

Enterprise COBOL” on page 165 for IBM COBOL programs.

Upgrading your source to Enterprise COBOL
The effort required to upgrade your source programs is dependent on the compiler
used and the language level used.

OS/VS COBOL
OS/VS COBOL programs compiled with either LANGLVL(1) or LANGLVL(2) can
contain either COBOL 68 Standard or COBOL 74 Standard elements. Conversion is
required in order for these programs to compile with Enterprise COBOL. You
should use conversion tools to aid in this conversion. For details, see “Using
conversion tools to convert programs to COBOL 85 Standard” on page 117.

VS COBOL II
From a conversion standpoint, the only language difference between VS COBOL II
Release 4 and Enterprise COBOL is the addition of new reserved words. However,
if you select the NOOO alternate reserved word table, the compiler will ignore the
new words reserved for object-oriented COBOL. A complete list of reserved words,
including those reserved for object-oriented COBOL is included in “Appendix B.
COBOL reserved word comparison” on page 241.

If upgrading from VS COBOL II Release 3, there are also three minor language
differences due to ANSI interpretation changes. Aside from these small differences,
you can compile with Enterprise COBOL without change and receive the same
results. For details, see “Chapter 12. Upgrading VS COBOL II source programs” on
page 157.

VS COBOL II Release 2 programs are coded to the COBOL 74 Standard as are VS
COBOL II programs compiled with the CMPR2 compiler option. The CMPR2
compiler option is no longer supported by Enterprise COBOL, requiring source
conversion for all VS COBOL II Release 1 or 2 programs as well as any VS COBOL
II Release 3 or 4 programs that were compiled with CMPR2. Conversion tools can
help you upgrade your source programs to the COBOL 85 Standard. Details of
language differences between CMPR2 and NOCMPR2 are included in “Chapter 16.
Migrating from CMPR2 to NOCMPR2” on page 173.

For details on the conversion tools available to upgrade source programs, see
“Appendix C. Conversion tools for source programs” on page 259.

IBM COBOL
Enterprise COBOL no longer supports SOM-based OO COBOL applications.
Object-oriented COBOL syntax has been retargeted for Java-based OO

Introducing the new compiler and run time

18 COBOL Migration Guide

|
|
|
|
|
|
|
|

|
|

programming to facilitate interoperation of COBOL and Java. The following
compiler options have been removed from Enterprise COBOL because they require
SOM-based OO COBOL to run:
v IDLGEN
v TYPECHK

Adding Enterprise COBOL programs to existing applications
You can create new Enterprise COBOL programs (or recompile existing programs
with Enterprise COBOL) and run them with existing applications under Language
Environment.

When adding Enterprise COBOL programs to existing applications, you need to be
aware of the effects of link-editing with Language Environment, the restrictions of
running programs above or below the 16-MB line, the effect of compiler option
changes, reserved word changes, and other behavior differences with Enterprise
COBOL. For details, see “Chapter 18. Adding Enterprise COBOL programs to
existing COBOL applications” on page 219.

Introducing the new compiler and run time

Chapter 2. Introducing the new compiler and run time 19

|
|
|

|

|

20 COBOL Migration Guide

Part 2. Conversion strategies

© Copyright IBM Corp. 1991, 2001 21

22 COBOL Migration Guide

Chapter 3. Planning the move to Language Environment

This chapter describes a general strategy for moving your run-time environment to
Language Environment. The following tasks are necessary, and should be
performed in roughly the following order:
1. Prepare to move to the Language Environment run-time library.
2. Take an inventory of your applications.
3. Decide how to phase in Language Environment.
4. Set up a regression testing procedure.
5. Cut over to production use.

Important

v On OS/390, Enterprise COBOL programs can run only with the Language
Environment element of OS/390 Version 2 Release 10.

v On z/OS, Enterprise COBOL programs can run with the Language
Environment element of z/OS Version 1 Release 1 or later.

Preparing to move to the Language Environment run-time library
In preparing to move to Language Environment, you need to perform the
following tasks, which can be done concurrently:
v Installing Language Environment.
v Educating your programmers about Language Environment.
v Assessing storage requirements.

Installing Language Environment
On z/OS

To install z/OS, including the Language Environment element, refer to
either the z/OS Program Directory or consult your ServerPac: Installing Your
Order.

On OS/390
To install OS/390, including the Language Environment element, refer to
either the OS/390 Program Directory or consult your ServerPac: Installing
Your Order.

Important: To ensure that the Language Environment run-time results are
compatible with pre-Language Environment results, you may need to change the
default run-time options. For a list of recommended run-time options, see “Set
recommended default Language Environment run-time options” on page 53.

Assessing storage requirements
Due to OS/VS COBOL and VS COBOL II compatibility routines, new function, and
support for other languages, storage requirements for Language Environment are
larger than for pre-Language Environment COBOL libraries.

DASD storage requirements
During conversion you will need DASD storage for the Language Environment
run-time as well as any pre-Language Environment run-time libraries. When you

© Copyright IBM Corp. 1991, 2001 23

|
|

|
|

|
|
|
|

|
|
|
|

have finished moving to Language Environment, you will be able to free the
storage reserved for the OS/VS COBOL and the VS COBOL II run-time libraries.

To determine the amount of DASD storage required by Language Environment,
see:
v On z/OS: z/OS Program Directory
v On OS/390: OS/390 Program Directory

Virtual storage requirements
Virtual storage requirements for running COBOL programs with Language
Environment will increase over both the OS/VS COBOL run-time and the VS
COBOL II run-time. For both CICS and non-CICS applications, the amount of
increase depends on many factors, such as:
v The values used for the Language Environment run-time storage options:

STACK, LIBSTACK, HEAP, ANYHEAP, BELOWHEAP.

Note: You can use the information generated by the Language Environment
RPTSTG run-time option to help tune your storage options. For details,
see the Language Environment Programming Reference.

v The value used for the Language Environment run-time option ALL31.
v Which run-time routines are in the LPA (link pack area) or the ELPA (extended

link pack area)
v Additionally, when moving from the VS COBOL II run-time:

– VS COBOL II run-time options specification
– If the COBPACKs have been modified to run above the 16-MB line.

Important
The virtual storage data presented in the following sections was obtained by
running sample programs in a particular hardware and software
configuration using a selected set of tests and are presented for illustration
purposes only. It is recommended that you run your own programs with a
configuration applicable to your environment to determine what impact
Language Environment will have on your virtual storage.

Virtual storage information for non-CICS: Table 9 shows how much virtual
storage is used when a simple VS COBOL II program compiled with RES was run
on z/OS and OS/390. In each case, the run-time library routines were acquired
from STEPLIB:

Table 9. Virtual storage used by a VS COBOL II RES program on non-CICS

Run-time library
Modifications from
IBM default

Below
16-MB
virtual
storage

Above
16-MB
virtual
storage

VS COBOL II Release 4 None 276K 4K

VS COBOL II Release 4 COBPACKs modified to
run above the 16-MB
line

32K 192K

Language Environment element of
OS/390 Version 2 Release 101

None 284K 2436K

Language Environment element of
z/OS Version 1 Release 2

None2 88K 2488K

Planning the move to Language Environment

24 COBOL Migration Guide

|
|

|
|

Table 9. Virtual storage used by a VS COBOL II RES program on non-CICS (continued)

Run-time library
Modifications from
IBM default

Below
16-MB
virtual
storage

Above
16-MB
virtual
storage

Language Environment element of
z/OS Version 1 Release 2

Run-time options
ALL31(OFF) and
STACK(BELOW)2

280K 2356K

Note:

1. The virtual storage information for the Language Environment element of OS/390
Version 2 Release 10 is the same for the Language Environment element of z/OS Version
1 Release 1.

2. The defaults for ALL31 and STACK changed between Language Environment Version 2
Release 10 and Language Environment element of z/OS Version 1 Release 2.

When comparing the amount of virtual storage used by the Language
Environment run time and pre-Language Environment run times, note that
run-time routines accessed from the LPA or ELPA are not included in the virtual
storage used by the job.

Virtual storage information for CICS: Language Environment uses more CICS
dynamic storage area than the VS COBOL II run time. The amount of CICS
dynamic storage area used and whether the storage is allocated from CICS UDSA
(dynamic storage area below the 16-MB line) and from CICS EUSDA (dynamic
storage area above the 16-MB line) depends on many factors.

The most important factors include:
v The value used for the Language Environment run-time option ALL31. Using

ALL31(OFF) as an installation default on CICS can cause Language Environment
to use a significant amount of below-the-line CICS user dynamic storage area
(UDSA).

v The values used for the Language Environment run-time storage options:
STACK, LIBSTACK, HEAP, ANYHEAP, BELOWHEAP.

v The nesting level of CICS LINK. Each CICS LINK starts a new run unit. Hence,
the deeper the nesting level, the more storage Language Environment will use.

v The COBOL compiler used. The CICS dynamic storage area used to run
programs compiled with the OS/VS COBOL compiler will not increase because
when an OS/VS COBOL program is run on CICS, the environment that is
established for a run unit by the compatibility run-time library routines supports
OS/VS COBOL.

Language Environment uses more CICS dynamic storage area than the VS COBOL
II run time for the following reasons:
1. Storage management is done per run unit with Language Environment. Thus,

STACK, LIBSTACK, and the different heaps are allocated per run unit. With VS
COBOL II STACK (SRA) and heap were managed at the transaction level.

2. Additional control blocks are allocated by the common component of Language
Environment.

The following table shows storage usage data for the VS COBOL II run time and
Language Environment run time on CICS Version 4. The data was collected by
running a simple transaction where one VS COBOL II program does an EXEC

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 25

|
|

CICS LINK to another VS COBOL II program with auxiliary trace turned on. The
amount of storage used was determined by looking at the GETMAIN trace entries
in the auxiliary trace output.

Table 10. Storage allocation for CICS applications

Storage
allocated

VS COBOL II
run time

Language Environment
run time

Per transaction 2040 bytes

Storage is below the 16-MB line if the
transaction is defined with
TASKDATALOC(BELOW). Storage is above
the 16-MB line if the transaction is defined
with TASKDATALOC(ANY).

Fixed size used for control blocks.

14148 bytes

Storage is below the 16-MB line if the
transaction is defined with
TASKDATALOC(BELOW). Storage is above
the 16-MB line if the transaction is defined
with TASKDATALOC(ANY). Under CICS TS
Version 1 Release 3 with APAR PN85951
applied, or CICS Transaction Server, the
storage will always be allocated above the
16-MB line.

Fixed size used for control blocks.

Per run unit 740 bytes below the 16-MB line (400 bytes
for GETMAIN and 340 bytes for control
blocks)

On the first run unit, above and below the
16-MB line heap storage is allocated. This
storage is used by any new run units
created during the transaction. Additional
storage is allocated as needed. When using
the IBM-supplied defaults, 8168 bytes of
below-the-line storage and 16352 bytes of
above-the-line storage is allocated when
the first run unit starts.

Per run unit with
ALL31(ON)

27344 bytes above the 16-MB line. This
includes storage for control blocks, plus
storage for STACK, LIBSTACK, HEAP, and
ANYHEAP. If any below the 16-MB line heap
is needed, it is allocated on demand.

Per run unit with
ALL31(OFF) and
STACK(4K,4K,BELOW,KEEP)

12512 bytes above the 16-MB line. This
includes storage for control blocks, plus
storage for HEAP and ANYHEAP.

18928 bytes below the 16-MB line. This
includes storage for control blocks, plus
storage for LIBSTACK, STACK, and
BELOWHEAP.

Note: This scenario was run on Language Environment Version 2 Release 10 using the IBM-supplied values for
run-time options: STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP.

Educating your programmers about Language Environment
Before moving to Language Environment, ensure that your application
programmers are familiar with the features of Language Environment and the
differences between pre-Language Environment run times and the Language
Environment run time.

Once your programmers are familiar with Language Environment, they can better
prepare for the move to Language Environment. For example, they can assist in

Planning the move to Language Environment

26 COBOL Migration Guide

taking an inventory of applications. They can also code according to the
suggestions listed in “Suggestions for incremental conversions” on page 15.

For information on Enterprise COBOL and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH. You can also get
information directly from Language Environment publications, from user groups
(such as SHARE), and from the Web at www.ibm.com/s390/le.

Taking an inventory of your applications
While planning your move to the Language Environment run time, you need to
take a comprehensive inventory of the applications that you intend to run on
Language Environment. Include in this inventory:
v Vendor tools, packages, and products
v COBOL applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load
modules. See “The Edge Portfolio Analyzer” on page 266 for more information.

The WebSphere Studio Asset Analyzer for z/OS can aid by analyzing the impact of
a code change for an application. See “WebSphere Studio Asset Analyzer” on page
263 for more information.

Vendor tools, packages, and products
Before you can begin moving your run time to Language Environment, you need
to know if your vendor tools, packages, and products are designed to run under
Language Environment. Verify that:
v All packages will run under Language Environment, especially if you do not get

the source code for them.
v Source code for packages, if you do get the source, is Enterprise

COBOL-compatible source code (1985 Standard-level COBOL).
v Code generators generate Enterprise COBOL-compatible source code (1985

Standard-level COBOL).
v Development tools and debuggers that issue their own ESPIE or ESTAE

coordinate with Language Environment.

For information on how to obtain a list of vendor products that are enabled for
Language Environment, see “Vendor products” on page 266.

COBOL applications
When taking an inventory of your COBOL applications, you need to gather
information about the program attributes that affect moving to Language
Environment. This information includes how and what to test and what will affect
performance under Language Environment. For your inventory, determine:

For moving your applications to Language Environment:

v Which programs have been compiled with VS COBOL II and which with OS/VS
COBOL

v Which programs have been compiled with RES and which with NORES
v Run-time options used (and how specified), specifically:

– MIXRES (VS COBOL II)
– RTEREUS (VS COBOL II)
– LIBKEEP (VS COBOL II)

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 27

– FLOW (OS/VS COBOL)
v Which COBOL programs call or are called by assembler programs
v Which COBOL programs use interlanguage communication (PL/I, C, or

FORTRAN)
v Which COBOL programs are used under CICS, IMS, DB2, or other subsystems
v Control statements used
v Frequency and types of abends

For regression testing:

v Test cases required and available

For performance measurements:
v Amount of storage used
v Frequency of execution of reusable/common modules
v Program execution time (both CPU and elapsed)

Assigning complexity ratings
This section lists the program attributes that can require changes when moving to
the Language Environment run time. Although, in the following description each
action within a range indicates “or”, one or more of the actions might actually
apply to a given attribute.

Each program attribute is assigned a complexity rating, as defined in the following
table:

Table 11. Complexity ratings for program attributes

Complexity rating Definition

0-2 Requires minimum testing, or
Runs under Language Environment without change and without link-editing with La

3-6 Requires moderate testing, or
Requires moderate coordination, or
Requires link-editing with Language Environment

7-10 Requires moderate to high degree of testing, or
Requires moderate to high degree of coordination, or
Requires rewrite of module, or
Does not run under Language Environment

When moving from OS/VS COBOL run time
Table 12 shows estimated complexity ratings for conversions of specific program
attributes:

Table 12. Complexity ratings for programs running under the OS/VS COBOL run time

Program attribute Complexity rating

Compiled with NORES and link-edited with OS/VS COBOL 0

CICS online 1

Link-editing programs using ILBOSTP0 with the assembler driver 3

IMS online 5

Mixed RES and NORES programs 5

ISPF program 7

Called by assembler routine with a LINK SVC 7

Planning the move to Language Environment

28 COBOL Migration Guide

Table 12. Complexity ratings for programs running under the OS/VS COBOL run
time (continued)

Program attribute Complexity rating

CICS (if using dynamic CALL statements from OS/VS COBOL
programs)

7

Assembler programs that do not follow normal save area
conventions. For details, see “Determining requirements for
calling and called assembler programs” on page 267.

8

ILC between OS/VS COBOL programs and PL/I programs 8

ILC between OS/VS COBOL programs and FORTRAN programs 8

Multiple load module application, where the main module has
OS/VS COBOL NORES programs and no Enterprise COBOL or
VS COBOL II programs are included in the main module.

10

Uses QUEUE run-time option 10

Assembler programs that issue a STAE or SPIE 10

Calls assembler routines that do not have valid 31-bit addresses in
Register 13 for save area changes.

10

Assembler programs that are coded based on the internals of the
ILBO routines

10

For additional details, see:
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
v “Appendix D. Applications with COBOL and assembler” on page 267

When moving from the VS COBOL II run time
Table 13 on page 29 shows estimated complexity ratings for conversions of specific
program attributes.

Table 13. Complexity ratings for programs running under the VS COBOL II run time

Program attribute Complexity rating

OS/VS COBOL programs compiled with NORES running under VS
COBOL II

0

VS COBOL II programs compiled with NORES running under VS
COBOL II

0

Loading IGZERRE from an assembler driver 0

Use of IGZEOPT object module (for non-CICS applications) 1

ILC between VS COBOL II programs and PL/I programs, if you
link-edit the programs using the PL/I migration tool.

1

CICS online 2

Relies on behavior of RTEREUS run-time option 2

Use of IGZEOPT object module (for CICS applications) 2

Called by assembler routine with a LOAD and Branch 2

ISPF program 3

Use of IGZETUN object module 3

Compiled with NORES and specifies MIXRES run-time option 4

IMS online 4

ILC between VS COBOL II programs and C/370 programs 4

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 29

Table 13. Complexity ratings for programs running under the VS COBOL II run
time (continued)

Program attribute Complexity rating

ILC between VS COBOL II programs and PL/I programs 4

ILC with FORTRAN programs 4

Link-editing programs using IGZERRE with the assembler driver 4

Use of ILBOSTP0 with the assembler driver 4

Specifies MIXRES run-time option for OS/VS COBOL programs
without using IGZBRDGE

6

Use of BLDL user exit 8

Assembler programs that do not follow normal save area
conventions For details, see “Determining requirements for calling
and called assembler programs” on page 267.

8

ILC between OS/VS COBOL programs and PL/I programs 8

Assembler program LINKs to a COBOL program when running
under a reusable environment

9

Assembler programs that issue a STAE or SPIE 10

For additional details, see:
v “Chapter 7. Moving from the VS COBOL II run-time” on page 75
v “Appendix D. Applications with COBOL and assembler” on page 267

Setting up conversion/no-conversion categories
After you have determined the amount of effort required to move existing load
modules to Language Environment, and taken into account program importance
and frequency of execution, you can list your programs in the order that you want
to move them to Language Environment.

There might be some programs that you do not want to move at all, such as:
v Load modules that require the use of the PL/I, C, or FORTRAN portion of

Language Environment.
v OS/VS COBOL programs that use ILC with FORTRAN or PL/I

For these cases, STEPLIB to your existing run time until you can rewrite the
applications.

Deciding how to phase Language Environment into production mode
When you are ready to use Language Environment in production mode, you need
to:
v Determine how to handle multilanguage conversion
v Determine how applications will have access to the library

Multilanguage conversion
If you have COBOL applications with ILC, move them to the Language
Environment run time after you have converted each of the languages involved.
For example, move a COBOL-PL/I application to Language Environment after you
have moved your COBOL-only and PL/I-only applications to Language
Environment.

Planning the move to Language Environment

30 COBOL Migration Guide

Note: Do not install two different libraries for a given language in
LNKLST/LPALST. For example, if you install Language Environment with
the COBOL component in LNKLST/LPALST, do not have the OS/VS
COBOL library or the VS COBOL II library installed in LNKLST/LPALST.

After Language Environment has been installed in LNKLST, all of your COBOL
applications will run under Language Environment by default.

Determining how applications will have access to the library
Two general methods are available for moving Language Environment into
production: adding Language Environment to the LNKLST/LPALST or using a
STEPLIB approach. These scenarios are intended for programs that run on z/OS or
OS/390.

LNKLST/LPALST
After you add Language Environment to the LNKLST/LPALST, Language
Environment is available to all of your applications. To ensure that all applications
are functioning correctly under Language Environment before adding Language
Environment to your LNKLST/LPALST, you can temporarily install Language
Environment in LNKLST/LPALST or use STEPLIB.

Do not make more than one COBOL run-time library available to your applications
at execution time. For example, there should be one and only one COBOL run-time
library, such as SCEERUN for Language Environment, in LNKLST. If you have
more than one, you will either get hard-to-find errors or you will have an unused
load library in your concatenation. When you add Language Environment to
LNKLST/LPALST, remove any other COBOL run-time libraries, such as COBLIB
and COB2LIB.

Temporary installation in LNKLST/LPALST or use STEPLIB: Suggestions for
temporarily installing Language Environment in LNKLST/LPALST include:
v Install Language Environment in LNKLST/LPALST on a test or development

machine first.
v Use the SETPROG MVS system command to temporarily modify the LNKLST or

LPA, without having to IPL the system. For information on using the SETPROG
command, see z/OS MVS System Commands, SA22-7627 or OS/390 MVS System
Commands, GC28-1781.

v IPL over a weekend and install Language Environment in LNKLST/LPALST.
Verify over the weekend that your applications run under Language
Environment.

Note: Although many elements of z/OS and OS/390 depend on the Language
Environment run-time library, both z/OS and OS/390 do not require
Language Environment to be installed in LNKLST. (However, Language
Environment must be installed in the same zone as z/OS and OS/390.) If
you choose not to place Language Environment in LNKLST, you must
STEPLIB Language Environment in the individual z/OS or OS/390 PROCs
that required Language Environment. For information on which elements
require Language Environment, see:
v z/OS Program Directory for z/OS Version 1 Release 1 or OS/390 Program

Directory for OS/390 Version 2 Release 10

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 31

STEPLIB
You can choose to phase in Language Environment gradually by using the
STEPLIB approach. When you STEPLIB to the Language Environment run time,
you phase in one region (CICS or IMS), batch (group of applications), or user
(TSO) at a time.

Although using STEPLIB means changing your JCL, a gradual conversion can be
easier than moving all of your applications at one time. Also note that when using
STEPLIB, programs will run slower than when they access the run-time library
through LNKLST/LPALST and more virtual storage will be used.

Note: If you have multiple processors linked together with channel-to-channel
connections, you must treat the entire system as one processor and should
convert subsystem by subsystem. In addition to revising your JCL to
STEPLIB to the Language Environment run time during initial setup, you
might also need to specify CEEDUMP DD if the default allocation for
CEEDUMP does not meet your shop’s needs. (CEEDUMP is the ddname
where Language Environment writes its dump output.) For default
CEEDUMP destinations, see “Language Environment formatted dumps” on
page 89.

Problems with STEPLIB and IMS programs
When you use STEPLIB on IMS/DC online to access the Language Environment
run time, any Language Environment library routines that you have preloaded will
not be loaded into read-only storage. If your application has an error and
overwrites non-application storage, preloaded run-time routines can become
corrupted and eventually cause abends when used. At refresh time, these
preloaded routines marked reentrant are not refreshed unless loaded from the LPA
or the LNKLST/LPALST. Thus, the abends will recur.

Note: This is a 20-year-old problem with MVS (OS/390), IMS, and STEPLIB, and is
mentioned here because of the proposed STEPLIB approach for gradually
moving to Language Environment.

You can use either of the following methods to prevent this problem:
v Install Language Environment into the LNKLST/LPALST.
v Do not preload any run-time routines. (This will slow performance.)

How to minimize the impact::

v Keep your certification of Language Environment as short as possible. (The
sooner it is certified, the sooner you can install in LNKLST/LPALST.)

v Watch for different applications abending in the same region, which would
indicate that you need to follow the recovery procedure.

How to recover: If you do notice several different applications abending in the
same region, stop the region and restart with these IMS commands:
1. Determine the region number by issuing: '/DISPLAY ACTIVE'
2. Stop the region by issuing: '/STOP REGION region#'
3. Restart the region by issuing: '/START REGION region-name'

STEPLIB example
Here is one example of how to phase in Language Environment using the STEPLIB
method: for an organization that has a central development center (all compiling
and linking is done in one location) and separate production sites. This is a very
conservative approach, but it has been used by many customers who require
absolutely no disruption in production applications.

Planning the move to Language Environment

32 COBOL Migration Guide

1. Certify Language Environment and Enterprise COBOL at the central
development center.
v Run tests with captured data on your current run time, and save all results.
v Install Language Environment in a STEPLIB environment. This means that

unchanged jobs will run with your current run time, and that some users can
use the Language Environment run time by using STEPLIB JCL to access the
Language Environment run-time library.
Note for NORES applications: This section does not apply to NORES
applications that have not been changed. However, if you change your
NORES applications (for example, by link-editing them with Language
Environment), they might behave differently than before the link-edit.

v Run tests with captured data on the Language Environment run time, using
the STEPLIB environment, and compare the results to your current run time.
Run parallel tests throughout the certification cycle to ensure that your
applications produce the same results when run with Language Environment
as they did with your current run time.

v Finally, compile your test applications using Enterprise COBOL. STEPLIB to
the Language Environment run-time library, and rerun the certification tests.

2. Install Language Environment on the central development center’s system and
test.
v Run parallel tests of the nonconverted versions of your existing applications

using STEPLIB to access your current run time.
v Run all new applications in the Language Environment run-time

environment before releasing to production runs.
3. Prepare a backout strategy

v Save the procedures for installing your current run time in case you need to
back out the Language Environment run time.

4. Install the Language Environment run time at one production site.
v Continue to run parallel tests of the nonconverted versions of your existing

applications with your current run time in the STEPLIB environment.
v Run the Language Environment run time for one month at this production

site.
5. Install the Language Environment run time at all production sites.

v Optional: continue to run parallel tests of the nonconverted versions of your
existing applications with your current run time in the STEPLIB
environment.

v Run the Language Environment run time for one month at all production
sites.

v After one month, delete the entire contents of your current run time library.
6. Compile all new or changed applications with Enterprise COBOL.

Try to move the largest units of work that you can. Moving entire online regions,
applications, or run units at once ensures that interactions between programs
within an application or run unit can be tested.

Setting up a regression testing procedure
Although most applications will run under Language Environment with the same
results as on their existing run-time, results could differ depending on coding
styles, resource utilization, performance, abend behavior, or more strict adherence
to IBM conventions in Language Environment. Two examples of where results
could differ include applications that use assembler programs that use an SVC

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 33

LINK instead of COBOL dynamic CALL statements and applications that have
native COBOL CALL statements to OS/VS COBOL programs under CICS.

Because there are so many possible combinations of coding techniques, the only
way to determine if your applications will run under Language Environment and
receive the expected results, is to set up a procedure for regression testing. Move
your applications to a test environment, and ensure that you receive the expected
results when running under Language Environment.

Regression testing will help to identify if there are:
v OS/VS COBOL programs using assembler stubs with SVC LINK in place of

COBOL dynamic CALL statements.
v Unclosed files opened by OS/VS COBOL programs or non-COBOL programs,

which cause a C03 abend.
v Under CICS, OS/VS COBOL programs using dynamic CALL statements.
v Under CICS, VS COBOL II programs using the CALL statement to call OS/VS

COBOL programs.
v Storage usage differences between your current run time and the Language

Environment run time.
v CPU time differences between your current run time and the Language

Environment run time.

During testing, run your existing applications in parallel on both your current run
time and under the Language Environment run time to verify that the results are
the same. Take performance measurements of your existing applications to
compare with Language Environment.

After the program runs correctly, test it separately and also test it with other
programs in a run unit. By testing it against a variety of data, you can exercise all
the program processing features to help ensure that there are no unexpected
execution differences.

Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors and correct those
errors. Make any further changes that you need and then rerun, and, if necessary,
continue to debug.

Take performance measurements
After your applications are running under Language Environment in a test
environment, take performance measurements—especially on any time-critical or
response-critical applications.

After you compare run-time performance between Language Environment and
your current run time environment and have identified which applications, if any,
need performance improvements, you can investigate the methods available to
tune your programs and improve performance. For example, you can modify
storage values using the Language Environment run-time options. For additional
information, see the performance information available on the COBOL Web site.
Go to the Library Section at www.ibm.com/software/ad/cobol.

Planning the move to Language Environment

34 COBOL Migration Guide

|
|
|
|

Cutting over to production use
When your testing shows the entire application (or group of applications, if
running more than one application in an IMS region, or on TSO) receives the
expected results, you can move the entire unit over to production use. However, in
case of unexpected errors, be prepared for instant recovery:
v Under z/OS and OS/390, run the old version as a substitute from the latest

productivity checkpoint.
v Under DB2, CICS, and IMS, return to the last commit point and then continue

processing from that point using the unmigrated COBOL program. (For DB2, use
an SQL ROLLBACK WORK statement.)

v For batch applications, use your shop’s backup and restore facilities to recover.

After you move your existing applications to production use under the Language
Environment run time, monitor your applications for a short time to ensure that
they continue to work properly. Then, you can run with the confidence that you
had in your previous run time.

Planning the move to Language Environment

Chapter 3. Planning the move to Language Environment 35

36 COBOL Migration Guide

Chapter 4. Planning to upgrade source programs

This chapter describes a general strategy for upgrading your source programs to
Enterprise COBOL. The following tasks are necessary, and should be performed in
roughly the following order:
1. Prepare to upgrade your source.
2. Take an inventory of your applications.
3. Make application program updates.

Because of the loss of service support for older COBOL compilers, you should
eventually upgrade all of your COBOL source programs. Although this is not an
immediate requirement, at some future date the older compilers and any
supported fixes will not be available. At that point, you will be forced to do a
’quick’ migration, and this might be at a very inconvenient time.

Before you upgrade your source programs, you must move your applications to
Language Environment

Preparing to upgrade your source
In preparing to upgrade your source to Enterprise COBOL, you need to perform
the following tasks, which can be done concurrently:
v Installing Enterprise COBOL
v Assessing storage requirements
v Deciding which conversion tools to use
v Educating your programmers on new compiler features

Installing Enterprise COBOL
If you haven’t already done so, install the compiler:
v For z/OS or OS/390, see the Program Directory for your product.

Assessing storage requirements
You can load most of the Enterprise COBOL compiler above the 16-MB line. In
addition, Enterprise COBOL object programs execute in 31-bit addressing mode
and can reside above the 16-MB line, which frees storage below the 16-MB line.
You can use the freed storage for programs or data that must reside below the
16-MB line.

During conversion, you will need DASD storage for your current COBOL
compilers as well as for the Enterprise COBOL compiler. When you have
completed conversion, and if you have upgraded all of your OS/VS COBOL, VS
COBOL II, or IBM COBOL programs to Enterprise COBOL, you will be able to free
the storage reserved for your current COBOL compiler.

The load module produced from the same source code when compiled with
Enterprise COBOL will probably be larger than when compiled with OS/VS
COBOL or VS COBOL II.

© Copyright IBM Corp. 1991, 2001 37

Deciding which conversion tools to use and install them
If you use the available conversion tools, you will find that upgrading can be a
very simple procedure. The following conversion tools can help in upgrading your
source programs to Enterprise COBOL programs:

COBOL Conversion Tool (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA) is not for
CICS only; it converts any old COBOL to Enterprise COBOL. The CCCA
provides you with either a report of the statements that need to be changed or
the actual converted program itself. CCCA is product number 5648-B05.

OS/VS COBOL MIGR compiler option
The MIGR option lists source statements that need to be converted to compile
under Enterprise COBOL.

CMPR2, FLAGMIG, and NOCOMPILE compiler options
The COBOL CMPR2, FLAGMIG, and NOCOMPILE options list source
statements that need to be converted to compile under Enterprise COBOL. The
CMPR2 and FLAGMIG options are not available in Enterprise COBOL, but
you can use your older compilers with these options to flag the statements that
need to be changed in order to compile with Enterprise COBOL.

Other conversion tools you might want to use include:
v CICS Application Migration Aid (CAMA)—helps convert CICS macro-level code

to command-level code. CAMA is product number 5695-061.
v COBOL Report Writer Precompiler—enables you to either continue using Report

Writer code or convert your Report Writer code to non-Report Writer code.
The Report Writer Precompiler is product number 5798-DYR. A
workstation-based version of the Report Writer Precompiler is also orderable as
an optional feature (separately orderable) of VisualAge for COBOL.

These conversion tools are fully described in “Appendix C. Conversion tools for
source programs” on page 259.

If you plan to use CCCA, CAMA, or COBOL Report Writer Precompiler, install it
at this time. For installation instructions, see the documentation for the conversion
tool(s) you plan to use.

Educating your programmers on new compiler features
Early in the conversion effort, ensure that your application programmers are
familiar with the features of Enterprise COBOL and the relationship and
interdependencies between Enterprise COBOL, Language Environment, and Debug
Tool and any other application productivity tools your shop uses.

In addition to source language differences between the COBOL 68 Standard,
COBOL 74 Standard, and COBOL 85 Standard, your programmers will need to be
familiar with Language Environment condition handling and Language
Environment callable services.

For information on Enterprise COBOL and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH. You can also get
information directly from Language Environment publications or technical
conferences such as GUIDE, SHARE, or the IBM Technical Interchange.

Planning to upgrade source

38 COBOL Migration Guide

|
|
|
|
|

After your programmers are familiar with Enterprise COBOL features, they can
assist you in taking the inventory of programs as described in Taking an inventory
of your applications.

Taking an inventory of your applications
In planning the upgrade to Enterprise COBOL, you need to take a comprehensive
inventory of applications in which you have programs that you intend to compile
with Enterprise COBOL. By taking an inventory of your applications, you get a
detailed picture of the work that is required. You need to take an inventory of:
v Vendor tools, packages, and products
v COBOL applications

The Edge Portfolio Analyzer can aid in taking an inventory of your existing load
modules, see “The Edge Portfolio Analyzer” on page 266 for more information.

The WebSphere Studio Asset Analyzer for z/OS can aid by analyzing the impact of
a code change for an application. See “WebSphere Studio Asset Analyzer” on page
263 for more information.

Taking an inventory of vendor tools, packages, and products
Before you can begin upgrading your source, you need to know if your vendor
tools, packages, and products are designed to work with Enterprise COBOL. Verify
that:
v COBOL code generators generate COBOL 85 Standard programs that can be

compiled with Enterprise COBOL.
v COBOL packages are written in COBOL 85 Standard language that can be

compiled with Enterprise COBOL.

Taking an inventory of COBOL applications
For each program in your COBOL applications, include at least the following
information in your inventory:

IBM COBOL, VS COBOL II and OS/VS COBOL:
v Programmer responsible
v COBOL Standard level of source program (68, 74, 85)
v Compiler used (ANS COBOL V4, OS/VS COBOL, VS COBOL II, IBM COBOL)
v Compiler options used, especially CMPR2
v Precompiler options used
v Postprocessing options used
v COBOL modules
v COPY library members used in COBOL programs
v Called subprograms
v Calling programs
v Frequency of execution
v Test cases required and available
v Programs containing Report Writer statements

For OS/VS COBOL only:

v Determine which programs use the following features that are not supported by
Enterprise COBOL:
– ISAM files
– BDAM files
– Communications feature

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 39

v Determine which programs use features that might require the purchase of other
products:
– Report Writer statements require the Report Writer Precompiler

v Determine which programs use features that might have different results under
Enterprise COBOL:
– Variable-length data items (OCCURS DEPENDING ON)
– Floating-point numeric items
– Exponentiation
– Combined abbreviated relation conditions
– Assembler routines using the high-order bit of Register 13

This information will be useful to you in the next step of your planning task,
Prioritizing your applications.

Prioritizing your applications
Using the complete inventory, you can now prioritize the conversion effort.
1. Assign complexity ratings to each item in your completed inventory and

determine each program or application’s resulting overall complexity rating.
2. Determine the conversion priority of each program or application.

Assigning complexity ratings
Complexity ratings are defined based on the effort required to convert, test, and
coordinate a construct or program. The ratings used in Table 14 on page 41 are
defined as:

0 All code converted by CCCA without error; code compiles correctly
under Enterprise COBOL

1-3 Requires moderate testing
Requires moderate coordination
Most code converted without error by CCCA

4 Requires CCCA and possible manual conversion
Requires special testing considerations

5-6 Requires moderate to high degree of coordination
Requires moderate to high degree of testing for functional equivalence
Requires conversion in addition to CCCA (manual or automated)

7-8 Requires high degree of coordination
Requires high degree of testing for functional equivalence

9 Requires very high degree of coordination
Requires very high degree of testing for functional equivalence

10 Requires rewrite of module

Based on the complexity ratings shown above (or your own defined complexity
ratings), you can now assign a complexity rating to each attribute within a
program. Use the highest complexity rating listed as the overall rating for that
program. For an application, the highest complexity rating that you assign for any
program within the application is the complexity rating for the entire application.

Table 14 shows estimated complexity ratings for conversions of specific program
attributes.

Planning to upgrade source

40 COBOL Migration Guide

Table 14. Complexity ratings for programs attribute conversions

Program attribute Description of attribute Complexity rating

Lines of source code 1000 or less 0

5000 to 10,000 3

10,000 to 20,000 + 5

Fixed file attribute mismatch (FS 39)1 4

VS COBOL II or later compiled with
CMPR2

Compiler option CMPR2 not supported 1 C

COBOL 74 Standard COPY library
members

1 M C

ANS COBOL V4 COPY library members 1 to 10 2 M C

10 to 20 5 M C

20 + 6 M C

Stability Program with no plans for changes 0

Program changes twice a year 3

Program changes every month or more often 8+

Files accessed 1 to 3 1 M C

3 to 5 2 M C

6 + 3 M C

No source code for module Module needs rewrite 102

Module does not need to be upgraded 6

CICS macro level program 103

Compiled by Full ANS COBOL V4
compiler (pre- compiler)

4 C

Compiled by OS/VS COBOL Release 2
compiler

LANGLVL(2) no manual changes 1 M C

LANGLVL(1) no manual changes 1 M C

LANGLVL(2) manual changes 4 M C

LANGLVL(1) manual changes 4 M C

Uses language with changed results Complex OCCURS DEPENDING ON 4 C

Combined abbreviated relation conditions 6 M

Floating-point arithmetic 6 M

Exponentiation 6 M

Signed data 2

Binary data 2

Access methods used ISAM 6 M C

BDAM 10 C4

TCAM 10

Uses Report Writer language (if not using
Report Writer Precompiler)

6 M C

Uses Report Writer language (if using
Report Writer Precompiler)

0

CICS 4

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 41

Note:

1. For additional information, see “Appendix H. Preventing file status 39
for QSAM files” on page 301.

2. Non-IBM vendors can recreate COBOL source code from object code.
3. You can use the CICS Application Migration Aid to help convert CICS

macro-level programs to command-level programs.
4. This is a partial conversion.

On categories marked M you can gather information using the OS/VS
COBOL MIGR option. On categories marked C you can gather information
using the COBOL conversion tool (CCCA).

Determining conversion priority
After you have determined the complexity rating for each program in your
inventory, you can make informed decisions about the programs that you want to
upgrade, and the order in which you want to upgrade them.

Table 15 shows one method of relating program complexity ratings to conversion
priorities. (The highest priority is “1” and the lowest priority is “6”.)

Table 15. Assigning program conversion priorities

Conversion
priority

Complexity
rating Other considerations

1 0 to 3 Great importance to your organization
Low conversion effort using conversion tools

2 4 to 6 Great importance to your organization
Medium conversion effort using conversion tools

0 to 3 Medium importance to your organization
Low conversion effort using conversion tools

3 7 to 8 Great importance to your organization
High conversion effort using conversion tools

3 to 6 Medium importance to your organization
Medium conversion effort using conversion tools

0 to 3 Small importance to your organization
Low conversion effort using conversion tools

4 9 to 10 Great importance to your organization Very high
conversion effort

7 to 8 Medium importance to your organization High
conversion effort using conversion tools

3 to 6 Small importance to your organization Medium
conversion effort using conversion tools

5 9 to 10 Medium importance to your organization Very high
conversion effort

7 to 8 Small importance to your organization High
conversion effort using conversion tools

6 9 to 10 Small importance to your organization Very high
conversion effort

Consider the following when deciding on conversion priorities:

Planning to upgrade source

42 COBOL Migration Guide

v If your application is at the limits of the storage available below the 16-MB line,
it is a prime candidate for conversion to Enterprise COBOL. With z/OS or
OS/390 architecture you can obtain virtual storage constraint relief.

v If the program cannot run under Language Environment, you must convert it.
For example, an OS/VS COBOL program that calls or is called by a PL/I
program must be upgraded.

After you determine the priority of each program that you need to upgrade and
the effort required to upgrade those programs, you can decide the order in which
you want to convert your applications and programs.

Setting up upgrade/no upgrade categories
By using the conversion priorities that you have established, and taking into
account program importance and frequency of execution, you can list most of your
programs in the order that you want to convert them to Enterprise COBOL.

There might be some programs that you do not want to convert at all, such as:
v Programs for which you have no source code, that will never need

recompilation, and that run correctly under Language Environment.
v Programs of low importance to your organization that run correctly under

Language Environment and that would take a very high conversion effort.
v Programs that are being phased out of production.

Note, however, that there might be restrictions on running existing modules mixed
with upgraded programs. See “Chapter 18. Adding Enterprise COBOL programs to
existing COBOL applications” on page 219.

Setting up a conversion procedure
The summaries and diagrams on the following pages outline the steps required to
upgrade five types of programs:
v Programs without CICS or Report Writer
v Programs converted to structured programming code
v Programs with CICS
v Programs with Report Writer statements to be discarded
v Programs with Report Writer statements to be retained

In the following flowcharts, you are directed to manually upgrade your programs
if you are not using CCCA. If you do not want to use CCCA, you should consider
using a non-IBM vendor’s conversion tool before attempting a manual conversion.

Programs without CICS or Report Writer
To convert an OS/VS COBOL program that contains neither CICS commands nor
Report Writer statements to an Enterprise COBOL program, do the following:

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 43

Programs with CICS
To convert an OS/VS COBOL program that contains CICS commands to an
Enterprise COBOL program, do the following:

Planning to upgrade source

44 COBOL Migration Guide

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 45

Programs with Report Writer statements to be discarded
To convert an OS/VS COBOL program that contains Report Writer statements to
an Enterprise COBOL program, and remove all Report Writer statements, do the
following:

Planning to upgrade source

46 COBOL Migration Guide

Programs with Report Writer statements to be retained
To convert an OS/VS COBOL program that contains Report Writer statements to
an Enterprise COBOL program, and retain the Report Writer statements in the
source code, do the following:

Making application program updates
The following application programming tasks are necessary when upgrading your
source. They should be performed in roughly the following order:

Save the existing source as a back-up—a benchmark to compare to and a version
to recover to—if the converted modules have problems.
1. Update the job and module documentation.

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 47

It is extremely important that all updates be properly documented. COBOL
itself is reasonably self-documenting. However, keep a log of the compiler
options you specify and the reasons for specifying them. Also document any
special system considerations. This is an iterative process and should be
performed throughout the conversion programming task.

2. Update the available source code.
Whenever possible, use the conversion tools described in “Appendix C.
Conversion tools for source programs” on page 259. Otherwise, update the
source code manually.

3. Compile, link-edit, and run.
After the source has been updated, you can process the program as you would
a newly written Enterprise COBOL program. (You need the Language
Environment run time installed.)

4. Debug.
Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors.

5. Test the converted programs
After upgrading your source to Enterprise COBOL, set up a procedure for
regression testing. Regression testing will help to identify:
v Fixed file attribute mismatches (file status 39 problems). Verify that your

COBOL record descriptions, JCL DD statements, and physical file attributes
match. For more information, see “Appendix H. Preventing file status 39 for
QSAM files” on page 301.

v Dependency on WORKING-STORAGE being initialized to binary zeros. If
you have WORKING-STORAGE zero dependency, specify the Language
Environment STORAGE(00) run-time option.

v Performance differences.
v Sign handling problems—S0C7 abends. The data’s sign must match the signs

allowed by the NUMPROC compiler option suboption that you specify.
v DATA(24) issues. Do not mix AMODE 24 programs with 31-bit data.

After you have established a regression testing procedure, and after your
programs run correctly, test them against a variety of data:
v Locally—each program separately
v Globally—programs in a run unit in interaction with each other

In this way, you can exercise all the program processing features to help ensure
that there are no unexpected execution differences.

6. Repeat when necessary.
Make any further corrections that you need, and then recompile, relink, rerun,
and, if necessary, continue to debug.

7. Cut over to production mode.
When your testing shows that the entire application receives the expected
results, you can move the entire unit over to production mode. (This assumes
your production system is already using the Language Environment run time.
If not, STEPLIB to the Language Environment run time. See “Deciding how to
phase Language Environment into production mode” on page 30.)
In case of unexpected errors, be prepared for instant recovery:
v Under z/OS or OS/390, run the old version as a substitute from the latest

productivity checkpoint.

Planning to upgrade source

48 COBOL Migration Guide

v Under DB2 and IMS return to the last commit point and then continue
processing from that point using the unmigrated COBOL program. (For DB2,
use an SQL ROLLBACK WORK statement.)

v For non-CICS applications, use your shop’s backup and restore facilities to
recover.

8. Run in production mode.
After cut over, monitor the application for a short time to ensure that you are
getting the results expected. After that, your source conversion task is
completed.

Planning to upgrade source

Chapter 4. Planning to upgrade source programs 49

Planning to upgrade source

50 COBOL Migration Guide

Part 3. Moving existing applications to Language Environment

© Copyright IBM Corp. 1991, 2001 51

52 COBOL Migration Guide

Chapter 5. Running existing applications under Language
Environment

Depending on the characteristics of your applications, you might need to make
application modifications and perform some of the following Language
Environment customization tasks to ensure that your current applications run
under Language Environment:
v Set recommended default Language Environment run-time options.
v Invoke existing applications.
v Link-edit existing applications.
v Obtain a system dump or a CICS transaction dump.
v Get compatible abend behavior.
v Ensure return code value compatibility.

Other factors also apply to ensure compatibility, depending on if you are moving
your run-time from OS/VS COBOL or VS COBOL II. For details, see:
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
v “Chapter 7. Moving from the VS COBOL II run-time” on page 75

Set recommended default Language Environment run-time options
The Language Environment IBM-supplied default run-time option settings might
not provide the same run-time behavior as the OS/VS COBOL or VS COBOL II
run-time options. Because there are differences, this section has two purposes.
First, to inform you of the recommended run-time option settings for COBOL
programs, so that you can determine which run-time options settings you need to
change. Second, to ensure that you do not inadvertently change any default
settings that are highly recommended for COBOL programs.

Recommended run-time options for non-CICS applications
Table 16 describes the Language Environment run-time options that are highly
recommended for existing non-CICS COBOL applications. For a complete list of
Language Environment run-time options, see Language Environment Programming
Reference.

Table 16. Recommended Language Environment run-time options for non-CICS COBOL applications

Option

LanEnv
default
setting

Recommended
COBOL setting Comments

ABTERMENC ABEND ABEND ABTERMENC(ABEND) ensures that your application ends with an abend
after an abend, program check or severe error occurs, similar to the way
OS/VS COBOL and VS COBOL II would end after a problem.

For additional VS COBOL II run-time messages considerations, see “Abend
codes” on page 88.

To obtain a system dump, see “Obtaining a system dump or a CICS
transaction dump” on page 60.

CBLOPTS ON ON CBLOPTS(ON) allows the existing COBOL format of the invocation
character string to continue working (user parameters followed by the
run-time options). This option affects only applications with COBOL as the
main program.

© Copyright IBM Corp. 1991, 2001 53

|

Table 16. Recommended Language Environment run-time options for non-CICS COBOL applications (continued)

Option

LanEnv
default
setting

Recommended
COBOL setting Comments

CBLQDA OFF OFF CBLQDA(OFF) suppresses QSAM dynamic allocation for files not available
when OPEN OUTPUT, OPEN I-O (optional file), or OPEN EXTEND
(optional file) statements are directed to a QSAM file. CBLQDA(OFF)
behavior is compatible with programs compiled with OS/VS COBOL, VS
COBOL II Release 2, and VS COBOL II Release 3 and later compiled with
CMPR2, as well as any VS COBOL II NOCMPR2 programs running under
VS COBOL II run-time with the ZAP from APAR II04562 applied to
IGZEQOC. CBLQDA(ON) conforms to the COBOL 85 Standard.

RTEREUS OFF OFF RTEREUS is not recommended as an installation default. If you do use
RTEREUS, use it for specific applications only and make sure that you
understand the possible side effects and restrictions, for example:

v RTEREUS(ON) is ignored if CEEPIPI or DB2 stored procedures are used.

v Under Language Environment, RTEREUS(ON) is only supported in a
single enclave environment unless you modify the behavior using the
IGZERREO CSECT. With the IBM-supplied default setting for COBOL’s
reusable environment, applications that attempt to create nested enclaves
will terminate with error message IGZ0168S. Nested enclaves can be
created by applications that use SVC LINK or CMSCALL to invoke
applications programs. One example is when an SVC LINK is used to
invoke an application program under ISPF that is using ISPF services
(such as CALL ’ISPLINK’ and ISPF SELECT).

v If a Language Environment reusable environment is established (using
RTEREUS), attempts to run a C or PL/I main program under Language
Environment will fail. For example, when running on ISPF with
RTEREUS(ON):
– The first program invoked by ISPF is a COBOL program. A Language

Environment reusable environment is established.
– At some other point, ISPF invokes a PL/I or C program. The

initialization of the PL/I or C program will fail.

v If a large number of COBOL programs are run under the same MVS task,
you can get out of region abends. This is because all storage acquired by
Language Environment to run COBOL programs is kept in storage until
the MVS task ends or the Language Environment environment is
terminated.

v Language Environment termination will not be driven unless a STOP
RUN is executed to end the enclave. As a result:

– Language Environment storage and run-time options reports are not
produced by Language Environment.

– COBOL files that were not closed by the COBOL program will not be
closed by Language Environment, which can result in unpredictable
data in the file (for example, records not being written, or the last
record being written twice).

ANYHEAP
BELOWHEAP
HEAP
LIBSTACK
STACK

These run-time options help you manage storage. For STACK, if any
program in your application is running AMODE 24, specify the suboption
BELOW (and also specify ALL31(OFF)). If all of the programs in your
application are AMODE 31, specify the suboption ABOVE (and also specify
ALL31(ON)). On COBOL, the recommended setting for STACK is 64K, 64K,
BELOW, KEEP when you use ALL31(OFF) and 64K, 64K, ANY, KEEP when
you use ALL31(ON).

TERMTHDACT TRACE UADUMP
or
UATRACE

Use TERMTHDACT(UADUMP), TERMTHADACT(UATRACE), or
TERMTHDACT(UAONLY) to receive a system dump under Language
Environment when the environment is terminating due to a severe error (for
example, a program check or abend). Alternatively, use an abnormal
termination exit. See, “Obtaining a system dump or a CICS transaction
dump” on page 60 for details.

Running under Language Environment

54 COBOL Migration Guide

Table 16. Recommended Language Environment run-time options for non-CICS COBOL applications (continued)

Option

LanEnv
default
setting

Recommended
COBOL setting Comments

TRAP ON ON TRAP specifies how Language Environment routines handle abends and
program checks. In order for applications to run successfully, you must
specify TRAP(ON). TRAP(ON) also enables Language Environment to
support the existing condition-handling mechanisms provided by both VS
COBOL II (STAE run-time option) and OS/VS COBOL (STATE, FLOW,
COUNT, and SYMDMP debugging options).

Other run-time options affecting non-CICS applications
The following run-time options can also determine whether existing applications
run under Language Environment and provide expected results. No specific
suboption can be recommended because the default setting is dependent on each
individual shop’s needs.

ALL31
ALL31(OFF) is required for applications with AMODE 24 programs, such
as:
v OS/VS COBOL programs
v VS COBOL II NORES programs
v Other AMODE 24 non-COBOL programs

ALL31(ON) allows EXTERNAL data to be allocated anywhere within the
31-bit addressing range and improves run-time performance. The
IBM-supplied default for ALL31 is OFF in the OS/390 Language
Environment Version 2 Release 10 and ON in the z/OS Language
Environment Version 1 Release 2.

MSGFILE
When you use the Language Environment run-time option
MSGFILE(ddname) to specify the destination of messages, there are
restrictions on the names that you can use for the ddname of the output
message file. Do not use any of the following ddnames:

SYSABEND SYSCOUNT SYSDBOUT SYSDTERM
SYSIN SYSLIB SYSLIN
SYSPUNCH SYSUDUMP SYSLOUT

The IBM-supplied default is MSGFILE(SYSOUT).

STORAGE
For programs that depend on WORKING-STORAGE that is initialized to
binary zeros, this option can be used to initialize storage acquired by a
program compiled with RENT to binary zeros, except when VALUE
clauses are specified. It can also be used to set all the EXTERNAL data
records of a program to binary zeros. However, to improve performance,
you should explicitly initialize only those data items that require
initialization.

WSCLEAR and STORAGE(00) do not affect programs compiled with
NORENT.

To receive the Language Environment-equivalent of the VS COBOL II
WSCLEAR run-time option, set the first suboption of the Language
Environment STORAGE run-time option to 00. For example,
STORAGE(00,NONE,NONE,8K).

Running under Language Environment

Chapter 5. Running existing applications under Language Environment 55

|
|
|
|
|

The IBM-supplied default is STORAGE(NONE,NONE,NONE,8K).

Recommended run-time options for CICS applications
Table 17 describes the Language Environment run-time options that are highly
recommended for existing COBOL CICS applications. On CICS, Language
Environment has different default settings than under non-CICS (most of the
Language Environment default settings are the same as the recommended COBOL
settings).

For a complete list of Language Environment run-time options, see the Language
Environment Programming Reference.

Table 17. Recommended Language Environment run-time options for COBOL CICS applications

Option
LanEnv default
setting on CICS

Recommended COBOL
setting Comments

ABTERMENC ABEND ABEND Ensures you receive abend codes similar to those issued by
VS COBOL II or OS/VS COBOL when an abend, program
check, or severe error occurs.

ABTERMENC(ABEND) ensures that you get a system abend
code; to get a system dump, see “Obtaining a system dump
or a CICS transaction dump” on page 60.

ALL31 ON ON ALL31(ON) allows Language Environment to allocate its
control blocks above the line. With ALL31(OFF), Language
Environment increases its use of below the 16-MB line
storage. For more information on the differences in Language
Environment storage usage on CICS for ALL31(OFF) and
ALL31(ON), see “Virtual storage requirements” on page 24.

ALL31(ON) is the recommended setting for COBOL
applications. You can use ALL31(ON) if all of your VS
COBOL II, IBM COBOL and Enterprise COBOL programs are
AMODE 31, even if you are running OS/VS COBOL
programs in your CICS regions. (Load modules containing
only OS/VS COBOL and assembler programs are AMODE 24
and are not affected by the setting of ALL31.)
Note: To run with ALL31(ON), every program in the load
module must be 31-bit enabled, including assembler
programs.

Use ALL31(OFF) if your load modules contain VS COBOL II,
IBM COBOL, or Enterprise COBOL programs and assembler
programs that require AMODE 24.

ANYHEAP
BELOWHEAP
HEAP
LIBSTACK
STACK

See Language
Environment
Installation and
Customization.

Default settings Language Environment provides these run-time options to
help manage storage.

Running under Language Environment

56 COBOL Migration Guide

|
|
|

|

Table 17. Recommended Language Environment run-time options for COBOL CICS applications (continued)

Option
LanEnv default
setting on CICS

Recommended COBOL
setting Comments

TERMTHDACT TRACE UADUMP or UATRACE Use TERMTHDACT(UADUMP),
TERMTHDACT(UATRACE), or TERMTHDACT(UAONLY) to
receive a transaction dump under Language Environment
when the environment is terminating due to a severe error
(for example, a program check or abend). Alternatively, use
an abnormal termination exit. See “Obtaining a system dump
or a CICS transaction dump” on page 60 for details.

You might not want to use TERMTHDACT(DUMP),
TERMTHDACT(TRACE), TERMTHDACT(UADUMP), or
TERMTHDACT(UATRACE) in production, because these
TERMTHDACT suboptions can cause a lot of time to be
spent writing Language Environment dump data to transient
queue data CESE when a transaction abends. If a traceback
CEEDUMP is not needed by the application environment use
TERMTHDACT(MSG) to eliminate the performance overhead
of writing formatted CEEDUMPs to the CESE CICS transient
data queue.

TRAP ON ON TRAP specifies how Language Environment routines handle
abends and program interrupts. In order for applications to
run successfully, you must specify TRAP(ON).

Other run-time options affecting CICS applications
The following run-time options can also determine whether existing applications
run under Language Environment and provide expected results. No specific
suboption can be recommended since the default setting is dependent on each
individual shop’s needs.

CBLPSHPOP
CBLPSHPOP is used to control whether CICS PUSH HANDLE and CICS
POP HANDLE commands are issued when a VS COBOL II, IBM COBOL,
or Enterprise COBOL subroutine is called using the COBOL CALL
statement.

CBLPSHPOP(ON) ensures you receive behavior that is compatible with the
behavior of running VS COBOL II programs with the VS COBOL II
run-time. CBLPSHPOP(OFF) can yield performance benefits. For details,
see “CICS HANDLE commands and the CBLPSHPOP run-time option” on
page 100.

STORAGE
For programs that depend on WORKING-STORAGE that is initialized to
binary zeros, this option can be used to initialize storage acquired by a
program compiled with RENT to binary zeros, except when VALUE
clauses are specified. It can also be used to set all the EXTERNAL data
records of a program to binary zeros. However, to improve performance,
you should explicitly initialize only those data items that require
initialization.

To receive the Language Environment-equivalent of the VS COBOL II
WSCLEAR run-time option, set the first suboption of the Language
Environment STORAGE run-time option to 00. For example,
STORAGE(00,NONE,NONE,0K).

The IBM-supplied default setting is STORAGE(NONE,NONE,NONE,0K).

Running under Language Environment

Chapter 5. Running existing applications under Language Environment 57

Invoking existing applications
To access Language Environment you will need to change the procedures you use
for invoking applications. The procedures required for non-CICS applications are
different than the procedures for CICS applications.

Note: Make sure your program names do not begin with AFH, CEE, EDC, IBM,
IGZ, ILB, or FOR. These prefixes are reserved for Language Environment
library routine module names.

For non-CICS applications
The following sections detail the changes required for non-CICS applications. For
considerations for programs run on IMS, see “Appendix L. IMS considerations” on
page 315. For more information on how to prepare and run your programs with
Language Environment, see the Language Environment Programming Guide.

Specify the correct library
To invoke existing applications when running under Language Environment, you
need to:

Under z/OS and OS/390
Replace your current library with the Language Environment SCEERUN
library.

Specify alternate DDNAMES (optional)
With Language Environment, you can indicate the destination for Language
Environment output by changing the ddname in the MSGFILE run-time option to
the ddname you want. Table 18 lists the default ddnames for Language
Environment output.

Table 18. Specification of new DDNAMEs

Output
Default
ddname

Dynamically
allocated

Messages SYSOUT Yes

Run-time options report (RPTOPTS) SYSOUT Yes

Storage reports (RPTSTG) SYSOUT Yes

Dumps CEEDUMP Yes

You do not need to alter your JCL, CLISTs, or Rexx EXECs to define the ddnames
for Language Environment messages, reports, or dumps unless the defaults used by
Language Environment do not meet the needs of your shop. The Language
Environment default destinations are:
v On z/OS and OS/390: SYSOUT=*
v On TSO: ALLOC DD(SYSOUT) DA(*)

Remove DDNAMES no longer required (optional)
The following ddnames are not required when running with Language
Environment:
v SYSABOUT (used by VS COBOL II run-time only)
v SYSDBIN (used by VS COBOL II run-time only)
v SYSDBOUT

You are not required to remove these ddnames. This information is provided in
case you want to eliminate unnecessary coding in your JCL, CLISTs, or Rexx
EXECs.

Running under Language Environment

58 COBOL Migration Guide

|
|
|

|

For CICS applications
To run Language Environment on CICS, you need to perform several required
steps. For details on how to invoke COBOL applications running on CICS under
Language Environment, including how to specify the Language Environment
run-time library SCEERUN, see:
v For z/OS, Language Environment for z/OS Customization
v For OS/390, Language Environment for OS/390 Customization

Output differences when using Language Environment on CICS
Under CICS, Language Environment output goes to a transient data queue named
CESE. Each record written to the file has a header that includes the terminal ID,
the transaction ID, date, and time. Table 19 lists the types of Language
Environment output and location.

Table 19. Location of Language Environment output under CICS

Output Transient data queue

Messages CESE

Run-time options report (RPTOPTS) CESE

Storage reports (RPTSTG) CESE

Dumps CESE

DISPLAY UPON SYSOUT output CESE

Link-editing existing applications
After determining which of your existing applications either require or will benefit
from link-editing with Language Environment, you need to specify the correct
library name. The Language Environment link-edit library is the same for
non-CICS applications as for CICS applications.

Under z/OS and OS/390
Include the Language Environment SCEELKED in the SYSLIB
concatenation.

Note: If you link-edit with the NCAL linkage editor option, ensure that all of the
required run-time routines from SCEELKED are included in the load
module. Otherwise, unpredictable errors will occur (typically a program
check).

There are some names in the SCEELKED library that do not follow IBM naming
conventions, and that can conflict with your subprogram names. For example, if
you have a statically called subroutine named DUMP and if SCEELKED is ahead
of your private subroutine library in the concatenation at link-edit time, then your
references to DUMP will be resolved in SCEELKED. In this example, the
FORTRAN routine AFHUDUMS will be link-edited in, and you could get incorrect
results, loss of function, or slower performance as a result. (Another common name
is ABORT, which is an entry point in EDC4$05C, a C run-time library routine.)

There are a couple of ways to avoid these problems:
v You can check the names in the SCEELKED data set against the names of your

private subroutines. If there are any duplicates, you can rename your private
subroutines so that they do not have the same names as the names in the
SCEELKED data set.

Running under Language Environment

Chapter 5. Running existing applications under Language Environment 59

|

|
|
|

v Another way is to place your private subroutine libraries before SCEELKED in
the SYSLIB concatenation. However, doing this could result in losing function
that is available under Language Environment if your application contains
Fortran or C/C++ programs. Changing the name of your subroutine to avoid
the conflict with the Language Environment subroutine is preferable to placing
you private subroutine libraries ahead of SCEELKED.

To determine which applications require link-editing with Language Environment,
see either of the following sections:
v “Determining which programs require link-editing” on page 64, if running under

the OS/VS COBOL run-time
v “Determining which programs require link-editing” on page 76, if running under

the VS COBOL II run-time

Obtaining a system dump or a CICS transaction dump
To receive a system dump or a CICS transaction dump under Language
Environment when the environment is terminating due to a severe error (for
example, a program check or abend) you have two options. The option you choose
depends on how much diagnostic information you want Language Environment to
produce.

Both options are affected by the Language Environment TERMTHDACT run-time
option, which sets the level of diagnostic information produced by Language
Environment when the environment is terminating due to a severe error. For
details on the TERMTHDACT run-time option, see the Language Environment
Programming Reference.

Method 1: Specify the TERMTHDACT run-time option
Language Environment provides three TERMTHDACT suboptions (UADUMP,
UATRACE, and UAONLY) to produce different types of Language Environment
dumps.

TERMTHDACT(UADUMP) causes Language Environment to produce a Language
Environment formatted dump plus a system dump. With this setting, the
Language Environment dump includes a traceback and a dump of the
thread/enclave/process level storage and control blocks.

TERMTHDACT(UATRACE) causes Language Environment to generate a message
indicating the cause of the termination, a trace of the active routines on the
activation stack, and a U4039 abend which allows a system dump of the user
address space to be generated.

TERMTHDACT(UAONLY) causes Language Environment to generate a U4039
abend which allows a system dump of the user address space to be generated.
Under non-CICS, if the appropriate DD statement is used, you will get a system
dump of your user address space. Under CICS, you will get a CICS transaction
dump.

TERMTHDACT(UAIMM) causes Language Environment to generate a U4039
abend which allows a system dump of the user address space to be generated.
Under non-CICS, if the appropriate DD statement is used, you will get a system
dump of your user address space.

Running under Language Environment

60 COBOL Migration Guide

Method 2: Specify an abnormal termination exit
Using an abnormal termination exit is the recommended approach to getting a
system dump or a CICS transaction dump when you want to set the
TERMTHDACT run-time option to a value other than DUMP or UADUMP.

When you specify an abnormal termination exit, you can get a system dump or a
CICS transaction dump before Language Environment frees the resources it has
acquired; thus reducing the amount of diagnostic information you receive in the
formatted dump, without impacting the system dump.

Abnormal termination exit under non-CICS
For non-CICS applications, the sample abnormal termination exit is
SAMPDAT1, as shown in Figure 3. SAMPDAT1 provides system abend
dumps.

Abnormal termination exit under CICS
For CICS applications, the sample abnormal termination exit is
SAMPDAT2, as shown in Figure 4 on page 62. SAMPDAT2 provides
transaction dumps.

For information on using an abnormal termination exit, see:
v On z/OS: Language Environment for z/OS Customization
v On OS/390: Language Environment for OS/390 Customization

Abnormal termination exit (non-CICS)

**
* *
* Do a system DUMP whenever an unhandled condition occurs. *
* *
**
SAMPDAT1 CEEENTRY PPA=ASMPPA,MAIN=NO

L 2,0(,1) Put the pointer to the CIB
* address in R2.

L 2,0(,2) Put the CIB address in R2.

* Set up the ESTAE and force the abend with a dump.

ESTAE ESHDLR
ABEND 4039,REASON=0,DUMP FORCE DUMP

RETRY ESTAE 0
CEETERM All done, return to LE/370
DROP 11,13
USING *,15

ESHDLR STM 14,12,12(13)
NEXT L 11,MODENT

USING SAMPDAT1,11
DROP 15
SETRP RC=4,RETADDR=RETRY,RETREGS=YES,FRESDWA=YES
LM 14,12,12(13)
BR 14

MODENT DC A(SAMPDAT1)
ASMPPA CEEPPA

CEEDSA
CEECAA

SDWA IHASDWA
END SAMPDAT1

Figure 3. Non-CICS abnormal termination exit sample

Running under Language Environment

Chapter 5. Running existing applications under Language Environment 61

|

Abnormal termination exit (CICS)

Getting compatible abend behavior
Use the Language Environment ABTERMENC run-time option and the assembler
user exit to receive abend behavior similar to OS/VS COBOL and VS COBOL II.

ABTERMENC(ABEND) ensures you receive system abend codes similar to those
issued by VS COBOL II or OS/VS COBOL when an abend, program check, or
severe error occurs. (To get a system dump, see “Obtaining a system dump or a
CICS transaction dump” on page 60.)

To get user abend codes similar to what you received under VS COBOL II (where
xxx is the IGZ message number) for unhandled Language Environment software
generated conditions, do one of the following:
v Modify the assembler user exit (CEEBXITA) by copying the code from the

COBOL sample assembler user exit (CEEBX05A) into CEEBXITA.
v Use the sample user condition handler CEEWUCHA as described in “Using

CEEWUCHA” on page 88.

Ensuring the compatibility of return-code values
Language Environment calculates return-code values differently than OS/VS
COBOL or VS COBOL II. There are two cases when you might receive different
return-code values when running under Language Environment:
v If you specify the ABTERMENC(RETCODE) run-time option
v If you modify the Language Environment assembler user exit to manipulate the

return code value

*ASM CICS(NOPROLOG NOEPILOG NOEDF SYSEIB)
**
* *
* Do a transaction DUMP whenever an unhandled condition occurs. *
* *
**
SAMPDAT2 CEEENTRY PPA=ASMPPA,MAIN=NO,AUTO=STORLEN

USING DFHEISTG,DFHEIPLR

* Ask CICS to produce a transaction dump.

EXEC CICS ADDRESS EIB(DFHEIBR)
EXEC CICS DUMP TRANSACTION DUMPCODE('4039') TASK NOHANDLE

**
* To see if the dump was successful, add code here to check field EIBRESP.
**

CEETERM All done, return to LE/370
ASMPPA CEEPPA

CEEDSA
CEECAA
DFHEISTG Extended save area for CICS

STORLEN EQU *-DFHEISTG
COPY DFHEIBLK
EXTRN DFHEAI

DFHEIPLR EQU 13
DFHEIBR EQU 10

END SAMPDAT2

Figure 4. CICS abnormal termination exit sample

Running under Language Environment

62 COBOL Migration Guide

Chapter 6. Moving from the OS/VS COBOL run-time

This chapter provides detailed information about running OS/VS COBOL
programs with Language Environment. It includes information on:
v Determining which programs require link-editing
v Determining which programs require upgrading
v Comparing run-time options and specification methods
v Closing files in non-COBOL and OS/VS COBOL programs
v Running in a reusable run-time environment
v Managing dump services
v Using ILBOABN0 to force an abend
v Using SORT or MERGE in OS/VS COBOL programs
v Understanding SYSOUT output changes
v Communicating with other languages
v Additional CICS considerations

Additional information about moving your run-time to Language Environment is
included in:
v “Appendix D. Applications with COBOL and assembler” on page 267
v “Appendix L. IMS considerations” on page 315

Each section in this chapter indicates if it is applicable to existing OS/VS COBOL
programs compiled with the RES compiler option, NORES compiler option
(including whether the programs are link-edited with Language Environment), and
for applications running on CICS, by using the following notation:

RES An application comprised of programs compiled with RES.

NORES
An application comprised of programs compiled with NORES. The NORES
programs have not been link-edited with Language Environment.

OR

An application comprised of OS/VS COBOL programs compiled with
NORES that is link-edited with Language Environment, but does not
contain any of the following:
v A VS COBOL II program
v A COBOL/370 program
v A COBOL for MVS & VM program
v A COBOL for OS/390 & VM program
v A COBOL for z/OS and OS/390 program
v The IGZCBSN or IGZCBSO bootstrap routine

CICS An application that runs under CICS.

NORES linked
An application comprised of programs compiled with NORES. The NORES
programs have been link-edited with Language Environment and now
behave as if they were RES. The application does contain at least one of the
following:

© Copyright IBM Corp. 1991, 2001 63

|

v A VS COBOL II program
v A COBOL/370 program
v A COBOL for MVS & VM program
v A COBOL for OS/390 & VM program
v A COBOL for z/OS and OS/390 program
v The IGZCBSN or IGZCBSO bootstrap routine

Note: For multiple load module applications, if the first executed load
module contains one of the above, the application will behave as if
it were RES.

Determining which programs require link-editing

To determine which programs you need to link-edit with Language Environment,
you need to know:
1. If the program was compiled with the RES or NORES compiler option
2. If the program uses a reusable environment (established by ILBOSTP0)

For a summary table of load modules with OS/VS COBOL programs that require
link-edit, see Table 46 on page 223.

For additional information on relink-editing a COBOL load module with Language
Environment, see “Appendix J. Link-edit example” on page 307.

Applications with COBOL programs compiled with RES
If you call ILBOSTP0 to establish a reusable environment (that is, you establish an
assembler language program as the main program by link-editing it with, and
calling, ILBOSTP0), you must link-edit the assembler program with Language
Environment.

Applications with COBOL programs compiled with NORES
Existing OS/VS COBOL programs compiled with NORES run without change and
provide the same results as before. You do not need to link-edit these programs
with Language Environment; however, you will not be able to get IBM service
support for these NORES applications unless you link-edit these programs with
Language Environment.

Note: If your program contains a CALL identifier statement, the compiler
overrides any NORES specification to be RES. This can result in an
application with mixed RES and NORES, even if NORES is specified as the
installation default.

If you do link-edit programs compiled with NORES with Language Environment,
see “Chapter 8. Link-editing applications with Language Environment” on page 105
for details on possible changes in behavior.

Moving from the OS/VS COBOL run time to Language Environment

64 COBOL Migration Guide

|

Applications with COBOL programs compiled with RES and
NORES

Although this combination was never supported under OS/VS COBOL, in some
cases it did work. You must link-edit these programs with Language Environment
and include at least one of the following in the first executed load module that has
COBOL:
v A VS COBOL II program
v A COBOL/370 program
v A COBOL for MVS & VM program
v A COBOL for OS/390 & VM program
v A COBOL for z/OS and OS/390 program
v The IGZCBSN bootstrap routine
v The IGZCBSO bootstrap routine

Determining which programs require upgrading

Note: We recommend upgrading all OS/VS COBOL programs to Enterprise
COBOL (or COBOL for OS/390 & VM Version 2 Release 2) whenever
upgrading is discussed in this chapter.

On CICS
OS/VS COBOL programs that issue dynamic CALL statements when running
under CICS will abend with abend code U3504. You can either upgrade all the
COBOL programs in the run unit to Enterprise COBOL or recode the programs
without dynamic CALL statements.

You must upgrade OS/VS COBOL programs if:
v You plan to use CICS Transaction Server releases that follow CICS TS Version 2

Release 2.

On non-CICS
You must upgrade OS/VS COBOL programs if:
v The program uses ILC with PL/I
v The program uses ILC with FORTRAN
v OS/VS COBOL programs are contained in more than one enclave (or run unit)

You might also want to upgrade the following:
v Applications that you want to use Language Environment or Enterprise COBOL

features (such as Language Environment callable services or intrinsic functions)
v Applications requiring recoding to run correctly under Language Environment

ILC with PL/I
OS/VS COBOL programs that call or are called by PL/I must be upgraded.

ILC with FORTRAN
OS/VS COBOL programs that call or are called by FORTRAN must be upgraded.

Moving from the OS/VS COBOL run time to Language Environment

Chapter 6. Moving from the OS/VS COBOL run-time 65

|

|

|
|

OS/VS COBOL programs in more than one enclave
With Language Environment, OS/VS COBOL programs cannot be in more than
one enclave. Multiple enclaves can be created in several ways:
v When an OS/VS COBOL program calls an assembler program, which in turn

issues an SVC LINK to another OS/VS COBOL program
v When running OS/VS COBOL applications comprised of programs compiled

RES under Language Environment that use ISPF services such as CALL
’ISPLINK’ or ISPF SELECT

For multienclave applications, determine which enclaves contain OS/VS COBOL
programs. Only one enclave can contain OS/VS COBOL programs. You must
upgrade any OS/VS COBOL programs contained in all other enclaves.

Comparing run-time options and specification methods

This section lists the mechanisms available to specify Language Environment
run-time options and gives a brief description of each method.

Specifying Language Environment run-time options
Language Environment provides various methods for specifying run-time options.
Three mechanisms are available to specify options:
v Run-time option CSECTs

CEEDOPT for installation-wide defaults
CEEROPT for region-wide defaults
CEEUOPT for application-specific defaults

v Invocation procedures
v Assembler user exit

To determine which of the Language Environment methods you can use for
existing applications, you need to know whether the main program is compiled
with RES or NORES and if the main program has been link-edited with Language
Environment. Table 20 lists the specification methods available to specify and
override run-time options under Language Environment.

Table 20. Methods available for specifying run-time options for OS/VS COBOL programs

Main program

CEEDOPT
and

CEEROPT CEEUOPT Invocation

Default
assembler
user exit

Not link-edited with
Language Environment:

OS/VS COBOL RES X X X

OS/VS COBOL NORES X

Link-edited with Language
Environment:

OS/VS COBOL RES X X X

OS/VS COBOL NORES X

Moving from the OS/VS COBOL run time to Language Environment

66 COBOL Migration Guide

Table 20. Methods available for specifying run-time options for OS/VS COBOL
programs (continued)

Main program

CEEDOPT
and

CEEROPT CEEUOPT Invocation

Default
assembler
user exit

OS/VS COBOL NORES
linked1

X X X

Note:

1. In this case, the NORES programs exhibit RES behavior after link-edit. For more
information about the impact of link-editing with Language Environment, see
“Chapter 8. Link-editing applications with Language Environment” on page 105.

Installation-wide defaults
The CEEDOPT (non-CICS) and CEECOPT (CICS) assembler files contain default
values for all Language Environment run-time options. At installation time, you
can edit this file and select defaults that will apply to all applications running in
the common environment (except OS/VS COBOL programs under CICS).

You can select a nonoverridable (fixed) attribute for options within this module.
This attribute allows your installation to enforce options that might be critical to
your overall operating environment.

For information on how to set installation-wide default run-time options for
Language Environment, see:
v For z/OS: Language Environment for z/OS Customization
v For OS/390: Language Environment for OS/390 Customization

Region-wide defaults
CEEROPT can be used in the same manner as CEEDOPT and CEECOPT to specify
run-time options. CEEROPT can be used to set run-time option defaults for
Language Environment in a CICS region, an IMS region, or an MVS batch job
region using Library Routine Retention. The fact that CEEROPT resides in its own
load module avoids the maintenance problems associated with linking it into a
load module containing executable code. CEEROPT will be loaded and merged
with the installation run-time options default during region initialization.

CEEROPT is optional. During environment initialization, an attempt to locate
CEEROPT is performed. If it is found, the run-time options specified within it will
be merged with the installation defaults specified in CEEDOPT or CEECOPT.

For information on how to set region-wide default run-time options for Language
Environment, see Language Environment for OS/390 Customization.

CEEUOPT application-specific defaults
CEEUOPT is not available to load modules that have an OS/VS COBOL program
as the main program. This is true regardless of whether you have link-edited the
OS/VS COBOL program with Language Environment or not.

Invocation procedures
For OS/VS COBOL programs that are called directly from the operating system,
you can specify run-time options at program invocation using the appropriate
operating system mechanism.

On z/OS and OS/390
You can specify run-time options in the PARM parameter of the JCL EXEC
statement.

Moving from the OS/VS COBOL run time to Language Environment

Chapter 6. Moving from the OS/VS COBOL run-time 67

|

|
|
|

Note: On CICS, you cannot use the PARM parameters to specify run-time options.

For specific details, see the Language Environment Programming Guide.

Order of precedence
It is possible to use all of the above mechanisms for specifying run-time options
for a single application. Language Environment enforces the following rules of
precedence:
1. Installation-wide defaults specified as nonoverridable at installation time
2. Options specified through the assembler user exit
3. Options specified on invocation
4. Application-specific options (link-edited with the application)
5. Region-wide defaults defined using CEEROPT
6. Installation-wide defaults defined at installation time

Comparing OS/VS COBOL and Language Environment
run-time options

The following table describes the support Language Environment provides for
OS/VS COBOL run-time options.

Table 21. Comparison of OS/VS COBOL and Language Environment run-time options

OS/VS COBOL option Comment

AIXBLD AIXBLD is supported in the same manner and specified
with the same syntax under Language Environment as in
OS/VS COBOL.

DEBUG DEBUG is supported in the same manner under
Language Environment as in OS/VS COBOL.

FLOW FLOW=n FLOW is supported in the same manner under Language
Environment as in OS/VS COBOL. FLOW cannot be
specified using CEEDOPT or CEEUOPT. You can specify
it only on application invocation.

QUEUE QUEUE is not supported.

UPSI UPSI is supported in the same manner and specified with
the same syntax under Language Environment as in
OS/VS COBOL.

Closing files in non-COBOL and OS/VS COBOL programs

For z/OS or OS/390, if you have OS/VS COBOL programs or assembler programs
that do not close files, you can get a C03 abend. In batch, when a COBOL main
program is invoked from an assembler program or if COBOL is not the main
program, you need to make one of the following changes to avoid getting the C03
abend:
v Add code to close the file.
v Use either an IBM COBOL, or an Enterprise COBOL program to open the file.
v If the COBOL program is called by an assembler program, and if the assembler

program is invoked by the z/OS or OS/390 batch initiator, add a COBOL stub
(compiled with IBM COBOL or Enterprise COBOL) to the application so that

Moving from the OS/VS COBOL run time to Language Environment

68 COBOL Migration Guide

|

|
|
|

Language Environment will not free dynamically called load modules at
termination (the assembler program and the I/O control blocks that it contains
stay in storage).

v If the assembler program is opening the file, change it to perform a GETMAIN
for the data management control blocks (instead of having the control blocks be
part of the load module).

Other environments
For programs that run in other environments, such as TSO, IMS, or preinitialized
environments (CEEPIPI or IGZERRE programs), you must explicitly close all files
from OS/VS COBOL (or upgrade the OS/VS COBOL programs) prior to enclave
termination. Language Environment will not automatically close files left open by
OS/VS COBOL programs.

Assembler programs that are called by COBOL must close files prior to enclave
termination when:
v The assembler program is in a load module that is loaded by a COBOL dynamic

CALL statement.
v The assembler program allocates the storage for the file control block in the

assembler program or in a COBOL WORKING-STORAGE data item.

Running in a reusable run-time environment

Language Environment continues to provide compatibility support for the reusable
run-time environment for applications provided by ILBOSTP0.

When using the reusable environment with existing applications under Language
Environment, the following restrictions apply:
v The application must be a single enclave application (that is, no SVC LINKs are

allowed to other COBOL programs) unless you modify the behavior using the
IGZERREO CSECT.
Note: Modifying the behavior using the IGZERREO CSECT does not remove the
restriction that OS/VS COBOL cannot be in more than one enclave.

v After the reusable environment has been established, the assembler driver can
call only a COBOL program or non-Language Environment-conforming
assembler program. COBOL can then call any supported language as follows:
– A COBOL program that is called by the assembler driver cannot use a static

CALL statement to call another language. A dynamic CALL to another
language is supported.

– Any COBOL program that is dynamically called by another COBOL program
can use a static CALL statement or a dynamic CALL statement to another
language.

v The first high-level language program must be a COBOL program (assembler is
not considered a high-level language).

v If an assembler driver is statically linked with, and calls, ILBOSTP0 to provide
the reusable environment, it must be link-edited with Language Environment.

Moving from the OS/VS COBOL run time to Language Environment

Chapter 6. Moving from the OS/VS COBOL run-time 69

|
|
|

Using STOP RUN will end the reusable environment regardless of the method
used to initialize it. If ILBOSTP0 is called by an assembler program, control is
returned to the caller of the assembler program.

You can improve the performance when using the COBOL reusable environment or
you can allow nested enclaves when running in a reusable environment by
modifying the IGZERREO CSECT. For additional information, see the:
v For z/OS: Language Environment for z/OS Customization
v For OS/390: Language Environment for OS/390 Customization

Using ILBOSTP0
ILBOSTP0 is still supported so that existing applications that use non-COBOL
programs as main programs will continue to run and provide the same results.

Note: Since ILBOSTP0 is AMODE 24, when used under Language Environment,
Language Environment will automatically set ALL31(OFF) and
STACK(,,BELOW).

Managing dump services

Dump services are managed by Language Environment. This section describes the
support for symbolic dumps, system dumps, and transaction dumps. It also
includes information on the Language Environment formatted dump.

OS/VS COBOL symbolic dumps
For those OS/VS COBOL programs that are compiled with the NORES compiler
option, dump output generated using SYMDMP remains the same and continues
to be directed to SYSDBOUT. If the RES compiler option is used, a CEEDUMP will
be produced instead.

System storage dumps and CICS transaction dumps
The PSW (Program Status Word) and registers information contained in the dump
is different when running under Language Environment than when running under
the OS/VS COBOL run-time.

With OS/VS COBOL, the dump is produced when the error occurs. The PSW and
registers content is based on the information available when the error occurs. You
could then use the PSW and register information in the dump for problem
determination.

With Language Environment, the dump is produced after Language Environment
condition management has processed the error. The PSW and registers content is
based on the information available when Language Environment completes
processing the error, not on the information available when the error occurs. To
determine the information that was in the PSW and registers at the time of the
error, you can either look at the Language Environment formatted dump output or
locate and use the Language Environment condition information block and the
Language Environment machine state information block in the dump. For details,
see the Language Environment Debugging Guide and Run-Time Messages.

