<|lI!

Enterprise COBOL for z/0S

Language Reference

Version 5.2

SC14-7381-03






<|lI!

Enterprise COBOL for z/0S

Language Reference

Version 5.2

SC14-7381-03



Note

Before using this information and the product it supports, be sure to read the general information under

Fourth edition (November 2018)

This edition applies to Version 5 Release 2 of IBM Enterprise COBOL for z/OS (program number 5655-W32) and to
all subsequent releases and modifications until otherwise indicated in new editions. Make sure that you are using
the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.

© Copyright IBM Corporation 1991, 2018.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Tables ix
Preface. . . Xi
About this information. . . xi
How to read the syntax dlagrams . . xi
IBM extensions . . xiv
Obsolete language elements . Xiv
DBCS notation . XV
Acknowledgment . XV
Additional documentation and support . xvi
Summary of changes . . . Xvi
Version 5 Release 2 with PTF for APAR PI85868
installed . . . Xvi
Version 5 Release 2 . xvi
How to send your comments . . Xvii
Accessibility . . xvii
Interface information. . xvii
Keyboard navigation . xviii
Accessibility of this 1nforrnat10n . xviii
IBM and accessibility . xviii
Part 1. COBOL language structure. . 1
Chapter 1. Characters. . 3
Chapter 2. Character sets and code
pages. .. . 5
Character encoding units . .5
Chapter 3. Character-strings . .9
COBOL words with single-byte characters .9
User-defined words with DBCS characters . . 10
User-defined words. . 10
System-names .12
Function-names . .12
Reserved words . .12
Figurative constants .13
Special registers . . 16
ADDRESS OF .17
DEBUG-ITEM .17
JNIENVPTR . . 19
LENGTH OF . . 19
LINAGE-COUNTER .20
RETURN-CODE. .21
SHIFT-OUT and SHIFT-IN .21
SORT-CONTROL .22
SORT-CORE-SIZE .22
SORT-FILE-SIZE . .23
SORT-MESSAGE .23
SORT-MODE-SIZE . .23
SORT-RETURN . .24
TALLY . .24
WHEN- COMPILED .25
XML-CODE .25

© Copyright IBM Corp. 1991, 2018

XML-EVENT . .
XML-INFORMATION .
XML-NAMESPACE.
XML-NNAMESPACE .
XML-NAMESPACE-PREFIX . .
XML-NNAMESPACE-PREFIX .
XML-NTEXT .
XML-TEXT

Literals . . .
Alphanumeric hterals .
Numeric literals .
DBCS literals .
National literals .

PICTURE character-strlngs

Comments. -

Chapter 4. Separators

Rules for separators

Chapter 5. Sections and paragraphs
Sentences, statements, and entries .

Entries .

Clauses.

Sentences .

Statements.

Phrases.

Chapter 6. Reference format

Sequence number area.

Indicator area.

Area A . .
Division headers
Section headers . . ..
Paragraph headers or paragraph names .
Level indicators (FD and SD) or level-numbers
(01 and 77) .
DECLARATIVES and END DECLARATIVES .
End program, end class, and end method
markers

Area B .
Entries, sentences statements clauses
Continuation lines .

Area A or Area B
Level-numbers
Comment lines .
Floating comment 1nd1cat0rs (*>)
Compiler-directing statements .
Compiler directives.
Debugging lines .
Pseudo-text
Blank lines

Chapter 7. Scope of names .
Types of names . .o
External and internal resources .

. 26
.31
.32
. 33
. 33
. 34
. 35
. 36
. 36
. 36
. 40
.41
. 42
. 45
. 45

. 47
.47

. 51
. 51
. 52
. 52
. 52
. 52
. 52

. 53
. 53
.53
. 54
. 54
. 54
. 54

. 55
. 55

. 55
. 56
. 56
. 56
. 58
. 58
. 58
. 59
. 59
. 59
. 59
. 60
. 60

. 61
. 61
. 63

iii



Resolution of names . 64
Chapter 8. Referencing data names,
copy libraries, and PROCEDURE
DIVISION names . 67
Uniqueness of reference . . 67
Qualification . . 67
Identical names . . . 68
References to COPY llbrarles . 68
References to PROCEDURE DIVISION names. . 68
References to DATA DIVISION names . 69
Condition-name . .72
Index-name .73
Index data item . .73
Subscripting . .73
Reference mod1f1cat1on . 76
Function-identifier . .79
Data attribute specification . . 80
Chapter 9. Transfer of control . . 81
Part 2. COBOL source unit
structure . 83
Chapter 10. COBOL program structure 85
Nested programs . 87
Conventions for program—names . 88
Chapter 11. COBOL class definition
structure . . 91
Chapter 12. COBOL method definition
structure . . 95
Part 3. Identification division . . 97
Chapter 13. IDENTIFICATION DIVISION 99
PROGRAM-ID paragraph . . 102
CLASS-ID paragraph . . 105
General rules . 105
Inheritance . . 105
FACTORY paragraph . 106
OBJECT paragraph . 106
METHOD-ID paragraph. . 106
Optional paragraphs . . 107
Part 4. Environment division 109
Chapter 14. Configuration section 111
SOURCE-COMPUTER paragraph. . 112
OBJECT-COMPUTER paragraph . . 112
SPECIAL-NAMES paragraph . . 114
ALPHABET clause . 117
SYMBOLIC CHARACTERS clause . 119
CLASS clause . . 120
CURRENCY SIGN Clause . 120

iv Enterprise COBOL for z/OS, V5.2 Language Reference

DECIMAL-POINT IS COMMA clause . . 122
XML-SCHEMA clause . 122
REPOSITORY paragraph . 123
General rules . . . 124
Identifying and referencmg a class . 125
Chapter 15. Input-Output section . . 127
FILE-CONTROL paragraph . 128
SELECT clause . . . 132
ASSIGN clause . . 132
RESERVE clause . 137
ORGANIZATION clause . 137
File organization . . 137
PADDING CHARACTER clause . . 139
RECORD DELIMITER clause . . 140
ACCESS MODE clause . . . 140
File organization and access modes . . 141
Access modes . .14
Relationship between data orgamzatlons and
access modes . 141
RECORD KEY clause. . . 142
ALTERNATE RECORD KEY clause . . 143
RELATIVE KEY clause . . 144
PASSWORD clause . 145
FILE STATUS clause . . 145
I-O-CONTROL paragraph . . 146
RERUN clause . . . 148
SAME AREA clause . . 149
SAME RECORD AREA clause . 150
SAME SORT AREA clause . . . 151
SAME SORT-MERGE AREA clause . . 151
MULTIPLE FILE TAPE clause . . 151
APPLY WRITE-ONLY clause . 151
Part 5. Data division . 153
Chapter 16. DATA DIVISION overview 155
FILE SECTION . . 156
WORKING-STORAGE SECTION . 157
LOCAL-STORAGE SECTION . . 158
LINKAGE SECTION . . 159
Data units . 159
File data . . 159
Program data . 160
Method data . 160
Factory data. . 160
Instance data . 160
Data relationships . . 160
Levels of data . . 161
Levels of data in a record descr1pt1on entry . 16l
Special level-numbers . 163
Indentation . . . 163
Classes and categorres of group 1tems . . 163
Classes and categories of data . . 164
Category descriptions . 166
Alignment rules . . 168
Character-string and item size. . 169
Signed data . . 170
Operational signs . . 170
Editing signs . 170