Moving from the OS/VS COBOL run time to Language Environment

70 COBOL Migration Guide

|

To obtain a system storage dump or CICS transaction dump under Language
Environment, see “Obtaining a system dump or a CICS transaction dump” on
page 60.

Under both OS/VS COBOL and Language Environment, system storage dump
output is directed to either SYSUDUMP, SYSABEND, or SYSMDUMP. CICS
transaction dump output is directed to either DFHDUMPA or DFHDUMPB.

Language Environment formatted dumps
OS/VS COBOL did not produce a formatted dump. With Language Environment,
when a condition of 2 or greater is raised and left unhandled, you can produce a
formatted dump by specifying the TERMTHDACT(DUMP) or
TERMTHDACT(UADUMP) run-time option.

The Language Environment formatted dump can contain various information,
including information on:
v Symbolic dump of variables, arguments, and registers
v File control blocks
v File buffers
v Run-time control blocks
v Storage used by the program

For examples of Language Environment dump output, see Language Environment
Debugging Guide and Run-Time Messages.

Dump destination on non-CICS
With Language Environment, you can indicate the destination for dump output by
providing the CEEDUMP ddname in your JCL or FILEDEF. For the attributes of
the CEEDUMP file, see the Language Environment Programming Guide.

If the CEEDUMP file is needed and is not defined, Language Environment will
dynamically allocate one for you, with the default being:
v On z/OS and OS/390: SYSOUT=*

Dump destination on CICS
All run-time output from Language Environment is directed to a CICS transient
data queue named CESE. Each record written to the file has a header that includes
the terminal ID, the transaction ID, and the date and time.

Using ILBOABN0 to force an abend

With OS/VS COBOL, you can use a CALL to ILBOABN0 to force an immediate
abend and obtain a system dump. With Language Environment, a CALL to
ILBOABN0 will continue to force an immediate abend. To produce a system dump,
see “Obtaining a system dump or a CICS transaction dump” on page 60.

If you use the Language Environment version of ILBOABN0, the save area of the
program issuing ILBOABN0 is located two levels back from the save area where
the actual abend was issued.

Moving from the OS/VS COBOL run time to Language Environment

Chapter 6. Moving from the OS/VS COBOL run-time 71

|

OS/VS COBOL programs that use a CALL to ILBOABN0 can continue to call
ILBOABN0 when compiled with Enterprise COBOL. However, it is recommended
that you use the Language Environment CEE3ABD callable service instead.

Using SORT or MERGE in OS/VS COBOL programs

Implementation of Language Environment caused changes in the run-time routines
that manage OS/VS COBOL SORT or MERGE. If an OS/VS COBOL program
initialized the SORT or MERGE, the following changes apply:
v Language Environment will not produce a Language Environment dump if a

program check or abnormal termination occurs while in a SORT or MERGE user
exit.

v OS/VS COBOL debug data will not be produced if a program check or
abnormal termination occurs while in a SORT or MERGE user exit.

v Language Environment will not perform environment cleanup if a program
check or abnormal termination occurs while in a SORT or MERGE user exit.

v While in an input or output procedure, if an assembler program is called, the
assembler program cannot call a COBOL program.

v If a program check occurs while in a SORT or MERGE user exit, the application
will end with abend U4036. For information on how to find the state of the
registers and PSW at the time of the program check, see Language Environment
Debugging Guide and Run-Time Messages.

Understanding SYSOUT output changes

With Language Environment, SYSOUT output is different than with OS/VS
COBOL. Differences are with:
v SYSOUT output sent to a file with RECFM=FB or to any other destination when

DCB=(RECFM=FB) is specified on the DD
v OS/VS COBOL trace output sequence

SYSOUT output with RECFM=FB
With Language Environment, for DISPLAY/TRACE/EXHIBIT SYSOUT output that
is sent to a file with RECFM as FB, or to any other destination when
DCB=(RECFM=FB) is specified on the DD, the first character is not included in the
output, as shown below:

Record format
With Language
Environment With OS/VS COBOL

RECFM=FBA $01234 $01234

RECFM=FB 01234 $01234

The ’$’ represents the control character at column 1.

Moving from the OS/VS COBOL run time to Language Environment

72 COBOL Migration Guide

OS/VS COBOL trace output sequence
The trace output sequence has changed under Language Environment. With
Language Environment, only one trace entry per record appears, instead of
numerous trace entries per record as in OS/VS COBOL. This is especially helpful
with intervening DISPLAY SYSOUT output and error messages.

Figure 5 shows the differences between OS/VS COBOL and Language
Environment.

Communicating with other languages

This section gives you a high-level overview of ILC considerations for existing
OS/VS COBOL programs. For exact details and for the latest information on ILC
under Language Environment, see the Language Environment Writing Interlanguage
Applications.

Interlanguage communication is defined as programs that call or are called by
other high-level languages. Assembler is not considered a high-level language;
thus, calls to and from assembler programs are not considered ILC. For details on
Language Environment’s support for calls involving COBOL programs and
Assembler programs, see:
v “Run-time support for assembler COBOL calls on non-CICS” on page 269
v “Run-time support for assembler COBOL calls on CICS” on page 270

For CICS, you can continue to use EXEC CICS LINK and EXEC CICS XCTL to
communicate with other languages.

Table 22 shows the action required for applications with existing ILC:

Table 22. Action required for existing applications using ILC

High-level language Comments

PL/I OS/VS COBOL programs that call or are called by PL/I must be
upgraded.

FORTRAN OS/VS COBOL programs that call or are called by FORTRAN must
be upgraded.

C ILC between OS/VS COBOL programs and C programs is not, and
has never been, supported.

OS/VS COBOL :
Record 1 --> Section1(2), Paragraph1(2), Section2(2)

Language Environment :
Record 1 --> Section1
Record 2 --> Section1
Record 3 --> Paragraph1
Record 4 --> Paragraph1
Record 5 --> Section2
Record 6 --> Section2

Figure 5. TRACE output under Language Environment compared to OS/VS COBOL

Moving from the OS/VS COBOL run time to Language Environment

Chapter 6. Moving from the OS/VS COBOL run-time 73

Additional CICS considerations
OS/VS COBOL programs running with Language Environment under CICS run in
a subset of the full Language Environment run-time environment. When you run
an OS/VS COBOL application on CICS, the environment that is established for a
run unit by Language Environment supports only OS/VS COBOL. This special
support of OS/VS COBOL programs that uses the CICS product will be
unavailable in CICS Transaction Server releases shipped after CICS Transaction
Server Version 2 Release 2.

Moving from the OS/VS COBOL run time to Language Environment

74 COBOL Migration Guide

|
|
|
|
|
|
|

Chapter 7. Moving from the VS COBOL II run-time

This chapter describes how you can have compatibility and equivalent run-time
results for your existing OS/VS COBOL and VS COBOL II programs that have
been running in the VS COBOL II run-time. It includes information on:
v Determining which programs require link-editing
v Determining which programs require upgrading
v Comparing run-time options and specification methods
v Closing files in non-COBOL and OS/VS COBOL programs
v Running in a reusable run-time environment
v Managing messages, abend codes, and dump services
v Using ILBOABN0 to force an abend
v Using SORT or MERGE
v Understanding SYSOUT output changes
v Communicating with other languages
v Initializing the run-time environment
v Determining storage tuning changes
v Additional CICS considerations
v Undocumented VS COBOL II extensions

Additional information on moving your run-time to Language Environment is
included in:
v “Appendix D. Applications with COBOL and assembler” on page 267
v “Appendix L. IMS considerations” on page 315

Each section in this chapter indicates whether it is applicable to existing VS
COBOL II or OS/VS COBOL programs compiled with the RES compiler option,
NORES compiler option (including whether the programs are link-edited with
Language Environment), and for applications running on CICS, by using the
following notation:

RES An application comprised of programs compiled with RES.

NORES
An application comprised of programs compiled with NORES. The NORES
programs have not been link-edited with Language Environment.

OR

An application comprised of OS/VS COBOL programs compiled with
NORES that is link-edited with Language Environment, but does not
contain any of the following:
v A VS COBOL II program
v An IBM COBOL program
v An Enterprise COBOL program
v The IGZCBSN or IGZCBSO bootstrap routine
v A program using the IGZBRDGE routine

CICS An application that runs under CICS.

NORES linked
An application comprised of programs compiled with NORES. The NORES

© Copyright IBM Corp. 1991, 2001 75

|

programs have been link-edited with Language Environment and now
behave as if they were RES. The application does contain at least one of the
following:
v A VS COBOL II program
v An IBM COBOL program
v An Enterprise COBOL program
v The IGZCBSN or IGZCBSO bootstrap routine
v A program using the IGZBRDGE routine

Note: For multiple load module applications, if the first load module
contains one of the above, the application will behave as if it were
RES.

Determining which programs require link-editing

To determine which programs you need to link-edit with Language Environment,
you need to know:
v If the program was compiled with the RES or NORES compiler option
v If the program specifies the MIXRES run-time option
v If the program uses a reusable environment (established by ILBOSTP0)
v If the program uses ILC
v If you statically call IGZCA2D or IGZCD2A

For additional information on load modules with VS COBOL II programs that
must be link-edited, see “VS COBOL II considerations” on page 224.

For additional information on link-editing a COBOL load module with Language
Environment, see “Appendix J. Link-edit example” on page 307.

Applications with COBOL programs compiled with RES
If you call ILBOSTP0 to establish a reusable environment (that is, you establish an
assembler language program as the main program by link-editing it with, and
calling, ILBOSTP0), you must link-edit the assembler program with Language
Environment or you can change your assembler program to use CEEPIPI.

Applications with COBOL programs compiled with NORES
Existing VS COBOL II programs compiled with NORES run without change and
provide the same results as before. You do not need to link-edit these programs
with Language Environment; however, you will not be able to get IBM service
support for these NORES applications unless you link-edit these programs with
Language Environment.

Any load modules containing programs compiled with NORES that use the VS
COBOL II MIXRES or RTEREUS run-time option must be link-edited with
Language Environment. After you link-edit the load module with Language
Environment, it will have access to all Language Environment services (except
callable services) in all but two cases:
1. OS/VS COBOL NORES without IGZBRDGE:

Moving from the VS COBOL II run time to Language Environment

76 COBOL Migration Guide

|

|
|
|
|
|

If the program was not link-edited with an object module produced using the
IGZBRDGE macro, and if this is the only load module in an application or the
first load module in an application with multiple load modules, after
link-editing with Language Environment, it will exhibit NORES behavior. (That
is, the load module will not have access to Language Environment services.)
The reason you must link-edit this application with Language Environment is
to ensure that the OS/VS COBOL initiated termination, like STOP RUN, will
work.
If you need this type of program to have access to Language Environment
services, you can either include an Enterprise COBOL program in the
application, or explicitly INCLUDE either the Language Environment IGZCBSN
or IGZCBSO bootstrap routine when link-editing the application with Language
Environment.

2. OS/VS COBOL RES and OS/VS COBOL NORES without IGZBRDGE:

If this is the only load module in an application or the first load module in an
application with multiple load modules, you must explicitly INCLUDE either
the Language Environment IGZCBSN or IGZCBSO bootstrap routine when
link-editing the load module with Language Environment. Otherwise, the load
module is not supported.
Additionally, any load modules containing VS COBOL II programs that are run
in a multitasking environment must be link edited with Language
Environment.

Programs that use ILC
Existing VS COBOL II load modules that use ILC with PL/I, C, or FORTRAN
require link-editing. For details, see:
v “COBOL and PL/I” on page 94
v “COBOL and C/370” on page 95
v “COBOL and FORTRAN” on page 94

Statically calling IGZCA2D or IGZCD2A
If you call either IGZCA2D or IGZCD2A statically, you must relink your
applications with REPLACE statements for these modules.

Determining which programs require upgrading

Note: We recommend upgrading all OS/VS COBOL and VS COBOL II programs
to Enterprise COBOL (or COBOL for OS/390 & VM Version 2 Release 2)
whenever upgrading is discussed in this chapter.

CICS
Under CICS, if you have any VS COBOL II programs that use a CALL statement to
call OS/VS COBOL programs, you must upgrade the OS/VS COBOL program.

Note: CALL statements between OS/VS COBOL and VS COBOL II Release 4
programs under CICS are diagnosed by the VS COBOL II run-time. The
diagnosis is also provided for VS COBOL II Release 3.2 and Release 3.1 if
you have APAR PN18560 applied. If you are running with these levels, you

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 77

|
|
|

|
|

do not have VS COBOL II programs using the COBOL CALL statement to
call OS/VS COBOL programs under CICS.

Non-CICS
On non-CICS, you are not required to upgrade existing VS COBOL II programs to
Enterprise COBOL to run them under Language Environment.

You must upgrade OS/VS COBOL programs if:
v OS/VS COBOL programs use ILC with PL/I
v OS/VS COBOL programs use ILC with FORTRAN
v OS/VS COBOL programs are contained in more than one enclave (or run unit)

You might also want to upgrade your OS/VS COBOL or VS COBOL II programs if
you want them to use Enterprise COBOL or Language Environment features (such
as Language Environment callable services, intrinsic functions, or running
non-CICS COBOL programs under more than one task in the same address space
under z/OS or OS/390).

ILC with PL/I
OS/VS COBOL programs that call or are called by PL/I must be upgraded.

ILC with FORTRAN
OS/VS COBOL RES programs that call or are called by FORTRAN must be
upgraded.

OS/VS COBOL programs in more than one enclave
Under Language Environment, OS/VS COBOL programs cannot be in more than
one enclave. Multiple enclaves can be created in several ways:
v When an OS/VS COBOL program calls an assembler program, which in turn

issues an SVC LINK to another program
v When running OS/VS COBOL applications comprised of programs compiled

with RES under Language Environment that use ISPF services such as CALL
’ISPLINK’ or ISPF SELECT

For multienclave applications, determine which enclaves contain OS/VS COBOL
programs. Only one enclave can contain OS/VS COBOL programs. You must
upgrade any OS/VS COBOL programs contained in all other enclaves.

Comparing run-time options and specification methods

VS COBOL II run-time options can be affected when you run existing applications
with Language Environment. The following sections describe the differences that
can occur. For specific details relating to run-time options new with Language
Environment and existing run-time options supported under Language
Environment, see the Language Environment Programming Reference.

Note: If you compile any of your VS COBOL II programs with Enterprise COBOL
at the same time that you are moving to Language Environment, then read
“Chapter 18. Adding Enterprise COBOL programs to existing COBOL
applications” on page 219.

Moving from the VS COBOL II run time to Language Environment

78 COBOL Migration Guide

|
|
|
|

Specifying Language Environment run-time options
Language Environment provides various methods for specifying run-time options.
Three mechanisms are available to specify options:
v Run-time option CSECTs:

– CEEDOPT for installation-wide defaults
– CEEROPT for region-wide defaults
– CEEUOPT for application-specific defaults

v Invocation procedures
v Assembler user exit

In addition, the VS COBOL II application-specific run-time options module
(IGZEOPT) is available to load modules comprised of VS COBOL II programs
compiled with RES. IGZEOPT is ignored under CICS.

To determine which of the Language Environment methods you can use for
existing applications, you need to know whether the main program is compiled
with RES or NORES and if the main program has been link-edited with Language
Environment. Table 23 lists the specification methods available to specify and
override run-time options under Language Environment.

Table 23. Methods available for specifying run-time options

Main program

CEEDOPT
and

CEEROPT CEEUOPT Invocation

Default
assembler
user exit IGZEOPT

Not link-edited with Language
Environment:

OS/VS COBOL RES X X X

OS/VS COBOL NORES X

VS COBOL II RES X X X X1

VS COBOL II NORES X

VS COBOL II NORES X X2

Link-edited with Language Environment:

OS/VS COBOL RES X X X

OS/VS COBOL NORES X

OS/VS COBOL NORES linked3 X X X

VS COBOL II NORES X X X X

VS COBOL II RES X X X X X1,4

Note:

1. IGZEOPT is ignored when running on CICS.

2. In this case, the NORES programs will exhibit “RES behavior” after link-editing. For more information on the
implication of link-editing with Language Environment, see “Chapter 8. Link-editing applications with Language
Environment” on page 105.

3. See Table 24 on page 81 for details on when the run-time options specified using IGZEOPT are in effect.

4. VS COBOL II NORES programs that do not specify the MIXRES run-time option and that are not link-edited with
Language Environment can continue to use IGZEOPT.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 79

Installation-wide defaults
The CEEDOPT (non-CICS) and CEECOPT (CICS) assembler files contain default
values for all Language Environment run-time options. At installation time, you
can edit this file and select defaults that will apply to all applications running in
the common environment.

You can select a nonoverridable (fixed) attribute for options within this module.
This attribute allows your installation to enforce options that might be critical to
your overall operating environment.

For information on how to set installation-wide default run-time options see the:
v For z/OS: Language Environment for z/OS Customization
v For OS/390: Language Environment for OS/390 Customization

Region-wide defaults
CEEROPT can be used in the same manner as CEEDOPT and CEECOPT to specify
run-time options. CEEROPT can be used to set run-time option defaults for
Language Environment in a CICS region, an IMS region, or an MVS batch job
region using Library Routine Retention. The fact that CEEROPT resides in its own
load module avoids the maintenance problems associated with linking it into a
load module containing executable code. CEEROPT will be loaded and merged
with the installation run-time options default during region initialization.

CEEROPT is optional. During environment initialization, an attempt to locate
CEEROPT is performed. If it is found, the run-time options specified within it will
be merged with the installation defaults specified in CEEDOPT or CEECOPT.

For information on how to set region-wide default run-time options for Language
Environment, see Language Environment for OS/390 Customization.

Application-specific defaults
Language Environment provides an assembler file, CEEUOPT, that you can edit to
select run-time options that will apply to a specific application or program.

After you edit the file, it is assembled and link-edited with the specific application
or program to which it applies. The options that you set with this module take
precedence over any overridable installation-wide options.

CEEUOPT is not available to applications that have an OS/VS COBOL program as
the main program. This is true regardless of whether you have link-edited the
OS/VS COBOL program with Language Environment or not.

Invocation procedures
Run-time options can also be specified at program invocation using the
appropriate operating system mechanism. (COBOL programs must be called
directly from the operating system to specify run-time options at invocation.)

On z/OS and OS/390
You can specify run-time options in the PARM parameter of the JCL EXEC
statement.

Note: On CICS and IMS, you cannot use the PARM parameters to specify run-time
options.

For specific details, see the Language Environment Programming Guide.

Moving from the VS COBOL II run time to Language Environment

80 COBOL Migration Guide

|

|
|
|

Order of precedence
It is possible to use all of the above mechanisms for specifying run-time options
for a single application. Language Environment enforces the following rules of
precedence:
1. Installation-wide defaults specified as nonoverridable at installation time
2. Options specified through the assembler user exit
3. Options specified on invocation
4. Application-specific options (link-edited with the application)
5. Region-wide defaults defined using CEEROPT
6. Installation-wide defaults defined at installation time

Specifying VS COBOL II run-time options
The following information is included only as a compatibility aid to assist you in
running existing applications without having to upgrade to Enterprise COBOL or
link-edit with Language Environment. As programs in the application are
modified, it is recommended that the appropriate Language Environment options
module be included in the application.

Applications with COBOL programs compiled with RES
(non-CICS)
The VS COBOL II application-specific run-time options module, IGZEOPT, is
available to RES applications, running under Language Environment. After you
link-edit an application with Language Environment, it is possible for both
IGZEOPT and CEEUOPT to exist in the same application. Table 24 shows the
relationship between IGZEOPT and CEEUOPT for applications that are link-edited
with Language Environment.

Table 24. Application-specific options for existing applications compiled with VS COBOL II
and link-edited with Language Environment

IGZEOPT
present

CEEUOPT
present Comments

No No The run-time options are not affected.

Yes No The run-time options specified in IGZEOPT are mapped to
the appropriate Language Environment run-time option.

No Yes The run-time options specified in CEEUOPT are in affect.

Yes Yes The run-time options specified in CEEUOPT are in affect.
IGZEOPT is ignored. No error message is issued.

It is recommended that you replace IGZEOPT with CEEUOPT when you link-edit
these applications with Language Environment.

Applications with COBOL programs compiled with NORES
(non-CICS)
The default VS COBOL II run-time options module, IGZEOPD, is available to
NORES applications that have been link-edited with the VS COBOL II run-time
library. IGZEOPT is also available to VS COBOL II NORES applications, if the
MIXRES run-time option is not used. After these applications have been link-edited
with Language Environment, IGZEOPD and IGZEOPT are ignored.

Applications running on CICS
When running under Language Environment, IGZEOPT is ignored on CICS.
Language Environment issues a warning message if IGZEOPT is specified in
applications running on CICS.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 81

Comparing VS COBOL II and Language Environment options
The following table describes how VS COBOL II run-time options are either
supported or changed when running with Language Environment. The differences
in behavior (if any) are described in the comments column.

Table 25. Comparison of VS COBOL II and Language Environment run-time options

VS COBOL II option

Language
Environment
option Comment

AIXBLD AIXBLD Invokes the access method services (AMS) for VSAM indexed and relative
data sets to complete the file and index definition procedures for COBOL
routines.

With Language Environment, you do not need to specify ddname
SYSPRINT when running on OS/390 or z/OS. The access method services
(AMS) messages are directed to the ddname specified in the Language
Environment MSGFILE run-time option (default is SYSOUT).

AIXBLD is not applicable on CICS.

DEBUG DEBUG This option is specified with the same syntax and supported in the same
manner under Language Environment as in VS COBOL II.

LANGUAGE NATLANG NATLANG replaces LANGUAGE, which is a VS COBOL II installation
option. Language Environment provides the ability to select a national
language at run-time, as well as at installation time, using the NATLANG
option.

LIBKEEP LIBKEEP is not supported. The Language Environment Library Routine
Retention facility can provide similar function as LIBKEEP. For more
information, see “Existing applications using LIBKEEP” on page 96.

The LIBKEEP option is not applicable on CICS.

MIXRES MIXRES is not supported under Language Environment.

The MIXRES option is not applicable on CICS.

RTEREUS RTEREUS RTEREUS is supported in the same manner under Language Environment
as in VS COBOL II. RTEREUS is not recommended as an installation
default under Language Environment. For important considerations before
using RTEREUS, see “Other run-time options affecting non-CICS
applications” on page 55, and “Precautions if establishing a reusable
environment under IMS” on page 84.

The RTEREUS option is not applicable on CICS.

SIMVRD SIMVRD This option is specified with the same syntax and supported in the same
manner in Language Environment as in VS COBOL II.

The SIMVRD option is not applicable on CICS.

SPOUT RPTOPTS(ON)
RPTSTG(ON)

SPOUT is mapped to the Language Environment options RPTOPTS and
RPTSTG. Both storage reports (RPTSTG) and options report (RPTOPTS) are
directed to the ddname specified in MSGFILE (default SYSOUT). The
report formats are different under Language Environment than with VS
COBOL II. For more information, see “Determining storage tuning
changes” on page 97.

SSRANGE CHECK(ON) SSRANGE is mapped directly to CHECK.

Moving from the VS COBOL II run time to Language Environment

82 COBOL Migration Guide

Table 25. Comparison of VS COBOL II and Language Environment run-time options (continued)

VS COBOL II option

Language
Environment
option Comment

STAE TRAP(ON) STAE is mapped directly to TRAP(ON). For non-CICS applications,
TRAP(ON) causes both ESTAE and ESPIE to be issued. Under VS COBOL
II, STAE only causes ESTAE to be issued. Note, that under VS COBOL II
STAE is optional. Under Language Environment Release 1.9 (OS/390 V2R6)
or later, in non-CICS, you can specify TRAP(ON,NOSPIE) in which case
only an ESTAE will be issued.

UPSI UPSI This option is specified with the same syntax and supported in the same
manner in Language Environment as in VS COBOL II.

WSCLEAR STORAGE WSCLEAR is not supported. For similar function, use
STORAGE(00,NONE,NONE,8K) for non-CICS applications and
STORAGE(00,NONE,NONE,0K) for CICS applications.

Closing files in non-COBOL and OS/VS COBOL programs

For z/OS or OS/390, if you have OS/VS COBOL programs or assembler programs
that do not close files, you can get a C03 abend. In batch, when a COBOL main
program is invoked from an assembler program or if COBOL is not the main
program, you need to make one of the following changes to avoid getting the C03
abend:
v Add code to close the file.
v Use either a VS COBOL II, an IBM COBOL, or an Enterprise COBOL program to

open the file.
v If the COBOL program is being called by an assembler program, and if the

assembler program is invoked by the z/OS or OS/390 batch initiator, add a
COBOL stub (compiled with IBM COBOL or Enterprise COBOL) to the
application so that Language Environment will not free dynamically called load
modules at termination (the assembler program and the I/O control blocks it
contains stay in storage).

v If the assembler program is opening the file, change it to perform a GETMAIN
for the data management control blocks (instead of having the control blocks be
part of the load module).

Other environments
For programs run in other environments, such as TSO, IMS, or preinitialized
environments (CEEPIPI or IGZERRE programs), you must explicitly close all files
from OS/VS COBOL (or upgrade the OS/VS COBOL programs) prior to enclave
termination. Language Environment will not automatically close files left open by
COBOL programs when running in a reusable environment.

Assembler programs that are called by COBOL must close files prior to enclave
termination when:
v The assembler program is in a load module that is loaded by a COBOL dynamic

call.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 83

|
|
|
|
|
|

v The assembler program allocates the storage for the file control block in the
assembler program or in a COBOL WORKING-STORAGE data item.

Running in a reusable run-time environment

Language Environment continues to provide compatibility support for
pre-Language Environment methods for managing a reusable run-time
environment. Three of these methods include:
v Calling IGZERRE from an assembler program.
v Calling ILBOSTP0 from an assembler program.
v Specifying the RTEREUS run-time option.

When you use the reusable environment with existing applications under
Language Environment, the following restrictions apply:
v The application must be a single enclave application unless you modify the

behavior using the IGZERREO CSECT.
Note: Modifying the behavior using the IGZERREO CSECT does not remove the
restriction that OS/VS COBOL cannot be in more than one enclave.

v After the reusable environment has been established, the assembler driver can
call only a COBOL program or non-Language Environment conforming
assembler program. COBOL can then call any supported language.

v The first high-level language program must be a COBOL program (assembler is
not considered a high-level language).

v If an assembler driver is statically linked with, and calls, IGZERRE or ILBOSTP0
to provide the reusable environment, it must be link-edited with Language
Environment.

v If a COBOL NORES program is running with the RTEREUS run-time option in
effect, it must be link-edited with Language Environment.

Using STOP RUN will end the reusable environment regardless of the method
used to initialize it. If IGZERRE or ILBOSTP0 is called by an assembler program,
control is returned to the caller of the assembler program. If you use the Language
Environment RTEREUS run-time option, control is returned to the caller of the
caller of the first COBOL program.

You can improve the performance when using the COBOL reusable environment or
you can allow nested enclaves when running in a reusable environment by
modifying the IGZERREO CSECT. For additional information, see the:
v For z/OS: Language Environment for z/OS Customization
v For OS/390: Language Environment for OS/390 Customization

Precautions if establishing a reusable environment under IMS
The reusable environment is not recommended under IMS. If you do choose to
initiate a reusable environment, then:
v Use a reusable environment only if your application consists of a small number

of different programs. Otherwise, storage will accumulate, diminish, and
eventually bring down the IMS region.

v Preload all programs that receive control from IMS (such as COBOL main or
assembler). If not preloaded, results are unpredictable.

Moving from the VS COBOL II run time to Language Environment

84 COBOL Migration Guide

|

For additional details on using RTEREUS, see “Recommended run-time options for
non-CICS applications” on page 53.

Using IGZERRE
You can continue to use IGZERRE to explicitly drive the initialization and
termination functions of COBOL. However, you need to be aware of changes in
three of the return codes.

On return from IGZERRE, register 15 contains a return code. Table 26 shows the
changes when running with Language Environment:

Table 26. Return code changes for IGZERRE

Return code Comments

0 No change

4 Is issued if Language Environment is already initialized (previously
issued if VS COBOL II was already initialized)

8 No change

12 Is no longer issued (applied to initialization of a NORES environment
only)

16 No change

20 Is no longer issued (applied to use of COBTEST)

Using ILBOSTP0
ILBOSTP0 is still supported so that existing applications that use non-COBOL
programs as main programs will continue to run and provide the same results.

If you use ILBOSTP0 to initialize the COBOL reusable environment, Language
Environment will automatically set ALL31(OFF) and STACK(,,BELOW), as long as
the application-specific routine CEEUOPT is not linked with the load module.

If you link CEEUOPT with the load module, then you must ensure that it specifies
ALL31(OFF) and STACK(,,BELOW).

If in the event that the installation-wide default routine CEEDOPT specifies
ALL31(ON) and/or STACK(,,ANYWHERE) as nonoverridable, then Language
Environment diagnoses this conflict with message CEE3615I. Running the
application with these conflicts will yield unpredictable results.

Using RTEREUS
The RTEREUS run-time option for initializing the COBOL reusable environment is
supported by Language Environment, although it is not recommended as an
installation default. For important considerations, see the RTEREUS discussion
under “Recommended run-time options for non-CICS applications” on page 53. For
RES environments, the behavior of RTEREUS is the same as it was in VS COBOL II
with the exception of using SVC LINK (for example, ISPF ″SELECT PGM()″).

Under Language Environment, if an assembler program issues an SVC LINK while
running in a reusable environment, Language Environment raises a condition
resulting in severity-3 message IGZ0168S. With VS COBOL II, no error is detected,
but the secondary run unit’s environment is not reusable. You can modify the
behavior under Language Environment to be similar to the behavior under VS

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 85

COBOL II by modifying the IGZERREO CSECT. However, a STOP RUN in the
nested enclave will terminate only the nested enclave and not the parent enclave.

If the operating system is the invoker of the first COBOL program, RTEREUS will
be ignored.

You can specify RTEREUS using the installation-wide default routine CEEDOPT,
the application-specific options routine CEEUOPT, or in the assembler user exit.

For important IMS considerations see “Precautions if establishing a reusable
environment under IMS” on page 84.

Managing messages, abend codes, and dump services

Messages, abend codes, and dump services are managed differently for
applications when they run under Language Environment than when they run
under the VS COBOL II or OS/VS COBOL libraries.

Run-time messages
Two factors affect run-time messages for applications that run with Language
Environment:
v If the messages are issued by the OS/VS COBOL compatibility library routines

(prefixed IKF)
v Status of the Language Environment run-time initialization process for messages

issued by COBOL-specific library routines, including VS COBOL II compatibility
routines (prefixed IGZ)

Messages prefixed with IKF
There are no differences for OS/VS COBOL messages. The message prefix, number,
severity, and content remain unchanged. Also, the destination remains the same,
even when the program is link-edited with Language Environment. The messages
appear synchronously and are written using OS write-to-programmer. This is true
regardless of the state of the run-time initialization process.

Messages prefixed with IGZ
VS COBOL II messages are managed depending on the status of the Language
Environment run-time initialization process.
v On non-CICS, if the run-time initialization process is not complete, messages are

routed as directed by OS write-to-programmer.
v On non-CICS, if the run-time initialization process is complete, then messages

are directed to the file ddname specified on the Language Environment MSGFILE
run-time option, which is defaulted to SYSOUT.
– On z/OS and OS/390: SYSOUT=*

If MSGFILE ddname is not defined, it will be dynamically allocated with
Language Environment defined file attributes. For details, see Language
Environment Programming Guide.

v On CICS, all run-time output from Language Environment is directed to a CICS
transient data queue named CESE. Each record written to the file has a header

Moving from the VS COBOL II run time to Language Environment

86 COBOL Migration Guide

|

that includes the terminal ID, the transaction ID, date and time. Run-time output
is no longer written to a temporary storage queue.

Note: To direct the run-time output to a temporary storage queue, you can
define the transient data queue CESE as an intrapartition data queue and
specify a transaction that reads records from CESE, strips off the header
information, and writes the rest of the record to a temporary storage
queue.

All COBOL-specific messages will be prefixed by IGZ, followed by a four-digit
message number, and the level of severity. For example, VS COBOL II message
number IGZ020I is message number IGZ0020W under Language Environment. The
VS COBOL II informational message becomes a Language Environment severity-1
warning message. The VS COBOL II severe message, which resulted in a 1xxx user
abend, becomes either a Language Environment severity-3 severe condition or
severity-4 critical condition.

Severity 1 (W)
A warning message. The Language Environment default
condition-handling action will format and issue the message and then
continue program execution.

Severity 2 (E)
An error message. The Language Environment default condition-handling
action will percolate the condition, issue a message, and terminate the
enclave.

Severity 3 (S)
A severe error message. The Language Environment default
condition-handling action will percolate the condition, issue a message,
and terminate the enclave.

Severity 4 (C)
A critical error message. The Language Environment default
condition-handling action will percolate the condition, issue a message,
and terminate the enclave.

Timing of abend for run-time detected errors
The timing of abends between Language Environment and VS COBOL II is
different for run-time detected errors (such as IGZ0061S division by zero or
IGZ0006S subscript out of range). This difference in the timing of abends affects
the behavior of CICS HANDLE ABEND.

Under Language Environment, the following events occur when there is a run-time
detected error (with ABTERMENC(ABEND) in effect):
1. A Language Environment software-generated condition is signalled.
2. The Language Environment condition manager gives control to any user

condition handlers that have been registered.
3. If the condition has not been handled, the enclave is terminated and Language

Environment issues a 4038 abend.

With VS COBOL II, the following events occur when there is a run-time detected
error:
1. An error message is written.
2. An abend 1xxx is issued.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 87

Under Language Environment, when a run-time detected error occurs, the enclave
(run unit) that contains the code is terminated before the abend is issued. Thus,
code at a label referenced in the CICS HANDLE ABEND command does not get
control.

Under VS COBOL II, an abend is issued while the run unit still exists, so code at
the HANDLE ABEND label is executed.

For behavior compatible with VS COBOL II, use the sample user condition handler
code, CEEWUCHA, that is provided with Language Environment in the
SCEESAMP data set.

When you use CEEWUCHA under Language Environment, the following events
occur when there is a run-time detected error (with ABTERMENC(ABEND) in
effect):
1. A Language Environment software generated condition is signalled.
2. The Language Environment condition manager gives control to any user

condition handlers that have been registered.
3. The CEEWUCHA user condition handler gets control and causes the following

to occur:
v An error message is written.
v A Language Environment dump is produced.
v An abend 1xxx is issued.

Abend codes
To see user 1xxx abends similar to what you received under VS COBOL II (where
xxx is the IGZ message number) for unhandled Language Environment
software-generated conditions, do one of the following:
v Modify the assembler user exit (CEEBXITA) by copying the code from the

COBOL sample assembler user exit (CEEBX05A) into CEEBXITA.
v Use the sample user condition handler CEEWUCHA as described in “Using

CEEWUCHA”.

Using CEEWUCHA
CEEWUCHA is a sample user condition handler that you can use to alter the
default behavior of Language Environment to get behavior that is similar to VS
COBOL II.

CEEWUCHA contains code to do the following:
v Provide compatibility with existing VS COBOL II applications running under

CICS by allowing EXEC CICS HANDLE ABEND LABEL statements to get
control when a run-time detected error occurs (such as IGZ0061S, division by
zero).

v Convert all unhandled run-time detected errors to the corresponding user 1xxx
abend issued by VS COBOL II.

v Suppress all IGZ0014W messages, which are generated when IGZETUN or
IGZEOPT is link-edited with a VS COBOL II application.

To use CEEWUCHA:
1. Use the CEEWWCHA sample SMP job to assemble and link-edit CEEWUCHA.
2. On CICS, define CEEWUCHA in the PPT for your CICS region.
3. Specify USRHDLR(CEEWUCHA) in either:

Moving from the VS COBOL II run time to Language Environment

88 COBOL Migration Guide

v On CICS, CEECOPT (to apply to the entire CICS region)
v On non-CICS, CEEDOPT (to apply to all applications)
v On CICS or non-CICS, CEEUOPT and link-edit it with the individual

applications

Dump services
Dump services are managed by Language Environment. This section describes the
changes for symbolic dumps, formatted dumps, and system dumps.

OS/VS COBOL symbolic dumps
For those OS/VS COBOL programs that are compiled with the NORES compiler
option, dump output generated using SYMDMP remains the same and continues
to be directed to SYSDBOUT. If the RES compiler option is used, a CEEDUMP will
be produced instead.

VS COBOL II FDUMPs
For VS COBOL II programs compiled with the FDUMP option, you could get a
formatted dump of COBOL WORKING-STORAGE. VS COBOL II FDUMPs were
directed to the SYSDBOUT data set. For details on dump destination under
Language Environment, see “Language Environment formatted dumps” on page
89.

When a VS COBOL II program that is compiled with OPT and FDUMP and which
contains ODO data structures is run under Language Environment and abends,
level-1 items will be dumped as group items in the Language Environment
formatted dump.

Use Test(SYM): The Enterprise COBOL TEST(SYM) compiler option provides the
same function as the VS COBOL II FDUMP compiler option. When you specify the
SYM suboption of the TEST compiler option, Language Environment can provide
you with output similar to FDUMP output as part of the Language Environment
formatted dump.

Language Environment formatted dumps
Dump formats and destinations for dump output are different under Language
Environment than with VS COBOL II.

The Language Environment formatted dump can contain various information,
including information about:
v Symbolic dump of variables, arguments, and registers
v File control blocks
v File buffers
v Run-time control blocks
v Storage used by the program

For examples of Language Environment dump output, see Language Environment
Debugging Guide and Run-Time Messages.

Under Language Environment, specify the TERMTHDACT(DUMP) or
TERMTHDACT(UADUMP) run-time option in order to get a Language
Environment formatted dump when a condition greater than or equal to 2 is raised
and is left unhandled.

Dump destination on non-CICS: With Language Environment, you can indicate
the destination for dump output by providing the CEEDUMP ddname in your JCL
or FILEDEF. For the attributes of the CEEDUMP file, see the Language Environment
Programming Guide.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 89

|
|
|
|
|

If the CEEDUMP file is needed and is not defined, Language Environment will
dynamically allocate one for you, with the default being:
v On z/OS and OS/390: SYSOUT=*

Dump destination on CICS: All run-time output from Language Environment is
directed to a CICS transient data queue named CESE. Each record written to the
file has a header that includes the terminal ID, the transaction ID, and the date and
time.

System storage dumps
The PSW (Program Status Word) and registers information contained in the system
storage dump is different when running under Language Environment than when
running under the VS COBOL II run-time.

With VS COBOL II, the dump is produced when the error occurs. The PSW and
registers content is based on the information available when the error occurs. You
could then use the PSW and register information in the dump for problem
determination.

With Language Environment, the dump is produced after Language Environment
condition management has processed the error. The PSW and registers content is
based on the information available when Language Environment completes
processing the error, not on the information available when the error occurs. To
determine the information that was in the PSW and registers at the time of the
error, you can either look at the Language Environment formatted dump output or
use the Language Environment condition information block and the Language
Environment machine state information block. For details, see the Language
Environment Debugging Guide and Run-Time Messages.

To obtain a system storage dump, see “Obtaining a system dump or a CICS
transaction dump” on page 60.

On z/OS and OS/390, dump output is directed to SYSUDUMP, SYSMDUMP, or
SYSABEND. On other systems, VS COBOL II run-time dump output is directed to
SYSABOUT. (SYSABOUT is not used under Language Environment, even for VS
COBOL II programs.)

Using ILBOABN0 to force an abend

Under OS/VS COBOL and VS COBOL II, you can use a CALL to ILBOABN0 to
force an immediate abend and obtain a system dump. Under Language
Environment, a CALL to ILBOABN0 will continue to force an immediate abend. To
produce a system dump, see “Obtaining a system dump or a CICS transaction
dump” on page 60.

If you use the Language Environment version of ILBOABN0, the save area of the
program issuing ILBOABN0 is located two levels back from the save area where
the actual abend was issued.

Programs converted to Enterprise COBOL that use a CALL to ILBOABN0 can
continue to CALL ILBOABN0. However, it is recommended that you use the
Language Environment CEE3ABD callable service instead.

Moving from the VS COBOL II run time to Language Environment

90 COBOL Migration Guide

|

Using SORT or MERGE

Implementation of Language Environment caused changes in the run-time routines
that manage SORT or MERGE for OS/VS COBOL programs and VS COBOL II
programs.

In OS/VS COBOL programs
When an OS/VS COBOL program initialized the SORT or MERGE, the following
changes apply:
v Language Environment will not produce a Language Environment dump if a

program check or abnormal termination occurs while in a SORT or MERGE user
exit.

v OS/VS COBOL debug data will not be produced if a program check or
abnormal termination occurs while in a SORT or MERGE user exit.

v Language Environment will not perform environment cleanup if a program
check or abnormal termination occurs while in a SORT or MERGE user exit.

v While in an input or output procedure, if an assembler program is called, the
assembler program cannot call a COBOL program.

v If a program check occurs while in a SORT or MERGE user exit, the application
will end with abend U4036. For information about how to find the state of the
registers and PSW at the time of the program check, see Language Environment
Debugging Guide and Run-Time Messages.

In VS COBOL II subprograms
Using a GOBACK statement in an input or output procedure that is used with a
SORT or MERGE statement for VS COBOL II subprograms behaves differently
under Language Environment than under the VS COBOL II run-time.

When running VS COBOL II programs under Language Environment, the
difference in behavior occurs when:
v A COBOL subprogram issues a SORT or MERGE statement with an input

procedure and/or an output procedure
v While the SORT or MERGE statement is being executed and an input procedure

or an output procedure has been invoked, a GOBACK is done in the compile
unit that initiated the SORT or MERGE statement

Under Language Environment, severe condition IGZ0012S is issued. Under VS
COBOL II, the subprogram will return to its caller without an error.

For example:
...

SORT SD01
ASCENDING KEY A3
USING INP1
OUTPUT PROCEDURE OUTPRO1....

OUTPRO1 SECTION.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 91

...

GOBACK.
* With Language Environment, this GOBACK statement will
* cause condition IGZ0012S.

Note: With the above scenario, with VS COBOL II (as with Language
Environment), if the COBOL program issuing the SORT or MERGE is a main
program, an error message is generated.

Understanding SYSOUT output changes

Under Language Environment, DISPLAY UPON SYSOUT is different than in
OS/VS COBOL and VS COBOL II as follows:
v SYSOUT output sent to a file with RECFM=FB or to any other destination when

DCB=(RECFM=FB) is specified on the DD
v OS/VS COBOL trace output sequence

DISPLAY UPON SYSOUT and DD definitions
Language Environment handles DISPLAY UPON SYSOUT differently than VS
COBOL II:
v Under VS COBOL II, if the DD card is missing, VS COBOL II issues an IGZ

message and abends. Under Language Environment, Language Environment
allocates the DD and the DISPLAY is successful.

v Under VS COBOL II, if the value of the OUTDD is different in VS COBOL II
programs using DISPLAY, the DD from the first program encountered with a
DISPLAY is the DD used for the life of the application. Under Language
Environment, Language Environment will allocate a DD for each unique
OUTDD that you specify.

SYSOUT output with RECFM=FB
Under Language Environment, for TRACE/EXHIBIT output (for OS/VS COBOL
programs) and DISPLAY UPON SYSOUT output (for both OS/VS COBOL
programs and VS COBOL II programs) sent to a file with RECFM as FB, or to any
other destination when DCB=(RECFM=FB) is specified on the DD, the first
character is not included in the output, as shown below:

Record format VS COBOL II Language Environment

RECFM=FBA $01234 $01234

RECFM=FB $01234 01234

The ’$’ represents the control character at column 1. The default attributes of
DISPLAY are unchanged.

We recommend that you use RECFM=FBA for SYSOUT directed to a file.

OS/VS COBOL trace output sequence
The trace output sequence has changed under Language Environment. In
Language Environment, only one trace entry per record appears, instead of

Moving from the VS COBOL II run time to Language Environment

92 COBOL Migration Guide

numerous trace entries per record as in OS/VS COBOL programs running under
VS COBOL II. This change is especially helpful with intervening DISPLAY
SYSOUT output and error messages.

Figure 6 shows the difference between the OS/VS COBOL and Language
Environment formats.

Communicating with other languages

This section gives you a high-level overview of ILC considerations for existing
OS/VS COBOL programs and VS COBOL II programs running under the VS
COBOL II run-time. For exact details and for the latest information on ILC under
Language Environment, see the Language Environment Writing Interlanguage
Applications.

Interlanguage communication is defined as programs that call or are called by
other high-level languages. Assembler is not considered a high-level language;
thus, calls to and from assembler programs are not considered ILC. For details on
Language Environment’s support for calls involving COBOL programs and
assembler programs, see:
v “Run-time support for assembler COBOL calls on non-CICS” on page 269
v “Run-time support for assembler COBOL calls on CICS” on page 270

Existing applications that use interlanguage communication (ILC) might not be
able to run under Language Environment. There are several determining factors,
including which languages are involved. The following sections describe the
implications for existing applications with ILC.

For CICS, you can continue to use EXEC CICS LINK and EXEC CICS XCTL to
communicate with other languages.

General ILC considerations

COBOL DISPLAY output (non-CICS)
When you run a COBOL-C ILC application under Language Environment, the
SYSOUT DD will remain open until Language Environment terminates. This
impacts any ILC application that has the following scenario:
1. A C main program calls a COBOL program.

OS/VS COBOL Running under VS COBOL II :

Record 1 --> Section1(2), Paragraph1(2), Section2(2)

Language Environment :

Record 1 --> Section1
Record 2 --> Section1
Record 3 --> Paragraph1
Record 4 --> Paragraph1
Record 5 --> Section2
Record 6 --> Section2

Figure 6. TRACE output under Language Environment compared to OS/VS COBOL

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 93

2. The COBOL program uses the DISPLAY statement. The output from the
DISPLAY statement is written to a data set associated with SYSOUT DD. The
COBOL program returns to the C program.

3. The C program opens the data set associated with the SYSOUT DD and reads
the records written.

The above scenario worked with the VS COBOL II and pre-Language Environment
C libraries because the VS COBOL II program was the main program (and thus,
the VS COBOL II run time closed the SYSOUT DD when the COBOL program
ended). Under Language Environment, the COBOL program is a subprogram, and
Language Environment does not close the SYSOUT DD when the COBOL program
returns to the C program.

Effect of STOP RUN (non-CICS)
Under Language Environment, when a COBOL program issues a STOP RUN after
being called from a C, PL/I, or FORTRAN program, the entire environment
terminates. Under VS COBOL II, only the COBOL run-time goes down and the
calling program (C, PL/I, or FORTRAN) continues to run.

COBOL and FORTRAN

Note: This section is not applicable to CICS. FORTRAN programs running on
CICS has never been supported by IBM.

ILC is supported between the following COBOL and FORTRAN releases if
link-edited with Language Environment:
v VS COBOL II Release 3 and later (static CALL statements only)
v IBM COBOL
v Enterprise COBOL
v VS FORTRAN Version 1 (except for modules compiled with Release 1 or Release

2 and either are subprograms that receive character arguments, or pass character
arguments to subprograms).

v VS FORTRAN Version 2 (except modules compiled with Release 5 or Release 6)
that:

Contain parallel language constructs
Specify the PARALLEL compiler option
Invoke parallel callable services (PEORIG, PEPOST, PEWAIT, PETERM,
PLCOND, PLFREE, PLLOCK, PLORIG, or PLTERM)

v FORTRAN IV G1
v FORTRAN IV H Extended

With Language Environment, OS/VS COBOL RES programs that call or are called
by FORTRAN are not supported.

Existing NORES applications containing calls between COBOL and FORTRAN will
continue to run as before, subject to the existing COBOL-FORTRAN ILC rules.
However, these applications are not supported if the FORTRAN program is
link-edited with Language Environment.

COBOL and PL/I
If you follow the link-edit requirements below, Language Environment will
support ILC between the following combinations of COBOL and PL/I:
v VS COBOL II Version 1 Release 3 and later

Moving from the VS COBOL II run time to Language Environment

94 COBOL Migration Guide

|

v IBM COBOL
v Enterprise COBOL
v OS PL/I Version 1 Release 5.1
v OS PL/I Version 2
v PL/I for MVS & VM

You must link-edit any existing, supported PL/I and COBOL ILC applications
either with the PL/I conversion tool (APAR PN46223) while running on OS PL/I
Version 2 Release 3 or with Language Environment. (For the PL/I conversion tool
to work, you also must install the appropriate USERMOD, COBOL service, and
PL/I service. For details, see the IBM PL/I for MVS & VM Migration Guide.) You can
use either method except in the following cases, when you must link-edit with
Language Environment:
v When the application contains COBOL NORES programs
v When the application requires COBOL program-specific run-time options or

space tuning
v When the application contains PL/I programs that use SORT
v When the application uses the PL/I Shared Library

Note: ILC between OS/VS COBOL and PL/I is not supported. You must upgrade
any OS/VS COBOL program containing ILC with PL/I.

Difference in behavior for dynamically called RENT programs
VS COBOL II programs use a different copy of WORKING-STORAGE for each call
under the VS COBOL II run time, however, under Language Environment the
same copy of WORKING-STORAGE is used for each call. These different situations
occur when the following conditions are true:
v Compiled with the RENT option
v Dynamically called from OS/VS COBOL, VS COBOL II, IBM COBOL, or

Enterprise COBOL programs
v Fetched and called by PL/I

In addition, the programs enter their initial state when run under the VS COBOL II
run-time library. However, when running under Language Environment the
programs are entered in their last-used state, unless there is an intervening
CANCEL.

For additional information on interlanguage communication between COBOL and
PL/I, see Language Environment Writing Interlanguage Applications and the PL/I for
MVS & VM Compiler and Run-Time Migration Guide.

COBOL and C/370
If you follow the link-edit requirements, Language Environment supports ILC
between the following combinations of COBOL and C programs:
v VS COBOL II Version 1 Release 3 and later
v IBM COBOL
v Enterprise COBOL
v C/370 Version 1 (5688-040)
v C/370 Version 2 (5688-187)
v OS/390 C/C++

You must link-edit any existing, supported C and COBOL ILC applications either
with:
v Language Environment

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 95

|

|
|
|
|

|

|
|

|

|
|
|
|

|

v The C conversion tool (APAR PN74931) while running on C/370 Version 2. (For
the C conversion tool to work on Language Environment Release 5, you must
also install APAR PN77483. The function is in the base for Language
Environment Release 6 and later.)

You can use either method, except in the following cases, when you must link-edit
with Language Environment:
v When the application contains COBOL NORES programs.
v When the application requires COBOL program-specific run-time options or

space tuning.

Difference in behavior for dynamically called RENT programs
VS COBOL II programs use a different copy of WORKING-STORAGE for each call
under the VS COBOL II run time, however, under Language Environment the
same copy of WORKING-STORAGE is used for each call. These different situations
occur when the following conditions are true:
v Compiled with the RENT option
v Dynamically called from OS/VS COBOL, VS COBOL II, IBM COBOL, or

Enterprise COBOL programs
v Fetched and called by C

In addition, the programs enter their initial state when run under the VS COBOL II
run-time library. However, when running under Language Environment the
programs are entered in their last-used state, unless there is an intervening
CANCEL.

For additional information on interlanguage communication between COBOL and
C, see Language Environment Writing Interlanguage Applications and the IBM C/370
Migration Guide.

Initializing the run-time environment

The methods available for initializing the run-time environment are different under
Language Environment than under VS COBOL II.

Existing applications using LIBKEEP
The VS COBOL II LIBKEEP run-time option was used to enhance run-time
performance by maintaining the partition level of the run-time environment
between calls to COBOL main programs. The Language Environment run-time
environment does not support the LIBKEEP run-time option.

You can obtain similar performance for the main program environment by using
the Language Environment LRR (Library Routine Retention) facility. To use LRR in
an IMS region, you need to put CEELRRIN in the IMS preinit list. For details on
how to do this, see Language Environment Customization.

To use LRR within an application program, you call an assembler program that
contains the CEELRR macro.

Moving from the VS COBOL II run time to Language Environment

96 COBOL Migration Guide

|
|
|
|

|

|
|

|

|
|
|
|

Language Environment provides two sample programs: one to initialize LRR and
one to terminate LRR. The sample program names are CEELRRIN and CEELRRTR,
and they are in the SCEESAMP library.

For information on LRR, see the Language Environment Programming Guide and the
customization book for your platform.

Considerations for Language Environment preinitialization
Language Environment preinitialization services for the main program
environment allow you to initialize the run-time environment for a main program
by using the CEEPIPI(INIT_MAIN ...) service, to call programs as main by using
the CEEPIPI(CALL ...) service, and to terminate the preinitialized environment
using the CEEPIPI(TERM ...) service.

To use the Language Environment preinitialization main program services, VS
COBOL II programs and OS/VS COBOL programs cannot be the target of
CEEPIPI(CALL ...). However VS COBOL II programs and OS/VS COBOL
programs can be the target of any COBOL CALL statements in a preinitialized
environment.

When you run an application under the VS COBOL II run-time, the data sets used
by the functions ACCEPT SYSIN, DISPLAY SYSOUT, and DISPLAY SYSPUNCH
are closed after the completion of each invocation of a main program. Thus, the
data set content is externally available. For example, in z/OS and OS/390 batch
environments, closing SYSOUT commonly causes its data to become part of the
JOB output. Also, the run-time messages and dumps can be received at the end of
each execution.

When running with the Language Environment preinitialization facility for the
main program environment, those files plus MSGFILE and dump files will not be
closed until CEEPIPI(TERM) is issued to terminate the preinitialized environment.

For more information on Language Environment preinitialized services, including
information on how to initialize the run-time environment for subprograms, see
the Language Environment Programming Guide.

Determining storage tuning changes

The existing methods (the IGZTUNE macro and the SPOUT and WSCLEAR
run-time options) for space management and tuning are not available under
Language Environment. Language Environment services now control space
management and tuning using the RPTOPTS, RPTSTG, STORAGE, ANYHEAP,
BELOWHEAP, HEAP, LIBSTACK, and STACK run-time options.

With VS COBOL II, storage tuning is done at the process level; under Language
Environment storage, tuning is done on an enclave basis. For details of space
management and tuning with Language Environment, see the Language
Environment Programming Guide.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 97

Alternatives to IGZTUNE
If the CSECT produced by assembling the space tuning CSECT IGZETUN is
detected in a load module, a warning-level message is issued and the CSECT is not
used. Other Language Environment facilities provide storage management
capabilities at run-time instead of link-edit time.

Note: For applications using IGZETUN, see “Using CEEWUCHA” on page 88 for
details on how to suppress the warning-level message and the overhead of
writing it to the Language Environment MSGFILE.

This is accomplished by using the following five storage management run-time
options:

HEAP Manages heap storage for user data such as WORKING-STORAGE,
EXTERNAL data, and EXTERNAL file information.

ANYHEAP
Manages heap storage for use by Language Environment and COBOL
library routines, which can be located anywhere and used for control
blocks.

BELOWHEAP
Manages heap storage for use by Language Environment and COBOL
library routines, which is located below the 16-MB line and used for
control blocks and I/O buffers.

STACK
Manages stack storage for use by Language Environment, COBOL data
items in the LOCAL-STORAGE SECTION, and COBOL library routines,
which can be used for DSAs (dynamic storage areas).

LIBSTACK
Manages stack storage for use by Language Environment and COBOL
library routines, which is located below the 16-MB line and used for DSAs.

The RPTSTG run-time option provides the optimum values to use when specifying
the storage management options. (You will need to first use the RPTSTG option to
generate a report of storage used in your program or run unit. You can then use
this report to determine the values that +you need to specify in the five Language
Environment storage options in order to achieve the space tuning purpose.)

Do not use the values from IGZTUNE when specifying the Language Environment
tuning options. These values might not be optimal for tuning storage usage within
the Language Environment environment. For recommended Language
Environment storage option settings, see “Set recommended default Language
Environment run-time options” on page 53.

Considerations for SPOUT output
Existing applications that specify the SPOUT run-time option will continue to run.
The SPOUT option is mapped to the Language Environment RPTOPTS and
RPTSTG run-time options.

The output from the RPTSTG and RPTOPTS reports is directed to the ddname
specified in the MSGFILE run-time option. The default is SYSOUT. You can use the
information generated by the RPTOPTS and RPTSTG options to determine the
values to use when tuning storage with the Language Environment storage
options.

Moving from the VS COBOL II run time to Language Environment

98 COBOL Migration Guide

Additional CICS considerations
This section lists additional considerations for COBOL programs run on CICS. It
contains information on the following:
v Performance
v SORT interface change
v WORKING-STORAGE limits
v VS COBOL II NORENT programs
v IGZETUN or IGZEOPT and MSGFILE
v CICS HANDLE commands and the CBLPSHPOP run-time option
v DISPLAY statement
v CLER transaction

Performance considerations
Here are some actions you can take to maximize performance with Language
Environment on CICS:
v Set the CICS SIT option RUWAPOOL to YES. Doing so can reduce the CICS

GETMAIN and FREEMAIN activity when CICS LINK is used.
v Tune your Language Environment storage run-time options. Doing so can keep

the CICS GETMAIN and FREEMAIN activity to a minimum, and avoids the
overhead that occurs when an increment is needed. If you are using CICS
Transaction Server Version 1 Release 3 or later, the automatic storage tuning is
performed when you set the CICS SIT option AUTODST to YES.

v You might not want to use TERMTHDACT(DUMP) and
TERMTHDACT(UADUMP) in production, because these TERMTHDACT
suboptions can cause a lot of time to be spent writing Language Environment
dump data to transient data queue CESE when a transaction abends.

v Do not run with run-time options RPTOPTS(ON) or RPTSTG(ON) in production.
These options have a significant impact on performance.

v If you are getting any warning messages written by Language Environment to
CESE, make changes so that they are not issued.

SORT interface change
When the SORT statement is used on CICS with the VS COBOL II run-time, the
SORT program is invoked using EXEC CICS LINK. When the SORT statement is
used on CICS with Language Environment, the SORT program is loaded with
EXEC CICS LOAD and is then invoked with a BASSM instruction.

WORKING-STORAGE limits
The WORKING-STORAGE limits for VS COBOL II program running on Language
Environment are different than when running on the VS COBOL II run-time as
shown in Table 27. This difference affects applications that are developed using
Language Environment, and run in production using VS COBOL II.

Table 27. WORKING-STORAGE limits for VS COBOL II programs on CICS

WORKING-STORAGE limit

DATA compiler option
specification VS COBOL II run-time

Language Environment
run-time

DATA(24) 64KB Available space below the
16-MB line

DATA(31) 1 MB 128 MB

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 99

VS COBOL II NORENT programs
Although documented that VS COBOL II programs must be compiled with the
RENT option to run on CICS, VS COBOL II Release 3.0 and later did not enforce
this requirement. VS COBOL II APAR PN65736 added the function to diagnose
attempts to run VS COBOL II NORENT programs on CICS (for VS COBOL II
Release 3.0 and later).

Language Environment issues message IGZ0018S when it detects a VS COBOL II
program that was compiled with NORENT running on CICS. If you are
developing on VS COBOL II without PN65736 applied, Language Environment
will terminate your VS COBOL II applications run on CICS if they were compiled
with NORENT.

IGZETUN or IGZEOPT and MSGFILE
When you run on Language Environment and have either IGZETUN or IGZEOPT
link-edited with your main program, Language Environment writes warning
message IGZ0014W to the Language Environment MSGFILE each time a main
program that contains IGZETUN or IGZEOPT is run. Writing the IGZ0014W
message to the MSGFILE can cause a significant amount of additional system
resource to be used. To suppress the writing of IGZ0014W, see “Using
CEEWUCHA” on page 88.

CICS HANDLE commands and the CBLPSHPOP run-time
option

The Language Environment CBLPSHPOP run-time option is used to control
whether CICS PUSH HANDLE and CICS POP HANDLE commands are issued
when a VS COBOL II, IBM COBOL, or Enterprise COBOL subroutine is called.
Depending on the setting of CBLPSHPOP, you can get either faster CICS
performance or compatible behavior (depending on how your programs are
coded).

The CICS PUSH HANDLE and POP HANDLE commands suspend/restore the
current effects of the following CICS commands:
v IGNORE CONDITION
v HANDLE ABEND
v HANDLE AID
v HANDLE CONDITION

The VS COBOL II run-time issues the PUSH HANDLE and POP HANDLE
commands automatically on calls to COBOL subroutines. To receive this same
behavior in Language Environment, you must specify the Language Environment
CBLPSHPOP(ON) run-time option.

If your application calls COBOL (VS COBOL II, IBM COBOL, or Enterprise
COBOL) subroutines under CICS, performance is better with CBLPSHPOP(OFF)
than with CBLPSHPOP(ON). (You can set the CBLPSHPOP run-time option on an
enclave by enclave basis by using CEEUOPT.)

CBLPSHPOP(OFF) prevents the issuing of the PUSH HANDLE and POP HANDLE
commands and must be used with care to avoid compatibility problems when
upgrading. If you do not issue a CICS PUSH HANDLE command before a call to a
COBOL subroutine, the subroutine will inherit any IGNORE CONDITION or

Moving from the VS COBOL II run time to Language Environment

100 COBOL Migration Guide

HANDLE command from the caller. If the subroutine then issues an IGNORE
CONDITION or HANDLE command, the caller will inherit their effects upon
return.

To receive the same behavior as with the VS COBOL II run-time, specify
CBLPSHPOP(ON) if either of the following conditions are present:
v The caller contains either of these CICS commands used for condition handling

in CICS:
– CICS IGNORE CONDITION
– CICS HANDLE ABEND PROGRAM(program)

v The COBOL subroutine contains any of the ″PUSHable″ CICS commands:
– CICS IGNORE CONDITION
– CICS HANDLE ABEND
– CICS HANDLE AID
– CICS HANDLE CONDITION

Note that CICS HANDLE...(label) commands in the caller will not cause
compatibility problems with CBLPSHPOP(OFF) as long as your program does not
contain any of the statements listed above.

The next two examples show the effect of the CBLPSHPOP option on VS COBOL II
compatibility.

Example 1—no effect on compatibility
IDENTIFICATION DIVISION.
PROGRAM-ID. PGM1
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

EXEC CICS HANDLE ABEND LABEL(LBL1) END-EXEC.
CALL "PGM2" USING DFHEIBLK DFHCOMMAREA
EXEC CICS RETURN END-EXEC.

LBL1.
EXEC CICS RETURN END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. PGM2
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA1 PIC 9 VALUE 0.
01 DATA2 PIC 9 VALUE 1.
PROCEDURE DIVISION.
* Force a DIVIDE-BY-ZERO exception

COMPUTE DATA1 = DATA2 / DATA1
GOBACK.

In this example the setting of the CBLPSHPOP option will have no effect on VS
COBOL II compatibility. If you specify CBLPSHPOP(ON), no HANDLE ABEND
will be in effect for PGM2 because the CICS PUSH HANDLE performed by
Language Environment will suspend the effects of the CICS HANDLE ABEND
issued in PGM1. When the divide by zero occurs in PGM2, an ASRA abend occurs
because there is no HANDLE ABEND active.

If you specify CBLPSHPOP(OFF), the divide by zero in PGM2 will cause CICS to
ask Language Environment to branch to LBL1 in PGM1; however, Language

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 101

Environment will not permit branches to labels across program boundaries. As
with CBLPSHPOP(ON), the program will end with an ASRA abend.

Example 2—effect on compatibility
IDENTIFICATION DIVISION.
PROGRAM-ID. PGM1
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DATA1 PIC 9 VALUE 0.
01 DATA2 PIC 9 VALUE 1.
PROCEDURE DIVISION.

EXEC CICS HANDLE ABEND LABEL(LBL1) END-EXEC.
CALL "PGM2" USING DFHEIBLK DFHCOMMAREA

* Force a DIVIDE-BY-ZERO exception
COMPUTE DATA1 = DATA2 / DATA1
EXEC CICS RETURN END-EXEC.

LBL1.
EXEC CICS RETURN END-EXEC.

IDENTIFICATION DIVISION.
PROGRAM-ID. PGM2
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.

EXEC CICS HANDLE ABEND LABEL(LBL1A) END-EXEC.
GOBACK.

LBL1A.
GOBACK.

In this example the CBLPSHPOP option will affect compatibility with VS COBOL
II. With CBLPSHPOP(ON), PGM1’s HANDLE ABEND label is saved and restored
across the call to PGM2, and the divide by zero exception is handled with a branch
to LBL1. The program terminates normally.

With CBLPSHPOP(OFF), PGM2’s HANDLE ABEND command is in effect on the
return to PGM1. The exception caused by the divide by zero in PGM1 causes CICS
to ask Language Environment to branch to LBL1A in PGM2. Language
Environment prevents this branch, and the program terminates with an ASRA
abend.

DISPLAY statement
When you use the VS COBOL II run-time on CICS, attempts to use the DISPLAY
statement in a VS COBOL II program causes a transaction abend.

When you use DISPLAY UPON SYSOUT (or just DISPLAY without specifying any
UPON value) from a VS COBOL II, IBM COBOL, or an Enterprise COBOL
program with Language Environment, the display output is written to the transient
data queue CESE.

CLER transaction
APAR PQ38838 states that the CICS transaction (CLER) allows you to display all
the current Language Environment run-time options for a region, and to also have
the capability to modify a subset of these options.

Moving from the VS COBOL II run time to Language Environment

102 COBOL Migration Guide

|
|
|

Undocumented VS COBOL II extensions
An input or output procedure that is referenced on a COBOL SORT or MERGE
statement cannot directly or indirectly invoke another SORT or MERGE. When you
use the VS COBOL II run-time library, a nested SORT or a MERGE statement like
this was not diagnosed. However, Language Environment Version 2 Release 7
(with PQ39908) or later detects the nested SORT or MERGE in a VS COBOL II
program and issues message IGZ0173S before terminating the program.

Moving from the VS COBOL II run time to Language Environment

Chapter 7. Moving from the VS COBOL II run-time 103

|

|
|
|
|
|
|

104 COBOL Migration Guide

Chapter 8. Link-editing applications with Language
Environment

This chapter describes the implications of link-editing OS/VS COBOL and VS
COBOL II applications with Language Environment. When you link-edit
applications with Language Environment, there might be a change in behavior,
depending on if the application consist of:
v Programs compiled with NORES
v Programs compiled with RES

For additional information on relink-editing a COBOL load module with Language
Environment, see “Appendix J. Link-edit example” on page 307.

Applications comprised of NORES programs
When you link-edit an application comprised of NORES programs with Language
Environment, you need to:
v Link-edit all the programs in the load module with Language Environment
v Understand the changes in behavior that can occur

Normally, link-editing an OS/VS COBOL NORES application with Language
Environment has no effect. The application will provide the same results as before,
and cannot access Language Environment services.

However, in some cases, after you link-edit an OS/VS COBOL NORES application
with Language Environment, the application will exhibit RES behavior. Table 28
lists what can cause this change in behavior.

Table 28. Program attributes causing changes in application behavior

Attribute Comments

Contains a VS COBOL II
program

Applications with a VS COBOL II program will exhibit RES
behavior after being link-edited with Language
Environment.

Contains an IBM COBOL or
Enterprise COBOL program

Any applications with an Enterprise COBOL, COBOL for
OS/390 & VM, COBOL for MVS & VM, or COBOL/370
program will exhibit RES behavior after being link-edited
with Language Environment. For additional information, see
“Chapter 18. Adding Enterprise COBOL programs to existing
COBOL applications” on page 219.

Contains the IGZCBSN
bootstrap routine

IGZCBSN is the COBOL/370 bootstrap routine.

Contains the IGZCBSO
bootstrap routine

IGZCBSO is the COBOL for MVS & VM, COBOL for OS/390
& VM, and Enterprise COBOL bootstrap routine.

Contains a program using an
object module produced
using the IGZBRDGE macro.

An object module produced by using the IGZBRDGE macro
is normally used to convert static CALL statements to
dynamic CALL statements. However, just the presence of an
object module produced by using IGZBRDGE causes the
behavior to change, regardless of how it is being used.

Note: For multiple load module applications, if the first load module contains one of the
above attributes, it will behave as if it were RES.

© Copyright IBM Corp. 1991, 2001 105

|
|
|
|
|
|

|
|

Implications of becoming RES-like
Only one of the attributes listed in Table 28 on page 105 needs to be present to
cause NORES applications to act as RES applications. If your NORES application
does become RES-like, you have additional considerations:
v Many of the considerations for programs that have been compiled with RES

now apply to the NORES applications that you have link-edited with Language
Environment (as indicated with the “NORES Linked” category of the margin
icon at the beginning of each section in Chapter 5 and Chapter 6).

v Additional Language Environment services are available. For example, if you
want to get a report of storage used by your program:
– Before link-editing the NORES application with Language Environment,

Language Environment was not initialized. You could not generate a storage
report.

– After link-editing the NORES application with Language Environment,
Language Environment is initialized. You can now request a storage report by
specifying the RPTSTG run-time option.

v Performance will be impacted.

Applications comprised of RES programs
When you link-edit an application comprised of RES programs with Language
Environment, it will still have RES behavior.

VS COBOL II RES programs that are link-edited with Language Environment are
enabled to use the Language Environment application-specific run-time options
CSECT, CEEUOPT. Because IGZEOPT and CEEUOPT can exist in the same
application, see Table 24 on page 81 for details on which method will be in effect.

Link-editing with Language Environment

106 COBOL Migration Guide

Chapter 9. Upgrading Language Environment release levels

Language Environment provides general object and load module compatibility for
applications that ran with a previous release of Language Environment. In the
following cases however, you must either relink or recompile when upgrading to
specific Language Environment release levels:
v Change in behavior for DATA(31) programs under OS/390 Version 2 Release 9

or later
v Missing CEEDUMP for applications with assembler programs that use the

DUMP macro under OS/390 Version 2 Release 8
v Change in file handling for COBOL programs with RECORDING MODE U

under OS/390 Version 2 Release 10
v Calling between assembler and COBOL programs with different AMODEs under

OS/390 Version 2 Release 9 or later
v Referencing symbolic feedback tokens

Change in behavior for DATA(31) programs under OS/390 Version 2
Release 9 or later

Although users requested WORKING-STORAGE and parameter lists above the
16-MB line with the DATA(31) compiler option, there were cases in which storage
was acquired from below the 16-MB line under Language Environment for OS/390
Version 2 Release 8 or earlier. If these programs dynamically call AMODE 24
programs, then moving from Language Environment for OS/390 Version 2 Release
8 or earlier to Language Environment for OS/390 Version 2 Release 9 or later will
now result in run-time error message IGZ0033S.

Under Language Environment for OS/390 Version 2 Release 8 or earlier,
WORKING-STORAGE for COBOL programs compiled with DATA(31) was
acquired from a HEAP segment that was allocated from BELOW storage. Under
Language Environment for OS/390 Version 2 Release 9 or later,
WORKING-STORAGE for COBOL programs compiled with DATA(31) is acquired
from a HEAP segment that is allocated from ANYWHERE storage (which can be
above or below the 16-MB line). Consider the following examples where this
change will impact an application:
v A previous HEAP request in an enclave must specifically request HEAP storage

below the 16-MB line. For example, a DATA(24) COBOL program that requested
this type of HEAP storage caused the Language Environment heap manager to
allocate a HEAP segment from BELOW storage.

v A subsequent DATA(31) COBOL program must request HEAP storage that can
be satisfied in a HEAP segment allocated from BELOW storage. In order for this
to occur, the WORKING-STORAGE can not be very large.

When a DATA(31) COBOL program runs under Language Environment for
OS/390 Version 2 Release 8 or earlier, the HEAP is acquired from BELOW storage.
When the same program runs under Language Environment for OS/390 Version 2
Release 9 or later, the HEAP is acquired from ANYWHERE storage.

If a call is made to an AMODE 24 program, the following considerations apply
under Language Environment for OS/390 Version 2 Release 9 or later:
v If the call is a COBOL dynamic call to an AMODE 24 program, run-time error

message IGZ0033S will occur.

© Copyright IBM Corp. 1991, 2001 107

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

v If the call to the AMODE 24 program is called using any method other than a
COBOL dynamic call, an addressing exception can occur when the program
attempts to access the data passed.

Missing CEEDUMP for applications with assembler programs that use
the DUMP macro under OS/390 Version 2 Release 8

The following section applies when you are moving from:
v Language Environment for OS/390 Version 2 Release 7 or earlier to Language

Environment for OS/390 Version 2 Release 8 or later with the PTFs for APAR
PQ38656 applied, or

v Language Environment for OS/390 Version 2 Release 7 or earlier to Language
Environment for z/OS

Assembler programs that use the ABEND macro will not trigger CEEDUMP unless
they use the DUMP parameter (ABEND, DUMP). Previous Language Environment
releases would get a CEEDUMP with or without the DUMP parameter. NODUMP
is the default for the DUMP macro. This change was introduced to Language
Environment for OS/390 Version 2 Releases 8, 9, and 10 with APAR PQ38656.

Change in file handling for COBOL programs with RECORDING MODE
U under OS/390 Version 2 Release 10

When you move from Language Environment for OS/390 Version 2 Release 9 or
earlier to Language Environment for OS/390 Version 2 Release 10 or Language
Environment for z/OS, COBOL programs that process RECFM=VB data sets with
RECORDING MODE U might work differently. If the application program reads a
RECFM=VB data set as RECORDING MODE U and it needs to receive an
individual record rather than the entire block, the application might require some
modification to work correctly. This combination created a mismatch that
coincidentally worked in some cases under Language Environment for OS/390
Version 2 Release 9 or earlier, and some applications exploited this behavior.
Programs compiled with CMPR2 do not have this problem, but compiling with
NOCMPR2 might require the JCL modifications described in the following section.

To determine if this problem is present in your applications, search for
RECORDING MODE U in your source programs. If you do not find references to
RECORDING MODE U, the chances that you will run into this problem are
minimal. However, if you do have programs that use RECORDING MODE U, you
need to view the DD statement and maybe the data set attributes for the file.
v If the DD statement for the file defined as RECORDING MODE U contains

RECFM=U, the application will probably not require any modification to run
under Language Environment for OS/390 Version 2 Release 10 or Language
Environment for z/OS. The JCL RECFM=U will override the data set label so
that the source program and attributes that are used to open the file will be
consistent.

v If the DD statement for the file defined as RECORDING MODE U contains
RECFM=VB (V, F, or FB also apply), you must modify the application before it
will run under Language Environment for OS/390 Version 2 Release 10 or
Language Environment for z/OS.

v If the DD statement for the file defined as RECORDING MODE U does not
contain any RECFM= specification, you need to view the data set attributes. If

108 COBOL Migration Guide

|
|
|

|
|

|

|

|
|
|

|
|

|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

the RECFM for the data set is not RECFM=U, you must modify the application
before it will run under Language Environment for OS/390 Version 2 Release 10
or Language Environment for z/OS.

Your changes must ensure that the RECORDING MODE of the file is consistent
with the RECFM of the data set when the file is opened. Following are your
options for modifying your applications:
v You can modify your source to use RECORDING MODE V and format 3 of the

RECORD clause ″RECORD IS VARYING FROM n TO nn DEPENDING ON
data-name-1″ in order to process variable-length records. A read done from a file
that was defined using this record clause would receive the length of the record
that was just read in data-name-1.

v You can continue to process the file as RECORDING MODE U, but you must
ensure that the format of the data set is RECFM=U. To set this format, you can
use a JCL override of the true RECFM or define format U as the true RECFM for
the data set. Before using this option, you must verify that your application can
correctly process the records that are returned with true format U processing.

In true format U processing, each read from the file receives an entire block
(because format U records are written so that each block is a single record) which
will be passed back to the application. If the data set is variable blocked
(RECFM=VB) or fixed blocked (RECFM=FB), the block that is returned to the
application will consist of multiple records that must be deblocked by the
application.

A mismatch between the RECORDING MODE of the file and RECFM of the data
set can also exist when RECORDING MODE V or F is coded in your COBOL
source and the data set is RECFM=U. Although this coding might currently work,
it is recommended that the RECORDING MODE and RECFM are changed to
match. In the future, changes to Language Environment might cause your
applications with a mismatch between the RECORDING MODE for the file and the
RECFM for the data set to fail.

Calling between assembler and COBOL under OS/390 Version 2
Release 9 or later

Changes were made in Language Environment for OS/390 Version 2 Release 9 that
affect the AMODE upon return from a COBOL program to an assembler program.
The changes were made in response to the problem reported in APAR PQ05151.
The changes make Language Environment behave like the VS COBOL II run time,
and provide consistent behavior regardless of the compiler used to compile the
COBOL programs.

The change in behavior affects calls from assembler to COBOL only when there is
a mode switch from AMODE 31 to AMODE 24 or from AMODE 24 to AMODE 31.

With Language Environment for OS/390 Version 2 Release 8 or earlier, the
behavior for CALL statements between COBOL and assembler is as follows:
v When a VS COBOL II or COBOL/370 subprogram returns to an assembler

program caller, the AMODE is set based on the high-order bit in the R14 slot of
the assembler program’s save area. If the bit is on, control is returned in
AMODE 31; otherwise control is returned in AMODE 24.

Chapter 9. Upgrading Language Environment release levels 109

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

v When an OS/VS COBOL, COBOL for MVS & VM, or COBOL for OS/390 & VM
subprogram returns to an assembler program caller, the AMODE is set to the
same AMODE that was in effect when the COBOL program was entered.

v When you use the COBOL reusable environment (RTEREUS, IGZERRE, or
ILBOSTP0), and a COBOL program that is called by an assembler driver returns
control to the assembler driver, the AMODE is set based on the high-order bit in
the R14 slot of the assembler driver’s save area. If the bit is on, control is
returned in AMODE 31; otherwise control is returned in AMODE 24.

With Language Environment for OS/390 Version 2 Release 9 and later, the
behavior for CALL statements between COBOL and assembler is as follows:
v When a COBOL subprogram returns to an assembler program caller, the

AMODE is set to the same AMODE that was in effect when the COBOL
program was entered. Note that the behavior is the same regardless of which
compiler was used.

v When you use the COBOL reusable environment (RTEREUS, IGZERRE, or
ILBOSTP0), and a COBOL program that is called by an assembler driver returns
control to the assembler driver, the AMODE is set to the same AMODE that was
in effect when the COBOL program was entered.

Referencing symbolic feedback tokens
Between Language Environment Release 3 and Release 4, changes were made to 11
condition tokens in CEEIGZCT. If your programs reference any of the following
changed symbolic feedback tokens in CEEIGZCT you must recompile the
programs when upgrading to Language Environment Release 4 or later:

CEE36U
CEE36V
CEE37O
CEE371

CEE372
CEE373
CEE374
CEE375

CEE58Q
CEE58R
CEE58S

110 COBOL Migration Guide

Part 4. Upgrading source programs

© Copyright IBM Corp. 1991, 2001 111

112 COBOL Migration Guide

Chapter 10. Upgrading OS/VS COBOL source programs

This chapter describes the differences between the OS/VS COBOL language and
the Enterprise COBOL language. The information in this chapter will also help you
evaluate, from a language standpoint, which COBOL applications are good
candidates for upgrading to Enterprise COBOL.

Future considerations
OS/VS COBOL programs running under CICS require special support from
the CICS product to run and support from Language Environment. In the
CICS TS (Transaction Server) release that follows CICS TS Version 2 Release 2,
this special support will not be available. OS/VS COBOL programs will not
run under CICS after CICS TS 2.2 even with Language Environment as their
COBOL run-time library. You must upgrade any OS/VS COBOL programs
that run under CICS to Enterprise COBOL as soon as possible.

Enterprise COBOL provides COBOL 85 Standard support. When upgrading your
OS/VS COBOL programs to Enterprise COBOL, you must convert them to 85
Standard programs in order to compile them with Enterprise COBOL.

This chapter is not intended to be a syntax guide. You can find complete
descriptions and coding rules for the relevant COBOL language elements in:
v VS COBOL for OS/VS Reference GC26-3857-04
v Enterprise COBOL Language Reference SC27-1408

Note: VS COBOL for OS/VS Reference is no longer available from IBM.

Notes:

1. There are special considerations for new, changed, or unsupported language
elements when you are running under CICS. For details, see “Chapter 17. CICS
conversion considerations for COBOL source” on page 207.

2. In the following sections, any reference to COBOL 68 Standard is a reference to
the COBOL language supported by IBM Full American National Standard
COBOL, Version 4 (Program 5734-CB2), or to LANGLVL(1) of OS/VS COBOL
(Program 5740-CB1).

3. The information provided in this chapter, and throughout this manual, is
intended for OS/VS COBOL Release 2.4, with the latest service updates
applied.

Comparing OS/VS COBOL to Enterprise COBOL
OS/VS COBOL supported the COBOL 68 Standard (LANGLVL(1)) and the COBOL
74 Standard (LANGLVL(2)). Enterprise COBOL supports the COBOL 85 Standard.
In addition to the language differences between the COBOL 74 Standard and
Enterprise COBOL, your OS/VS COBOL programs might contain undocumented
OS/VS COBOL extensions.

© Copyright IBM Corp. 1991, 2001 113

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

Language elements that require change—quick reference
Table 29 lists the language elements different in OS/VS COBOL and Enterprise
COBOL. This table also lists conversion tools, if any, available to automate the
conversion.

The language items listed below are described in detail throughout this chapter,
and are classified and ordered according to the following categories:
v OS/VS COBOL language elements requiring other products
v OS/VS COBOL language elements not supported
v OS/VS COBOL language elements implemented differently
v Undocumented OS/VS COBOL extensions not supported

Table 29. Language element differences between OS/VS COBOL and Enterprise COBOL

Language element Conversion tool Page

Abbreviated combined relation conditions 128

ACCEPT statement 129

ALPHABETIC class changes CCCA 137

ALPHABET clause changes—ALPHABET key word CCCA 137

Area A, periods in CCCA 133

Arithmetic statement changes 137

ASSIGN . . . OR CCCA 121

ASSIGN TO integer system-name CCCA 121

ASSIGN . . . FOR MULTIPLE REEL /UNIT CCCA 121

ASSIGN clause changes—assignment-name forms CCCA 137

B symbol in PICTURE clause—changes in evaluation 138

BDAM file handling CCCA1 120

BLANK WHEN ZERO clause and asterisk (*) override 129

CALL identifier statement—B symbol in PICTURE clause 138

CALL statement changes—procedure names and file names in USING phrase 138

CANCEL statement—B symbol in PICTURE clause 138

CLOSE . . . FOR REMOVAL statement 129

CLOSE statement—WITH POSITIONING, DISP phrases CCCA 121

Combined abbreviated relation condition changes CCCA 139

Comparing group to numeric packed-decimal item 129

COPY statement with associated names CCCA 140

Communication feature 121

CURRENCY-SIGN clause changes—’/’, ’=’, and ’L’ characters 140

CURRENT-DATE special register CCCA 122

DIVIDE . . . ON SIZE ERROR—change in intermediate results 146

Dynamic CALL statements when running on CICS 130

Dynamic CALL statements to programs with alternate entry points without an
intervening CANCEL

141

EXAMINE statement CCCA 122

EXHIBIT statement CCCA 123

EXIT PROGRAM/GOBACK statement changes 141

Modifying OS/VS COBOL programs

114 COBOL Migration Guide

Table 29. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

FILE STATUS clause changes CCCA 141

FILE-LIMIT clause of the FILE-CONTROL paragraph CCCA 124

Flow of control, no terminating statement 130

FOR MULTIPLE REEL /UNIT CCCA 121

GIVING phrase of USE AFTER STANDARD ERROR declarative CCCA 124

IF . . . OTHERWISE statement changes CCCA 143

Index names—nonunique 130

INSPECT statement—PROGRAM COLLATING SEQUENCE clause 147

IS as an optional word 146

ISAM file handling CCCA 119

JUSTIFIED clause changes CCCA 143

LABEL RECORDS clause with TOTALING/TOTALED AREA CCCA 124

LABEL RECORD IS statement 130

MOVE statement—binary value and DISPLAY value 130

MOVE statements and comparisons—scaling changes 144

MOVE CORRESPONDING statement CCCA 131

MOVE statement—multiple TO specification 131

MOVE ALL—TO PIC 99 132

MOVE statement—warning message for numeric truncation 132

MULTIPLY ... ON SIZE ERROR—change in intermediate results 146

Nonunique program-ID names CCCA 133

NOTE statement CCCA 125

Numeric class test on group items 144

Numeric data changes 144

Numeric-editing changes (PICTURE clause) 133

OCCURS clause (order of phrases) 132

OCCURS DEPENDING ON—ASCENDING and DESCENDING KEY phrases 145

OCCURS DEPENDING ON—value for receiving items changed CCCA 145

ON statement CCCA 125

ON SIZE ERROR phrase—changes in intermediate results 146

OPEN statement failing for QSAM files (file status 39) 125

OPEN statement failing for VSAM files (file status 39) 125

OPEN statement with LEAVE, REREAD, and DISP phrases CCCA 126

OPEN REVERSED statement 132

OTHERWISE clause changes 143

Paragraph names not allowed as parameters 138

PERFORM statement—changes in the VARYING and AFTER phrases 146

PERFORM statement—second UNTIL 132

Periods, consecutive in any division 133

Periods in Area A CCCA 133

Modifying OS/VS COBOL programs

Chapter 10. Upgrading OS/VS COBOL source programs 115

Table 29. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

Periods missing on paragraphs CCCA 133

Periods missing at the end of SD, FD, or RD 133

PICTURE clause (numeric-editing changes) 133

PROGRAM COLLATING SEQUENCE clause changes 147

Program-ID names, nonunique CCCA 133

Qualification - using the same phrase repeatedly 134

READ statement - redefined record keys in the KEY phrase 134

READ and RETURN statement changes—INTO phrase 147

READY TRACE and RESET TRACE statements CCCA 126

RECORD CONTAINS n CHARACTERS clause 134

RECORD KEY phrase and ALTERNATE RECORD KEY phrase 134

REDEFINES clause in SD or FD entries CCCA 134

REDEFINES clause with tables 134

Relation conditions CCCA 135

REMARKS paragraph CCCA 127

RENAMES clause—nonunique, nonqualified data names 135

Report Writer statements Report Writer
Precompiler

118

RERUN clause changes 147

RESERVE clause changes CCCA 147

Reserved word list changes CCCA 148

SEARCH statement changes CCCA 148

Segmentation changes—PERFORM statement in independent segments 148

SELECT statement without a corresponding FD 135

SELECT OPTIONAL clause changes CCCA 149

SORT special registers 149

SORT verb 135

SORT or MERGE 135

Source language debugging changes 149

START . . . USING KEY statement CCCA 127

STRING statement—PROGRAM COLLATING SEQUENCE clause 147

STRING statement—sending field identifier 136

Subscripts out of range—flagged at compile-time 150

THEN as a statement connector CCCA 127

TIME-OF-DAY special register CCCA 127

TOTALING/TOTALED AREA phrases in LABEL RECORDS clause CCCA 124

TRANSFORM statement CCCA 128

UNSTRING statement—PROGRAM COLLATING SEQUENCE clause 147

UNSTRING statement—coding with ’OR’, ’IS’, or a numeric edited item CCCA 136

UNSTRING statement—multiple INTO phrases 136

Modifying OS/VS COBOL programs

116 COBOL Migration Guide

Table 29. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

UNSTRING statements—subscript evaluation changes 150

UPSI switches CCCA 151

USE AFTER STANDARD ERROR—GIVING phrase CCCA 124

USE BEFORE STANDARD LABEL statement CCCA 128

VALUE clause—signed value in relation to the PICTURE clause CCCA 136

VALUE clause—condition names CCCA 151

WHEN-COMPILED special register CCCA 152

WRITE AFTER POSITIONING statement CCCA 152

Note:

1. This is a partial conversion for handling BDAM files.

Using conversion tools to convert programs to COBOL 85 Standard
To help you make changes needed when upgrading to Enterprise COBOL you can
use any of the following:
v The COBOL conversion tool (CCCA)
v The OS/VS COBOL MIGR compiler option
v This Migration Guide

A brief description of these conversion tools follows. See “Appendix C. Conversion
tools for source programs” on page 259 for additional information.

Note: Non-IBM tools are also available to help automate the conversion to the
COBOL 85 Standard. For details, see “Vendor products” on page 266.

COBOL Conversion Tool (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA) is not for
CICS only; it converts any old COBOL to Enterprise COBOL. The CCCA provides
you with either a report of the statements that need to be changed or the actual
converted program itself.

For details, see “COBOL and CICS/VS Command Level Conversion Aid (CCCA)”
on page 263 and the COBOL and CICS/VS Command Level Conversion Aid Program

Description and Operations Manual.

OS/VS COBOL MIGR compiler option
The OS/VS COBOL MIGR compiler option flags most statements in an OS/VS
COBOL program that are not supported or are changed in Enterprise COBOL. The
MIGR compiler option allows you to analyze the conversion effort, and helps you
identify required changes, without purchasing any conversion tools. Thus, for each
of your programs, even before conversion, you can get a good idea of how much
conversion effort will be required.

“MIGR compiler option” on page 259 lists the items flagged by MIGR. A complete
description of MIGR-flagged items is included in Appendix H of IBM VS COBOL
for OS/VS.

Modifying OS/VS COBOL programs

Chapter 10. Upgrading OS/VS COBOL source programs 117

|

CMPR2 and FLAGMIG compiler options

Important
The CMPR2/NOCMPR2 compiler option is no longer supported in Enterprise
COBOL. Programs compiled with Enterprise COBOL behave as if NOCMPR2
is always in effect.

To identify OS/VS COBOL and VS COBOL II Release 2 statements that are either
not supported or changed in Enterprise COBOL, use the FLAGMIG compiler
option together with the CMPR2 compiler option and a previous release of a
COBOL compiler such as IBM COBOL. By compiling existing application programs
with CMPR2 and FLAGMIG using an older compiler, you can identify some of the
source language that needs modification in order to compile with Enterprise
COBOL.

Language elements that require other products for support
Although some OS/VS COBOL language elements are not supported in Enterprise
COBOL, you can get equivalent function by using other products.

Report Writer
The Report Writer feature is supported through use of the Report Writer
Precompiler. In order for existing Report Writer code to work with Enterprise
COBOL, you have the following considerations:

Keep existing Report Writer code and use the Report Writer
Precompiler
When you recompile existing Report Writer applications (or newly written
applications) with the Report Writer Precompiler, and use the output as input to
the Enterprise COBOL compiler, your Report Writer applications can run above the
16-MB line. Through Enterprise COBOL, you can also extend their processing
capabilities.

This method requires the use of both the Report Writer Precompiler and the
Enterprise COBOL compiler.

Convert existing Report Writer code using the Report Writer
Precompiler
If you permanently convert Report Writer code to non-Report Writer code, you can
stop using the Report Writer Precompiler and just use the Enterprise COBOL
compiler. However, this might produce hard-to-maintain COBOL code.

When converting Report Writer code to non-Report Writer code, the Precompiler
generates variable names and paragraph names. These names might not be
meaningful, and thus hard to identify when attempting to make changes to the
program after the conversion. You can change the names to be meaningful, but this
might be difficult and time consuming.

Run existing OS/VS COBOL-compiled Report Writer programs
under Language Environment
You can run existing OS/VS COBOL Report Writer applications using Language
Environment without compiling with Enterprise COBOL. For details on running
existing OS/VS COBOL programs using the Language Environment run-time
library, see “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63. To

Modifying OS/VS COBOL programs

118 COBOL Migration Guide

|
|
|

|
|
|
|
|
|
|

compile OS/VS COBOL applications with Report Writer statements, you must
continue to use the OS/VS COBOL compiler.

OS/VS COBOL Report Writer programs will not run above the 16-MB line.

Report Writer language items affected
The following Report Writer language items are no longer accepted by Enterprise
COBOL:

GENERATE statement
INITIATE statement
LINE-COUNTER special register
Nonnumeric literal IS mnemonic-name
PAGE-COUNTER special register
PRINT-SWITCH special register
REPORT clause of FD entry
REPORT SECTION
TERMINATE statement
USE BEFORE REPORTING declarative

The Report Writer Precompiler is described in “Appendix C. Conversion tools for
source programs” on page 259

Language elements that are no longer implemented
The following OS/VS COBOL language elements are not supported by Enterprise
COBOL:
v ISAM file handling
v BDAM file handling
v Communication feature

With Enterprise COBOL, support for most of the COBOL 68 Standard language
elements has been removed. There are also miscellaneous OS/VS COBOL language
items that are not implemented in Enterprise COBOL.

The language elements affected and the conversion actions that you can perform
are documented in the following sections. There is a brief description of each item,
plus conversion suggestions and, where helpful, coding examples.

ISAM file handling
Enterprise COBOL does not support the processing of ISAM files. Convert any
ISAM files to virtual storage access method/keyed sequential data set
(VSAM/KSDS) files.

ISAM file handling language items affected
The following ISAM language items are no longer accepted by Enterprise COBOL:

APPLY CORE-INDEX
APPLY REORG-CRITERIA
File declarations for ISAM files
NOMINAL KEY clause
Organization parameter I
TRACK-AREA clause
USING KEY clause of START statement

Automated conversion options: Two conversion tools can help you convert ISAM
files to VSAM/KSDS files. You can use either IDCAMS REPRO or CCCA,

Language elements requiring other products

Chapter 10. Upgrading OS/VS COBOL source programs 119

depending on the design of your application. The IDCAMS REPRO facility will
perform the conversion unless the file has a hardware dependency.

The COBOL conversion tool (CCCA) can automatically convert the file definition
and I/O statements from your ISAM COBOL language to VSAM/KSDS COBOL
language. The CCCA conversion tool is described in “Appendix C. Conversion
tools for source programs” on page 259.

Manual conversion actions: If the design of your application makes it impossible
to convert to VSAM, you can restructure the application to separate the ISAM
statements into an I/O program that can be compiled by the OS/VS COBOL
compiler. You can then separate the rest of the application logic into programs that
can be upgraded to Enterprise COBOL.

You can then run your application consisting of both OS/VS COBOL programs
and Enterprise COBOL programs under Language Environment. For details on
running existing programs under Language Environment, see:

“Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
“Chapter 18. Adding Enterprise COBOL programs to existing COBOL
applications” on page 219

Note: This method is presented only as a short-term migration path. Because
OS/VS COBOL is no longer in service, you should rewrite your programs to
eliminate the dependency on OS/VS COBOL and ISAM. (If you do not
mind using an unsupported compiler, this method can still work for you.)

BDAM file handling
Enterprise COBOL does not support the processing of BDAM files. Convert any
BDAM files to virtual storage access method/relative record data set
(VSAM/RRDS) files.

BDAM file handling language items affected
The following BDAM language items are no longer accepted by Enterprise
COBOL:

ACTUAL KEY clause
APPLY RECORD-OVERFLOW
File declarations for BDAM files
Organization parameters D, R, W
SEEK statement
TRACK-LIMIT clause

Automated conversion options: The COBOL conversion tool (CCCA) can
automatically convert your BDAM COBOL language to VSAM/RRDS COBOL
language, however, you must provide the key algorithm. The CCCA conversion
tool is described in “Appendix C. Conversion tools for source programs” on
page 259.

Non-IBM tools are also available to convert a BDAM file to a VSAM/RRDS file.
For details, see “Vendor products” on page 266.

Manual conversion actions: If the design of your application makes it impossible
to convert to VSAM, you can restructure the application to separate the BDAM
statements into an I/O program that can be compiled by the OS/VS COBOL
compiler. You can then separate the rest of the application logic into programs that
can be upgraded to Enterprise COBOL.

Language elements not implemented

120 COBOL Migration Guide

After this separation is complete, your application consisting of both OS/VS
COBOL programs and Enterprise COBOL programs will run under Language
Environment. For details on running existing programs under Language
Environment, see:
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
v “Chapter 18. Adding Enterprise COBOL programs to existing COBOL

applications” on page 219

Note: This method is presented only as a short-term migration path. Because
OS/VS COBOL is no longer in service, you should rewrite your programs to
eliminate the dependency on OS/VS COBOL and BDAM. (If you do not
mind using an unsupported compiler, this method can still work for you.)

Communication feature
The Communication feature is not supported by Enterprise COBOL.

Communication language items affected
The following communication language items are not accepted by Enterprise
COBOL:

ACCEPT MESSAGE COUNT statement
COMMUNICATION SECTION
DISABLE statement
ENABLE statement
RECEIVE statement
SEND statement

Communication conversion actions
Existing TCAM applications that use the OS/VS COBOL SEND and RECEIVE
statements run under Language Environment with one exception: the QUEUE
run-time option of OS/VS COBOL is not supported. (The QUEUE run-time option
is used only in an OS/VS COBOL program with a RECEIVE statement in a CD . . .
FOR INITIAL INPUT.)

For more information, see IBM VS COBOL for OS/VS, and IBM OS/VS COBOL
Compiler and Library Programmer’s Guide.

Language elements that are not supported
Enterprise COBOL does not support the following OS/VS COBOL language
elements. When upgrading to Enterprise COBOL, you must either remove or alter
these items as indicated in the following descriptions:

ASSIGN . . . OR
OS/VS COBOL accepted the ASSIGN ... OR clause. To use this clause
under Enterprise COBOL, you must remove the OR.

ASSIGN TO integer system-name
OS/VS COBOL accepted the ASSIGN TO integer system-name clause. To use
this clause under Enterprise COBOL, you must remove the integer.

ASSIGN . . . FOR MULTIPLE REEL/UNIT
OS/VS COBOL accepted the ASSIGN ... FOR MULTIPLE REEL/UNIT
phrase, and treated it as documentation. Enterprise COBOL does not
support this phrase.

CLOSE statement—WITH POSITIONING, DISP phrases
OS/VS COBOL accepted the WITH POSITIONING and DISP phrases of

Language elements not implemented

Chapter 10. Upgrading OS/VS COBOL source programs 121

the CLOSE statement provided as IBM extensions in OS/VS COBOL. In
Enterprise COBOL, these phrases are not accepted.

CURRENT-DATE special register
OS/VS COBOL accepted the CURRENT-DATE special register. It is valid
only as the sending field in a MOVE statement. CURRENT-DATE has the
8-byte alphanumeric format:
MM/DD/YY (month, day, year)

Enterprise COBOL supports the DATE special register. It is valid only as
the sending field in an ACCEPT statement. DATE has the 6-byte
alphanumeric format:
YYMMDD (year, month, day)

Therefore, you must change an OS/VS COBOL program with statements
similar to the following:
77 DATE-IN-PROGRAM PICTURE X(8)...

MOVE CURRENT-DATE TO DATE-IN-PROGRAM.

An example of one way to change it, keeping the two-digit year format, is
as follows:
01 DATE-IN-PROGRAM.

02 MONTH-OF-YEAR PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(02).

01 ACCEPT-DATE.
02 YEAR PIC X(02).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02)....

ACCEPT ACCEPT-DATE FROM DATE.
MOVE CORRESPONDING ACCEPT-DATE TO DATE-IN-PROGRAM.

An example of how to change it and specify a four-digit year is as follows:
01 DATE-IN-PROGRAM.

02 MONTH-OF-YEAR PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(04).

01 CURRENT-DATE.
02 YEAR PIC X(04).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02)....

MOVE FUNCTION CURRENT-DATE(1:8) TO CURRENT-DATE.
MOVE CORRESPONDING CURRENT-DATE TO DATE-IN-PROGRAM.

EXAMINE statement
OS/VS COBOL accepted the EXAMINE statement; Enterprise COBOL does
not.

Unsupported OS/VS COBOL language elements

122 COBOL Migration Guide

Therefore, if your OS/VS COBOL program contains coding similar to the
following:
EXAMINE DATA-LENGTH TALLYING UNTIL FIRST " "

Replace it in Enterprise COBOL with:
MOVE 0 TO TALLY
INSPECT DATA-LENGTH TALLYING TALLY FOR CHARACTERS BEFORE " "

You can continue to use the TALLY special register wherever you can
specify a WORKING-STORAGE elementary data item of integer value.

EXHIBIT statement
OS/VS COBOL accepted the EXHIBIT statement; Enterprise COBOL does
not.

With Enterprise COBOL, you can use DISPLAY statements to replace
EXHIBIT statements. However, the DISPLAY statement does not perform
all the functions of the EXHIBIT statement.

Corrective action for EXHIBIT NAMED
You can replace the EXHIBIT NAMED statement directly with a DISPLAY
statement:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

. .

. .
EXHIBIT NAMED DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1

"DAT-2 = " DAT-2

Corrective action for EXHIBIT CHANGED
You can replace the EXHIBIT CHANGED statement with IF and DISPLAY
statements, as follows:
1. Specify an IF statement to discover if the new value of the data item is

different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

. .

. .

. .
EXHIBIT CHANGED DAT-1 DAT-2 IF DAT-1 NOT EQUAL TO DAT1-CMP

DISPLAY DAT-1
END-IF
IF DAT-2 NOT EQUAL TO DAT2-CMP

DISPLAY DAT-2
END-IF
MOVE DAT-1 TO DAT1-CMP
MOVE DAT-2 TO DAT2-CMP

Unsupported OS/VS COBOL language elements

Chapter 10. Upgrading OS/VS COBOL source programs 123

Corrective action for EXHIBIT CHANGED NAMED
You can replace the EXHIBIT CHANGED NAMED statement with IF and
DISPLAY statements, as follows:
1. Specify an IF statement to discover if the new value of the data item is

different from the old.
2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

. .

. .

. .
EXHIBIT CHANGED NAMED IF DAT-1 NOT EQUAL TO DAT1-CMP

DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1
END-IF
IF DAT-2 NOT EQUAL TO DAT2-CMP

DISPLAY "DAT-2 = " DAT-2
END-IF
MOVE DAT-1 TO DAT1-CMP
MOVE DAT-2 TO DAT2-CMP

FILE-LIMIT clause of the FILE-CONTROL paragraph
OS/VS COBOL accepted the FILE-LIMIT clause and treats it as a comment;
Enterprise COBOL does not. Therefore, you must remove any occurrences
of the FILE-LIMIT clause.

GIVING phrase of USE AFTER STANDARD ERROR declarative
In OS/VS COBOL, you could specify the GIVING phrase of the USE
AFTER STANDARD ERROR declarative. Enterprise COBOL does not
support this phrase. Therefore, you must remove any occurrences of the
GIVING phrase of the USE AFTER STANDARD ERROR declarative.

Use the FILE-CONTROL FILE STATUS clause to replace the GIVING
phrase. The FILE STATUS clause gives you information after each I/O
request, rather than only after an error occurs.

LABEL RECORDS clause with TOTALING/TOTALED AREA phrases
OS/VS COBOL allowed the TOTALING and TOTALED phrases of the
LABEL RECORDS clause.

Enterprise COBOL does not support these phrases. Therefore, you must
remove any occurrences of the TOTALING/TOTALED phrases from the
LABEL RECORDS clause. Also check the variables associated with these
phrases.

To receive similar functions with Enterprise COBOL, you must:
v Remove references to TOTALING or TOTALED from the LABEL

RECORDS clause of the FD. Define equivalent fields in
WORKING-STORAGE.
In the equivalent fields, save any key or record data (for TOTALED
AREA) or update and save any record count (for TOTALING AREA)
before each WRITE to the file (this reflects the last record actually
written to particular volume). Do not save this counter in the record area
of the FD.

Unsupported OS/VS COBOL language elements

124 COBOL Migration Guide

v Include “RESERVE 1 AREA” in the SELECT clause.
v Allow for only one record per block in either the FD or the overriding

JCL.
v Include:

DECLARATIVES.
USE AFTER STANDARD ENDING FILE (or REEL)

LABEL PROCEDURE ON filename.

Then, either format labels for OUTPUT files or save any data from
INPUT file labels (AFTER STANDARD BEGINNING).

v Specify the NOAWO compiler option.
v Do not specify the DD DCB option OPTCD=T. It is not supported and

results are unpredictable.

NOTE statement
OS/VS COBOL accepted the NOTE statement. Enterprise COBOL does not
accept the NOTE statement. Therefore, for Enterprise COBOL delete all
NOTE statements and use comment lines instead for the entire NOTE
paragraph.

ON statement
OS/VS COBOL accepted the ON statement. Enterprise COBOL does not
accept the ON statement.

The ON statement allows selective execution of statements it contains.
Similar functions are provided in Enterprise COBOL by the EVALUATE
statement and the IF statement.

OPEN statement failing for QSAM files (file status 39)
In OS/VS COBOL, the fixed file attributes for QSAM files did not need to
match your COBOL program or JCL. In Enterprise COBOL, if the following
do not match, an OPEN statement in your program might not execute
successfully:
v The fixed file attributes specified in the DD statement or the data set

label for a file
v The attributes specified for that file in the SELECT and FD statements of

your COBOL program

Mismatches in the attributes for file organization, record format (fixed or
variable), the code set, or record length result in a file status code 39, and
the OPEN statement fails.

To prevent common file status 39 problems, see “Appendix H. Preventing
file status 39 for QSAM files” on page 301.

OPEN statement failing for VSAM files (file status 39)
In OS/VS COBOL, the RECORDSIZE defined in your VSAM files
associated with IDCAMS was not required to match your COBOL
program. In Enterprise COBOL they must match. The following rules
apply to VSAM ESDS, KSDS, RRDS, and VRRDS file definitions:

Table 30. Rules for VSAM file definitions

File type Rules

ESDS and
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the
COBOL records, and is strictly less then m; m is greater than or equal
to the maximum size of a COBOL record.

Unsupported OS/VS COBOL language elements

Chapter 10. Upgrading OS/VS COBOL source programs 125

Table 30. Rules for VSAM file definitions (continued)

File type Rules

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the
maximum size of a COBOL record.

VRRDS using
KSDS VSAM

RECORDSIZE(avg,m) is specified where avg is the average size of the
COBOL records, and is strictly less than m; m is greater than or equal
to the maximum size of a COBOL record + 4.

OPEN statement with the LEAVE, REREAD, and DISP phrases
OS/VS COBOL allowed the OPEN statement with the LEAVE, REREAD
and DISP phrases. Enterprise COBOL does not allow these phrases.

To replace the REREAD function, define a copy of your input records in
the WORKING-STORAGE SECTION and move each record into
WORKING-STORAGE after it is read.

READY TRACE and RESET TRACE statements
OS/VS COBOL allowed the READY TRACE and RESET TRACE
statements. Enterprise COBOL does not support these statements.

To get function similar to the READY TRACE statement, you can use either
Debug Tool, or the COBOL language available in the Enterprise COBOL
compiler.

If you use Debug Tool, compile your program with the TEST(ALL,SYM)
option and use the following Debug Tool command:
"AT GLOBAL LABEL PERFORM;
LIST LINES %LINE; GO; END-PERFORM;"

If you use the COBOL language, the Enterprise COBOL USE FOR
DEBUGGING ON ALL PROCEDURES declarative can perform functions
similar to READY TRACE and RESET TRACE.

For example:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE....

DATA DIVISION....

WORKING-STORAGE SECTION.
01 TRACE-SWITCH PIC 9 VALUE 0.

88 READY-TRACE VALUE 1.
88 RESET-TRACE VALUE 0....

PROCEDURE DIVISION.
DECLARATIVES.
COBOL-II-DEBUG SECTION.

USE FOR DEBUGGING ON ALL PROCEDURES.
COBOL-II-DEBUG-PARA.

IF READY-TRACE THEN
DISPLAY DEBUG-NAME

END-IF.
END DECLARATIVES.
MAIN-PROCESSING SECTION....

Unsupported OS/VS COBOL language elements

126 COBOL Migration Guide

PARAGRAPH-3....

SET READY-TRACE TO TRUE.
PARAGRAPH-4....

PARAGRAPH-6....

SET RESET-TRACE TO TRUE.
PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that
displays the procedure-name causing execution of the debugging
procedure. (In this example, the object program displays the names of
procedures PARAGRAPH-4 through PARAGRAPH-6 as control reaches
each procedure within the range.)

At run time, you must specify PARM=/DEBUG in your EXEC statement to
activate this debugging procedure. In this way, you have no need to
recompile the program to activate or deactivate the debugging declarative.

REMARKS paragraph
OS/VS COBOL accepted the REMARKS paragraph.

Enterprise COBOL does not accept the REMARKS paragraph. As a
replacement, use comment lines beginning with an * in column 7.

START . . . USING KEY statement
OS/VS COBOL allowed the START statement with the USING KEY phrase;
Enterprise COBOL does not. In Enterprise COBOL, you can specify the
START statement with the KEY IS phrase.

THEN as a statement connector
OS/VS COBOL accepted the use of THEN as a statement connector.

The following example shows the OS/VS COBOL usage:
MOVE A TO B THEN ADD C TO D

Enterprise COBOL does not support the use of THEN as a statement
connector. Therefore, in Enterprise COBOL change it to:
MOVE A TO B
ADD C TO D

TIME-OF-DAY special register
OS/VS COBOL supported the TIME-OF-DAY special register. It was valid
only as the sending field in a MOVE statement. TIME-OF-DAY had the
following 6-byte EXTERNAL decimal format:
HHMMSS (hour, minute, second)

Enterprise COBOL does not support the TIME-OF-DAY special register.

Therefore, you must change an OS/VS COBOL program with statements
similar to the following:
77 TIME-IN-PROGRAM PICTURE X(6)....

MOVE TIME-OF-DAY TO TIME-IN-PROGRAM.

Unsupported OS/VS COBOL language elements

Chapter 10. Upgrading OS/VS COBOL source programs 127

An example of one way to change it is as follows:
MOVE FUNCTION CURRENT-DATE (9:6) TO TIME-IN-PROGRAM

Note: Neither TIME-OF-DAY nor TIME are valid under CICS.

TRANSFORM statement
OS/VS COBOL supported the TRANSFORM statement. Enterprise COBOL
does not support the TRANSFORM statement, but it does support the
INSPECT statement. Therefore, any TRANSFORM statements in your
OS/VS COBOL program must be replaced by INSPECT CONVERTING
statements.

For example, in the following OS/VS COBOL TRANSFORM statement:
77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"...

TRANSFORM DATA-T FROM "ABC" TO "CAT"

TRANSFORM evaluates each character, changing each A to C, each B to A,
and each C to T.

After the TRANSFORM statement is executed. DATA-T contains
“CATXYZTTT”.

For example, in the following INSPECT CONVERTING statement (valid
only in Enterprise COBOL):
77 DATA-T PICTURE X(9) VALUE "ABCXYZCCC"...

INSPECT DATA-T
CONVERTING "ABC" TO "CAT"

INSPECT CONVERTING evaluates each character just as TRANSFORM
does, changing each A to C, each B to A, and each C to T.

After the INSPECT CONVERTING statement is executed. DATA-T contains
“CATXYZTTT”.

USE BEFORE STANDARD LABEL
OS/VS COBOL accepted the USE BEFORE STANDARD LABEL statement;
Enterprise COBOL does not.

Therefore, you must remove any occurrences of the USE BEFORE
STANDARD LABEL statement. Enterprise COBOL does not support
nonstandard labels, so you cannot process nonstandard labeled files with
Enterprise COBOL.

Undocumented OS/VS COBOL extensions that are not supported
This section consists primarily of COBOL statements that are not flagged by the
MIGR option. These statements were accepted by the OS/VS COBOL compiler;
some are not accepted by Enterprise COBOL.

Because these language elements are undocumented extensions to OS/VS COBOL,
they are not considered to be valid OS/VS COBOL code. This list might not
contain all undocumented extensions; it includes all of the undocumented
extensions of which we are aware.

Unsupported OS/VS COBOL language elements

128 COBOL Migration Guide

Abbreviated combined relation conditions and use of parentheses
OS/VS COBOL accepted the use of parentheses within an abbreviated
combined relation condition.

Enterprise COBOL supports most parenthesis usage as IBM extensions.
However, there are two differences:
v Within the scope of an abbreviated combined relation condition,

Enterprise COBOL does not support relational operators inside
parentheses. For example:
A = B AND (< C OR D)

v Some incorrect usages of parentheses in relation conditions were
accepted by OS/VS COBOL, but are not by Enterprise COBOL. For
example:
(A = 0 AND B) = 0

ACCEPT statement
OS/VS COBOL accepted the ACCEPT statement without the keyword
FROM between the identifier and the mnemonic or function name.

Enterprise COBOL does not accept such an ACCEPT statement.

BLANK WHEN ZERO clause and asterisk (*) override
In OS/VS COBOL, if you specified the BLANK WHEN ZERO clause and
the asterisk (*) as a zero suppression symbol for the same entry, zero
suppression would override BLANK WHEN ZERO.

Enterprise COBOL does not accept these two language elements when they
are specified for the same data description entry. Thus Enterprise COBOL
must not contain instances of both the clause and the symbol in one data
description entry.

If you have specified both the BLANK WHEN ZERO clause and the
asterisk as a zero suppression symbol in your OS/VS COBOL programs, to
get the same behavior in Enterprise COBOL, remove the BLANK WHEN
ZERO clause.

CLOSE . . . FOR REMOVAL statement
OS/VS COBOL allowed the FOR REMOVAL clause for sequential files, and
it had an effect on the execution of the program. Enterprise COBOL
syntax-checks the statement but it has no effect on the execution of the
program.

Comparing group to numeric packed-decimal item
OS/VS COBOL allowed a comparison between a group and a numeric
packed-decimal item, but generated code that produced an incorrect result.

For example, the result of the comparison below is the message
"1 IS NOT > 0"

and is not the numerically correct
"1 > 0"

05 COMP-TABLE.
10 COMP-PAY PIC 9(4).
10 COMP-HRS PIC 9(3).

05 COMP-ITEM PIC S9(7) COMP-3.

PROCEDURE DIVISION.
MOVE 0 TO COMP-PAY COMP-HRS.
MOVE 1 TO COMP-ITEM.

Undocumented OS/VS COBOL extensions

Chapter 10. Upgrading OS/VS COBOL source programs 129

IF COMP-ITEM > COMP-TABLE
DISPLAY '1 > 0'

ELSE
DISPLAY '1 IS NOT > 0'.

Enterprise COBOL does not allow such a comparison.

Dynamic CALL statements when running on CICS
Although dynamic CALL statements from OS/VS COBOL programs were
never supported when running under CICS, OS/VS COBOL did not
diagnose programs that issued them.

If your OS/VS COBOL programs issue dynamic CALL statements when
running on CICS under Language Environment, the programs will abend
with abend code U3504.

Enterprise COBOL programs can use dynamic CALL statements to call
other Enterprise COBOL programs or even PL/I and C/C++ programs
under CICS.

Flow of control, no terminating statement
In OS/VS COBOL, it would be possible to link-edit an assembler program
to the end of an OS/VS COBOL program and have the flow of control go
from the end of the COBOL program to the assembler program.

In Enterprise COBOL, if you do not code a terminating statement at the
end of your program (STOP RUN or GOBACK), the program will
terminate with an implicit GOBACK. The flow of control cannot go beyond
the end of the COBOL program.

If you have programs that rely on ’falling through the end’ into another
program, change the code to a CALL interface to the other program.

Index names
OS/VS COBOL allowed the use of qualified index names.

Enterprise COBOL does not allow qualified index names; index names
must be unique if referenced.

LABEL RECORD IS statement
OS/VS COBOL accepted a LABEL RECORD clause without the word
RECORD. You could have LABEL IS OMITTED instead of LABEL
RECORD IS OMITTED.

Enterprise COBOL does not accept such a LABEL RECORD clause.

MOVE statement - binary value and DISPLAY value
Although the Enterprise COBOL TRUNC(OPT) compiler option is
recommended for compatibility with the OS/VS COBOL NOTRUNC
compiler option, you might receive different results involving moves of
fullword binary items (USAGE COMP with Picture 9(5) through Picture
9(9)).

For example:
WORKING-STORAGE SECTION.

01 WK1 USAGE COMP-4 PIC S9(9)....

PROCEDURE DIVISION....

MOVE 1234567890 to WK1
DISPLAY WK1.
GOBACK.

Undocumented OS/VS COBOL extensions

130 COBOL Migration Guide

This example actually shows COBOL coding that is not valid, since 10
digits are being moved into a 9-digit item.

For example, the results are as follows when compiled with the following
compiler options:

OS/VS COBOL NOTRUNC Enterprise COBOL TRUNC(OPT)

Binary value x’499602D2’ x’0DFB38D2’

DISPLAY value 234567890 234567890

For OS/VS COBOL, the binary value contained in the binary data item is
not the same as the DISPLAY value. The DISPLAY value is based on the
number of digits in the PICTURE clause and the binary value is based on
the size of the binary data item, in this case, 4 bytes. The actual value of
the binary data item in decimal digits is 1234567890.

For Enterprise COBOL, the binary value and the DISPLAY value are equal
because the truncation that occurred was based on the number of digits in
the PICTURE clause.

This situation is flagged by MIGR in OS/VS COBOL and by Enterprise
COBOL when compiled with TRUNC(OPT).

MOVE CORRESPONDING statement

v OS/VS COBOL allowed more than one receiver with MOVE
CORRESPONDING; Enterprise COBOL does not. Therefore, you must
change the following OS/VS COBOL statement:
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B GROUP-ITEM-C

to two Enterprise COBOL MOVE CORRESPONDING statements:
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-C

v Releases prior to Release 2.4 of OS/VS COBOL accepted nonunique
subordinate data items in the receiver of a MOVE CORRESPONDING
statement; Enterprise COBOL does not. For example:
01 KANCFUNC.

03 CL PIC XX.
03 KX9 PIC XX.
03 CC PIC XX.

01 HEAD1-AREA.
03 CL PIC XX.
03 KX9 PIC XX.
03 CC PIC XX.
03 KX9 PIC XX....

MOVE CORR KANCFUNC to HEAD1-AREA.

For Enterprise COBOL, change the data items in the receiver to have
unique names.

MOVE statement—multiple TO specification
OS/VS COBOL allowed the reserved word TO to precede each receiver in
a MOVE statement. For example:
MOVE aa TO bb TO cc

Undocumented OS/VS COBOL extensions

Chapter 10. Upgrading OS/VS COBOL source programs 131

In Enterprise COBOL, the above statement must be changed to:
MOVE aa TO bb cc

MOVE ALL—TO PIC 99
OS/VS COBOL allowed group moves into a fixed numeric receiving field.
For example:
MOVE ALL ' ' TO num1

where, num1 is PIC 99.

Enterprise COBOL does not allow the above case.

MOVE statement—warning message for numeric truncation
OS/VS COBOL issued a warning message for a MOVE statement with a
numeric receiver that would result in a loss of digits. For example:
77 A PIC 999.
77 B PIC 99....

MOVE A TO B.

VS COBOL II, COBOL for MVS & VM, and COBOL for OS/390 & VM
Version 2 Release 1 do not issue a warning message for this case.

COBOL for OS/390 & VM Version 2 Release 2 and Enterprise COBOL
issue a warning message if the new compiler option DIAGTRUNC is in
effect.

OCCURS clause
OS/VS COBOL allowed a nonstandard order for phrases following the
OCCURS clause; Enterprise COBOL does not.

For example, the following code sequence would be allowed in OS/VS
COBOL:
01 D PIC 999.
01 A.

02 B OCCURS 1 TO 200 TIMES
ASCENDING KEY C
DEPENDING ON D
INDEXED BY H.

02 C PIC 99.

In Enterprise COBOL, the above example must be changed to the
following:
01 D PIC 999.
01 A.

02 B OCCURS 1 TO 200 TIMES
DEPENDING ON D
ASCENDING KEY C
INDEXED BY H.

02 C PIC 99.

OPEN REVERSED statement
OS/VS COBOL accepted the REVERSED phrase for multireel files;
Enterprise COBOL does not.

PERFORM statement—second UNTIL
OS/VS COBOL allowed a second UNTIL in a PERFORM statement, as in
the following example:

Undocumented OS/VS COBOL extensions

132 COBOL Migration Guide

PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT
UNTIL PARM-COUNT = 7
OR UNTIL SSREJADV-EOF.

Enterprise COBOL does not allow a second UNTIL statement. It must be
removed as shown in the following example:
PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT

UNTIL PARM-COUNT = 7
OR SSREJADV-EOF.

Periods in Area A
OS/VS COBOL allowed you to code a period in Area A following an
Area-A item (or no item) that was not valid. With Enterprise COBOL, a
period in Area A must be preceded by a valid Area-A item.

Periods, consecutive in any division
OS/VS COBOL allowed you to code two consecutive periods in any
division.

Enterprise COBOL issues a warning message (RC = 4) if two periods in a
row are found in the PROCEDURE DIVISION, and a severe message (RC
= 12) if two periods in a row are found in either the ENVIRONMENT
DIVISION or the DATA DIVISION.

The following would be accepted by OS/VS COBOL, but would receive a
severe (RC = 12) error and a warning (RC = 4) under Enterprise COBOL:
WORKING-STORAGE SECTION.
01 A PIC 9.

MOVE 1 TO A.

GOBACK.

Periods missing at the end of SD, FD, or RD
A period is required at the end of a sort, file, or report description,
preceding the 01-level indicator.

OS/VS COBOL diagnosed the missing period with a warning message (RC
= 4).

Enterprise COBOL issues an error message (RC = 8).

Periods missing on paragraphs
Releases prior to Release 2.4 of OS/VS COBOL accepted paragraph names
not followed by a period. Release 2.4 of OS/VS COBOL issued a warning
message (RC = 4) whereas Enterprise COBOL issues an error message (RC
= 8) .

PICTURE string
OS/VS COBOL accepted a PICTURE string with all Z’s to the left of the
implied decimal point, a Z immediately to the right of the implied decimal
point, but ending with a 9 or 9−. For example:
05 WEIRD-NUMERIC-EDITED PIC Z(11)VZ9.

Enterprise COBOL does not accept statements such as the statements in the
example above. You must change the Z9 to either ZZ or 99.

Undocumented OS/VS COBOL extensions

Chapter 10. Upgrading OS/VS COBOL source programs 133

|
|

PROGRAM-ID names, nonunique
OS/VS COBOL allowed a data-name or paragraph-name to be the same as
the PROGRAM-ID name. Enterprise COBOL requires the PROGRAM-ID
name to be unique.

Qualification—using the same phrase repeatedly
A of B of B

OS/VS COBOL allowed repeating of phrases; Enterprise COBOL does not.

READ statement—redefined record keys in the KEY phrase
OS/VS COBOL accepted implicitly or explicitly redefined record keys in
the KEY phrase of the READ statement.

Enterprise COBOL accepts only the names of the data items that are
specified as record keys in the SELECT clause for the file being read.

RECORD CONTAINS n CHARACTERS clause
In variation with the COBOL 74 Standard, the RECORD CONTAINS n
CHARACTERS clause of an OS/VS COBOL program was overridden if an
OCCURS DEPENDING ON clause was specified in the FD, and produced
a file containing variable-length records instead of fixed-length records.

Under Enterprise COBOL, the RECORD CONTAINS n CHARACTERS
clause produces a file containing fixed-length records.

RECORD KEY phrase and ALTERNATE RECORD KEY phrase
OS/VS COBOL allowed the leftmost character position of the ALTERNATE
RECORD KEY data-name-4 to be the same as the leftmost character
position of the RECORD KEY or of any other ALTERNATE RECORD KEY
phrases.

Enterprise COBOL does not allow this.

REDEFINES clause in SD or FD entries
Releases prior to OS/VS COBOL Release 2.4 accepted a REDEFINES clause
in a level-01 SD or FD; Enterprise COBOL and OS/VS COBOL Release 2.4
do not.

For example, the following code sequence is not valid:
SD ...
01 SORT-REC-HEADER.

05 SORT-KEY PIC X(20).
05 SORT-HEADER-INFO PIC X(40).
05 FILLER PIC X(20).

01 SORT-REC-DETAIL REDEFINES SORT-REC-HEADER.
05 FILLER PIC X(20).
05 SORT-DETAIL-INFO PIC X(60).

To get similar function in Enterprise COBOL, delete the REDEFINES
clause.

REDEFINES clause with tables
OS/VS COBOL allowed you to specify tables within the REDEFINES
clause. For example, OS/VS COBOL would issue a warning message (RC =
4) for the following example:
01 E.

03 F OCCURS 10.
05 G PIC X.

03 I REDEFINES F PIC X.

Undocumented OS/VS COBOL extensions

134 COBOL Migration Guide

Enterprise COBOL does not allow tables to be redefined, and issues a
severe (RC = 12) message for the example above.

Relation conditions
Releases prior to OS/VS COBOL Release 2.4 accepted operators in relation
conditions that are not valid. The following table lists the operators
accepted by OS/VS COBOL Release 2.3 that are not accepted by Enterprise
COBOL. It also shows the valid coding for Enterprise COBOL programs.

OS/VS COBOL R2.3 Enterprise COBOL
= TO = or EQUAL TO
> THAN > or GREATER THAN
< THAN < or LESS THAN

RENAMES clause—nonunique, nonqualified data names
No MIGR message is issued if the RENAMES clause in your OS/VS
COBOL program references a nonunique, nonqualified data name.
However, Enterprise COBOL does not support the use of nonunique,
nonqualified data names.

SELECT statement without a corresponding FD
OS/VS COBOL accepted a SELECT statement that does not have a
corresponding FD entry; Enterprise COBOL does not.

SORT verb
At early maintenance levels, the OS/VS COBOL compiler accepted the
UNTIL and TIMES phrases in the SORT verb, for example:
SORT FILE-1
ON ASCENDING KEY AKEY-1
INPUT PROCEDURE IPROC-1
OUTPUT PROCEDURE OPROC-1
UNTIL AKEY-1 = 99.

SORT FILE-2
ON ASCENDING KEY AKEY-2
INPUT PROCEDURE IPROC-2
OUTPUT PROCEDURE OPROC-2
10 TIMES.

Enterprise COBOL does not accept statements such as the statements in the
example above.

In a SORT statement, the correct syntax allows ASCENDING KEY or
DESCENDING KEY followed by a data-name which is the sort key. The
word KEY is optional.

OS/VS COBOL accepted IS if used following ASCENDING KEY.
Enterprise COBOL does not accept IS in this context. For example:
SORT SORT-FILE

ASCENDING KEY IS SD-NAME-FIELD
USING INPUT-FILE
GIVING SORTED-FILE.

SORT or MERGE
With OS/VS COBOL, a MOVE to the SD buffer before the first RETURN in
a SORT or MERGE output PROCEDURE did not overlay the data of the
first record.

Undocumented OS/VS COBOL extensions

Chapter 10. Upgrading OS/VS COBOL source programs 135

In Enterprise COBOL such a MOVE would overlay the data of the first
record. During a SORT or MERGE operation, the SD data item is used. You
must not use it in the OUTPUT PROCEDURE before the first RETURN
statement executes. If data is moved into this record area before the first
RETURN statement, the first record to be returned will be overwritten.

STRING statement—sending field identifier
OS/VS COBOL allowed a numeric sending field identifier that is not an
integer. Under Enterprise COBOL, a numeric sending field identifier must
be an integer.

UNSTRING statement—coding with ’OR’, ’IS’, or a numeric edited item
OS/VS COBOL would not issue a diagnostic error message for UNSTRING
statements containing any of the following instances of coding that is not
valid:
1. Lack of the required word “OR” between literal-1 and literal-2, as in:

UNSTRING A-FIELD DELIMITED BY '-' ','
INTO RECV-FIELD-1
POINTER PTR-FIELD.

2. Presence of the extraneous word “IS” in specifying a pointer, as in:
UNSTRING A-FIELD DELIMITED BY '-' OR ','

INTO RECV-FIELD-2
POINTER IS PTR-FIELD.

3. Use of a numeric edited item as the source of an UNSTRING statement,
as in:
01 NUM-ED-ITEM PIC $$9.99+...

UNSTRING NUM-ED-ITEM DELIMITED BY '$'
INTO RECV-FIELD-1
POINTER PTR-FIELD

Enterprise COBOL allows only nonnumeric data items as senders in the
UNSTRING statement.

Enterprise COBOL issues a message if an UNSTRING statement containing
any of these errors is encountered.

UNSTRING statement—multiple INTO phrases
OS/VS COBOL issued a warning (RC = 4) message when multiple INTO
phrases were coded. For example:
UNSTRING ID-SEND DELIMITED BY ALL "*"

INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
INTO ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
INTO ID-R2 DELIMITER IN ID-D3 COUNT IN ID-C3

Enterprise COBOL does not allow multiple INTO phrases in an
UNSTRING statement.

VALUE clause—signed value in relation to the PICTURE clause
In OS/VS COBOL, the VALUE clause literal could be signed if the
PICTURE clause was unsigned.

In Enterprise COBOL, the VALUE clause literal must match the PICTURE
clause and the sign must be removed.

Undocumented OS/VS COBOL extensions

136 COBOL Migration Guide

Language elements that changed from OS/VS COBOL
The following OS/VS COBOL language elements are changed in Enterprise
COBOL in order to conform to the COBOL 85 Standard. For some elements, the
syntax of the language is different. For others, the language syntax is unchanged,
but the execution results can be different (semantics have changed).

For each element listed, there is a brief description pointing out the differences in
results and what actions to take. Clarifying coding examples are also given as
needed.

ALPHABETIC class changes
In OS/VS COBOL, only uppercase letters and the space character were
considered to be ALPHABETIC.

In Enterprise COBOL, uppercase letters, lowercase letters, and the space
character are considered to be ALPHABETIC.

If your OS/VS COBOL program uses the ALPHABETIC class test, and the
data tested consists of mixed uppercase and lowercase letters, there can be
differences in execution results. In such cases, you can ensure identical
results by substituting the Enterprise COBOL ALPHABETIC-UPPER class
test for the OS/VS COBOL ALPHABETIC test.

ALPHABET clause changes—ALPHABET keyword
In OS/VS COBOL, the keyword ALPHABET was not allowed in the
ALPHABET clause.

In Enterprise COBOL, the ALPHABET keyword is required.

Arithmetic statement changes
Enterprise COBOL supports the following arithmetic items with enhanced
accuracy:
v Use of floating-point data items
v Use of floating-point literals
v Use of fractional exponentiation

Therefore, for arithmetic statements that contain these items, Enterprise
COBOL might provide more accurate results than OS/VS COBOL. You will
need to test your applications to verify that these changes do not have a
negative impact on them.

ASSIGN clause changes
Enterprise COBOL supports only the following format of the ASSIGN
clause:
ASSIGN TO assignment-name

Where assignment-name can have the following forms:
QSAM files

[comments-][S-]name
VSAM sequential files

[comments-][AS-]name
VSAM indexed or relative files

[comments-]name
LINE SEQUENTIAL files

[comments-]name

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 137

If your OS/VS COBOL program uses other formats of the ASSIGN clause,
or other forms of the assignment-name, you must change it to conform to
the format supported by Enterprise COBOL.

B symbol in PICTURE clause—changes in evaluation
OS/VS COBOL accepted the PICTURE symbols A and B in definitions for
alphabetic items.

Enterprise COBOL accepts only the PICTURE symbol A. (A PICTURE that
contains both symbols A and B defines an alphanumeric edited item.)

This change can cause execution differences between OS/VS COBOL and
Enterprise COBOL for evaluations of the:
v CANCEL statement
v CALL statement
v Class test
v STRING statement

CALL statement changes
OS/VS COBOL accepted paragraph names, section names, and file names
in the USING phrase of the CALL statement.

Enterprise COBOL CALL statements do not accept procedure names and
accept only QSAM file names in the USING phrase. Therefore, you must
remove the procedure names and make sure that file names used in the
USING phrase of the CALL statement name QSAM physical sequential
files.

To convert OS/VS COBOL programs that call assembler programs passing
procedure names, you will need to rewrite the assembler routines. In
OS/VS COBOL programs, assembler routines can be written to receive an
address or a list of addresses from the paragraph name that was passed as
a parameter. The assembler routines can then use this address to return to
an alternative place in the main program if an error occurs.

In Enterprise COBOL, code your assembler routines so that they return to
the point of origin with an assigned number. If an error occurs in the
assembler program, this number can then be used to go to alternative
places in the calling routine.

For example, this assembler routine in OS/VS COBOL is not valid in
Enterprise COBOL :
CALL "ASMMOD" USING PARAMETER-1,

PARAGRAPH-1,
PARAGRAPH-2,

NEXT STATEMENT....

PARAGRAPH-1....

PARAGRAPH-2.

The sample code above should be rewritten as shown in the following
example in order to compile with Enterprise COBOL:
CALL "ASMMOD" USING PARAMETER-1,

PARAMETER-2.
IF PARAMETER-2 NOT = 0

GOTO PARAGRAPH-1,
PARAGRAPH-2,
DEPENDING ON PARAMETER-2.

Language elements changed from OS/VS COBOL

138 COBOL Migration Guide

In this example, you would modify the assembler program (ASMMOD) so
that it does not branch to an alternative location. Instead, it will pass back
the number zero to the calling routine if there are no errors, and a nonzero
return value if an error occurred. The nonzero value would be used to
determine which paragraph in the COBOL program would handle the
error condition.

Many COBOL programmers code assembler programs that use the 390
SPIE mechanism to get control when there is an error or condition. These
routines can pass control to a COBOL program at a paragraph whose name
was passed to the SPIE routine. Applications that use these user-written
SPIE routines should be converted to use Language Environment condition
handling.

Combined abbreviated relation condition changes
Three considerations affect combined abbreviated relation conditions:
v NOT and logical operator/relational operator evaluation
v Parenthesis evaluation
v Optional word IS

All are described in the following sections.

NOT and logical operator/relational operator evaluation: OS/VS COBOL
with LANGLVL(1) accepted the use of NOT in combined abbreviated
relation conditions as follows:
v When only the subject of the relation condition is implied, NOT is

considered a logical operator. For example:
A = B AND NOT LESS THAN C OR D

is equivalent to:
((A = B) AND NOT (A < C) OR (A < D))

v When both the subject and the relational operator are implied, NOT is
considered to be part of the relational operator.
For example:
A > B AND NOT C

is equivalent to:
A > B AND A NOT > C

OS/VS COBOL with LANGLVL(2) and Enterprise COBOL in combined
abbreviated relation conditions consider NOT to be:
v Part of the relational operator in the forms NOT GREATER THAN, NOT

>, NOT LESS THAN, NOT <, NOT EQUAL TO, and NOT =. For
example:
A = B AND NOT LESS THAN C OR D

is equivalent to:
((A = B) AND (A NOT < C) OR (A NOT < D))

v NOT in any other position is considered to be a logical operator (and
thus results in a negated relation condition). For example:
A > B AND NOT C

is equivalent to:
A > B AND NOT A > C

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 139

To ensure that you get the execution results that you want when moving
from OS/VS COBOL with LANGLVL(1), you should expand all
abbreviated combined conditions to their full unabbreviated forms.

Parenthesis evaluation: OS/VS COBOL accepted the use of parentheses
within an abbreviated combined relational condition.

Enterprise COBOL supports most parentheses usage as IBM extensions.
However, there are some differences:
v Within the scope of an abbreviated combined relation condition,

Enterprise COBOL does not support relational operators inside
parentheses. For example:
A = B AND (< C OR D)

v Some incorrect usages of parentheses in relation conditions were
accepted by OS/VS COBOL, but are not accepted by Enterprise COBOL.
For example:
(A = 0 AND B) = 0

Optional word IS: OS/VS COBOL accepted the optional word IS
immediately preceding objects within an abbreviated combined relation
condition. For example:
A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In
Enterprise COBOL, delete the word IS when used in this manner.

Note: Enterprise COBOL does permit the use of the optional word IS as
part of the relational operator in abbreviated combined relational
conditions. For example:
A = B OR IS = C AND IS = D

COPY statement with associated names
OS/VS COBOL with LANGLVL(1) allowed COPY statements to be
preceded by an 01-level indicator, which would result in the 01-level name
replacing the 01-level name in the COPY member. For example, with the
following contents of COPY member MBR-A:
01 RECORD-A.

05 FIELD-A...
05 FIELD-B...

and a COPY statement like this:
01 RECORD1 COPY MBR-A.

the resultant source would look like this:
01 RECORD1.

05 FIELD-A...
05 FIELD-B...

Enterprise COBOL does not accept this COPY statement. To compile with
Enterprise COBOL, use the following statement:
01 RECORD1.

COPY MBR-A REPLACING ==01 RECORD-A== BY == ==.

CURRENCY-SIGN clause changes—’/’, ’=’, and ’L’ characters
OS/VS COBOL with LANGLVL(1), accepted the ’/’ (slash) character, the
’L’ character, and the ’=’ (equal) sign in the CURRENCY-SIGN clause.

Language elements changed from OS/VS COBOL

140 COBOL Migration Guide

Enterprise COBOL does not accept these characters as valid. In addition,
Enterprise COBOL does not accept the character G for programs that use
DBCS data items.

If these characters are present, you must remove them from the
CURRENCY SIGN clause.

Dynamic CALL statements to ENTRY points
OS/VS COBOL allowed dynamic CALL statements to alternate entry
points of subprograms without an intervening CANCEL, in some cases.

Enterprise COBOL always requires an intervening CANCEL. When
converting these programs, add an intervening CANCEL between dynamic
CALL statements referencing alternate ENTRY points of subprograms.

EXIT PROGRAM/GOBACK statement changes
In OS/VS COBOL, when an EXIT PROGRAM or GOBACK statement was
executed, if the end of range of a PERFORM statement within it had not
been reached, the PERFORM statement remained in its uncompleted state.

In Enterprise COBOL, when an EXIT PROGRAM or GOBACK statement is
executed, the end of range of every PERFORM statement within it is
considered to have been reached.

FILE STATUS clause changes
In Enterprise COBOL, status key values have been changed from those
received from OS/VS COBOL:
v For QSAM files, see Table 31.
v For VSAM files, see Table 32 on page 142.

If your OS/VS COBOL program uses status key values to determine the
course of execution, you must modify the program to use the new status
key values. For complete information on Enterprise COBOL file status
codes, see the Enterprise COBOL Language Reference Manual.

Table 31. Status key values—QSAM files

OS/VS
Enterprise
COBOL Meaning

(undefined) 04 Wrong length record; successful completion

(undefined) 05 Optional file not present; successful
completion

(undefined) 07 NO REWIND/REEL/UNIT/FOR REMOVAL
specified for OPEN or CLOSE, but file not on
a reel/unit medium; successful completion

00 00 Successful completion

10 10 At END (no next logical record); successful
completion

30 30 Permanent error

34 34 Permanent error file boundary violation

90 90 Other errors with no further information

90 35 Nonoptional file not present

90 37 Device type conflict

90 39 Conflict of fixed file attributes; OPEN fails

90 96 No file identification (no DD statement for the
file)

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 141

Table 31. Status key values—QSAM files (continued)

OS/VS
Enterprise
COBOL Meaning

92 38 OPEN attempted for file closed WITH LOCK

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN
mode

92 43 REWRITE attempted when last I/O statement
was not READ

92 44 Attempt to rewrite a sequential file record
with a record of a different size

92 46 Sequential READ attempted with no valid
next record

92 47 READ attempted when file not in OPEN
INPUT or I-O mode

92 48 WRITE attempted when file not in OPEN
OUTPUT, I-O, or EXTEND mode

00 48 WRITE attempted when file in OPEN I-O
mode

92 49 DELETE or REWRITE attempted when file not
in OPEN I-O mode

92 92 Logic error

Table 32. Status key values—VSAM files

OS/VS
Enterprise
COBOL Meaning

(undefined) 14 On sequential READ for relative file, size of relative
record number too large for relative key

00 00 Successful completion

00 04 Wrong length record; successful completion

00 05 Optional file not present; successful completion

00 35 Nonoptional file not present. Can occur when the file
is empty.

02 02 Duplicate key, and DUPLICATES specified; successful
completion

10 10 At END (no next logical record); successful
completion

21 21 Key not valid for a VSAM indexed or relative file;
sequence error

22 22 Key not valid for a VSAM indexed or relative file;
duplicate key and duplicates not allowed

23 23 Key not valid for a VSAM indexed or relative file; no
record found

24 24 Key not valid for a VSAM indexed or relative file;
attempt to write beyond file boundaries

Enterprise COBOL: for a WRITE to a relative file, size
of relative record number too large for relative key

30 30 Permanent error

Language elements changed from OS/VS COBOL

142 COBOL Migration Guide

Table 32. Status key values—VSAM files (continued)

OS/VS
Enterprise
COBOL Meaning

90 37 Attempt to open a file not on a mass storage device

90 90 Other errors with no further information

91 91 VSAM password failure

92 41 OPEN attempted for a file in OPEN mode

92 42 CLOSE attempted for a file not in OPEN mode

92 43 REWRITE attempted when last I/O statement was
not READ or DELETE

92 47 READ attempted when file not in OPEN INPUT or
I-O mode

92 48 WRITE attempted when file not in OPEN OUTPUT,
I-O, or EXTEND mode

92 49 DELETE or REWRITE attempted when file not in
OPEN I-O mode

93 93 VSAM resource not available

93 96 35 Nonoptional file not present

94 46 Sequential READ attempted with no valid next
record

95 39 Conflict of fixed file attributes; OPEN fails

95 95 Not valid or incomplete VSAM file information

96 96 No file identification (no DD statement for this
VSAM file)

97 97 OPEN statement execution successful; file integrity
verified

IF . . . OTHERWISE statement changes
OS/VS COBOL allowed IF statements of the nonstandard format:
IF condition THEN statement-1 OTHERWISE statement-2

Enterprise COBOL allows only IF statements having the standard format:
IF condition THEN statement-1 ELSE statement-2

Therefore, OS/VS COBOL programs containing nonstandard IF . . .
OTHERWISE statements must be changed to standard IF . . . ELSE
statements.

JUSTIFIED clause changes
Under OS/VS COBOL with LANGLVL(1), if a JUSTIFIED clause is
specified together with a VALUE clause for a data description entry, the
initial data is right-justified. For example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in “FIRST” occupying the five rightmost character positions of
DATA-1:
bbbbFIRST

In Enterprise COBOL, the JUSTIFIED clause does not affect the initial
placement of the data within the data item. If a VALUE and JUSTIFIED

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 143

clause are both specified for an alphabetic or alphanumeric item, the initial
value is left-justified within the data item. For example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE "FIRST".

results in “FIRST” occupying the five leftmost character positions of
DATA-1:
FIRSTbbbb

To achieve unchanged results in Enterprise COBOL, you can specify the
literal value as occupying all nine character positions of DATA-1. For
example:
77 DATA-1 PIC X(9) JUSTIFIED VALUE " FIRST".

which right-justifies the value in DATA-1:
bbbbFIRST

MOVE statements and comparisons—scaling changes
In OS/VS COBOL with LANGLVL(1), if either the sending field in a
MOVE statement or a field in a comparison is a scaled integer (that is, if
the rightmost PICTURE symbols are the letter P) and the receiving field (or
the field to be compared) is alphanumeric or numeric-edited, the trailing
zeros (0) are truncated.

For example, after the following MOVE statement is executed:
05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX....

MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123bbb (left-justified), where ’b’
represents a blank.

With Enterprise COBOL, a MOVE statement transfers the trailing zeros,
and a comparison includes them.

For example, after the following MOVE statement is executed:
05 SEND-FIELD PICTURE 999PPP VALUE 123000.
05 RECEIVE-FIELD PICTURE XXXXXX....

MOVE SEND-FIELD TO RECEIVE-FIELD.

RECEIVE-FIELD contains the value 123000.

Numeric class test on group items
OS/VS COBOL allowed the IF NUMERIC class test to be used with group
items that contained one or more signed elementary items.

For example, IF grp1 IS NUMERIC, when grp1 is a group item:
01 grp1.

03 yy PIC S99.
03 mm PIC S99.
03 dd PIC S99.

Enterprise COBOL issues an S-level message when the IF NUMERIC class
test is used for GROUP items whose subordinates are signed.

Language elements changed from OS/VS COBOL

144 COBOL Migration Guide

Numeric data changes
Enterprise COBOL uses the NUMPROC compiler option to alter the code
generated for decimal data. While NUMPROC(MIG) will cause processing
very similar to OS/VS COBOL, results are not the same in all cases. The
results of MOVE statements, comparisons, and arithmetic statements might
differ from OS/VS COBOL, particularly when the fields have not been
initialized.

For example, Enterprise COBOL will not generate a negative zero result,
while OS/VS COBOL could. In addition, Enterprise COBOL will not repair
invalid signs on input with NUMPROC(MIG), while OS/VS COBOL
programs did inconsistent sign repair on input.

Programs that rely on data exceptions to either identify contents of decimal
data items that are not valid or to terminate abnormally might need to be
changed to use the class test to validate data in decimal data items.

OCCURS DEPENDING ON clause—ASCENDING and DESCENDING KEY
phrase

OS/VS COBOL accepted a variable-length key in the ASCENDING and
DESCENDING KEY phrases of the OCCURS DEPENDING ON clauses as
an IBM extension.

In Enterprise COBOL, you cannot specify a variable-length key in the
ASCENDING or DESCENDING KEY phrase.

OCCURS DEPENDING ON clause—value for receiving items changed
In OS/VS COBOL, the current value of the OCCURS DEPENDING ON
(ODO) object is always used for both sending and receiving items.

In Enterprise COBOL, for sending items, the current value of the ODO
object is used. For receiving items:
v If a group item contains both the subject and object of an ODO, and is

not followed in the same record by a nonsubordinate data item, the
maximum length of the item is used.

v If a group item contains both the subject and object of an ODO and is
followed in the same record by a nonsubordinate data item, the actual
length of the receiving item is used.

v If a group item contains the subject, but not the object of an ODO, the
actual length of the item is used.

When the maximum length is used, it is not necessary to initialize the
ODO object before the table receives data. For items whose location
depends on the value of the ODO object, you need to set the object of the
OCCURS DEPENDING ON clause before using them in the using phrase
of a CALL statement. Under Enterprise COBOL, for any variable-length
group that is not variably located, you do not need to set the object for the
item when it is used in the USING BY REFERENCE phrase of the CALL
statement. This is true even if the group is described by the second bullet
above.

For example:
01 TABLE-GROUP-1

05 ODO-KEY-1 PIC 99.
05 TABLE-1 PIC X(9)

OCCURS 1 TO 50 TIMES DEPENDING ON ODO-KEY-1.
01 ANOTHER-GROUP.

05 TABLE-GROUP-2.
10 ODO-KEY-2 PIC 99.

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 145

10 TABLE-2 PIC X(9)
OCCURS 1 to 50 TIMES DEPENDING ON ODO-KEY-2.

05 VARIABLY-LOCATED-ITEM PIC X(200)....

PROCEDURE DIVISION....

MOVE SEND-ITEM-1 TO TABLE-GROUP-1...

MOVE ODO-KEY-X TO ODO-KEY-2
MOVE SEND-ITEM-2 TO TABLE-GROUP-2.

When TABLE-GROUP-1 is a receiving item, Enterprise COBOL moves the
maximum number of character positions for it (450 bytes for TABLE-1 plus
two bytes for ODO-KEY-1). Therefore, you need not initialize the length of
TABLE-1 before moving the SEND-ITEM-1 data into the table.

However, a nonsubordinate VARIABLY-LOCATED-ITEM follows
TABLE-GROUP-2 in the record description. In this case, Enterprise COBOL
uses the actual value in ODO-KEY-2 to calculate the length of
TABLE-GROUP-2, and you must set ODO-KEY-2 to its valid current length
before moving the SEND-ITEM-2 data into the group receiving item.

ON SIZE ERROR phrase—changes in intermediate results
For OS/VS COBOL, the SIZE ERROR phrase for the DIVIDE and
MULTIPLY statements applied to both intermediate and final results.

For Enterprise COBOL, the SIZE ERROR phrase for the DIVIDE and
MULTIPLY statements applies only to final results. This is a change
between the COBOL 74 Standard and the COBOL 85 Standard. This change
might or might not affect your programs.

Therefore, if your OS/VS COBOL program depends upon SIZE ERROR
detection for intermediate results, you might need to change it.

Optional word IS
For OS/VS COBOL programs, no MIGR message would be issued if the
optional word IS immediately preceded objects within an abbreviated
combined relation condition. For example:
A = B OR IS C AND IS D

Enterprise COBOL does not accept this use of the optional word IS. In
Enterprise COBOL, delete the word IS when used in this manner.

Note: Enterprise COBOL does permit the use of the optional word IS as
part of the relational operator in abbreviated combined relational
conditions. For example:
A = B OR IS = C AND IS = D

PERFORM statement—changes in the VARYING/AFTER phrases
In OS/VS COBOL, in a PERFORM statement with the VARYING/AFTER
phrases, two actions take place when an inner condition tests as TRUE:
1. The identifier/index associated with the inner condition is set to its

current FROM value.
2. The identifier/index associated with the outer condition is augmented

by its current BY value.

Language elements changed from OS/VS COBOL

146 COBOL Migration Guide

In Enterprise COBOL in such a PERFORM statement, the following takes
place when an inner condition tests as TRUE:
1. The identifier/index associated with the outer condition is augmented

by its current BY value.
2. The identifier/index associated with the inner condition is set to its

current FROM value.

The following example illustrates the differences in execution:
PERFORM ABC VARYING X FROM 1 BY 1 UNTIL X > 3

AFTER Y FROM X BY 1 UNTIL Y > 3

In OS/VS COBOL, ABC is executed 8 times with the following values:
X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

In Enterprise COBOL, ABC is executed 6 times with the following values:
X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

By using nested PERFORM statements, you could achieve the same
processing results as in OS/VS COBOL, as follows:
MOVE 1 TO X, Y, Z
PERFORM EX-1 VARYING X FROM 1 BY 1 UNTIL X > 3...

EX-1.
PERFORM ABC VARYING Y FROM Z BY 1 UNTIL Y > 3.
MOVE X TO Z.

ABC.

PROGRAM COLLATING SEQUENCE clause changes
In OS/VS COBOL, the collating sequence specified in the alphabet-name of
the PROGRAM COLLATING SEQUENCE clause is applied to comparisons
implicitly performed during execution of INSPECT, STRING, and
UNSTRING statements.

In Enterprise COBOL, the collating sequence specified in alphabet-name is
not used for these implicit comparisons.

READ and RETURN statement changes—INTO phrase
When the sending field is chosen for the move associated with a READ or
RETURN . . . INTO identifier statement, OS/VS COBOL and Enterprise
COBOL can select different records from under the FD or SD to use as the
sending field. This only affects implicit elementary MOVE statements,
when the record description has a PICTURE clause.

RERUN clause changes
When the RERUN clause is specified, OS/VS COBOL takes a checkpoint
on the first record; Enterprise COBOL does not.

RESERVE clause changes
OS/VS COBOL supported the following formats of the FILE CONTROL
paragraph RESERVE clause:
RESERVE NO ALTERNATE AREA
RESERVE NO ALTERNATE AREAS
RESERVE integer ALTERNATE AREA
RESERVE integer ALTERNATE AREAS
RESERVE integer AREA
RESERVE integer AREAS

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 147

Enterprise COBOL supports only the following forms of the RESERVE
clause:
RESERVE integer AREA
RESERVE integer AREAS

If your OS/VS COBOL program uses either the RESERVE integer
ALTERNATE AREA or the RESERVE integer ALTERNATE AREAS format,
you must specify the RESERVE clause with integer + 1 areas to get
equivalent processing under Enterprise COBOL. That is, the OS/VS
COBOL phrase RESERVE 2 ALTERNATE AREAS is equivalent to RESERVE 3
AREASA in Enterprise COBOL.

Under OS/VS COBOL with LANGLVL(1), the interpretation of the
RESERVE integer AREAS format differed from the interpretation of this
format using Enterprise COBOL.

With LANGLVL(1), using the RESERVE integer AREA or RESERVE integer
AREAS format, you must specify the RESERVE clause with integer + 1
areas to get equivalent processing under Enterprise COBOL.

Reserved word list changes
Differences exist between the reserved word list for Enterprise COBOL and
OS/VS COBOL.“Appendix B. COBOL reserved word comparison” on
page 241 contains a complete listing of reserved words.

SEARCH statement changes
In OS/VS COBOL, the ASCENDING and DESCENDING KEY data items
could be specified either as the subject or as the object of the WHEN
relation-condition of the SEARCH statement.

In Enterprise COBOL, the WHEN phrase data-name (the subject of the
WHEN relation-condition) must be an ASCENDING or a DESCENDING
KEY data item in this table element, and identifier-2 (the object of the
WHEN relation-condition) must not be an ASCENDING or DESCENDING
key data item for this table element.

OS/VS COBOL accepted the following; Enterprise COBOL does not:
WHEN VAL = KEY-1 (INDEX-NAME-1)

DISPLAY "TABLE RECORDS OK".

The following SEARCH example will execute under both Enterprise
COBOL and OS/VS COBOL:
01 VAL PIC X.
01 TABLE-01.

05 TABLE-ENTRY
OCCURS 100 TIMES
ASCENDING KEY IS KEY-1
INDEXED BY INDEX-NAME-1.

10 FILLER PIC X.
10 KEY-1 PIC X.

SEARCH ALL TABLE-ENTRY
AT END DISPLAY "ERROR"

WHEN KEY-1 (INDEX-NAME-1) = VAL
DISPLAY "TABLE RECORDS OK".

Segmentation changes—PERFORM statement in independent segments
In OS/VS COBOL with LANGLVL(1), if a PERFORM statement in an
independent segment refers to a permanent segment, the independent
segment is initialized upon each exit from the performed procedures.

Language elements changed from OS/VS COBOL

148 COBOL Migration Guide

In OS/VS COBOL with LANGLVL(2), for a PERFORM statement in an
independent segment that refers to a permanent segment, control is passed
to the performed procedures only once for each execution of the
PERFORM statement.

In Enterprise COBOL, the compiler does not perform overlay; therefore,
the rules given above do not apply.

If your program logic depends upon either of the OS/VS COBOL
implementations of these segmentation rules, you must rewrite the
program.

SELECT OPTIONAL clause changes
In OS/VS COBOL with LANGLVL(1), if the SELECT OPTIONAL clause is
specified in the file control entry, the program will fail if the file is not
available. In Enterprise COBOL, if the SELECT OPTIONAL clause is
specified in the file control entry, the program will not fail if the file is not
available and a file status code of 05 is returned. A USERMOD can
influence this behavior for VSAM. For details, see:
v For z/OS: Language Environment Installation and Customization.
v For OS/390: Language Environment for OS/390 Customization.

SORT special registers
The SORT-CORE-SIZE, SORT-FILE-SIZE, SORT-MESSAGE, and
SORT-MODE-SIZE special registers are supported under Enterprise
COBOL, and they will be used in the SORT interface when they have
nondefault values. However, at run time, individual SORT special registers
will be overridden by the corresponding parameters on control statements
that are included in the SORT-CONTROL file, and a message will be
issued. In addition, a compiler warning message (W-level) will be issued
for each SORT special register that was set in the program.

In OS/VS COBOL, the SORT-RETURN special register can contain codes
for successful SORT completion (RC=0), OPEN or I/O errors concerning
the USING or GIVING files (RC=2 through RC=12), and unsuccessful
SORT completion (RC=16). In Enterprise COBOL, the SORT-RETURN
register only contains codes for successful (RC=0) and unsuccessful
(RC=16) SORT completion.

Source language debugging changes
With Enterprise COBOL and OS/VS COBOL, you can debug source
language with the USE FOR DEBUGGING declarative. Valid operands are
shown in Table 33. Operands that are not valid in Enterprise COBOL must
be removed from the OS/VS COBOL program. Use Debug Tool to achieve
the same debugging results.

Table 33. USE FOR DEBUGGING declarative—valid operands

Debugging operands Procedures are executed
immediately:OS/VS COBOL Enterprise COBOL

procedure-name-1 procedure-name-1 Before each execution of the
named procedure.

After execution of an ALTER
statement referring to the named
procedure.

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 149

Table 33. USE FOR DEBUGGING declarative—valid operands (continued)

Debugging operands Procedures are executed
immediately:OS/VS COBOL Enterprise COBOL

ALL PROCEDURES ALL PROCEDURES Before execution of every
nondebugging procedure in the
outermost program

After execution of every ALTER
statement in the outermost
program (except ALTER statements
in declarative procedures).

file-name-n (none) See IBM VS COBOL for OS/VS for
a description.

ALL REFERENCES OF
identifier-n

(none) See IBM VS COBOL for OS/VS for
a description.

cd-name-1 (none) See IBM VS COBOL for OS/VS for
a description.

Subscripts out of range flagged at compile time
Enterprise COBOL issues an error (RC = 8) message if a literal subscript or
index value is coded that is greater than the allowed maximum, or less
than one. This message is generated whether or not the SSRANGE option
is specified.

OS/VS COBOL did not issue an equivalent error message.

UNSTRING statements—subscript evaluation changes
In the UNSTRING statements for OS/VS COBOL, any associated
subscripting, indexing, or length calculation would be evaluated
immediately before the transfer of data into the receiving item for the
DELIMITED BY, INTO, DELIMITER IN, and COUNT IN fields.

For these fields, in the Enterprise COBOL UNSTRING statement, any
associated subscripting, indexing, or length calculation is evaluated
once—immediately before the examination of the delimiter sending fields.
For example:
01 ABC PIC X(30).
01 IND.

02 IND-1 PIC 9.
01 TAB.

02 TAB-1 PIC X OCCURS 10 TIMES.
01 ZZ PIC X(30)....

UNSTRING ABC DELIMITED BY TAB-1 (IND-1) INTO IND ZZ.

In OS/VS COBOL, subscript IND-1 would be reevaluated before the
second receiver ZZ was filled.

In Enterprise COBOL, the subscript IND-1 is evaluated only once at the
beginning of the execution of the UNSTRING statement.

In OS/VS COBOL with LANGLVL(1), when the DELIMITED BY ALL
phrase of UNSTRING is specified, two or more contiguous occurrences of
any delimiter are treated as if they were only one occurrence. As much of
the first occurrence as will fit is moved into the current delimiter receiving
field (if specified). Each additional occurrence is moved only if the

Language elements changed from OS/VS COBOL

150 COBOL Migration Guide

complete occurrence will fit. For more information on the behavior of this
phrase in OS/VS COBOL, see IBM VS COBOL for OS/VS.

In Enterprise COBOL, one or more contiguous occurrences of any
delimiters are treated as if they are only one occurrence, and this one
occurrence is moved to the delimiter receiving field (if specified).

For example, if ID-SEND contains 123**45678**90AB:
UNSTRING ID-SEND DELIMITED BY ALL "*"

INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
ID-R2 DELIMITER IN ID-D2 COUNT IN ID-C2
ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3

OS/VS COBOL with LANGLVL(1), will produce this result:
ID-R1 123 1D-D1 ** ID-C1 3
ID-R2 45678 1D-D2 ** ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

Enterprise COBOL will produce this result:
ID-R1 123 1D-D1 * ID-C1 3
ID-R2 45678 1D-D2 * ID-C2 5
ID-R3 90AB 1D-D3 ID-C3 4

UPSI switches
OS/VS COBOL allowed references to UPSI switches and mnemonic names
associated with UPSI. Enterprise COBOL allows condition-names only.

For example, if a condition-name is defined in the SPECIAL-NAMES
paragraph, the following are equivalent:

OS/VS COBOL Enterprise COBOL

SPECIAL-NAMES. SPECIAL-NAMES.
UPSI-0 IS MNUPO UPSI-0 IS MNUPO

ON STATUS IS UPSI-0-ON
OFF STATUS IS UPSI-0-OFF

. .

. .

. .
PROCEDURE DIVISION PROCEDURE DIVISION

. .

. .

. .
IF UPSI-0 = 1 ... IF UPSI-0-ON ...
IF MNUPO = 0 ... IF UPSI-0-OFF ...

VALUE clause condition names
For VALUE clause condition names, releases prior to Release 2.4 of OS/VS
COBOL allowed the initialization of an alphanumeric field with a numeric
value. For example:
01 FIELD-A.

02 LAST-YEAR PIC XX VALUE 87.
02 THIS-YEAR PIC XX VALUE 88.
02 NEXT-YEAR PIC XX VALUE 89.

Enterprise COBOL does not accept this language extension. Therefore, to
correct the above example, you should code alphanumeric values in the
VALUE clauses, as in the following example:

Language elements changed from OS/VS COBOL

Chapter 10. Upgrading OS/VS COBOL source programs 151

01 FIELD-A.
02 LAST-YEAR PIC XX VALUE "87".
02 THIS-YEAR PIC XX VALUE "88".
02 NEXT-YEAR PIC XX VALUE "89".

WHEN-COMPILED special register
Enterprise COBOL and OS/VS COBOL support the use of the
WHEN-COMPILED special register. The rules for use of the special register
are the same for both compilers. However, the format of the data differs.

In OS/VS COBOL the format is:
hh.mm.ssMMM DD, YYYY (hour.minute.secondMONTH DAY, YEAR)

In Enterprise COBOL the format is:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

WRITE AFTER POSITIONING statement
OS/VS COBOL supported the WRITE statement with the AFTER
POSITIONING phrase; Enterprise COBOL does not.

In Enterprise COBOL, you can use the WRITE . . . AFTER ADVANCING
statement to receive behavior similar to WRITE . . . AFTER POSITIONING.
The following two examples show OS/VS COBOL POSITIONING phrases
and the equivalent Enterprise COBOL phrases.

When using WRITE . . . AFTER ADVANCING with literals:
OS/VS COBOL Enterprise COBOL

AFTER POSITIONING 0 AFTER ADVANCING PAGE
AFTER POSITIONING 1 AFTER ADVANCING 1 LINE
AFTER POSITIONING 2 AFTER ADVANCING 2 LINES
AFTER POSITIONING 3 AFTER ADVANCING 3 LINES

When using WRITE...AFTER ADVANCING with nonliterals:
WRITE OUTPUT-REC AFTER POSITIONING SKIP-CC.

OS/VS COBOL Enterprise COBOL
SKIP-CC

AFTER POSITIONING SKIP-CC 1 AFTER ADVANCING PAGE
AFTER POSITIONING SKIP-CC ' ' AFTER ADVANCING 1 LINE
AFTER POSITIONING SKIP-CC 0 AFTER ADVANCING 2 LINES
AFTER POSITIONING SKIP-CC - AFTER ADVANCING 3 LINES

Note: With Enterprise COBOL, channel skipping is only supported with
references to SPECIAL-NAMES.

CCCA can automatically convert WRITE . . . AFTER POSITIONING
statements. For example, given the following statement:
WRITE OUTPUT-REC AFTER POSITIONING n.

If n is a literal, CCCA would change the above example to WRITE...AFTER
ADVANCING n LINES. If n is an identifier, SPECIAL-NAMES are generated
and a section is added at the end of the program.

Language elements changed from OS/VS COBOL

152 COBOL Migration Guide

Chapter 11. Compiling converted OS/VS COBOL programs

This chapter describes the differences that exist between the Enterprise COBOL
compiler and the OS/VS COBOL compiler. It contains information on the
following topics:
v Key compiler options for converted programs
v Unsupported OS/VS COBOL compiler options
v Prolog format changes

Information specific to any one of these products is noted.

Key compiler options for converted programs
Table 34 lists the compiler options that have special relevance to converted
programs.

Table 34. Key compiler options for converted OS/VS COBOL programs

Compiler option Comments

BUFSIZE In OS/VS COBOL, the BUF option value specifies the total number of bytes reserved
for buffers. In Enterprise COBOL, BUFSIZE specifies the amount of buffer storage
reserved for each compiler work data set. The default is 4096.

If your OS/VS COBOL program uses the BUF option, you must adjust the amount
requested in your Enterprise COBOL BUFSIZE option.

DATA(24) Use DATA(24) for Enterprise COBOL programs that are compiled with RENT and
mixed with OS/VS COBOL programs.

DIAGTRUNC Use DIAGTRUNC to get numeric truncation flagging for MOVE statements. This is
similar to the flagging in OS/VS COBOL.

NUMPROC(MIG) NUMPROC(MIG) processes numeric signs in a way similar to, but not exactly like,
OS/VS COBOL.

NUMCLS(ALT) Use NUMCLS(ALT) if you were using the USERMOD shipped with OS/VS COBOL.
With the USERMOD, characters A, B, and E (as well as C, D, and F) are considered
valid numeric signs in the COBOL numeric class test. (You must also compile with
NUMPROC(MIG).) For other alternatives for sign representation, see the Enterprise
COBOL Programming Guide.

OPT(STD) Use OPT(STD) if you have nonreferenced data items as eye-catchers or time/version
stamps in WORKING-STORAGE. Use OPT(FULL) only if you do not need unused
data items.

OUTDD(ddname) Use this option to override the default ddname (SYSOUT) for SYSOUT output that
goes to the system logic output unit. If the ddname is the same as the Language
Environment MSGFILE ddname, the output is routed to the ddname designated for
MSGFILE. If the ddname is not the same as the Language Environment MSGFILE
ddname, the output from the DISPLAY statement is directed to the OUTDD ddname
destination. If the ddname is not present at first reference, dynamic allocation will
take place with the default name and attributes that are specified by Language
Environment.

PGMNAME(COMPAT) Use PGMNAME(COMPAT) to ensure that program names are processed in a manner
compatible with OS/VS COBOL.

RMODE(24 or AUTO) Use RMODE(24) or RMODE(AUTO) for Enterprise COBOL programs that are
compiled with NORENT and mixed with OS/VS COBOL.

© Copyright IBM Corp. 1991, 2001 153

|
|

Table 34. Key compiler options for converted OS/VS COBOL programs (continued)

Compiler option Comments

TRUNC TRUNC controls the way arithmetic fields are truncated into binary receiving fields
during MOVE and arithmetic operations.

Use TRUNC(STD) if your shop used TRUNC as the default with OS/VS COBOL.

Use TRUNC(OPT) if your shop uses NOTRUNC as the default with OS/VS COBOL
(except for select program that require guaranteed nontruncation of binary data). For
programs that require nontruncation of binary data, use TRUNC(BIN)—especially if
there is a possibility that data being moved into binary data items can have a value
larger than that defined by the PICTURE clause for the binary data item.
Note: In Enterprise COBOL, programs compiled with TRUNC(OPT) can give
different results than OS/VS COBOL programs compiled with NOTRUNC. Mainly,
programs can lose nonzero high-order digits. For statements where loss of high-order
digits might take place, Enterprise COBOL issues a diagnostic message indicating that
you should ensure that either of the following situations:
v The sending items will not contain large numbers.
v The receiving items are defined with enough digits in the PICTURE clause to

handle the largest sending data items.

Unsupported OS/VS COBOL compiler options
Table 35 shows the OS/VS COBOL compiler options that are not supported by
Enterprise COBOL.

For a complete list of Enterprise COBOL compiler options, see “Appendix F.
Compiler option comparison” on page 283.