Chapter 17. DATA DIVISION--file

description entries .
FILE SECTION .
EXTERNAL clause
GLOBAL clause .
BLOCK CONTAINS clause .
RECORD clause
Format 1 .
Format 2 .
Format 3 . .
LABEL RECORDS clause
VALUE OF clause .
DATA RECORDS clause .
LINAGE clause.
LINAGE-COUNTER specral reglster
RECORDING MODE clause .
CODE-SET clause .

Chapter 18. DATA DIVISION--data

description entry .
Format 1 .
Format 2 .
Format 3 .
Level-numbers . .
BLANK WHEN ZERO clause .
EXTERNAL clause
GLOBAL clause
JUSTIFIED clause .
GROUP-USAGE clause .
OCCURS clause

Fixed-length tables

ASCENDING KEY and DESCENDING KEY

phrases
INDEXED BY phrase
Variable-length tables. . .
OCCURS DEPENDING ON clause .
PICTURE clause .
Symbols used in the PICTURE Clause
Character-string representation
Data categories and PICTURE rules .
PICTURE clause editing .
Simple insertion editing .
Special insertion editing .
Fixed insertion editing
Floating insertion editing .
Zero suppression and replacement edltmg
REDEFINES clause
REDEFINES clause cons1derat10ns
REDEFINES clause examples .
Undefined results .
RENAMES clause .
SIGN clause .
SYNCHRONIZED clause
Slack bytes . .
Slack bytes within records .
Slack bytes between records
USAGE clause . .
Computational items .
DISPLAY phrase
DISPLAY-1 phrase.

.17
. 176
. 176
. 177
. 177
. 179
. 179
. 180
. 180
. 181
. 182
. 182
. 182
. 184
. 184
. 185

. 187
. 187
. 187
. 188
. 188
. 190
. 190
. 191
. 191
. 192
. 193
. 194

. 195
. 196
. 197
. 198
. 200
. 201
. 205
. 206
. 212
. 213
. 214
. 214
. 215
. 216
. 218
. 219
. 220
. 221
. 221
. 223
. 225
. 227
. 227
. 229
. 230
. 232
. 234
. 235

FUNCTION-POINTER phrase .
INDEX phrase . Lo
NATIONAL phrase .
OBJECT REFERENCE phrase .
POINTER phrase . . .
PROCEDURE-POINTER phrase .
NATIVE phrase .

VALUE clause .

Format 1 .
Format 2 .
Format 3 . .

VOLATILE clause .

. 235
. 235
. 236
. 236
. 237
. 238
. 238
. 239
. 239
. 241
. 244
. 244

Part 6. Procedure division. . . . . 247

Chapter 19. Procedure division

structure e e e e e .. . 249
Requirements for a method procedure division . . 250
The PROCEDURE DIVISION header . 251
The USING phrase . 252
RETURNING phrase . . 254
References to items in the LINKAGE SECTION 254
Declaratives . . 255
Procedures . . 256
Arithmetic expressions . 257
Arithmetic operators . . 258
Conditional expressions . . 260
Simple conditions . . 260
Class condition . . . 260
Condition-name condltlon . . 262
Relation conditions . . 263
General relation conditions . . 264
Data pointer relation conditions . . 271
Procedure-pointer and function-pointer relatlon
conditions . . 272
Object-reference relatron condrtrons . . 273
Sign condition . . . 274
Switch-status condition . . 274
Complex conditions . . 275
Negated simple conditions . . 275
Combined conditions. . . 276
Abbreviated combined relatlon condltlons . 278
Statement categories . . 280
Imperative statements . 280
Conditional statements . . 282
Delimited scope statements. . 284
Explicit scope terminators . . 284
Implicit scope terminators . . 285
Compiler-directing statements . . 285
Statement operations . . 285
CORRESPONDING phrase . 285
GIVING phrase. . . 286
ROUNDED phrase . 287
SIZE ERROR phrases. . 287
Arithmetic statements . 288
Arithmetic statement operands . 288
Data manipulation statements . . 290
Input-output statements . . 290
Common processing facilities . . 291

Contents

v



Chapter 20. PROCEDURE DIVISION

statements . 299
ACCEPT statement . 300
Data transfer . . 300
System date-related 1nformat1on transfer . 301
DATE, DATE YYYYMMDD, DAY, DAY
YYYYDDD, DAY-OF-WEEK, and TIME. . 302
ADD statement. . 304
ALTER statement . . 307
Segmentation con51derat10ns . 307
CALL statement . 309
CANCEL statement . 317
CLOSE statement . . . 319
Effect of CLOSE statement on f11e types . 320
COMPUTE statement. .. . . 323
CONTINUE statement . 325
DELETE statement . 326
DISPLAY statement . 328
DIVIDE statement . . 331
ENTRY statement . . 336
EVALUATE statement . 337
Determining values . . 338
Comparing selection subjects and ob]ects . . 339
Executing the EVALUATE statement . 340
EXIT statement. L. . 341
Format 1 (simple) . . 341
Format 2 (program) . 342
Format 3 (method) . 343
Format 5 (inline-perform) . 343
Format 6 (procedure) . . 344
GOBACK statement . . 345
GO TO statement . . . 346
Unconditional GO TO . 346
Conditional GO TO . 346
Altered GO TO. . 347
IF statement. . . 348
Transferring control . 349
Nested IF statements . . 349
INITIALIZE statement . 350
INITIALIZE statement rules . 351
INSPECT statement . 353
Data flow . 360
Comparison cycle . . . 361
Example of the INSPECT statement . 361
INVOKE statement . 363
Interoperable data types for COBOL and ]ava 368
Miscellaneous argument types for COBOL and
Java . Lo . 369
MERGE statement . . 371
MERGE special reglsters . 375
Segmentation considerations . 375
MOVE statement . . 376
Elementary moves. . . 377
Moves involving file record areas. . 381
Group moves . 381
MULTIPLY statement. . 383
OPEN statement . 386
General rules . 388
OPEN statement notes . 389
PERFORM statement . . . 391
Basic PERFORM statement . . 392

vi Enterprise COBOL for z/OS, V5.2 Language Reference

PERFORM with TIMES phrase
PERFORM with UNTIL phrase
PERFORM with VARYING phrase

READ statement .

Processing files with Varlable length records or
multiple record descriptions

Sequential access mode .

Random access mode.

Dynamic access mode

READ statement notes

RELEASE statement .

RETURN statement

REWRITE statement .

Reusing a logical record .
Sequential files .

Indexed files

Relative files.

SEARCH statement
Serial search.
Binary search . .
Search statement Con51derat10ns .

SET statement . .
Format 1: SET for basm table handhng
Format 2: SET for adjusting indexes .
Format 3: SET for external switches .
Format 4: SET for condition-names . ..
Format 5: SET for USAGE IS POINTER data
items . .
Format 6: SET for procedure pomter and
function-pointer data items.
Format 7: SET for USAGE OBJECT REFERENCE
data items

SORT statement
SORT special reg1sters
Segmentation considerations

START statement .

Indexed files
Relative files.
STOP statement
STRING statement.
Data flow
Example of the STRING statement

SUBTRACT statement ..

UNSTRING statement
Data flow .

Values at the end of executlon of the
UNSTRING statement .
Example of the UNSTRING statement .

WRITE statement . . L.
WRITE for sequential flles .

WRITE for indexed files .
WRITE for relative files .

XML GENERATE statement .
Nested XML GENERATE or XML PARSE
statements .
Operation of XML GENERATE
Format conversion of elementary data .
Trimming of generated XML data
XML element name and attribute name
formation. .

XML PARSE statement .

. 393
. 394
. 395
. 402

. 404
. 405
. 407
. 407
. 407
. 409
. 411
. 413
. 414
. 414
. 414
. 415
. 416
. 417
. 420
. 422
. 423
. 423
. 424
. 425
. 425

. 426

. 427

. 428
. 430
. 438
. 438
. 440
. 441
. 442
. 443
. 444
. 446
. 447
. 449
. 452
. 456

. 458
. 458
. 460
. 465
. 467
. 467
. 468

. 476
. 476
. 477
. 479

. 479
. 480



Nested XML GENERATE or XML PARSE

statements . 484

Control flow. . 485
Part 7. Intrinsic functions . . 487
Chapter 21. Intrinsic functions . . 489
Specifying a function . . . 489

Function definition and evaluatlon . . 490

Types of functions. . 490

Rules for usage. . 491

Arguments . . 492

Examples. . . 494

ALL subscripting . . 494
Function definitions . . 496
ACOS . . 499
ANNUITY . 500
ASIN . . 501
ATAN . . 501
CHAR. . 501
COs . . 502
CURRENT- DATE . 502
DATE-OF-INTEGER . . 503
DATE-TO-YYYYMMDD . . 504
DAY-OF-INTEGER . 505
DAY-TO-YYYYDDD . . 505
DISPLAY-OF . 506
FACTORIAL. . 508
INTEGER . . 508
INTEGER-OF-DATE . . 508
INTEGER-OF-DAY . 509
INTEGER-PART . 510
LENGTH. . 510
LOG . 511
LOG10 . 512
LOWER-CASE . . 512
MAX . . 513
MEAN . 514
MEDIAN. . 514
MIDRANGE. . 515
MIN . 515
MOD . . . 516
NATIONAL-OF . 517
NUMVAL . 517
NUMVAL-C. . 519
ORD . 520
ORD-MAX . . 521
ORD-MIN . 521
PRESENT-VALUE . . 522
RANDOM . 522
RANGE . . 523
REM . 524
REVERSE. . 524
SIN. . 525
SQRT . . . 525
STANDARD- DEVIATION . . 526
SUM . . 526
TAN . . . . 527
ULENGTH . . 527
UPrOos . . 528

UPPER-CASE . 528
USUBSTR . 529
USUPPLEMENTARY . 530
UVALID . . 531
UWIDTH. . 533
VARIANCE . . . 533
WHEN-COMPILED . . 534
YEAR-TO-YYYY . 535
Part 8. Compiler-directing
statements and compiler
directives . 537
Chapter 22. Compller-dlrectmg
statements . 539
BASIS statement . . 539
CBL (PROCESS) statement . 540
*CONTROL (*CBL) statement . . 540
Source code listing . 542
Object code listing. . 542
Storage map listing . 542
COPY statement .. . . 542
Comparison and replacement rules . . 546
Comparison and replacement examples . 548
DELETE statement . 552
EJECT statement . 553
ENTER statement . . 554
INSERT statement . . 554
READY or RESET TRACE statement . 555
REPLACE statement . . 555
Comparison rules . . 557
Replacement rules. . 558
SERVICE LABEL statement. . 560
SERVICE RELOAD statement . . 560
SKIP statements . 560
TITLE statement . 561
USE statement . . 562
EXCEPTION/ ERROR declaratlve . 562
Precedence rules for nested programs . . 564
DEBUGGING declarative . 564
Chapter 23. Compiler directives . 567
CALLINTERFACE. . 567
Part 9. Appendixes . . 569
Appendix A. IBM extensions . . 571
Appendix B. Compiler limits . . 583
Appendix C. EBCDIC and ASCII
collating sequences . 587
EBCDIC collating sequence. . 587
US English ASCII code page . 590

Contents

vii



Appendix D. Source language
debugging.

Debugging lines

Debugging sections

DEBUG-ITEM special reglster
Activate compile-time switch .

Activate object-time switch .

Appendix E. Reserved words

Appendix F. ASCII considerations.
ENVIRONMENT DIVISION

OBJECT-COMPUTER and SPECIAL- NAMES

paragraphs .

FILE-CONTROL paragraph

I-O-CONTROL paragraph .
DATA DIVISION .

FD Entry: CODE-SET clause

Data descrlptlon entries .
PROCEDURE DIVISION

. 595
. 595
. 595
. 596
. 596
. 59

. 599

. 613
. 613

. 613
. 614
. 614
. 614
. 615
. 615
. 615

viii Enterprise COBOL for z/0OS, V5.2 Language Reference

Appendix G. Industry specifications

Appendix H. 2002 COBOL Standard
features implemented in Enterprise
COBOL Version 5

Notices . . e
Programming interface 1nf0rmat10n .
Trademarks .

Glossary

List of resources .
Enterprise COBOL for z/OS
Related publications .

Index .

617

. 619

. 625
. 626
. 626

. 629
. 655
. 655
. 655

. 657



Tables

@

*® N U1

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

22.
23.