Table 35. OS/VS COBOL compiler options not supported by Enterprise COBOL

OS/VS COBOL
option

Enterprise COBOL equivalent

BATCH/NOBATCH Batch environment is always available (sequence of programs). CBL
statements are always processed with Enterprise COBOL.
Note: Enterprise COBOL considerations for sequence of programs
are described in the Enterprise COBOL Programming Guide.

COUNT/NOCOUNT Similar function is available in Debug Tool.

ENDJOB/NOENDJOB ENDJOB behavior is always in effect.

LANGLVL(1/2) The LANGLVL option is not available. Enterprise COBOL supports
only the COBOL 85 Standard.

LVL=A|B|C|D/
NOLVL

FLAGSTD is used for FIPS flagging. ANSI COBOL 74 FIPS is not
supported.

RES/NORES The RES or NORES option is not available. With Enterprise COBOL,
the object module is always created such that library subroutines
are located dynamically at run time, instead of being link-edited
with the COBOL program. This is equivalent to RES behavior in
OS/VS COBOL.

SUPMAP/NOSUPMAP Equivalent to the NOCOMPILE/COMPILE compiler option.

SYMDMP/
NOSYMDMP

ABEND dumps and dynamic dumps are available through
Language Environment services. Symbolic dumps are available
through using the TEST compiler option.

SXREF/NOSXREF The XREF option provides sorted SXREF output.

VBSUM/NOVBSUM Function is available with the VBREF compiler option.

Compiling converted OS/VS COBOL programs

154 COBOL Migration Guide

|
|
|
|

Table 35. OS/VS COBOL compiler options not supported by Enterprise COBOL (continued)

OS/VS COBOL
option

Enterprise COBOL equivalent

CDECK/NOCDECK The LISTER feature is not supported.

FDECK/NOFDECK The LISTER feature is not supported.

LCOL1/LCOL2 The LISTER feature is not supported.

LSTONLY/LSTCOMP
NOLST

The LISTER feature is not supported.

L120/L132 The LISTER feature is not supported.

OSDECK With Enterprise COBOL, the object deck runs only in the z/OS or
OS/390 environments. The OSDECK function is not supported.

Prolog format changes
The prolog of an object program is the code that the compiler generates at the
entry point of the program. It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment
conforming, and thus have a different prolog format than in OS/VS COBOL. You
will need to update existing assembler programs that scan for date and time to the
new format.

You can compile your programs with the Enterprise COBOL LIST compiler option
to generate a listing that you can use to compare the OS/VS COBOL prolog format
with the Enterprise COBOL prolog format.

Compiling converted OS/VS COBOL programs

Chapter 11. Compiling converted OS/VS COBOL programs 155

|
|

156 COBOL Migration Guide

Chapter 12. Upgrading VS COBOL II source programs

This chapter describes the differences between the VS COBOL II language and the
Enterprise COBOL language. The information in this chapter will also help you
determine which VS COBOL II programs require source modifications in order to
compile with Enterprise COBOL. For example, VS COBOL II programs compiled
with the CMPR2 option require source modification because Enterprise COBOL no
longer supports the CMPR2/NOCMPR2 compiler option.

This chapter contains information on the following items that you will need to
consider when upgrading VS COBOL II source programs to Enterprise COBOL:
v Determining which programs require upgrade before compiling with Enterprise

COBOL
v Upgrading VS COBOL II programs compiled with the CMPR2 compiler option
v Three minor COBOL 85 Standard interpretation changes
v Change to ACCEPT statement from VS COBOL II Release 3.0
v New reserved words
v Undocumented VS COBOL II extensions

Determining which programs require upgrade before compiling with
Enterprise COBOL

Your VS COBOL II programs will compile without change using the Enterprise
COBOL compiler unless you have one or more of the following:
v Programs compiled with the CMPR2 compiler option
v Programs compiled with VS COBOL II Release 3.x that have one or more of

three minor COBOL 85 Standard features that were subject to COBOL 85
Standard interpretation changes

v Programs that were compiled with VS COBOL II Release 3.0 that use ACCEPT . .
. FROM CONSOLE

v Programs that use words which are now reserved in Enterprise COBOL
v Programs that have undocumented VS COBOL II extensions

Upgrading VS COBOL II programs compiled with the CMPR2 compiler
option

If your VS COBOL II source programs were compiled with the CMPR2 compiler
option, you must convert them to NOCMPR2 programs in order to compile them
with Enterprise COBOL. The CMPR2/NOCMPR2 compiler option is no longer
supported in Enterprise COBOL. However, Enterprise COBOL programs behave as
if NOCMPR2 is always in effect. For information on language differences between
CMPR2 and NOCMPR2 (COBOL 85 Standard) see Chapter 16, “Upgrading
programs compiled with the CMPR2 compiler option” on page 173.

For information on tools that will help with the CMPR2 to NOCMPR2 conversion,
see “Appendix C. Conversion tools for source programs” on page 259.

© Copyright IBM Corp. 1991, 2001 157

|
|
|

|

|
|
|
|
|
|
|

COBOL 85 Standard interpretation changes
Some language differences exist between programs compiled with NOCMPR2 on
VS COBOL II Release 3 (including 3.0, 3.1, and 3.2) and programs compiled with
NOCMPR2 on subsequent releases (including VS COBOL II Release 4, IBM
COBOL, and Enterprise COBOL). These changes are the result of responses from
COBOL Standard Interpretation Requests that required an implementation different
from that used in VS COBOL II Release 3. Most likely you do not have these very
minor differences in your programs because of their rarity. However, the following
language elements are affected:
v REPLACE and comment lines
v Precedence of USE procedures for nested programs
v Reference modification of a variable-length group receiver with no length

specified

REPLACE and comment lines
This item affects the treatment of blank lines and comment lines that appear in text
that matches pseudo-text-1 of REPLACE statements.

Blank lines, which are interspersed in the matched text, will not appear in the
output of the REPLACE statement. This change could affect the semantics of the
resulting program since the line numbers could be different. (For example, if a
program uses the USE FOR DEBUGGING declarative, the contents of
DEBUG-ITEM might be different). If an Enterprise COBOL generated program
differs from the equivalent VS COBOL II program, the following message will be
issued:

IGYLI0193-I
Matched pseudo-text-1 contained blank or comment lines. Execution results
may differ from VS COBOL II Release 3.x.

Precedence of USE procedures
This difference affects the precedence of USE procedures relating to contained
programs.

In VS COBOL II Release 3.x, a file-specific USE procedure always takes precedence
over a mode-specific USE procedure. This precedence occurs if an applicable
mode-specific USE procedure exists in the current program, or if a mode-specific
USE procedure with the GLOBAL attribute in an outer program is "nearer" than
the file-specific procedure.

In VS COBOL II Release 4 and Enterprise COBOL, USE procedure precedence is
based on a program by program level; from the current program to the containing
program for that program, and so on to the outermost program.

The following message will be issued if an Enterprise COBOL generated program
selects a different USE procedure than would have been used by the VS COBOL II
Release 3.x program:

IGYSC2300-I
A mode-specific declarative may be selected for file "file-name" in program
"program-name." Execution results may differ from VS COBOL II Release
3.x.

NOCMPR2 language changes

158 COBOL Migration Guide

Reference modification of a variable-length group receiver
Programs that MOVE data to reference-modified, variable-length groups might
produce different results depending on whether the length used for the
variable-length group is evaluated by using the actual length or the maximum
length.

You might see a difference if the variable-length group meets all of the following
criteria:
v If it is a receiver
v If it contains its own OCCURS DEPENDING ON object
v If it is not followed by a nonsubordinate item (also referred to as a variably

located data item)
v If it is reference-modified and a length is not specified

For example, Group VAR-LEN-GROUP-A contains an ODO object and an OCCURS
subject and is followed by a variably located data item.
01 VAR-LEN-PARENT-A.

02 VAR-LEN-GROUP-A.
03 ODO-OBJECT PIC 99 VALUE 5.
03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.

04 TAB-ELEM PIC X(4).
02 VAR-LOC-ITEM PIC XX.

01 NEXT-GROUP.

MOVE ALL SPACES TO VAR-LEN-GROUP-A(1:).

Group VAR-LEN-GROUP-B contains an ODO object and an OCCURS subject and is
not followed by a variably located data item. VAR-LOC-ITEM follows the OCCURS
subject, but does not follow VAR-LEN-GROUP-B.
01 VAR-LEN-PARENT-B.

02 VAR-LEN-GROUP-B.
03 ODO-OBJECT PIC 99 VALUE 5.
03 OCCURS-SUBJECT OCCURS 10 TIMES DEPENDING ON ODO-OBJECT.

04 TAB-ELEM PIC X(4).
03 VAR-LOC-ITEM PIC XX.

01 NEXT-GROUP.

MOVE ALL SPACES TO VAR-LEN-GROUP-B(1:).

In the above examples, MOVE ALL SPACES TO VAR-LEN-GROUP-A (1:) would give the
same results with any NOCMPR2 program (VS COBOL II Release 3.x, VS COBOL
II Release 4, or Enterprise COBOL). They all use the actual length in this case.

MOVE ALL SPACES TO VAR-LEN-GROUP-B (1:) would give different results for the
following programs compiled with NOCMPR2:
v VS COBOL II Release 3.x uses the actual length of the group as defined by the

current value of the ODO object (the actual length of the group is set to spaces
using the ODO object value).

v VS COBOL II Release 4 and Enterprise COBOL use the maximum length of the
group (the entire data item is set to spaces using the ODO object value).

If a program contains a reference-modified, variable-length group receiver that
contains its own ODO object and is not followed by variably located data and
whose reference modifier does not have a length specified, the following message
is issued:

NOCMPR2 language changes

Chapter 12. Upgrading VS COBOL II source programs 159

IGYPS2298-I
The reference to variable-length group ″data name″ will be evaluated using
the maximum length of the group. Execution results might differ from VS
COBOL II Release 3.x.

ACCEPT statement
One additional difference between later releases and VS COBOL II Release 3.0
involves the system input devices for the mnemonic-name suboption of the
ACCEPT statement.

For VS COBOL II Release 3.0 only, an input record of 80 characters is assumed
even if a logical record length of other than 80 characters is specified. For VS
COBOL II Release 3.1 through Release 4.0, an input record of 256 characters is
assumed even if a logical record length of other than 80 characters is specified.

In Enterprise COBOL, the maximum logical record length allowed is 32,760
characters.

New reserved words
COBOL for MVS & VM and COBOL for OS/390 & VM provide an alternate
reserved word table, which does not reserve the new words added for the
object-oriented extensions. Specify the WORD(NOOO) compiler option to continue
using any of the words above, except FUNCTION and PROCEDURE-POINTER.

You must remove FUNCTION and PROCEDURE-POINTER if they are used in
existing programs.

Enterprise COBOL and IBM COBOL combined have quite a few more reserved
words than VS COBOL II. If your VS COBOL II programs use these reserved
words as user-defined words, then they must be changed before you can compile
your programs with Enterprise COBOL.

You can use CCCA to convert the reserved words automatically. For more
information about the CCCA tool, see “Appendix C. Conversion tools for source
programs” on page 259

Table 35 shows the reserved words added to each subsequent release of COBOL.
For a complete list of reserved words, see “Appendix B. COBOL reserved word
comparison” on page 241.

Table 36. New reserved words, by compiler, as compared to VS COBOL II.

Compiler Reserved word

COBOL/370 V1R1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM V1R2 CLASS-ID, METACLASS, RECURSIVE,
END-INVOKE, METHOD, REPOSITORY,
INHERITS, METHOD-ID, RETURNING,
INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM V2R1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM V2R2 COMP-5, COMPUTATIONAL-5, EXEC,
END-EXEC, SQL, TYPE, FACTORY

NOCMPR2 language changes

160 COBOL Migration Guide

|
|

Table 36. New reserved words, by compiler, as compared to VS COBOL II. (continued)

Compiler Reserved word

COBOL for OS/390 & VM V2R2 with
PQ49375

EXECUTE

Enterprise COBOL JNIENVPTR, NATIONAL, XML, END-XML,
XML-EVENT, XML-CODE, XML-TEXT,
XML-NTEXT, FUNCTION-POINTER

Undocumented VS COBOL II extensions
The VS COBOL II compiler did not diagnose a period in Area A following an Area
A item (or no item) that is not valid. In Enterprise COBOL, periods in Area A must
be preceded by a valid Area A item.

The VS COBOL II compiler did not detect a STOP RUN, GOBACK, OR EXIT
PROGRAM in a SORT INPUT or OUTPUT PRODECDURE, or in a MERGE
OUTPUT PROCEDURE. Enterprise COBOL will now diagnose this with message
IGYPA3036.

NOCMPR2 language changes

Chapter 12. Upgrading VS COBOL II source programs 161

|
|

|
|
|

162 COBOL Migration Guide

Chapter 13. Compiling VS COBOL II programs

This chapter describes the differences that exist between the Enterprise COBOL
compiler and the VS COBOL II compiler. This chapter contains information on the
following topics:
v Key compiler options for VS COBOL II programs
v Prolog format changes

Key compiler options for VS COBOL II programs
The Enterprise COBOL and VS COBOL II compilers are similar. If you will be
using the same compiler options that are specified in your current VS COBOL II
applications, some internal changes might take effect, but basically the behavior is
unchanged.

If you do change compiler option settings from the ones you used with VS COBOL
II, make sure you understand the possible effects on your applications. For
information on converting your source programs from CMPR2 to NOCMPR2 see
“Upgrading programs compiled with the CMPR2 compiler option” on page 173.
For information on other compiler options, see the Enterprise COBOL Programming
Guide.

Compiling with Enterprise COBOL
Table 37 lists the Enterprise COBOL compiler options that have special relevance to
converted programs.

Table 37. Key Enterprise COBOL compiler options for VS COBOL II programs

Enterprise COBOL
compiler options Comments

PGMNAME If compiling with Enterprise COBOL, use the
PGMNAME(COMPAT) option to ensure that program names are
processed in a manner compatible with VS COBOL II (and
COBOL/370).

RMODE Use RMODE(AUTO) or RMODE(24) for Enterprise COBOL
NORENT programs that pass data to programs running in
AMODE 24.

TEST The syntax of the TEST option is different in Enterprise COBOL
than in VS COBOL II. The TEST option now has three suboptions;
instead of specifying TEST, you now can specify a hook location,
symbol-table location, and the destination for symbolic debug
information.

TEST without any suboptions gives you
TEST(ALL,SYM,NOSEPARATE). For more information on the
TEST option, see the Enterprise COBOL Programming Guide.

Compiler options not supported in Enterprise COBOL
Table 38 on page 164 lists the VS COBOL II compiler options that are not supported
in Enterprise COBOL. In some cases, the function of the VS COBOL II compiler
option is mapped to an Enterprise COBOL compiler option, as described in the
comments section.

© Copyright IBM Corp. 1991, 2001 163

|
|
|
|
|
|

|
|
|

Table 38. Compiler options not supported in Enterprise COBOL

VS COBOL II
compiler options Comments

CMPR2 The CMPR2 option is not supported. You must convert programs
compiled with CMPR2 to COBOL 85 Standard in order to compile
them with Enterprise COBOL.

FDUMP/NOFDUMP Enterprise COBOL does not provide the FDUMP compiler option.
For existing applications, FDUMP is mapped to the Enterprise
COBOL TEST(SYM) compiler option, which can provide equivalent
function and more.

Language Environment generates a better formatted dump than VS
COBOL II, regardless of the FDUMP option. However, the use of
TEST(SYM) enables Language Environment to include the symbolic
dump of information about data items in the formatted dump.

For information about how to obtain the Language Environment
formatted dump at abnormal termination, see Language Environment
Debugging Guide and Run-Time Messages.

If NOFDUMP is encountered, Enterprise COBOL issues a warning
message because NOFDUMP is not supported.

FLAGMIG The FLAGMIG option is not supported in Enterprise COBOL.
FLAGMIG requires CMPR2, which is not supported in Enterprise
COBOL. To get similar migration flagging use CCCA, this Migration
Guide, or a compiler released prior to Enterprise COBOL to compile
programs that use FLAGMIG.

FLAGSAA Enterprise COBOL does not support the FLAGSAA option. If
FLAGSAA is specified, Enterprise COBOL issues a warning
message.

RES/NORES Enterprise COBOL does not provide the RES/NORES compiler
option. If RES is encountered, Enterprise COBOL issues an
informational message. If NORES is encountered, Enterprise
COBOL issues a warning message.

Prolog format changes
The prolog of an object program is the code that the compiler generates at the
entry point of the program. It also contains data that identifies the program.

Object modules generated by Enterprise COBOL are Language Environment
conforming, and thus have a different prolog format than in VS COBOL II. Existing
applications that scan for date and time and user-level information need to be
updated to the new format.

You can compile your programs with the Enterprise COBOL LIST compiler option
to generate a listing that you can use to compare the VS COBOL II format with the
Enterprise COBOL format.

Compiling VS COBOL II programs.

164 COBOL Migration Guide

|
|
|

|
|
|
|
|

Chapter 14. Upgrading IBM COBOL source programs

This chapter describes the differences between the IBM COBOL language and the
Enterprise COBOL language. The information in this chapter will help you
determine which IBM COBOL programs need source modifications in order to
compile with Enterprise COBOL. For example, IBM COBOL programs compiled
with the CMPR2 option require source modification because Enterprise COBOL no
longer supports the CMPR2/NOCMPR2 compiler option.

This chapter contains information on the following items that you will need to
consider when upgrading IBM COBOL source programs to Enterprise COBOL:
v Determining which programs require upgrade before you compile with

Enterprise COBOL
v Upgrading SOM-based object-oriented COBOL programs
v New reserved words in Enterprise COBOL
v Undocumented IBM COBOL extensions

For information about upgrading programs compiled with the CMPR2 compiler
option, see “Chapter 16. Migrating from CMPR2 to NOCMPR2” on page 173.

For more information about migrating from the separate CICS translator to the
integrated CICS translator, see “Migrating from the separate CICS translator to the
integrated translator” on page 208

Determining which programs require upgrade before you compile with
Enterprise COBOL

Your IBM COBOL programs will compile without change using the Enterprise
COBOL compiler unless you have one or more of the following:
v Programs compiled with the CMPR2 compiler option
v Programs that have SOM-based object-oriented COBOL syntax
v Programs that use words which are now reserved in Enterprise COBOL
v Programs that have undocumented IBM COBOL extensions

Upgrading SOM-based object-oriented (OO) COBOL programs
SOM-based object-oriented COBOL applications are no longer supported with
Enterprise COBOL. OO COBOL syntax has been retargeted for Java-based
object-oriented programming to facilitate interoperation of COBOL and Java.

The new Java-based OO COBOL is not compatible with SOM-based OO COBOL,
and is not intended as a migration path for OO COBOL programs. In most cases
you should rewrite your OO COBOL into procedural COBOL in order to use the
Enterprise COBOL compiler. It is possible that you could use the new OO COBOL
syntax in place of your existing SOM-based OO syntax, but it is not a
straightforward conversion.

For more information about the considerations that apply when you upgrade your
IBM COBOL programs that contain SOM-based OO COBOL statements to
Enterprise COBOL, see “SOM-based object-oriented COBOL language elements

© Copyright IBM Corp. 1991, 2001 165

|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|

|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

that are not supported” on page 166 and “SOM-based object-oriented COBOL
language elements that are changed” on page 167.

SOM-based object-oriented COBOL language elements that are not
supported

This section describes the SOM-based OO COBOL language elements that are no
longer supported in Enterprise COBOL. The following considerations apply when
you migrate applications that use SOM-based OO COBOL to the Java-based OO
COBOL syntax supported in Enterprise COBOL:

Calls to SOM
Calls to SOM services are not supported.

INHERITS clause

v Specification of more than one class name on the INHERITS clause of
the CLASS-ID paragraph (multiple inheritance) is not supported.

v COBOL classes must be ultimately derived from the java.lang.Object
class (rather than SOMObject or SOMClass). Specification of SOMObject
as a base class in the INHERITS clause is not supported.

v Specification of SOMClass as a base class in the INHERITS clause
(defining metaclasses) is not supported. Java-based OO COBOL classes
can specify a FACTORY section, defining static methods that are
logically part of the class-object for the class.

INVOKE

v Argument lists on INVOKE statements and parameter lists for methods
are restricted to data types that map to Java types and that are passed
BY VALUE.

v Specification of a class-name that qualifies SUPER in the INVOKE
statement is not supported. For example you cannot use:
INVOKE C OF SUPER "foo"

However, the following syntax continues to be supported in Enterprise
COBOL:
INVOKE SUPER "foo"

METACLASS clauses

v The METACLASS IS clause of the CLASS-ID paragraph is not supported.
v The METACLASS OF clause from the USAGE clause, which defines

object references, is not supported.

METHODS

v The OVERRIDE clause of the METHOD-ID paragraph is not supported.
v Use of methods from SOM base classes such as somNew, somFree, and

somInit are not supported.

Compiler options IDLGEN and TYPECHK
The IDLGEN and TYPECHK options are not available. Both compiler options
require SOM-based OO COBOL, which is not available with Enterprise COBOL.

166 COBOL Migration Guide

|
|

|

|

|
|
|
|

|
|

|

|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|

|

|
|

SOM-based object-oriented COBOL language elements that are
changed

This section describes the SOM-based OO COBOL language elements that have
been changed in Enterprise COBOL. The following considerations apply when you
migrate applications that use SOM-based OO COBOL to the Java-based OO
COBOL syntax supported in Enterprise COBOL:

External names

v External class names that are defined in the REPOSITORY paragraph
must be defined with Java naming conventions for fully qualified class
names, rather than the CORBA rules of formation for class names.

v Method names that are specified as literals use Java naming conventions
rather than CORBA naming conventions.

INVOKE
Instead of somNew, object instances are created with the syntax:
INVOKE classname NEW ...

METHODS
COBOL methods can override inherited methods and can be overloaded,
according to Java rules. However, the OVERRIDE clause is no longer
required or supported on the METHOD-ID paragraph in these cases.

OBJECTS

v Instead of somNew, object instances are created with the syntax:
INVOKE classname NEW ...

v Object instances are freed through Java automatic garbage collection,
rather than somFree.

v Object instance data is initialized through VALUE clauses or user-written
initialization methods, rather than with somInit.

v OBJECT and END OBJECT syntax must be specified unless the class
does not specify any object instance data or object instance methods.

New reserved words in Enterprise COBOL
For a complete list of reserved words see, “Appendix B. COBOL reserved word
comparison” on page 241.

Table 39. New reserved words, by compiler, as compared to VS COBOL II.

Compiler Reserved word

COBOL/370 V1R1 FUNCTION, PROCEDURE-POINTER

COBOL for MVS & VM V1R2 CLASS-ID, METACLASS, RECURSIVE,
END-INVOKE, METHOD, REPOSITORY,
INHERITS, METHOD-ID, RETURNING,
INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM V2R1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM V2R2 COMP-5, COMPUTATIONAL-5, EXEC,
END-EXEC, SQL, TYPE, FACTORY

COBOL for OS/390 & VM V2R2 with
PQ49375

EXECUTE

Chapter 14. Upgrading IBM COBOL source programs 167

|

|

|
|
|
|

|

|
|
|

|
|

|
|

|

|
|
|
|

|

|

|

|
|

|
|

|
|

|

Table 39. New reserved words, by compiler, as compared to VS COBOL II. (continued)

Compiler Reserved word

Enterprise COBOL JNIENVPTR, NATIONAL, XML, END-XML,
XML-EVENT, XML-CODE, XML-TEXT,
XML-NTEXT, FUNCTION-POINTER

Undocumented IBM COBOL extensions
The IBM COBOL compiler did not diagnose a period in Area A following an Area
A item (or no item) that is not valid. In Enterprise COBOL periods in Area A must
be preceded by a valid Area A item.

The IBM COBOL compiler did not detect a STOP RUN, GOBACK, OR EXIT
PROGRAM in a SORT input or output procedure, or in a MERGE output
procedure. Enterprise COBOL will now diagnose this with message IGYPA3036.

168 COBOL Migration Guide

|
|
|

|

|
|
|

|
|
|

Chapter 15. Compiling IBM COBOL programs

This chapter describes the differences that exist between the Enterprise COBOL
compiler and the IBM COBOL compiler. This chapter contains information on the
following topics:
v Key compiler options for IBM COBOL programs
v Compiler options not available in Enterprise COBOL

Key compiler options for IBM COBOL programs
The Enterprise COBOL and IBM COBOL compilers are very similar. If you will be
using the same compiler options that are specified in your current IBM COBOL
applications, some internal changes might take effect, but basically the behavior is
unchanged.

If you do change compiler options settings in your IBM COBOL applications, make
sure you understand the possible effects on your applications. For information on
converting your source programs from CMPR2 to NOCMPR2, see “Chapter 16.
Migrating from CMPR2 to NOCMPR2” on page 173. For information on other
compiler options, see the Enterprise COBOL Programming Guide.

The compiler options in Enterprise COBOL are slightly different than the compiler
options in IBM COBOL. Table 40 lists the options that affect compatibility between
IBM COBOL and Enterprise COBOL.

Table 40. Key compiler options for IBM COBOL programs

Compiler option Comments

ARITH Use ARITH(COMPAT) to get the same results as COBOL/370
Release 1 thru COBOL for OS/390 & VM Version 2 Release 1 for
intermediate results in arithmetic statements.

INTDATE Use INTDATE(ANSI) to get the same results as COBOL/370
Release 1 for date intrinsic functions. Use INTDATE(LILIAN) if
you store integer values and will be using other languages with
the same data. INTDATE(LILIAN) will cause the date intrinsic
functions to use the Language Environment start date, which is
the same starting date that would be used by PL/I or C
programs that use Language Environment date callable services.

If integer dates are used only within a single program, such as
converting Gregorian to Lilian and back to Gregorian in the
same program, the setting of INTDATE is immaterial.

If you choose INTDATE(LILIAN) as your installation default,
you should recompile all of your COBOL/370 Release 1
programs (and any IBM COBOL programs that used
INTDATE(ANSI)) that use intrinsic functions to ensure that all
of your code uses the Lilian integer date standard. This method
is the safest, because you can store integer dates and pass them
between programs, even between PL/I, COBOL, and C
programs, and know that the date processing will be consistent.

PGMNAME Use PGMNAME(COMPAT) to ensure that program names are
processed in a manner similar to COBOL/370 Release 1.

© Copyright IBM Corp. 1991, 2001 169

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

Table 40. Key compiler options for IBM COBOL programs (continued)

Compiler option Comments

NSYMBOL Controls the interpretation of the ″N″ symbol used on literals
and PICTURE clauses, indicating whether national or DBCS
processing is assumed.

NSYMBOL(NATIONAL) provides compatibility with previous
releases of COBOL.

TRUNC In releases of COBOL for OS/390 & VM prior to Version 2
Release 2, unsigned binary data items with TRUNC(BIN) were
correctly supported only when the binary value contained at
most 15 bits for halfwords, 31 bits for fullwords, or 63 bits for
doublewords. In other words, the sign bit was not used as part
of the numeric value when the data item was unsigned. With
Enterprise COBOL and COBOL for OS/390 & VM Version 2
Release 2, all 16 bits of a halfword, all 32 bits of a fullword, and
all 64 bits of a doubleword can be used as part of the numeric
value of an unsigned COMP-5 data item or an unsigned binary
data item with TRUNC(BIN).

For example, in a program compiled with TRUNC(BIN), a data
item declared like this

01 X pic 9(2) binary.

correctly supported binary values from 0 through only 32767 in
prior releases, but with Version 2 Release 2 now supports values
of 0 through 65535.

This support necessarily yields different arithmetic results than
were obtained with the prior releases, if these very large
unsigned binary values were inadvertently used.

Compiler options not available in Enterprise COBOL
Most compiler options that are available in IBM COBOL can be used when you
compile with Enterprise COBOL except for the following:

Table 41. Compiler options not available in Enterprise COBOL

Compiler option Comments

ANALYZE The ANALYZE option is not available with Enterprise COBOL. Use the
CICS, SQL, and ADATA options instead.

CMPR2 The CMPR2 option is not available. You must convert programs
compiled with CMPR2 to COBOL 85 standard to compile them with
Enterprise COBOL

EVENTS The EVENTS option is not available. To emulate the COBOL/370
EVENTS compiler option:
1. Specify the ADATA compiler option.
2. Allocate SYSADATA and SYSEVENTS.
3. Use the ADEXIT suboption of the EXIT compiler option with the

sample exit program IGYADXIT.

FLAGMIG The FLAGMIG option is not available. FLAGMIG requires CMPR2,
which is not available with Enterprise COBOL. Use CCCA, this
Migration Guide, or a compiler released prior to Enterprise COBOL to
compile programs using FLAGMIG.

170 COBOL Migration Guide

||
|
|

|
|

|

|
|

||

||

||
|

||
|
|

||
|
|
|
|
|

||
|
|
|

Table 41. Compiler options not available in Enterprise COBOL (continued)

Compiler option Comments

IDLGEN The IDLGEN option is not available. IDLGEN requires SOM-based OO
COBOL, which is not available with Enterprise COBOL.

TYPECHK The TYPECHK option is not available. TYPECHK requires SOM-based
OO COBOL, which is not available with Enterprise COBOL.

WORD(NOOO) If you have existing IBM COBOL programs that were compiled with
the WORD(NOOO) compiler option, they must be changed if they use
any of the following reserved words: CLASS-ID, END-INVOKE,
INHERITS, INVOKE, LOCAL-STORAGE, METACLASS, METHOD,
METHOD-ID, OBJECT, OVERRIDE, RECURSIVE, REPOSITORY,
RETURNING, SELF, SUPER.

The NOOO suboption of the WORD option is no longer supported in
Enterprise COBOL.

Chapter 15. Compiling IBM COBOL programs 171

|

||

||
|

||
|

||
|
|
|
|
|

|
|
|

172 COBOL Migration Guide

Chapter 16. Migrating from CMPR2 to NOCMPR2

This chapter describes the differences between the CMPR2/NOCMPR2 compiler
option. If your COBOL source programs were compiled with the CMPR2 compiler
option, you must convert them to NOCMPR2 programs in order to compile them
with Enterprise COBOL. The CMPR2/NOCMPR2 compiler option is no longer
supported in Enterprise COBOL. However, Enterprise COBOL programs behave as
if NOCMPR2 is always in effect.

This chapter contains information on the following topics you will need to
consider when examining your COBOL source programs that were compiled with
the CMPR2 option:
v Upgrading programs compiled with the CMPR2 compiler option

Upgrading programs compiled with the CMPR2 compiler option
Enterprise COBOL provides COBOL 85 Standard support whereas VS COBOL II
Release 2 provided COBOL 74 Standard support (with some 85 Standard features
added in). The implementation of the COBOL 85 Standard caused some language
elements to behave in a manner that differs from the implementation of the
COBOL 74 Standard.

Beginning with VS COBOL II Release 3.0, you could choose COBOL 85 Standard
behavior (without the Intrinsic Function module) by using NOCMPR2, or the
COBOL 74 Standard behavior by using the CMPR2 compiler option. The CMPR2
option provided COBOL 74 Standard behavior as implemented by VS COBOL II
Release 2, as well as nonstandard Release 2 extensions now implemented in the
COBOL 85 Standard. The NOCMPR2 option provided COBOL 85
Standard-conforming behavior and IBM extensions. This same mechanism was
provided by IBM COBOL as an aid to allow delaying the upgrade from VS
COBOL II Release 2 level code to COBOL 85 Standard level code. In Enterprise
COBOL, this delay is no longer available. Programs must be at the COBOL 85
Standard level to compile with Enterprise COBOL.

When referring to VS COBOL II Release 3 or later and IBM COBOL, the following
terms have been defined:

CMPR2
We use CMPR2 to refer to the language and behavior of programs
compiled and run with:
v VS COBOL II Release 2
v VS COBOL II Release 3 or 4 with the CMPR2 compiler option
v IBM COBOL with the CMPR2 compiler option.

NOCMPR2
We use NOCMPR2 to refer to the language and behavior of programs
compiled and run with:
v VS COBOL II Release 3 or 4 with the NOCMPR2 compiler option
v IBM COBOL with the NOCMPR2 compiler option
v Enterprise COBOL

© Copyright IBM Corp. 1991, 2001 173

|

|
|
|
|
|
|

FLAGMIG
We use FLAGMIG to refer to the use of a pre-Enterprise COBOL compiler
(VS COBOL II or IBM COBOL) that supports the CMPR2 and FLAGMIG
options.

Note: To aid you with migration to Enterprise COBOL, use a previous COBOL
compiler that supports FLAGMIG and CMPR2 to flag the statements that
need to be converted.

The language elements listed below are affected by the CMPR2/NOCMPR2
compiler option. The differences are explained in the sections that follow.

ALPHABET clause of the SPECIAL-NAMES paragraph

CMPR2
The ALPHABET clause does not include the keyword ALPHABET. In fact,
ALPHABET is not a reserved word.

For example:
SPECIAL-NAMES.

ALPHA-NAME IS STANDARD-1.

NOCMPR2
The ALPHABET clause requires the use of the keyword ALPHABET. ALPHABET
is now a reserved keyword.

For example:
SPECIAL-NAMES.

ALPHABET ALPHA-NAME IS STANDARD-1.

Messages
Compiling the program with the CMPR2 and FLAGMIG compiler options will
generate the following message for each ALPHABET clause of the
SPECIAL-NAMES paragraph:

IGYDS1190-W
MIGR Alphabet-name must be preceded by the keyword "ALPHABET"
under the "NOCMPR2" compiler option.

Corrective action for ALPHABET clause of the SPECIAL-NAMES
paragraph:
Add the keyword ALPHABET to the ALPHABET clause.

ALPHABETIC class

CMPR2
The ALPHABETIC class of characters defined by the ALPHABETIC class test
consists of the 26 uppercase letters and the space. The 26 lowercase letters are not
considered alphabetic.

For example:
MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS NOT ALPHABETIC THEN DISPLAY "CMPR2".

NOCMPR2
The ALPHABETIC class of characters defined by the ALPHABETIC class test
consists of the 26 uppercase letters, the 26 lowercase letters, and the space.

174 COBOL Migration Guide

For example:
MOVE "AbC dE" TO PIC-X6.
IF PIC-X6 IS ALPHABETIC THEN DISPLAY "NOCMPR2".

Messages
Compiling the program with the CMPR2 and FLAGMIG compiler options will
generate the following message for each ALPHABETIC class test:

IGYPS2221-W
MIGR The alphabetic class has been expanded to include lowercase
letters under the "NOCMPR2" compiler option.

Corrective action for the ALPHABETIC class:
Use the ALPHABETIC-UPPER class test under NOCMPR2 to get the same function
as the ALPHABETIC class test under CMPR2. The ALPHABETIC-UPPER class
under NOCMPR2 consists of the 26 uppercase letters and the space.

CALL . . . ON OVERFLOW

CMPR2
Under CMPR2, the ON OVERFLOW condition exists if the available portion of
object time memory cannot accommodate the program specified in the CALL
statement. CMPR2 interpreted that definition to cover only the condition "not
enough storage available to load the program."

Note: Only errors that occur on the actual LOAD of the called program raise the
ON OVERFLOW condition. Errors occurring after the program has been
loaded and has started execution do not raise the condition.

NOCMPR2
Under NOCMPR2, the ON OVERFLOW condition exists if the program specified
by the CALL statement cannot be made available for execution at that time.

NOCMPR2 implements the COBOL 85 Standard rules and defines the ON
OVERFLOW condition to handle any "recoverable" condition that may prevent the
called program from being made available.

Note: Only errors that occur on the actual LOAD of the called program raise the
ON OVERFLOW condition. Errors occurring after the program has been
loaded and started execution do not raise the condition.

Messages
Compiling the program with the CMPR2 and FLAGMIG options will cause the
compiler to issue messages for all CALL statements that specify the ON
OVERFLOW phrase. The following message will be issued:

IGYPS2012-W
MIGR The "ON OVERFLOW" phrase of the "CALL" statement will
execute under more conditions under the "NOCMPR2" compiler option.

The following program fragment illustrates one situation that will be affected by
this change:
PERFORM UNTIL ALL-ACCOUNTS-SETTLED...

CALL "SUBPROGA" USING CURRENT-ACCOUNT
ON OVERFLOW

CANCEL "SUBPROGB"
CALL "SUBPROGA" USING CURRENT-ACCOUNT

Chapter 16. Migrating from CMPR2 to NOCMPR2 175

END-CALL
END-CALL...

CALL "SUBPROGB" USING CURRENT-ACCOUNT
ON OVERFLOW

CANCEL "SUBPROGA"
CALL "SUBPROGB" USING CURRENT-ACCOUNT
END-CALL

END-CALL...

END-PERFORM

The assumption is that for some executions of this program, SUBPROGA and
SUBPROGB might not fit into available storage at the same time. The ON
OVERFLOW phrase is used to react to this situation, and to release the storage
occupied by the other subprogram.

Running under a program that exhibits CMPR2 behavior, the ON OVERFLOW
condition will be raised only for the "out of storage" errors, and the above
approach is reasonable.

Running under NOCMPR2, the ON OVERFLOW condition might be raised for
errors other than the "out of storage" errors, and therefore, the second call (inside
the ON OVERFLOW phrase) might fail as well.

Corrective action for CALL . . . ON OVERFLOW:
No correction that is generally applicable exists for programs using this or similar
techniques. If the ON OVERFLOW condition is indeed raised because of the "out
of storage" error, the program will exhibit the same behavior as before; if the
condition is raised for some other error, the recovery code (provided in the ON
OVERFLOW phrase) might not correct the error, and the subsequent CALL will
fail as well.

In general, it is not possible for an Enterprise COBOL program to determine the
actual cause of the error that raised the ON OVERFLOW condition.

Comparisons between scaled integers and nonnumerics
In comparisons between nonnumeric items and numeric items (only integers are
allowed), the value of the numeric item used in the comparison will differ if it is
scaled.

CMPR2
Under CMPR2, the numeric or algebraic value of a scaled numeric item is used in
comparison operations with nonnumeric items. In determining the algebraic value,
all symbols P in the PICTURE character-string are included in the total number of
digits, and zeros are used in their place.

NOCMPR2
Under NOCMPR2, the actual character representation or character value of the
scaled numeric item is used in comparison operations with nonnumeric items. The
character value for scaled numeric items does not include any digit positions
specified with the symbol P. These digit positions are ignored and not counted in
the size of the operand.

For example:

176 COBOL Migration Guide

01 NUM PIC 99PP VALUE 2300.
01 ALPHA1 PIC XX VALUE "23".
01 ALPHA2 PIC XXX VALUE "23".
01 ALPHA3 PIC XXXX VALUE "2300".

IF NUM EQUAL ALPHA1 DISPLAY "ALPHA1".
IF NUM EQUAL ALPHA2 DISPLAY "ALPHA2".
IF NUM EQUAL ALPHA3 DISPLAY "ALPHA3".

CMPR2 NOCMPR2

Results ALPHA3 ALPHA1
displayed ALPHA2

In this example, under NOCMPR2, the character value of NUM has only two digit
positions. When it is compared to a nonnumeric item of unequal length as in
ALPHA2, the shorter operand (NUM) is padded with enough blanks to equal the
length of the other operand.

Messages
Compiling a program with the CMPR2 and FLAGMIG options will cause the
compiler to issue the following message for all comparisons between scaled
integers and nonnumeric items.

IGYPG3138-W
MIGR The comparison between the scaled integer item " " and the
nonnumeric item " " will be performed differently under the "NOCMPR2"
compiler option.

Corrective action for comparisons between scaled integers and
nonnumerics:
To preserve CMPR2 behavior, you can define the scaled integer within a structure.
FILLER serves as the placeholders for the integer scaling positions and must be
initialized to zero. There must be as many alphanumeric positions defined in
FILLER as there are scaling positions in NUM. Wherever NUM is used in a
comparison with a nonnumeric item, CHARVAL should be substituted instead.
01 CHARVAL.

05 NUM PIC 99PP VALUE 2300.
05 FILLER PIC XX VALUE "00".

IF CHARVAL EQUAL ALPHA1 DISPLAY "ALPHA1".
IF CHARVAL EQUAL ALPHA2 DISPLAY "ALPHA2".
IF CHARVAL EQUAL ALPHA3 DISPLAY "ALPHA3".

COPY ... REPLACING statements using non-COBOL
characters

This section describes three classes of non-COBOL characters occurring in library
text or COPY ... REPLACING statements that are treated differently under
NOCMPR2 than under CMPR2.

Non-COBOL characters are the EBCDIC characters outside the legal set of COBOL
characters, excluding nonnumeric literals. Nonnumeric literals can contain any
character within the character set of the computer.

CMPR2
Under CMPR2, library text and COPY ... REPLACING statements can contain
operands consisting of non-COBOL characters.

Chapter 16. Migrating from CMPR2 to NOCMPR2 177

NOCMPR2
The COBOL 85 Standard disallows all non-COBOL characters and adds lowercase
and the colon to the character set.

Lowercase alphabetic characters
"Lowercase" alphabetic characters, which were non-COBOL with CMPR2, are now
in the set of legal COBOL characters with Enterprise COBOL. With CMPR2, COPY
allowed replacement of lowercase characters:
COPY A REPLACING == abc == BY == XYZ ==.

The previous example would locate all instances of "abc" and replace it with
"XYZ". In contrast, Enterprise COBOL will treat lowercase and uppercase
characters as equivalent in data-names and replace all instances of "abc" as well as
"ABC" with "XYZ". If member A contains:
1 abc PIC X.
1 ABC PIC XX.

then the results are as follows:
CMPR2 NOCMPR2

After COPYing & REPLACING After COPYing & REPLACING
1 XYZ PIC X. 1 XYZ PIC X.
1 ABC PIC XX. 1 XYZ PIC XX.

Message
The difference in behavior is flagged by the FLAGMIG compiler option.

IGYLI0161-W
MIGR Lowercase character " " found in column " " will be treated the
same as its uppercase equivalent under the "NOCMPR2" compiler option.
Results may be different.

Corrective action for lowercase alphabetic characters:
To obtain the same results when compiling CMPR2 programs under Enterprise
COBOL, you must verify that all your REPLACING arguments are unique (even
after folding to uppercase).

The colon (:) character
With CMPR2, the colon chracter was a non-COBOL character that COPY ...
REPLACING allowed as part of its operands. This character is a legal COBOL
separator under Enterprise COBOL.
COPY A REPLACING == A == BY == X ==

== B == BY == Y ==
== A:B == BY == Z ==.

If member A contains:
MOVE A:B TO ID2.

Then the following are the differences between CMPR2 and Enterprise COBOL
after the COPYing and REPLACING.

CMPR2 NOCMPR2

MOVE Z TO ID2. MOVE X:Y TO ID2.

Because ":" is a separator under Enterprise COBOL, "A:B" is broken up into three
separate tokens: "A" ":" and "B." The replacements for A and B are made first.

178 COBOL Migration Guide

Message
This difference in behavior between the two releases is flagged by FLAGMIG.

IGYLI0160-W
MIGR The colon will be treated as a separator under the "NOCMPR2"
compiler option. Results may be different.

Corrective action for the colon (:) character:
To make the previous piece of code behave in the same manner as with CMPR2,
change the REPLACING clauses to:
COPY A REPLACING == A:B == BY == Z ==

== A == BY == X ==
== B == BY == Y ==.

Characters that are not valid
Some characters do not fall into the legal COBOL character set. Consider this
example:
COPY A REPLACING == % == BY == 1 ==.

where member A contains:
% XDATA PIC X.

Here, the "non-COBOL" character is the "%" character.

Under both CMPR2 and NOCMPR2, the above member will be copied with the
replacement executed. The Enterprise COBOL compiler will issue an E-level
diagnostic.

IGYLI0163-E
Non-COBOL character "%" was found in column 8. The character was
accepted.

In both cases, after processing all COPY statements, a legal COBOL program
should result.

Message
This difference in behavior between the two releases is flagged by FLAGMIG.

IGYLI0162-W
MIGR Non-COBOL character "%" found in column 8 will be diagnosed
under the "NOCMPR2" compiler option. Results may be different.

Corrective action for characters that are not valid:
You should remove all non-COBOL characters from your source programs and
COPY libraries, and replace them with COBOL characters.

This removal of non-COBOL characters will protect you against new problems in
later releases of Enterprise COBOL. Future releases may assign meaning to one of
these characters (as with the colon) and results might be different.

COPY statement using national extension characters

CMPR2
National extension characters @, #, and $ are allowed in the text-name and
library-name of the COPY statement. For example in COPY X$3.the item will be
copied.

Chapter 16. Migrating from CMPR2 to NOCMPR2 179

NOCMPR2
The compiler will issue an E-level diagnostic.

IGYLI0025-E
Name ″X$3″ was invalid. It was processed as ″X03″.

Enterprise COBOL allows national extension characters @, #, and $ in the
text-name and library-name, if they are in the form of a nonnumeric literal. For
example, to copy X$3 in Enterprise COBOL, code COPY "X$3".

Message
The difference in behavior is flagged by FLAGMIG.

IGYLI0115-W
MIGR The name ″X$3″ did not follow the rules for formation of a
program-name. It will be diagnosed under the ″NOCMPR2″ compiler
option.

Corrective action for the COPY statement that uses national
extension characters:
You should change all national extension characters in your source programs and
COPY libraries, to COBOL characters.

File status codes

CMPR2
File status codes are returned with CMPR2.

NOCMPR2
The file status codes are enhanced with NOCMPR2. New and changed file status
codes are returned, and more detail is provided about the status of Input-Ouput
operations. In addition, problems are detected earlier in some cases, and there are
updated definitions and file status conditions for "missing" files.

Message
A program that contains a file status data-name will receive the following message
when compiled with the CMPR2 and FLAGMIG compiler options:

IGYGR1188-W
MIGR The file status values are different under the "NOCMPR2"
compiler option.

Corrective action for file status codes:
Although there is no one-to-one mapping of the CMPR2 status codes to those in
Enterprise COBOL, Table 42 shows, in general, the relationships between CMPR2
and NOCMPR2 file status codes. For a comprehensive definition of the Enterprise
COBOL file status codes, see the Enterprise COBOL Language Reference Manual.

180 COBOL Migration Guide

Table 42. QSAM and VSAM file status codes with CMPR2 and NOCMPR2

VSAM file status codes QSAM file status codes

CMPR2 NOCMPR2 CMPR2 NOCMPR2

00 00
04
05
14
24
35
39
44

00 00
04
05
07
39
44

02 02

10 10 10 10

21 21

22 22

23 23

24 24

30 30
39

30 30
39

34 34

90 37
90

90 35
37
90

91 91

92 38
41
42
43
44
47
48
49
92

92 38
41
42
43
46
47
48
49
92

93 93

94 46

95 39
95

96 96

97 97

Implicit EXIT PROGRAM
To end a program, you must use an EXIT PROGRAM, STOP RUN, or GOBACK
statement. You can use an EXIT PROGRAM for a called subprogram; you can use
a STOP RUN for a main program. GOBACK, an IBM extension, can be used for
either type of program.

CMPR2
Under CMPR2, if a program does not contain any of the above statements, a
compiler warning diagnostic message will be issued to suggest that the program
should be analyzed to verify that it could exit.

Chapter 16. Migrating from CMPR2 to NOCMPR2 181

Suppose that this is the last line in the program:
IF TALLY = 0 THEN STOP RUN.

In this case, the compiler diagnostic message would not be issued, and the
following run-time message would be issued only if the IF condition tested false:

IGZ0037S
The flow of control in program "program-name" proceeded beyond the last
line of the program.

NOCMPR2
Under NOCMPR2, all programs are assumed to end with an EXIT PROGRAM
statement. For a called subprogram, then, control can no longer flow beyond the
last line of the program, but instead, the program will return to the calling
program. In the preceding example, where the program ended with the statement:
IF TALLY = 0 THEN STOP RUN.

a false test will cause control to be returned to the caller. With CMPR2 behavior,
the result is an abend.

For a main program, the EXIT PROGRAM statement has no effect. Therefore, the
implicit EXIT PROGRAM that is generated by the compiler will have no effect on
the execution of the program; a main program that executes beyond the last line of
the program will still abend.

Messages
A program that does not contain a STOP RUN, GOBACK, or EXIT PROGRAM
statement will receive the following diagnostic message:

IGYPS2091-W
No "STOP RUN", "GOBACK" or "EXIT PROGRAM" was found in the
program. Check program logic to verify that the program will exit.

Also, if the CMPR2 and FLAGMIG compiler options are used, the following
message will appear:

IGYPS2223-W
MIGR An implicit "EXIT PROGRAM" will be executed at the end of
this program under the "NOCMPR2" compiler option.

If a program does contain a STOP RUN, GOBACK, or EXIT PROGRAM statement,
and the NOOPTIMIZE compiler option is in effect, then use of the FLAGMIG
compiler option will result in the following message:

IGYPS2224-W
MIGR An implicit "EXIT PROGRAM" may be executed at the end of
this program under the "NOCMPR2" compiler option. Recompile with the
"OPTIMIZE" and "FLAGMIG" compiler options. If no "MIGR" message
about an implicit "EXIT PROGRAM" is issued then no implicit "EXIT
PROGRAM" will be executed.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such
messages indicates that the program will not have an implicit EXIT PROGRAM
generated for it, while the presence of the following message indicates otherwise:

IGYOP3210-W
MIGR An implicit "EXIT PROGRAM" will be executed at the end of
this program under the "NOCMPR2" compiler option.

182 COBOL Migration Guide

Corrective action for Implicit EXIT PROGRAM:
To preserve CMPR2 behavior, a program can be modified to contain a new section
and section-name as the very last section in the program. That new section can
then contain error-handling code, such as a call to ILBOABN0.

Any program receiving a message indicating that an EXIT PROGRAM will be
implicitly generated should be examined to ensure that it will exit properly.

PERFORM return mechanism
When a paragraph or a range of paragraphs is executed with a PERFORM
statement ("out-of-line PERFORM"), a mechanism at the end of the range of
paragraphs causes control to be returned to the point just after the PERFORM
statement.

Consider the following example:
PERFORM A
STOP RUN.

A. DISPLAY "Hi".
B. DISPLAY "there".

After displaying the message "Hi," compiler-generated code will cause the flow of
control to return to the STOP RUN statement after performing paragraph A.
Without this, control would fall through into paragraph B.

This code mechanism is reset to an initial state the first time a program is called or
when a program is cancelled. Under NOCMPR2, it is also reset every time a
program is called. Under CMPR2, the mechanism retains its last used state when a
program is called twice in succession without having been cancelled. This can be
important when the program issues an EXIT PROGRAM or GOBACK statement
before all of the PERFORM statements have completed their execution.

Now consider this example:
IF FIRST-TIME-CALLED THEN

PERFORM A
MOVE ZERO TO N

ELSE
SUBTRACT 1 FROM N
GO TO A.

GOBACK.
A. IF N > 1 THEN

GOBACK.
B. DISPLAY "Processing continues...".

The program is passed a switch, FIRST-TIME-CALLED, which tells the program
whether or not the program has been called without having been cancelled. It is
also passed a variable, N.

CMPR2
When the program is called for the first time, the PERFORM statement will be
executed. If the "N > 1" test succeeds, the program will return to the calling
program.

However, this means that the PERFORM statement has not reached normal
completion because paragraph A never returned to the point from which it was
performed. The compiler-generated mechanism at the end of paragraph A is still
"set" to return back to the PERFORM statement.

Chapter 16. Migrating from CMPR2 to NOCMPR2 183

Thus, on the second call to the program, the ELSE path will be taken, 1 will be
subtracted from N, and control will be transferred by the GO TO statement to
paragraph A. However, if the test "N > 1" fails, the PERFORM mechanism is still
set. So, when the end of paragraph A is reached, instead of falling through into
paragraph B, control is "returned" to the MOVE statement after the PERFORM
statement.

These results might not be intended. The problem might occur whenever all of the
following occur:
1. The program returns to the calling program with an EXIT PROGRAM or

GOBACK statement.
2. A PERFORM statement performs a paragraph or a range of paragraphs, and

those paragraphs might also be reached by a GO TO statement or by falling
through into the paragraph.

3. All such PERFORM statements have not had a chance to return prior to the
execution of the EXIT PROGRAM or GOBACK statement.

NOCMPR2
Under NOCMPR2, when the program is called for the first time, the PERFORM
statement will be executed and control will flow to paragraph A. Then, depending
on the result of the test "N > 1," the program will either immediately return to the
calling program, or it will return to the PERFORM, move zero to N, and then
return to the calling program.

On subsequent calls to the program, the ELSE path will be taken, 1 will be
subtracted from N, and then control will be transferred by the GO TO statement to
paragraph A. Then, depending on the result of the test "N > 1," the program will
either immediately return to the calling program or fall through into paragraph B,
display a message, and continue.

Regardless of the paths taken, the mechanism that controls the PERFORM
statement will be reset each time the program is called and no irregular control
flow will take place.

Messages
A program that contains an out-of-line PERFORM, and either an EXIT PROGRAM
or GOBACK statement, will receive the following messages when compiled with
the CMPR2, FLAGMIG, and NOOPTIMIZE compiler options:

IGYPA3205-W
MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends
of "PERFORM" ranges were reached under the "NOCMPR2" compiler
option. This program may have different execution results after migration
if used as a subprogram.

IGYPA3206-W
MIGR For more information about ends of "PERFORM" ranges,
recompile with the "OPTIMIZE" and "FLAGMIG" compiler options. If no
messages about ends of "PERFORM" ranges are issued, then this program
will not have a migration problem with ends of "PERFORM" ranges.

Upon re-compilation with the OPTIMIZE compiler option, the absence of any such
messages indicates that the program will not have any problem with an EXIT
PROGRAM or GOBACK statement being executed within the range of an
out-of-line PERFORM statement, while the presence of the following messages
indicates otherwise:

184 COBOL Migration Guide

IGYOP3205-W
MIGR "EXIT PROGRAM" or "GOBACK" statements assume that ends
of "PERFORM" ranges were reached under the "NOCMPR2" compiler
option. This program may have different execution results after migration
if used as a subprogram.

IGYOP3092-W
An "EXIT PROGRAM" or a "GOBACK" statement was encountered in the
range of the "PERFORM" statement at "PERFORM (LINE xx.xx)". Re-entry
of the program may cause unexpected control flow.

Corrective action for the PERFORM return mechanism:
The CMPR2 behavior of affected programs cannot be preserved without extensive
and complex recoding. Such programs should be rewritten to avoid this
dependency on the CMPR2 behavior.

PERFORM ... VARYING ... AFTER
Identifiers are set and increment differently, for example:
PERFORM PARA3 VARYING id-2 FROM id-3 BY id-4

UNTIL condition-1
AFTER id-5 FROM id-6 BY id-7

UNTIL condition-2.

CMPR2
Within the VARYING ... AFTER phrase of the PERFORM statement under CMPR2,
id-5 is set before id-2 is augmented.

When varying two variables under CMPR2, at the intermediate stage when the
inner condition is true, the inner variable (id-5) was set to its current FROM value
(id-6) before the outer variable (id-2) was augmented with its current BY value
(id-4).

NOCMPR2
However, under NOCMPR2, id-2 is augmented before id-5 is set. This change
creates an incompatibility when id-6 is dependent on id-2.

Consider the following example:
PERFORM PARA3 VARYING X FROM 1 BY 1 UNTIL X IS GREATER THAN 3

AFTER Y FROM X BY 1 UNTIL Y IS GREATER THAN 3.

In this example, id-6 (X) is dependent on id-2 (X) because they are identical.

Under CMPR2, PARA3 will be executed eight times with the following values:
X: 1 1 1 2 2 2 3 3
Y: 1 2 3 1 2 3 2 3

Under NOCMPR2, PARA3 will be executed six times with the following values:
X: 1 1 1 2 2 3
Y: 1 2 3 2 3 3

A dependency between identifiers occurs if the first identifier is identical to,
subscripted with, a partial or full redefinition of, or variably located depending on
the second identifier.

Chapter 16. Migrating from CMPR2 to NOCMPR2 185

Message
First, recompile all programs under an earlier COBOL compiler with the CMPR2
and FLAGMIG compiler options. This will flag any PERFORM ... VARYING
statements that have dependencies between the following variables:
v id-6 is (potentially) dependent on id-2
v id-9 is (potentially) dependent on id-5
v id-4 is (potentially) dependent on id-5
v id-7 is (potentially) dependent on id-8

Note: Only PERFORM ... VARYING with the AFTER phrase is affected.

For example, compiling the program under an earlier COBOL compiler with the
CMPR2 and FLAGMIG compiler options will cause the compiler to issue the
following message when id-6 is dependent on id-2:

IGYPA3209-W
MIGR "PERFORM ... VARYING" operand "ID-6 (NUMERIC INTEGER)"
was dependent on "ID-2 (NUMERIC INTEGER)". Under the "NOCMPR2"
compiler option, the rules for augmenting/setting "PERFORM ...
VARYING" operands have changed, and this statement may have
incompatible results.

Corrective action for PERFORM . . . VARYING . . . AFTER
If a PERFORM ... VARYING statement is flagged by FLAGMIG, that statement will
have to be converted. A possible way of converting a PERFORM ... VARYING
statement that has all four dependencies is as follows:
PERFORM xx

VARYING id-2 FROM id-3 BY id-4 UNTIL cond-1
AFTER id-5 FROM id-6 BY id-7 UNTIL cond-2
AFTER id-8 FROM id-9 BY id-10 UNTIL cond-3.

is converted into:
MOVE id-3 TO id-2.
MOVE id-6 TO id-5
MOVE id-9 TO id-8

PERFORM UNTIL cond-1
PERFORM UNTIL cond-2

PERFORM UNTIL cond-3
PERFORM xx
ADD id-10 TO id-8

END-PERFORM
MOVE id-9 TO id-8
ADD id-7 TO id-5

END-PERFORM
MOVE id-6 TO id-5
ADD id-4 TO id-2

END-PERFORM

This example assumes that all id-x are identifiers. If any are index-names, then SET
statements must be used in place of MOVE statements.

The above example is a worst-case conversion. It could be refined by changing
only the parts of the statement that use those identifiers for which a dependency
(potentially) exists. For example, if only id-6 is dependent on id-2 and no other
dependency exists, the above conversion can be reduced to:
MOVE id-3 TO id-2.
MOVE id-6 TO id-5.

PERFORM UNTIL cond-1

186 COBOL Migration Guide

PERFORM UNTIL cond-2
PERFORM VARYING id-8 FROM id-9 BY id-10 UNTIL cond-3

PERFORM XX
END-PERFORM
ADD id-7 TO id-5

END-PERFORM
MOVE id-6 TO id-5
ADD id-4 TO id-2

END-PERFORM

PICTURE clause with "A"s and "B"s

CMPR2
Under CMPR2, a data item with the symbol B in its PICTURE clause is an
alphabetic data item.

NOCMPR2
Under NOCMPR2, a data item with the symbol B in its PICTURE clause is an
alphanumeric-edited item.

Most functions do not pose a problem with this change. However, there are a few
subtleties that you should watch for when upgrading from CMPR2 to Enterprise
COBOL, relating to the INITIALIZE, STRING, CALL and CANCEL verbs.

Message
If a program is compiled with the CMPR2 and FLAGMIG options, a message will
appear for any alphabetic items that had been defined with the symbol B.

IGYDS1105-W
MIGR A "PICTURE" clause was found consisting of symbols "A" and
"B". This alphabetic item will be treated as an alphanumeric-edited item
under the "NOCMPR2" compiler option.

INITIALIZE verb
Consider the following example:
01 ALPHA PIC AABAABAA.

INITIALIZE ALPHA REPLACING ALPHABETIC DATA BY ALL "3".

A statement like this coded under CMPR2 is valid and initialization will take
place. However, this statement gives the following warning message under
NOCMPR2, and no initialization will take effect:

IGYPS2047-W
"INITIALIZE" statement receiver "ALPHA" was incompatible with the data
category(s) of the "REPLACING" operand(s). "ALPHA" was not initialized.

This incompatibility can also happen when a group of items are being initialized.
Under NOCMPR2, ALPHA above would be classified as alphanumeric-edited. If
ALPHA was defined in a group that was to be initialized, a message like the one
above would appear only if there were no alphabetic items to be initialized. Thus,
in the following example, ALPHA is never initialized, but no message alerts you to
that fact.
01 GROUP1.

05 ALPHA PIC AABAA.
05 BETA PIC AAA.

INITIALIZE GROUP1 REPLACING ALPHABETIC DATA BY ALL "5".

Chapter 16. Migrating from CMPR2 to NOCMPR2 187

Corrective action for the INITIALIZE verb
To initialize any of these reclassified data items in the same manner as they had
been previously, change the original statement for the first example above to the
following:
INITIALIZE ALPHA REPLACING

ALPHANUMERIC-EDITED DATA BY ALL "3".

In the second example, which shows a group of possibly mixed types, INITIALIZE
should be supplemented with an additional phrase. For example:
INITIALIZE GROUP1 REPLACING

ALPHABETIC DATA BY ALL "5"
ALPHANUMERIC-EDITED DATA BY ALL "5".

Note: Adding this extra phrase could cause conflicts if you already specified this
phrase but used different replacing data or if you had other
alphanumeric-edited items within the group that you did not want
initialized.

STRING verb
With either CMPR2 or NOCMPR2, alphabetic items are allowed to be the
STRING...INTO receiving field. However, edited items are not allowed. Therefore,
if any CMPR2 programs have an alphabetic item defined with the symbol B in this
position of the STRING verb, these statements will get a severe error message from
Enterprise COBOL because this item is reclassified as alphanumeric-edited.

IGYPA3104-S
"STRING INTO" identifier "ALPHA (ALPHANUMERIC-EDITED)" was an
edited data item or was defined with the "JUSTIFIED" clause. The
statement was discarded.

Corrective action for the STRING verb
Because a STRING statement with CMPR2 would automatically overlay any
positions represented with the symbol B, all that is really needed is a new
alphabetic data-name redefined on the original INTO field. For example:

Statement under CMPR2:
01 ALPHA PIC AABAABAA.
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

STRING VARX VARY DELIMITED BY SIZE INTO ALPHA.

Statement under NOCMPR2:
01 ALPHA PIC AABAABAA
01 BETA REDEFINES ALPHA PIC A(8).
01 VARX PIC A(3) VALUE "XXX".
01 VARY PIC A(3) VALUE "YYY".

STRING VARX VARY DELIMITED BY SIZE INTO BETA.

BETA is redefined on ALPHA and has a length equal to ALPHA, including all
symbols of B. BETA is then used in the STRING statement. After STRING is
executed, ALPHA will have the same value as it did with CMPR2.

CALL and CANCEL verbs
An IBM extension allows the CALL and CANCEL statement identifier to be an
alphabetic data item. However, alphanumeric-edited items are not allowed;
therefore, any CMPR2 programs with alphabetic items defined with the symbol B

188 COBOL Migration Guide

will get a severe error message. For example, the following program would have
worked with CMPR2, but will now get a severe error message:
01 CALLDN PIC AAAAABB.

MOVE "PROG1" TO CALLDN.
CALL CALLDN.
CANCEL CALLDN.

IGYPA3063-S
"CALL" or "CANCEL" identifier "CALLDN (ALPHANUMERIC-EDITED)"
was not alphanumeric, zoned decimal nor alphabetic. The statement was
discarded.

To compile with Enterprise COBOL, change the definition of CALLDN to all
alphabetic or alphanumeric or add a new data-name that redefines CALLDN with
a valid data type as shown below.
01 CALLDN PIC A(7).

or
01 CALLDN PIC X(7).

or

01 CALLDN PIC AAAAABB
01 CALLDN1 REDEFINES CALLDN PIC A(7).

MOVE "PROG1" TO CALLDN1.
CALL CALLDN1.
CANCEL CALLDN1.

PROGRAM COLLATING SEQUENCE

CMPR2
The PROGRAM COLLATING SEQUENCE established in the OBJECT COMPUTER
paragraph is used to determine the truth value of any nonnumeric comparisons
that are:
v Explicitly specified in relation conditions
v Explicitly specified in condition-name conditions
v Implicitly performed as part of the execution of the SORT and MERGE

statements, unless overridden by the COLLATING SEQUENCE phrase on the
respective SORT or MERGE statement

v Implicitly performed as part of the execution of STRING, UNSTRING, and
INSPECT statements

NOCMPR2
The PROGRAM COLLATING SEQUENCE established in the OBJECT COMPUTER
paragraph is used to determine the truth value of any nonnumeric comparisons
that are:
v Explicitly specified in relation conditions
v Explicitly specified in condition-name conditions
v Implicitly performed as part of the execution of the SORT and MERGE

statements, unless overridden by the COLLATING SEQUENCE phrase on the
respective SORT or MERGE statement

The native collating sequence is used to determine the truth value of any nonnumeric
comparisons that are implicitly performed as part of the execution of STRING,
UNSTRING, and INSPECT statements.

Chapter 16. Migrating from CMPR2 to NOCMPR2 189

For most applications, this difference will not affect the results of these statements.
The implicit comparisons performed as part of STRING, UNSTRING, and
INSPECT statements are always for equality. Therefore, even if the ordering of the
characters in the PROGRAM COLLATING SEQUENCE is different than that of the
native sequence, the results of these comparisons will be the same.

For an application to be affected by this change, the PROGRAM COLLATING
SEQUENCE established in the OBJECT COMPUTER paragraph must identify an
alphabet that was defined with the ALSO clause, which assigns several different
characters to the same ordinal position.

Messages
Compiling the program with the CMPR2 and FLAGMIG options will cause the
compiler to issue messages for all statements that might be affected by this change:

IGYPS3142-W
MIGR The "PROGRAM COLLATING SEQUENCE" will not affect the
"STRING" statement under the "NOCMPR2" compiler option.

Corrective action
No correction that is generally applicable exists for programs receiving this
message if the PROGRAM COLLATING SEQUENCE contains multiple characters
assigned to the same ordinal position.

The CMPR2 behavior of affected programs cannot be preserved without extensive
and complex recoding. Such programs must be rewritten to avoid this dependency
on the CMPR2 behavior.

READ INTO and RETURN INTO
READ (or RETURN) with the INTO phrase might be performed using a different
record description if the file contains multiple record descriptions and not all of the
record descriptions are alphanumeric.

A file will be affected only when it is fixed format, there are multiple 01 record
descriptions, and at least one of the record descriptions is a numeric or
numeric-edited item.

When deciding which record description to use as the sending field for an implicit
MOVE statement, the compiler selects the longest of the 01 record descriptions. If
multiple record descriptions have the same length, then the first such record
description is chosen. This is true under both CMPR2 and NOCMPR2. However,
the method for determining which 01 record description is the longest is different.

CMPR2
Under CMPR2, the length of numeric and numeric-edited record descriptions is
calculated by totaling the number of digit positions in the PICTURE. Other types
of record descriptions are assigned a length equal to the number of bytes occupied
by the record description.

NOCMPR2
Under NOCMPR2, the length of each record description is determined to be the
number of bytes occupied by the record description, regardless of whether the
record description is numeric, numeric-edited, or otherwise.

Messages
If the FLAGMIG and CMPR2 compiler options are used, a message will be issued
for any READ INTO or RETURN INTO statement that might be affected.

190 COBOL Migration Guide

A program that is affected by the rule change will receive the following message:

IGYPS2281-I
The "INTO" phrase of the "READ" or "RETURN" statement was specified
for fixed-format file "file-name", which contained multiple records. Record
"record-name" was selected as the sending field for the move.

This message will be issued under both the CMPR2 and NOCMPR2 compiler
options. Therefore, you can compile the program with CMPR2, and then with
NOCMPR2, and examine the messages to determine whether the same record was
chosen under both CMPR2 and NOCMPR2. If so, then the program need not be
changed.

In addition, with the FLAGMIG compiler option, the following message will
appear:

IGYPS2283-W
MIGR The "INTO" phrase of the "READ" or "RETURN" statement was
specified for file "file-name", which contained multiple records. A different
record might be selected for the sending field for the move under the
"NOCMPR2" compiler option.

Corrective action for the READ INTO and RETURN INTO phrases:
By applying the record description rules to each qualified file or by checking the
messages, you can determine whether a different record description may be
selected under NOCMPR2 than under CMPR2. For example, consider the
following record descriptions:
01 RECORD-1 PIC X(9) USAGE DISPLAY.
01 RECORD-2 PIC 9(9) USAGE DISPLAY.

In this case, each record description is calculated to have a length of "9", under
both CMPR2 and NOCMPR2. Therefore, no incompatibility exists.

Suppose, however, that there is a difference in the way that the record description
lengths are calculated. Consider the following:
01 RECORD-3 PIC X(4) USAGE DISPLAY.
01 RECORD-4 PIC 9(9) USAGE COMP.

In this case, under NOCMPR2, each record description is calculated to have a
length of "4". However, under CMPR2, the length of the numeric record description
(RECORD-4) is calculated by counting digits, so its length will be "9" instead of "4".
Thus, RECORD-4 will be used as the sending field, even though the byte length of
each record description is 4.

After you have detected an incompatibility, change the code to ensure that the
CMPR2 behavior will be preserved. You can change the READ INTO or RETURN
INTO statement to a READ or RETURN statement, followed by a MOVE
statement. The MOVE statement would specify, as a sending field, the desired
record description (the "longest" one), and, as a receiving field, the item that had
been specified as the INTO item.

RECORD CONTAINS n CHARACTERS
The definition of RECORD CONTAINS n CHARACTERS affects existing programs
and its behavior is different under CMPR2.

Consider the following example:

Chapter 16. Migrating from CMPR2 to NOCMPR2 191

FD FILE1
RECORD CONTAINS 40.

01 F1R1 PIC X(20).
01 F1R2 PIC X(40).

FD FILE2
RECORD CONTAINS 20 TO 40.

01 F2R1 PIC X(20).
01 F2R2 PIC X(40).

CMPR2
Under CMPR2, FILE1 and FILE2 have variable-length records.

NOCMPR2
Under NOCMPR2, FILE1 has fixed-length records and FILE2 has variable-length
records.

Message
Compiling the program with the CMPR2 and FLAGMIG options will cause the
compiler to issue the following message for FILE1:

IGYPS1183-W
MIGR "RECORD CONTAINS" clause with one integer specified is
supported differently under the "NOCMPR2" compiler option.

A program that has this difference might get a file status 39 on OPEN after
compiling with Enterprise COBOL.

Corrective action for the RECORD CONTAINS n CHARACTERS
clause:
To maintain current behavior, remove the RECORD CONTAINS clauses. This
change will result in both FILE1 and FILE2 having variable-length records.

For maximum clarity, and for any new applications, use RECORD CONTAINS n
CHARACTERS for fixed-length records and RECORD IS VARYING FROM
integer-1 TO integer-2 for variable-length records. Avoid using RECORD
CONTAINS n1 TO n2 CHARACTERS.

Reserved words
New reserved words were added to VS COBOL II Release 3, IBM COBOL, and
Enterprise COBOL. For a complete list of new reserved words, see Table 43.

Note: Reserved words added in any given release are also reserved in any
subsequent releases.

Table 43. New reserved words by compiler as compared to VS COBOL II Release 2

Compiler Reserved word

VS COBOL II Release 3 NOCMPR2 ALPHABET, ALPHABETIC-LOWER,
ALPHABETIC-UPPER, BINARY, CLASS,
COMMON, CONVERTING, DAY-OF-WEEK,
DBCS, END-RECEIVE, EXTERNAL,
GLOBAL, ORDER, PACKED-DECIMAL,
PADDING, PURGE, REPLACE,
STANDARD-2

COBOL/370 V1R1 FUNCTION, PROCEDURE-POINTER

192 COBOL Migration Guide

Table 43. New reserved words by compiler as compared to VS COBOL II Release
2 (continued)

Compiler Reserved word

COBOL for MVS & VM V1R2 CLASS-ID, METACLASS, RECURSIVE,
END-INVOKE, METHOD, REPOSITORY,
INHERITS, METHOD-ID, RETURNING,
INVOKE, OBJECT, SELF, SUPER,
LOCAL-STORAGE, OVERRIDE

COBOL for OS/390 & VM V2R1 Same as COBOL for MVS & VM

COBOL for OS/390 & VM V2R2 COMP-5, COMPUTATIONAL-5, EXEC,
END-EXEC, SQL, TYPE, FACTORY

COBOL for OS/390 & VM V2R2 with
PQ49375

EXECUTE

Enterprise COBOL JNIENVPTR, XML, END-XML, XML-EVENT,
XML-CODE, XML-TEXT, XML-NTEXT,
FUNCTION-POINTER

Messages
Compiling the program with CMPR2 and FLAGMIG compiler options will cause
the compiler to issue a message for each new reserved word.

The following is an example for the new reserved word "ALPHABET":

IGYPS0057-W
MIGR "ALPHABET" is a new COBOL reserved word under the
"NOCMPR2" compiler option.

Corrective action for new reserved words:
Change the reserved word to a different, nonreserved COBOL word by adding or
subtracting characters, or change the word entirely.

SET . . . TO TRUE

CMPR2
The SET ... TO TRUE statement is performed according to the rules of the MOVE
statement.

NOCMPR2
Under NOCMPR2, SET ... TO TRUE follows the rules of the VALUE clause. There
are three instances in which this change can cause different results:
v When the data item is described by a JUSTIFIED clause
v When the data item is described by a BLANK WHEN ZERO clause
v When the data item has editing symbols in its PICTURE string

Message
A program that is potentially affected by this change will receive the following
message when compiled with the CMPR2 and FLAGMIG options:

IGYPS2219-W
MIGR The "SET" statement with the "TO TRUE" phrase will be
performed according to the rules for the "VALUE" clause under the
"NOCMPR2" compiler option.

JUSTIFIED clause
When a data item described by a JUSTIFIED clause is the receiving item in a
MOVE statement, the sending data is aligned at the rightmost character position in

Chapter 16. Migrating from CMPR2 to NOCMPR2 193

|
|
|

the receiving item. In a VALUE clause, initialization is not affected by the
JUSTIFIED clause. This means that the data in a VALUE clause will be aligned at
the leftmost character position in the receiving item.

Here’s how it works under CMPR2:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE "a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

Here’s how it works under NOCMPR2:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE "a".
SET V TO TRUE (Result = "a ")

MOVE "a" TO A (Result = " a")

Corrective action for the JUSTIFIED clause
If using NOCMPR2, and you want the same behavior as with CMPR2, adjust the
data in the VALUE clause for the 88-level item accordingly:
01 A PIC X(3) JUSTIFIED RIGHT VALUE "a". (Result = "a ")

88 V VALUE " a".

SET V TO TRUE (Result = " a")
MOVE "a" TO A (Result = " a")

BLANK WHEN ZERO clause
When a data item described by a BLANK WHEN ZERO clause receives the value
of zero in a MOVE statement, the item will contain nothing but spaces. In a
VALUE clause, initialization is not affected by the BLANK WHEN ZERO clause.
This means that if the VALUE clause specifies a value of zero, the data will be
placed into the item as is, and the item will contain all zeros instead of spaces.

Here’s how it works under CMPR2:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE ZERO.

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

Here’s how it works under NOCMPR2:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE ZERO.
SET V TO TRUE (Result = "000")

MOVE ZERO TO N (Result = " ")

If the behavior exhibited under CMPR2 is desired under NOCMPR2, the data in
the VALUE clause for the 88-level item must be adjusted accordingly:
01 N PIC 9(3) BLANK WHEN ZERO VALUE ZERO. (Result = "000")

88 V VALUE " ".

SET V TO TRUE (Result = " ")
MOVE ZERO TO N (Result = " ")

PICTURE string with editing symbols
When a data item contains editing symbols in its PICTURE string, the character
positions represented by those symbols will contain editing characters when data is
moved into the data item. In a VALUE clause, initialization is not affected by the

194 COBOL Migration Guide

editing symbols. This means that the data in the VALUE clause will be placed into
the item as is, and editing will not take place as it does in the MOVE statement.

Here’s how it works under CMPR2:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE SPACE.

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

Here’s how it works under NOCMPR2:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE SPACE.
SET V TO TRUE (Result = " ")

MOVE SPACE TO E (Result = " / ")

If the behavior exhibited under CMPR2 is desired under NOCMPR2, the data in
the VALUE clause for the 88-level item must be specified in edited form:
01 E PIC X/X VALUE SPACE. (Result = " ")

88 V VALUE " / ".

SET V TO TRUE (Result = " / ")
MOVE SPACE TO E (Result = " / ")

SIZE ERROR on MULTIPLY and DIVIDE
The COBOL ’74 and ’85 Standards state that an intermediate result will be
provided by the implementer when a COMPUTE, DIVIDE, or MULTIPLY
statement has multiple receiving fields. For example: MULTIPLY A BY B GIVING C D
should behave like:
MULTIPLY A BY B GIVING temp
MOVE temp TO C
MOVE temp TO D

where temp is an intermediate result provided by the implementer.

The Enterprise COBOL Programming Guide describes the use and definition of
intermediate results. One such definition says that an intermediate result will have
at most 30-digits (31-digits with ARITH(EXTEND)).

So, in the example above, if A, B, C, and D are all defined as PIC S9(18), A will be
multiplied by B, yielding a 36-digit result, which will be moved to the 30-digit (or
31-digit) intermediate result, temp. Then temp will be moved to C and D.

CMPR2
When SIZE ERROR is specified on the MULTIPLY statement example, SIZE
ERROR can occur when the 36-digit (immediate) result is moved into the 30-digit
(or 31-digit) (intermediate) result, according to the COBOL 74 Standard rules. This
differs from the corresponding COMPUTE case, in which SIZE ERROR cannot
occur when the 36-digit (immediate) result is moved into the 30-digit (or 31-digit)
(intermediate) result.
COMPUTE C D = A * B ON SIZE ERROR...

This behavior applies to the DIVIDE statement with its corresponding COMPUTE
statement as well.

Chapter 16. Migrating from CMPR2 to NOCMPR2 195

NOCMPR2
However, under NOCMPR2, SIZE ERROR applies only to final results. In the
MULTIPLY example, SIZE ERROR cannot occur when the 36-digit (immediate)
result is moved into the 30-digit (or 31-digit) (intermediate) result. Consequently,
the MULTIPLY and COMPUTE statements become equivalent in this regard. This
behavior also applies to the DIVIDE statement.

Such statements will now be flagged by the following compiler message:

IGYPG3113-W
Truncation of high-order digit positions can occur due to precision of
intermediate results exceeding 30-digits.

If, at run-time, truncation actually does occur, the following message will appear:

IGZ0036W
Truncation of high order digit positions occurred in program
"program-name" on line number "n".

Message
A program that is potentially affected by this change will receive the following
message when compiled with the CMPR2 and the FLAGMIG options:

IGYPG3204-W
MIGR The "ON SIZE ERROR" phrase will not be executed for
intermediate results under the "NOCMPR2" compiler option.

Corrective action for the SIZE ERROR on MULTIPLY and DIVIDE:
The CMPR2 behavior of affected programs cannot be preserved without extensive
and complex recoding. Such programs must be rewritten to avoid this dependency
on the CMPR2 behavior.

UNSTRING operand evaluation
In the description below, the following general format of the UNSTRING statement
is used for reference:
UNSTRING id-1

DELIMITED BY id-2 OR id-3 ...
INTO id-4 DELIMITER IN id-5 COUNT IN id-6

id-7 DELIMITER IN id-8 COUNT IN id-9...

WITH POINTER id-10
TALLYING IN id-11
ON OVERFLOW imp-stmt-1
NOT ON OVERFLOW imp-stmt-2
END-UNSTRING

CMPR2
Under CMPR2, any subscripting, indexing, or length calculation associated with
id-1, id-10, and id-11 is to be evaluated only once, at the beginning of execution of
the UNSTRING statement. However, any subscripting, indexing, or length
calculation associated with id-2, id-3, id-4, id-5, id-6, id-7, id-8, and id-9, (or any
repetitions) is to be evaluated immediately before transfer into the respective data
item.

NOCMPR2
Under NOCMPR2, any subscripting, indexing, or length calculation associated
with any of id-1 through id-11 (or any repetitions) is to be evaluated only once, at

196 COBOL Migration Guide

the beginning of execution of the UNSTRING statement. This change can lead to
different results when certain dependencies exist between id-2 through id-9.

Note: Dependencies involving identifiers id-1, id-10, and id-11 are not affected by
this change.

Messages
Most of the UNSTRING statements flagged with messages 3211 through 3214 will
generate identical results. Only certain dependencies between the operands in the
UNSTRING statement will generate different results.

For example, a dependency can exist between two operands (op-1 and op-2) in an
UNSTRING statement in the following ways:
1. op-1 is subscripted, and the subscript value is modified by op-2:

a. The subscript identifier is used as a receiver in an INTO, DELIMITER IN, or
COUNT IN operand.

b. The subscript identifier is a variably located item, and an ODO object
affecting the location of this item is used as a receiver in an INTO,
DELIMITER IN, or COUNT IN operand.

2. op-1 is a variable-length group item, and an ODO object affecting the length of
this group is modified by op-2:
a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or

COUNT IN operand.
3. op-1 is a variably located item, and an ODO object affecting the location of this

item is modified by op-2:
a. The ODO object is used as a receiver in an INTO, DELIMITER IN, or

COUNT IN operand.

Note: Dependencies generated by overlapping operands, or by specifying the same
identifier as a DELIMITED BY operand and as one of the sending, INTO, or
DELIMITER IN operands are illegal under both the COBOL 74 and 85
Standards and are not addressed here. Generally, results will be
unpredictable.

Compiling the program with the CMPR2 and FLAGMIG options will cause the
compiler to issue messages for all UNSTRING statements that might contain such
dependencies.

Any UNSTRING statements not flagged with one of these messages will generate
identical results under CMPR2 and NOCMPR2.

All UNSTRING statements flagged with message 2222 will require changes to
guarantee identical results.

Corrective action for the UNSTRING OPERAND evaluation:
The individual cases requiring changes are detailed below in order by message
number, and with examples illustrating the dependencies and the suggested
changes. Only the essential program fragments are included in the examples.

IGYPS2222-W
This message will be issued if one of the "receiver" identifiers in the
UNSTRING statement refers to a variable-length group item that contains
its own ODO object. Due to the syntax rules and restrictions applying to
all UNSTRING statements, this situation can occur only for id-2, id-3, id-4,
id-5, id-7, and id-8 (or repetitions).

Chapter 16. Migrating from CMPR2 to NOCMPR2 197

For example:
01 VLG-1.
02 VLG-1-ODOOBJ PIC 9 VALUE IS 5.
02 VLG-1-GR.
03 VLG-1-ODO PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON VLG-1-ODOOBJ.
77 S-1 PIC X(20) VALUE IS ALL "123456789".

UNSTRING S-1
INTO VLG-1
END-UNSTRING

IGYPS2222-W
MIGR The maximum length of receiver "vlg-1" will be used
under the "NOCMPR2" compiler option.

Note: Enterprise COBOL will use the maximum length of vlg-1 to
determine both the amount of data extracted from sending item s-1
and the length of the receiving area vlg-1.

Regardless of which identifier is flagged with message 2222, you must
replace the identifier with a reference modified version, as in the following:
UNSTRING S-1

INTO VLG-1(1:LENGTH OF VLG-1)
END-UNSTRING

This form forces the actual length of vlg-1 at the beginning of the
UNSTRING statement to be used.