24.

25.
26.

27.

28.

29.

30.
31.

32.
33.

Basic COBOL character set .
DEBUG-ITEM subfield contents . .
XML events and associated special register
contents

Separators . .o
Meanings of env1ronment names.

Types of files

Classes and categories of group 1tems
Class, category, and usage of elementary
data items

Classes and categorles of functlons
Classes and categories of literals .

Where national group items are processed as
groups. . .
PICTURE clause symbol meamngs .
Numeric types . o

Data categories . .

SYNCHRONIZE clause effect on other
language elements. .

Relation test references for condltlon-names
Binary and unary operators

Valid arithmetic symbol pairs . .
Valid forms of the class condition for
different types of data items . .o
Relational operators and their meanings
Comparisons involving data items and
literals .

Comparisons 1nvolv1ng flguratlve constants
Comparisons for index-names and index
data items

Permissible comparisons for USAGE
POINTER, NULL, and ADDRESS OF .
Logical operators and their meanings
Combined conditions—permissible element
sequences

Logical operators and evaluat10n results of
combined conditions .

Abbreviated combined condltlons
permissible element sequences
Abbreviated combined conditions:
unabbreviated equivalents .

Exponentiation size error conditions

How the composite of operands is
determined . . .

File status key values and meanlngs
Sequential files and CLOSE statement
phrases .

© Copyright IBM Corp. 1991, 2018

.3

.18

.27
.. 47
. 116
. 128

164

. 165
. 165
. 165

. 193
. 202
. 207
. 213

. 225

243

. 258
. 259

. 262

265

. 266

267

. 271

. 272

275

. 276

. 277

. 279

. 280

287

. 289

292

. 321

34.

35.

36.

37.
38.
39.

40.

41.

42.
43.
44.
45.

46.

47.

48.

49.

50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.

Indexed and relative file types and CLOSE
statement phrases . .
Line-sequential file types and CLOSE
statement phrases .

Meanings of key letters for sequentlal f11e
types

Treatment of the content of data 1tems
Interoperable Java and COBOL data types
Interoperable COBOL and Java array and
String data types .

COBOL miscellaneous argument types and
corresponding Java types . .
COBOL literal argument types and
corresponding Java types

Valid and invalid elementary moves
Availability of a file . .
Permissible statements for sequentlal f11es
Permissible statements for indexed and
relative files . .

Permissible statements for 11ne sequentlal
files .
Sending and rece1v1ng f1elds for format-l
SET statement . . .
Sending and receiving f1elds for format-5
SET statement . .o

Character positions exammed when
DELIMITED BY is not specified .
Meanings of environment-names in
SPECIAL NAMES paragraph .

Table of functions.

ULENGTH function of character a

Byte validity for UTF-8 data .
Encoding unit validity for UTF-16 data
Execution of debugging declaratives .

IBM extension language elements
Compiler limits

EBCDIC collating sequence

ASCII collating sequence

Reserved words

2002 COBOL Standard features 1mplemented
in V5 that will potentially affect existing
programs . .

2002 COBOL Standard features 1mplemented
in V5 that will not affect existing programs

. 321

. 321

. 321

359
368

. 369

. 370

. 370

380

. 389

389

. 390
. 390
. 424
. 427
. 457
. 466
. 497

. 528
. 532

532

. 565
. 571
. 583
. 587
. 590
. 599

. 619

. 620

ix



X  Enterprise COBOL for z/OS, V5.2 Language Reference



Preface

About this information

This information describes the COBOL language supported by IBM® Enterprise
COBOL for z/0S®, referred to in this information as Enterprise COBOL.

See the IBM Enterprise COBOL for z/OS Programming Guide for information and
examples that will help you write, compile, and debug programs and classes.

How to read the syntax diagrams
Throughout the document, diagrams illustrate Enterprise COBOL syntax.

Use the following description to read the syntax diagrams in this document:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The >>--- symbol indicates the beginning of a syntax diagram.
The ---> symbol indicates that the syntax diagram is continued on the next line.

The >--- symbol indicates that the syntax diagram is continued from the
previous line.

The --->< symbol indicates the end of a syntax diagram.

Diagrams of syntactical units other than complete statements start with the >---
symbol and end with the ---> symbol.

* Required items appear on the horizontal line (the main path).

Format

»»>—STATEMENT—required item ><

* Optional items appear below the main path.

Format

»»—STATEMENT

A\
A

|—opt1‘ona\1 1’1:ernJ

* When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

© Copyright IBM Corp. 1991, 2018 xi




xii

Format

\4
A

»—STATEMENT—Erequired choice 1
required choice 2—|

If choosing one of the items is optional, the entire stack appears below the main
path.

Format

Y
A

»>—STATEMENT
i:optiona] choice 1:‘
optional choice 2

* An arrow returning to the left above the main line indicates an item that can be
repeated.

Format

A\
A

»»—STATEMENT——repeatable item

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Variables appear in italic lowercase letters (for example, parmx). They represent
user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

Enterprise COBOL for z/0S, V5.2 Language Reference



Format

(1) @ |
»»—STATEMENT identifier-1
|:Ziter‘al-lg (3)
L‘ item 1 |7

(4)

v

»—Y T0—identifier-3 B ]
ROUNDED

(5)

LTJ—SIZE ERROR—imperative—statement—]—|
ON

Yy
y
A

(6)

\\END-STATEMENT

item 1:
identifier-2 }
litergl-2——
arithmetic-expression-1—

Notes:
1 The STATEMENT keyword must be specified and coded as shown.

2 This operand is required. Either identifier-1 or literal-1 must be coded.

3 Theitem 1 fragment is optional; it can be coded or not, as required by the
application. If item 1 is coded, it can be repeated with each entry separated
by one or more COBOL separators. Entry selections allowed for this
fragment are described at the bottom of the diagram.

4  The operand identifier-3 and associated TO keyword are required and can
be repeated with one or more COBOL separators separating each entry.
Each entry can be assigned the keyword ROUNDED.

5  The ON SIZE ERROR phrase with associated imperative-statement-1 is
optional. If the ON SIZE ERROR phrase is coded, the keyword ON is
optional.

6  The END-STATEMENT keyword can be coded to end the statement. It is
not a required delimiter.

Preface  xiii



IBM extensions
IBM extensions generally add features, syntax, or rules that are not specified in the
ANSI and ISO COBOL standards that are listed in [Appendix G, “Industry|

[specifications,” on page 617.In this document, the term 85 COBOL Standard refers
to those standards.

Extensions range from minor relaxation of rules to major capabilities, such as XML
support, Unicode support, object-oriented COBOL for Java  interoperability, and
DBCS character handling.

The rest of this document describes the complete language without identifying
extensions. You will need to review |[Appendix A, “IBM extensions,” on page 571
and the Compiler options in the Enterprise COBOL Programming Guide if you want to
use only standard language elements.

Obsolete language elements

Obsolete language elements are elements that are categorized as obsolete in the 85
COBOL Standard. Those elements are not part of the 2002 COBOL Standard.

This does not imply that IBM will remove the 85 COBOL Standard obsolete
elements from a future release of Enterprise COBOL.

The following language elements are categorized as obsolete by the 85 COBOL
Standard:

* ALTER statement

* AUTHOR paragraph

* Comment entry

* DATA RECORDS clause

* DATE-COMPILED paragraph

* DATE-WRITTEN paragraph

* DEBUG-ITEM special register

* Debugging sections

* ENTER statement

* GO TO without a specified procedure-name
* INSTALLATION paragraph

* LABEL RECORDS clause

* MEMORY SIZE clause

* MULTIPLE FILE TAPE clause

* RERUN clause

* REVERSED phrase

* SECURITY paragraph

* Segmentation module

» STORP literal format of the STOP statement
* USE FOR DEBUGGING declarative
* VALUE OF clause

* The figurative constant ALL literal with a length greater than one, when the
figurative constant is associated with a numeric or numeric-edited item

xiv Enterprise COBOL for z/OS, V5.2 Language Reference



DBCS notation

Double-Byte Character Set (DBCS) strings in literals, comments, and user-defined
words are delimited by shift-out and shift-in characters.

In this document, the shift-out delimiter is represented pictorially by the <
character, and the shift-in character is represented pictorially by the > character.
The single-byte EBCDIC codes for the shift-out and shift-in delimiters are X'0E' and
X'OF', respectively.

The <> symbol denotes contiguous shift-out and shift-in characters. The >< symbol
denotes contiguous shift-in and shift-out characters.

DBCS characters are shown in this form: D1D2D3. Latin alphabet characters in
DBCS representation are shown in this form: .A.B.C. The dots that precede the
letters represent the hexadecimal value X'42'.

Notes:

* In EBCDIC DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are delimited by shift-out and shift-in characters.

* In ASCII DBCS data containing mixed single-byte and double-byte characters,
double-byte character strings are not delimited by shift-out and shift-in
characters.

Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do so.
However, all such organizations are requested to reproduce this section as
part of the introduction to the document. Those using a short passage, as in a
book review, are requested to mention COBOL in acknowledgment of the
source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection there with.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

The authors and copyright holders of copyrighted material:

* FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for
the UNIVAC(R) I and II, Data Automation Systems copyrighted 1958, 1959,
by Sperry Rand Corporation

* IBM Commercial Translator, Form No. F28-8013, copyrighted 1959 by IBM
* FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

Preface XV



have specifically authorized the use of this material in whole or in part, in the
COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

Note: The Conference on Data Systems Languages (CODASYL), mentioned above,
is no longer in existence.

Additional documentation and support

Enterprise COBOL provides Portable Document Format (PDF) versions of the
entire library for this version and for previous versions on the product site at
|www.ibm.c0m/ software/awdtools/cobol /zos/library / I These documents are also
available in Japanese.

Support information is also available on the product site at |http://www.ibm.com/
[support/entry /portal /Overview /Software /Rational / Enterprise_ COBOL_for_z~OS

Summary of changes

xvi

This section lists the key changes that have been made to this document for
Enterprise COBOL for z/OS Version 5 Release 2 and Version 5 Release 2 with PTFs
installed. The latest technical changes are marked within >| and |< in the HTML
version, or marked by vertical bars (1) in the left margin in the PDF version.

Version 5 Release 2 with PTF for APAR PI85868 installed

* A new VSAMOPENFS compiler option is added. It affects the user file status
reported from successful OPEN statements on VSAM files (“OPEN statement|
fnotes” on page 389).

Version 5 Release 2

* New keywords LEADING and TRAILING are added to the REPLACING phrase
of the COPY statement and the REPLACE statement to improve partial-word
replacement operations. The new keywords are part of the 2002 COBOL
Standard (“COPY statement” on page 542| and [“/REPLACE statement” on page]
B53).

* The new CALLINTERFACE directive specifies the interface convention for CALL
and SET statements. The convention specified stays in effect until another
CALLINTERFACE directive is encountered in the source. The CALLINTERFACE
directive has three suboptions: DLL, DYNAMIC, and STATIC.

* The EXIT statement includes the following new formats, which provide a
structured way to exit without using a GO TO statement. The new formats are
part of the 2002 COBOL Standard.

— [Format 5, EXIT PERFORM statement] for exiting from an inline PERFORM
statement

— [Format 6, EXIT PARAGRAPH or EXIT SECTION statement] for exiting from
the middle of a paragraph or exiting from a section respectively

* A new format of the SORT statement, the table SORT statement, arranges table
elements in a user-specified sequence. It is part of the 2002 COBOL Standard
(“SORT statement” on page 430).

* A new compiler option, VLR(COMPAT | STANDARD), affects the READ
statement processing of variable-length records (“READ statement notes” on|

[page 40%.

Enterprise COBOL for z/OS, V5.2 Language Reference


http://www.ibm.com/software/awdtools/cobol/zos/library/
http://www.ibm.com/software/awdtools/cobol/zos/support/
http://www.ibm.com/software/awdtools/cobol/zos/support/

* XML PARSE COMPAT support is restored. You can specify the
XMLPARSE(XMLSS | COMPAT) compiler option to choose between parsing with
the z/OS XML System Services parser, or with the compatibility-mode COBOL
XML parser from the COBOL library. It can ease your migration to the
Enterprise COBOL V5 compiler.

+ Enhancements are made to the [“XML GENERATE statement” on page 468

— The WHEN phrase of the XML GENERATE statement can be omitted to
allow unconditional suppression of an item when generating XML output. If
the WHEN phrase is omitted, that item can be a group data item.

— A new keyword CONTENT is added to the generic-suppression-phrase to
limit suppression to only TYPE IS CONTENT items.

* A new keyword VOLATILE is added to the format 1 data description entry. The
VOLATILE clause indicates that a data item's value can be modified or
referenced in ways that the compiler cannot detect, such as by a Language
Environment® (LE) condition handler routine or by some other asynchronous
process or thread. Thus, optimization is restricted for the data item
[clause” on page 244).

How to send your comments

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this document or any other
documentation for this product, contact us in one of the following ways:

+ Use the Online Readers' Comments Form at fwww.ibm.com /software /awdtools /|

* Send your comments to the following address: compinfo@cn.ibm.com.