This correction is not affected by the presence of any of the optional
phrases of the UNSTRING statement (DELIMITED BY, WITH POINTER,
ON OVERFLOW) and it applies equally to all flagged identifiers in any
one UNSTRING statement.

IGYPA3211-W
This message will be issued if one of the "DELIMITED BY" identifiers in
the UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
DELIMITED BY operand must depend on one of the INTO receivers.

For example:
01 DEL
02 OCC-DEL-1 PIC X OCCURS 9 TIMES.
02 VLEN-DEL-2-ODOOBJ PIC 9 VALUE IS 5.
02 VLEN-DEL-2.
03 VLEN-DEL-2-ODO PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON VLEN-DEL-2-ODOOBJ.

77 S-1 PIC X(20) VALUE IS ALL "123456789".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 SUB-5 PIC 99 VALUE IS 5.

UNSTRING S-1
DELIMITED BY OCC-DEL-1(SUB-5) OR VLEN-DEL-2,
INTO R-1 DELIMITER IN OCC-DEL-1(SUB-5 + 1)

COUNT IN VLEN-DEL-2-ODOOBJ,
R-2,

END-UNSTRING

198 COBOL Migration Guide

IGYPA3211-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "DELIMITED BY"
operand will be done only once under the "NOCMPR2" compiler
option.

No corrections are required for items flagged with message 3211.

IGYPA3212-W
This message will be issued if one of the INTO identifiers in the
UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
INTO identifier must depend on one of the receivers in a preceding INTO
phrase.

For example:
01 REC.
02 R-1 PIC X(20) VALUE IS SPACES.
02 R-2-SUB PIC 9 VALUE IS 9.
02 OCC-R-2-GR.
03 OCC-R-2 PIC X OCCURS 9 TIMES.
02 R-3-ODOOBJ PIC 9 VALUE IS 9.
02 ODO-R-3.
03 FILLER PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON R-3-ODOOBJ.

77 S-3 PIC X(20) VALUE IS "12 345 6789".

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN R-2-SUB,

OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
ODO-R-3,

END-UNSTRING

IGYPA3212-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "INTO" operand
will be done only once under the "NOCMPR2" compiler option.

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the second INTO receiver is
modified by the COUNT IN receiver of the first INTO phrase. In addition,
the length of the third INTO receiver is modified by the COUNT IN
receiver of the second INTO phrase.

Under CMPR2, the values that are moved to the COUNT IN identifiers
will be used for the subsequent INTO phrases. Under NOCMPR2, the
values in effect at the beginning of the execution of the UNSTRING
statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3212 must be broken into
multiple UNSTRING statements. A separate UNSTRING statement must be
used for each dependent INTO phrase. However, be aware of the
following:
v If the original UNSTRING statement specified a WITH POINTER phrase,

that phrase must be included in all of the changed UNSTRING
statements. If the original UNSTRING statement did not specify a WITH

Chapter 16. Migrating from CMPR2 to NOCMPR2 199

POINTER phrase, that phrase must be added to all the changed
UNSTRING statements, and the POINTER identifier must be initialized
to 1.

v If the original UNSTRING statement specified a TALLYING IN phrase,
that phrase must be included in all of the changed UNSTRING
statements.

v If the original UNSTRING statement specified the ON OVERFLOW or
NOT ON OVERFLOW phrases, those phrases must be included only in
the last of the changed UNSTRING statements.

With these changes, the previous example becomes:
77 PTR PIC 99.

MOVE 1 TO PTR
UNSTRING S-3

DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN R-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO OCC-R-2(R-2-SUB) COUNT IN R-3-ODOOBJ,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-3
DELIMITED BY ALL SPACES,
INTO ODO-R-3,
WITH POINTER PTR,
END-UNSTRING

IGYPA3213-W
This message will be issued if one of the DELIMITER IN identifiers in the
UNSTRING statement is subscripted, refers to a variable-length group
item, or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
DELIMITER IN identifier must depend on one of the receivers in a
preceding INTO phrase.

Note: Dependencies between identifiers in the same INTO phrase will not
affect the result of the UNSTRING statement. CMPR2 behavior
delays the effects of these dependencies until the next INTO phrase.

For example:
01 DEL.
02 D-2-SUB PIC 9 VALUE IS 9.
02 OCC-D-2-GR.
03 OCC-D-2 PIC X OCCURS 9 TIMES.
02 D-3-ODOOBJ PIC 9 VALUE IS 9.
02 ODO-D-3.
03 FILLER PIC X OCCURS 1 TO 9 TIMES

DEPENDING ON D-3-ODOOBJ.

77 S-4 PIC X(20) VALUE IS "12 345 6789".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.
77 R-3 PIC X(20) VALUE IS SPACES.

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN D-2-SUB,

200 COBOL Migration Guide

R-2 DELIMITER IN OCC-D-2(D-2-SUB)
COUNT IN D-3-ODOOBJ,

R-3 DELIMITER IN ODO-D-3,
END-UNSTRING

IGYPA3213-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "DELIMITER IN"
operand will be done only once under the "NOCMPR2" compiler
option.

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the DELIMITER IN identifier of
the second INTO phrase is modified by the COUNT IN receiver of the first
INTO phrase. In addition, the length of the DELIMITER IN identifier of the
third INTO phrase is modified by the COUNT IN receiver of the second
INTO phrase.

With CMPR2 behavior, the values that are moved to the COUNT IN
identifiers will be used for the subsequent INTO phrases. With NOCMPR2,
the values in effect at the beginning of the execution of the UNSTRING
statement will be used for all INTO phrases.

Any UNSTRING statement flagged with message 3213 must be broken into
multiple UNSTRING statements; a separate UNSTRING statement must be
used for each dependent INTO phrase.

With these changes, the previous example becomes:
77 PTR PIC 99.

MOVE 1 TO PTR
UNSTRING S-4

DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN D-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-2 DELIMITER IN OCC-D-2(D-2-SUB)

COUNT IN D-3-ODOOBJ,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-4
DELIMITED BY ALL SPACES,
INTO R-3 DELIMITER IN ODO-D-3,
WITH POINTER PTR,
END-UNSTRING

IGYPA3214-W
This message will be issued if one of the COUNT IN identifiers in the
UNSTRING statement is subscripted or refers to a variably located item.

For an UNSTRING statement to be affected by this change, the flagged
COUNT IN identifier must depend on one of the receivers in a preceding
INTO phrase.

Note: Dependencies between identifiers in the same INTO phrase will not
affect the result of the UNSTRING statement; CMPR2 behavior
delays the effects of these dependencies to the next INTO phrase.

For example:

Chapter 16. Migrating from CMPR2 to NOCMPR2 201

01 C-2.
02 C-2-SUB PIC 9 VALUE IS 9.
02 OCC-C-2-GR.
03 OCC-C-2 PIC 9 OCCURS 9 TIMES.

77 S-5 PIC X(20) VALUE IS "12 345 6789........".
77 R-1 PIC X(20) VALUE IS SPACES.
77 R-2 PIC X(20) VALUE IS SPACES.

UNSTRING S-5
DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN C-2-SUB,

R-2 COUNT IN OCC-C-2(C-2-SUB),
END-UNSTRING

IGYPA3214-W
MIGR In this "UNSTRING" statement, the subscript or
"OCCURS DEPENDING ON" calculations for the "COUNT IN"
operand will be done only once under the "NOCMPR2" compiler
option.

This UNSTRING statement will generate different results under CMPR2
and NOCMPR2 because the subscript of the COUNT IN identifier of the
second INTO phrase is modified by the COUNT IN receiver of the first
INTO phrase.

With CMPR2 behavior the values that are moved to the COUNT IN
identifier in the first INTO phrase will be used for the second INTO
phrase. With NOCMPR2, the value in effect at the beginning of execution
of the UNSTRING statement will be used.

Any UNSTRING statement flagged with message 3214 must be broken into
multiple UNSTRING statements; a separate UNSTRING statement must be
used for each dependent INTO phrase.

With these changes, the above example becomes:
77 PTR PIC 99.

MOVE 1 TO PTR
UNSTRING S-5

DELIMITED BY ALL SPACES,
INTO R-1 COUNT IN C-2-SUB,
WITH POINTER PTR,
END-UNSTRING

UNSTRING S-5
DELIMITED BY ALL SPACES,
INTO R-2 COUNT IN OCC-C-2(C-2-SUB),
WITH POINTER PTR,
END-UNSTRING

UPSI switches

CMPR2
UPSI switches can be defined by specifying condition-names for the ON and OFF
settings of the switch. Under CMPR2, the condition-names for all UPSI switches,
UPSI-0 through UPSI-7, can be defined with the same names, as follows:
SPECIAL-NAMES.

UPSI-0 ON STATUS IS T OFF STATUS IS F
UPSI-1 ON STATUS IS T OFF STATUS IS F

202 COBOL Migration Guide

...

UPSI-7 ON STATUS IS T OFF STATUS IS F

References to the names could be qualified with the UPSI name, as follows:
IF T OF UPSI-0 DISPLAY "UPSI-0".
IF T OF UPSI-1 DISPLAY "UPSI-1"....

IF T OF UPSI-7 DISPLAY "UPSI-7".

NOCMPR2
The names of the UPSI switches, UPSI-0 through UPSI-7, can no longer be
referenced in the PROCEDURE DIVISION under NOCMPR2. The above statements
will now be flagged with a message of the following format:

IGYPS2121-S
"T OF UPSI-0" was not defined as a data-name. The statement was
discarded.

Message
Using CMPR2 and FLAGMIG, any PROCEDURE DIVISION statement that
references an UPSI switch by name will be flagged with the following message:

IGYPS0186-W
MIGR UPSI switches cannot be referenced directly in the Procedure
Division under the "NOCMPR2" compiler option.

Corrective action for UPSI switches:
Programs will have to be changed to define unique condition-names, as follows:
SPECIAL-NAMES.

UPSI-0 ON STATUS IS T0 OFF STATUS IS F0
UPSI-1 ON STATUS IS T1 OFF STATUS IS F1...

UPSI-7 ON STATUS IS T7 OFF STATUS IS F7

and to reference the new condition-names, as follows:
IF T0 DISPLAY "UPSI-0".
IF T1 DISPLAY "UPSI-1"....

IF T7 DISPLAY "UPSI-7".

Variable-length group moves

CMPR2
All ODO objects in sending and receiving fields involved in a group move, such as
a MOVE statement, must be set before the statement is executed. The actual
lengths of the sender and receiver are calculated just before the execution of the
data movement statement. For a list of affected verbs, see the message below.

NOCMPR2
In some cases, NOCMPR2 uses the maximum length of a variable-length group
when it is a receiver, whereas CMPR2 uses the actual length. This behavior occurs
when the receiver is variable length, contains its own ODO object, and is the last
group in a structure. For example:

Chapter 16. Migrating from CMPR2 to NOCMPR2 203

01 ODO-SENDER
02 SEND-OBJ PIC 99.
02 SEND-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON SEND-OBJ.

01 ODO-RECEIVER.
02 RECV-OBJ PIC 99.
02 RECV-ITEM PIC X OCCURS 1 TO 20 DEPENDING ON RECV-OBJ....

MOVE 5 TO SEND-OBJ.
MOVE 10 TO RECV-OBJ.
MOVE ODO-SENDER TO ODO-RECEIVER....

CMPR2:
Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
Occurrences 6-10 of ODO-RECEIVER become spaces.
Occurrences 11-20 of ODO-RECEIVER are unchanged.

NOCMPR2:
Occurrences 1-5 of ODO-SENDER moved to ODO-RECEIVER.
Occurrences 6-20 of ODO-RECEIVER become spaces.

The programs that will have negative effects if used under NOCMPR2 are those
that reference occurrences of the table that are beyond the value of the ODO object
when a data movement statement was executed.

In the example above, if occurrences 11-20 have data in them before the group
move, that data will be lost after the group move if run under NOCMPR2.

Message
Compiling the program with the CMPR2 and FLAGMIG compiler options will
generate the following message for each data movement statement that will behave
differently under NOCMPR2:

IGYPS2222-W
MIGR The maximum length of receiver "ODO-RECEIVER" will be used
under the "NOCMPR2" compiler option.

This difference in variable-length group moves affects any verb that moves data.
The affected verbs are:

ACCEPT identifier (Format 1 or Format 2)
MOVE . . . TO identifier
READ . . . INTO identifier
RELEASE identifier FROM . . .
RETURN . . . INTO identifier
REWRITE identifier FROM . . .
STRING . . . INTO identifier
UNSTRING . . . INTO identifier DELIMITER IN identifier
WRITE identifier FROM . . .

Corrective action for variable-length group moves:
You can take the following steps:
v See if any of your COBOL programs have the variable-length data movement

statements by compiling them with the CMPR2 and FLAGMIG compiler
options. This completion will flag all variable-length group moves with receivers
that contain their own ODO objects and are not complex ODO items.

v See if any data that was previously left unchanged and is now being set to
blanks is referenced after the data movement statements. In the example, if the
ODO object has a value of 5 and a maximum value of 10 and the code uses data

204 COBOL Migration Guide

in occurrence numbers 6 through 10 after the MOVE, then the program will
have different results between CMPR2 and NOCMPR2.

v Change the receiver in the data movement statement to use reference
modification to specify explicitly the length of the receiving field. For example:
MOVE ODO-SENDER TO ODO-RECEIVER (1:LENGTH OF ODO-RECEIVER).

Chapter 16. Migrating from CMPR2 to NOCMPR2 205

206 COBOL Migration Guide

Chapter 17. CICS conversion considerations for COBOL
source

This chapter explains the source language considerations for programs that run
under CICS. It describes the actions that you need to take for applications that use
either CICS source or OS/VS COBOL source and involve the following functions:
v Key compiler options for programs that run under CICS
v Migrating from the separate CICS translator to the integrated CICS translator
v Base addressability considerations for OS/VS COBOL programs

CICS run-time considerations are included in the following chapters:
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63
v “Chapter 7. Moving from the VS COBOL II run-time” on page 75

The CICS environment supports the use of Enterprise COBOL and Language
Environment beginning with CICS Transaction Server Version 1 Release 3 or later.
You can compile and execute CICS command-level application programs. (CICS
macro-level programs will neither compile with Enterprise COBOL, nor execute
with Language Environment. The CICS Application Migration Aid can help with
this conversion. For details, see “CICS Application Migration Aid” on page 265.)

Future considerations
OS/VS COBOL programs that run under CICS require special support from
the CICS product as well as support from Language Environment. In the
CICS Transaction Server release that follows CICS Transaction Server Version
2 Release 2, this special support will not be available. OS/VS COBOL
programs will not run under CICS after CICS Transaction Server Version 2
Release 2 even with Language Environment as their COBOL run-time library.
You must upgrade any OS/VS COBOL programs to Enterprise COBOL as
soon as possible.

Key compiler options for programs that run under CICS
Table 44 lists the key compiler options for Enterprise COBOL programs that run
under CICS.

Table 44. Key compiler options for programs that run under CICS

Compiler options Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS option
must be specified if the source program contains CICS statements and has not been
processed by the separate CICS translator.

The CICS option requires that the LIB, NODYNAM, and RENT options also are in effect.
Enterprise COBOL forces on these options if NOLIB, DYNAM, or NORENT are specified at
the same level as the CICS option.

If NOCICS option is specified, any CICS statements found in the source program will be
discarded.

© Copyright IBM Corp. 1991, 2001 207

|
|
|

|
|
|

|
|

Table 44. Key compiler options for programs that run under CICS (continued)

Compiler options Comments

DATA Use DATA(24) in the following two cases:

v For batch programs that use the CICS shared database support (DFHDRP), any
parameters passed to CBLTDLI must be below the 16-MB line.

v For CICS on-line programs that access a local DL/I database using CALL CBLTDLI, the
parameter list and all storage areas that are referred to in the parameter list of the DL/I
call must reside below the 16-MB line.

For CICS/ESA you must specify TASKDATALOC(BELOW) in the TRANSACTION
definition for any transaction that involves CICS online programs that access a local DL/I
database by using CALL CBLTDLI.
Note: DATA(24) is not required when you are using DBCTL. For details, see the
CICS-IMS Database Control Guide for CICS/ESA.

LIB LIB is required for programs translated by the CICS translator.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant code
and allows you to place the COBOL modules in the LPA (Link PackAarea) or ELPA
(Extended Link Pack Area) and thus shared among multiple address spaces under CICS.
Also, the modules cannot be overwritten, since the LPA/ELPA have a storage protect key.

TRUNC Use TRUNC(OPT) for CICS programs that contain EXEC CICS commands, if the program
uses binary data items in a way that conforms to the PICTURE and USAGE clause for them.

Use TRUNC(BIN) if your program uses binary data items in a way that does not conform to
the PICTURE and USAGE clause for them. For example, if a data item is defined as PIC
S9(8) BINARY and might receive a value greater than eight digits, use TRUNC(BIN).

Migrating from the separate CICS translator to the integrated translator
Many OS/VS COBOL CICS programs must be changed in order to compile them
with Enterprise COBOL. The CCCA tool can make all of these changes
automatically, or you can make the changes yourself using the information in this
section. For more information on CCCA, see “Appendix C. Conversion tools for
source programs” on page 259.

The following considerations apply when you migrate COBOL applications to use
the integrated CICS translator:
v Delete the separate translation step from the compile process.
v Change the XOPTS translator option to the CICS compiler option. The

suboptions string must be delimited with quotes or apostrophes. For example, a
program to be translated by the separate CICS translator might have a CBL
statement like this:
CBL TEST(NONE,SYM), XOPTS(LINKAGE,SEQ,SP)

For the integrated CICS translator it must be changed to this:
CBL TEST(NONE,SYM), CICS('LINKAGE,SEQ,SP')

v Do not use SIZE(MAX) when you compile programs that contain CICS
statements. Storage must be left in the user region for the translator services.

v Move all CBL/PROCESS statements to the first lines of the source program. The
integrated CICS translator does not accept comment lines preceding a
CBL/PROCESS statement. The source program must conform to Enterprise
COBOL rules.

CICS source considerations

208 COBOL Migration Guide

|

|
|
|
|
|

|
|

|

|
|
|
|

|

|

|

|
|

|
|
|
|

v Check if you have nested programs that redefine DFHCOMMAREA. The
integrated translator will not generate declarations of DFHCOMMAREA or
DFHEIBLK in nested programs. DFHCOMMAREA and DFHEIBLK declarations
are generated in the outermost program with the GLOBAL attribute specified.
COBOL programs that depend on these generated declarations within nested
programs require source changes.

Integrated CICS translator
An integrated translator eliminates the separate translation step for COBOL
programs that contain CICS statements.

With the integrated translator, the COBOL compiler handles both native COBOL
and embedded CICS statements in the source program. When CICS statements are
encountered, the compiler interfaces with the integrated CICS translator. The
integrated CICS translator takes appropriate actions and then returns to the
compiler indicating what native language statements to generate.

Although the separate CICS translator is still supported in Enterprise COBOL, use
of the integrated CICS translator is recommended. The integrated CICS translator
improves usability and offers the highest level of functionality. The benefits of
using the integrated CICS translator include:
v Enhancements in interactive debugging of COBOL applications with Debug Tool.

The application can be debugged at the original source level, instead of at the
level of the expanded source produced by the CICS translator.

v EXEC CICS or EXEC DLI statements can reside in copybooks, eliminating the
need to translate them with an external translator before compilation.

v There is no longer a need for an intermediate data set to hold the translated
version (before the program has been compiled) of the source program.

v There is only one output listing instead of two.
v Using nested programs that contain EXEC CICS statements is simplified.

DFHCOMMAREA and DFHEIBLK are generated in the outermost program with
the GLOBAL attribute specified on the PROCEDURE DIVISION USING of
nested programs.

v Nested programs that contain EXEC CICS statements can be held in separate
files and included through a COPY statement.

v REPLACE statements can now affect EXEC CICS statements.
v Binary fields in CICS control blocks are generated with USAGE COMP-5 instead

of BINARY. Thus, there is no longer a dependency on the setting of the TRUNC
compiler option. Any setting of the TRUNC option can be used with CICS
applications that use the integrated translator, subject only to the requirements
of the user-written logic within the application.

v Comment lines that precede a CBL/PROCESS statement are accepted.

Key compiler options for the integrated CICS translator
Table 45 lists compiler options for Enterprise COBOL programs that use the
integrated CICS translator.

CICS source considerations

Chapter 17. CICS conversion considerations for COBOL source 209

|
|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

Table 45. Key compiler options for the integrated CICS translator

Compiler option Comments

CICS The CICS compiler option enables the integrated CICS translator capability. The CICS option
must be specified if the source program contains CICS statements and has not been
processed by the integrated CICS translator.

The CICS option requires that the LIB, NODYNAM, and RENT options also are in effect.
Enterprise COBOL forces on these options if NOLIB, DYNAM, or NORENT are specified at
the same level as the CICS option.

If NOCICS option is specified, any CICS statements found in the source program will be
discarded.

LIB LIB is required for programs translated by the CICS translator.

NODYNAM NODYNAM is required for programs translated by the CICS translator because the CICS
command-level stub cannot be dynamically called.

RENT RENT is required for CICS programs. RENT causes the compiler to produce reentrant code
and allows you to place the COBOL modules in the LPA or ELPA and thus shared among
multiple address spaces under CICS. Also, the modules cannot be overwritten, since the
LPA/ELPA have a storage protect key.

Base addressability considerations for OS/VS COBOL programs
With OS/VS COBOL, you must maintain addressability to storage areas not
contained within the WORKING-STORAGE SECTION of the COBOL CICS
program. To satisfy program requests, an OS/VS COBOL program must keep track
of storage area addresses allocated by CICS to manipulate Base locator for
LINKAGE-SECTION (BLL) cells within the application program.

In Enterprise COBOL, and the associated support within CICS, this manipulation
is no longer necessary. Therefore, when you upgrade from OS/VS COBOL to
Enterprise COBOL, you must convert such programs. (If the COBOL CICS
program does not manipulate its BLL cells addressing, conversion is not necessary.)

Note: You can do this automatically using the CCCA, as explained in
“Appendix C. Conversion tools for source programs” on page 259.

The three areas that require change for programs that manipulate BLL cells are:
v SERVICE RELOAD statements
v LENGTH OF special register
v Programs using BLL cells

SERVICE RELOAD statements
In OS/VS COBOL, for programs to be executed under CICS, the SERVICE
RELOAD statement is required to ensure addressability of items defined in the
LINKAGE SECTION.

In Enterprise COBOL, the SERVICE RELOAD statement is not required. If it is
encountered, it is treated as a comment.

LENGTH OF special register
Through the LENGTH OF special register, you no longer need to pass explicit
length arguments on many of the CICS commands where length is required. You
can use the LENGTH OF special register in COBOL statements as if it were an

CICS source considerations

210 COBOL Migration Guide

||

||

||
|
|

|
|
|

|
|

||

||
|

||
|
|
|
|

|

explicitly defined numeric data item. You can obtain information about the number
of characters that a data item occupies in the program.

Programs using BLL cells
The following steps summarize the conversion of an OS/VS COBOL CICS program
to an Enterprise COBOL CICS program. For more information, see CICS/ESA
Application Programming Guide.
1. Remove all SERVICE RELOAD statements. The Enterprise COBOL compiler

treats these statements as comments. (Although desirable, removal is not
absolutely necessary.)

2. Remove all operations dealing with addressing structures in the LINKAGE
SECTION greater than 4K bytes in size. A typical statement is:

ADD +4096 D-PTR1 GIVING D-PTR2.

3. Remove all program code that assists in addressing COMMAREAs greater than
4K in size.

4. Remove redundant assignments and labels that OS/VS COBOL uses to ensure
that CICS programs are correctly optimized. (This is good programming
practice, but it is not essential.)
Redundant assignments and labels include:
v Artificial paragraph names, ones that use BLL cells to address chained

storage areas
v Artificial assignments from the object of an OCCURS DEPENDING ON

clause to itself
5. Change every SET(P) option in the CICS commands to SET(ADDRESS OF L),

where “L” is the LINKAGE SECTION structure that corresponds to the “P”
BLL cell.

6. Specify REDEFINES clauses in the LINKAGE SECTION, if multiple record
formats are defined through the SET option.

7. Review programs that use basic mapping support (BMS) data structures in
their LINKAGE SECTION (check for maps that are not defined as
STORAGE=AUTO). Move any maps that are not defined as STORAGE=AUTO
to the WORKING-STORAGE section and remove any associated EXEC CICS
GETMAIN commands.

DL/I call interface
You can convert your programs to avoid the use of BLL cells for DL/I calls as well.
To do so, review your programs and make the following changes:
1. Remove BLL cells for addressing the user interface block (UIB) and program

communication blocks (PCBs).
2. In the LINKAGE SECTION, retain the DLIUIB declaration and at least one PCB

declaration.
3. Change the PCB call to specify the UIB directly, as follows:

CALL "CBLTDLI" USING PCB-CALL,
PSB-NAME,
ADDRESS OF DLIUIB

4. Obtain the address of the required PCB from the address list in the UIB.

The following example shows how to get the address of the PCBs into
PCB1-ADDR and PCB2-ADDR.
LINKAGE SECTION.

COPY DLIUIB.
01 OVERLAY-DLIUIB REDEFINES DLIUIB.

02 PCBADDR USAGE IS POINTER.

CICS source considerations

Chapter 17. CICS conversion considerations for COBOL source 211

02 FILLER PIC XX.

01 PCB-ADDRESSES.
02 PCB1-ADDR USAGE IS POINTER.
02 PCB2-ADDR USAGE IS POINTER.

* VACATION PCB
01 VAC-PCB.
COPY RDLICVP.

* HOTEL PCB
01 HTL-PCB.
COPY RDLICHT....

PROCEDURE DIVISION....

CALL 'CBLTDLI' USING PCB
PSBNAME
ADDRESS OF DLIUIB

IF UIBFCTR IS NOT EQUAL TO LOW-VALUES
MOVE 'PCB CALL FAILED.' TO MSG-TEXT
PERFORM WRITE-MESSAGE-AND-AMEND

ELSE
SET ADDRESS OF PCB-ADDRESSES TO PCBADDR
SET ADDRESS OF HTL-PCB TO PCB1-ADDR
SET ADDRESS OF VAC-PCB TO PCB2-ADDR

END-IF...

Note: In the code above, lines ″SET ADDRESS OF PCB-ADDRESSES TO
PCBADDR″ through ″SET ADDRESS OF VAC-PCB TO PCB2-ADDR″ are the
commands that obtain the adresses of the required PCB from the address list
in the UIB.

Example 1: Receiving a communications area
In this example, a COBOL program defines a record area within the LINKAGE
SECTION. This technique is used in a number of COBOL CICS programs that
define structures outside the WORKING-STORAGE SECTION.

During conversion, do the following steps:
1. Remove the address list definition defining the BLL cells; with Enterprise

COBOL, BLL cells are no longer explicitly defined in the LINKAGE SECTION.
2. In SET option of the CICS command, use the ADDRESS OF special register

when referring to the storage area, instead of specifying the BLL cell name.

CICS source considerations

212 COBOL Migration Guide

Example 2: Processing storage areas that exceede 4K
In OS/VS COBOL, if a LINKAGE SECTION area was greater than 4096 bytes in

length, then you would have to include statements to provide addressability to the
entire storage area. For Enterprise COBOL programs these statements are no longer
necessary.

The following example shows the coding for both an OS/VS COBOL program and
an Enterprise COBOL program.

During conversion, do the following steps:
1. Remove the following statements used to maintain addressability:

ADD +4096 TO RECORD-POINTER ...
SERVICE RELOAD ...

2. Change the SET option of the CICS command from an intermediate BLL cell to
the ADDRESS OF special register for the record.

OS/VS COBOL Enterprise COBOL

LINKAGE SECTION. LINKAGE SECTION.
01 PARAMETER-LIST.

05 PARM-FILLER PIC S9(8) COMP.
05 PARM-AREA1-PTR PIC S9(8) COMP.
05 PARM-AREA2-PTR PIC S9(8) COMP.

01 AREA1. 01 AREA1.
05 AREA1-DATA PIC X(100). 05 AREA1-DATA PIC X(100).

01 AREA2. 01 AREA2.
05 AREA2-DATA PIC X(100). 05 AREA2-DATA PIC X(100).

. .

. .
PROCEDURE DIVISION. PROCEDURE DIVISION.

. .

. .
EXEC CICS READ DATASET("INFILE") EXEC CICS READ DATASET("INFILE")

RIDFLD(INFILE-KEY) RIDFLD(INFILE-KEY)
SET(PARM-AREA1-PTR) SET(ADDRESS OF AREA1)
LENGTH(RECORD-LEN) LENGTH(RECORD-LEN).

SERVICE RELOAD PARM-AREA1-PTR.

CICS source considerations

Chapter 17. CICS conversion considerations for COBOL source 213

Example 3: Accessing chained storage areas
In an OS/VS COBOL CICS program you would access chained storage areas by

defining in the LINKAGE SECTION a storage area that contain a pointer to
another storage area. You would then access the next chained area by copying the
address of the next area into the associated BLL. It was also necessary to code a
paragraph name following any statement that modified the contents of the BLL cell
used to address the chained areas. With Enterprise COBOL, this chaining is
simplified by using the SET statement to set the address of the chained area.

During conversion, do the following steps:
1. Change the code that moves the next address from within a storage area to the

associated BLL cell. Perform the identical function in Enterprise COBOL by
using the ADDRESS OF special register associated with the current and next
storage areas.

2. If you like, remove the dummy paragraph names that follow references that
change the contents of BLL cells. (This is good programming practice, but it is
not essential.)

OS/VS COBOL Enterprise COBOL

LINKAGE SECTION. LINKAGE SECTION.
01 PARMLIST.

.

.
05 RECORD-POINTERA PIC S9(8) COMP.
05 RECORD-POINTERB PIC S9(8) COMP.
.
.

01 FILE-RECORD. 01 FILE-RECORD.
05 REC-AREA1 PIC X(2500). 05 REC-DATA1 PIC X(2500).
05 REC-AREA2 PIC X(2500). 05 REC-DATA2 PIC X(2500).
. .
. .

PROCEDURE DIVISION. PROCEDURE DIVISION.
. .
. .
EXEC CICS READ DATASET("INFILE") EXEC CICS READ DATASET("INFILE")

RIDFLD(INFILE-KEY) RIDFLD(INFILE-KEY)
SET(RECORD-POINTERA) SET(ADDRESS OF FILE-RECORD)
LENGTH(RECORD-LEN) LENGTH(RECORD-LEN)

END-EXEC END-EXEC
SERVICE RELOAD RECORD-POINTERA
ADD +4096 TO RECORD-POINTERA

GIVING RECORD-POINTERB
SERVICE RELOAD RECORD-POINTERB.

CICS source considerations

214 COBOL Migration Guide

Example 4: Using the OCCURS DEPENDING ON clause
In OS/VS COBOL, if the LINKAGE SECTION contained the object of the OCCURS
DEPENDING ON clause, when the number of occurrences of the subject of the
OCCURS clause changed, you would need to reset the object of the OCCURS
DEPENDING ON clause to trigger the update of the group length. With Enterprise
COBOL, this resetting is unnecessary because the length of the group is calculated
whenever the structure is referenced.

During conversion, in your Enterprise COBOL program, remove any code that
resets the contents of the object of the OCCURS DEPENDING ON clause. (These
references are no longer necessary.)

OS/VS COBOL Enterprise COBOL

WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
01 WSDATA-HOLD PIC X(100). 01 WSDATA-HOLD PIC X(100).

. .

. .
LINKAGE SECTION. LINKAGE SECTION.
01 PARAMETER-LIST. .

. .

. .
05 CHAINED-POINTER PIC S9(8) COMP. .
. .
. .

01 CHAINED-STORAGE. 01 CHAINED-STORAGE.
05 CHS-NEXT. PIC S9(8) COMP. 05 CHS-NEXT. USAGE IS POINTER.
05 CHS-DATA PIC X(100). 05 CHS-DATA PIC X(100)
. .
. .

PROCEDURE DIVISION. PROCEDURE DIVISION.
. .
. .
MOVE CHS-NEXT. TO CHAINED-POINTER. SET ADDRESS OF CHAINED-STORAGE TO CHS-NEXT.

ANY-PARAGRAPH-NAME.
MOVE CHS-DATA TO WSDATA-HOLD. MOVE CHS-DATA TO WS-DATA-HOLD.
. .
. .

CICS source considerations

Chapter 17. CICS conversion considerations for COBOL source 215

OS/VS COBOL Enterprise COBOL

LINKAGE SECTION. LINKAGE SECTION.
01 PARMLIST.

05 FILLER PIC S9(8).
05 RECORD-POINTER PIC S9(8).
.
.

01 VAR-RECORD. 01 VAR-RECORD.
05 REC-OTHER-DATA PIC X(30). 05 REC-OTHER-DATA PIC X(30).
05 REC-AMT-CNT PIC 9(4). 05 REC-AMT-CNT PIC 9(4).
05 REC-AMT PIC 9(5) 05 REC-AMT PIC 9(5)

OCCURS 1 TO 100 TIMES OCCURS 1 TO 100 TIMES
DEPENDING ON REC-AMT-CNT. DEPENDING ON REC-AMT-CNT.

. .

. .
PROCEDURE DIVISION. PROCEDURE DIVISION.

. .

. .
EXEC CICS READ DATASET("INFILE") EXEC CICS READ DATASET("INFILE")

RIDFLD(INFILE-KEY) RIDFLD(INFILE-KEY)
SET(RECORD-POINTER) SET(ADDRESS OF VAR-RECORD)
LENGTH(RECORD-LEN) LENGTH(RECORD-LEN)

END-EXEC. END-EXEC.
MOVE REC-AMT-CNT TO REC-AMT-CNT. .
MOVE VAR-RECORD TO WS-RECORD-HOLD. MOVE VAR-RECORD TO WS-RECORD-HOLD.
. .
. .

216 COBOL Migration Guide

Part 5. Adding Enterprise COBOL programs to existing
COBOL applications

© Copyright IBM Corp. 1991, 2001 217

218 COBOL Migration Guide

Chapter 18. Adding Enterprise COBOL programs to existing
COBOL applications

When you add an Enterprise COBOL program to an existing application, you are
either recompiling an existing program with Enterprise COBOL or including a
newly written Enterprise COBOL program. When you add Enterprise COBOL
programs to your existing applications, you have the ability to:
v Upgrade your existing programs incrementally, as your shop’s needs dictate
v Use Language Environment condition handling

Restriction: On CICS, you cannot mix OS/VS COBOL programs and Enterprise
COBOL programs in the same run unit. (EXEC CICS LINK and EXEC CICS XCTL
will create a separate run unit.)

Important
After you add an Enterprise COBOL program to an existing application, that
application must run under Language Environment.

This chapter includes information on the following topics:
v Applications comprised of RES programs
v Applications comprised of NORES programs
v Multiple load module considerations
v AMODE and RMODE considerations
v Run-time considerations

When you begin adding Enterprise COBOL programs to your existing applications,
you need to know the implications of link-editing existing applications with
Language Environment. First, you must use the SCEELKED link-edit library, which
impacts the remaining programs in the applications. How it affects existing
applications depends on whether the application is comprised of:
v Programs compiled with RES
v Programs compiled with NORES
v Multiple load modules

Applications comprised of RES programs
When you add an Enterprise COBOL program to an application comprised of
programs compiled with RES, you need to:
v Link-edit the changed module with Language Environment
v Run the application under Language Environment
v Understand the requirements for using dynamic and static CALL statements

The following sections list the requirements for using CALL statements on
non-CICS and on CICS.

Adding Enterprise COBOL programs that use static CALL
statements

Under both CICS and non-CICS, you can create an Enterprise COBOL program
that uses static CALL statements to call a VS COBOL II program. However, when

© Copyright IBM Corp. 1991, 2001 219

you link-edit the load module with Language Environment, you must have the
appropriate level of IGZEBST, the VS COBOL II bootstrap:
v The link-edit job must contain a REPLACE statement to replace IGZEBST for VS

COBOL II programs that were compiled with the RES compiler option and
link-edited with one of the following products
– VS COBOL II Release 4 run-time library without APAR PN74000 applied
– Language Environment Release 2 or Release 3 without APAR PN74011

applied

If you do not have the correct level of the IGZEBST routine, you will encounter a
program check when the VS COBOL II program is called.

To have the best CALL performance, it is recommended that the link-edit job
contain a REPLACE statement for the following:
v For COBOL/370 programs— the IGZCBSN bootstrap routine if the COBOL/370

programs were link-edited with Language Environment Release 2, Release 3, or
Release 4 without APAR PN74011 applied.

v For VS COBOL II programs compiled with the RES compiler option, the
IGZEBST bootstrap if the VS COBOL II RES programs were link-edited with
Language Environment Release 4 without APAR PN74011 applied.

For an example of link-edit JCL or sample jobs in Language Environment library
SCEESAMP, members IGZWRLKA, IGZWRLKB, and IGZWRLKC see “Appendix J.
Link-edit example” on page 307.

CALL statements on non-CICS
For CALL statements between OS/VS COBOL programs and Enterprise COBOL
programs, parameters must be below the 16-MB line. The following sections
explain the actions that you need to take for dynamic and static CALL statements.

Dynamic CALL statements
Parameters passed from an Enterprise COBOL program that dynamically
calls an OS/VS COBOL program must be addressable by the OS/VS
COBOL program. Specifying the appropriate Enterprise COBOL compiler
options will ensure that the data is addressable by the OS/VS COBOL
program.

For Enterprise COBOL programs compiled with RENT, specify the
DATA(24) compiler option.

For Enterprise COBOL programs compiled with NORENT, specify the
RMODE(24) or RMODE(AUTO) compiler option.

Static CALL statements
If you issue static CALL statements between OS/VS COBOL and
Enterprise COBOL programs, thus forming a single load module, the load
module must reside below the 16-MB line. The load module must be
marked RMODE 24, AMODE 24.

For load modules with both Enterprise COBOL and OS/VS COBOL
programs, you must override the default AMODE setting to AMODE 24
when the load module contains an Enterprise COBOL program compiled
with NORENT. (For programs compiled with RENT, no action is necessary.
The linkage editor automatically assigns the correct AMODE setting.) For
instructions on how to override the default AMODE setting, see
“Appendix I. Overriding linkage editor defaults” on page 305.

Adding Enterprise COBOL programs to existing applications

220 COBOL Migration Guide

CALL statements on CICS
With Enterprise COBOL, you can use static and dynamic CALL statements to call
VS COBOL II, IBM COBOL, Enterprise COBOL, assembler, C, and PL/I programs.
However, Language Environment does not support static or dynamic CALL
statements between Enterprise COBOL programs and OS/VS COBOL programs
(Continue to access OS/VS COBOL subroutines by EXEC CICS LINK).

General considerations
If your Enterprise COBOL program was processed by a CICS translator
(either separate or integrated), then a caller of that program must pass the
CICS EXEC interface block (DFHEIBLK) and the communication area
(DFHCOMMAREA) as the first two parameters of the CALL statement. If
your Enterprise COBOL program was not processed by a CICS translator,
then you need to pass DFHEIBLK and DFHCOMMAREA only if they are
explicitly coded in the called subprogram.

The CICS command translation process automatically inserts these
parameters as the first two parameters on the corresponding PROCEDURE
DIVISION USING statement in the subprogram.

Static CALL statements
In Enterprise COBOL, you can use the COBOL CALL statement to
statically call VS COBOL II, IBM COBOL, and Enterprise COBOL, and
assembler programs. For details of when static CALL statements are
supported, see Table 50 on page 269. In addition, Language Environment
supports ILC between PL/I and COBOL and between C and COBOL when
running on CICS. For details, see the Language Environment Writing
Interlanguage Applications.

In OS/VS COBOL, if multiple COBOL programs are separately compiled
and then link-edited together, only the first program can contain CICS
statements. With Enterprise COBOL, this restriction is removed, giving you
greater flexibility in application program design.

Dynamic CALL statements
In Enterprise COBOL, you can use the COBOL CALL statement to
dynamically call VS COBOL II, IBM COBOL, and Enterprise COBOL, and
assembler programs. For details of when dynamic CALL statements are
supported, see Table 50 on page 269. For example, programs that are the
targets of dynamic CALL statements can contain CICS statements. In
addition, Language Environment supports ILC between PL/I and COBOL
and between C and COBOL when running on CICS. For details, see the
Language Environment Writing Interlanguage Applications.

For Enterprise COBOL programs running under CICS, the ON
EXCEPTION/OVERFLOW clause of the CALL statement is enabled.

Applications comprised of NORES programs
When you add an Enterprise COBOL program to a load module comprised of
programs compiled with NORES, you need to:
v Link-edit the Enterprise COBOL program with Language Environment
v Link-edit all other programs in the application with Language Environment and

understand how the behavior of these NORES programs changes when they are
link-edited with Language Environment

v Link-edit REPLACE all the IGZ and ILBO CSECTs with the copies from
Language Environment. For an example of link-edit JCL that shows how to

Adding Enterprise COBOL programs to existing applications

Chapter 18. Adding Enterprise COBOL programs to existing COBOL applications 221

replace the current library routines in a load module with the Language
Environment library routines, see “Appendix J. Link-edit example” on page 307.

Behavior before link-editing with Language Environment
Link-editing with Language Environment an application with all NORES programs
is not required unless you add an Enterprise COBOL program.

Programs that are compiled with NORES and are not link-edited with Language
Environment are not affected by many of the topics previously mentioned in
“Chapter 6. Moving from the OS/VS COBOL run-time” on page 63 and . This is
because programs compiled NORES do not access the Language Environment
library, but continue to run in the environment in which they were link-edited.

Behavior after link-editing with Language Environment
After you add an Enterprise COBOL program and link-edit the remaining
programs with Language Environment, NORES programs now behave like RES
programs. Many of the considerations for programs that were compiled with RES
now apply to these NORES programs that you have link-edited with Language
Environment. For details, see “Implications of becoming RES-like” on page 106.

Link-edit override requirement
For load modules with both Enterprise COBOL and OS/VS COBOL programs, you
must override the default AMODE setting to AMODE 24 when the load module
contains an Enterprise COBOL program that was compiled with NORENT. For
instructions on how to override the default AMODE setting, see “Appendix I.
Overriding linkage editor defaults” on page 305.

Multiple load module considerations
Applications with multiple load modules might not be supported under Language
Environment. To determine whether a multiple load module application is
supported, you need to know:
v The main module
v The main program of the main module
v The submodules

Note: When you link edit an OS/VS COBOL NORES program or a VS COBOL II
NORES program that is part of a multiprogram load module with Language
Environment, the COBOL library routines in the load module must be
replaced with the Language Environment library routines. Failure to do so
can cause unpredictable results. For a coding example of how to replace the
library routines, see “Appendix J. Link-edit example” on page 307.

OS/VS COBOL considerations
Table 46 on page 223 lists all the possible combinations of multiple load modules
for OS/VS COBOL programs. In the following table, if the load module has
multiple programs, the main program is listed first.

Adding Enterprise COBOL programs to existing applications

222 COBOL Migration Guide

Table 46. Support for applications with multiple load modules—OS/VS COBOL

Main module Submodule Support for

Link-edit
entire
application
with LanEnv
required

OS/VS COBOL NORES 1 Enterprise COBOL only No n/a

Enterprise COBOL and IBM COBOL No n/a

Enterprise COBOL and IBM COBOL or VS COBOL II
RES only

No n/a

OS/VS COBOL RES only No n/a

OS/VS COBOL NORES only Yes No2

Enterprise COBOL and OS/VS COBOL RES No n/a

Enterprise COBOL and OS/VS COBOL NORES No n/a

OS/VS COBOL RES and OS/VS COBOL NORES No n/a4

OS/VS COBOL RES All combinations Yes Yes2

Enterprise COBOL All combinations Yes Yes2

Enterprise COBOL and
OS/VS COBOL RES

All combinations Yes Yes2

OS/VS COBOL RES and
Enterprise COBOL

All combinations Yes Yes2

Enterprise COBOL and
OS/VS COBOL NORES

All combinations Yes Yes2

OS/VS COBOL NORES and
Enterprise COBOL

All combinations Yes Yes2

OS/VS COBOL RES and
OS/VS COBOL NORES

All combinations No3 n/a

OS/VS COBOL NORES and
OS/VS COBOL RES

All combinations No3 n/a

Enterprise COBOL and
OS/VS COBOL RES and
OS/VS COBOL NORES

All combinations Yes Yes2

OS/VS COBOL RES and
OS/VS COBOL NORES and
Enterprise COBOL

All combinations Yes Yes2

OS/VS COBOL NORES and
OS/VS COBOL RES and
Enterprise COBOL

All combinations Yes Yes2

Adding Enterprise COBOL programs to existing applications

Chapter 18. Adding Enterprise COBOL programs to existing COBOL applications 223

Table 46. Support for applications with multiple load modules—OS/VS COBOL (continued)

Main module Submodule Support for

Link-edit
entire
application
with LanEnv
required

Note:

1. A load module that contains only OS/VS COBOL NORES programs can access submodules only if it uses an
assembler program to load or link to the submodule.

2. Existing OS/VS COBOL programs compiled with NORES run without change and provide the same results as
before. You do not need to link-edit these programs with Language Environment; however, you will not be able
to get IBM service support for these NORES applications unless you link-edit them with Language Environment.

3. Link-editing with Language Environment is not required when the submodule contains only OS/VS COBOL RES
programs.

4. Load modules that contain OS/VS COBOL programs compiled with RES and OS/VS COBOL programs compiled
with NORES are not supported unless you include an Enterprise COBOL program or certain CSECTs. For details,
see “Applications with COBOL programs compiled with RES and NORES” on page 65.

All combinations is synonymous with the different combinations of programs that the submodule can consist of (as
listed next to OS/VS COBOL NORES at the beginning of the table).

VS COBOL II considerations
Applications with multiple load modules including VS COBOL II programs are
supported without link-editing with Language Environment except when there is a
combination of VS COBOL II NORES programs and a RES program (VS COBOL II,
IBM COBOL, or Enterprise COBOL). If a combination of a VS COBOL II NORES
program and an Enterprise COBOL or IBM COBOL RES program exists, then the
application must be link-edited with Language Environment.

If the main module and submodule are VS COBOL II programs compiled with
NORES, they will run without change and provide the same results as before. You
do not need to link-edit these programs with Language Environment, however,
you will not be able to get IBM service support for these NORES application
unless you link-edit them with Language Environment. Once the modules are
link-edited with Language Environment, they will be supported by IBM service.

In general, any multiple load module application that contains a VS COBOL II
NORES program must be link-edited with Language Environment. If both modules
contain only programs that are VS COBOL II RES, IBM COBOL, or Enterprise
COBOL then the application is supported and does not need to be link-edited with
Language Environment.

For additional link edit requirements, see “Adding Enterprise COBOL programs
that use static CALL statements” on page 219.

AMODE and RMODE considerations
All OS/VS COBOL programs are AMODE 24 and RMODE 24. Enterprise COBOL
programs are always AMODE ANY and can be either RMODE 24 or RMODE
ANY. The WORKING-STORAGE data items can be either above or below the
16-MB line, based on the DATA, RENT and RMODE compiler options.

OS/VS COBOL programs can use CALL statements to call Enterprise COBOL
programs without AMODE problems, because both programs can access below the

Adding Enterprise COBOL programs to existing applications

224 COBOL Migration Guide

16-MB line data. When an Enterprise COBOL program uses a CALL statement to
call an OS/VS COBOL program, you can get addressing exceptions if your data or
parameter list is above the 16-MB line.

To avoid addressing exceptions, ensure that all of your data and parameter lists are
below the 16-MB line by compiling with DATA(24) for RENT programs, or
RMODE(24) or RMODE(AUTO) for NORENT programs.

Note: For Language Environment releases prior to Version 2 Release 9, a request
for DATA(31) might have resulted in Language Environment acquiring the
storage below the 16-MB line, so that incorrectly compiled programs could
pass parameters to OS/VS COBOL programs without addressing exceptions.
After moving to Language Environment Version 2 Release 9 or later, this
incorrect use of DATA(31) would result in the expected addressing
exception.

Figure 7 on page 226 shows the results of different combinations of compiler
options and compilers. All CALL statements are dynamic and represented by
arrows. The solid lines represent valid CALL statements; the dotted line represents
a call that is not valid.

P1 and P5 are OS/VS COBOL programs, so the WORKING-STORAGE data items
are included in the object module, and must be below the 16-MB line. For
Enterprise COBOL programs that were compiled with the RENT option,
WORKING-STORAGE data items are separate from the object module, and their
location is controlled by the DATA compiler option (as with programs P2 and P3).
For programs compiled with NORENT, the WORKING-STORAGE data items are
included in the object module, so their location depends on the RMODE option (as
with program P4).

All of these calls will work successfully, except for P3 calling P5. Because P3 was
compiled with RENT and DATA(31), its WORKING-STORAGE and any parameter
lists are located above the 16-MB line. This means that even if P3 is passing
parameters that it received from P2, the parameter list cannot be addressed by P5,
so the CALL will fail. The CALL will also fail if the parameters themselves are
above the 16-MB line, such as data items in the WORKING-STORAGE SECTION
of P1 and P3.

Note: Static CALL statements from AMODE 31 programs to OS/VS COBOL
programs will always fail.

Adding Enterprise COBOL programs to existing applications

Chapter 18. Adding Enterprise COBOL programs to existing COBOL applications 225

Run-time considerations
When adding Enterprise COBOL programs to existing applications, you have
additional considerations.

ILBOSRV
You must include the Language Environment Release 5 (or later) copy of ILBOSRV
in the load module, in either of the following cases:
v If the existing load module contains and uses ILBOSTP0
v If the existing load module contains OS/VS COBOL NORES programs

TGT (Task Global Table) and RSA (Register Save Area)
conventions

The TGT and RSA conventions in Enterprise COBOL, COBOL for OS/390 & VM,
and COBOL for MVS & VM are different than in VS COBOL II and COBOL/370. If
you have COBOL applications that are coded to assume Register 9 or Register 13
values, you must change those programs so they do not have built-in assumptions
about register values.

The following will allow you to find the TGT of an Enterprise COBOL, COBOL for
OS/390 & VM, or COBOL for MVS & VM program:
v When the Enterprise COBOL, COBOL for OS/390 & VM, or COBOL for MVS &

VM program is running, R13 has the address of a DSA (dynamic save area) for
the COBOL program. The address of the COBOL program’s TGT is located at
x“5C” in the DSA.

v If R13 has the address of a save area associated with a called assembler program
or COBOL run-time routine, use the save area back chain to find the DSA for the
COBOL program. Then add x“5C” to find the address of the TGT.

Figure 7. Valid and not valid calls between OS/VS COBOL and Enterprise COBOL programs

Adding Enterprise COBOL programs to existing applications

226 COBOL Migration Guide

You can use the R15 slot in the previous save area to determine the entry point
and signature information of the routine that owns the DSA.

Adding Enterprise COBOL programs to existing applications

Chapter 18. Adding Enterprise COBOL programs to existing COBOL applications 227

228 COBOL Migration Guide

Part 6. Appendixes

© Copyright IBM Corp. 1991, 2001 229

230 COBOL Migration Guide

Appendix A. Commonly asked questions and answers

This section provides answers to some of the most common questions about
upgrading to Enterprise COBOL and Language Environment. The questions are
grouped into the following categories:
v Prerequisites
v Compatibility
v Link-editing with Language Environment
v Compiling with Enterprise COBOL
v Language Environment services
v Language Environment run-time options
v Interlanguage communication
v Subsystems
v OS/390
v z/OS
v Performance
v Service

Prerequisites
Do you have to convert all macro-level COBOL programs to CICS Version 4 or
later before they can be run with Language Environment?

Yes. You can run Language Environment only in CICS Version 4, so any programs
that you want to run under Language Environment must be upgraded to CICS
Version 4 or later.

Is Language Environment required to run a program compiled with Enterprise
COBOL?

Yes, Language Environment contains the library routines required to run an
Enterprise COBOL compiled program. Enterprise COBOL is a compiler, and does
not contain run-time library routines.

Compatibility
I have a mix of COBOL and assembler programs. Do I need to change my
assembler programs to be Language Environment enabled?

No, you do not need to change your assembler programs to be Language
Environment enabled. However, your assembler programs must follow S/390 save
area conventions, namely:
v The first halfword of the assembler save area must be hex zero.
v The back chain address must be set to the caller’s save area.
v The back chain address must be a valid 31-bit address.

Can you run DOS/VS COBOL programs under Language Environment?

Yes. You can run programs compiled with DOS/VS COBOL under IBM Language
Environment for VSE/ESA. For migration information, see the IBM COBOL for
VSE/ESA Migration Guide, GC26-8070.

© Copyright IBM Corp. 1991, 2001 231

|
|

|
|
|

Programs compiled with DOS/VS COBOL cannot run under Program Number
5688-198 (Language Environment).

Does Language Environment support both OS/VS COBOL LANGLVL(1) and
LANGLVL(2) compiled programs?

Yes.

When one runs OS/VS COBOL in compatibility mode with Language
Environment, are the run-time control blocks accessed the same way?

Yes. The pointers in the TGT and other control blocks can still be used to get to the
control blocks for OS/VS COBOL.

However, with Enterprise COBOL, assembler programs cannot get the address of
the TGT from R13.

With VS COBOL II, we have had errors where an output DD was misspelled
and a temporary file was created. This causes problems when it occurs with a
large file for a one-time program run. Is this still a concern with Enterprise
COBOL?

No, for QSAM you can turn off automatic file creation with the Language
Environment CBLQDA(OFF) run-time option.

When should you use the CMPR2 option?

The CMPR2/NOCMPR2 option is not available in Enterprise COBOL. Enterprise
COBOL behaves as if NOCMPR2 were in effect at all times. Any programs that
were compiled with CMPR2 with a previous compiler must be upgraded to the
COBOL 1985 standard to compile with Enterprise COBOL.

Can you place Language Environment in LNKLST/LPALST?

Yes but it should be the only run-time library for COBOL that is in
LNKLST/LPALST. You can place Language Environment in LNKLST or LPALST
ahead of older COBOL run-time libraries, but the older ones would be
unreachable.

Before placing Language Environment in LNKLST/LPALST, test all applications
that might access the Language Environment library routines from the
LNKLST/LPALST. The move to Language Environment should be staged in a
controlled manner.

For more details, see “Deciding how to phase Language Environment into
production mode” on page 30.

Can Language Environment coexist on a system with OS/VS COBOL and VS
COBOL II?

Yes, but be aware of which library is needed and used for different applications.
For example, if VS COBOL II is ahead of Language Environment in the
concatenation and you recompile one program from a VS COBOL II application
with Enterprise COBOL, that application will no longer run until Language
Environment is ahead of the VS COBOL II run-time library in the concatenation.

Commonly asked questions

232 COBOL Migration Guide

|
|

|
|
|
|

There are duplicate names between the different product libraries, so it is
important to ensure that the correct library is being accessed.

For details, see “Invoking existing applications” on page 58.

Is it easier to convert from OS/VS COBOL to Enterprise COBOL or from OS/VS
COBOL to VS COBOL II?

The source conversion effort is almost the same. Moving to the Language
Environment run time is slightly more difficult if you have assembler programs
that use SVC LINK or condition handling with OS/VS COBOL. Because most of
time is spent testing, the two different conversion paths are approximately the
same.

For a summary of run-time considerations, see:
v Table 12 on page 28 for programs running under the OS/VS COBOL run time
v Table 13 on page 29 for programs running under the VS COBOL II run time

Is the signature area of Enterprise COBOL programs the same as for OS/VS
COBOL and VS COBOL II?

No, but a map of the signature area is in the Enterprise COBOL Programming Guide
and can be used to find out what compiler options were used to compile the
module, when it was compiled, release level, and so on.

Link-editing with Language Environment
When is it necessary to link-edit applications with Language Environment to run
under Language Environment?

For exact link-edit requirements, see:
v “Determining which programs require link-editing” on page 64 for programs

running under the OS/VS COBOL run time
v “Determining which programs require link-editing” on page 76 for programs

running under the VS COBOL II run time

Under OS/VS COBOL, aren’t some library routines always invoked dynamically,
even if the OS/VS COBOL program is compiled with NORES? Do I need to
link-edit with Language Environment in order for these library routines to be
supported when running under Language Environment?

Yes, under OS/VS COBOL ILBOD01, ILBODBE, ILBOPRM, ILBOSND, ILBOSTN,
and ILBOTC2 are always invoked dynamically (unless explicitly INCLUDED by
link-edit). Language Environment provides support for these library routines,
regardless of whether or not the program is link-edited with Language
Environment.

Can OS/VS COBOL and VS COBOL II programs call Enterprise COBOL
programs?

On non-CICS, any calls between OS/VS COBOL, VS COBOL II, and Enterprise
COBOL are supported.

On CICS, Enterprise COBOL programs cannot call or be called by OS/VS COBOL
programs. EXEC CICS LINK/XCTL must be used instead. Calls to and from VS

Commonly asked questions

Appendix A. Commonly asked questions and answers 233

|
|

|
|

COBOL II programs and Enterprise COBOL programs are allowed. For additional
details, see the Enterprise COBOL Programming Guide.

For a complete list of calls between COBOL and assembler (including whether they
are supported or not when running with Language Environment), see “Run-time
support for assembler COBOL calls on CICS” on page 270.

Can OS/VS COBOL NORES load modules call and be called by Enterprise
COBOL programs?

Enterprise COBOL load modules can call OS/VS COBOL NORES load modules, if
the NORES load module has been link-edited with Language Environment. The
OS/VS COBOL NORES load module must return control to the Enterprise COBOL
load module.

It is possible to have a OS/VS COBOL NORES load module with “dynamic” calls
(that is, using an assembler program that loads and branches) to an Enterprise
COBOL program, which can then do a COBOL dynamic call to subsequent
programs.

Can you convert programs selectively to Enterprise COBOL?

For non-CICS applications, yes, as long as you follow the rules for link-editing
(documented throughout this book).

For CICS applications, you cannot mix OS/VS COBOL programs and Enterprise
COBOL programs in the same run unit. When you convert applications containing
OS/VS COBOL programs that are run under CICS, you must convert all the
OS/VS COBOL programs in the run unit to Enterprise COBOL.

Compiling with Enterprise COBOL
Can you compile programs written for OS/VS COBOL with Enterprise COBOL
using the CMPR2 option?

No, CMPR2 is not available with Enterprise COBOL.

Can you compile programs written for VS COBOL II with Enterprise COBOL?

Yes. For additional details, see “Upgrading your source to Enterprise COBOL” on
page 18.

Do you have to compile OS/VS COBOL and VS COBOL II programs with
Enterprise COBOL to run them under Language Environment?

No. Most OS/VS COBOL programs and VS COBOL II programs (and mixes of the
two) will run under Language Environment without the need to upgrade to
Enterprise COBOL.

For exact details on which programs must be upgraded to Enterprise COBOL, see:
v “Determining which programs require upgrading” on page 65 for programs

running under the OS/VS COBOL run time
v “Determining which programs require upgrading” on page 77 for programs

running under the VS COBOL II run time

Commonly asked questions

234 COBOL Migration Guide

|
|

|
|

|
|
|
|

|

What utilities or tools can assist in converting OS/VS COBOL or VS COBOL II
source to Enterprise COBOL source?

The following conversion tools, which you can order through IBM, can assist in
converting OS/VS COBOL and VS COBOL II source to Enterprise COBOL source.
1. The COBOL conversion aid (CCCA) 5648-B05, assists in converting OS/VS

COBOL and VS COBOL II source to Enterprise COBOL source.
2. The COBOL Report Writer Precompiler 5798-DYR assists in converting OS/VS

COBOL Report Writer code.
3. The CICS application migration Aid 5695-061 assists in converting CICS macro

level code in OS/VS COBOL and VS COBOL II to CICS command level code.
4. The Edge Portfolio Analyzer assists in taking an inventory of your existing

OS/VS COBOL and VS COBOL II load module libraries.
5. WebSphere Studio Asset Analyzer assists in taking an inventory, and analyzing

the impact that code changes make upon your enterprise assets.

Does Enterprise COBOL meet the COBOL 85 Standard?

Yes, Enterprise COBOL supports all required modules of the COBOL 85 Standard
at the highest level defined by the Standard.

Language Environment services
Can VS COBOL II programs call Language Environment callable services?

You can use dynamic calls from VS COBOL II programs to Language Environment
date and time callable services only. You cannot use dynamic calls from VS COBOL
II programs to other Language Environment callable services, nor can you use
static calls to any Language Environment callable services from VS COBOL II
programs.

You can dynamically call the following Language Environment services from VS
COBOL II programs (any release):

CEECBLDY
CEEDATE
CEEDATM
CEEDAYS
CEEDYWK

CEEGMT
CEEGMTO
CEEISEC
CEELOCT
CEEQCEN

CEESCEN
CEESECI
CEESECS
CEE3CTY

Can users call Language Environment callable services from BAL (assembler)
programs if the programs are Language Environment-conforming assembler
programs?

Yes. Any Language Environment-conforming BAL routines can use Language
Environment callable services. Non-Language Environment-conforming BAL
routines cannot use Language Environment callable services. The Language
Environment Programming Guide describes how to make your existing BAL
programs into Language Environment-conforming BAL programs, using macros
supplied by IBM with the Language Environment product.

Can OS/VS COBOL programs use Language Environment callable services?

Commonly asked questions

Appendix A. Commonly asked questions and answers 235

|
|

|
|

No. OS/VS COBOL programs cannot use the Language Environment callable
services directly, but OS/VS COBOL programs can call an Enterprise COBOL
program to place calls to the services.

Can condition handling be added to a pure OS/VS COBOL application by
converting the main routine to Enterprise COBOL?

Yes, with restrictions on recovery. For details, see “Converting programs that use
ESTAE/ESPIE for condition handling” on page 271.

What is COBOL multithreading and how does it relate to PL/I multitasking?

COBOL multithreading is the support of multiple programs running at the same
time in the same address space in the same process. It cannot be initiated by
COBOL, but it can be initiated by C programs doing ″pthread create″. It is
compatible with PL/I multitasking in that multiple PL/I tasks can call COBOL
programs when they are compiled with the THREAD compiler option.

PL/I can initiate multitasking using native language and manage the interaction
between the separate tasks.

Language Environment run-time options
Will lower HEAP storage values for COBOL performance affect the performance
of C or C++ programs?

Yes. If the C programs use a lot of MALLOC statements, then C performance will
be worse with lower HEAP storage values.

Will lower HEAP storage values for COBOL performance affect PL/I
performance?

In general, the answer is no. However, performance might be slower for
applications that have a high use of ALLOCATE and FREE. In this case, tune the
HEAP values to improve performance. Also, if the application has many automatic
variables, the STACK values should also be tuned to improve performance.

Does Enterprise COBOL use STACK storage?

Enterprise COBOL programs use STACK storage for LOCAL-STORAGE data items.
Other COBOL programs do not use STACK storage.

COBOL run-time routines do use STACK storage.

Does OS/VS COBOL running with Language Environment use HEAP storage?

No, OS/VS COBOL WORKING-STORAGE does not use HEAP storage.

What do HEAP(KEEP) or LIBSTACK(KEEP) do? Does the KEEP suboption keep
all of the HEAP or LIBSTACK storage or just the increments of extra storage that
were obtained?

The KEEP suboption causes Language Environment to keep all of the storage
obtained, including the initial and incremental amounts.

Commonly asked questions

236 COBOL Migration Guide

|
|

|
|

How does ERRCOUNT relate to abends? Does ERRCOUNT only count
HANDLED conditions?

ERRCOUNT is a count of errors, conditions, abends, and exceptions that are
allowed before Language Environment abends with its own abend code. If an error
is not HANDLED, the application will terminate so ERRCOUNT will have no
effect.

Interlanguage communication
Why aren’t assembler language programs discussed under interlanguage
communication in Language Environment manuals or in IBM presentations?

Assembler language is not considered a separate language by Language
Environment. There is no run-time library associated with assembler programs, so
there are no run-time conflicts with assemblers and other High-Level Languages
(HLLs). Assembler programs can call and be called by any of the HLLs supported
by Language Environment.

Can OS/VS COBOL or VS COBOL II programs call Language
Environment-conforming assembler programs?

The following calls are supported:
v On non-CICS

– Dynamic calls from OS/VS COBOL RES programs or VS COBOL II RES
programs to Language Environment-conforming assembler.

– Static calls from OS/VS COBOL RES programs or VS COBOL II RES
programs to Language Environment-conforming assembler. You must specify
MAIN=NO and NAB=NO on the CEEENTRY macro.

v On CICS
– Dynamic calls from VS COBOL II to Language Environment-conforming

assembler.

For a complete list of calls between COBOL and assembler (including whether they
are supported or not when running under Language Environment), see “Run-time
support for assembler COBOL calls on non-CICS” on page 269 and “Run-time
support for assembler COBOL calls on CICS” on page 270.

Subsystems
When running in a CICS region, does EXEC DLI ″translate″ into interfacing with
CEETDLI or CBLTDLI?

EXEC DLI does not ″translate″ into interfacing with either CEETDLI or CBLIDLI.
The CICS translator generates a call to DFHELI. The call to DFHELI must be a
static call. (The NODYNAM compiler option is required for programs translated by
the CICS translator, and this compiler option is forced by the CICS translator.)

Is CALL ’CEETDLI’ supported in a CICS program? What about CALL
’CBLTDLI’ in a CICS program running under Language Environment?

CEETDLI is not supported under a CICS environment (CICS does not supply a
CEETDLI entry point in DFHDLIAL). CBLTDLI is supported under a CICS
environment (CICS does supply a CBLTDLI entry point in DFHDLIAL) under
Language Environment.

Commonly asked questions

Appendix A. Commonly asked questions and answers 237

If you have a batch or IMS DC application that has explicit calls to other
Language Environment services, or user-coded Language Environment condition
handlers, must all IMS interfaces use CEETDLI instead of CBLTDLI?

No, all calls within a program or run unit are not required to be CEETDLI. The
exception is if you have any current application using the AIBTDLI interface.
AIBTDLI should be changed to CEETDLI as it improves ESTAE processing and
does not require a logic change, only a change to the call from AIBTDLI to
CEETDLI.

Will Language Environment (and its support of mixed COBOL and PL/I
programs) still support applications with PL/I and VS COBOL II (or Enterprise
COBOL) where the COBOL programs use CBLTDLI, or must such programs be
converted to CEETDLI?

There is no problem with a mixed environment from an IMS standpoint and the
programs do not need to be modified. Consider CBLTDLI and CEETDLI equivalent
for conversion purposes.

Under Language Environment, your COBOL programs can still use the CBLTDLI
interface. Remember that the programs must be VS COBOL II or Enterprise
COBOL because mixed OS/VS COBOL and PL/I is not allowed under Language
Environment. Either CBLTDLI or CEETDLI can be used, except that CEETDLI is
not supported under a CICS environment.

Do I need to specify the TRAP(OFF) run-time option when using the CBLTDLI
interface under IMS?

No, TRAP(OFF) is never recommended for COBOL programs. There are some
instances when you cannot use Language Environment condition handling when
using CBLTDLI under IMS. However, if you specify ABTERMENC(ABEND),
database rollback will be performed automatically for severe error conditions. For
details, see the Language Environment Programming Guide.

I am running both OS/VS COBOL and VS COBOL II programs under CICS. All
of the VS COBOL II programs are AMODE31. Do I have to run with the
Language Environment run-time option ALL31(OFF) because I have OS/VS
COBOL programs (which are AMODE 24)?

You can run with ALL31(ON) if all of your VS COBOL II programs are AMODE
31. Under CICS, OS/VS COBOL programs run in their own special compatibility
environment and they are not affected by the Language Environment run-time
options.

Is IGZEDT4 provided in Language Environment?

Yes.

OS/390
Am I required to put Language Environment in the LNKLST with OS/390?

No, but Language Environment must be installed in the same zone as OS/390. If
you do not put Language Environment in the LNKLST, you must STEPLIB
Language Environment in the individual OS/390 PROCs that require Language
Environment.

Commonly asked questions

238 COBOL Migration Guide

For information on which elements require Language Environment, see:
v The OS/390 Program Directory for OS/390 Release 10 or z/OS
v Information APAR II10425 for OS/390 Release 1, 2, and 3

Can OS/VS COBOL programs run with the Language Environment element of
OS/390?

Yes. However, in some instances, link-editing with Language Environment is
required. Other factors might apply as well. For details, see:
v “Chapter 5. Running existing applications under Language Environment” on

page 53
v “Chapter 6. Moving from the OS/VS COBOL run-time” on page 63

z/OS
Do I have to recompile or relink my COBOL applications to move to z/OS from
OS/390?

No. Moving from OS/390 to z/OS is very much like moving from one release of
OS/390 to another. Your COBOL applications will run unchanged on z/OS just like
they would run on OS/390 Release 10.

Does COBOL run in 64-bit z/OS?

Yes. Though COBOL does not support 64-bit addresses in COBOL programs, you
will get some of the benefits of 64-bit z/OS just by moving to it. With a 64-bit
addressable real memory backing your virtual memory, there will be less paging
and swapping and therefore better system performance, and you don’t have to
change your programs at all! In addition, DB2 can exploit 64-bit addressing for
SQL statements in COBOL programs without any changes to the COBOL
programs.

Even when your z/OS system is running in 64-bit mode, you can still run existing
AMODE 24 and AMODE 31 applications without having to relink or recompile
them. You can get improved system performance without any changes to your
applications.

Performance
Is there a CPU savings when one converts from OS/VS COBOL to Enterprise
COBOL?

Enterprise COBOL performance compared to OS/VS COBOL or VS COBOL II
varies, depending on the characteristics of the applications. Information on
Enterprise COBOL performance is available on the Web, in the Library Section, at:
www.ibm.com/software/ad/cobol

IBM COBOL and Enterprise COBOL performance are approximately the same. You
might see improved performance in COBOL for MVS & VM and COBOL for
OS/390 & VM and later for static and dynamic calls, and in COBOL for OS/390
and later for programs compiled with TRUNC(BIN).

Commonly asked questions

Appendix A. Commonly asked questions and answers 239

|

|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|

|
|
|
|

Service
Do I need to recompile all of my programs to get IBM service support for my
applications?

As long as your programs are running with a supported run time, you do not need
to recompile your programs to continue to have IBM service support. For
additional details, see “Service support for OS/VS COBOL and VS COBOL II
programs” on page 4.

Commonly asked questions

240 COBOL Migration Guide

Appendix B. COBOL reserved word comparison

This appendix contains a table showing differences between OS/VS COBOL, VS
COBOL II, IBM COBOL, and Enterprise COBOL reserved words. Information on
source language comparison can be found in:
v “Chapter 10. Upgrading OS/VS COBOL source programs” on page 113
v “Chapter 12. Upgrading VS COBOL II source programs” on page 157
v “Chapter 14. Upgrading IBM COBOL source programs” on page 165

This list identifies the reserved words in Enterprise COBOL, IBM COBOL, VS
COBOL II, and OS/VS COBOL.

Note: Reserved words for Enterprise COBOL are included in the column marked
″Enterprise COBOL.″ New reserved words (excluding new words reserved
for future development) that have been added since IBM COBOL are
highlighted in boldface type.

Key:
X The word is reserved in the product.
X* Within the IBM COBOL column, the word is reserved in COBOL for

OS/390 & VM Version 2 Release 2 only. It is not reserved in Version 2
Release 1 or earlier versions.

- The word is not reserved in the product. (This includes obsolete reserved
words that are no longer flagged.)

CDW The word is an Enterprise COBOL compiler directing statement. If used as
a user-defined word, it is flagged with a severe message.

RFD The word is reserved for future development. If used, it is flagged with an
informational message.

SYS The word is a word with specific meaning to the operating system. It can
be used only in specific contexts within the program.

UNS The word is a COBOL 1985 Standard reserved word for a feature not
supported by this compiler. For some of these words, the feature is
supported by the Report Writer Precompiler. If used in a program, it is
recognized as a reserved word and flagged with a severe message.

Table 47. Reserved word comparison

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

ACCEPT X X X X

ACCESS X X X X

ACTIVE-CLASS RFD - - -

ACTUAL - - - X

ADD X X X X

ADDRESS X X X X

ADVANCING X X X X

AFTER X X X X

ALIGNED RFD - - -

ALL X X X X

© Copyright IBM Corp. 1991, 2001 241

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

ALLOCATE RFD - - -

ALPHABET X X X -

ALPHABETIC X X X X

ALPHABETIC-LOWER X X X -

ALPHABETIC-UPPER X X X -

ALPHANUMERIC X X X -

ALPHANUMERIC-EDITED X X X -

ALSO X X X X

ALTER X X X X

ALTERNATE X X X X

AND X X X X

ANY X X X -

ANYCASE RFD - - -

APPLY X X X X

ARE X X X X

AREA X X X X

AREAS X X X X

ARITHMETIC - RFD RFD -

AS RFD - - -

ASCENDING X X X X

ASSIGN X X X X

AT X X X X

AUTHOR X X X X

AUTOMATIC RFD - - -

B-AND RFD RFD RFD -

B-EXOR - RFD RFD -

B-LESS - RFD RFD -

B-NOT RFD RFD RFD -

B-OR RFD RFD RFD -

B-XOR RFD - - -

BASED RFD - - -

BASIS CDW CDW CDW X

BEFORE X X X X

BEGINNING X X X X

BINARY X X X -

BINARY-CHAR RFD - - -

BINARY-DOUBLE RFD - - -

BINARY-LONG RFD - - -

BINARY-SHORT RFD - - -

reserved word comparison

242 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

BIT RFD RFD RFD -

BITS - RFD RFD -

BLANK X X X X

BLOCK X X X X

BOOLEAN RFD RFD RFD -

BOTTOM X X X X

BY X X X X

CALL X X X X

CANCEL X X X X

CBL CDW CDW CDW X

CD UNS UNS UNS X

CF UNS UNS UNS X

CH UNS UNS UNS X

CHANGED - - - X

CHARACTER X X X X

CHARACTERS X X X X

CLASS X X X -

CLASS-ID X X - -

CLOCK-UNITS UNS UNS UNS -

CLOSE X X X X

COBOL X X X -

CODE X X X X

CODE-SET X X X X

COL RFD - - -

COLLATING X X X X

COLS RFD - - -

COLUMN UNS UNS UNS X

COLUMNS RFD - - -

COM-REG X X X -

COMMA X X X X

COMMIT - RFD RFD -

COMMON X X X -

COMMUNICATION UNS UNS UNS X

COMP X X X X

COMP-1 X X X X

COMP-2 X X X X

COMP-3 X X X X

COMP-4 X X X X

COMP-5 X X* RFD -

reserved word comparison

Appendix B. COBOL reserved word comparison 243

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

COMP-6 - RFD RFD -

COMP-7 - RFD RFD -

COMP-8 - RFD RFD -

COMP-9 - RFD RFD -

COMPUTATIONAL X X X X

COMPUTATIONAL-1 X X X X

COMPUTATIONAL-2 X X X X

COMPUTATIONAL-3 X X X X

COMPUTATIONAL-4 X X X X

COMPUTATIONAL-5 X X* RFD

COMPUTATIONAL-6 - RFD RFD -

COMPUTATIONAL-7 - RFD RFD -

COMPUTATIONAL-8 - RFD RFD -

COMPUTATIONAL-9 - RFD RFD -

COMPUTE X X X X

CONDITION RFD - - -

CONFIGURATION X X X X

CONNECT - RFD RFD -

CONSOLE SYS SYS SYS X

CONSTANT RFD - - -

CONTAINED - RFD RFD -

CONTAINS X X X X

CONTENT X X X -

CONTINUE X X X -

CONTROL UNS UNS UNS X

CONTROLS UNS UNS UNS X

CONVERTING X X X -

COPY CDW CDW CDW X

CORR X X X X

CORR-INDEX - - - X

CORRESPONDING X X X X

COUNT X X X X

CRT RFD - - -

CSP SYS SYS SYS X

CURRENCY X X X X

CURRENT - RFD RFD -

CURRENT-DATE - - - X

CURSOR RFD - - -

C01 SYS SYS SYS X

reserved word comparison

244 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

C02 SYS SYS SYS X

C03 SYS SYS SYS X

C04 SYS SYS SYS X

C05 SYS SYS SYS X

C06 SYS SYS SYS X

C07 SYS SYS SYS X

C08 SYS SYS SYS X

C09 SYS SYS SYS X

C10 SYS SYS SYS X

C11 SYS SYS SYS X

C12 SYS SYS SYS X

DATA X X X X

DATA-POINTER RFD - - -

DATE X X X X

DATE-COMPILED X X X X

DATE-WRITTEN X X X X

DAY X X X X

DAY-OF-WEEK X X X -

DB - RFD RFD -

DB-ACCESS-CONTROL-KEY - RFD RFD -

DB-DATA-NAME - RFD RFD -

DB-EXCEPTION - RFD RFD -

DB-RECORD-NAME - RFD RFD -

DB-SET-NAME - RFD RFD -

DB-STATUS - RFD RFD -

DBCS X X X -

DE UNS UNS UNS X

DEBUG - - - X

DEBUG-CONTENTS X X X X

DEBUG-ITEM X X X X

DEBUG-LINE X X X X

DEBUG-NAME X X X X

DEBUG-SUB-1 X X X X

DEBUG-SUB-2 X X X X

DEBUG-SUB-3 X X X X

DEBUGGING X X X X

DECIMAL-POINT X X X X

DECLARATIVES X X X X

DEFAULT RFD RFD RFD -

reserved word comparison

Appendix B. COBOL reserved word comparison 245

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

DELETE X X X X

DELIMITED X X X X

DELIMITER X X X X

DEPENDING X X X X

DESCENDING X X X X

DESTINATION UNS UNS UNS X

DETAIL UNS UNS UNS X

DISABLE UNS UNS UNS X

DISCONNECT - RFD RFD -

DISP - - - X

DISPLAY X X X X

DISPLAY-ST - - - X

DISPLAY-1 X X X -

DISPLAY-2 - RFD RFD -

DISPLAY-3 - RFD RFD -

DISPLAY-4 - RFD RFD -

DISPLAY-5 - RFD RFD -

DISPLAY-6 - RFD RFD -

DISPLAY-7 - RFD RFD -

DISPLAY-8 - RFD RFD -

DISPLAY-9 - RFD RFD -

DIVIDE X X X X

DIVISION X X X X

DOWN X X X X

DUPLICATE - RFD RFD -

DUPLICATES X X X X

DYNAMIC X X X X

EC RFD - - -

EGCS X X X -

EGI UNS UNS UNS X

EJECT CDW CDW CDW X

ELSE X X X X

EMI UNS UNS UNS X

EMPTY - RFD RFD -

ENABLE UNS UNS UNS X

END X X X X

END-ACCEPT RFD - - -

END-ADD X X X -

END-CALL X X X -

reserved word comparison

246 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

END-COMPUTE X X X -

END-DELETE X X X -

END-DISABLE - RFD RFD -

END-DISPLAY RFD - - -

END-DIVIDE X X X -

END-ENABLE - RFD RFD -

END-EVALUATE X X X -

END-EXEC X X* - -

END-IF X X X -

END-INVOKE X X - -

END-MULTIPLY X X X -

END-OF-PAGE X X X X

END-PERFORM X X X -

END-READ X X X -

END-RECEIVE UNS UNS UNS -

END-RETURN X X X -

END-REWRITE X X X -

END-SEARCH X X X -

END-SEND - RFD RFD -

END-START X X X -

END-STRING X X X -

END-SUBTRACT X X X -

END-TRANSCEIVE - RFD RFD -

END-UNSTRING X X X -

END-WRITE X X X -

END-XML X - - -

ENDING X X X X

ENTER X X X X

ENTRY X X X X

ENVIRONMENT X X X X

EO RFD - - -

EOP X X X X

EQUAL X X X X

EQUALS - RFD RFD -

ERASE - RFD RFD -

ERROR X X X X

ESI UNS UNS UNS X

EVALUATE X X X -

EVERY X X X X

reserved word comparison

Appendix B. COBOL reserved word comparison 247

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

EXACT - RFD RFD -

EXAMINE - - - X

EXCEEDS - RFD RFD -

EXCEPTION X X X X

EXCEPTION-OBJECT RFD - - -

EXCLUSIVE - RFD RFD -

EXEC X X* - -

EXECUTE X X* - -

EXHIBIT - - - X

EXIT X X X X

EXTEND X X X X

EXTERNAL X X X -

FACTORY X X* - -

FALSE X X X -

FD X X X X

FETCH - RFD RFD -

FILE X X X X

FILE-CONTROL X X X X

FILE-LIMIT - - - X

FILE-LIMITS - - - X

FILLER X X X X

FINAL UNS UNS UNS X

FIND - RFD RFD -

FINISH - RFD RFD -

FIRST X X X X

FLOAT-EXTENDED RFD - - -

FLOAT-LONG RFD - - -

FLOAT-SHORT RFD - - -

FOOTING X X X X

FOR X X X X

FORMAT RFD RFD RFD -

FREE RFD RFD RFD -

FROM X X X X

FUNCTION X X - -

FUNCTION-ID RFD - - -

FUNCTION-POINTER X - - -

GENERATE UNS UNS UNS X

GET RFD RFD RFD -

GIVING X X X X

reserved word comparison

248 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

GLOBAL X X X -

GO X X X X

GOBACK X X X X

GREATER X X X X

GROUP UNS UNS UNS X

GROUP-USAGE RFD - - -

HEADING UNS UNS UNS X

HIGH-VALUE X X X X

HIGH-VALUES X X X X

I-O X X X X

I-O-CONTROL X X X X

ID X X X X

IDENTIFICATION X X X X

IF X X X X

IN X X X X

INDEX X X X X

INDEX-1 - RFD RFD -

INDEX-2 - RFD RFD -

INDEX-3 - RFD RFD -

INDEX-4 - RFD RFD -

INDEX-5 - RFD RFD -

INDEX-6 - RFD RFD -

INDEX-7 - RFD RFD -

INDEX-8 - RFD RFD -

INDEX-9 - RFD RFD -

INDEXED X X X X

INDICATE UNS UNS UNS X

INHERITS X X - -

INITIAL X X X X

INITIALIZE X X X X

INITIATE UNS UNS UNS X

INPUT X X X X

INPUT-OUTPUT X X X X

INSERT CDW CDW CDW X

INSPECT X X X X

INSTALLATION X X X X

INTERFACE RFD - - -

INTERFACE-ID RFD - - -

INTO X X X X

reserved word comparison

Appendix B. COBOL reserved word comparison 249

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

INVALID X X X X

INVOKE X X - -

IS X X X X

JNIENVPTR X - - -

JUST X X X X

JUSTIFIED X X X X

KANJI X X X -

KEEP - RFD RFD -

KEY X X X X

LABEL X X X X

LAST UNS UNS UNS X

LD - RFD RFD -

LEADING X X X X

LEAVE - - - X

LEFT X X X X

LENGTH X X X X

LESS X X X X

LIMIT UNS UNS UNS X

LIMITS UNS UNS UNS X

LINAGE X X X X

LINAGE-COUNTER X X X X

LINE X X X X

LINE-COUNTER UNS UNS UNS X

LINES X X X X

LINKAGE X X X X

LOCALLY - RFD RFD -

LOCAL-STORAGE X X - -

LOCALE RFD - - -

LOCK X X X X

LOW-VALUE X X X X

LOW-VALUES X X X X

MEMBER - RFD RFD -

MEMORY X X X X

MERGE X X X X

MESSAGE UNS UNS UNS X

METACLASS - X - -

METHOD X X - -

METHOD-ID X X - -

MINUS RFD - - -

reserved word comparison

250 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

MODE X X X X

MODIFY - RFD RFD -

MODULES X X X X

MORE-LABELS X X X X

MOVE X X X X

MULTIPLE X X X X

MULTIPLY X X X X

NAMED - - - X

NATIONAL X - - -

NATIONAL-EDITED RFD - - -

NATIVE X X X X

NEGATIVE X X X X

NESTED RFD - - -

NEXT X X X X

NO X X X X

NOMINAL - - - X

NONE - RFD RFD -

NOT X X X X

NOTE - - - X

NULL X X X -

NULLS X X X -

NUMBER UNS UNS UNS X

NUMERIC X X X X

NUMERIC-EDITED X X X -

OBJECT X X - -

OBJECT-COMPUTER X X X X

OBJECT-REFERENCE RFD - - -

OCCURS X X X X

OF X X X X

OFF X X X X

OMITTED X X X X

ON X X X X

ONLY - RFD RFD -

OPEN X X X X

OPTIONAL X X X X

OPTIONS RFD - - -

OR X X X X

ORDER X X X -

ORGANIZATION X X X X

reserved word comparison

Appendix B. COBOL reserved word comparison 251

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

OTHER X X X -

OTHERWISE - - - X

OUTPUT X X X X

OVERFLOW X X X X

OVERRIDE X X - -

OWNER - RFD RFD -

PACKED-DECIMAL X X X -

PADDING X X X -

PAGE X X X X

PAGE-COUNTER UNS UNS UNS X

PARAGRAPH - RFD RFD -

PASSWORD X X X X

PERFORM X X X X

PF UNS UNS UNS X

PH UNS UNS UNS X

PIC X X X X

PICTURE X X X X

PLUS UNS UNS UNS X

POINTER X X X X

POSITION X X X X

POSITIONING - - - X

POSITIVE X X X X

PRESENT RFD RFD RFD -

PREVIOUS RFD RFD - -

PRINT-SWITCH - - - X

PRINTING UNS UNS UNS -

PRIOR - RFD RFD -

PROCEDURE X X X X

PROCEDURE-POINTER X X - -

PROCEDURES X X X X

PROCEED X X X X

PROCESSING X X X X

PROGRAM X X X X

PROGRAM-ID X X X X

PROGRAM-POINTER RFD - - -

PROPERTY RFD - - -

PROTECTED - RFD RFD -

PROTOTYPE RFD - - -

PURGE UNS UNS UNS -

reserved word comparison

252 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

QUEUE UNS UNS UNS X

QUOTE X X X X

QUOTES X X X X

RAISE RFD - - -

RAISING RFD - - -

RANDOM X X X X

RD UNS UNS UNS X

READ X X X X

READY X X X X

REALM - RFD RFD -

RECEIVE UNS UNS UNS X

RECONNECT - RFD RFD -

RECORD X X X X

RECORD-NAME - RFD RFD -

RECORD-OVERFLOW - - - X

RECORDING X X X X

RECORDS X X X X

RECURSIVE X X - -

REDEFINES X X X X

REEL X X X X

REFERENCE X X X -

REFERENCES X X X X

RELATION - RFD RFD -

RELATIVE X X X X

RELEASE X X X X

RELOAD X X X X

REMAINDER X X X X

REMARKS - - - X

REMOVAL X X X X

RENAMES X X X X

REORG-CRITERIA - - - X

REPEATED - RFD RFD -

REPLACE X X X -

REPLACING X X X X

REPORT UNS UNS UNS X

REPORTING UNS UNS UNS X

REPORTS UNS UNS UNS X

REPOSITORY X X - -

REREAD - - - X

reserved word comparison

Appendix B. COBOL reserved word comparison 253

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

RERUN X X X X

RESERVE X X X X

RESET X X X X

RESUME RFD - - -

RETAINING - RFD RFD -

RETRIEVAL - RFD RFD -

RETRY RFD - - -

RETURN X X X X

RETURN-CODE X X X X

RETURNING X X - -

REVERSED X X X X

REWIND X X X X

REWRITE X X X X

RF UNS UNS UNS X

RH UNS UNS UNS X

RIGHT X X X X

ROLLBACK - RFD RFD -

ROUNDED X X X X

RUN X X X X

SAME X X X X

SCREEN RFD - - -

SD X X X X

SEARCH X X X X

SECTION X X X X

SECURITY X X X X

SEEK - - - X

SEGMENT UNS UNS UNS X

SEGMENT-LIMIT X X X X

SELECT X X X X

SELECTIVE - - - X

SELF X X - -

SEND UNS UNS UNS X

SENTENCE X X X X

SEPARATE X X X X

SEQUENCE X X X X

SEQUENTIAL X X X X

SERVICE X X X X

SESSION-ID - RFD RFD -

SET X X X X

reserved word comparison

254 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

SHARED - RFD RFD -

SHARING RFD - - -

SHIFT-IN X X X -

SHIFT-OUT X X X -

SIGN X X X X

SIZE X X X X

SKIP-1 - - - X

SKIP-2 - - - X

SKIP-3 - - - X

SKIP1 CDW CDW CDW -

SKIP2 CDW CDW CDW -

SKIP3 CDW CDW CDW -

SORT X X X X

SORT-CONTROL X X X -

SORT-CORE-SIZE X X X X

SORT-FILE-SIZE X X X X

SORT-MERGE X X X X

SORT-MESSAGE X X X X

SORT-MODE-SIZE X X X X

SORT-RETURN X X X X

SOURCE UNS UNS UNS X

SOURCE-COMPUTER X X X X

SOURCES RFD - - -

SPACE X X X X

SPACES X X X X

SPECIAL-NAMES X X X X

SQL X X* - -

STANDARD X X X X

STANDARD-1 X X X X

STANDARD-2 X X X -

STANDARD-3 - RFD RFD -

STANDARD-4 - RFD RFD -

START X X X X

STATUS X X X X

STOP X X X X

STORE - RFD RFD -

STRING X X X X

SUB-QUEUE-1 UNS UNS UNS X

SUB-QUEUE-2 UNS UNS UNS X

reserved word comparison

Appendix B. COBOL reserved word comparison 255

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

SUB-QUEUE-3 UNS UNS UNS X

SUB-SCHEMA RFD RFD RFD -

SUBTRACT X X X X

SUM UNS UNS UNS X

SUPER X X - -

SUPPRESS X X X X

SYMBOLIC X X X X

SYNC X X X X

SYNCHRONIZED X X X X

SYSIN SYS SYS SYS X

SYSIPT SYS SYS SYS -

SYSLIST SYS SYS SYS X

SYSLST SYS SYS SYS -

SYSOUT SYS SYS SYS X

SYSPCH SYS SYS SYS -

SYSPUNCH SYS SYS SYS X

SYSTEM-DEFAULT RFD - - -

S01 SYS SYS SYS X

S02 SYS SYS SYS X

S03 SYS SYS SYS -

S04 SYS SYS SYS -

S05 SYS SYS SYS -

TABLE UNS UNS UNS X

TALLY X X X X

TALLYING X X X X

TAPE X X X X

TENANT - RFD RFD -

TERMINAL UNS UNS UNS X

TERMINATE UNS UNS UNS X

TEST X X X -

TEXT UNS UNS UNS X

THAN X X X X

THEN X X X X

THROUGH X X X X

THRU X X X X

TIME X X X X

TIME-OF-DAY - - - X

TIMES X X X X

TITLE CDW CDW CDW -

reserved word comparison

256 COBOL Migration Guide

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

TO X X X X

TOP X X X X

TOTALED - - - X

TOTALING - - - X

TRACE X X X X

TRACK-AREA - - - X

TRACK-LIMIT - - - X

TRACKS - - - X

TRAILING X X X X

TRANSCEIVE - RFD RFD -

TRANSFORM - - - X

TRUE X X X -

TYPE X X* - -

TYPEDEF RFD - - -

UNEQUAL - RFD RFD -

UNIT X X X X

UNIVERSAL RFD - - -

UNLOCK RFD - - -

UNSTRING X X X X

UNTIL X X X X

UP X X X X

UPDATE RFD RFD RFD -

UPON X X X X

UPSI-0 SYS SYS SYS X

UPSI-1 SYS SYS SYS X

UPSI-2 SYS SYS SYS X

UPSI-3 SYS SYS SYS X

UPSI-4 SYS SYS SYS X

UPSI-5 SYS SYS SYS X

UPSI-6 SYS SYS SYS X

UPSI-7 SYS SYS SYS X

USAGE X X X X

USAGE-MODE - RFD RFD -

USE X X X X

USER-DEFAULT RFD - - -

USING X X X X

VAL-STATUS RFD - - -

VALID RFD RFD RFD -

VALIDATE RFD RFD RFD -

reserved word comparison

Appendix B. COBOL reserved word comparison 257

Table 47. Reserved word comparison (continued)

Reserved word
Enterprise

COBOL
IBM

COBOL
VS COBOL

II
OS/VS

COBOL

VALIDATE-STATUS RFD - - -

VALUE X X X X

VALUES X X X X

VARYING X X X X

WAIT - RFD RFD -

WHEN X X X X

WHEN-COMPILED X X X X

WITH X X X X

WITHIN - RFD RFD -

WORDS X X X X

WORKING-STORAGE X X X X

WRITE X X X X

WRITE-ONLY X X X X

XML X - - -

XML-CODE X - - -

XML-EVENT X - - -

XML-NTEXT X - - -

XML-TEXT X - - -

ZERO X X X X

ZEROES X X X X

ZEROS X X X X

< X X X X

<= X X X -

+ X X X X

* X X X X

** X X X X

- X X X X

/ X X X X

> X X X X

>= X X X -

= X X X X

reserved word comparison

258 COBOL Migration Guide

Appendix C. Conversion tools for source programs

This appendix describes the conversion tools available for your assistance during
the actual conversion activity. These tools are:
v MIGR compiler option (OS/VS COBOL)
v Other programs that aid conversion

This appendix helps you to determine which, if any, of the conversion tools to use,
and understand how to use them and how to analyze the conversion tool output
to assess the extent of the remaining conversion effort.