Be sure to include the name of the document, the publication number of the
document, the version of the product, and, if applicable, the specific location (for
example, page number or section heading) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way that IBM believes appropriate without
incurring any obligation to you.

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use software products successfully. The accessibility features in
z/0OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS are:

* Interfaces that are commonly used by screen readers and screen-magnifier
software

* Keyboard-only navigation
* Ability to customize display attributes such as color, contrast, and font size

Interface information

Assistive technology products work with the user interfaces that are found in
z/0S. For specific guidance information, see the documentation for the assistive
technology product that you use to access z/OS interfaces.

Preface  XVii


http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

xviii

Keyboard navigation

Users can access z/OS user interfaces by using TSO/E or ISPF. For information
about accessing TSO/E or ISPF interfaces, see the following publications:

* |2/OS TSO/E Primer|
* |/OS TSO/E User’s Guide|
* |/OS ISPF User's Guide Volume I

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this information

The English-language XHTML format of this information that will be provided in
the |IBM Knowledge Center| at www.ibm.com/support/knowledgecenter/en/
5565G3_5.2.0/welcome.html is accessible to visually impaired individuals who use
a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you
must set the screen reader to speak all punctuation.

IBM and accessibility

See the [[BM Human Ability and Accessibility Center|at www.ibm.com/able for
more information about the commitment that IBM has to accessibility.

Enterprise COBOL for z/0OS, V5.2 Language Reference


http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4p120
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ikj4c240/APPENDIX1.3
http://publib.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/ispzug70
https://www.ibm.com/support/knowledgecenter/en/SS6SG3_5.2.0/welcome.html
http://www.ibm.com/able

Part 1. COBOL language structure

© Copyright IBM Corp. 1991, 2018



2 Enterprise COBOL for z/0OS, V5.2 Language Reference



Chapter 1. Characters

© Copyright IBM Corp. 1991, 2018

The most basic and indivisible unit of the COBOL language is the character. The
basic character set includes the letters of the Latin alphabet, digits, and special
characters.

In the COBOL language, individual characters are joined to form character-strings
and separators. Character-strings and separators, then, are used to form the words,
literals, phrases, clauses, statements, and sentences that form the language.

The basic characters used in forming character-strings and separators in source
code are shown in [Table 1

For certain language elements, the basic character set is extended with the EBCDIC
Double-Byte Character Set (DBCS).

DBCS characters can be used in forming user-defined words.

The content of alphanumeric literals, comment lines, and comment entries can
include any of the characters in the computer's compile-time character set, and can
include both single-byte and DBCS characters.

Runtime data can include any characters from the runtime character set of the
computer. The runtime character set of the computer can include alphanumeric
characters, DBCS characters, and national characters. National characters are
represented in UTF-16, a 16-bit encoding form of Unicode.

When the NSYMBOL (NATIONAL) compiler option is in effect, literals identified
by the opening delimiter N" or N' are national literals and can contain any
single-byte or double-byte characters, or both, that are valid for the compile-time
code page in effect (either the default code page or the code page specified for the
CODEPAGE compiler option). Characters contained in national literals are
represented as national characters at run time.

For details, see [“User-defined words with DBCS characters” on page 10 |[“DBCS|
[literals” on page 41,and [“National literals” on page 42

Table 1. Basic COBOL character set. This table lists basic COBOL character set.

Character Meaning
Space
+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Forward slash or solidus
= Equal sign

$ Currency sign'

, Comma

; Semicolon

Decimal point or period




4

Table 1. Basic COBOL character set (continued). This table lists basic COBOL character

set.
Character Meaning
n Quotation mark?
: Apostrophe
( Left parenthesis
) Right parenthesis
> Greater than
< Less than
Colon
- Underscore
A-Z Alphabet (uppercase)
a-z Alphabet (lowercase)
0-9 Numeric characters
1. The currency sign is the character with the value X'5B', regardless of the code page in
effect. The assigned graphic character can be the dollar sign or a local currency sign.
2. The quotation mark is the character with the value X'7F".

Enterprise COBOL for z/0OS, V5.2 Language Reference



Chapter 2. Character sets and code pages

A character set is a set of letters, numbers, special characters, and other elements
used to represent information. The term code page refers to a coded character set.

A character set is independent of a coded representation. A coded character set is the
coded representation of a set of characters, where each character is assigned a
numerical position, called a code point, in the encoding scheme. ASCII and EBCDIC
are examples of types of coded character sets. Each variation of ASCII or EBCDIC
is a specific coded character set.

Each code page that IBM defines is identified by a code page name, for example
IBM-1252, and a coded character set identifier (CCSID), for example 1252.

Enterprise COBOL provides the CODEPAGE compiler option for specifying a
coded character set for use at compile time and run time for code-page-sensitive
elements, such as:

* The encoding of literals in the source program

* The default encoding for data items described with USAGE DISPLAY or
DISPLAY-1

* The default encoding for XML parsing and XML generation

Some COBOL operations can override the encoding established by the CODEPAGE

compiler option, for example:

* The DISPLAY-OF and NATIONAL-OF intrinsic functions can specify a CCSID as
argument-2.

* The XML PARSE and XML GENERATE statements can specify a code page in
the ENCODING phrase.

For further details about the CODEPAGE compiler option, see CODEPAGE in the
Enterprise COBOL Programming Guide.

If you do not specify a code page, the default is code page IBM-1140, CCSID 1140.

The encoding of national data is not affected by the CODEPAGE compiler option.
The encoding for national literals and data items described with usage NATIONAL
is UTF-16BE (big endian), CCSID 1200. A reference to UTF-16 in this document is a
reference to UTF-16BE.

Character encoding units

A character encoding unit (or encoding unit) is the unit of data that COBOL treats as
a single character at run time. In this information, the terms character and character
position refer to a single encoding unit.

The size of an encoding unit for data items and literals depends on the USAGE
clause of the data item or the category of the literal as follows:

* For data items described with USAGE DISPLAY and for alphanumeric literals,
an encoding unit is 1 byte, regardless of the code page used and regardless of
the number of bytes used to represent a given graphic character.

© Copyright IBM Corp. 1991, 2018 5



6

» For data items described with USAGE DISPLAY-1 (DBCS data items) and for
DBCS literals, an encoding unit is 2 bytes.

* For data items described with USAGE NATIONAL and for national literals, an
encoding unit is 2 bytes.

The relationship between a graphic character and an encoding unit depends on the
type of code page used for the data item or literal. See the following types of
runtime code pages:

* Single-byte EBCDIC
+ EBCDIC DBCS
* Unicode UTF-16

See the following sections for the details of each type of code page.

Also see the section Specifying the encoding in the Enterprise COBOL Programming
Guide.

Single-byte code pages

You can use a single-byte EBCDIC code page in data items described with USAGE
DISPLAY and in literals of category alphanumeric. An encoding unit is 1 byte and
each graphic character is represented in 1 byte. For these data items and literals,
you need not be concerned with encoding units.

EBCDIC DBCS code pages
USAGE DISPLAY

You can use a mixture of single-byte and double-byte EBCDIC characters in data
items described with USAGE DISPLAY and in literals of category alphanumeric.
Double-byte characters must be delimited by shift-out and shift-in characters. An
encoding unit is 1 byte and the size of a graphic character is 1 byte or 2 bytes.

When alphanumeric data items or literals contain DBCS data, programmers are
responsible for ensuring that operations do not unintentionally separate the
multiple encoding units that form a graphic character. Care should be taken with
reference modification, and truncation during moves should be avoided. The
COBOL runtime system does not check for a split between the encoding units that
form a graphic character or for the loss of shift-out or shift-in codes.

To avoid problems, you can convert alphanumeric literals and data items described
with usage DISPLAY to national data (UTF-16) by moving the data items or literals
to data items described with usage NATIONAL or by using the NATIONAL-OF
intrinsic function. You can then perform operations on the national data with less
concern for splitting graphic characters. You can convert the data back to USAGE
DISPLAY by using the DISPLAY-OF intrinsic function.

USAGE DISPLAY-1

You can use double-byte characters of an EBCDIC DBCScode page in data items
described with USAGE DISPLAY-1 and in literals of category DBCS. An encoding
unit is 2 bytes and each graphic character is represented in a single 2-byte
encoding unit. For these data items and literals, you need not be concerned with
encoding units.

Enterprise COBOL for z/0OS, V5.2 Language Reference



Unicode UTF-16

You can use UTF-16 in data items described with USAGE NATIONAL. National
literals are stored as UTF-16 characters regardless of the code page used for the
source program. An encoding unit for data items of usage NATIONAL and
national literals is 2 bytes.

For most of the characters in UTF-16, a graphic character is one encoding unit.
Characters converted to UTF-16 from an EBCDIC, ASCII, or EUC code page are
represented in one UTF-16 encoding unit. Some of the other graphic characters in
UTF-16 are represented by a surrogate pair or a combining character sequence. A
surrogate pair consists of two encoding units (4 bytes). A combining character
sequence consists of a base character and one or more combining marks or a
sequence of one or more combining marks (4 bytes or more, in 2-byte increments).
In data items of usage NATIONAL, each 2-byte encoding unit is treated as a
character.

When national data contains surrogate pairs or combining character sequences,
programmers are responsible for ensuring that operations on national characters do
not unintentionally separate the multiple encoding units that form a graphic
character. Care should be taken with reference modification, and truncation during
moves should be avoided. The COBOL runtime system does not check for a split
between the encoding units that form a graphic character.

Chapter 2. Character sets and code pages 7



8 Enterprise COBOL for z/0OS, V5.2 Language Reference



Chapter 3. Character-strings

A character-string is a character or a sequence of contiguous characters that forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A
character-string is delimited by separators.

A separator is a string of contiguous characters used to delimit character strings.
Separators are described in detail under [Chapter 4, “Separators,” on page 47,

Character strings and certain separators form text words. A text word is a character
or a sequence of contiguous characters (possibly continued across lines) between
character positions 8 and 72 inclusive in source text, library text, or pseudo-text.
For more information about pseudo-text, see [“Pseudo-text” on page 60,

Source text, library text, and pseudo-text can be written in single-byte EBCDIC
and, for some character-strings, DBCS. (The compiler cannot process source code
written in ASCII or Unicode.)

You can use single-byte and double-byte character-strings to form the following
items:

« COBOL words
e Literals
* Comment text

You can use only single-byte characters to form PICTURE character-strings.

COBOL words with single-byte characters

A COBOL word is a character-string that forms a user-defined word, a
system-name, or a reserved word. The maximum size of a COBOL user-defined
word is 30 bytes. The number of characters that can be specified depends on the
code page indicated by the compile-time locale.

Except for arithmetic operators and relation characters, each character of a COBOL
word is selected from the following set:

* Latin uppercase letters A through Z
* Latin lowercase letters a through z
* digits 0 through 9

* - (hyphen)

* _ (underscore)

The hyphen cannot appear as the first or last character in such words. The
underscore cannot appear as the first character in such words. Most user-defined
words (all except section-names, paragraph-names, priority-numbers, and
level-numbers) must contain at least one alphabetic character. Priority numbers and
level numbers need not be unique; a given specification of a priority-number or
level-number can be identical to any other priority-number or level-number.

In COBOL words (but not in the content of alphanumeric, DBCS, and national
literals), each lowercase single-byte alphabetic letter is considered to be equivalent
to its corresponding single-byte uppercase alphabetic letter.

© Copyright IBM Corp. 1991, 2018 9



The following rules apply for all COBOL words:
* A reserved word cannot be used as a user-defined word or as a system-name.

¢ The same COBOL word, however, can be used as both a user-defined word and
as a system-name. The classification of a specific occurrence of a COBOL word is
determined by the context of the clause or phrase in which it occurs.

User-defined words with DBCS characters

There are the rules for forming user-defined words with DBCS characters.

The rules are:

Contained characters
DBCS user-defined words can contain only double-byte characters, and
must contain at least one DBCS character that is not in the set A through Z,
a through z, 0 through 9, hyphen, and underscore (DBCS representation of
these characters has X'42' in the first byte).

DBCS user-defined words can contain characters that correspond to
single-byte EBCDIC characters and those that do not correspond to
single-byte EBCDIC characters. DBCS characters that correspond to
single-byte EBCDIC characters follow the normal rules for COBOL
user-defined words; that is, the characters A - Z, a - z, 0 - 9, the hyphen (-),
and the underscore (_) are allowed. The hyphen cannot appear as the first
or last character. The underscore cannot appear as the first character. Any
of the DBCS characters that have no corresponding single-byte EBCDIC
character can be used in DBCS user-defined words.

Uppercase and lowercase letters
In COBOL words, each lowercase single-byte encoded character "a"
through "z" is considered to be equivalent to its corresponding single-byte
encoded uppercase character. DBCS-encoded uppercase and lowercase
letters are not equivalent.

Value range
DBCS user-defined words can contain characters whose values range from
X'41" to X'FE' for both bytes.

Maximum length
14 characters

Continuation
Words formed with DBCS characters cannot be continued across lines.

Use of shift-out and shift-in characters
DBCS user-defined words begin with a shift-out character and end with a
shift-in character.