Note: All of these conversion tools assume that the program you are converting is
a valid OS/VS COBOL, VS COBOL II, or IBM COBOL program; that is, it is
a program that is written according to the rules given in IBM VS COBOL for
OS/VS, VS COBOL II Application Programming Language Reference, and
COBOL for OS/390 & VM Language Reference, with no undocumented
extensions.

MIGR compiler option
You can use the OS/VS COBOL MIGR compiler option whenever you are planning
to convert an OS/VS COBOL program to Enterprise COBOL. This option helps
you understand the magnitude of the conversion effort. It can also ease any
planned future conversion, by helping you avoid using OS/VS COBOL source
language not supported by Enterprise COBOL. By compiling your programs using
MIGR, you can determine ahead of time what language elements must be
converted.

There are incompatibilities in the following areas:
v New reserved words introduced because of added COBOL functions (previously

valid user words might now be illegal)
v Language function supported in a different manner
v Language function no longer supported

You can set the MIGR compiler option either as an installation default at install
time, or when compiling an OS/VS COBOL program. When you set MIGR on, the
compiler flags most statements that are changed in or not supported by Enterprise
COBOL.

Language differences
The following language differences exist between Enterprise COBOL and OS/VS
COBOL.
v ALPHABETIC class changes
v B symbol in PICTURE clause
v CALL statement changes
v CBL compiler directing statement changes
v Combined abbreviated relation condition changes
v DIVIDE ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
v DIVIDE ID1 INTO ID2 [GIVING ID3] ON SIZE ERROR . . .

© Copyright IBM Corp. 1991, 2001 259

v EXIT PROGRAM (or STOP RUN) missing at program end
v FILE STATUS clause
v ID1 IS [NOT] ALPHABETIC

(class test on IF, PERFORM, and SEARCH)
v IF . . . OTHERWISE statement changes
v MOVE A TO B

where B is defined as a variable-length data item containing its own ODO
object

v MULTIPLY ID1 BY ID2 [GIVING ID3] ON SIZE ERROR . . .
v PERFORM P1 [THRU P2] VARYING ID2 FROM ID3 BY ID4 UNTIL COND-1

AFTER ID5 FROM ID6 BY ID7 UNTIL COND-2 AFTER ID8 FROM ID9 BY
ID10 UNTIL COND-3
1. Where ID6 is (potentially) dependent on ID-2
2. Where ID9 is (potentially) dependent on ID-5
3. Where ID4 is (potentially) dependent on ID-5
4. Where ID7 is (potentially) dependent on ID-8

Dependencies occur when the first identifier or index name (IDx) is identical
to, subscripted with, or qualified with the second identifier. Dependencies
might also occur with a partial or full redefinition of the second identifier.

v OCCURS DEPENDING ON clause changes
v ON SIZE ERROR option—changes in intermediate results
v PROGRAM COLLATING SEQUENCE clause changes
v READ filename RECORD INTO B

where B is defined variable-length data containing the object of the ODO
phrase

v RECORD CONTAINS integer-4 CHARACTERS in the FD section
v RERUN clause changes
v RESERVE clause changes
v Reserved word list changes
v SPECIAL-NAMES: alphabet-name IS xxxxx
v Subscripts out of range—changes in evaluation
v UNSTRING A INTO B . . .

where B is defined variable-length data containing the object of the ODO
phrase

v UNSTRING ID1 DELIMITED BY ID2 INTO ID4 DELIMITER IN ID5 COUNT IN
ID6 WITH POINTER ID7

v UPSI switches and UPSI mnemonic names references
v VALUE clause condition names
v WHEN-COMPILED special register
v WRITE BEFORE/AFTER ADVANCING PAGE statement
v WRITE AFTER POSITIONING

Statements supported with enhanced accuracy
Following are OS/VS COBOL statements supported with enhanced accuracy in
Enterprise COBOL and flagged by a message indicating that more accurate results
might be provided in Enterprise COBOL.

Conversion tools

260 COBOL Migration Guide

Arithmetic statements
v Definitions of floating-point data items
v Usage of floating-point literals
v Usage of exponentiation

LANGLVL(1) statements not supported
The following OS/VS COBOL statements, applicable only to the LANGLVL(1)
compiler option, are not supported in Enterprise COBOL and are flagged when the
MIGR compiler option is specified.
v COPY language—1968
v JUSTIFIED|JUST clause with VALUE
v MOVE statement and comparison—scaling changes
v NOT in an abbreviated combined relation condition
v PERFORM statement in independent segments
v RESERVE integer AREAS
v SELECT OPTIONAL clause—1968 standard interpretation
v SPECIAL-NAMES paragraph: use of L, /, and =
v UNSTRING with DELIMITED BY ALL

LANGLVL(1) and LANGLVL(2) statements not supported
The following OS/VS COBOL statements, applicable to both the LANGLVL(1) and
LANGLVL(2) compiler options, are not supported in Enterprise COBOL and are
flagged when the MIGR compiler option is specified.

Communications
v COMMUNICATION SECTION
v ACCEPT MESSAGE
v SEND, RECEIVE, ENABLE, and DISABLE verbs. (Note that RECEIVE

...MESSAGE is LANGLVL sensitive, but is flagged only under Communications.)

Report Writer:
v INITIATE, GENERATE, and TERMINATE verbs
v LINE-COUNTER, PAGE-COUNTER, and PRINT-SWITCH special registers
v Nonnumeric literal IS mnemonic-name in SPECIAL NAMES
v REPORT clause of FD
v REPORT SECTION header
v USE BEFORE REPORTING declarative

Note: The Report Writer Precompiler can convert these statements for you. See
“COBOL Report Writer Precompiler” on page 265.

ISAM:
v APPLY REORG-CRITERIA (ISAM)
v APPLY CORE-INDEX (ISAM)
v I/O verbs—all that reference ISAM files
v ISAM file declarations
v NOMINAL KEY clause
v Organization parameter “I”
v TRACK-AREA clause
v USING KEY clause on START statement

BDAM:
v ACTUAL KEY clause
v APPLY RECORD-OVERFLOW (BDAM)
v BDAM file declarations

Conversion tools

Appendix C. Conversion tools for source programs 261

v I/O verbs—all that reference BDAM files
v Organization parameters “D”, “R”, and “W”
v SEEK statement
v TRACK-LIMIT clause

Use for debugging:

v USE FOR DEBUGGING ON [ALL REFERENCES OF] identifiers, file-names,
cd-names

Other statements:

v APPLY RECORD-OVERFLOW
v Assignment-name organization parameter “C” indicating ASCII
v ASSIGN . . . OR
v ASSIGN TO integer system-name
v ASSIGN . . . FOR MULTIPLE REEL/UNIT
v CLOSE . . . WITH POSITIONING/DISP
v CURRENT-DATE and TIME-OF-DAY special registers
v Debug packets
v EXAMINE statement
v EXHIBIT statement
v FILE-LIMITS
v LABEL RECORDS Clause with TOTALING/TOTALED AREA options
v NOTE statement
v ON statement
v OPEN . . . LEAVE/REREAD/DISP
v Qualified index-names

(Using this unsupported format will result in a severe (RC = 12) level message.)
v READY TRACE and RESET TRACE statements
v REMARKS paragraph
v RESERVE NO/ALTERNATE AREAS
v SEARCH . . . WHEN condition using KEY item as object, not subject
v SERVICE RELOAD statement
v START . . . USING key statement
v THEN as a statement connector
v TIME-OF-DAY special register
v TRANSFORM statement
v USE AFTER STANDARD ERROR . . . GIVING
v USE BEFORE STANDARD LABEL
v USING procedure-name or file-name on CALL statement

Other programs that aid conversion
The following sections describe several conversion tools that offer you help in your
conversion tasks. These programs are:
v On the workstation

– Report Writer
v On the host:

– COBOL and CICS/VS Command Level Conversion Aid (CCCA)

Conversion tools

262 COBOL Migration Guide

– CICS application migration aid
– COBOL Report Writer Precompiler
– Vendor products

Report Writer for OS/2 and for Windows
As an optional, separately orderable feature of VisualAge for COBOL, Report
Writer for OS/2 and for Windows delivers a general-purpose COBOL printing
facility and provides the familiar host Report Writer function on the workstation.

For additional information, see “COBOL Report Writer Precompiler” on page 265.

WebSphere Studio Asset Analyzer
WebSphere Studio Asset Analyzer provides tools that generate an inventory of
enterprise assets and return an index of the relative effort required to make code
changes.

COBOL and CICS/VS Command Level Conversion Aid (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA), Product
Number 5648-B05, converts CICS and non-CICS source code into source code
compilable by Enterprise COBOL.

CCCA is designed to automate identifying incompatible source code and
converting it to Enterprise COBOL source. Using CCCA should significantly reduce
your conversion effort.

CCCA requires that you have an Enterprise COBOL, IBM COBOL, VS COBOL II,
or OS/VS COBOL compiler available when converting CICS programs.

The following are the key CCCA facilities:
v Conversion of most syntax differences between OS/VS COBOL or VS COBOL II

programs and Enterprise COBOL programs
v Elimination of conflicts between OS/VS COBOL, VS COBOL II, and IBM

COBOL user-defined names and Enterprise COBOL reserved words
v Flagging of language elements that cannot be directly converted
v Statement-by-statement diagnostic listing
v Conversion management information, including where-used reports for COPY

books and files
v Conversion of EXEC CICS commands
v Removal and/or conversion of the BLL (Base Locator for Linkage) section

mechanism and references

CCCA is designed so that you can tailor it to fit the needs of your shop. CCCA
LCPs (Language Conversion Programs), which determine the conversions to be
performed, are written in a COBOL-like language. You can modify the supplied
LCPs or add your own.

For more detail, see the COBOL and CICS/VS Command Level Conversion Aid
manual.

Note: If you need to both convert your programs and structure your code and you
have COBOL/SF available, you can select an option within COBOL/SF that
will activate CCCA. CCCA will convert your program, and then COBOL/SF
will structure it.

Conversion tools

Appendix C. Conversion tools for source programs 263

|
|
|

When to use CCCA
If you plan to convert your applications from OS/VS COBOL or VS COBOL II to
Enterprise COBOL, evaluate the usefulness of the CCCA to your conversion
project. While the number of changes required to any individual program might be
small, the CCCA will identify those changes, and in the majority of cases convert
them automatically in a standard fashion. The CCCA converts both CICS and
non-CICS programs. The CCCA converts SERVICE RELOAD statements and the
complicated logic of BLL cell addressing to statements valid for Enterprise COBOL.

CCCA also handles non-CICS syntax.

CCCA processing of CICS statements
If the CICS option is ON, the BLL definitions and SERVICE RELOAD statements
are removed. If the entire BLL structure is redefined, the redefined structure is
removed. If the BLLs are not defined with a length of 4 bytes, the CICS conversion
cannot be performed.

If needed by the conversion of statements involving the primary BLLs, the
following code is generated in the WORKING-STORAGE SECTION for use with
the POINTER facility:

77 LCP-WS-ADDR-COMP PIC S9(8) COMP.
77 LCP-WS-ADDR-PNTR REDEFINES LCP-WS-ADDR-COMP USAGE POINTER.

EXEC CICS processing: The primary BLLs used with SET options are replaced by
corresponding ADDRESS OF special register. For example:

EXEC CICS READ ... SET(BLL1) ...

is replaced by:
EXEC CICS READ ... SET(ADDRESS OF REC1) ...

The statements involved are:

CONVERSE GETMAIN ISSUE RECEIVE
LOAD POST READ
READNEXT READPREV READQ
RECEIVE RETRIEVE SEND CONTROL
SEND PAGE SEND TEXT

The primary BLLs used with CICS ADDRESS statements are replaced by the
corresponding Enterprise COBOL ADDRESS OF special register.

For example:
EXEC CICS TWA(BLL).

is replaced by:
EXEC CICS TWA(ADDRESS OF TWA).

The options involved are: CSA, CWA, EIB, TCTUA, and TWA.

Statements dealing with the primary BLLs
The statements dealing with the primary BLLs are shown in Table 48 on page 265.

Conversion tools

264 COBOL Migration Guide

Statements dealing with the secondary BLLs are replaced by CONTINUE.

Table 48. COBOL statements dealing with primary BLLs

Original source Source after conversion

MOVE BLL1 TO BLL2 SET ADDRESS OF REC2 TO ADDRESS OF REC1

MOVE ID TO BLL MOVE ID TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC1 TO LCP-WS-ADDR-PNTR

MOVE BLL TO ID SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
MOVE LCP-WS-ADDR-COMP TO ID

ADD ID1, .. TO BLL SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD BLL TO ID1, ID2 SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD LCP-WS-ADDR-COMP TO ID1, ID2

ADD ID1, ID2 GIVING BLL ADD ID1, ID2 GIVING LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

ADD ID, BLL1 GIVING BLL2
BLL3

SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID, LCP-WS-ADDR-COMP GIVING
LCP-WS-ADDR-COMP
SET ADDRESS OF REC2 TO LCP-WS-ADDR-PNTR
SET ADDRESS OF REC3 TO LCP-WS-ADDR-PNTR

ADD ID1, BLL1 GIVING ID2
ID3

SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, LCP-WS-ADDR-COMP GIVING ID2 ID3

SUBTRACT statements The conversion is performed in the same way as ADD.

COMPUTE BLL = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE LCP-WS-ADDR-COMP =
exp (LCP-WS-ADDR-COMP)

COMPUTE ID = exp (BLL) SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
COMPUTE ID = exp (LCP-WS-ADDR-COMP)

COMPUTE BLL = exp ... COMPUTE LCP-WS-ADDR-COMP = exp ...

CICS Application Migration Aid
The CICS Application Migration Aid, Product Number 5695-061, simplifies the
conversion of COBOL and assembler language application programs from
macro-level application programming interface (API) to the command-level API.
Simpler macros are converted automatically, providing new source code with the
equivalent command-level functions. More complex macros are partially converted,
and guidance information is provided to aid you in completing the conversion.
The original source code is still available in all cases.

Command-level is a requirement for applications that are to run on CICS/ESA
Version 4 or later.

COBOL Report Writer Precompiler
The Report Writer Precompiler, product number 5798-DYR, has two functions. It
can be used to precompile applications containing Report Writer statements so the
code will be acceptable to the Enterprise COBOL compilers, or it can permanently
convert Report Writer statements to valid Enterprise COBOL statements.

The Report Writer Precompiler offers the following features:
v Extended Report Writer language capabilities

Conversion tools

Appendix C. Conversion tools for source programs 265

v Automatic invocation of the target COBOL compiler—as though Report Writer
statements in the source program are being processed by the COBOL compiler
itself

v Single consolidated source listing merges information from the precompiler
listing and the COBOL compiler listings

v COPY library members can contain Report Writer statements
v Supports the Enterprise COBOL nested COPY feature
v Performs a diagnostic check of the input Report Writer source statements
v Can be run in stand-alone mode to convert Report Writer statements in your

COBOL programs into non-Report Writer COBOL source statements acceptable
to the Enterprise COBOL compiler

For more detail, see COBOL Report Writer Precompiler Programmer’s Manual and
COBOL Report Writer Precompiler Installation and Operation.

The Edge Portfolio Analyzer
The Edge Portfolio Analyzer helps you to take an inventory of your existing
OS/VS COBOL and VS COBOL II load modules. The Edge Portfolio Analyzer can:
v Determine which version and release of the OS/VS COBOL compiler or the VS

COBOL II compiler created the load module
v Determine which compiler options were specified when the load module was

compiled
v Determine which load modules call for the current system date
v Determine which CSECTs need to be replaced, such as ILBOSRV.

Note: The Edge Portfolio Analyzer is no longer sold by IBM, but you can still
purchase the product from Edge directly. For more information you can visit
their Web site at: www.edge-information.com

Vendor products
A number of non-IBM conversion tools are available to help you upgrade your
source programs to Enterprise COBOL programs and move to Language
Environment. IBM has compiled a list of vendor products enabled to work with
Language Environment and Enterprise COBOL in the Language Environment Enabled
Vendor Tools and Application Packages document. You can get this information: on the
Web at http://www.ibm.com/s390/le then go to the Library link.

Conversion tools

266 COBOL Migration Guide

Appendix D. Applications with COBOL and assembler

This chapter contains information for applications that contain mixed COBOL
programs and assembler programs. It includes information on:
v Determining requirements for calling and called assembler programs
v Determining which assembler/COBOL calls are supported on non-CICS
v Determining which assembler/COBOL calls are supported on CICS
v Converting programs that use ESTAE/ESPIE for condition handling
v Converting programs that change the program mask
v Upgrading applications that use an assembler driver
v Invoking a COBOL program with an MVS ATTACH
v Assembler programs that load and call COBOL programs
v Freeing storage in subpools
v Invoking programs - AMODE requirements

Some information on applications with both assembler programs and COBOL
programs is included in other chapters of this book. Table 49 lists the information
and page reference of where additional information on assembler programs is
located.

Table 49. Additional information about assembler programs and COBOL programs

Program attribute Reference

Assembler routine using a LINK SVC “Determining which programs require
upgrading” on page 65 or “Determining
which programs require upgrading” on
page 77

Assembler routine using a LINK SVC while in a
reusable environment

“Using ILBOSTP0” on page 85

Assembler programs that pass procedure names “Language elements that changed from
OS/VS COBOL” on page 137

Assembler programs that do not close files under
MVS

“Closing files in non-COBOL and
OS/VS COBOL programs” on page 83

AMODE behavior when COBOL programs return
to assembler programs

“Chapter 9. Upgrading Language
Environment release levels” on page 107

Determining requirements for calling and called assembler programs
When assembler programs are either called by or call COBOL programs, they must
follow the S/390 linkage convention. If not, your applications will terminate with
40XX abends.

Calling assembler programs
When the assembler program is the caller, R13 must point to the caller’s register
save area (18 words), and the first 2 bytes of the save area must be zero. The save
area back chain must be set with a valid 31-bit address. (That is, the high-order
byte must be cleared when running AMODE 24.)

The recommended way to establish a register save area address is:

© Copyright IBM Corp. 1991, 2001 267

LA 13, SAVEAREA
.
.
.

SAVEAREA DS 18F

as this will ensure that the high-order byte is cleared for AMODE 24 programs.

If you must use a branch and link type of instruction to jump over the save area
and set its address, the preferred method is:

BAS 13,SKIP
SAVEAREA DS 18F
SKIP DS 0H

If you use a BAL instruction, you must clear the high-order byte yourself, as
follows:

BAL 13,SKIP
SAVEAREA DS 18F
SKIP LA 13,0(,13)

The BAL instruction puts the instruction length code, the condition code (CC), and
the program mask in the high-order byte of the register. We recommend using the
BAS instruction instead of the BAL instruction, since the BAS instruction places
zeros in the high-order byte, thus preventing the 24-bit addressing problem.

If the program passes parameters, a parameter list must be prepared, and the
address of this list loaded into R1. R1 must be set to zero if no parameter list is
passed. R14 must contain the return address in the assembler program, and R15
must contain the address of the entry point of the COBOL program.

Note: If you pass a parameter list, it must be a group of one or more contiguous
fullwords, each of which contain the address of a data item to be passed to
the COBOL program. It is recommended that the high-order bit of the last
fullword address be set to 1, to flag the end of the list.

Called assembler programs
A called assembler program must save the registers and store other information in
the save area passed to it by the COBOL program. In particular, the COBOL save
area must be properly back chained from the save area of an assembler program.
The assembler program must also contain a return routine that:
v Loads the address of the COBOL save area back into R13
v Restores the contents of the other registers
v Optionally sets a return code in R15
v Branches to the address in R14

SVC LINK and COBOL run unit boundary
If the target of SVC LINK is a non-Language Environment-conforming assembler
program, and the assembler program later calls a COBOL program, the Language
Environment enclave and COBOL run unit boundary will be at the COBOL
program, not at the assembler program. The main program of the enclave (and run
unit) is the COBOL program.

If the target of SVC LINK is a Language Environment-conforming assembler
program, the Language Environment enclave boundary will be at the assembler
program. The assembler program is the main program of the enclave (provided

Mixed COBOL and assembler

268 COBOL Migration Guide

MAIN=YES is specified in the CEEENTRY macro). If the assembler program calls a
COBOL program at a later time, the COBOL program is a subprogram.

Run-time support for assembler COBOL calls on non-CICS
Table 50 lists the possible combinations of calls involving COBOL programs and
assembler programs and indicates whether the calls are supported or not
supported when running under Language Environment under non-CICS. For the
calls that are not supported, this table also lists the symptom (message or abend
code) that is returned in most cases. In some cases, depending on the application
environment, the symptom might not occur. You could receive a different failure,
or the application might appear to run successfully.

Note: The term, IBM COBOL refers to COBOL/370, COBOL for MVS & VM and
COBOL for OS/390 & VM.

Table 50. Language Environment’s (LE) support for calls between COBOL programs and assembler (Asm) programs
on non-CICS

Calls from Issued to

Program issuing Call type
Enterprise

COBOL
IBM

COBOL
VS

COBOL II
OS/VS

COBOL
LE1 Asm

main
LE1 Asm

subrtn
Non-LE

Asm

Enterprise COBOL

IBM COBOL

VS COBOL II

OS/VS COBOL

Static Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No2

No2

No2

No2

Yes

Yes

Yes3

Yes3

Yes

Yes

Yes

Yes

Enterprise COBOL

IBM COBOL

VS COBOL II

OS/VS COBOL

Dynamic Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No2

No2

No2

No2

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Asm (LE)

Asm (non-LE)

VCON Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No2

Yes4

Yes

No5

Yes

Yes

Asm (LE)

Asm (non-LE)

LOAD

BALR

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No2

Yes4

Yes

No5

Yes

Yes

Asm (LE)

Asm (non-LE)

LINK Yes

Yes

Yes

Yes

Yes

Yes

Yes6

Yes6

Yes

Yes

No5

No5

Yes

Yes

Note: The failure symptoms described in these notes are as they would appear
when the Language Environment TRAP(ON) and ABTERMENC(ABEND)
run-time options are in effect.
1. CEEENTRY macro with MAIN=YES creates a Language Environment

assembler main. If you specify MAIN=NO on the CEEENTRY macro, a
Language Environment assembler subroutine is created. The default is
MAIN=YES.

2. Invoking a Language Environment assembler main program from an
established Language Environment enclave is not recommended (unless

Mixed COBOL and assembler

Appendix D. Applications with COBOL and assembler 269

through the use of SVC LINK). For this reason, the table entries
associated with this footnote are marked No. A nested enclave is not
created and, therefore, the program runs as a subprogram in the
invoking enclave. If you follow this recommendation, you might avoid
the need for reprogramming in the future.

3. You must specify NAB=NO and MAIN=NO on the CEEENTRY macro.
Otherwise, you will receive failure symptom 0C1, 0C4, or 0C5 abend.

4. If the non-Language Environment assembler caller is running within an
established Language Environment enclave, see note 2.

5. Failure symptom of 0C1, 0C4, or 0C5 abend.
6. Except when OS/VS COBOL programs exist in another established

Language Environment enclave. For detail, see Failure symptom of:
message IGZ0005S.

Run-time support for assembler COBOL calls on CICS
Table 51 lists the possible combinations of calls involving COBOL programs and
assembler programs and indicates whether the calls are supported or not when
running with Language Environment under CICS. For the calls that are not
supported, this table also lists the symptom (message or abend code) that will be
returned in most cases. In some cases, depending on the application environment,
the symptom might not occur; you could receive a different failure, or the
application might appear to run successfully.

Note: The term IBM COBOL refers to COBOL/370, COBOL for MVS & VM, and
COBOL for OS/390 & VM.

Table 51. Language Environment’s (LE) support for calls between COBOL programs and assembler (Asm) programs
that run on CICS

Calls from Issued to

Program issuing Call type
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

OS/VS
COBOL

LE1 Asm
main

LE1 Asm
subrtn

Non-LE
Asm

Enterprise COBOL Static Yes Yes Yes No2 No3 Yes Yes

IBM COBOL Yes Yes Yes No2 No3 No4 Yes

VS COBOL II Yes Yes Yes No2 No3 No4 Yes

OS/VS COBOL No4 No4 No4 Yes No4 No4 Yes

Enterprise COBOL Dynamic Yes Yes Yes No3 No3 Yes Yes

IBM COBOL Yes Yes Yes No3 No3 Yes Yes

VS COBOL II Yes Yes Yes No3 No3 Yes Yes

OS/VS COBOL No5 No5 No5 No4 No5 No4 No5

Enterprise COBOL

EXEC CICS
LINK

Yes Yes Yes Yes No3 No4 Yes

IBM COBOL Yes Yes Yes Yes No3 No4 Yes

VS COBOL I Yes Yes Yes Yes No3 No4 Yes

OS/VS COBOL Yes Yes Yes Yes No3 No4 Yes

Asm (LE)
Asm (non-LE)

VCON
Yes
No4

Yes
No4

No4

No4
No4

No4
No3

No3
Yes
No4

Yes
Yes

Asm (LE)
Asm (non-LE)

EXEC CICS LINK
Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

No3

No3
No4

No4
Yes
Yes

Note: The failure symptoms described in these notes are as they would appear
when the LE TRAP(ON) and ABTERMENC(ABEND) run-time options are in
effect.

Mixed COBOL and assembler

270 COBOL Migration Guide

1. CEEENTRY macro with MAIN=YES creates a Language Environment
assembler main. If you specify MAIN=NO on the CEEENTRY macro, a
Language Environment assembler subroutine is created. The default is
MAIN=YES.

2. Failure symptom of: message IGZ0079S.
3. There is no support for Language Environment-conforming assembler

main programs under CICS. Failure symptom: Unpredictable. The
applications might appear to run successfully.

4. Failure symptom of: ASRA abend (caused by type 1 or 4 program check).
5. Failure symptom of: U3504 abend.

Converting programs that use ESTAE/ESPIE for condition handling
OS/VS COBOL and VS COBOL II applications can contain user-written condition
handling routines written in assembler. Normally, you would code an assembler
routine (this is your ESTAE routine) to set an ESTAE and register an ESTAE exit.
When an abend occurs, the ESTAE exit receives control. (Although this section
references ESTAE, this information also applies to assembler routines that set
ESPIEs and register ESPIE exits.)

When you run programs under Language Environment, the Language
Environment condition manager receives control for errors, program interrupts,
and abends. Existing user-written condition handling routines do not work under
Language Environment.

Error handling routines in existing programs
For OS/VS COBOL and VS COBOL II applications, total source conversion is not
necessary. You need to convert only programs that either establish or perform
condition handling.

However, if the application code is maintained in OS/VS COBOL or VS COBOL II,
automatic stack frame collapse will not take place. If the application resumes after
the condition handler gets control, you must explicitly cancel any programs that
will be reentered before they are reentered.

To convert programs that establish or perform condition handling:
1. Replace the CALL to the ESTAE routine with a CALL to CEEHDLR (a

Language Environment callable service). Only Enterprise COBOL programs can
use CEEHDLR.
If you want to resume and have more control of where to resume, use the SET
RESUME POINT service (CEESRP). For details, see the Language Environment
Programming Reference.

2. Make your ESTAE exit into a separate Language Environment-conforming
routine (Enterprise COBOL, Language Environment-conforming assembler, or
Language Environment-conforming C).

3. Change the logic of your condition handler. You must use Language
Environment services to indicate whether you want to RESUME, PERCOLATE
(let another handler take control), or PROMOTE (change the condition to
another condition). You can also use Language Environment services to find the
name of the program that incurred the condition, or retrieve the error message
associated with the condition.

Mixed COBOL and assembler

Appendix D. Applications with COBOL and assembler 271

Establishing user-written condition handling routines
Using Enterprise COBOL’s PROCEDURE-POINTER data item (an IBM extension to
the COBOL 85 Standard) in conjunction with the SET statement, you can establish
your own condition handling routine using Language Environment-provided
callable services. The user-written condition handling routines receive control
before the Language Environment default condition handling. You can write
user-written condition handling routines in either Enterprise COBOL, Language
Environment-conforming C, or Language Environment-conforming assembler.

Advantages of user-written condition handling routines
Managing the point where you resume execution after handling an error is much
simpler with Language Environment, than with OS/VS COBOL or VS COBOL II.
With OS/VS COBOL, VS COBOL II, and Language Environment, recursive calls
are not allowed. For example, under OS/VS COBOL and VS COBOL II, if Program
A calls Program B and an error occurs in Program B thus passing control back to
Program A, Program A then cannot call Program B because this would cause a
recursive error. Thus, after intercepting an error, the condition handler must
resume at the next sequential instruction (NSI) following the instruction that
incurred the error.

With OS/VS COBOL and VS COBOL II, to resume in a program other than the one
that incurred the error, you are required to cancel the programs that are active at
the time of the error and that might be reentered after the ESTAE exit received
control.

When running Enterprise COBOL or Language Environment-conforming assembler
programs under Language Environment, Language Environment automatically
deactivates your programs when you change the resume point. Applying the above
example to programs that run under Language Environment, after resuming in
Program A, you can call Program B. Language Environment has deactivated
Program B, so no recursion occurs.

For VS COBOL II programs, the move resume cursor function (Language
Environment callable service CEEMRCR) will cause stack frame collapse, where
programs that were active are rendered inactive, and can then be reentered (except
for VS COBOL II programs compiled with NOCMPR2 that use nested programs).

For VS COBOL II programs that can be reentered, you can:
v Resume in the NSI of the failing program.
v Move the resume cursor to the instruction following the CALL statement to the

failing program.
v Move the resume cursor to the NSI of the caller of the caller of the failing

program.

Converting programs that change the program mask
When a VS COBOL II program calls an assembler program that changes the
program mask (for example, uses an SPM instruction), the program mask is
restored after the call to the assembler program.

With Enterprise COBOL, the program mask is not restored. Thus, if you change the
program mask in your assembler program, you must restore it before returning to
the COBOL program. Failure to restore the program mask could result in
undetected data errors, such as fixed-point overflow, decimal overflow, exponent
underflow, and significance exceptions.

Mixed COBOL and assembler

272 COBOL Migration Guide

Calling assembler programs that expect a certain program mask
With VS COBOL II, the program mask always had the same setting when an
assembler program was called. Now with Language Environment, the program
mask will be unpredictable when called from COBOL. If the assembler program
has certain program mask requirements, it needs to set the program mask to what
it needs and then restore the program mask before returning.

Upgrading applications that use an assembler driver
There are three methods for upgrading applications that use an assembler driver to
call COBOL subroutines:
v Convert the assembler driver to a Language Environment-conforming assembler

driver.
v Modify the assembler driver to set up the Language Environment environment.
v Use the RTEREUS run-time option if the assembler driver cannot be modified.

These methods are described in the sections below. In all cases, you upgrade the
COBOL subroutines in the same way as described in the other COBOL conversion
scenarios.

Convert the assembler driver
To upgrade an application that has an assembler driver, you can change the
assembler driver to be a Language Environment-conforming assembler main
program. For details on how to make your existing assembler programs Language
Environment-conforming, see the Language Environment Programming Guide.

Modify the assembler driver
If you want to modify the assembler driver routine, you can replace the OS/VS
COBOL ILBOSTP0 routine with the Language Environment CEEPIPI INIT_SUB,
CEEPIPI INIT_ MAIN, and CEEPIPI TERM functions. These Language
Environment routines have a convenient complementary termination function that
is not available with OS/VS COBOL.

If either IGZERRE or ILBOSTP0 is statically linked with the assembler driver, the
assembler driver must be link-edited with Language Environment. If ILBOSTP0 is
used, you must specify the Language Environment options ALL31(OFF) and
STACK(,,BELOW).

For alternative methods to use preinitialization, see “Initializing the run-time
environment” on page 96.

Use an unmodified assembler driver
If you cannot (or do not want to) modify the non-COBOL driver, you can use the
unmodified driver while specifying the Language Environment RTEREUS run-time
option. (RTEREUS initializes the run-time environment for reusability when the
first COBOL program is invoked.)

Important: RTEREUS is not recommended for all applications; in some instances, it
exhibits undesirable behavior. Before using RTEREUS, thoroughly explore the
possible side-effects and understand the impact on your application. For more
information, see “Recommended run-time options for non-CICS applications” on
page 53.

Mixed COBOL and assembler

Appendix D. Applications with COBOL and assembler 273

|
|
|
|
|

Invoking a COBOL program with an MVS ATTACH
When you invoke a COBOL main program by using an MVS ATTACH, Language
Environment processes parameter lists differently than VS COBOL II.

Under Language Environment, when a COBOL program is invoked directly by
using ATTACH SVC (including the invocation of a batch program by the operating
system and invocation from TSO CALL/ATTACH), the parameter list is always
processed as a ″PARM=″ style.

In VS COBOL II, when a COBOL program is invoked directly by using ATTACH
SVC (including the invocation of a batch program by the operating system and
invocation from TSO CALL/ATTACH), the parameter list is processed as a
″PARM=″ style only when:
v Register 1 is nonzero.
v The word addressed by register 1 (the first parameter pointer word) has the end

of list (EOL) bit on.
v The parameter addressed by the EOL bit is aligned on a halfword or greater

boundary.

Otherwise, register 1 and the parameter list are passed without change.

There are two ways to get compatible behavior:
1. Change the main program to Language Environment-conforming assembler,

and use PLIST=OS keyword in the CEEENTRY macro. Then have the assembler
program call the COBOL program. The sample code below shows how to do
this.
ASMLE3 CEEENTRY PPA=MAINPPA,AUTO=WORKSIZE,MAIN=YES,PLIST=OS

USING WORKAREA,13
L 15,A1C401P Get the addr of the COBOL pgm
BALR 14,15 Call it with parm list unchanged

*==
* Terminate Language Environment.
*==

CEETERM RC=0
MAINPPA CEEPPA Constants describing the code block
*==
* The Workarea and DSA
*==
A1C401P DC V(A1C401P) VCON FOR COBOL pgm
WORKAREA DSECT

ORG *+CEEDSASZ Leave space for the DSA fixed part
DS 0D

WORKSIZE EQU *-WORKAREA
CEEDSA Mapping of the Dynamic Save Area
CEECAA Mapping of the Common Anchor Area
CEEEDB Mapping of the Enclave Data Block
END ASMLE3

2. You can modify Language Environment to ensure that the parameter list
processing for a COBOL main program invoked by using an ATTACH has the
same behavior as when the COBOL program runs with the VS COBOL II run
time. To modify the parameter list processing under Language Environment,
run the sample customization job IGZWAPSX with a modified copy of
IGZEPSX (the COBOL parameter list exit routine).
For instructions on how to modify IGZEPSX see:
v For OS/390 and z/OS: Language Environment for OS/390 Customization

Mixed COBOL and assembler

274 COBOL Migration Guide

Assembler loading and calling COBOL programs
VS COBOL II programs use a different copy of WORKING-STORAGE for each call
under the VS COBOL II run time, however, under Language Environment the
same copy of WORKING-STORAGE is used for each call. These different situations
occur when the following conditions are true:
v Compiled with the RENT option
v Dynamically called from OS/VS COBOL, VS COBOL II, IBM COBOL, or

Enterprise COBOL programs
v Fetched and called by PL/I

In addition, the programs enter their initial state when run under the VS COBOL II
run-time library. However, when running under Language Environment the
programs are entered in their last-used state, unless there is an intervening
CANCEL.

Assembler programs that load and delete COBOL programs
Under Language Environment, assembler programs can SVC load and SVC delete
load modules that contain any of the following:
v OS/VS COBOL programs
v VS COBOL II programs compiled with the NORENT option
v IBM COBOL programs compiled with the NORENT option
v Enterprise COBOL programs compiled with the NORENT option

Note: Debug Tool does not support COBOL programs that are in load modules
that are deleted by assembler using SVC delete.

Under Language Environment, assembler programs can SVC load but cannot SVC
delete load modules that contain any of the following:
v VS COBOL II programs compiled with the RENT option
v IBM COBOL programs compiled with the RENT option
v Enterprise COBOL programs compiled with the RENT option

If assembler programs SVC delete load modules that contain these kinds of
programs, unpredictable results can occur.

For assembler programs that need to load and delete load modules that contain a
COBOL RENT program, do one of the following:
v Have the assembler program statically call a COBOL program that performs the

dynamic call and performs the CANCEL.
v Under Language Environment Release 7 (OS/390 Release 3) or later, use the

CEEFETCH and the CEERELES macros.

Note: CEEFETCH can be used to load Language Environment-conforming
programs only. CEEFETCH can be used to load IBM COBOL and Enterprise
COBOL programs. CEEFETCH cannot be used to load VS COBOL II or
OS/VS COBOL programs.

Freeing storage in subpools (z/OS and OS/390 only)
On z/OS and OS/390, Language Environment allocates storage out of subpool 1
and subpool 2. VS COBOL II only used subpool 0. If you free storage in subpool 1
or subpool 2, you can lose data placed in those subpools by Language
Environment.

Mixed COBOL and assembler

Appendix D. Applications with COBOL and assembler 275

|
|
|
|

|

|
|

|

|
|
|
|

|
|
|
|

Invoking programs - AMODE requirements
With VS COBOL II, assembler programs could invoke COBOL programs regardless
of the AMODE specification. For example:

In the figure above, the following occurs:
1. Program COBOLA dynamically calls AssemblerA. (Assembler is AMODE 31.)
2. AssemblerA loads COBOLB which is RENT, DATA(24), and AMODE(24).
3. AssemblerA BALRs to COBOLB. (Now, COBOLB is entered in AMODE 31.)
4. COBOLB returns to AssemblerA.
5. AssemblerA calls AssemblerB.
6. AssemblerB does a BASSM to COBOLB. (COBOLB is entered in AMODE 24.)
7. COBOLB abends because it expects to be entered in AMODE 31.

Under Language Environment, COBOL programs compiled with VS COBOL II,
IBM COBOL, or Enterprise COBOL that are invoked by assembler programs must
be entered in the same AMODE each time that they are called.

To avoid the abend in the example above:
v In Step 2, AssemblerA must save the AMODE.
v In Step 3, AssemblerA needs to BASSM to COBOLB instead of BALR.
v In Step 4, AssemblerA needs to restore the AMODE saved in Step 2.

If an assembler program that is AMODE 31 calls a COBOL program that is
AMODE 24, the assembler program must also be RMODE 24 in order for COBOL
to return to the assembler program. If the assembler program is AMODE ANY in
this case, an abend might result upon return from the COBOL program as a result
of branching to an address that is not valid. This is because R14 will contain a
31-bit address from the assembler program’s save area, but COBOL will return to
the assembler program in AMODE 24.

Figure 8. Effect of AMODE for invoking programs

Mixed COBOL and assembler

276 COBOL Migration Guide

Appendix E. Debugging tool comparison

Debug Tool is a program analyzer that runs within Language Environment and
supports a number of high-level languages, including Enterprise COBOL.

For Enterprise COBOL, Debug Tool is orderable as a feature of the compiler.

Debugging existing applications
Debug Tool does not support debugging of OS/VS COBOL programs.

Debug Tool provides support to VS COBOL II Release 3.0 and higher if the VS
COBOL II programs have been compiled with the TEST compiler option.
Considerations for debugging VS COBOL II programs include:

COBTEST
COBTEST can still be used to debug VS COBOL II programs that use the VS
COBOL II library. COBTEST is incompatible with Debug Tool, and cannot be
used with Language Environment.

Test scripts
If you use COBTEST to run program tests and have a library of COBTEST test
scripts, Debug Tool contains a command translator to aid in your conversion
efforts.

Debugging migrated applications
When you compile your OS/VS COBOL, VS COBOL II, or IBM COBOL programs
with Enterprise COBOL, you need to know which compiler options to use to
enable debugging.

Applications with OS/VS COBOL programs
Debug Tool can be used to debug a run unit that contains a combination of
Enterprise COBOL and OS/VS COBOL programs, but no information about the
OS/VS COBOL programs is available to Debug Tool.

If a run unit contains OS/VS COBOL programs that specify the FLOW or COUNT
compiler option, you cannot use Debug Tool to debug any programs in the run
unit (including VS COBOL II, IBM COBOL, and Enterprise COBOL programs).

Applications with VS COBOL II programs
FDUMP compiler option

The FDUMP compiler option is not supported in Enterprise COBOL, but its
function is. FDUMP is mapped to the TEST(SYM) compiler option.

TEST compiler option
The TEST compiler option syntax has been modified to allow you to specify
whether and where compiled-in hooks should be located, and whether
dictionary and CALC tables should be generated. Five hook-location
suboptions are possible: ALL, NONE, STMT, PATH, and BLOCK. Two
symbol-table suboptions are possible: SYM and NOSYM.

© Copyright IBM Corp. 1991, 2001 277

|

In an application that mixes VS COBOL II programs and Enterprise COBOL
programs, Debug Tool can only debug the VS COBOL II programs that are
compiled with TEST.

Batch debugging considerations
Debug Tool provides a function equivalent to the batch mode of COBTEST,
along with some additional features.

In batch mode, Debug Tool gets its input from an input file and Debug Tool
output is written to an output file similar to COBTEST batch mode. The
differences between Debug Tool batch mode and COBTEST batch mode are
that the COBTEST commands, RECORD, QUALIFY, RESTART, GO, and RUN,
behave differently in batch mode than in interactive mode. With Debug Tool,
all commands behave the same in both modes.

Some Debug Tool commands, such as fullscreen commands, are not allowed in
batch mode.

Initiating Debug Tool
The way in which you initiate Debug Tool is different for Enterprise COBOL
programs. When you use Debug Tool, the application program starts first and the
Language Environment run-time TEST option controls the invocation of Debug
Tool. (With VS COBOL II, you are required to invoke COBTEST first; it then starts
the application to be debugged.)

You can also invoke Debug Tool directly from your application by using the
Language Environment callable service CEETEST. A brief description of these two
methods follows.

TEST run-time option
The Language Environment TEST run-time option is used to determine if
Debug Tool is to be invoked when an application program is run with
Language Environment. Invocation can be immediate or deferred, depending
on the option subparameters.

The IBM-supplied default is NOTEST. This specifies that Debug Tool is not to
be initialized to process the initial command string nor is it to be initialized for
any program condition that might arise when you run the program. However,
if debugging services are needed, you can invoke Debug Tool by using the
library service CEETEST.

For detailed information on the Language Environment TEST option
subparameters and suboptions, see Language Environment Programming
Reference.

CEETEST
Language Environment provides callable service CEETEST to allow Debug
Tool to gain control, and to specify a string of commands to be passed to
Debug Tool. Calling this service, causes Debug Tool to be initialized and
invoked. (If Debug Tool is already initialized, then this re-entry is similar to a
breakpoint.)

When using CEETEST to invoke Debug Tool, the string parameter containing a
command list is optional. If you do use a command list, the commands are
passed to Debug Tool and executed. If the command list does not contain any
GO, GOTO, STEP, or QUIT commands, commands will then be requested from
the terminal or the primary commands file. If the GO command is encountered

Debugging tool comparison

278 COBOL Migration Guide

at any point (command list, terminal, or commands file), Debug Tool returns to
the application program at the point following the service call and your
program continues running.

For detailed information and examples of the Language Environment callable
service CEETEST, see Language Environment Programming Reference.

Command language comparison
Table 52 compares the command language of TESTCOB, COBTEST, and Debug
Tool. As you can see, many of Debug Tool commands are different from the
commands used in COBTEST and TESTCOB. In most cases, the function is
identical.

Commands not supported by a specific debugger are indicated with a dash.

Table 52. Debug Tool command language comparison

TESTCOB
command

COBTEST
command Debug Tool command Function

AT AT AT Set a breakpoint

- AUTO1 MONITOR LIST Automatically monitor variables

- COLOR1 PANEL COLORS Display panel to set color attributes

- DOWN2 WINDOW DOWN Move window down

DROP DROP CLEAR Delete a defined symbol

DUMP DUMP CALL %DUMP Produce a memory dump

END QUIT QUIT End the debug session

EQUATE EQUATE SET EQUATE or CLEAR
EQUATE

Define a symbol

- FLOW LIST LAST Collect control flow information

- FREQ SET FREQUENCY Tally the execution counts for verbs

GO GO GO Start execution of the COBOL program

HELP (TSO
only)

HELP3 HELP Provide online help information

IF IF IF Evaluate a condition

- LEFT2 WINDOW LEFT Move window left

- LINK LOAD or CALL5 Set up a LINKAGE SECTION

LIST LIST LIST, DESCRIBE6 List contents of variables

LISTBRKS LISTBRKS LIST AT List breakpoints in effect

- LISTEQ QUERY EQUATES List the defined symbols

LISTFILE LIST DESCRIBE ATTRIBUTES List attributes of a file

- LISTFREQ LIST FREQUENCY List frequency counts of verbs

- LISTINGS1 PANEL LISTINGS Display panel associating program with a
listing

- MOVECURS1 CURSOR Move cursor from command line to a window
or vice versa

NEXT NEXT STEP Set temporary breakpoint at next verb

- NORECORD SET LOG OFF Turn off debug session logging

OFF OFF CLEAR AT Turn off a breakpoint in effect

Debugging tool comparison

Appendix E. Debugging tool comparison 279

Table 52. Debug Tool command language comparison (continued)

TESTCOB
command

COBTEST
command Debug Tool command Function

OFFWN OFFWN CLEAR AT Turn off a conditional breakpoint

- ONABEND AT OCCURRENCE CEExxxx Perform an action at occurrence of a Language
Environment condition, where xxxx is the
condition returned from Language Environment

- PEEK QUERY prefix Show breakpoints within a line

- POSITION1 SCROLL TO Move to a certain location of a displayed object

- PREVDISP1 -6 Show the last displayed user ISPF screen

- PRINTDD -7 Route the output to a data set

- PROC AT CALL Trap calls to certain subprograms

- PROFILE1 PANEL PROFILE Display panel to set user profile attributes

QUALIFY QUALIFY SET QUALIFY Change the current program qualify

- RECORD SET LOG ON Turn on logging of debug session

- RESTART RESTART8 Reinitialize program without exiting debugger

- RESTORE1 SET or QUALIFY RESET Return to current point of execution

- RIGHT2 WINDOW RIGHT Move window right

RUN RUN CLEAR AT then GO Remove breakpoints and run to completion

- SEARCH1 FIND Search for a string in displayed object

- SELECT SHOW Display a specific frequency count

SET SET MOVE or SET or COMPUTE Alter contents of a variable

SOURCE SOURCE9 WINDOW OPEN Display source program statements

- STEP STEP Execute specified number of verbs

- SUFFIX1 SET SUFFIX Turn on visual display of frequency

TRACE TRACE AT GLOBAL STATEMENT or
AT GLOBAL PATH

Trace flow of execution

- UP2 WINDOW UP Move window up

- VTRACE1 STEP Dynamic visual trace of program

WHEN WHEN AT * IF... Set up conditional breakpoint

- WHERE QUERY LOCATION List current point of execution

Notes:

1. These commands are supported only with COBTEST FULL SCREEN
debugging.

2. The DOWN, LEFT, RIGHT, and UP commands are executed by ISPF. They are
not actual COBTEST commands.

3. HELP is supported only under TSO with COBTEST LINE MODE debugging.
4. LINK in COBTEST provides real storage for the data items in the LINKAGE

SECTION. Debug Tool accomplishes this by declaring those data names. It then
calls the COBOL program, passing the necessary parameters.

5. Debug Tool does not have a facility to list a range of names. However, it is
possible to list all names for a block, or all names matching a specific pattern.

6. The PREVDISP command is no longer required. Debug Tool does not use ISPF
for display.

Debugging tool comparison

280 COBOL Migration Guide

7. The PRINTDD command is unnessary for Debug Tool. The print file has a fixed
ddname (although, the ddname can be specified at invocation.)

8. The RESTART command is available only with the programmable workstation.
Note, the RESTART command does not retain break settings as it did in
COBTEST.

9. The COBTEST SOURCE command is only supported in FULL SCREEN
debugging. Also, the connotation is different from the TESTCOB SOURCE
command.

Debugging tool comparison

Appendix E. Debugging tool comparison 281

Debugging tool comparison

282 COBOL Migration Guide

Appendix F. Compiler option comparison

This appendix describes the Enterprise COBOL compiler options. It also shows
how the Enterprise COBOL compiler options compare with those of VS COBOL II,
OS/VS COBOL, and IBM COBOL. For complete descriptions of the Enterprise
COBOL options, see the Enterprise COBOL Programming Guide.

Table 53. Compiler option comparison

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

ADATA U U Produces associated data file at compilation.
NOADATA is the default. The Enterprise
COBOL ADATA option replaces the
COBOL/370 EVENTS option.

ANALYZE U** Causes the compiler to check the syntax of
embedded SQL and CICS statements in
addition to native COBOL statements.

ADV U U U U Adds print control byte at beginning of records.
ADV is the default.

ALOWCBL U U U Allows PROCESS or CBL statements in source
program. You can only specified this option at
installation time. ALOWCBL is the default.

APOST U U U U Specifies apostrophe (') as delimiter for literals.
QUOTE is the default.

In Enterprise COBOL, literals can be delimited
with either quotes or apostrophes regardless of
whether APOST or QUOTES is in effect. If
APOST is used, the figurative constant
QUOTE/QUOTES represents one or more
apostrophe (’) characters.

ARITH U* U Sets the maximum number of digits that you
can specify for decimal data and affects the
precision of intermediate results.

With ARITH(COMPAT) you can specify 18
digits in the PICTURE clause, fixed-point
numeric literals, and arguments to NUMVAL
and NUMVAL-C, and 28 digits in arguments to
FACTORIAL.

With ARITH(EXTEND) you can specify 31
digits in the PICTURE clause, fixed-point
numeric literals, and arguments to NUMVAL
and NUMVAL-C, and 29 digits in arguments to
FACTORIAL.

AWO U U U Activates APPLY WRITE-ONLY processing for
physical sequential files with VB format.
NOAWO is the default.

BUF U Allocates buffer storage for compiler work data
sets. In Enterprise COBOL, the BUFSIZE option
replaces the OS/VS COBOL BUF option.

© Copyright IBM Corp. 1991, 2001 283

|
|
|
|

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

BUFSIZE U U U Allocates buffer storage for compiler work data
sets. Three suboptions are available:
BUFSIZE(nnnnn), BUFSIZE(nnnK), and
BUFSIZE(4096). BUFSIZE(4096) is the default.
BUFSIZE replaces the OS/VS COBOL BUF
option.

CICS U** U Enables the integrated CICS translator
capability and specifies CICS options. NOCICS
is the default.

CLIST U Produces condensed PROCEDURE DIVISION
listing plus tables and program statistics.
NOCLIST is the default.

The VS COBOL II , IBM COBOL, and
Enterprise COBOL OFFSET option replaces the
OS/VS COBOL CLIST option.

CMPR2 U U Specifies generation of IBM COBOL source
code compatible with VS COBOL II Release 2
or other VS COBOL II CMPR2 behavior.

NOCMPR2 is the default. NOCMPR2 specifies
the full use of all IBM COBOL language
features (including language extensions for
object-oriented COBOL and improved
interoperability with C programs).

CODEPAGE U Specifies the code page used for encoding
contents of alphanumeric and DBCS data items
at run time as well as alphanumeric, national,
and DBCS literals in a COBOL source program.

COMPILE U U U Requests an unconditional full compilation.
Other options are NOCOMPILE and
NOCOMPILE(W|E|S). The default is
NOCOMPILE(S).

NOCOMPILE specifies unconditional syntax
checking. NOCOMPILE(W|E|S) specify
conditional syntax checking based on the
severity of the error.

COMPILE is equivalent to the OS/VS COBOL
NOSYNTAX and NOCSYNTAX options.
NOCOMPILE is equivalent to the OS/VS
COBOL SYNTAX options.
NOCOMPILE(W|E|S) is equivalent to the
OS/VS COBOL CSYNTAX and SUPMAP
options.

Compiler option comparison

284 COBOL Migration Guide

|
|
|

|
|
|
|

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

CURRENCY U** U Defines default currency symbol. When both
the CURRENCY option and the CURRENCY
SIGN clause are used in a program, the symbol
specified in the CURRENCY SIGN clause is
considered the currency symbol in a PICTURE
clause when that symbol is used.

NOCURRENCY is the default and indicates
that no alternate default currency sign is
provided by the CURRENCY option.

DATA(24)
DATA(31)

U U U Specifies whether reentrant program data areas
reside above or below the 16-MB line. With
DATA(24) reentrant programs must reside
below the 16-MB line. With DATA(31) reentrant
programs can reside above the 16-MB line.
DATA(31) is the default.

DATEPROC U U Enables the millennium language extensions of
the COBOL compiler. Options consist of
DATEPROC(FLAG), DATEPROC(NOFLAG),
DATEPROC(TRIG), DATEPROC(NOTRIG) and
NODATEPROC.

DBCS U U U Tells compiler to recognize DBCS shift-in and
shift-out codes.

DBCS is the default.

DBCSXREF=code U U U Specifies that an ordering program is to be
used for cross-references to DBCS characters,
where code sets parameters giving information
about the DBCS Ordering Support Program.
You can only specify DBCSXREF at installation
time.

DBCSXREF=NO is the default.

DECK U U U U Generates object code as 80-character card
images and places it in SYSPUNCH file.
NODECK is the default.

DIAGTRUNC U* U Causes the compiler to issue a severity-4
(warning) diagnostic for MOVE statements
with numeric receivers when the receiving data
has fewer integer positions than the sending
data item or literal.

DLL U** U Enables the compiler to generate an object
module that is enabled for DLL (Dynamic Link
Library) support. NODLL is the default.

DMAP U Produces listing of Data Division and implicitly
declared items. NODMAP is the default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL MAP option replaces the OS/VS
COBOL DMAP option.

DUMP U U U U Specifies that a system dump be produced at
end of compilation. NODUMP is the default.

Compiler option comparison

Appendix F. Compiler option comparison 285

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

DYNAM U U U U Changes the behavior of CALL literal
statements to load subprograms dynamically at
run-time. NODYNAM is the default. With
NODYNAM, CALL literal statements cause
subprograms to be statically link-edited in the
load module.

EXIT(IN-id)
EXIT(LIB-id)
EXIT(PRT-id)
EXIT(ADT-id)

U U U Allows the compiler to accept user-supplied
modules. (Each string is an optional
user-supplied input string to the exit module,
and each mod names a user-supplied exit
module.)

The ADT-id suboption is only available with
COBOL for MVS & VM and COBOL for
OS/390 & VM.

NOEXIT is the default.

EXPORTALL U** U Instructs the compiler to automatically export
certain symbols when the object deck is
link-edited to form a DLL. NOEXPORTALL is
the default.

FASTSRT U U U Specifies fast sorting by the IBM DFSORT
licensed program. NOFASTSRT is the default,
and specifies that Enterprise COBOL will do
SORT or MERGE input/output.

FLAG U U U U Specifies that syntax messages are produced at
the level indicated. For OS/VS COBOL the
FLAG options are: FLAGW and FLAGE. For
Enterprise COBOL, the FLAG options are:

FLAG(I) FLAG(W) FLAG(E) FLAG(S)
FLAG(U) FLAG(I|W|E|S|U,I|W|E|S|U)

For VS COBOL II and IBM COBOL FLAG(I) is
the default. For Enterprise COBOL, FLAG(I,I) is
the default.

FLAGMIG U U Specifies NOCMPR2 flagging for possible
semantic changes from VS COBOL II Release 2
or other programs with CMPR2 behavior.

NOFLAGMIG is the default.

FLAGSTD U U U Specifies COBOL 85 Standard flagging. For
COBOL for OS/390 & VM and COBOL for
MVS & VM, FLAGSTD also flags language
syntax for object-oriented COBOL, improved C
interoperability, and use of the
PGMNAME(LONGMIXED) compiler option.

NOFLAGSTD is the default.

Compiler option comparison

286 COBOL Migration Guide

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

FDUMP U Use to produce a dump with debugging
information when an application ends with an
abend. NOFDUMP is the default.

The Enterprise COBOL TEST(SYM) option
replaces the VS COBOL II FDUMP option.

IDLGEN U In addition to the normal compile of the
COBOL source file, IDLGEN generates IDL
definitions for defined classes. NOIDLGEN is
the default.

INTDATE(ANSI)
INTDATE(LILIAN)

U U Determines the starting date for integer format
dates when used with date intrinsic functions.
ANSI uses the COBOL 85 Standard starting
date, where Day 1 = January 1, 1601. LILIAN
uses the Language Environment Lilian starting
date, where Day 1 = October 15, 1582.

INTDATE(ANSI) is the default.

LANGUAGE U U U LANGUAGE(AAa...a) specifies language in
which compiler messages are issued, where
AAa...a is:
UE or UENGLISH

Uppercase English
EN or ENGLISH

Mixed-case English
JA, JP, or JAPANESE

Japanese, using the KANJI character set

LANGUAGE=(EN) is the default.

LIB U U U U Specifies that the program uses the COPY
library. The default is NOLIB.

LINECNT=nn U Specifies the number of lines per page on the
output listing. For VS COBOL II, IBM COBOL,
and Enterprise COBOL, the LINECOUNT
compiler option replaces the OS/VS COBOL
LINECNT option.

LINECOUNT U U U Specifies the number of lines per page on the
output listing. The two formats for
LINECOUNT are: LINECOUNT(60) and
LINECOUNT(nn). LINECOUNT(60) is the
default.

LINECOUNT replaces the OS/VS COBOL
LINECNT option.

LIST U U U Produces listing of assembler language
expansion of source code. NOLIST is the
default.

LIST replace the OS/VS COBOL PMAP option.

Compiler option comparison

Appendix F. Compiler option comparison 287

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

LOAD U Stores object code on disk or tape for input to
linkage editor. NOLOAD is default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL OBJECT option replaces the OS/VS
COBOL LOAD option.

MAP U U U Produces listing of Data Division and implicitly
declared items NOMAP is the default.

MAP replaces the OS/VS COBOL DMAP
option.

NAME U U U U Indicates that a linkage editor NAME statement
is appended to each object module created. For
VS COBOL II, IBM COBOL, and Enterprise
COBOL, NAME has the suboptions
(ALIAS|NOALIAS). If ALIAS is specified, an
ALIAS statement is also generated for each
ENTRY statement

NONAME is the default.

NSYMBOL U Controls the interpretation of the ″N″ symbol
used in literals and picture clauses, indicating
whether national or DBCS processing is
assumed.

NSYMBOL(NATIONAL) is the default.

NUM U Prints line numbers in error messages and
listings. NONUM is the default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL NUMBER option replaces the OS/VS
COBOL NUM option.

NUMBER U U U Prints line numbers in error messages and
listings. NONUMBER is the default.

The NUMBER option replaces the OS/VS
COBOL NUM option.

NUMCLS U U U Determines, together with the NUMPROC
option, valid sign configurations for numeric
items in the NUMERIC class test. NUMCLS has
two suboptions: (PRIM/ALT). NUMCLS(PRIM)
is the default.

You can specify NUMCLS only at installation
time. For more information, see the:
v Enterprise COBOL Customization Guide

Compiler option comparison

288 COBOL Migration Guide

|
|
|
|

|

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

NUMPROC U U U Handles packed/zoned decimal signs as
follows:

NUMPROC(PFD)
Decimal fields assumed to have standard
System/370 signs

NUMPROC(NOPFD)
The compiler does any necessary sign
conversion and repair

NUMPROC(MIG)
Enterprise COBOL processes sign
conversion in a manner very similar to
OS/VS COBOL

NUMPROC(NOPFD) is the default.

OBJECT U U U Stores object code on disk or tape for input to
linkage editor. NOOBJECT is the default.

OBJECT replaces the OS/VS COBOL LOAD
option.

OFFSET U U U Produces condensed PROCEDURE DIVISION
listing plus tables and program statistics.
NOOFFSET is the default.

OFFSET replaces the OS/VS COBOL CLIST
option.

OPTIMIZE U U U U Optimizes object program. With IBM COBOL
and Enterprise COBOL, OPTIMIZE has the
suboptions of (STD/FULL). OPTIMIZE(FULL)
provides improved run-time performance, over
both the OS/VS COBOL and VS COBOL II
OPTIMIZE option, because the compiler
discards unused data items and does not
generate code for any VALUE clauses for these
data items.

NOOPTIMIZE is the default.

OUTDD(SYSOUT)
OUTDD(ddname)

U U U Routes DISPLAY output to SYSOUT or to a
specified data set. OUTDD(SYSOUT) is the
default.

OUTDD replaces the OS/VS COBOL SYSx
option.

Compiler option comparison

Appendix F. Compiler option comparison 289

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

PGMNAME U U Controls the handling of program names in
relation to length and case.

PGMNAME(LONGMIXED)
Program names are used at their full
length, without truncation and without
folding or translating by the compiler.

PGMNAME(LONGUPPER)
Program names are used at their full
length, without truncation.

PGMNAME(COMPAT)
Program names are processed
similarly to Release 1.

PGMNAME(COMPAT) is the default.

PMAP U Produces listing of assembler language
expansion of source code. NOPMAP is the
default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL LIST compiler option replaces the
OS/VS COBOL PMAP option.

QUOTE U U U U Specifies quotation mark (") as delimiter for
literals. QUOTE is the default.

In Enterprise COBOL, literals can be delimited
with either quotes or apostrophes regardless of
whether APOST or QUOTES is in effect. If
QUOTE is used, the figurative constant
QUOTE/QUOTES represents one or more
quotation marks (″) characters.

RES U U Causes most library routines to be loaded
dynamically, instead of being link-edited with
the COBOL program.

RENT U U U Specifies reentrant code in object program.
RENT is the default.

RMODE(AUTO)
RMODE(24)
RMODE(ANY)

U U Allows NORENT programs to have
RMODE(ANY). RMODE(AUTO) is the default.

SEQ U Checks ascending sequencing of source
statement line numbers. SEQ is the default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL SEQUENCE option replaces the OS/VS
COBOL SEQ option.

SEQUENCE U U U Checks ascending sequencing of source
statement line numbers. SEQUENCE is the
default.

SEQUENCE replaces the OS/VS COBOL SEQ
option.

Compiler option comparison

290 COBOL Migration Guide

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

SIZE(MAX)
SIZE(nnnnn)
SIZE(nnnK)

U U U Specifies virtual storage to be used for
compilation. SIZE(MAX) is the default.

SOURCE U U U U Produces a listing of the source program and
embedded messages. SOURCE is the default.

SPACE U U U U Produces a single, double, or triple spaced
listing. The syntax of the SPACE option in
OS/VS COBOL is: SPACE1, SPACE2, SPACE3.
The syntax of SPACE in VS COBOL II and
Enterprise COBOL is: SPACE(1), SPACE(2),
SPACE(3).

SPACE(1) is the default.

SQL U* U Enables the DB2 coprocessor capability and
specifies DB2 suboptions.

SSRANGE U U U At run time, checks validity of subscript, index,
and reference modification references

NOSSRANGE is the default.

SYSx U Routes DISPLAY output to SYSOUT or to a
specified data set.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL OUTDD option replaces the OS/VS
COBOL SYSx option.

STATE U Use to produce a dump with debugging
information when an application ends with an
abend. NOSTATE is the default.

The IBM COBOL and Enterprise COBOL
TEST(NONE,SYM) option replaces the OS/VS
COBOL STATE option.

SUPMAP
SYNTAX
CSYNTAX

U Specifies the extent of compilation. SYNTAX
specifies unconditional syntax checking.
CSYNTAX and CSUPMAP specify conditional
syntax checking. NOSYNTAX and
NOCSYNTAX specify an unconditional full
compile.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL COMPILE option replaces the OS/VS
COBOL SYNTAX, CSYNTAX, and CSUPMAP
options.

SXREF U Produces sorted cross-reference listing of data
names and procedure names used in program.
The default is NOSXREF.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL XREF option replaces the OS/VS
COBOL SXREF option.

Compiler option comparison

Appendix F. Compiler option comparison 291

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

TERM U Sends progress messages to the SYSTERM data
set. NOTERM is the default.

The VS COBOL II, IBM COBOL, and Enterprise
COBOL TERMINAL option replaces the OS/VS
COBOL TERM option.

TERMINAL U U U Sends progress messages to the SYSTERM data
set. NOTERMINAL is the default.

TERMINAL replaces the OS/VS COBOL TERM
option.

TEST U U U U Produces object code usable by Debug Tool for
the product. NOTEST is the default.

For details on the suboptions for the Enterprise
COBOL TEST option, see the Enterprise COBOL
Programming Guide.

THREAD U Enables a COBOL program for execution in a
run unit with multiple POSIX threads on PL/I
tasks. NOTHREAD is the default.

TRUNC U U U U Truncates final intermediate results. OS/VS
COBOL has the TRUNC and NOTRUNC
options (NOTRUNC is the default). VS COBOL
II , IBM COBOL, and Enterprise COBOL have
the TRUNC(STD|OPT|BIN) option.
TRUNC(STD)

Truncates numeric fields according to
PICTURE specification of the binary
receiving field

TRUNC(OPT)
Truncates numeric fields in the most
optimal way

TRUNC(BIN)
Truncates binary fields based on the
storage they occupy

TRUNC(STD) is the default.

For a complete description, see the Enterprise
COBOL Programming Guide for the version of
Enterprise COBOL you are using.

TYPECHK U Enforces the rules for OO type conformance
and issues diagnostics for any violations.

The default is NOTYPECHK.

VBREF
VBSUM

U U U U Produces cross-reference listing of all verb
types used in program. Only OS/VS COBOL
supports VBSUM.

The default is NOVBREF (as well as
NOVBSUM for OS/VS COBOL).

Compiler option comparison

292 COBOL Migration Guide

|
|
|

Table 53. Compiler option comparison (continued)

Option

Available in

Usage notesOSVS VSII
IBM

COBOL
Enterprise

COBOL

WORD U U U Tells compiler which reserved word table to
use. To use an installation-specific reserved
word table, specify WORD(table-name). To use
the default reserved word table, specify
NOWORD.

NOWORD is the default.

XREF U U U Produces sorted cross-reference listing of data
names and procedure names used in program.
The default is XREF.

XREF replaces the OS/VS COBOL SXREF
option.

YEARWINDOW U U Specifies the first year of the 100-year window
(the century window) to be applied to
windowed date field processing by the COBOL
compiler.

ZWB U U U U Removes sign from a signed numeric DISPLAY
field when comparing it with an alphanumeric
field. ZWB is the default.

Note:

v U* Available only in COBOL for OS/390 & VM Version 2 Release 2

v U** Available only in COBOL for OS/390 & VM Version 2 Release 1 and 2

Compiler option comparison

Appendix F. Compiler option comparison 293

Compiler option comparison

294 COBOL Migration Guide

Appendix G. Compiler limit comparison

The following table lists the compiler limits for Enterprise COBOL, IBM COBOL,
VS COBOL II, and OS/VS COBOL programs.

These are guidelines to the limits in the table:
v Interpret a limit stated in megabytes (MB) as: x megabytes minus 1-B.
v Interpret a limit stated in kilobytes (KB) as: x kilobytes minus 1-B.
v Interpret a limit stated in gigabytes (GB) as: x gigabytes minus 1-B.
v B stands for bytes.
v N/L stands for no limit.
v Footnotes are at the end of the table.

Language element
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

OS/VS
COBOL

Size of program 999,999 lines 999,999 lines 999,999 lines 1-MB
lines

Number of literals
Total length of literals

4,194,303-B1

4,194,303-B1
4,194,303-B1

4,194,303-B1
4,194,303-B1

4,194,303-B1
16-KB
32-KB
after OPT

Reserved word table entries 1536 1536 1536 N/L

COPY REPLACING . . . BY
(items per COPY statement)

Number of COPY libraries
Block size of COPY library

N/L

N/L
32,767-B

N/L

N/L
32,767-B

N/L

N/L
32,767-B

150

N/L
16-KB

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

CONFIGURATION SECTION

SPECIAL-NAMES paragraph

function-name IS
UPSI-n ... (switches)
alphabet-name IS ...
literal THRU/ALSO ...

18
0-7
N/L
256

18
0-7
N/L
256

18
0-7
N/L
256

18
0-7
N/L
256

INPUT-OUPUT Section

FILE-CONTROL paragraph

SELECT file-name ...

ASSIGN system-name ...
ALTERNATE RECORD KEY

data-name ...
RECORD KEY length
RESERVE integer (buffers)

A maximum
of 65,535
file names
can be
assigned
external
names
N/L

253
N/L2

2553

A maximum
of 65,535
file names
can be
assigned
external
names
N/L

253
N/L2

2553

A maximum
of 65,535
file names
can be
assigned
external
names
N/L

253
N/L2

2553

A maximum
of 64-KB
file names
can be
assigned
external
names
N/L

253
255
2553

I-O-CONTROL paragraph

© Copyright IBM Corp. 1991, 2001 295

Language element
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

OS/VS
COBOL

RERUN ON system-name ...
integer RECORDS

SAME RECORD AREA
FOR file-name ...

SAME SORT/MERGE AREA
MULTIPLE FILE ... file-name

32,767
16,777,215
255
255
N/L4

N/L4

32,767
16,777,215
255
255
N/L4

N/L4

32,767
16,777,215
255
255
N/L4

N/L4

32-KB
16-MB
255
255
N/L4

N/L4

DATA DIVISION

FILE SECTION

FD file-name ...
LABEL data-name ...

(if no optional clauses)
Label record length
DATA RECORD dnm ...
BLOCK CONTAINS

integer
RECORD CONTAINS

integer
Item length

SD file-name ...
DATA RECORD dnm ...
Sort record length

65,535
255

80-B
N/L4

2,147,483,6475

1,048,5756

1,048,5756

65,535
N/L4

32,751-B

65,535
255

80-B
N/L4

2,147,483,6475

1,048,5756

1,048,5756

65,535
N/L4

32,751-B

65,535
255

80-B
N/L4

1,048,5756

1,048,5756

1,048,5756

65,535
N/L4

32,751-B

64-KB
185

80-B
N/L4

32760
32-KB
32-KB
64-KB
N/L4

32K-16-B

WORKING-STORAGE
Section
(items without the EXTERNAL
attribute)

134,217,727-B 134,217,727-B 134,217,727-B 1-MB

WORKING-STORAGE
Section
(items with the EXTERNAL
attribute)

134,217,727-B 134,217,727-B 134,217,727-B 1MB

Compiler limit comparison

296 COBOL Migration Guide

Language element
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

OS/VS
COBOL

77 data-names
01-49 data-names
88 condition-name ...
VALUE literal ...
66 RENAMES ...
PICTURE character-string

Numeric item digit positions
Num-edit character positions

PICTURE replication ()
PIC repl (editing)
DBCS Picture Reactivation
Group item size:

FILE SECTION
Elementary item size
VALUE initialization

(Total length of value literals)
OCCURS integer

Total number of ODOs
Levels of ODO
Table size
Table element
ASCENDING

/DESCENDING
KEY ...

(per OCCURS clause)
Total length
INDEXED BY ...

(index names)
Total num of indexes

(index names)
Size of relative index

16,777,215
16,777,215
N/L
N/L
N/L
50
18 (or 31)7

249
16,777,215
32,767
8,388,607

1,048,575
16,777,215
16,777,215

16,777,215
4,194,3031

N/L
16,777,215
8,388,607

12
256B
12
65,535
32,765

16,777,215
16,777,215
N/L
N/L
N/L
30
18 (or 31)7

249
16,777,215
32,767
8,388,607

1,048,575
16,777,215
16,777,215

16,777,215
4,194,3031

N/L
16,777,215
8,388,607

12
256B
12
65,535
32,765

16,777,215
16,777,215
N/L
N/L
N/L
30
18

249
16,777,215
32,767

16,777,215
16,777,215

16,777,215
4,194,3031

N/L
16,777,215
8,388,607

12
256B
12
65,535
32,765

1-MB
1-MB
N/L
N/L
N/L
30
18

127
99999
99999

32-KB
64-KB

32-KB
64-KB1

3
32-KB
32-KB

12
256-B
12
64-KB
32-KB

Linkage Section 134,217,727 134,217,727 134,217,727 1-MB

Total 01 + 77 (data items) N/L N/L N/L 255

PROCEDURE DIVISION

Compiler limit comparison

Appendix G. Compiler limit comparison 297

Language element
Enterprise
COBOL

IBM
COBOL

VS
COBOL II

OS/VS
COBOL

Procedure + constant area
USING identifier ...

Procedure-names
Verbs per line

(FDUMP/TEST)
Subscripted data-names

per verb
ADD identifier ...
ALTER pn1 TO pn2 ...
CALL ... BY CONTENT id
CALL literal ...

USING id/lit ...
Active programs in run unit

RES/DYN number of
names called
CANCEL id/lit ...
CLOSE file-name ...
COMPUTE identifier ...
DISPLAY id/lit ...
DIVIDE identifier ...
ENTRY USING id/lit ...
EVALUATE ... subjects
EVALUATE ... WHEN clauses
GO pn ... DEPENDING
INSPECT TALLYING
/REPLACING
MERGE file-name

ASCENDING
/DESCENDING KEY ...

Total key length
USING file-name ...

MOVE id/lit TO id ...
MULTIPLY identifier ...
OPEN file-name
PERFORM
SEARCH ... WHEN ...
SEARCH ALL ... WHEN ...
SET index/id ... TO
SET index ... UP/DOWN
SORT file-name

ASCENDING
/DESCENDING KEY

Total key length
USING file-name ...

STRING identifier ...
DELIMITED id/lit ...

UNSTRING id
DELIMITED id/lit

OR id/lit ...
INTO id/lit ...

USE ... ON file-name ...

4,194,3031

32,767
1,048,5751

7
32,767
N/L
4,194,3031

2,147,483,647
4,194,3031

16,380
32,767
N/L
N/L
N/L
N/L
N/L8

N/L
N/L
64
256
255
N/L

N/L
4092-B9

1610

N/L
N/L
N/L
4,194,303
N/L
12
N/L
N/L

N/L
4092-B9

1610

N/L
N/L

255
N/L
N/L

4,194,3031

32,767
1,048,5751

7
32,767
N/L
4,194,3031

2,147,483,647
4,194,3031

16,380
32,767
N/L
N/L
N/L
N/L
N/L8

N/L
N/L
64
256
255
N/L

N/L
4092-B9

1610

N/L
N/L
N/L
4,194,303
N/L
12
N/L
N/L

N/L
4092-B9

1610

N/L
N/L

255
N/L
N/L

4,194,3031

32,767
1,048,5751

7
32,767
N/L
4,194,3031

2,147,483,647
4,194,3031

16,380
32,767
N/L
N/L
N/L
N/L
N/L8

N/L
N/L
64
256
255
N/L

N/L
4092-B9

1610

N/L
N/L
N/L
4,194,303
N/L
12
N/L
N/L

N/L
4092-B9

1610

N/L
N/L

255
N/L
N/L

1M+32-KB
N/L
64-KB1

7
511
N/L
64-KB
N/L
N/L
N/L
32-KB
64-KB
N/L
N/L
N/L
N/L8

N/L
N/L
N/L
N/L
2031
15

12
256
1610

N/L
N/L
N/L
64-KB
N/L
12
N/L
N/L

12
256
1610

N/L
N/L

15
N/L
N/L

Notes:

1. Items included in 4,194,303 byte limit for procedure plus constant area.
2. No compiler limit, but VSAM limits it to 255 bytes.
3. QSAM limit.

Compiler limit comparison

298 COBOL Migration Guide

4. Treated as comment; there is no limit.
5. Requires LBI (Large Block Interface) support provided by OS/390 DFSMS

Version 2 Release 10.0 or z/OS. On OS/390 systems with earlier releases of
DFSMS, the limit is 32,767 bytes.

6. Compiler limit shown, but QSAM limits it to 32,767 bytes.
7. For COBOL for OS/390 & VM V2R2 and later versions, 18 if

ARITH(COMPAT) is in effect, or 31 if ARITH(EXTEND) is in effect.
8. The compiler limit is shown; however, Language Environment limits the

maximum length of a data item you can display with DISPLAY UPON
SYSOUT to 16,384.

9. Limit is 4088 bytes if EQUALS is coded on the OPTION control statement.
10. SORT limit.

For additional information on using DISPLAY with OS/VS COBOL programs, see
“Understanding SYSOUT output changes” on page 72.

For additional information on using DISPLAY with VS COBOL II programs, see
“Understanding SYSOUT output changes” on page 92.

Compiler limit comparison

Appendix G. Compiler limit comparison 299

300 COBOL Migration Guide

Appendix H. Preventing file status 39 for QSAM files

This appendix provides guidelines to help prevent common file status 39 problems
for QSAM files, which are due to mismatches in the attributes for file organization,
record format (fixed or variable), record length, or the code set.

Processing existing files
When your program processes an existing file, code the description of the file in
your COBOL program to be consistent with the file attributes of the data set, for
example:

Format-V files or
Format-S files

The maximum record length specified in your program must be exactly
4 bytes smaller than the length attribute of the data set.

For Format-F files The record length specified in your program must exactly match the
length attribute of the data set.

For Format-U files The maximum record length specified in your program must exactly
match the length attribute of the data set.

Note: Remember that information in the JCL overrides information in the data set
label.

For details on how record lengths are determined from the FD entry and record
descriptions in your program, see Enterprise Programming Guide.

Defining variable-length records
The easiest way to define variable-length records in your program is to use
RECORD IS VARYING FROM integer-1 TO integer-2 in the FD entry and specify
an appropriate value for integer-2. For example, assume that you have determined
the length attribute of the data set to be 104 (LRECL=104). Keeping in mind that
the maximum record length is determined from the RECORD IS VARYING clause
(in which values are specified) and not from the level-01 record descriptions, you
could define a format-V file in your program with this code:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD IS VARYING FROM 4 TO 100 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

Assume that the existing file in the previous example was format-U instead of
format-V. If the 104 bytes are all user data, you could define the file in your
program with this code:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS U
RECORD IS VARYING FROM 4 TO 104 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(4).
01 COMMUTER-RECORD-B PIC X(75).

© Copyright IBM Corp. 1991, 2001 301

Defining fixed-length records
To define fixed-length records in your program, use either the RECORD
CONTAINS integer clause, or omit this clause and specify all level-01 record
descriptions to be the same fixed size. In either case, use a value that equals the
value of the length attribute of the data set. When you intend to use the same
program to process different files at execution and the files have differing
fixed-length record lengths, the recommended way to avoid record-length conflicts
is to code RECORD CONTAINS 0.

If the existing file is an ASCII data set (DCB=(OPTCD=Q)), you must specify the
CODE-SET clause in the program’s FD entry for the file.

Converting existing files that do not match the COBOL record
You can re-allocate a new file with the matching LRECL, copy the data from an
existing file to the new file, then use the new file as input.

Processing new files
When your COBOL program will write records to a new file which is made
available before the program is run, ensure that the file attributes you specify in
the DD statement or the allocation do not conflict with the attributes you have
specified in your program. In most cases, you only need to specify a minimum of
parameters when predefining your files, as illustrated in the following example of
a DD statement related to the FILE-CONTROL and FD entries in your program:

Where:

�1� The ddname in the DD statement corresponds to the assignment-name in the
ASSIGN clause:
//OUTFILE DD DSNAME=OUT171 ...

JCL DD Statement:

�1�
//OUTFILE DD DSNAME=OUT171,UNIT=SYSDA,SPACE=(TRK,(50,5)),
// DCB=(BLKSIZE=400)

/*

Enterprise COBOL Program Code:

ENVIRONMENT DIVISION.
INPUT─OUTPUT SECTION.

FILE─CONTROL.
SELECT CARPOOL �2�

ASSIGN TO OUTFILE �1�
ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

.

.

.
DATA DIVISION.

FILE SECTION.
FD CARPOOL �2�

LABEL RECORD STANDARD
BLOCK CONTAINS 0 CHARACTERS
RECORD CONTAINS 80 CHARACTERS

Figure 9. Example of JCL, FILE-CONTROL entry, and FD entry

302 COBOL Migration Guide

This assignment-name points to the ddname of OUTFILE in the DD
statement.
ASSIGN TO OUTFILE

�2� When you specify a file in your COBOL FILE-CONTROL entry, the file
must be described in an FD entry for file-name.
SELECT CARPOOL

FD CARPOOL

If you do need to explicitly specify a length attribute for the data set, (for example,
you are using an ISPF allocation panel or if your DD statement is for a batch job in
which the program uses RECORD CONTAINS 0) use the following rules:
v For format-V and format-S files, specify a length attribute that is 4 bytes larger

than what is defined in the program.
v For format-F and format-U files, specify a length attribute that is the same as

what is defined in the program.
v If you open your file as OUTPUT and write it to a printer, the compiler might

add one byte to the record length to account for the carriage control character,
depending on the ADV compiler option and the COBOL language used in your
program. In such a case, take the added byte into account when specifying the
LRECL.

For example, if your program contains the following code for a file with
variable-length records:

FILE SECTION.
FD COMMUTER-FILE-MST

RECORDING MODE IS V
RECORD CONTAINS 10 TO 50 CHARACTERS.

01 COMMUTER-RECORD-A PIC X(10).
01 COMMUTER-RECORD-B PIC X(50).

The LRECL in your DD statement or allocation should be 54.

Processing files dynamically created by COBOL
Enterprise COBOL dynamically allocates a file when all of the following conditions
exist:
v The CBLQDA(ON) run-time option is in effect.
v A ddname for the file is not explicitly allocated.
v An environment variable of the same name is not set.
v The COBOL program opens the file to write to it.

When the file is opened, the attributes specified in your program will be used.

If CBLQDA(OFF) is in effect, an error will be generated.

Appendix H. Preventing file status 39 for QSAM files 303

304 COBOL Migration Guide

Appendix I. Overriding linkage editor defaults

This appendix gives you the instructions necessary to override the default AMODE
and RMODE settings assigned by the Enterprise COBOL compiler based on the
use of the RENT and RMODE compiler options.

When not to override the default settings
Do not override the default AMODE/RMODE settings in the following cases:

AMODE
For load modules that contain VS COBOL II programs compiled NORES or
any OS/VS COBOL programs, do not specify a linkage editor override of
AMODE ANY or AMODE 31. The only exception is if the programs are
external entry points called by the system or through system services and
the logic of the application can guarantee, through appropriate AMODE
switching, that these programs will be entered in AMODE 24. These
programs will not switch AMODEs when they statically call other
programs.

RMODE
For load modules that contain VS COBOL II programs compiled NORES
and NORENT or any OS/VS COBOL programs, do not specify a linkage
editor override of RMODE ANY. This is because certain control blocks
contained in the object modules produced by the compiler must reside
below the 16-MB line.

When to override the default settings
For load modules with both Enterprise COBOL and OS/VS COBOL programs, you
must override the default AMODE setting to AMODE(24) when the load module
contains a Enterprise COBOL program compiled with NORENT. (For programs
compiled with RENT, no action is necessary. The linkage editor automatically
assigns the correct AMODE setting.)

How to override the defaults
To override the defaults, specify AMODE or RMODE with one of the following:
v EXEC statement of your link-edit job step

//LKEDEXECPGM=programname,
//PARM='AMODE=xx,RMODE=yy'

v The linkage editor mode control statements
MODE AMODE(xx),RMODE(yy)

v One of the following TSO commands LINK or LOADGO
LINK(dsn-list) AMODE(xx) RMODE(yy)
LOADGO(dsn-list) AMODE(xx) RMODE(yy)

See your Linkage Editor and Loader User’s Guide for allowable xx and yy and linkage
editor mode control statements.

The linkage editor uses a program’s AMODE attribute to determine whether a
program invoked using ATTACH, LINK, XCTL, or LOAD/BASSM is to receive

© Copyright IBM Corp. 1991, 2001 305

control in 24-bit or 31-bit addressing mode. The loader uses the RMODE attribute
to determine whether a program must be loaded into virtual storage below 16-MB,
or can reside anywhere in virtual storage (above or below 16-MB).

Overriding linkage editor defaults

306 COBOL Migration Guide

Appendix J. Link-edit example

This appendix provides an example of JCL that shows how to replace the current
library routines in a load module with the Language Environment library routines.
The SCEESAMP data set contains 3 sample jobs (IGZWRLKA, IGZWRLKB, and
IGZRLKC) to assist in relink-editing OS/VS COBOL or VS COBOL II load
modules.

//***
//* *
//* RELINK A LOAD MODULE THAT HAS BOTH OS/VS COBOL PROGRAMS *
//* AND VS COBOL II PROGRAMS WITH Language Environment. *
//* *
//***
//*
//LINK EXEC PGM=IEWL,PARM='LIST,MAP,XREF'
//SYSPRINT DD SYSOUT=*
//***
//* CHANGE 'ZZZZZZ.SCEELKED' IN THE FOLLOWING DD STATEMENT TO *
//* THE Language Environment SCEELKED DATA SET NAME. *
//* *
//* CHANGE 'XXXXXX' IN THE FOLLOWING DD STATEMENT TO *
//* THE DATA SET NAME WHICH CONTAINS THE LOAD MODULE. *
//* *
//* CHANGE 'YYYYYY' IN THE FOLLOWING DD STATEMENT TO *
//* THE DATA SET NAME WHICH THE RELINK-EDITED LOAD *
//* MODULE SHOULD BE SAVED INTO. *
//* *
//***
//SYSLIB DD DSN=ZZZZZZ.SCEELKED,DISP=SHR
//LOADLIB DD DSN=XXXXXX,DISP=SHR
//SYSLMOD DD DSN=YYYYYY,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,2)),DISP=NEW
//***
//* CHANGE 'UUUUUU' IN THE FOLLOWING INCLUDE STATEMENT *
//* TO THE LOAD MODULE NAME. *
//* *
//* CHANGE 'VVVVVV' IN THE FOLLOWING NAME STATEMENT TO *
//* THE RELINK-EDITED LOAD MODULE NAME. *
//* *
//* CHANGE 'EEEEEE' IN THE FOLLOWING ENTRY STATEMENT TO *
//* THE RELINK-EDITED LOAD MODULE ENTRY POINT NAME OR *
//* OMIT THE ENTRY STATEMENT IF IT IS NOT REQUIRED. *
//* *
//***
//SYSLIN DD *

REPLACE ILBOxxxx �1�
.
.
.

REPLACE IGZxxxx �2�
.
.
.

INCLUDE LOADLIB(UUUUUU)
ENTRY EEEEEE
NAME VVVVVV(R)

/*

© Copyright IBM Corp. 1991, 2001 307

Where �1� and �2� represent the following:

�1�

REPLACE ILBOABN
REPLACE ILBOACP
REPLACE ILBOACS
REPLACE ILBOANE
REPLACE ILBOANF
REPLACE ILBOATB
REPLACE ILBOBEG
REPLACE ILBOBID
REPLACE ILBOBIE
REPLACE ILBOBII
REPLACE ILBOBUG
REPLACE ILBOCHN
REPLACE ILBOCJS
REPLACE ILBOCKP
REPLACE ILBOCLS
REPLACE ILBOCMM
REPLACE ILBOCOM0
REPLACE ILBOCT1
REPLACE ILBOCVB
REPLACE ILBODBE
REPLACE ILBODBG
REPLACE ILBODCI
REPLACE ILBODSP
REPLACE ILBODSS
REPLACE ILBODTE
REPLACE ILBOD01
REPLACE ILBOD10
REPLACE ILBOD11
REPLACE ILBOD12
REPLACE ILBOD13
REPLACE ILBOD14
REPLACE ILBOD20
REPLACE ILBOD21
REPLACE ILBOD22
REPLACE ILBOD23
REPLACE ILBOD24
REPLACE ILBOD25

REPLACE ILBOD26
REPLACE ILBOEFL
REPLACE ILBOERR
REPLACE ILBOETB
REPLACE ILBOEXT
REPLACE ILBOFLW
REPLACE ILBOFPW
REPLACE ILBOGDO
REPLACE ILBOGPW
REPLACE ILBOIDB
REPLACE ILBOIDR
REPLACE ILBOIDT
REPLACE ILBOIFB
REPLACE ILBOIFD
REPLACE ILBOINS
REPLACE ILBOINT
REPLACE ILBOITB
REPLACE ILBOIVL
REPLACE ILBOLBL
REPLACE ILBOMRG
REPLACE ILBOMSG
REPLACE ILBOMSC
REPLACE ILBONBL
REPLACE ILBONED
REPLACE ILBONTR
REPLACE ILBOOCR
REPLACE ILBOPRM
REPLACE ILBOPTV
REPLACE ILBOQIO
REPLACE ILBOQSS
REPLACE ILBOQSU
REPLACE ILBOREC
REPLACE ILBORNT
REPLACE ILBOSAM
REPLACE ILBOSCD
REPLACE ILBOSCH

REPLACE ILBOSDB
REPLACE ILBOSGM
REPLACE ILBOSMG
REPLACE ILBOSMV
REPLACE ILBOSND
REPLACE ILBOSNT
REPLACE ILBOSPI
REPLACE ILBOSPN
REPLACE ILBOSPA
REPLACE ILBOSQA
REPLACE ILBOSRT
REPLACE ILBOSRV
REPLACE ILBOSSN
REPLACE ILBOSTG
REPLACE ILBOSTI
REPLACE ILBOSTN
REPLACE ILBOSTR
REPLACE ILBOSTT
REPLACE ILBOSYN
REPLACE ILBOTC0
REPLACE ILBOTC2
REPLACE ILBOTC3
REPLACE ILBOTEF
REPLACE ILBOTRN
REPLACE ILBOUST
REPLACE ILBOUTB
REPLACE ILBOVCO
REPLACE ILBOVIO
REPLACE ILBOVMO
REPLACE ILBOVOC
REPLACE ILBOVTR
REPLACE ILBOWAT
REPLACE ILBOWTB
REPLACE ILBOXDI
REPLACE ILBOXMU
REPLACE ILBOXPR

Link-edit example

308 COBOL Migration Guide

�2�

REPLACE IGZCA2D
REPLACE IGZCACP
REPLACE IGZCACS
REPLACE IGZCANE
REPLACE IGZCANF
REPLACE IGZCBID
REPLACE IGZCBUG
REPLACE IGZCCCO
REPLACE IGZCCLS
REPLACE IGZCCTL
REPLACE IGZCCVB
REPLACE IGZCD2A
REPLACE IGZCDIF
REPLACE IGZCDSP
REPLACE IGZCFDP
REPLACE IGZCFDW
REPLACE IGZCFPW
REPLACE IGZCGDR
REPLACE IGZCIDB
REPLACE IGZCINS
REPLACE IGZCIN1
REPLACE IGZCIN2
REPLACE IGZCIPS
REPLACE IGZCIVL
REPLACE IGZCKCL
REPLACE IGZCLNK
REPLACE IGZCMSF
REPLACE IGZCMST
REPLACE IGZCONV

REPLACE IGZCONVX
REPLACE IGZCSCH
REPLACE IGZCSMV
REPLACE IGZCSPA
REPLACE IGZCSPC
REPLACE IGZCSSN
REPLACE IGZCSTG
REPLACE IGZCTCO
REPLACE IGZCULE
REPLACE IGZCUST
REPLACE IGZCVIN
REPLACE IGZCVMO
REPLACE IGZCXDI
REPLACE IGZCXFR
REPLACE IGZCXMU
REPLACE IGZCXPR
REPLACE IGZEABX
REPLACE IGZEABN
REPLACE IGZEBRG
REPLACE IGZEBST
REPLACE IGZECKP
REPLACE IGZECMS
REPLACE IGZEDBR
REPLACE IGZEDBW
REPLACE IGZEDTE
REPLACE IGZEINP
REPLACE IGZEMSG
REPLACE IGZENRI

REPLACE IGZENRT
REPLACE IGZEOPD
REPLACE IGZEOPT
REPLACE IGZEOUT
REPLACE IGZEPRM
REPLACE IGZEPTV
REPLACE IGZEQBL
REPLACE IGZEQOC
REPLACE IGZERRE
REPLACE IGZESAT
REPLACE IGZESMG
REPLACE IGZESNP
REPLACE IGZESPM
REPLACE IGZESTA
REPLACE IGZETRM
REPLACE IGZETUN
REPLACE IGZEVAM
REPLACE IGZEVEX
REPLACE IGZEVIO
REPLACE IGZEVOC
REPLACE IGZEVOP
REPLACE IGZEVSV
REPLACE IGZTCAM2
REPLACE IGZTCAM4
REPLACE IGZTCM21
REPLACE IGZTCM41
REPLACE IGZTCM42

Link-edit example

Appendix J. Link-edit example 309

Link-edit example

310 COBOL Migration Guide

Appendix K. DB2 coprocessor integration

A coprocessor approach eliminates the need for precompilation with the DB2
precompiler in COBOL programs containing SQL statements.

The coprocessor approach uses the COBOL compiler to handle both native COBOL
and imbedded SQL statements in the source program. When the SQL statements
are encountered, the compiler interfaces with the DB2 coprocessor. The DB2
coprocessor takes appropriate actions and then returns to the compiler typically
indicating what native language statements to generate.

A separate precompiler approach is still supported in Enterprise COBOL, however
the coprocessor approach is the preferred and recommended solution. The
coprocessor approach provides improved usability and the highest level of
functionality. In particular, interactive debugging of COBOL applications with
Debug Tool is enhanced when the coprocessor solution is used, since the
application may be debugged at the original source level, instead of at the level of
the expanded source produced by the DB2 precompiler.

The coprocessor approach requires DB2 version 7 or later. The benefits of a
coprocessor approach include:
v Enhancements in interactive debugging of COBOL applications with Debug Tool.

The application may be debugged at the original source level, instead of at the
level of the expanded source produced by the CICS translator.

v The need for an intermediate data set to hold the translated but not compiled
version of the source program is eliminated.

v There is only one output listing instead of two.
v Nested programs that contain EXEC SQL statements can be held in separate files

and included through a COPY statement.
v REPLACE statements can now affect EXEC SQL statements.

The following shows an example of using the DB2 precompiler:
//DB2INT JOB . . .,
// NOTIFY=JDOE,MSGCLASS=A,CLASS=A,TIME=(0,5), MIN00020
// REGION=10M,MSGLEVEL=(1,1) MIN00030
//COB EXEC PGM=IGYCRCTL,
// PARM=(QUOTE,NODYNAM,ADV,'BUF(12288)',SOURCE,NOXREF)
//STEPLIB DD DSN=IGY.V3R1M0.SIGYCOMP,DISP=SHR
// DD DSN=DSN710.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=JDOE.DBRMLIB.DATA(COBTEST),DISP=SHR
//SYSIN DD *

CBL SQL('HOST(COB2),QUOTE,APOSTSQL,SOURCE,XREF'),LIB
IDENTIFICATION DIVISION.
PROGRAM-ID. COBTEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RES PIC X(10).

EXEC SQL
INCLUDE SQLCA

END-EXEC.
PROCEDURE DIVISION.

EXEC SQL
SELECT COL1 INTO :RES FROM TABLE1

END-EXEC.

© Copyright IBM Corp. 1991, 2001 311

//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//LKED.SYSIN DD *
INCLUDE SYSLIB(DSNELI)
INCLUDE SYSLIB(DSNTIAR)
NAME COBTEST(R)
//*INDRUN EXEC TSOBATCH,DB2LEV=DB2A,COND=(4,LT)
//*YSTSIN DD *
DSN SYSTEM(V71A)
FREE PLAN(COBPLAN)
BIND PLAN(COBPLAN) MEMBER(COBTEST)
RUN PROGRAM(COBTEST) PLAN(COBPLAN)

The following is an example showing the integrated SQL coprocessor:
//DB2INT JOB (JDOE,E264,090,D48),'John Doe',
// NOTIFY=JDOE,MSGCLASS=A,CLASS=A,TIME=(0,5), MIN00020
// REGION=10M,MSGLEVEL=(1,1) MIN00030
//COB EXEC PGM=IGYCRCTL,
// PARM=(QUOTE,NODYNAM,ADV,'BUF(12288)',SOURCE,NOXREF)
//STEPLIB DD DSN=IGY.V3R1M0.SIGYCOMP,DISP=SHR
// DD DSN=DSN710.SDSNLOAD,DISP=SHR
//DBRMLIB DD DSN=JDOE.DBRMLIB.DATA(COBTEST),DISP=SHR
//SYSIN DD *

CBL SQL('HOST(COB2),QUOTE,APOSTSQL,SOURCE,XREF'),LIB
IDENTIFICATION DIVISION.
PROGRAM-ID. COBTEST.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RES PIC X(10).

EXEC SQL
INCLUDE SQLCA

END-EXEC.
PROCEDURE DIVISION.

EXEC SQL
SELECT COL1 INTO :RES FROM TABLE1

END-EXEC.
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(500,500))
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT2 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT3 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT4 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT5 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT6 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//SYSUT7 DD UNIT=SYSDA,SPACE=(800,(500,500),,,ROUND)
//LKED.SYSIN DD *
INCLUDE SYSLIB(DSNELI)
INCLUDE SYSLIB(DSNTIAR)
NAME COBTEST(R)
//*INDRUN EXEC TSOBATCH,DB2LEV=DB2A,COND=(4,LT)
//*YSTSIN DD *

DB2 Coprocessor Integration

312 COBOL Migration Guide

DSN SYSTEM(V71A)
FREE PLAN(COBPLAN)
BIND PLAN(COBPLAN) MEMBER(COBTEST)
RUN PROGRAM(COBTEST) PLAN(COBPLAN)

DB2 Coprocessor Integration

Appendix K. DB2 coprocessor integration 313

DB2 Coprocessor Integration

314 COBOL Migration Guide

Appendix L. IMS considerations

When running any combination of OS/VS COBOL, VS COBOL II, IBM COBOL,
and Enterprise COBOL programs under Language Environment, you need to
know:
v Unsupported features from VS COBOL II
v Compiler options relevant for programs run on IMS
v Compiling and linking COBOL programs for running under IMS
v ENDJOB/NOENDJOB compiler option requirements
v Recommended modules for preload
v Condition handling using CBLTDI on IMS
v Performance consideration when running OS/VS COBOL programs
v The use of a GTF trace to determine which modules are loaded
v DFSPCC20 modification is unsupported

Unsupported VS COBOL II features

BLDL user exit unsupported
The VS COBOL II BLDL user exit is not supported in Language Environment. No
replacement is available. However, Language Environment does have a load
notification exit that might meet your needs. For information on the load
notification exit, see Language Environment for OS/390 Customization.

LIBKEEP unsupported
The VS COBOL II LIBKEEP run-time option is not supported in Language
Environment. For alternatives to LIBKEEP, see “Existing applications using
LIBKEEP” on page 96.

Compiler options relevant for programs run on IMS
Table 54 lists Enterprise COBOL compiler options relevant to COBOL IMS
applications.

Table 54. Compiler options relevant for Enterprise COBOL programs run on IMS

Compiler option Comments

RENT The RENT compiler option causes Enterprise COBOL to produce
reentrant code and allows you to place the COBOL modules in the
LPA (Link Pack Area) or ELPA (Extended Link Pack Area) and thus
shared among dependent regions under IMS. Also, the modules
cannot be overwritten, since the LPA/ELPA have a storage protect
key.

RENT allows you to run your IMS programs in either preload or
nonpreload mode, without compiling with different options.

Compiling and linking COBOL programs for running under IMS
For best performance in the IMS environment, use the RENT compiler option. It
causes COBOL to generate reentrant code. You can then run your application
programs in either preloaded mode (the programs are always in storage) or
nonpreload mode, without having to recompile with different options.

© Copyright IBM Corp. 1991, 2001 315

IMS allows COBOL programs to be preloaded. This preloading can boost
performance because subsequent requests for the program can be handled faster
when the program is already in storage (rather than being fetched from a library
each time it is needed).

You must use the RENT compiler option to compile a program that is to be run
preloaded or as both preloaded and nonpreloaded. When you preload a load
module that contains COBOL programs, all of the COBOL programs in that load
module must be compiled with the RENT option.

In an application with any mixture of Enterprise COBOL, IBM COBOL, VS COBOL
II, and OS/VS COBOL programs, the following compiler options are
recommended:

Table 55. Recommended compiler options for applications with mixed COBOL programs

Enterprise COBOL IBM COBOL VS COBOL II OS/VS COBOL

RENT RENT RENT and RES RES and NOENDJOB
for preloaded
programs

RES and ENDJOB for
nonpreloaded
programs

You can place programs compiled with the RENT option in the LPA. There they
can be shared among the IMS dependent regions.

To run above the 16-MB line, your application program must be compiled with
either RENT or NORENT RMODE(ANY), depending on your IMS environment.

With IMS, the data for IMS application programs can reside above the 16-MB line,
and you can use DATA(31) RENT, or RMODE(ANY) NORENT for programs that
use IMS services.

The recommended link-edit attributes for proper execution of COBOL programs
under IMS are as follows:
v Link as RENT load modules that contain only COBOL programs compiled with

the RENT compiler option.
v To link load modules that contain a mixture of COBOL RENT programs and

other programs, use the link-edit attributes recommended for the other
programs.

ENDJOB/NOENDJOB compiler option requirements
If you are running a mixture of OS/VS COBOL and Enterprise COBOL programs,
at least one of the OS/VS COBOL programs must have been compiled with the
ENDJOB option if the programs are not preloaded.

Specifying the ENDJOB option allows the COBOL application and the Language
Environment run-time environment to be completely cleaned up at program
termination.

Note: If LRR is used at the same time as OS/VS COBOL and Enterprise COBOL,
the run-time environment will not be completely cleaned up, because LRR
forces NOENDJOB behavior.

IMS considerations

316 COBOL Migration Guide

Preloading requirements
If you preload ILBOCOM, you must also preload the following library routines:
v ILBOCMM, ILBONTR, and ILBOSRV
v ILBOACS, ILBOCVB, and ILBOINS if an OS/VS COBOL RES program uses the

INSPECT and/or UNSTRING verbs.

Last used state behavior under Language Environment
The OS/VS COBOL NOENDJOB/ENDJOB compiler option produces different
results when running with the Language Environment library than when running
with the OS/VS COBOL library. When specifying NOENDJOB and running under
OS/VS COBOL, your subprograms are always entered in the last used state.

In the Language Environment run-time environment, when nonpreloaded OS/VS
COBOL subprograms that are compiled with RES and NOENDJOB terminate, the
programs and their internal work areas are deleted; their external work areas
(storage acquired with a GETMAIN) and library routines remain in dynamic
storage. When ENDJOB is used instead of NOENDJOB, there is essentially no
difference except that the external work areas and library routines are deleted as
well.

Because Enterprise COBOL programs and their resources (all work areas and
library routines) are always deleted at termination, the way ENDJOB and
NOENDJOB work in the Language Environment run-time environment allows
both Enterprise COBOL and OS/VS COBOL programs to be treated similarly with
respect to last used state.

In the OS/VS COBOL run-time environment, ENDJOB was the strongly
recommended compiler option when executing IMS transactions invoking
nonpreloaded COBOL programs.

In the VS COBOL II run-time environment when using the LIBKEEP run-time
option, OS/VS COBOL programs compiled with ENDJOB were treated as
NOENDJOB. NOENDJOB was required for preloaded OS/VS COBOL programs.

Note: When using LRR, NOENDJOB behavior is always in effect.

When programs remain in the last-used state
A program remains in last-used state between COBOL transactions only when all
the following conditions are true:
v It is an OS/VS COBOL program compiled with the NOENDJOB option or LRR

is being used.
v It has been link-edited with the REUS option.
v It has been preloaded.
v It is a dynamically called subprogram or a statically called subprogram that has,

itself, been called by a dynamically called subprogram.

Recommended modules for preload
IMS allows application programs to be preloaded, (to remain resident in storage
after each use). Preloading can improve performance; if the program is already
resident in storage, requests for the program can be handled faster. No time is
wasted bringing it into storage from an external medium.

IMS considerations

Appendix L. IMS considerations 317

Enterprise COBOL programs
For a list of recommended modules to preload, see the IBM Enterprise COBOL
Version 3 Release 1 Performance Tuning Paper, located on the Web, in the Library
Section, at: http://www.ibm.com/software/ad/cobol Go to the Library section by
clicking on the Library link.

OS/VS COBOL programs
Table 56 shows a sample list of OS/VS COBOL compatibility subroutines to
preload if you use the OS/VS COBOL RES compiler option. If you run OS/VS
COBOL programs with Language Environment, you might also want to preload
the modules listed in the Performance Paper.

Table 56. Sample list for preloaded ILBO modules
ILBOCHN0 ILBOCMM0 ILBOCOM0
ILBOCVB0 ILBODTE0 ILBOETB0
ILBOGDO0 ILBOINS0 ILBOITB0
ILBONTR0 ILBOSCH0 ILBOUST0
ILBOWTB0 ILBOSRV0 ILBOSTG0
ILBOSTT2 ILBOTRN0

When running under Language Environment:
v Continue to preload the same ILBO library routines as you preloaded when

using the OS/VS COBOL library. (These ILBO routines are included in Language
Environment.)

v Preload ILBOSTT2 (and put it in the preload list twice) if you preloaded
ILBOSTT for your OS/VS COBOL programs running with the OS/VS COBOL
library.

Condition handling using CBLTDLI on IMS
1. DO NOT handle the condition with condition handling. If you do attempt to

handle the errors using condition handlers, the integrity of your IMS database
is at risk.

2. Use the ABTERMENC(ABEND) and TRAP(ON) run-time options to ensure that
the application terminates abnormally and transforms all abnormal
terminations into operating system abends to cause IMS roll backs.

Differences with IMS Version 2 and Version 3
CBLTDLI or ASMTDLI (issued from a non-PL/I routine) running with IMS/ESA
Version 2 Release 2 (or Version 3 Release 1 without PTF UN49280) under Language
Environment do not keep track of calls to and returns from IMS.

Without the coordination of condition handling between IMS and Language
Environment, if a program interrupt or abend occurs, the Language Environment
condition manager is not informed whether the problem occurred in your
application or in IMS.

To ensure that your database does not get contaminated if a condition occurs:
1. Do not handle the condition with condition handling. If you do attempt to

handle the errors using condition handlers, the integrity of your IMS database
is at risk.

IMS considerations

318 COBOL Migration Guide

2. Use the ABTERMENC(ABEND) and TRAP(ON) run-time options to ensure that
the application terminates abnormally and transforms all abnormal
terminations into operating system abends to cause IMS rollbacks.

Table 57 shows you when you can use condition handlers with the various IMS
releases.

Table 57. Restrictions on condition handling under IMS (by release)

Interface IMS V2

IMS V3 w/o
PTF
UN49280

IMS V3
with PTF
UN49280

IMS V4 and
later

CEETDLI N/A N/A N/A Yes

CBLTDLI No No Yes Yes

PLITDLI Yes Yes Yes Yes

CTDLI Yes Yes Yes Yes

ASMTDLI (non-PL/I) No No Yes Yes

ASMTDLI (PL/I) Yes Yes Yes Yes

Performance consideration when running OS/VS COBOL programs
If most of the programs scheduled in your IMS region are OS/VS COBOL
programs, a performance benefit might be acheived by specifying lower values for
the Language Environment storage related run-time options. For example, you
could use the following storage values:
STACK(16K)
HEAP(4K,4K,ANY,4K,4K)
BELOWHEAP(4K)
ANYHEAP(4K)

Using a GTF trace to determine which modules are loaded
Some customers collect GTF trace information and look at the SVC 8 (LOAD) trace
information to determine which application programs are loaded. Language
Environment uses both SVC 8 and SVC 122 to load programs.

DFSPCC20 modification unsupported
OS/VS COBOL allowed the use of the ENDJOB option for both preloaded and
nonpreloaded programs with a user modification to the IMS Program Controller
(DFSPCC20).

The user modification included code that would store the addresses of certain
preloaded subroutines and might cause intermittent problems at execution. This
user modification (or any user supplied code which performs the same task) must
be removed before running under Language Environment.

IMS considerations

Appendix L. IMS considerations 319

320 COBOL Migration Guide

Appendix M. TSO considerations

This appendix describes conversion considerations for programs running on TSO.
It includes information on using REXX execs.

Using REXX execs
When you run a COBOL program from a REXX exec, you need to be aware of the
differences in the parameter list formats for using the different ″address″ options.
When you use ’Address TSO’ (the default) or ’Address ATTCHMVS’, both
program parameters and Language Environment run-time options are processed.
When using ’Address LINKMVS’, run-time options are not processed, but they are
passed as program parameters to the COBOL program.

Due to the differences in parameter list formats and save area conventions,
’Address LINK’, ’Address ATTACH’, ’Address LINKPGM’, and ’Address
ATTCHPGM’ are not supported.

© Copyright IBM Corp. 1991, 2001 321

322 COBOL Migration Guide

Appendix N. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the
IBM product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling (1) the exchange of information between independently created
programs and other programs (including this one) and (2) the mutual use of the
information that has been exchanged, should contact:

IBM Corporation, Department HHX/H3
555 Bailey Avenue
San Jose, CA 95141-1099
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming interface information
This book is intended to help you write programs using IBM Enterprise COBOL
for z/OS and OS/390. This Compiler and Run-Time Migration Guide documents
General-Use Programming Interface and Associated Guidance Information
provided for IBM Enterprise COBOL for z/OS and OS/390. General-Use
programming interfaces allow the customer to write programs that obtain the
services of IBM Enterprise COBOL for z/OS and OS/390.

© Copyright IBM Corp. 1991, 2001 323

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX
C/370
CICS
CICS/ESA
COBOL/370
DB2
DFSMS
DFSORT
IBM
IMS
IMS/ESA
Language Environment
MVS

MVS/ESA
OpenEdition
Operating System/2
OS/2
OS/390
S/370
SOMobjects
System Object Model
System/370
VisualAge
VSE/ESA
WebSphere
z/OS

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

UnicodeTM is a trademark of the Unicode
®

Consortium.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Notices

324 COBOL Migration Guide

Bibliography

IBM Enterprise COBOL for z/OS and OS/390
Compiler and Run-Time Migration Guide, GC27-1409
Customization Guide, GC27-1410
Debug Tool User’s Guide, SC27-1573
Debug Tool Reference Manual and Messages, SC27-1575
Fact Sheet, GC27-1407
Language Reference, SC27-1408
Licensed Program Specifications, GC27-1411
Programming Guide, SC27-1412

Language Environment for z/OS
Concepts Guide, SA22-7567
Debugging Guide, GA22-7560
Run-Time Messages, SA22-7566
Customization, SA22-7564
Programming Guide, SA22-7561
Programming Reference, SA22-7562
Run-Time Migration Guide, GA22-7565
Writing Interlanguage Applications, SA22-7563

Language Environment for OS/390
Concepts Guide, GC28-1945
Debugging Guide and Run-Time Messages SC28-1942
Installation & Customization, SC28-1941
Programming Guide, SC28-1939
Programming Reference, SC28-1940
Run-Time Migration Guide, SC28-1944
Writing Interlanguage Applications, SC28-1943

Related publications
v IBM C/370

Migration Guide, SC09-1359
Programming Guide, SC09-1356
General Information, GC09-1358
Diagnosis Guide, LY09-1806
Licensed Program Specifications, GC09-1357
Reference Summary, SX09-1247

v IBM PL/I for MVS & VM

Fact Sheet, GC26-3112
Licensed Program Specification, GC26-3116

© Copyright IBM Corp. 1991, 2001 325

Compiler and Run-Time Migration Guide, SC26-3118
Installation and Customization under MVS, SC26-3119
Installation and Customization under CMS, SC26-3120
Programming Guide, SC26-3113
Language Reference, SC26-3114
Reference Summary, SX26-3821
Diagnosis Guide, SC26-3149
Compile-Time Messages and Codes, SC26-3229

v DB2

Application Programming and SQL Guide, SC26-9933
v CCCA

COBOL and CICS/VS Command Level Conversion Aid, SB11-6432
v CICS/ESA

Application Programming Guide, SC33-1687
Application Programming Reference, SC33-1170
Customization Guide, SC33-1683
External CICS Interface, SC33-1390
Sample Applications Guide, SC33-1173

v COBOL Report Writer

COBOL Report Writer Precompiler Programmer’s Manual, SC26-4301
COBOL Report Writer Precompiler Installation and Operation for MVS and CMS,
SC26-4302

v IMS

Application Programming: EXEC DLI Commands for CICS and IMS Calls,
SC26-8018

326 COBOL Migration Guide

Glossary

The terms in this glossary are defined in accordance with their meaning in
COBOL. These terms may or may not have the same meaning in other languages.

IBM is grateful to the American National Standards Institute (ANSI) for permission
to reprint its definitions from the following publications:
v American National Standard Programming Language COBOL, ANSI X3.23-1985

(Copyright 1985 American National Standards Institute, Inc.), which was
prepared by Technical Committee X3J4, which had the task of revising American
National Standard COBOL, X3.23-1974.

v American National Dictionary for Information Processing Systems (Copyright 1982 by
the Computer and Business Equipment Manufacturers Association).

American National Standard definitions are preceded by an asterisk (*).

A
* abbreviated combined relation condition. The combined condition that results from the explicit omission of a
common subject or a common subject and common relational operator in a consecutive sequence of relation
conditions.

abend. Abnormal termination of program.

* access mode. The manner in which records are to be operated upon within a file.

* actual decimal point. The physical representation, using the decimal point characters period (.) or comma (,), of
the decimal point position in a data item.

* alphabet-name. A user-defined word, in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION, that
assigns a name to a specific character set and/or collating sequence.

* alphabetic character. A letter or a space character.

* alphanumeric character. Any character in the computer’s character set.

alphanumeric-edited character. A character within an alphanumeric character-string that contains at least one B, 0
(zero), or / (slash).

* alphanumeric function. A function whose value is composed of a string of one or more characters from the
computer’s character set.

* alternate record key. A key, other than the prime record key, whose contents identify a record within an indexed
file.

AMODE. Provided by the linkage editor, the attribute of a load module that indicates the addressing mode in
which the load module should be entered.

application. A collection of one or more routines cooperating to achieve particular objectives.

ANSI (American National Standards Institute). An organization consisting of producers, consumers, and general
interest groups, that establishes the procedures by which accredited organizations create and maintain voluntary
industry standards in the United States.

* argument. (1) An expression used at the point of a call to specify a data item or aggregate to be passed to the
called routine. (2) The data passed to a called routine at the point of call or the data received by a called routine.

© Copyright IBM Corp. 1991, 2001 327

* arithmetic expression. An identifier of a numeric elementary item, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses.

* arithmetic operation. The process caused by the execution of an arithmetic statement, or the evaluation of an
arithmetic expression, that results in a mathematically correct solution to the arguments presented.

* arithmetic operator. A single character, or a fixed two-character combination that belongs to the following set:

Character
Meaning

+ addition
- subtraction
* multiplication
/ division
** exponentiation

* arithmetic statement. A statement that causes an arithmetic operation to be executed. The arithmetic statements
are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements.

array. In Language Environment, an aggregate consisting of data objects, each of which may be uniquely referenced
by subscripting. Roughly analogous to a COBOL table.

* ascending key. A key upon the values of which data is ordered, starting with the lowest value of the key up to
the highest value of the key, in accordance with the rules for comparing data items.

ASCII. American National Standard Code for Information Interchange. The standard code, using a coded character
set consisting of 7-bit coded characters (8 bits including parity check), used for information interchange between data
processing systems, data communication systems, and associated equipment. The ASCII set consists of control
characters and graphic characters.

Extension: IBM has defined an extension to ASCII code (characters 128-255).

assignment-name. A name that identifies the organization of a COBOL file and the name by which it is known to
the system.

* assumed decimal point. A decimal point position that does not involve the existence of an actual character in a
data item. The assumed decimal point has logical meaning with no physical representation.

* AT END condition. A condition caused:

1. During the execution of a READ statement for a sequentially accessed file, when no next logical record exists in
the file, or when the number of significant digits in the relative record number is larger than the size of the
relative key data item, or when an optional input file is not present.

2. During the execution of a RETURN statement, when no next logical record exists for the associated sort or merge
file.

3. During the execution of a SEARCH statement, when the search operation terminates without satisfying the
condition specified in any of the associated WHEN phrases.

B
big-endian. Default format used by the mainframe and the AIX workstation to store binary data. In this format, the
least significant digit is on the highest address. Compare with “little-endian”.

binary item. A numeric data item represented in binary notation (on the base 2 numbering system). Binary items
have a decimal equivalent consisting of the decimal digits 0 through 9, plus an operational sign. The leftmost bit of
the item is the operational sign.

binary search. A dichotomizing search in which, at each step of the search, the set of data elements is divided by
two; some appropriate action is taken in the case of an odd number.

* block. A physical unit of data that is normally composed of one or more logical records. For mass storage files, a
block may contain a portion of a logical record. The size of a block has no direct relationship to the size of the file

328 COBOL Migration Guide

within which the block is contained or to the size of the logical record(s) that are either contained within the block or
that overlap the block. The term is synonymous with physical record.

breakpoint. A place in a program, usually specified by a command or condition, where execution may be
interrupted and control given to the workstation user or to a specified debug program.

Btrieve. A key-indexed record management system that allows applications to manage records by key value,
sequential access method, or random access method. Enterprise COBOL supports COBOL sequential and indexed file
I-O language through Btrieve.

buffer. An area of storage into which data is read or from which it is written. Typically, buffers are used only for
temporary storage.

built-in function. See “intrinsic function”.

byte. The basic unit of storage addressability. It has a length of 8 bits.

C
C language. A high-level language used to develop software applications in compact, efficient code that can be run
on different types of computers with minimal change.

C++ language. An object-oriented high-level language that evolved from the C language. C++ exploits the benefits
of object-oriented technology such as code modularity, portability, and reuse.

callable services. A set of services that can be invoked by a Language Environment, featuring defined call interface,
and usable by all programs sharing the Language Environment conventions.

cataloged procedure. A set of job control language (JCL) statements placed in a library and retrievable by name.

called program. A program that is the object of a CALL statement.

* calling program. A program that executes a CALL to another program.

case structure. A program processing logic in which a series of conditions is tested in order to make a choice
between a number of resulting actions.

CEEDUMP. A dump of the run-time environment for Language Environment and the member language libraries.
Sections of the dump are selectively included, depending on options specified on the dump invocation. This is not a
dump of the full address space, but a dump of storage and control blocks that Language Environment and its
members control.

cataloged procedure. A set of job control statements placed in a partitioned data set called the procedure library
(SYS1.PROCLIB). You can use cataloged procedures to save time and reduce errors coding JCL.

century window. The 100-year interval in which Language Environment assumes all 2-digit years lie. The Language
Environment default century window begins 80 years before the system date.

* character. A letter, digit, or other symbol that is used as part of the organization, control, or representative of data.
A character is often in the form of a spatial arrangement of adjacent or connected strokes.

character position. The amount of physical storage required to store a single standard data format character
described as USAGE IS DISPLAY.

character set. All the valid characters for a programming language or a computer system.

* character-string. A sequence of contiguous characters that form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry. Must be delimited by separators.

checkpoint. A point at which information about the status of a job and the system can be recorded so that the job
step can be later restarted.

CICS. Customer Information Control System.

Glossary 329

CICS translator. A routine that accepts as input an application containing EXEC CICS commands and produces as
output an equivalent application in which each CICS command has been translated into the language of the source.

* class. The entity that defines common behavior and implementation for zero, one, or more objects. The objects that
share the same implementation are considered to be objects of the same class.

* class condition. The proposition, for which a truth value can be determined, that the content of an item is wholly
alphabetic, is wholly numeric, or consists exclusively of those characters listed in the definition of a class-name.

* Class Definition. The COBOL source unit that defines a class.

* class identification entry. An entry in the CLASS-ID paragraph of the IDENTIFICATION DIVISION which
contains clauses that specify the class-name and assign selected attributes to the class definition.

* class-name. A user-defined word defined in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION
that assigns a name to the proposition for which a truth value can be defined, that the content of a data item consists
exclusively of those characters listed in the definition of the class-name.

class object. The run-time object representing a SOM class.

* clause. An ordered set of consecutive COBOL character-strings whose purpose is to specify an attribute of an
entry.

CMS (Conversational Monitor System). A virtual machine operating system that provides general interactive,
time-sharing, problem solving, and program development capabilities, and that operates only under the control of the
VM/SP control program.

* COBOL character set. The complete COBOL character set consists of the characters listed below:

Character
Meaning

0,1...,9 digit
A,B,...,Z

uppercase letter
a,b,...,z lowercase letter
� space
+ plus sign
- minus sign (hyphen)
* asterisk
/ slant (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon

* COBOL word. See “word”.

code page. An assignment of graphic characters and control function meanings to all code points; for example,
assignment of characters and meanings to 256 code points for 8-bit code, assignment of characters and meanings to
128 code points for 7-bit code.

* collating sequence. The sequence in which the characters that are acceptable to a computer are ordered for
purposes of sorting, merging, comparing, and for processing indexed files sequentially.

* column. A character position within a print line. The columns are numbered from 1, by 1, starting at the leftmost
character position of the print line and extending to the rightmost position of the print line.

330 COBOL Migration Guide

* combined condition. A condition that is the result of connecting two or more conditions with the AND or the OR
logical operator.

* comment-entry. An entry in the IDENTIFICATION DIVISION that may be any combination of characters from the
computer’s character set.

* comment line. A source program line represented by an asterisk (*) in the indicator area of the line and any
characters from the computer’s character set in area A and area B of that line. The comment line serves only for
documentation in a program. A special form of comment line represented by a slant (/) in the indicator area of the
line and any characters from the computer’s character set in area A and area B of that line causes page ejection prior
to printing the comment.

* common program. A program which, despite being directly contained within another program, may be called
from any program directly or indirectly contained in that other program.

* compile. (1) To translate a program expressed in a high-level language into a program expressed in an
intermediate language, assembly language, or a computer language. (2) To prepare a machine language program
from a computer program written in another programming language by making use of the overall logic structure of
the program, or generating more than one computer instruction for each symbolic statement, or both, as well as
performing the function of an assembler.

* compile time. The time at which a COBOL source program is translated, by a COBOL compiler, to a COBOL
object program.

compiler. A program that translates a program written in a higher level language into a machine language object
program.

compiler directing statement. A statement, beginning with a compiler directing verb, that causes the compiler to
take a specific action during compilation.

compiler directing statement. A statement that specifies actions to be taken by the compiler during processing of a
COBOL source program. Compiler directives are contained in the COBOL source program. Thus, you can specify
different suboptions of the directive within the source program by using multiple compiler directive statements in the
program.

compiler options. Keywords that can be specified to control certain aspects of compilation. Compiler options can
control the nature of the load module generated by the compiler, the types of printed output to be produced, the
efficient use of the compiler, and the destination of error messages. See also compiler-time options.

compiler-time options. Keywords that can be specified to control certain aspects of compilation. Compiler options
can control the nature of the load module generated by the compiler, the types of printed output to be produced, the
efficient use of the compiler, and the destination of error messages.

* complex condition. A condition in which one or more logical operators act upon one or more conditions. (See also
“negated simple condition”, “combined condition”, and “negated combined condition”.)

* computer-name. A system-name that identifies the computer upon which the program is to be compiled or run.

condition. An exception that has been enabled, or recognized, by Language Environment and thus is eligible to
activate user and language condition handlers. Any alteration to the normal programmed flow of an application.
Conditions can be detected by the hardware/operating system and results in an interrupt. They can also be detected
by language-specific generated code or language library code.

* condition. A status of a program at run time for which a truth value can be determined. Where the term
‘condition’ (condition-1, condition-2,...) appears in these language specifications in or in reference to ‘condition’
(condition-1, condition-2,...) of a general format, it is a conditional expression consisting of either a simple condition
optionally parenthesized, or a combined condition consisting of the syntactically correct combination of simple
conditions, logical operators, and parentheses, for which a truth value can be determined.

* conditional expression. A simple condition or a complex condition specified in an EVALUATE, IF, PERFORM, or
SEARCH statement. (See also “simple condition” and “complex condition”.)

* conditional phrase. A conditional phrase specifies the action to be taken upon determination of the truth value of
a condition resulting from the execution of a conditional statement.

Glossary 331

* conditional statement. A statement specifying that the truth value of a condition is to be determined and that the
subsequent action of the object program is dependent on this truth value.

* conditional variable. A data item one or more values of which has a condition-name assigned to it.

* condition-name. A user-defined word that assigns a name to a subset of values that a conditional variable may
assume; or a user-defined word assigned to a status of an implementor defined switch or device. When
‘condition-name’ is used in the general formats, it represents a unique data item reference consisting of a syntactically
correct combination of a ‘condition-name’, together with qualifiers and subscripts, as required for uniqueness of
reference.

* condition-name condition. The proposition, for which a truth value can be determined, that the value of a
conditional variable is a member of the set of values attributed to a condition-name associated with the conditional
variable.

* CONFIGURATION SECTION. A section of the ENVIRONMENT DIVISION that describes overall specifications
of source and object programs and class definitions.

CONSOLE. A COBOL environment-name associated with the operator console.

* contiguous items. Items that are described by consecutive entries in the Data Division, and that bear a definite
hierarchic relationship to each other.

copybook. A file or library member containing a sequence of code that is included in the source program at compile
time using the COPY statement. The file can be created by the user, supplied by COBOL, or supplied by another
product.

CORBA. The Common Object Request Broker Architecture established by the Object Management Group. IBM’s
Interface Definition Language used to describe the interface for SOM classes is fully compliant with CORBA standards.

* counter. A data item used for storing numbers or number representations in a manner that permits these numbers
to be increased or decreased by the value of another number, or to be changed or reset to zero or to an arbitrary
positive or negative value.

cross-reference listing. The portion of the compiler listing that contains information on where files, fields, and
indicators are defined, referenced, and modified in a program.

currency sign. The character ‘$’ of the COBOL character set or that character defined by the CURRENCY compiler
option. If the NOCURRENCY compiler option is in effect, the currency sign is defined as the character ‘$’.

currency symbol. The character defined by the CURRENCY compiler option or by the CURRENCY SIGN clause in
the SPECIAL-NAMES paragraph. If the NOCURRENCY compiler option is in effect for a COBOL source program
and the CURRENCY SIGN clause is also not present in the source program, the currency symbol is identical to the
currency sign.

* current record. In file processing, the record that is available in the record area associated with a file.

* current volume pointer. A conceptual entity that points to the current volume of a sequential file.

D
* data clause. A clause, appearing in a data description entry in the DATA DIVISION of a COBOL program, that
provides information describing a particular attribute of a data item.

* data description entry . An entry in the DATA DIVISION of a COBOL program that is composed of a
level-number followed by a data-name, if required, and then followed by a set of data clauses, as required.

DATA DIVISION. In COBOL, the part of a program that describes the files to be used in the program and the
records contained within the files. It also describes any WORKING-STORAGE data items, LINKAGE SECTION data
items, and LOCAL-STORAGE data items that are needed.

* data item. A unit of data (excluding literals) defined by a COBOL program or by the rules for function evaluation.

332 COBOL Migration Guide

* data-name. A user-defined word that names a data item described in a data description entry. When used in the
general formats, ‘data-name’ represents a word that must not be reference-modified, subscripted or qualified unless
specifically permitted by the rules for the format.

DBCS (Double-Byte Character Set). See “Double-Byte Character Set (DBCS)”.

* debugging line. A debugging line is any line with a ‘D’ in the indicator area of the line.

* debugging section. A section that contains a USE FOR DEBUGGING statement.

* declarative sentence. A compiler directing sentence consisting of a single USE statement terminated by the
separator period.

* declaratives. A set of one or more special purpose sections, written at the beginning of the Procedure Division, the
first of which is preceded by the key word DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed by a USE compiler directing sentence,
followed by a set of zero, one, or more associated paragraphs.

* de-edit. The logical removal of all editing characters from a numeric edited data item in order to determine that
item’s unedited numeric value.

* delimited scope statement. Any statement that includes its explicit scope terminator.

* delimiter. A character or a sequence of contiguous characters that identify the end of a string of characters and
separate that string of characters from the following string of characters. A delimiter is not part of the string of
characters that it delimits.

* descending key. A key upon the values of which data is ordered starting with the highest value of key down to
the lowest value of key, in accordance with the rules for comparing data items.

digit. Any of the numerals from 0 through 9. In COBOL, the term is not used in reference to any other symbol.

* digit position. The amount of physical storage required to store a single digit. This amount may vary depending
on the usage specified in the data description entry that defines the data item.

* direct access. The facility to obtain data from storage devices or to enter data into a storage device in such a way
that the process depends only on the location of that data and not on a reference to data previously accessed.

* division. A collection of zero, one or more sections or paragraphs, called the division body, that are formed and
combined in accordance with a specific set of rules. Each division consists of the division header and the related
division body. There are four (4) divisions in a COBOL program: Identification, Environment, Data, and Procedure.

* division header. A combination of words followed by a separator period that indicates the beginning of a
division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL. See “dynamic link library”.

do construction. In structured programming, a DO statement is used to group a number of statements in a
procedure. In COBOL, an in-line PERFORM statement functions in the same way.

do-until. In structured programming, a do-until loop will be executed at least once, and until a given condition is
true. In COBOL, a TEST AFTER phrase used with the PERFORM statement functions in the same way.

do-while. In structured programming, a do-while loop will be executed if, and while, a given condition is true. In
COBOL, a TEST BEFORE phrase used with the PERFORM statement functions in the same way.

Double-Byte Character Set (DBCS). A set of characters in which each character is represented by two bytes.
Languages such as Japanese, Chinese, and Korean, which contain more symbols than can be represented by 256 code
points, require Double-Byte Character Sets. Because each character requires two bytes, entering, displaying, and
printing DBCS characters requires hardware and supporting software that are DBCS-capable.

Glossary 333

* dynamic access. An access mode in which specific logical records can be obtained from or placed into a mass
storage file in a nonsequential manner and obtained from a file in a sequential manner during the scope of the same
OPEN statement.

dynamic link library. A file containing executable code and data bound to a program at load time or run time,
rather than during linking. The code and data in a dynamic link library can be shared by several applications
simultaneously.

Dynamic Storage Area (DSA). Dynamically acquired storage composed of a register save area and an area available
for dynamic storage allocation (such as program variables). DSAs are generally allocated within STACK segments
managed by Language Environment.

E
* EBCDIC (Extended Binary-Coded Decimal Interchange Code). A coded character set consisting of 8-bit coded
characters.

EBCDIC character. Any one of the symbols included in the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item. A data item that has been modified by suppressing zeroes and/or inserting editing characters.

* editing character. A single character or a fixed two-character combination belonging to the following set:

Character
Meaning

� space
0 zero
+ plus
- minus
CR credit
DB debit
Z zero suppress
* check protect
$ currency sign
, comma (decimal point)
. period (decimal point)
/ slant (virgule, slash)

element (text element). One logical unit of a string of text, such as the description of a single data item or verb,
preceded by a unique code identifying the element type.

* elementary item. A data item that is described as not being further logically subdivided.

enclave. In Language Environment, an independent collection of routines, one of which is designated as the main
routine and is invoked first. An enclave is roughly analogous to a program or run unit. An executable program..

*end class header. A combination of words, followed by a separator period, that indicates the end of a COBOL class
definition. The end class header is:

END CLASS class-name.

*end method header. A combination of words, followed by a separator period, that indicates the end of a COBOL
method definition. The end method header is:

END METHOD method-name.

* end of Procedure Division. The physical position of a COBOL source program after which no further procedures
appear.

* end program header. A combination of words, followed by a separator period, that indicates the end of a COBOL
source program. The end program header is:

END PROGRAM program-name.

334 COBOL Migration Guide

* entry. Any descriptive set of consecutive clauses terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, or DATA DIVISION of a COBOL program.

* environment clause. A clause that appears as part of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION. One of the four main component parts of a COBOL program, class definition, or
method definition. The ENVIRONMENT DIVISION describes the computers upon which the source program is
compiled and those on which the object program is executed, and provides a linkage between the logical concept of
files and their records, and the physical aspects of the devices on which files are stored.

environment-name. A name, specified by IBM, that identifies system logical units, printer and card punch control
characters, report codes, and/or program switches. When an environment-name is associated with a mnemonic-name
in the ENVIRONMENT DIVISION, the mnemonic-name may then be substituted in any format in which such
substitution is valid.

environment variable. Any of a number of variables that describe the way an operating system is going to run and
the devices it is going to recognize.

execution time. Synonym for run time.

execution-time environment. See “run-time environment”.

* explicit scope terminator. A reserved word that terminates the scope of a particular Procedure Division statement.

exponent. A number, indicating the power to which another number (the base) is to be raised. Positive exponents
denote multiplication, negative exponents denote division, fractional exponents denote a root of a quantity. In
COBOL, an exponential expression is indicated with the symbol ‘**’ followed by the exponent.

* expression. An arithmetic or conditional expression.

* extend mode. The state of a file after execution of an OPEN statement, with the EXTEND phrase specified for that
file, and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

extensions. Certain COBOL syntax and semantics supported by IBM compilers in addition to those described in
ANSI Standard.

* external data. Data that persists over the lifetime of an enclave and maintains last-used values whenever a routine
within the enclave is reentered. Within an enclave consisting of a single load module, it is equivalent to any C data
objects that have static storage duration, A FORTRAN common block, and COBOL EXTERNAL data.

* external data item. A data item which is described as part of an external record in one or more programs of a run
unit and which itself may be referenced from any program in which it is described.

* external data record. A logical record which is described in one or more programs of a run unit and whose
constituent data items may be referenced from any program in which they are described.

external decimal item. A format for representing numbers in which the digit is contained in bits 4 through 7 and
the sign is contained in bits 0 through 3 of the rightmost byte. Bits 0 through 3 of all other bytes contain 1’s (hex F).
For example, the decimal value of +123 is represented as 1111 0001 1111 0010 1111 0011. (Also know as “zoned
decimal item”.)

* external file connector. A file connector which is accessible to one or more object programs in the run unit.

external floating-point item. A format for representing numbers in which a real number is represented by a pair of
distinct numerals. In a floating-point representation, the real number is the product of the fixed-point part (the first
numeral), and a value obtained by raising the implicit floating-point base to a power denoted by the exponent (the
second numeral).

For example, a floating-point representation of the number 0.0001234 is: 0.1234 -3, where 0.1234 is the mantissa and -3
is the exponent.

external program. The outermost program. A program that is not nested.

* external switch. A hardware or software device, defined and named by the implementor, which is used to indicate
that one of two alternate states exists.

Glossary 335

F
* figurative constant. A compiler-generated value referenced through the use of certain reserved words.

* file. A named collection of related data records that is stored and retrieved by an assigned name. Equivalent to an
MVS data set.

* file attribute conflict condition. An unsuccessful attempt has been made to execute an input-output operation on
a file and the file attributes, as specified for that file in the program, do not match the fixed attributes for that file.

* file clause. A clause that appears as part of any of the following DATA DIVISION entries: file description entry
(FD entry) and sort-merge file description entry (SD entry).

* file connector. A storage area which contains information about a file and is used as the linkage between a
file-name and a physical file and between a file-name and its associated record area.

File-Control. The name of an ENVIRONMENT DIVISION paragraph in which the data files for a given source
program are declared.

file control block. Block containing the addresses of I/O routines, information about how they were opened and
closed, and a pointer to the file information block.

* file control entry. A SELECT clause and all its subordinate clauses which declare the relevant physical attributes
of a file.

* file description entry. An entry in the File Section of the DATA DIVISION that is composed of the level indicator
FD, followed by a file-name, and then followed by a set of file clauses as required.

* file-name. A user-defined word that names a file connector described in a file description entry or a sort-merge
file description entry within the File Section of the DATA DIVISION.

* file organization. The permanent logical file structure established at the time that a file is created.

*file position indicator. A conceptual entity that contains the value of the current key within the key of reference
for an indexed file, or the record number of the current record for a sequential file, or the relative record number of
the current record for a relative file, or indicates that no next logical record exists, or that an optional input file is not
present, or that the at end condition already exists, or that no valid next record has been established.

* File Section. The section of the DATA DIVISION that contains file description entries and sort-merge file
description entries together with their associated record descriptions.

file system. A collection of files and their attributes. A file system provides a name space for file serial numbers
referring to those files.

* fixed file attributes. Information about a file which is established when a file is created and cannot subsequently
be changed during the existence of the file. These attributes include the organization of the file (sequential, relative,
or indexed), the prime record key, the alternate record keys, the code set, the minimum and maximum record size,
the record type (fixed or variable), the collating sequence of the keys for indexed files, the blocking factor, the
padding character, and the record delimiter.

* fixed length record. A record associated with a file whose file description or sort-merge description entry requires
that all records contain the same number of character positions.

fixed-point number. A numeric data item defined with a PICTURE clause that specifies the location of an optional
sign, the number of digits it contains, and the location of an optional decimal point. The format may be either binary,
packed decimal, or external decimal.

floating-point number. A numeric data item containing a fraction and an exponent. Its value is obtained by
multiplying the fraction by the base of the numeric data item raised to the power specified by the exponent.

* format. A specific arrangement of a set of data.

* function. A routine that is invoked by coding its name in an expression. The routine passes a result back to the
invoker through the routine name.

336 COBOL Migration Guide

* function-identifier. A syntactically correct combination of character-strings and separators that references a
function. The data item represented by a function is uniquely identified by a function-name with its arguments, if
any. A function-identifier may include a reference-modifier. A function-identifier that references an alphanumeric
function may be specified anywhere in the general formats that an identifier may be specified, subject to certain
restrictions. A function-identifier that references an integer or numeric function may be referenced anywhere in the
general formats that an arithmetic expression may be specified.

function-name. A word that names the mechanism whose invocation, along with required arguments, determines
the value of a function.

G
* global name. A name which is declared in only one program but which may be referenced from that program and
from any program contained within that program. Condition-names, data-names, file-names, record-names,
report-names, and some special registers may be global names.

* group item. A data item that is composed of subordinate data items.

H
header label. (1) A file label or data set label that precedes the data records on a unit of recording media. (2)
Synonym for beginning-of-file label.

* high order end. The leftmost character of a string of characters.

HLL. High level language.

I
IBM COBOL extension. Certain COBOL syntax and semantics supported by IBM compilers in addition to those
described in ANSI Standard.

IDENTIFICATION DIVISION. One of the four main component parts of a COBOL program, class definition, or
method definition. The IDENTIFICATION DIVISION identifies the program name, class name, or method name. The
IDENTIFICATION DIVISION may include the following documentation: author name, installation, or date.

* identifier. A syntactically correct combination of character-strings and separators that names a data item. When
referencing a data item that is not a function, an identifier consists of a data-name, together with its qualifiers,
subscripts, and reference-modifier, as required for uniqueness of reference. When referencing a data item which is a
function, a function-identifier is used.

IGZCBSN. The COBOL/370 Release 1 bootstrap routine. It must be link-edited with any module that contains a
COBOL/370 Release 1 program.

IGZCBSO. The COBOL for MVS and VM Release 2 and COBOL for OS/390 and VM bootstrap routine. It must be
link-edited with any module that contains a COBOL for MVS and VM Release 2 or COBOL for OS/390 and VM
program.

* imperative statement. A statement that either begins with an imperative verb and specifies an unconditional
action to be taken or is a conditional statement that is delimited by its explicit scope terminator (delimited scope
statement). An imperative statement may consist of a sequence of imperative statements.

* implicit scope terminator. A separator period which terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its occurrence indicates the end of the scope of any statement
contained within the preceding phrase.

IMS. Information Management System, IBM licensed product. IMS supports heirarchical databases, data
communication, translation processing, and database backout and recovery.

* index. A computer storage area or register, the content of which represents the identification of a particular
element in a table.

Glossary 337

* index data item. A data item in which the values associated with an index-name can be stored in a form specified
by the implementor.

indexed data-name. An identifier that is composed of a data-name, followed by one or more index-names enclosed
in parentheses.

* indexed file. A file with indexed organization.

* indexed organization. The permanent logical file structure in which each record is identified by the value of one
or more keys within that record.

indexing. Synonymous with subscripting using index-names.

* index-name. A user-defined word that names an index associated with a specific table.

* inheritance (for classes). A mechanism for using the implementation of one or more classes as the basis for another
class. A subclass inherits from one or more superclasses. By definition the inheriting class conforms to the inherited
classes.

* initial program. A program that is placed into an initial state every time the program is called in a run unit.

* initial state. The state of a program when it is first called in a run unit.

inline. In a program, instructions that are executed sequentially, without branching to routines, subroutines, or other
programs.

* input file. A file that is opened in the INPUT mode.

* input mode. The state of a file after execution of an OPEN statement, with the INPUT phrase specified, for that
file and before the execution of a CLOSE statement, without the REEL or UNIT phrase for that file.

* input-output file. A file that is opened in the I-O mode.

* INPUT-OUTPUT SECTION. The section of the ENVIRONMENT DIVISION that names the files and the external
media required by an object program or method and that provides information required for transmission and
handling of data during execution of the object program or method definition.

* Input-Output statement. A statement that causes files to be processed by performing operations upon individual
records or upon the file as a unit. The input-output statements are: ACCEPT (with the identifier phrase), CLOSE,
DELETE, DISPLAY, OPEN, READ, REWRITE, SET (with the TO ON or TO OFF phrase), START, and WRITE.

* input procedure. A set of statements, to which control is given during the execution of a SORT statement, for the
purpose of controlling the release of specified records to be sorted.

instance data. Data defining the state of an object. The instance data introduced by a class is defined in the
WORKING-STORAGE SECTION of the DATA DIVISION of the class definition. The state of an object also includes
the state of the instance variables introduced by base classes that are inherited by the current class. A separate copy
of the instance data is created for each object instance.

* integer. (1) A numeric literal that does not include any digit positions to the right of the decimal point.

(2) A numeric data item defined in the DATA DIVISION that does not include any digit positions to the right of the
decimal point.

(3) A numeric function whose definition provides that all digits to the right of the decimal point are zero in the
returned value for any possible evaluation of the function.

integer function. A function whose category is numeric and whose definition does not include any digit positions to
the right of the decimal point.

interface. The information that a client must know to use a class—the names of its attributes and the signatures of its
methods. With direct-to-SOM compilers such as COBOL, the interface to a class may be defined by native language
syntax for class definitions. Classes implemented in other languages might have their interfaces defined directly in
SOM Interface Definition Language (IDL). The COBOL compiler has a compiler option, IDLGEN, to automatically
generate IDL for a COBOL class.

338 COBOL Migration Guide

Interface Definition Language (IDL). The formal language (independent of any programming language) by which
the interface for a class of objects is defined in a IDL file, which the SOM compiler then interprets to create an
implementation template file and binding files. SOM’s Interface Definition Language is fully compliant with
standards established by the Object Management Group’s Common Object Request Broker Architecture (CORBA).

interlanguage communication (ILC). The ability of routines written in different programming languages to
communicate. ILC support allows the application writer to readily build applications from component routines
written in a variety of languages.

intermediate result. An intermediate field containing the results of a succession of arithmetic operations.

* internal data. The data described in a program excluding all external data items and external file connectors.
Items described in the LINKAGE SECTION of a program are treated as internal data.

* internal data item. A data item which is described in one program in a run unit. An internal data item may have
a global name.

internal decimal item. A format in which each byte in a field except the rightmost byte represents two numeric
digits. The rightmost byte contains one digit and the sign. For example, the decimal value +123 is represented as 0001
0010 0011 1111. (Also known as packed decimal.)

* internal file connector. A file connector which is accessible to only one object program in the run unit.

* intra-record data structure. The entire collection of groups and elementary data items from a logical record which
is defined by a contiguous subset of the data description entries which describe that record. These data description
entries include all entries whose level-number is greater than the level-number of the first data description entry
describing the intra-record data structure.

intrinsic function. A predefined function, such as a commonly used arithmetic function, called by a built-in function
reference.

* invalid key condition. A condition, at object time, caused when a specific value of the key associated with an
indexed or relative file is determined to be invalid.

* I-O-CONTROL. The name of an ENVIRONMENT DIVISION paragraph in which object program requirements for
rerun points, sharing of same areas by several data files, and multiple file storage on a single input-output device are
specified.

* I-O-CONTROL entry. An entry in the I-O-CONTROL paragraph of the ENVIRONMENT DIVISION which
contains clauses that provide information required for the transmission and handling of data on named files during
the execution of a program.

* I-O-Mode. The state of a file after execution of an OPEN statement, with the I-O phrase specified, for that file and
before the execution of a CLOSE statement without the REEL or UNIT phase for that file.

* I-O status. A conceptual entity which contains the two-character value indicating the resulting status of an
input-output operation. This value is made available to the program through the use of the FILE STATUS clause in
the file control entry for the file.

iteration structure. A program processing logic in which a series of statements is repeated while a condition is true
or until a condition is true.

K
K. When referring to storage capacity, two to the tenth power; 1024 in decimal notation.

kernel. The part of the component that contains programs for such tasks as I/O, management, and communication.

* key. A data item that identifies the location of a record, or a set of data items which serve to identify the ordering
of data.

* key of reference. The key, either prime or alternate, currently being used to access records within an indexed file.

Glossary 339

* key word. A reserved word or function-name whose presence is required when the format in which the word
appears is used in a source program.

kilobyte (KB). One kilobyte equals 1024 bytes.

L
* language-name. A system-name that specifies a particular programming language.

Language Environment. Short form of z/OS Language Environment. A set of architectural constructs and interfaces
that provides a common run-time environment and run-time services for C, C++, COBOL, FORTRAN, PL/I,
VisualAge PL/I and Java applications compiled by Language Environment-conforming compilers.

Language Environment-conforming. Adhering to Language Environment’s common interface conventions.

last-used state. A program is in last-used state if its internal values remain the same as when the program was
exited (are not reset to their initial values).

* letter. A character belonging to one of the following two sets:

1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator. Two alphabetic characters that identify a specific type of file or a position in a hierarchy. The level
indicators in the DATA DIVISION are: CD, FD, and SD.

* level-number. A user-defined word, expressed as a two digit number, which indicates the hierarchical position of
a data item or the special properties of a data description entry. Level-numbers in the range from 1 through 49
indicate the position of a data item in the hierarchical structure of a logical record. Level-numbers in the range 1
through 9 may be written either as a single digit or as a zero followed by a significant digit. Level-numbers 66, 77
and 88 identify special properties of a data description entry.

* library-name. A user-defined word that names a COBOL library that is to be used by the compiler for a given
source program compilation.

* library text. A sequence of text words, comment lines, the separator space, or the separator pseudo-text delimiter
in a COBOL library.

LILIAN DATE. The number of days since the beginning of the Gregorian calendar. Day one is Friday, October 15,
1582. The Lilian date format is named in honor of Luigi Lilio, the creator of the Gregorian calendar.

* LINAGE-COUNTER. A special register whose value points to the current position within the page body.

link-edit. To create a loadable computer program by means of a linkage editor or binder.

LINKAGE SECTION. The section in the DATA DIVISION of the called program that describes data items available
from the calling program. These data items may be referred to by both the calling and called program.

literal. A character-string whose value is specified either by the ordered set of characters comprising the string, or
by the use of a figurative constant.

local.

. A set of attributes for a program execution environment indicating culturally sensitive considerations, such as:
character code page, collating sequence, date/time format, monetary value representation, numeric value
representation, or language.

* LOCAL-STORAGE SECTION. The section of the DATA DIVISION that defines storage that is allocated and freed
on a per-invocation basis, depending on the value assigned in their VALUE clauses.

* logical operator. One of the reserved words AND, OR, or NOT. In the formation of a condition, either AND, or
OR, or both can be used as logical connectives. NOT can be used for logical negation.

340 COBOL Migration Guide

* logical record. The most inclusive data item. The level-number for a record is 01. A record may be either an
elementary item or a group of items. The term is synonymous with record.

* low order end. The rightmost character of a string of characters.

M
main program. The first routine in an enclave to gain control from the invoker. In FORTRAN, a main program does
not have a FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first statement. It could have a PROGRAM
statement as its first statement. Contrast with subprogram.

* mass storage. A storage medium in which data may be organized and maintained in both a sequential and
nonsequential manner.

* mass storage device. A device having a large storage capacity; for example, magnetic disk, magnetic drum.

* mass storage file. A collection of records that is assigned to a mass storage medium.

* megabyte (M). One megabyte equals 1,048,576 bytes.

* merge file. A collection of records to be merged by a MERGE statement. The merge file is created and can be used
only by the merge function.

metaclass. A SOM class whose instances are SOM class-objects. The methods defined in metaclasses are executed
without requiring any object instances of the class to exist, and are frequently used to create instances of the class.

method. Procedural code that defines one of the operations supported by an object, and that is executed by an
INVOKE statement on that object.

* Method Definition. The COBOL source unit that defines a method.

* method identification entry. An entry in the METHOD-ID paragraph of the IDENTIFICATION DIVISION which
contains clauses that specify the method-name and assign selected attributes to the method definition.

* method-name. A user-defined word that identifies a method.

* mnemonic-name. A user-defined word that is associated in the ENVIRONMENT DIVISION with a specified
implementor-name.

multitasking. Mode of operation that provides for the concurrent, or interleaved, execution of two or more tasks.
When running under the Language Environment product, multitasking is synonymous with multithreading.

MVS. Multiple Virtual Storage operating system.

N
name. A word composed of not more than 30 characters that defines a COBOL operand.

* native character set. The implementor-defined character set associated with the computer specified in the
OBJECT-COMPUTER paragraph.

* native collating sequence. The implementor-defined collating sequence associated with the computer specified in
the OBJECT-COMPUTER paragraph.

* negated combined condition. The ‘NOT’ logical operator immediately followed by a parenthesized combined
condition.

* negated simple condition. The ‘NOT’ logical operator immediately followed by a simple condition.

nested program. In COBOL, a program that is directly contained within another program.

* next executable sentence. The next sentence to which control will be transferred after execution of the current
statement is complete.

Glossary 341

* next executable statement. The next statement to which control will be transferred after execution of the current
statement is complete.

* next record. The record that logically follows the current record of a file.

* noncontiguous items. Elementary data items in the WORKING-STORAGE and LINKAGE SECTIONs that bear no
hierarchic relationship to other data items.

* nonnumeric item. A data item whose description permits its content to be composed of any combination of
characters taken from the computer’s character set. Certain categories of nonnumeric items may be formed from
more restricted character sets.

* nonnumeric literal. A literal bounded by quotation marks. The string of characters may include any character in
the computer’s character set.

null. Empty, having no meaning.

* numeric character. A character that belongs to the following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item. A numeric item that is in such a form that it may be used in printed output. It may consist of
external decimal digits from 0 through 9, the decimal point, commas, the dollar sign, editing sign control symbols,
plus other editing symbols.

* numeric function. A function whose class and category are numeric but which for some possible evaluation does
not satisfy the requirements of integer functions.

* numeric item. A data item whose description restricts its content to a value represented by characters chosen from
the digits from ‘0’ through ‘9’; if signed, the item may also contain a ‘+’, ‘-’, or other representation of an operational
sign.

* numeric literal. A literal composed of one or more numeric characters that may contain either a decimal point, or
an algebraic sign, or both. The decimal point must not be the rightmost character. The algebraic sign, if present, must
be the leftmost character.

O
object. An entity that has state (its data values) and operations (its methods). An object is a way to encapsulate state
and behavior.

object code. Output from a compiler or assembler that is itself executable machine code or is suitable for processing
to produce executable machine code.

* OBJECT-COMPUTER. The name of an ENVIRONMENT DIVISION paragraph in which the computer
environment, within which the object program is executed, is described.

* object computer entry. An entry in the OBJECT-COMPUTER paragraph of the ENVIRONMENT DIVISION which
contains clauses that describe the computer environment in which the object program is to be executed.

object deck. A portion of an object program suitable as input to a linkage editor. Synonymous with object module
and text deck.

object module. A collection of one or more control sections produced by an assembler or compiler and used as
input to the linkage editor or binder. Synonym for text deck or object deck.

* object of entry. A set of operands and reserved words, within a DATA DIVISION entry of a COBOL program, that
immediately follows the subject of the entry.

* object program. A set or group of executable machine language instructions and other material designed to
interact with data to provide problem solutions. In this context, an object program is generally the machine language
result of the operation of a COBOL compiler on a source program. Where there is no danger of ambiguity, the word
‘program’ alone may be used in place of the phrase ‘object program.’

* object time. The time at which an object program is executed. The term is synonymous with execution time.

342 COBOL Migration Guide

* obsolete element. A COBOL language element in Standard COBOL that is to be deleted from the next revision of
Standard COBOL.

ODBC. Open Database Connectivity that provides you access to data from a variety of databases and file systems.

ODO object. In the example below,

WORKING-STORAGE SECTION
01 TABLE-1.

05 X PICS9.
05 Y OCCURS 3 TIMES

DEPENDING ON X PIC X.

X is the object of the OCCURS DEPENDING ON clause (ODO object). The value of the ODO object determines how
many of the ODO subject appear in the table.

ODO subject. In the example above, Y is the subject of the OCCURS DEPENDING ON clause (ODO subject). The
number of Y ODO subjects that appear in the table depends on the value of X.

* open mode. The state of a file after execution of an OPEN statement for that file and before the execution of a
CLOSE statement without the REEL or UNIT phrase for that file. The particular open mode is specified in the OPEN
statement as either INPUT, OUTPUT, I-O or EXTEND.

* operand. Whereas the general definition of operand is “that component which is operated upon”, for the purposes
of this document, any lowercase word (or words) that appears in a statement or entry format may be considered to
be an operand and, as such, is an implied reference to the data indicated by the operand.

* operational sign. An algebraic sign, associated with a numeric data item or a numeric literal, to indicate whether
its value is positive or negative.

* optional file. A file which is declared as being not necessarily present each time the object program is executed.
The object program causes an interrogation for the presence or absence of the file.

* optional word. A reserved word that is included in a specific format only to improve the readability of the
language and whose presence is optional to the user when the format in which the word appears is used in a source
program.

OS/2 (Operating System/2*). A multi-tasking operating system for the IBM Personal Computer family that allows
you to run both DOS mode and OS/2 mode programs.

* output file. A file that is opened in either the OUTPUT mode or EXTEND mode.

* output mode. The state of a file after execution of an OPEN statement, with the OUTPUT or EXTEND phrase
specified, for that file and before the execution of a CLOSE statement without the REEL or UNIT phrase for that file.

* output procedure. A set of statements to which control is given during execution of a SORT statement after the
sort function is completed, or during execution of a MERGE statement after the merge function reaches a point at
which it can select the next record in merged order when requested.

overflow condition. A condition that occurs when a portion of the result of an operation exceeds the capacity of the
intended unit of storage.

P
packed decimal item. See “internal decimal item”.

* padding character. An alphanumeric character used to fill the unused character positions in a physical record.

page. A vertical division of output data representing a physical separation of such data, the separation being based
on internal logical requirements and/or external characteristics of the output medium.

* page body. That part of the logical page in which lines can be written and/or spaced.

Glossary 343

* paragraph. In the Procedure Division, a paragraph-name followed by a separator period and by zero, one, or more
sentences. In the IDENTIFICATION and ENVIRONMENT DIVISIONs, a paragraph header followed by zero, one, or
more entries.

* paragraph header. A reserved word, followed by the separator period, that indicates the beginning of a paragraph
in the IDENTIFICATION and ENVIRONMENT DIVISIONs. The permissible paragraph headers in the
IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

* paragraph-name. A user-defined word that identifies and begins a paragraph in the Procedure Division.

parameter. Data items that are received by a routine. The term used in certain other languages for the FORTRAN
term dummy argument.

password. A unique string of characters that a program, computer operator, or user must supply to meet security
requirements before gaining access to data.

* phrase. A phrase is an ordered set of one or more consecutive COBOL character-strings that form a portion of a
COBOL procedural statement or of a COBOL clause.

* physical record. See “block”.

pointer data item. A data item in which address values can be stored. Data items are explicitly defined as pointers
with the USAGE IS POINTER clause. ADDRESS OF special registers are implicitly defined as pointer data items.
Pointer data items can be compared for equality or moved to other pointer data items.

portability. The ability to transfer an application program from one application platform to another with relatively
few changes to the source program.

preloaded. In COBOL this refers to COBOL programs that remain resident in storage under IMS instead of being
loaded each time they are called.

* prime record key. A key whose contents uniquely identify a record within an indexed file.

* priority-number. A user-defined word which classifies sections in the Procedure Division for purposes of
segmentation. Segment-numbers may contain only the characters ’0’,’1’, ... , ’9’. A segment-number may be expressed
either as a one- or two-digit number.

* procedure. In COBOL, a procedure is a paragraph or section that can only be performed from within the program.
In PL/I, a named block of code that can be invoked externally, ususally via a call..

* procedure branching statement. A statement that causes the explicit transfer of control to a statement other than
the next executable statement in the sequence in which the statements are written in the source program. The
procedure branching statements are: ALTER, CALL, EXIT, EXIT PROGRAM, GO TO, MERGE, (with the OUTPUT
PROCEDURE phrase), PERFORM and SORT (with the INPUT PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure Division. One of the four main component parts of a COBOL program, class definition, or method
definition. The Procedure Division contains instructions for solving a problem. The Program and Method Procedure

344 COBOL Migration Guide

Divisions may contain imperative statements, conditional statements, compiler directing statements, paragraphs,
procedures, and sections. The Class Procedure Division contains only method definitions.

procedure integration. One of the functions of the COBOL optimizer is to simplify calls to performed procedures or
contained programs.

PERFORM procedure integration is the process whereby a PERFORM statement is replaced by its performed
procedures. Contained program procedure integration is the process where a CALL to a contained program is
replaced by the program code.

* procedure-name. A user-defined word that is used to name a paragraph or section in the Procedure Division. It
consists of a paragraph-name (which may be qualified) or a section-name.

procedure-pointer data item. A data item in which a pointer to an entry point can be stored. A data item defined
with the USAGE IS PROCEDURE-POINTER clause contains the address of a procedure entry point.

* program identification entry. An entry in the PROGRAM-ID paragraph of the IDENTIFICATION DIVISION
which contains clauses that specify the program-name and assign selected program attributes to the program.

* program-name. In the IDENTIFICATION DIVISION and the end program header, a user-defined word that
identifies a COBOL source program.

* pseudo-text. A sequence of text words, comment lines, or the separator space in a source program or COBOL
library bounded by, but not including, pseudo-text delimiters.

* pseudo-text delimiter. Two contiguous equal sign characters (==) used to delimit pseudo-text.

* punctuation character. A character that belongs to the following set:

Character
Meaning

, comma
; semicolon
: colon
. period (full stop)
" quotation mark
(left parenthesis
) right parenthesis
� space
= equal sign

Q
QSAM (Queued Sequential Access Method). An extended version of the basic sequential access method (BSAM).
When this method is used, a queue is formed of input data blocks that are awaiting processing or of output data
blocks that have been processed and are awaiting transfer to auxiliary storage or to an output device.

* qualified data-name. An identifier that is composed of a data-name followed by one or more sets of either of the
connectives OF and IN followed by a data-name qualifier.

* qualifier.

1. A data-name or a name associated with a level indicator which is used in a reference either together with another
data-name which is the name of an item that is subordinate to the qualifier or together with a condition-name.

2. A section-name that is used in a reference together with a paragraph-name specified in that section.

3. A library-name that is used in a reference together with a text-name associated with that library.

R
* random access. An access mode in which the program-specified value of a key data item identifies the logical
record that is obtained from, deleted from, or placed into a relative or indexed file.

* record. See “logical record”.

Glossary 345

* record area. A storage area allocated for the purpose of processing the record described in a record description
entry in the File Section of the DATA DIVISION. In the File Section, the current number of character positions in the
record area is determined by the explicit or implicit RECORD clause.

* record description. See “record description entry”.

* record description entry. The total set of data description entries associated with a particular record. The term is
synonymous with record description.

recording mode. The format of the logical records in a file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key. A key whose contents identify a record within an indexed file.

* record-name. A user-defined word that names a record described in a record description entry in the DATA
DIVISION of a COBOL program.

* record number. The ordinal number of a record in the file whose organization is sequential.

recursion. A program calling itself or being directly or indirectly called by a one of its called programs.

recursively capable. A program is recursively capable (can be called recursively) if the RECURSIVE attribute is on
the PROGRAM-ID statement.

reel. A discrete portion of a storage medium, the dimensions of which are determined by each implementor that
contains part of a file, all of a file, or any number of files. The term is synonymous with unit and volume.

reentrant. The attribute of a program or routine that allows more than one user to share a single copy of a load
module.

* reference format. A format that provides a standard method for describing COBOL source programs.

reference modification. A method of defining a new alphanumeric data item by specifying the leftmost character
and length relative to the leftmost character of another alphanumeric data item.

* reference-modifier. A syntactically correct combination of character-strings and separators that defines a unique
data item. It includes a delimiting left parenthesis separator, the leftmost character position, a colon separator,
optionally a length, and a delimiting right parenthesis separator.

* relation. See “relational operator” or “relation condition”.

* relational operator. A reserved word, a relation character, a group of consecutive reserved words, or a group of
consecutive reserved words and relation characters used in the construction of a relation condition. The permissible
operators and their meanings are:

Operator
Meaning

IS GREATER THAN
Greater than

IS > Greater than
IS NOT GREATER THAN

Not greater than
IS NOT >

Not greater than

IS LESS THAN
Less than

IS < Less than
IS NOT LESS THAN

Not less than
IS NOT <

Not less than

346 COBOL Migration Guide

IS EQUAL TO
Equal to

IS = Equal to
IS NOT EQUAL TO

Not equal to
IS NOT =

Not equal to

IS GREATER THAN OR EQUAL TO
Greater than or equal to

IS >= Greater than or equal to

IS LESS THAN OR EQUAL TO
Less than or equal to

IS <= Less than or equal to

* relation character. A character that belongs to the following set:

Character
Meaning

> greater than
< less than
= equal to

* relation condition. The proposition, for which a truth value can be determined, that the value of an arithmetic
expression, data item, nonnumeric literal, or index-name has a specific relationship to the value of another arithmetic
expression, data item, nonnumeric literal, or index name. (See also “relational operator”.)

* relative file. A file with relative organization.

* relative key. A key whose contents identify a logical record in a relative file.

* relative organization. The permanent logical file structure in which each record is uniquely identified by an
integer value greater than zero, which specifies the record’s logical ordinal position in the file.

* relative record number. The ordinal number of a record in a file whose organization is relative. This number is
treated as a numeric literal which is an integer.

* reserved word. A COBOL word specified in the list of words that may be used in a COBOL source program, but
that must not appear in the program as user-defined words or system-names.

* resource. A facility or service, controlled by the operating system, that can be used by an executing program.

* resultant identifier. A user-defined data item that is to contain the result of an arithmetic operation.

reusable environment. A reusable environment is when you establish an assembler program as the main program
by using either ILBOSTP0 programs, IGZERRE programs, or the RTEREUS run-time option.

routine. A set of statements in a COBOL program that causes the computer to perform an operation or series of
related operations. In Language Environment, refers to either a procedure, function, or subroutine.

* routine-name. A user-defined word that identifies a procedure written in a language other than COBOL.

* run time. The time at which an object program is executed. The term is synonymous with object time.

run-time environment. The environment in which a COBOL program executes.

* run unit. One or more object programs that are executed together. In Language Environment, a run unit is the
equivalent of an enclave.

S
SBCS (Single Byte Character Set). See “Single Byte Character Set (SBCS)”.

Glossary 347

scope terminator. A COBOL reserved word that marks the end of certain Procedure Division statements. It may be
either explicit (END-ADD, for example) or implicit (separator period). A variable at the end of a statement.

* section. A set of zero, one or more paragraphs or entities, called a section body, the first of which is preceded by a
section header. Each section consists of the section header and the related section body.

* section header. A combination of words followed by a separator period that indicates the beginning of a section in
the Environment, Data, and Procedure Divisions. In the ENVIRONMENT and DATA DIVISIONs, a section header is
composed of reserved words followed by a separator period. The permissible section headers in the ENVIRONMENT
DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a section-name, followed by the reserved word SECTION,
followed by a separator period.

* section-name. A user-defined word that names a section in the Procedure Division.

selection structure. A program processing logic in which one or another series of statements is executed, depending
on whether a condition is true or false.

* sentence. A sequence of one or more statements, the last of which is terminated by a separator period.

* separately compiled program. A program which, together with its contained programs, is compiled separately
from all other programs.

* separator. A character or two contiguous characters used to delimit character-strings.

* separator comma. A comma (,) followed by a space used to delimit character-strings.

* separator period. A period (.) followed by a space used to delimit character-strings.

* separator semicolon. A semicolon (;) followed by a space used to delimit character-strings.

sequence structure. A program processing logic in which a series of statements is executed in sequential order.

* sequential access. An access mode in which logical records are obtained from or placed into a file in a consecutive
predecessor-to-successor logical record sequence determined by the order of records in the file.

* sequential file. A file with sequential organization.

* sequential organization. The permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when the record is placed into the file.

serial search. A search in which the members of a set are consecutively examined, beginning with the first member
and ending with the last.

* 77-level-description-entry. A data description entry that describes a noncontiguous data item with the
level-number 77.

* sign condition. The proposition, for which a truth value can be determined, that the algebraic value of a data item
or an arithmetic expression is either less than, greater than, or equal to zero.

* simple condition. Any single condition chosen from the set:
Relation condition
Class condition
Condition-name condition
Switch-status condition

348 COBOL Migration Guide

Sign condition

Single Byte Character Set (SBCS). A set of characters in which each character is represented by a single byte. See
also "EBCDIC (Extended Binary-Coded Decimal Interchange Code)."

slack bytes. Bytes inserted between data items or records to ensure correct alignment of some numeric items. Slack
bytes contain no meaningful data. In some cases, they are inserted by the compiler; in others, it is the responsibility
of the programmer to insert them. The SYNCHRONIZED clause instructs the compiler to insert slack bytes when
they are needed for proper alignment. Slack bytes between records are inserted by the programmer.

SOM. See “System Object Model”

* sort file. A collection of records to be sorted by a SORT statement. The sort file is created and can be used by the
sort function only.

* sort-merge file description entry. An entry in the File Section of the DATA DIVISION that is composed of the
level indicator SD, followed by a file-name, and then followed by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an ENVIRONMENT DIVISION paragraph in which the computer
environment, within which the source program is compiled, is described.

* source computer entry. An entry in the SOURCE-COMPUTER paragraph of the ENVIRONMENT DIVISION
which contains clauses that describe the computer environment in which the source program is to be compiled.

* source item. An identifier designated by a SOURCE clause that provides the value of a printable item.

source program. Although it is recognized that a source program may be represented by other forms and symbols,
in this document it always refers to a syntactically correct set of COBOL statements. A COBOL source program
commences with the IDENTIFICATION DIVISION or a COPY statement. A COBOL source program is terminated by
the end program header, if specified, or by the absence of additional source program lines. A source program
contains a set of instructions written in a programming language htat must be translated to machine language before
the program can be run.

* special character. A character that belongs to the following set:

Character
Meaning

+ plus sign
- minus sign (hyphen)
* asterisk
/ slant (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
: colon

* special-character word. A reserved word that is an arithmetic operator or a relation character.

SPECIAL-NAMES. The name of an ENVIRONMENT DIVISION paragraph in which environment-names are related
to user-specified mnemonic-names.

* special names entry. An entry in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION which
provides means for specifying the currency sign; choosing the decimal point; specifying symbolic characters; relating
implementor-names to user-specified mnemonic-names; relating alphabet-names to character sets or collating
sequences; and relating class-names to sets of characters.

Glossary 349

* special registers. Certain compiler generated storage areas whose primary use is to store information produced in
conjunction with the use of a specific COBOL feature.

* standard data format. The concept used in describing the characteristics of data in a COBOL DATA DIVISION
under which the characteristics or properties of the data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than a form oriented to the manner in which the data is
stored internally in the computer, or on a particular external medium.

* statement. A syntactically valid combination of words, literals, and separators, beginning with a verb, written in a
COBOL source program.

STL. STL File System: native workstation and PC file system for COBOL and PL/I. Supports sequential, relative,
and indexed files, including the full ANSI 85 COBOL standard I/O language and all of the extensions described in
COBOL Language Reference, unless exceptions are explicitly noted.

structured programming. A technique for organizing and coding a computer program in which the program
comprises a hierarchy of segments, each segment having a single entry point and a single exit point. Control is
passed downward through the structure without unconditional branches to higher levels of the hierarchy.

* subclass. A class that inherits from another class. When two classes in an inheritance relationship are considered
together, the subclass is the inheritor or inheriting class; the superclass is the inheritee or inherited class.

* subject of entry. An operand or reserved word that appears immediately following the level indicator or the
level-number in a DATA DIVISION entry.

* subprogram. See “called program”.

* subscript. An occurrence number represented by either an integer, a data-name optionally followed by an integer
with the operator + or -, or an index-name optionally followed by an integer with the operator + or -, that identifies
a particular element in a table. A subscript may be the word ALL when the subscripted identifier is used as a
function argument for a function allowing a variable number of arguments.

* subscripted data-name. An identifier that is composed of a data-name followed by one or more subscripts
enclosed in parentheses.

* superclass. A class that is inherited by another class. See also subclass.

switch-status condition. The proposition, for which a truth value can be determined, that an UPSI switch, capable
of being set to an ‘on’ or ‘off’ status, has been set to a specific status.

* symbolic-character. A user-defined word that specifies a user-defined figurative constant.

syntax. The rules governing the structure of a programming language and the construction of a statement in a
programming language.

* system-name. A COBOL word that is used to communicate with the operating environment.

System Object Model (SOM). IBM’s object-oriented programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) standards.

T
* table. A set of logically consecutive items of data that are defined in the DATA DIVISION by means of the
OCCURS clause.

* table element. A data item that belongs to the set of repeated items comprising a table.

text deck. Synonym for object deck or object module.

* text-name. A user-defined word that identifies library text.

* text word. A character or a sequence of contiguous characters between margin A and margin R in a COBOL
library, source program, or in pseudo-text which is:

350 COBOL Migration Guide

v A separator, except for: space; a pseudo-text delimiter; and the opening and closing delimiters for nonnumeric
literals. The right parenthesis and left parenthesis characters, regardless of context within the library, source
program, or pseudo-text, are always considered text words.

v A literal including, in the case of nonnumeric literals, the opening quotation mark and the closing quotation mark
that bound the literal.

v Any other sequence of contiguous COBOL characters except comment lines and the word ‘COPY’ bounded by
separators that are neither a separator nor a literal.

top-down design. The design of a computer program using a hierarchic structure in which related functions are
performed at each level of the structure.

top-down development. See “structured programming”.

trailer-label. (1) A file or data set label that follows the data records on a unit of recording medium. (2) Synonym
for end-of-file label.

* truth value. The representation of the result of the evaluation of a condition in terms of one of two values: true or
false.

U
* unary operator. A plus (+) or a minus (-) sign, that precedes a variable or a left parenthesis in an arithmetic
expression and that has the effect of multiplying the expression by +1 or -1, respectively.

unit. A module of direct access, the dimensions of which are determined by IBM.

universal object reference. A data-name that can refer to an object of any class.

unpacked decimal format. A format for representing numbers in which the digit is contained in bits 4 through 7
and the sign is contained in bits 0 through 3 or the rightmost byte. Bits 0 through 3 of all other bytes contain 1s (hex
F). For example, the decimal value of +123 is represented as 1111 0001 1111 0010 1111 0011. Synonymous with zoned
decimal format.

* unsuccessful execution. The attempted execution of a statement that does not result in the execution of all the
operations specified by that statement. The unsuccessful execution of a statement does not affect any data referenced
by that statement, but may affect status indicators.

UPSI switch. A program switch that performs the functions of a hardware switch. Eight are provided: UPSI-0
through UPSI-7.

* user-defined word. A COBOL word that must be supplied by the user to satisfy the format of a clause or
statement.

V
* variable. A data item whose value may be changed by execution of the object program. A variable used in an
arithmetic expression must be a numeric elementary item.

* variable length record. A record associated with a file whose file description or sort-merge description entry
permits records to contain a varying number of character positions.

* variable occurrence data item. A variable occurrence data item is a table element which is repeated a variable
number of times. Such an item must contain an OCCURS DEPENDING ON clause in its data description entry, or be
subordinate to such an item.

* variably located group.. A group item following, and not subordinate to, a variable-length table in the same
level-01 record.

* variably located item.. A data item following, and not subordinate to, a variable-length table in the same level-01
record.

* verb. A word that expresses an action to be taken by a COBOL compiler or object program.

Glossary 351

VM/SP (Virtual Machine/System Product). An IBM-licensed program that manages the resources of a single
computer so that multiple computing systems appear to exist. Each virtual machine is the functional equivalent of a
“real” machine.

volume. A certain portion of data, together with its data carrier, that can be handled conveniently as a unit. A data
carrier mounted and demounted as a unit; for example, a reel of magnetic tape, a disk pack.

volume switch procedures. System specific procedures executed automatically when the end of a unit or reel has
been reached before end-of-file has been reached.

W
* word. A character-string of not more than 30 characters which forms a user-defined word, a system-name, a
reserved word, or a function-name.

* WORKING-STORAGE SECTION. The section of the DATA DIVISION that describes working storage data items,
composed either of noncontiguous items or working storage records or of both.

Z
zoned decimal format. Synonym for unpacked decimal format.

zoned decimal item. See “external decimal item”.

352 COBOL Migration Guide

Index

Special Characters
* (asterisk) 129
/ (slash) in CURRENCY-SIGN clause

changed 140

Numerics
16-MB line, storage requirements 23
31-bit addressing range 55
64-bit addressing 239

A
A in PICTURE clause 187
abbreviated combined relation conditions

parenthesis evaluation changed 129
abend codes 88
abends

caused by unclosed files (C03) 68, 83
compatible behavior 62
forcing using ILBOABN0 71, 90
obtaining after severe errors 53
OCx, caused by unsupported

calls 269
U3504, caused by unsupported

calls 270
when using STEPLIB for IMS

programs 32
abnormal termination exit

specifying 61
above-the-line storage 23
ABTERMENC(ABEND) run-time option

run-time detected errors, effects
of 87

ABTERMENC run-time option 53
ACCEPT statement

keyword FROM requirements 129
system input devices for

mnemonic-name suboption 160
ACCEPT SYSIN data set behavior 97
ACTUAL KEY clause 120
ADDRESS OF special register 212, 214
addressing, based 210
addressing range, allocating EXTERNAL

data 55
advantages of new compiler and run

time 10
AFTER phrase of PERFORM 146
AIXBLD run-time option 68, 82
ALL31 run-time option

use on CICS 56
use on non-CICS 55

ALPHABET clause 137, 174
ALPHABETIC class 137, 174
AMODE, overriding default setting 305
AMODE(24) programs, run-time options

for 54, 55, 70
AMODE considerations 224

when assembler invokes COBOL 276

AMODE considerations (continued)
when upgrading Language

Environment 107, 109
ANALYZE compiler option

not available in Enterprise
COBOL 170

not available with Enterprise
COBOL 16

ANYHEAP run-time option 54, 98
APAR PN32747 68, 83
APAR PN46223 94
APAR PN55178 68, 83
APAR PN63666 96
APAR PN63674 96
APAR PN65736 100
APAR PQ38838 102
APARs

for initializing run-time
environment 96

for link-editing PL/I programs 94
for unclosed files 68, 83

applications
comprised of RES programs 106
enabled through ILC 93
taking an inventory of (run-time) 27
taking an inventory of (source) 39

APPLY CORE-INDEX clause 119
APPLY RECORD-OVERFLOW

clause 120
APPLY REORG-CRITERIA clause 119
Area A, periods in 133, 161, 168
ARITH compiler option

for converted IBM COBOL
programs 169

arithmetic accuracy 137
ASCII data set 302
ASMTDLI 318
ASRA abend failure symptom 270
assembler driver 273
assembler programs

AMODE requirements when
invoking 276

call considerations
requirements 267
restrictions for SORT or

MERGE 72
supported calls on CICS 270
supported calls on non-CICS 269

calling ILBOSTP0 69
causing C03 abends with unclosed

files 68, 83
changing program mask 272
closing files 83
DL/I CALL interface routine 211
effects of calling ILBOSTP0 64, 76
effects of user-written error handling

routines 271
effects of using SVC LINK 66, 78, 85
enclave termination restrictions 69,

83
finding COBOL TGT 226

assembler programs (continued)
link-edit requirements 64, 76
loading and calling COBOL 275
loading and deleting COBOL 275
paragraph names restrictions 138
save area requirements 267
subpools, storage in 275

assembler user exit and return codes 62
ASSIGN ... FOR MULTIPLE REEL/UNIT

phrase 121
ASSIGN ... OR clause 121
ASSIGN clause 137
ASSIGN TO integer system-name

clause 121
asterisk (*) 129
ATTACH SVC, effect on parameter list

processing 274
attributes, complexity ratings 28

B
B in PICTURE clause 138, 187
BALR instruction, for assembler

programs 267
base addressability

CICS program changes 210
examples

CICS chained storage area 214
CICS communications area 212
processing storage areas exceeding

4K 213
when using OCCURS

DEPENDING ON 215
basic mapping support, CICS 211
batch applications

differences with debugging 278
recommended run-time options

for 54
BATCH compiler option 154
batch debugging 278
BDAM files 120
BELOW storage

considerations when upgrading
Language Environment 107

below-the-line storage 23
BELOWHEAP run-time option 54, 98
benefits of new compiler and run

time 10
binary zeros, initializing

WORKING-STORAGE to 55
BLANK WHEN ZERO clause 129
BLDL user exit 315
BLL cells

automated conversion of 264
base addressability 210
CICS chained storage areas 214
removed 211
when not explicitly defined 212

bootstrap routine
for Enterprise COBOL 105
for IBM COBOL 105

© Copyright IBM Corp. 1991, 2001 353

bootstrap routine (continued)
for NORES behavior 105
for VS COBOL II 220

BUF compiler option 153
buffer size specification 153
BUFSIZE compiler option

for converted OS/VS COBOL
programs 153

C
C

ILC with OS/VS COBOL 73
C/370

ILC with VS COBOL II programs 95
CALL statement

changes for USING phrase 138
ON OVERFLOW,

CMPR2/NOCMPR2 175
programs processed by CICS

translator 221
callable services

CEE3ABD 71, 90
CEEMRCR 272
CEETEST 278

calls
between OS/VS COBOL and VS

COBOL II 77
DL/I interface 211
dynamic to alternate entry

points 141
improving CICS performance 57
requirements

assembler programs 267
OS/VS COBOL and Enterprise

COBOL 220, 222
OS/VS COBOL and

FORTRAN 65
OS/VS COBOL and PL/I 65, 78
static calls from Enterprise COBOL

programs 219
restrictions

assembler programs 72
dynamic on OS/VS COBOL 65
recursive 272
when using Language

Environment preinitialization 97
SOM services, to 166
static, between VS COBOL II and

Enterprise COBOL 226
supported

on CICS 221, 270
on non-CICS 269

CBL/PROCESS statement 209
CBLOPTS run-time option 53
CBLPSHPOP run-time option 57, 100
CBLQDA run-time option 54
CBLTDLI 208, 318
CCCA conversion tool

BDAM file conversion 120
brief description 117
detailed description 263
ISAM file conversion 119

CD FOR INITIAL INPUT 121
CEE3ABD callable service 71, 90
CEEBX05A 88
CEEBX05A sample COBOL user exit 62

CEECOPT default run-time options
CSECT 80

CEEDOPT default run-time options
CSECT 67, 80

CEEDUMP 70, 89
considerations when upgrading

Language Environment 108
dump ouput destination 71

CEEMRCR callable service 272
CEEPIPI 97
CEEROPT run-time options CSECT

interaction with CEEUOPT,
CEEDOPT 67, 80

CEETDLI 318
CEETEST callable service 278
CEEUOPT default run-time options

CSECT
applications that can use 80
coexisting with IGZEOPT 81

CEEWUCHA
effects when using 88
run-time detected errors, effects

of 88
chained storage area, CICS example 214
CICS

abnormal termination exit 61
basic mapping support (BMS) 211
call considerations

DL/I CALL interface 211
dynamic calls by OS/VS

COBOL 65
HANDLE commands 100
processed by CICS translator 221
static CALL statement 221
supported under Language

Environment 270
converting source programs

automatically (CCCA) 264
containing BLL cells 210
DATE special register 122
handling commands,

compatibility 100
LENGTH OF special register 210
macro-level to

command-level 265
SERVICE RELOAD statement 210

DISPLAY statement 102
effect of TRUNC compiler

option 208
integrated translator 209
invocation changes 59
Language Environment output

considerations
default destination 59
message handling 86
obtaining a system dump 60

migrating separate translator to
integrated translator 208

OS/VS COBOL programs, support
for 74, 113, 207

performance considerations 99
programs requiring upgrade 65, 77
releases supported 207
required compiler options

CICS 207
DATA(24) 208
LIB 208

CICS (continued)
required compiler options (continued)

NODYNAM 208
RENT 208

run-time options considerations
effects of using IGZEOPT 81
fixing run-time options 80
other 57
recommended 56

running NORENT programs 100
transaction dump

obtaining 60
output 71

virtual storage usage 25
WORKING-STORAGE limits on 99

CICS Application Migration Aid 265
CICS compiler option 14, 207, 210
CICS integrated translator 209

benefits of 209
CBL/PROCESS statements,

considerations for 208
comment lines, considerations

for 208
DFHCOMMAREA

considerations 209
migrating from separate

translator 208
TRUNC compiler option

considerations 209
using SIZE(MAX) 208

CICS TS (Transaction Server) 74
CLISTs changes required 58
CLOSE statement

DISP phrase unsupported 121
FOR REMOVAL phrase 129
POSITIONING phrase 121

CMPR2 compiler option
ALPHABET clause 174
ALPHABETIC class 174
CALL...ON OVERFLOW class 175
COPY...REPLACING statement 177
COPY statement 179
definition for 173
EXIT PROGRAM 181
file status codes 180
for converted VS COBOL II

programs 164
language differences from

NOCMPR2 174
not available with Enterprise

COBOL 16
PERFORM...VARYING...AFTER 185
PERFORM statement 183
PICTURE clause 187
PROGRAM COLLATING

SEQUENCE 189
READ INTO and RETURN

INTO 190
RECORD CONTAINS n

CHARACTERS 191
reserved words 192
scaled integers and nonnumerics 176
SET...TO TRUE 193
SIZE ERROR on MULTIPLY and

DIVIDE 195
UNSTRING statement 196

354 COBOL Migration Guide

CMPR2 compiler option (continued)
upgrading programs compiled

with 173
upgrading VS COBOL II programs

compiled with 157
UPSI switches 202
variable-length group moves 203
variable-length records 192

COBOL/370
bootstrap routine 105
upgrading to Enterprise COBOL 165

COBOL 68 Standard 113
COBOL 85 Standard

interpretation changes 158
tools for converting source programs

to 259
COBOL and CICS/VS Command Level

Conversion Aid
detailed description 263
ISAM file conversion 119

COBOL applications
taking an inventory of (run time) 27
taking an inventory of (source) 39

COBOL for MVS & VM
bootstrap routine 105
upgrading to Enterprise COBOL 165

COBOL for OS/390 & VM
bootstrap routine 105
upgrading to Enterprise COBOL 165

COBTEST 277, 279
CODE-SET clause, FS 39 301
codes, abend 62
command-level CICS programs,

converting to 265
COMMAREA considerations 211
comment lines 209

in VS COBOL II programs 158
communication feature 121
comparing group to numeric

packed-decimal item 129
compatibility

abend codes 62
alternatives to LIBKEEP 96
recommended run-time options for

non-CICS 53
recommended run-time options for on

CICS 56
reusable run-time environment 70,

84
SORT or MERGE considerations 72,

91
compilation

Report Writer programs 118
compile

OS/VS COBOL programs, requiring
upgrade to 65

VS COBOL II programs, benefits
of 77

compiler limits 295
compiler options

complete list 283
for compiling VS COBOL II

programs 163
for converted OS/VS COBOL

programs 153
for OS/VS COBOL, not

supported 154

compiler options (continued)
for SOM-based object-oriented

COBOL, not supported 166
required for CICS integrated

translator 210
upgrading from IBM COBOL 169
using TEST(SYM) 89

complexity ratings
conversion priorities relating to 42
conversion priority 40
program attributes 28

condition handling 55
condition handling on IMS 318
conditions, obtaining abends after 53
conversion priority

complexity ratings relating to 42
conversion strategies

incremental conversion 15
moving to Language Environment 23
upgrading source 37

conversion tools
CICS Application Migration Aid 38,

265
CMPR2 compiler option 38, 118
COBOL Conversion Tool (CCCA) 38,

117, 263
Edge Portfolio Analyzer 266
FLAGMIG compiler option 38, 118
MIGR compiler option 38, 117, 259
NOCOMPILE compiler option 38
Report Writer Precompiler 38, 265
vendor products 266

converting source
IBM COBOL programs,

requiring 165
OS/VS COBOL CICS programs 211
OS/VS COBOL programs,

requiring 65
recommended callable service 90
scenarios

Report Writer discarded 46
Report Writer retained 47
with CICS 44
without CICS or report writer 43

tasks when updating 47
VS COBOL II programs, benefits

of 77
VS COBOL II programs,

requiring 157
COPY...REPLACING statement 177
COPY statement 140
COPY statement, using @, #, $ 179
COUNT compiler option 154, 277
CURRENCY-SIGN clause 140
CURRENT-DATE special register 122

D
DASD storage 23
DATA(24) compiler option

CICS program requirements 208
or converted OS/VS COBOL

programs 153
OS/VS COBOL program

requirements 220
DATA(31) compiler option

change in behavior for 107

data base integrity, ensuring 318
DATA DIVISION, two periods in a

row 133
data-name, unique compared to

program-id 134
data sets, differences with Language

Environment preinit 97
DATE special register 122
DB2

coprocessor, benefits of 311
coprocessor integration 311
separate precompiler 311

DD definitions 92
ddnames

MSGFILE restrictions 55
required for output 58
SYSPRINT 82

DEBUG run-time option 68, 82
Debug Tool 7, 277
debugging

existing applications 277
initiating the Debug Tool 278
language comparison 279
OS/VS COBOL output 73, 92
upgraded applications 277
when debug data not produced 72

DEBUGGING declarative 149
decimal overflow, program mask

and 272
declaratives

debugging changes 149
GIVING phrase of ERROR 124

default destination, Language
Environment output 58

default run-time options
preventing programmers from

changing 67, 80
recommended for non-CICS 53
recommended for on CICS 56

defaults
application-specific

CEEUOPT 67, 80
installation-wide

CEEDOPT 67, 80
on CICS, CEECOPT 67
under CICS, CEECOPT 80

region-wide
CEEROPT 67, 80

DFHCOMMAREA
CALL statement considerations 221
integrated CICS translator,

considerations for 209
DFHEIBLK 221
DIAGTRUNC compiler option

for converted OS/VS COBOL
programs 153

DISK file output 72, 92
DISP phrase of CLOSE 121
DISPLAY output

impacts to ILC applications 93
DISPLAY statement 123

CICS considerations 102
DISPLAY SYSOUT output

data set behavior with Language
Environment preinitialization 97

sent to file with RECFM=FB 72

Index 355

DISPLAY SYSPUNCH data set
behavior 97

DISPLAY UPON SYSOUT
differences between Language

Environment and VS COBOL II 92
output with RECFM=FB 92

DIVIDE statement 146, 195
DL/I CALL interface 211
DSA, using to find TGT 226
dump format changes

problem determination 70
DUMP macro 108
dumps

compiled with the FDUMP option 89
destination

indicating by changing
ddname 58

on CICS 59
differences with Language

Environment 89
formatted dumps, Language

Environment 89
obtaining system or transaction 60
when not produced for SORT or

MERGE 72
dynamic allocation, QSAM

(CBLQDA) 54
dynamic calls

CICS considerations
restrictions for OS/VS COBOL

programs 65
supported under Language

Environment 270
when allowed under Enterprise

COBOL 221
compiler option requirement 220
difference in behavior for RENT

programs 95, 96, 275
placed to alternate entry points 141
supported on non-CICS under

Language Environment 269

E
Edge Portfolio Analyzer 266
education

available for Enterprise COBOL 38
available for Language

Environment 26
enclave

multiple enclaves,restrictions in
OS/VS COBOL 66

enclave boundary with assembler
programs 268

enclave termination
closing OS/VS COBOL programs

prior to 69
closing VS COBOL II programs prior

to 83
ENDJOB compiler option 154, 316
Enterprise COBOL

advantages of 10
bootstrap routine 105
changes with 16
CICS considerations

upgrading OS/VS COBOL CICS
programs 211

Enterprise COBOL (continued)
compiler options, complete list 283
compiler options, unsupported 163
high level overview 7
installing, documentation needed 37
Language Environment release levels

for 9
logical record length 160
new reserved words 167
prolog format changes 155
recommended callable service 90
run-time considerations 226
upgrading IBM COBOL programs

to 18
upgrading OS/VS COBOL programs

to 18
upgrading VS COBOL II programs

to 18
Enterprise COBOL programs

existing applications, adding to 219
link-edit considerations, when

adding 219, 221
link-editing considerations 219
NORES programs, considerations

for 221
RES programs, considerations

for 219
restrictions for CICS 219

ENTRY points 141
ENVIRONMENT DIVISION, two periods

in a row 133
error handling routines,

user-written 271
error messages, trace entry changes 73
errors

finding information on using system
dump 70, 90

obtaining abends after 53
subscripts out of range message 150

ESPIE exit, conversion requirements 271
ESTAE exit, conversion

requirements 271
evaluation changes in relation

conditions 139
EVENTS compiler option

not available in Enterprise
COBOL 170

EXAMINE statement 122
EXEC CICS LINK

communicating with other
languages 73

invoking SORT statement 99
support under Language

Environment 270
EXEC CICS statement 209
EXEC CICS XCTL

communicating with other
languages 73

EXEC DLI statement 209
EXHIBIT output 72, 92
EXHIBIT statement 123
existing applications

adding Enterprise COBOL programs
to 219

ensuring compatibility for 53
link-editing 59
preventing file status 39 301

existing applications (continued)
specifying correct run-time library 58
specifying run-time options for

(OS/VS COBOL) 66
specifying run-time options for (VS

COBOL II) 79
using ILC 73

EXIT PROGRAM statement 141
differences between CMPR2 and

NOCMPR2 181
exponent underflow, program mask

and 272
exponentiation changes 137
Extended Link Pack Area (ELPA) 210
extensions, undocumented 128, 161, 168
EXTERNAL data allocation 55
External names, changed in Enterprise

COBOL 167

F
FD support in REDEFINES clause 134
FDUMP compiler option

mapped to TEST 164
receiving similar output 277
VS COBOL II programs compiled

with 89
feedback code 62
FILE-CONTROL paragraph

FILE-LIMIT clause unsupported 124
FILE STATUS clause changed 141

file handling
changes when upgrading Language

Environment 108
file status 39

avoiding when processing new
files 302

preventing for QSAM files 301
preventing for VSAM files 125

FILE STATUS clause 141
file status codes,

CMPR2/NOCMPR2 180
files

preventing file status 39 301
QSAM, dynamic allocation

(CBLQDA) 54
unclosed causing abends 68, 83

fixed-length records, defining 302
fixed-point overflow, program mask

and 272
fixed run-time options under Language

Environment 67, 80
FLAGMIG compiler option

definition for 174
not available with Enterprise

COBOL 16, 164
FLAGSAA compiler option 164
floating-point changes 137
FLOW compiler option 277
flow of control, ended 130, 181
FLOW run-time option 68
FOR REMOVAL phrase of CLOSE

statement 129
Format-x (F,S,U,V) files 301
formatted dumps

generated by Language
Environment 71, 89

356 COBOL Migration Guide

formatted dumps (continued)
dump destination

(CEEDUMP) 71, 89
dump destination under CICS 71,

90
FORTRAN

ILC with OS/VS COBOL
programs 65, 73

ILC with VS COBOL II programs 94
FROM, requirements with ACCEPT

statement 129

G
GENERATE statement 119
GOBACK statement 130, 141

combined with SORT or MERGE,
effects of 91

differences between CMPR2 and
NOCMPR2 181

H
hardware detected errors,

intercepting 55
HEAP run-time option 54, 98, 107

I
IBM COBOL

compiler limits 295
compiler options, complete list 283
reserved words, complete list 241
undocumented extensions for 168
upgrading source, requiring 18, 165
upgrading to Enterprise COBOL 165

IDCAMS REPRO facility 120
IDLGEN compiler option

not supported in Enterprise
COBOL 166

IF statement 143
IGYWAPSX, for parameter list

processing 274
IGZ prefixed messages, how

managed 86
IGZ0005S 269
IGZ0014W, suppressing 100
IGZ0079S 270
IGZBRDGE object module 77, 105
IGZCBSN bootstrap routine 77, 105, 220
IGZCBSO bootstrap routine 77, 105
IGZEBST bootstrap routine 220
IGZEOPD run-time options module 81
IGZEOPT and MSGFILE 100
IGZEOPT run-time options module 81
IGZEPSX, for parameter list

processing 274
IGZERRE routine

changes in return codes, after
using 85

for upgrading assembler driver 273
IGZERREO CSECT routine 69, 84
IGZETUN and MSGFILE 100
IGZTUNE 98
IGZxxxx routines, replacing 307
IKF prefixed messages 86

ILBOABN0
forcing an abend 71, 90
obtaining a system dump 90

ILBOSRV
when adding Enterprise COBOL,

considerations for 226
ILBOSTP0

assembler driver, alternatives for 273
link-edit requirements for OS/VS

COBOL 64
link-edit requirements for VS COBOL

II 76
required run-time options for 70

ILBOSTP0 routine
using to initialize reusable

environment, effects of 85
ILBOxxxx routines, replacing 307
ILC

applications enabled 93
C/370 and VS COBOL II

programs 95
conversion requirements 65, 78
FORTRAN and OS/VS COBOL

programs 65
FORTRAN and VS COBOL II

programs 94
general considerations 93
link-edit requirements for 77
PL/I and OS/VS COBOL

programs 65
PL/I and VS COBOL II programs 94
support for existing applications 73

IMS
BLDL user exit not available 315
cautions when installing Language

Environment 32
cautions when using reusable

environment 84
ENDJOB compiler option

requirements 316
preloading recommendations 317
release enabled for CEETDLI 318
relevant compiler options for 315

index names
qualified 130

INHERITS clause 166
initial values in WORKING-

STORAGE 55
INITIATE statement 119
INSPECT statement

EXAMINE statement 122
TRANSFORM statement 128

installation
cautions for using STEPLIB for IMS

programs 32
compiler, documentation needed 37
fixing run-time options during 67, 80
Language Environment,

documentation needed 23
LNKLST/LPALST restrictions 30

INTDATE compiler option
for converted IBM COBOL

programs 169
integrated CICS translator 209

available with Enterprise COBOL 17
required compiler options 210

integrated DB2 coprocessor 311

integrated SQL coprocessor 311
interlanguage communication (ILC)

applications enabled 93
conversion requirements 65, 78
link-edit requirements for 77
support for existing applications 73

intermediate results changed 146
inventory of applications

Edge’s Portfolio Analyzer 266
for moving run time to Language

Environment 27
for upgrading source to Enterprise

COBOL 39
WebSphere Studio Asset

Analyzer 263
invocation

procedures for non-CICS
applications 58

recommended run-time option for
compatibility 53

specifying run-time options 67, 80
with MVS ATTACH 274

INVOKE statement 166, 167
IS evaluation in relation conditions

changed 140, 146
ISAM files 119

J
job control language (JCL)

required changes 58
JUSTIFIED clause 143

L
LABEL RECORD clause 130
LABEL RECORDS clause 124
labels, when redundant for CICS 211
LANGLVL(1) compiler option

/, =, and L characters 140
ACCEPT MESSAGE COUNT 121
combined abbreviated relational

conditions 139
COPY statement with associated

names 140
DELIMITED BY ALL 150
JUSTIFIED clause 143
NOT phrase 139
PERFORM statement 148
RESERVE clause 147
scaling change 144
SELECT OPTIONAL clause 149

LANGLVL compiler option
unsupported 154

language elements
changed

OS/VS COBOL 137
SOM-based object-oriented

COBOL 167
not supported

OS/VS COBOL 119, 121
SOM-based object-oriented

COBOL 166
Language Environment

advantages of 10
changes with 16

Index 357

Language Environment (continued)
compatibility factors 53
complexity ratings for moving to 28
formatted dumps 71, 89
installation, general information

on 23
link-edit library 59
moving to 17
phasing in using LNKLST/LPALST or

STEPLIB 31
release levels for Enterprise

COBOL 9
run-time library 59
run-time options, recommended on

CICS 56
run-time options, recommended on

non-CICS 53
run-time options compared to OS/VS

COBOL run-time options 68
specifying run-time options

order of precedence 68, 81
specifying run-time options for

OS/VS COBOL programs 66
VS COBOL II programs 79

strategy for moving to 23
trace output, compared to OS/VS

COBOL 73, 92
upgrading releases of 107

considerations for 107, 108, 109,
110

using SORT or MERGE 91
Language Environment-conforming

assembler programs 273
Language Environment output

default destination under
non-CICS 58

destination under CICS 59
when dumps not produced (SORT or

MERGE) 72
LANGUAGE run-time option 82
last-used state, when entered in 275
LENGTH OF special register 210
LIB compiler option 208, 210
LIBKEEP run-time option 96

alternatives to LIBKEEP 96
not supported 82

library
specifying correct run-time 58

library name, Language Environment 59
Library Routine Retention (LRR)

facility 96
library routines, preloading 32
LIBSTACK run-time option 54, 98
LINE-COUNTER special register 119
link-edit

behavior 222
effects on NORES programs 105
example 307
library name for Language

Environment 59
overriding default AMODE

setting 220, 222
programs requiring

adding Enterprise COBOL
programs 219

from OS/VS COBOL run time 64
from VS COBOL II run-time 76

link-edit (continued)
reusable environment requirements

OS/VS COBOL programs 69
VS COBOL II programs 84

specifying run-time options after
OS/VS COBOL programs 66
VS COBOL II programs 79

support for multiple load module
applications 222

link-edit override 220, 222
Link Pack Area (LPA) 210
LINKAGE SECTION

addressability in CICS 213
BLL cells 212
CICS chained storage areas 214
CICS considerations 211
CICS OCCURS DEPENDING ON

example 215
DL/I CALL interface 211

LIST compiler option 155, 164
LISTER features, unsupported 155
LNKLST/LPALST 30
LOAD/BALR calls supported under

Language Environment 269
load module analysis, Edge Portfolio

Analyzer 266
load modules

inventory of, using conversion
tool 266

load modules, multiple 222
LRR facility 96

M
macro-level CICS programs,

converting 265
main program

initializing the run-time environment
for 96

invocation compatibility 53
message IGZ0005S 269
message IGZ0079S 270
messages

default destinations on CICS 59
IGZ prefixed, format changes 86
MIGR, missing for RENAMES 135
MSGFILE ddname restrictions 55

METACLASS clause 166
METHODS, changed in Enterprise

COBOL 167
METHODS, not supported in Enterprise

COBOL 166
MIGR compiler option

conversion tool 117, 259
message missing for RENAMES 135

migrating CICS translator
from separate to integrated 208

migrating from CMPR2 to
NOCMPR2 173

migrating source
OS/VS COBOL CICS programs 211
OS/VS COBOL programs,

requiring 65
scenarios

Report Writer discarded 46
Report Writer retained 47
with CICS 44

migrating source (continued)
scenarios (continued)

without CICS or report writer 43
tasks when updating 47
VS COBOL II programs, benefits

of 77
migration strategies

incremental conversion 15
moving to Language Environment 23
upgrading source 37

migration tools
CICS Application Migration Aid 265
COBOL and CICS/VS Conversion Aid

(CCCA) 263
Edge Portfolio Analyzer 266
Report Writer Precompiler 265
vendor products 266

MIXRES run-time option
link-edit requirements when used 76
not supported 82

mnemonic-name of system input devices
in ACCEPT statement 160

modules, preloading under IMS 317
MOVE ALL statement

to PIC 99 132
MOVE statement

CORRESPONDING changes 131
moving fullword binary items 130
multiple TO specification 131
scaling change 144
SET...TO TRUE 193
warning message for numeric

truncation 132
MSGFILE, suppressing messages 100
MSGFILE run-time option

changing ddname for messages and
reports 58

ddname restrictions 55
multilanguage conversion 30
multiple enclave restrictions (OS/VS

COBOL) 66, 78
multiple load module applications

effects of link-edit with Language
Environment 105

effects of using MIXRES 76
supported under Language

Environment 222
multiple load modules

OS/VS COBOL considerations 222
VS COBOL II considerations 224

MULTIPLY statement 146, 195
MVS ATTACH, invoking COBOL

programs 274

N
national extension characters 179
nested enclaves restrictions (OS/VS

COBOL) 66, 78
NOCMPR2 compiler option

definition for 173
language differences from

CMPR2 174
NOCMPR2 programs

QSAM dynamic allocation
(CBLQDA) 54

tools for converting source to 259

358 COBOL Migration Guide

NOCOMPILE compiler option 154
NODYNAM compiler option 208, 210
NOMINAL KEY clause 119
non-COBOL programs

ILBOSTP0 support for 70
unclosed files 68
unclosed files in 83

nonnumerics, CMPR2/NOCMPR2 176
nonoverridable run-time options 67, 80
nonunique program-id names 134
NORENT compiler option

above the line support 14
implications of static calls 220, 222

NORENT programs 100
NORES compiler option 154

unsupported in Enterprise
COBOL 164

NORES programs
acting as RES-like, considerations

for 106
effects of link-edit with Language

Environment 64, 76, 105
ILC with FORTRAN, considerations

for 94
requiring link-edit with Language

Environment 65, 76
run-time option requirements 55
specifying run-time options

from OS/VS COBOL run-time 66
from VS COBOL II run time 79

specifying run-time options for
VS COBOL II using IGZEOPD 81

NOT phrase 139
NOTE statement 125
NSYMBOL compiler option

for converted IBM COBOL
programs 170

NUMCLS compiler option
for converted OS/VS COBOL

programs 153
numeric-edited, differences 133
NUMPROC compiler option

for converted OS/VS COBOL
programs 153

O
OBJECT COMPUTER paragraph 189
object module, prolog format 155, 164
object-oriented COBOL, SOM-based

compiler options not supported 166
language elements changed 167
language elements not

supported 166
not supported in Enterprise

COBOL 16, 165
OBJECTS, changed in Enterprise

COBOL 167
OCCURS clause 132
OCCURS DEPENDING ON clause

changes in values for receiving
items 145

CICS example 215
RECORD CONTAINS n

CHARACTERS 134
variable-length group moves 203

OCx abends 269

ODO objects, changes for variable-length
groups 159

ON SIZE ERROR phrase 146
ON statement 125
OPEN statement

COBOL 68 support dropped 126
REVERSED phrase changed 132

operating system detected errors,
intercepting 55

OPT compiler option
for converted OS/VS COBOL

programs 153
options

compiler
complete list 283
for IBM COBOL programs 169
for OS/VS COBOL programs 153
for VS COBOL II programs 163

run-time
recommended for non-CICS 53
recommended for on CICS 56
specifying for OS/VS COBOL

programs 66
specifying for VS COBOL II

programs 79
ORGANIZATION clause 119, 120
OS/390

dump output destination 90
installing Language Environment

on 23
invocation changes 58
Language Environment library for 59
Language Environment output default

destination 58
obtaining a system dump 60
problems with unclosed files 68, 83
specifying ddname SYSPRINT on 82
specifying run-time options on 67, 80

OS/VS COBOL
ALPHABET clause changed 137
arithmetic accuracy 137
ASSIGN clause changed 137
ASSIGN TO integer system-name

clause 121
CALL statement changed 138
compiler limits 295
compiler options, complete list 283
considerations when compiling 153
CURRENCY-SIGN clause

changed 140
IF statement changed 143
intermediate results changed 146
JUSTIFIED clause 143
OCCURS DEPENDING ON

clause 145
ON SIZE ERROR phrase

changed 146
PERFORM statement changes 146
PROGRAM COLLATING SEQUENCE

clause 147
READ statement changes 147
RERUN clause changes 147
RESERVE clause changes 147
reserved word list

complete list 241
RETURN statement changes 147

OS/VS COBOL (continued)
run-time options compared to

Language Environment run-time
options 68

scaling changed 144
SEARCH statement changes 148
segmentation changes 148
SELECT OPTIONAL clause 149
SORT special register differences 149
source language debugging 149
subscripts out of range 150
trace ouput compared to Language

Environment 73
trace output sequence 92
undocumented extensions for 128
unsupported compiler options 154
upgrading source 18
UPSI switch evaluation changed 151
VALUE clause 151
VSAM files 142
WHEN-COMPILED 152
WRITE AFTER POSITIONING

statement 152
OS/VS COBOL programs

base addressability
considerations 210

CICS considerations
DL/I call interface 211
support for 74, 113, 207
upgrading to Enterprise COBOL

CICS programs 211
ILC

with FORTRAN 65
with PL/I 65

multiple enclave restrictions 66, 78
multiple load modules, combinations

of 222
requiring link-edit with Language

Environment 64
RES programs, ILC with

FORTRAN 94
specifying Language Environment

run-time options 66
symbolic dumps for 70
upgrading source, requiring 65, 77
VS COBOL II programs, calling 77
with user error handling

routines 271
OSDECK compiler option 155
OUTDD compiler option

for converted OS/VS COBOL
programs 153

output message file 55

P
PAGE-COUNTER special register 119
paragraph names

CICS, optional coding changes 211
error for period missing in 133
requirements for Enterprise

COBOL 134, 138
restrictions for USING phrase 138

parameter list, processing with MVS
ATTACH 274

parameters
passed by assembler programs 267

Index 359

parameters (continued)
restrictions for paragraph names 138

parenthesis evaluation changed 140
PCB, DL/I CALL interface 211
PERFORM statement

difference between CMPR2 and
NOCMPR2 183

second UNTIL 132
VARYING/AFTER options 185
VARYING/AFTER phrases 146

performance
CALL statement 220
improving calls on CICS 100

periods
missing at end of SD, FD, or RD 133
missing on paragraph names 133
multiple in any division 133
requirements for Area A 133, 161,

168
PGMNAME compiler option 163

for converted IBM COBOL
programs 169

for converted OS/VS COBOL
programs 153

PICTURE clause
B symbol in 138, 187
numeric-edited differences 133
use with VALUE clause 136

PL/I
ILC with OS/VS COBOL

programs 65, 73
ILC with VS COBOL II programs 77,

94
POSITIONING phrase of CLOSE 121
precedence of run-time options 68, 81
precedence of USE procedures 158
preinitialization 97
preloaded library routines

causing abends 32
recommended for IMS 317

preloading programs, for reusable
environment 84

PROCEDURE DIVISION, two periods in
a row 133

production mode, phasing in Language
Environment 30

program attributes
changes in application behavior 105
complexity ratings 28

program checks causing ASRA
abend 270

PROGRAM COLLATING SEQUENCE
clause

alphabet-name, implicit
comparisons 147

difference between CMPR2 and
NOCMPR2 189

program mask, programs that change
it 272

program names
compatibility 153, 163
requirements 134
restrictions 58

prolog format 155, 164
PSW information 70, 90

Q
QSAM files

enabling dynamic allocation
(CBLQDA) 54

preventing files status 39 301
status key values 141

qualification - using the same phrase
repeatedly 134

qualified index names 130
QUEUE run-time option 68, 121

R
R1 requirements for assembler

programs 267
R13 requirements for assembler

programs 267
R14 requirements for assembler

programs 267
READ statement

implicit elementary MOVEs 147
INTO phrase,

CMPR2/NOCMPR2 190
READY TRACE statement, not

supported 126
RECEIVE statement 121
receiving fields, ODO objects 203
RECFM as FB 72, 92
RECFM as FBA

recommendation for 92
RECFM as VB 108
recommended run-time options 53, 56
recompiling, CICS programs

requiring 77
RECORD CONTAINS, fixed-length

records 302
RECORD CONTAINS n CHARACTERS

clause
difference between CMPR2 and

NOCMPR2 191
when overridden 134

RECORDING MODE U 108
records, preventing FS 39 when

defining 301
recursive CALLs, restrictions 272
REDEFINES clause

CICS considerations 211
FD support dropped 134
SD support dropped 134

reentrant programs 55
reference modification 159
Register 9 or 13 values 226
Register Save Area (RSA)

conventions 226
registers

PSW information 70, 90
requirement for assembler

programs 268
regression testing

run-time considerations 33
source considerations 48

relation condition
coding changes 135
evaluation changes 139

REMARKS paragraph 127
RENAMES clause 135

RENT compiler option 208, 210, 220
RENT programs

difference in behavior for 95, 96, 275
RENT run-time routines 32
REPLACE statement

affecting EXEC CICS 209
when required 220

REPLACE statement and comment
lines 158

REPORT clause 119
report section 119
Report Writer

conversion scenario discarding 46
conversion scenario retaining 47
conversion tool 118, 265
language affected 119

Report Writer Precompiler 265
RERUN clause 147
RES compiler option 154, 164
RES programs

applications, comprised of 106
implications of RES-like 106
requiring link-edit with Language

Environment 64, 65, 76
specifying run-time options for

OS/VS COBOL programs 66
VS COBOL II programs 79
VS COBOL II programs using

IGZEOPT 81
RESERVE clause 147
reserved words

comparison of 241
comparison to VS COBOL II 160
difference between CMPR2 and

NOCMPR2 192
new in Enterprise COBOL 167

RESET TRACE statement, not
supported 126

restrictions
for non-COBOL programs 68, 83
for program names 58
for reusable environment 69, 84
for unclosed files 68, 83

return codes
changes when using IGZERRE 85
ensuring compatibility 62

return routine, assembler programs 268
RETURN statement

implicit elementary MOVEs 147
INTO phrase,

CMPR2/NOCMPR2 190
reusable environment

cautions under IMS 84
improve performance when using 84
Language Environment, restrictions

for 69, 84
link-edit requirements for (OS/VS

COBOL) 64
STOP RUN, effects of using 70, 84

REVERSED phrase of OPEN
statement 132

RMODE compiler option 220
for converted OS/VS COBOL

programs 153
for converted VS COBOL II

programs 163
RMODE considerations 224

360 COBOL Migration Guide

RMODE link-edit option 305
RPTSTG run-time option 98
RTEREUS run-time option

cautions under IMS 84
comparison between VS COBOL II

and Language Environment 82
possible side effects of 54
specifying 86
SVC LINK exceptions 85
using with assembler drivers 273

run-time considerations
adding Enterprise COBOL

programs 226
effects of using IGZEOPT 81
inventory of applications 27
managing messages 86

run-time detected errors, timing of
abends 87

run-time options
comparisons

between OS/VS COBOL and
Language Environment 68

between VS COBOL II and
Language Environment 82

Language Environment
ABTERMENC 53
ALL31 55
ANYHEAP 54
BELOWHEAP 54
CBLOPTS 53
CBLPSHPOP 57
CBLQDA 54
HEAP 54
LIBSTACK 54
MSGFILE 55
STACK 54
STORAGE 55
TERMTHDACT 54
TRAP 55

managing storage 54, 98
preventing programmers from

changing 67, 80
recommended, under CICS 56
recommended, under non-CICS 53
required setting with AMODE(24)

programs 70
specifying

for OS/VS COBOL programs 66
for specific applications 80
for VS COBOL II programs 79
Language Environment order of

precedence 68, 81

S
SAMPDAT1 non-CICS sample user

exit 60
SAMPDAT2 CICS sample user exit 60
sample source, abnormal termination

exit 60
sample user condition handler

CEEWUCHA 88
save area

assembler programs,
requirements 267

location when using ILBOABN0
under Language Environment 71

save area, using to find TGT 226
scaled integers, CMPR2/NOCMPR2 176
SCEELKED

link-edit library 59
SCEERUN

run-time library 58, 59
SCEESAMP data set 60
SD support in REDEFINES clause 134
SEARCH statement 148
SEEK statement unsupported 120
segmentation 148
SELECT clause 149
sending fields, ODO objects 203
sequential files 141
SERVICE RELOAD statement

automated conversion of 264
treated as comment 210
upgrading OS/VS COBOL programs,

considerations 211
SET...TO TRUE, CMPR2/NOCMPR2 193
SET option

CICS considerations for 211
severe errors

obtaining abends after 53
short on storage (SOS) in CICS

regions 56
significance exceptions, program mask

and 272
SIMVRD run-time option 82
sixteen-megabyte line 23
SIZE ERROR on MULTIPLY and

DIVIDE 195
slash (/) in CURRENCY-SIGN clause

changed 140
SOM-based object-oriented COBOL

compiler options not available 166
language elements changed 167
language elements not

supported 166
not available with Enterprise

COBOL 16, 165
SORT or MERGE

combined with GOBACK statement,
effects of 91

considerations 91
in OS/VS COBOL programs 72, 91
in VS COBOL II subprograms 91
undocumented VS COBOL II

extensions 103
SORT special registers 149
SORT statement 99
source language conversion

IBM tools 259
inventory of applications 39
strategy for 37
tasks when updating 47
vendor tools 266

space tuning under Language
Environment 98

SPECIAL-NAMES paragraph 140, 174
special registers

ADDRESS OF 212
CURRENT-DATE 122
DATE 122
LENGTH OF 210
LINE-COUNTER 119
PAGE-COUNTER 119

special registers (continued)
PRINT-SWITCH 119
SORT differences 149
TALLY 123
TIME 127
TIME-OF-DAY 127
WHEN-COMPILED 152

SPM instructions 272
SPOUT run-time option

Language Environment synonyms 82
output directed to 98

SQL
coprocessor integration 311

SQL statements
DB2 coprocessor, handling 311

SSRANGE compiler option 150
SSRANGE run-time option 82
STACK run-time option

recommended values for CICS 56
recommended values for

non-CICS 54
use for space tuning 98

STAE run-time option 83
STANDARD LABEL statement 128
START statement

support changed 127
USING KEY clause unsupported 119,

127
statement connectors, THEN

unsupported 127
static CALL statement

programs supported by Enterprise
COBOL on CICS 221

required AMODE override 220, 222
requirements if made from Enterprise

COBOL programs 219
supported under Language

Environment on CICS 270
supported under Language

Environment on non-CICS 269
when RMODE(24) required 220

status key
QSAM files 141
VSAM files 142

STEPLIB
cautions for using with IMS

programs 32
example 32
use for phasing in Language

Environment 31
STOP RUN statement

communicating with other languages,
effects of 94

differences between CMPR2 and
NOCMPR2 181

reusable environment, effects of 70,
84

undocumented extensions 161, 168
storage, in subpools 275
storage management

run-time options for 54, 98
storage reports, ddname requirement 58
storage requirements

compiler 37
with Language Environment 23

STORAGE run-time option 55

Index 361

strategies
incremental conversion 15
run-time, moving to 23
upgrading source 37

structure addressing operation not
used 211

subpools, storage in 275
subprograms

dynamic calls to ENTRY points 141
using SORT or MERGE in VS COBOL

II 91
subroutines, called by assembler

driver 273
subscripts 150
SUPMAP compiler option 154
SVC LINK

differences when using under
Language Environment 85

effect on assembler programs 66, 78
supported under Language

Environment on non-CICS 269
targeting assembler programs 268

SVC LOAD/DELETE 275
SXREF compiler option 154
symbolic dumps 70, 89
SYMDMP compiler option 154
SYMDUMP 70
SYSDBOUT 70
SYSLIB, file needed in 59
SYSOUT output

data set behavior with Language
Environment preinitialization 97

with RECFM=FB 72, 92
SYSPRINT ddname 82
SYSPUNCH data set behavior 97
system dump

comparisons
between OS/VS COBOL and

Language Environment 70
between VS COBOL II and

Language Environment 90
obtaining 60
output destination

under OS/VS COBOL 71
under VS COBOL II 90

system input devices for mnemonic-name
suboption in ACCEPT statement 160

system output ddnames 58
SYSxxxx ddname restrictions 55

T
TALLY special register 123
Task Global Table (TGT)

conventions 226
TERMINATE statement 119
terminating statements, required 130
TERMTHDACT run-time option 54, 71

performance consideration 99
specifying 60

TEST compiler option 277
for converted VS COBOL II

programs 163
TEST(SYM) compiler option 89
TESTCOB language 279

testing
phasing in Language

Environment 31
regression, for run time 33
regression, for source 48

THEN statement 127
TIME-OF-DAY special register 127
trace entries 73
TRACE output 72, 73, 92
TRACK-AREA clause 119
TRACK-LIMIT clause 120
transaction dump 70
TRANSFORM statement

unsupported 128
translator, integrated CICS 209
translator option

XOPTS 208
TRAP run-time option

description and recommended
setting 55

obtaining list of vendor products
enabled 266

TRUNC compiler option
description 292
for CICS applications 208, 209
for converted IBM COBOL

programs 170
for converted OS/VS COBOL

programs 154
possible differences using

TRUNC(OPT) 130
TSO, Language Environment output

default destination 58
TYPECHK compiler option

not supported in Enterprise
COBOL 166

U
U3504 abends 270
unclosed files 68, 83
undocumented extensions

for IBM COBOL 168
for OS/VS COBOL 128
for VS COBOL II 103, 161

UNSTRING statement
coding not accepted 136
difference between CMPR2 and

NOCMPR2 196
multiple INTO phrases 136

upgrading
IBM COBOL programs 18
Language Environment 107
OS/VS COBOL programs 18
programs under CICS 77
VS COBOL II programs 18

upgrading source
CICS considerations

DL/I call interface 211
IBM COBOL programs,

requiring 165
IBM conversion tools 259
OS/VS COBOL programs,

requiring 65
scenarios

Report Writer discarded 46
Report Writer retained 47

upgrading source (continued)
scenarios (continued)

with CICS 44
without CICS or report writer 43

strategies for 37
tasks when updating 47
vendor conversion tools 266
VS COBOL II programs, benefits

of 77
VS COBOL II programs,

requiring 157
UPSI run-time option 68, 83
UPSI switches

difference between CMPR2 and
NOCMPR2 202

differences with condition-names 151
USE procedure

precedence in VS COBOL II 158
USE statement

BEFORE STANDARD LABEL 128
DEBUGGING declarative 149
GIVING phrase of ERROR

declarative 124
reporting declarative 119

user exits, BLDL 315
user signal conditions, intercepting 55
user written error handling routines 271
Using REXX execs

processing parameter list
formats 321

V
VALUE clause

condition-name changes 151
STORAGE run-time option and 55
use with PICTURE clause

changed 136
variable-length group, differences 159
variable-length group moves 203
variable-length records, defining 301
VARYING phrase of PERFORM

changed 146
VBREF compiler option 155
VBSUM compiler option 154
VCON

supported COBOL/assembler on
CICS 270

supported COBOL/assembler on
non-CICS 269

vendor products
obtaining a list of 266
prerequisites for running under

Language Environment 27
prerequisites for using with Enterprise

COBOL 39
virtual storage

factors influencing 24
on CICS 25
usage example for non-CICS 24

VS COBOL II
bootstrap routine 220
compiler limits 295
compiler options, complete list 283
DISPLAY UPON SYSOUT

compared with Language
Environment 92

362 COBOL Migration Guide

VS COBOL II (continued)
formatted dumps

differences with Language
Environment 89

reserved words, complete list 241
upgrading source 18
WORKING-STORAGE limits on

CICS 99
VS COBOL II programs

benefits of compiling with Enterprise
COBOL 77

CBLPSHPOP option examples
effect on compatibility 102
no effect on compatibility 101

compiled with the FDUMP option 89
multiple load modules, combinations

of 224
NORENT programs 100
requiring link-edit with Language

Environment 76
requiring upgrade 157
reserved words, comparison 160
specifying Language Environment

run-time options for 79
subprograms, using SORT or

MERGE 91
upgrading source programs 157
using IGZEOPT for programs

compiled RES 81
using WORKING-STORAGE

differences with Language
Environment 95, 96, 275

with user error handling
routines 271

VSAM files
conversions 119
status key changes 142

W
WHEN-COMPILED special register 152
WORD(NOOO) compiler option

for converted IBM COBOL
programs 171

WORKING-STORAGE 275
considerations when upgrading

Language Environment 107
WORKING-STORAGE data items 224
WORKING-STORAGE limits

on CICS 99
WORKING-STORAGE section, initial

values 55
WRITE statement 152
WSCLEAR run-time option 83

X
XOPTS translator option 208

Z
z/OS

commonly asked questions and
answers 239

dump output destination 90

z/OS (continued)
installing Language Environment

on 23
invocation changes 58
Language Environment link-edit

library for 59
Language Environment output default

destination 58
obtaining a system dump 60
problems with unclosed files 68, 83
specifying correct run-time library,

under 58
specifying ddname SYSPRINT on 82
specifying run-time options on 67, 80

Z’s in PICTURE string 133

Index 363

364 COBOL Migration Guide

Readers’ Comments — We’d Like to Hear from You

Enterprise COBOL for z/OS and OS/390
Compiler and Run-Time Migration Guide
Version 3 Release 1

Publication No. GC27-1409-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
GC27-1409-00

GC27-1409-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department HHX/H3
555 Bailey Avenue
San Jose, CA
United States of America
95141-1099

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC27-1409-00

	Contents
	About this book
	Acknowledgement
	Using your documentation
	Enterprise COBOL for z/OS and OS/390
	Language Environment element of z/OS Version 1 Release 1 or later
	Language Environment element of OS/390 Version 2 Release 10
	How to send your comments

	Summary of changes
	Changes to the Migration Guide
	Changes in GC27-1409-00, November 2001
	Compiler
	Run Time

	Changes in GC26-4764-05, September 2000
	Compiler
	Run time

	Summary of changes to the COBOL compilers
	Changes in IBM Enterprise COBOL for z/OS and OS/390
	Changes in COBOL for OS/390 & VM Version 2 Release 2
	Changes in COBOL for OS/390 & VM V2 R1 Modification 2
	Changes in COBOL for OS/390 & VM V2 R1 Modification 1

	Changes in COBOL for OS/390 & VM Version 2 Release 1

	Part 1. Overview
	Chapter 1. Do I need to recompile?
	Migration basics
	Run-time migration
	Moving to Language Environment

	Source migration

	Service support for OS/VS COBOL and VS COBOL II programs
	Changing OS/VS COBOL programs

	Chapter 2. Introducing the new compiler and run time
	Product relationships—compiler, run time, debug
	Comparison of COBOL compilers
	Language Environment's run-time support for other programs
	Advantages of the new compiler and run time
	Suggestions for incremental conversions
	Changes with the new compiler and run time
	CMPR2 compiler option not available
	FLAGMIG compiler option not available
	ANALYZE compiler option not available
	SOM-based object-oriented COBOL not available
	Integrated CICS translator available

	General conversion tasks
	Planning your strategy
	Moving to the Language Environment run time
	Upgrading your source to Enterprise COBOL
	OS/VS COBOL
	VS COBOL II
	IBM COBOL

	Adding Enterprise COBOL programs to existing applications

	Part 2. Conversion strategies
	Chapter 3. Planning the move to Language Environment
	Preparing to move to the Language Environment run-time library
	Installing Language Environment
	Assessing storage requirements
	DASD storage requirements
	Virtual storage requirements

	Educating your programmers about Language Environment

	Taking an inventory of your applications
	Vendor tools, packages, and products
	COBOL applications
	Assigning complexity ratings
	When moving from OS/VS COBOL run time
	When moving from the VS COBOL II run time

	Setting up conversion/no-conversion categories

	Deciding how to phase Language Environment into production mode
	Multilanguage conversion
	Determining how applications will have access to the library
	LNKLST/LPALST
	STEPLIB
	Problems with STEPLIB and IMS programs
	STEPLIB example

	Setting up a regression testing procedure
	Take performance measurements

	Cutting over to production use

	Chapter 4. Planning to upgrade source programs
	Preparing to upgrade your source
	Installing Enterprise COBOL
	Assessing storage requirements
	Deciding which conversion tools to use and install them
	Educating your programmers on new compiler features

	Taking an inventory of your applications
	Taking an inventory of vendor tools, packages, and products
	Taking an inventory of COBOL applications
	Prioritizing your applications
	Assigning complexity ratings
	Determining conversion priority

	Setting up upgrade/no upgrade categories
	Setting up a conversion procedure
	Programs without CICS or Report Writer
	Programs with CICS
	Programs with Report Writer statements to be discarded
	Programs with Report Writer statements to be retained

	Making application program updates

	Part 3. Moving existing applications to Language Environment
	Chapter 5. Running existing applications under Language Environment
	Set recommended default Language Environment run-time options
	Recommended run-time options for non-CICS applications
	Other run-time options affecting non-CICS applications

	Recommended run-time options for CICS applications
	Other run-time options affecting CICS applications

	Invoking existing applications
	For non-CICS applications
	Specify the correct library
	Specify alternate DDNAMES (optional)
	Remove DDNAMES no longer required (optional)

	For CICS applications
	Output differences when using Language Environment on CICS

	Link-editing existing applications
	Obtaining a system dump or a CICS transaction dump
	Method 1: Specify the TERMTHDACT run-time option
	Method 2: Specify an abnormal termination exit
	Abnormal termination exit (non-CICS)
	Abnormal termination exit (CICS)

	Getting compatible abend behavior
	Ensuring the compatibility of return-code values

	Chapter 6. Moving from the OS/VS COBOL run-time
	Determining which programs require link-editing
	Applications with COBOL programs compiled with RES
	Applications with COBOL programs compiled with NORES
	Applications with COBOL programs compiled with RES and NORES

	Determining which programs require upgrading
	On CICS
	On non-CICS
	ILC with PL/I
	ILC with FORTRAN
	OS/VS COBOL programs in more than one enclave

	Comparing run-time options and specification methods
	Specifying Language Environment run-time options
	Installation-wide defaults
	Region-wide defaults
	CEEUOPT application-specific defaults
	Invocation procedures
	Order of precedence

	Comparing OS/VS COBOL and Language Environment run-time options

	Closing files in non-COBOL and OS/VS COBOL programs
	Other environments

	Running in a reusable run-time environment
	Using ILBOSTP0

	Managing dump services
	OS/VS COBOL symbolic dumps
	System storage dumps and CICS transaction dumps
	Language Environment formatted dumps
	Dump destination on non-CICS
	Dump destination on CICS

	Using ILBOABN0 to force an abend
	Using SORT or MERGE in OS/VS COBOL programs
	Understanding SYSOUT output changes
	SYSOUT output with RECFM=FB
	OS/VS COBOL trace output sequence

	Communicating with other languages
	Additional CICS considerations

	Chapter 7. Moving from the VS COBOL II run-time
	Determining which programs require link-editing
	Applications with COBOL programs compiled with RES
	Applications with COBOL programs compiled with NORES
	Programs that use ILC
	Statically calling IGZCA2D or IGZCD2A

	Determining which programs require upgrading
	CICS
	Non-CICS
	ILC with PL/I
	ILC with FORTRAN
	OS/VS COBOL programs in more than one enclave

	Comparing run-time options and specification methods
	Specifying Language Environment run-time options
	Installation-wide defaults
	Region-wide defaults
	Application-specific defaults
	Invocation procedures
	Order of precedence

	Specifying VS COBOL II run-time options
	Applications with COBOL programs compiled with RES (non-CICS)
	Applications with COBOL programs compiled with NORES (non-CICS)
	Applications running on CICS

	Comparing VS COBOL II and Language Environment options

	Closing files in non-COBOL and OS/VS COBOL programs
	Other environments

	Running in a reusable run-time environment
	Precautions if establishing a reusable environment under IMS
	Using IGZERRE
	Using ILBOSTP0
	Using RTEREUS

	Managing messages, abend codes, and dump services
	Run-time messages
	Messages prefixed with IKF
	Messages prefixed with IGZ

	Timing of abend for run-time detected errors
	Abend codes
	Using CEEWUCHA
	Dump services
	OS/VS COBOL symbolic dumps
	VS COBOL II FDUMPs
	Language Environment formatted dumps
	System storage dumps

	Using ILBOABN0 to force an abend
	Using SORT or MERGE
	In OS/VS COBOL programs
	In VS COBOL II subprograms

	Understanding SYSOUT output changes
	DISPLAY UPON SYSOUT and DD definitions
	SYSOUT output with RECFM=FB
	OS/VS COBOL trace output sequence

	Communicating with other languages
	General ILC considerations
	COBOL DISPLAY output (non-CICS)
	Effect of STOP RUN (non-CICS)

	COBOL and FORTRAN
	COBOL and PL/I
	Difference in behavior for dynamically called RENT programs

	COBOL and C/370
	Difference in behavior for dynamically called RENT programs

	Initializing the run-time environment
	Existing applications using LIBKEEP
	Considerations for Language Environment preinitialization

	Determining storage tuning changes
	Alternatives to IGZTUNE
	Considerations for SPOUT output

	Additional CICS considerations
	Performance considerations
	SORT interface change
	WORKING-STORAGE limits
	VS COBOL II NORENT programs
	IGZETUN or IGZEOPT and MSGFILE
	CICS HANDLE commands and the CBLPSHPOP run-time option
	Example 1—no effect on compatibility
	Example 2—effect on compatibility

	DISPLAY statement
	CLER transaction

	Undocumented VS COBOL II extensions

	Chapter 8. Link-editing applications with Language Environment
	Applications comprised of NORES programs
	Implications of becoming RES-like

	Applications comprised of RES programs

	Chapter 9. Upgrading Language Environment release levels
	Change in behavior for DATA(31) programs under OS/390 Version 2 Release 9 or later
	Missing CEEDUMP for applications with assembler programs that use the DUMP macro under OS/390 Version 2 Release 8
	Change in file handling for COBOL programs with RECORDING MODE U under OS/390 Version 2 Release 10
	Calling between assembler and COBOL under OS/390 Version 2 Release 9 or later
	Referencing symbolic feedback tokens

	Part 4. Upgrading source programs
	Chapter 10. Upgrading OS/VS COBOL source programs
	Comparing OS/VS COBOL to Enterprise COBOL
	Language elements that require change—quick reference

	Using conversion tools to convert programs to COBOL 85 Standard
	COBOL Conversion Tool (CCCA)
	OS/VS COBOL MIGR compiler option
	CMPR2 and FLAGMIG compiler options

	Language elements that require other products for support
	Report Writer
	Keep existing Report Writer code and use the Report Writer Precompiler
	Convert existing Report Writer code using the Report Writer Precompiler
	Run existing OS/VS COBOL-compiled Report Writer programs under Language Environment
	Report Writer language items affected

	Language elements that are no longer implemented
	ISAM file handling
	ISAM file handling language items affected

	BDAM file handling
	BDAM file handling language items affected

	Communication feature
	Communication language items affected
	Communication conversion actions

	Language elements that are not supported
	Undocumented OS/VS COBOL extensions that are not supported
	Language elements that changed from OS/VS COBOL

	Chapter 11. Compiling converted OS/VS COBOL programs
	Key compiler options for converted programs
	Unsupported OS/VS COBOL compiler options
	Prolog format changes

	Chapter 12. Upgrading VS COBOL II source programs
	Determining which programs require upgrade before compiling with Enterprise COBOL
	Upgrading VS COBOL II programs compiled with the CMPR2 compiler option
	COBOL 85 Standard interpretation changes
	REPLACE and comment lines
	Precedence of USE procedures
	Reference modification of a variable-length group receiver

	ACCEPT statement
	New reserved words
	Undocumented VS COBOL II extensions

	Chapter 13. Compiling VS COBOL II programs
	Key compiler options for VS COBOL II programs
	Compiling with Enterprise COBOL
	Compiler options not supported in Enterprise COBOL

	Prolog format changes

	Chapter 14. Upgrading IBM COBOL source programs
	Determining which programs require upgrade before you compile with Enterprise COBOL
	Upgrading SOM-based object-oriented (OO) COBOL programs
	SOM-based object-oriented COBOL language elements that are not supported
	Compiler options IDLGEN and TYPECHK

	SOM-based object-oriented COBOL language elements that are changed
	New reserved words in Enterprise COBOL
	Undocumented IBM COBOL extensions

	Chapter 15. Compiling IBM COBOL programs
	Key compiler options for IBM COBOL programs
	Compiler options not available in Enterprise COBOL

	Chapter 16. Migrating from CMPR2 to NOCMPR2
	Upgrading programs compiled with the CMPR2 compiler option
	ALPHABET clause of the SPECIAL-NAMES paragraph
	CMPR2
	NOCMPR2
	Messages
	Corrective action for ALPHABET clause of the SPECIAL-NAMES paragraph:

	ALPHABETIC class
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the ALPHABETIC class:

	CALL . . . ON OVERFLOW
	CMPR2
	NOCMPR2
	Messages
	Corrective action for CALL . . . ON OVERFLOW:

	Comparisons between scaled integers and nonnumerics
	CMPR2
	NOCMPR2
	Messages
	Corrective action for comparisons between scaled integers and nonnumerics:

	COPY ... REPLACING statements using non-COBOL characters
	CMPR2
	NOCMPR2
	Lowercase alphabetic characters
	Message
	Corrective action for lowercase alphabetic characters:
	The colon (:) character
	Message
	Corrective action for the colon (:) character:
	Characters that are not valid
	Message
	Corrective action for characters that are not valid:

	COPY statement using national extension characters
	CMPR2
	NOCMPR2
	Message
	Corrective action for the COPY statement that uses national extension characters:

	File status codes
	CMPR2
	NOCMPR2
	Message
	Corrective action for file status codes:

	Implicit EXIT PROGRAM
	CMPR2
	NOCMPR2
	Messages
	Corrective action for Implicit EXIT PROGRAM:

	PERFORM return mechanism
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the PERFORM return mechanism:

	PERFORM ... VARYING ... AFTER
	CMPR2
	NOCMPR2
	Message
	Corrective action for PERFORM . . . VARYING . . . AFTER

	PICTURE clause with "A"s and "B"s
	CMPR2
	NOCMPR2
	Message
	INITIALIZE verb
	Corrective action for the INITIALIZE verb
	STRING verb
	Corrective action for the STRING verb
	CALL and CANCEL verbs

	PROGRAM COLLATING SEQUENCE
	CMPR2
	NOCMPR2
	Messages
	Corrective action

	READ INTO and RETURN INTO
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the READ INTO and RETURN INTO phrases:

	RECORD CONTAINS n CHARACTERS
	CMPR2
	NOCMPR2
	Message
	Corrective action for the RECORD CONTAINS n CHARACTERS clause:

	Reserved words
	Messages
	Corrective action for new reserved words:

	SET . . . TO TRUE
	CMPR2
	NOCMPR2
	Message
	JUSTIFIED clause
	Corrective action for the JUSTIFIED clause
	BLANK WHEN ZERO clause
	PICTURE string with editing symbols

	SIZE ERROR on MULTIPLY and DIVIDE
	CMPR2
	NOCMPR2
	Message
	Corrective action for the SIZE ERROR on MULTIPLY and DIVIDE:

	UNSTRING operand evaluation
	CMPR2
	NOCMPR2
	Messages
	Corrective action for the UNSTRING OPERAND evaluation:

	UPSI switches
	CMPR2
	NOCMPR2
	Message
	Corrective action for UPSI switches:

	Variable-length group moves
	CMPR2
	NOCMPR2
	Message
	Corrective action for variable-length group moves:

	Chapter 17. CICS conversion considerations for COBOL source
	Key compiler options for programs that run under CICS
	Migrating from the separate CICS translator to the integrated translator
	Integrated CICS translator
	Key compiler options for the integrated CICS translator

	Base addressability considerations for OS/VS COBOL programs
	SERVICE RELOAD statements
	LENGTH OF special register
	Programs using BLL cells
	DL/I call interface

	Example 1: Receiving a communications area
	Example 2: Processing storage areas that exceede 4K
	Example 3: Accessing chained storage areas
	Example 4: Using the OCCURS DEPENDING ON clause

	Part 5. Adding Enterprise COBOL programs to existing COBOL applications
	Chapter 18. Adding Enterprise COBOL programs to existing COBOL applications
	Applications comprised of RES programs
	Adding Enterprise COBOL programs that use static CALL statements
	CALL statements on non-CICS
	CALL statements on CICS

	Applications comprised of NORES programs
	Behavior before link-editing with Language Environment
	Behavior after link-editing with Language Environment
	Link-edit override requirement

	Multiple load module considerations
	OS/VS COBOL considerations
	VS COBOL II considerations

	AMODE and RMODE considerations
	Run-time considerations
	ILBOSRV
	TGT (Task Global Table) and RSA (Register Save Area) conventions

	Part 6. Appendixes
	Appendix A. Commonly asked questions and answers
	Prerequisites
	Compatibility
	Link-editing with Language Environment
	Compiling with Enterprise COBOL
	Language Environment services
	Language Environment run-time options
	Interlanguage communication
	Subsystems
	OS/390
	z/OS
	Performance
	Service

	Appendix B. COBOL reserved word comparison
	Appendix C. Conversion tools for source programs
	MIGR compiler option
	Language differences
	Statements supported with enhanced accuracy
	Arithmetic statements

	LANGLVL(1) statements not supported
	LANGLVL(1) and LANGLVL(2) statements not supported
	Communications

	Other programs that aid conversion
	Report Writer for OS/2 and for Windows
	WebSphere Studio Asset Analyzer
	COBOL and CICS/VS Command Level Conversion Aid (CCCA)
	When to use CCCA
	CCCA processing of CICS statements
	Statements dealing with the primary BLLs

	CICS Application Migration Aid
	COBOL Report Writer Precompiler
	The Edge Portfolio Analyzer
	Vendor products

	Appendix D. Applications with COBOL and assembler
	Determining requirements for calling and called assembler programs
	Calling assembler programs
	Called assembler programs
	SVC LINK and COBOL run unit boundary

	Run-time support for assembler COBOL calls on non-CICS
	Run-time support for assembler COBOL calls on CICS
	Converting programs that use ESTAE/ESPIE for condition handling
	Error handling routines in existing programs
	Establishing user-written condition handling routines
	Advantages of user-written condition handling routines

	Converting programs that change the program mask
	Calling assembler programs that expect a certain program mask
	Upgrading applications that use an assembler driver
	Convert the assembler driver
	Modify the assembler driver
	Use an unmodified assembler driver

	Invoking a COBOL program with an MVS ATTACH
	Assembler loading and calling COBOL programs
	Assembler programs that load and delete COBOL programs
	Freeing storage in subpools (z/OS and OS/390 only)
	Invoking programs - AMODE requirements

	Appendix E. Debugging tool comparison
	Debugging existing applications
	Debugging migrated applications
	Applications with OS/VS COBOL programs
	Applications with VS COBOL II programs
	Initiating Debug Tool

	Command language comparison

	Appendix F. Compiler option comparison
	Appendix G. Compiler limit comparison
	Appendix H. Preventing file status 39 for QSAM files
	Processing existing files
	Defining variable-length records
	Defining fixed-length records
	Converting existing files that do not match the COBOL record
	Processing new files
	Processing files dynamically created by COBOL

	Appendix I. Overriding linkage editor defaults
	When not to override the default settings
	When to override the default settings
	How to override the defaults

	Appendix J. Link-edit example
	Appendix K. DB2 coprocessor integration
	Appendix L. IMS considerations
	Unsupported VS COBOL II features
	BLDL user exit unsupported
	LIBKEEP unsupported

	Compiler options relevant for programs run on IMS
	Compiling and linking COBOL programs for running under IMS
	ENDJOB/NOENDJOB compiler option requirements
	Preloading requirements
	Last used state behavior under Language Environment
	When programs remain in the last-used state

	Recommended modules for preload
	Enterprise COBOL programs
	OS/VS COBOL programs

	Condition handling using CBLTDLI on IMS
	Differences with IMS Version 2 and Version 3

	Performance consideration when running OS/VS COBOL programs
	Using a GTF trace to determine which modules are loaded
	DFSPCC20 modification unsupported

	Appendix M. TSO considerations
	Using REXX execs

	Appendix N. Notices
	Programming interface information
	Trademarks

	Bibliography
	IBM Enterprise COBOL for z/OS and OS/390
	Language Environment for z/OS
	Language Environment for OS/390
	Related publications

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