User-defined words

10

A user-defined word is a COBOL word that must be supplied by the user to satisfy
the format of a clause or statement.

The following sets of user-defined words are supported. The second column
indicates whether DBCS characters are allowed in words of a given set.

User-defined word DBCS characters allowed?

Alphabet-name Yes

Enterprise COBOL for z/OS, V5.2 Language Reference



User-defined word DBCS characters allowed?

Class-name (of data) Yes
Condition-name Yes
Data-name Yes
File-name Yes
Index-name Yes

Level-numbers: 0149, 66, 77, 88 No

Library-name No
Mnemonic-name Yes
Object-oriented class-name No
Paragraph-name Yes
Priority-numbers: 00-99 No
Program-name No
Record-name Yes
Section-name Yes
Symbolic-character Yes
Text-name No
XML-schema-name Yes

The maximum length of a user-defined word is 30 bytes, except for level-numbers
and priority-numbers. Level-numbers and priority numbers must each be a
one-digit or two-digit integer.

A given user-defined word can belong to only one of these sets, except that a given
number can be both a priority-number and a level-number. Each user-defined
word within a set must be unique, except for priority-numbers and level-numbers
and except as specified in [Chapter 8, “Referencing data names, copy libraries, and|
[PROCEDURE DIVISION names,” on page 67

The following types of user-defined words can be referenced by statements and
entries in the program in which the user-defined word is declared:

* Paragraph-name
* Section-name

The following types of user-defined words can be referenced by any COBOL
program, provided that the compiling system supports the associated library or
other system and that the entities referenced are known to that system:

¢ Library-name

¢ Text-name

The following types of names, when they are declared within a configuration
section, can be referenced by statements and entries in the program that contains
the configuration section or in any program contained within that program:

* Alphabet-name
¢ (Class-name
¢ Condition-name

* Mnemonic-name

Chapter 3. Character-strings 11



* Symbolic-character

¢ XML-schema-name

The function of each user-defined word is described in the clause or statement in
which it appears.

System-names

A system-name is a character string that has a specific meaning to the system.

There are three types of system-names:
* Computer-name
* Language-name

* Implementor-name

There are four types of implementer-names:
* Environment-name

* External-class-name

» External-fileid

* Assignment-name

The meaning of each system-name is described with the format in which it
appears.

Computer-name can be written in DBCS characters, but the other system-names
cannot.

Function-names

A function-name specifies the mechanism provided to determine the value of an
intrinsic function.

The same word, in a different context, can appear in a program as a user-defined
word or a system-name. For a list of function-names and their definitions, see
[Table 51 on page 497}

Reserved words

A reserved word is a character-string with a predefined meaning in a COBOL source
unit.

Reserved words are listed in |[Appendix E, “Reserved words,” on page 599 There
are six types of reserved words:

* Keywords

* Optional words

* Figurative constants

* Special character words
* Special object identifiers
* Special registers

12 Enterprise COBOL for z/OS, V5.2 Language Reference



Keywords
Keywords are reserved words that are required within a given clause,
entry, or statement. Within each format, such words appear in uppercase
on the main path.

Optional words
Optional words are reserved words that can be included in the format of a
clause, entry, or statement in order to improve readability. They have no
effect on the execution of the program.

Figurative constants
See [“Figurative constants.”|

Special character words
There are five types of special character words, which are recognized as
special characters only when represented in single-byte characters:

* Arithmetic operators: + - / * **

See |“ Arithmetic expressions” on page 257 .|

* Relational operators: < > = <= >=

See [“Conditional expressions” on page 260

* Floating comment indicators: *>

See [“Floating comment indicators (*>)” on page 59|
* Pseudo-text delimiters in COPY and REPLACE statements: ==

See [“COPY statement” on page 542| and [“REPLACE statement” on page|
555,

* Compiler directive indicators: >>

See |Chapter 23, “Compiler directives,” on page 567 |

Special object identifiers
COBOL provides two special object identifiers, SELF and SUPER:

SELF A special object identifier that you can use in the PROCEDURE
DIVISION of a method. SELF refers to the object instance used to
invoke the currently executing method. You can specify SELF only
in places that are explicitly listed in the syntax diagrams.

SUPER
A special object identifier that you can use in the PROCEDURE
DIVISION of a method only as the object identifier in an INVOKE
statement. When used in this way, SUPER refers to the object
instance used to invoke the currently executing method. The
resolution of the method to be invoked ignores any methods
declared in the class definition of the currently executing method
and methods defined in any class derived from that class. Thus,
the method invoked is inherited from an ancestor class.

Special registers
See [“Special registers” on page 16

Figurative constants

Figurative constants are reserved words that name and refer to specific constant
values. The reserved words for figurative constants and their meanings are listed
in this section.

Chapter 3. Character-strings 13



ZERO, ZEROS, ZEROES
Represents the numeric value zero (0) or one or more occurrences of the
character zero, depending on context.

When the figurative constant ZERO, ZEROS, or ZEROES is used in a
context that requires an alphanumeric character, an alphanumeric character
zero is used. When the context requires a national character zero, a
national character zero is used (value NX'0030'). When the context cannot
be determined, an alphanumeric character zero is used.

SPACE, SPACES
Represents one or more blanks or spaces. SPACE is treated as an
alphanumeric literal when used in a context that requires an alphanumeric
character, as a DBCS literal when used in a context that requires a DBCS
character, and as a national literal when used in a context that requires a
national character. The EBCDIC DBCS space character has the value
X'4040', and the national space character has the value NX'0020".

HIGH-VALUE, HIGH-VALUES
Represents one or more occurrences of the character that has the highest
ordinal position in the collating sequence used.

HIGH-VALUE is treated as an alphanumeric literal in a context that
requires an alphanumeric character. For alphanumeric data with the
EBCDIC collating sequence, the value is X'FF'. For other alphanumeric
data, the value depends on the collating sequence in effect.

HIGH-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX'FFFF'.

When the context cannot be determined, an alphanumeric context is
assumed and the value X'FF' is used.

Usage note: You should not use HIGH-VALUE (or a value assigned from
HIGH-VALUE) in a way that results in conversion between one data
representation and another. X'FF' does not represent a valid EBCDIC
character, and NX'FFFF' does not represent a valid national character.
Conversion of either the alphanumeric or the national HIGH-VALUE
representation to another representation results in a substitution character.
For example, conversion of X'FF' to UTF-16 would give a substitution
character, not NX'FFFF'.

LOW-VALUE, LOW-VALUES
Represents one or more occurrences of the character that has the lowest
ordinal position in the collating sequence used.

LOW-VALUE is treated as an alphanumeric literal in a context that requires
an alphanumeric character. For alphanumeric data with the EBCDIC
collating sequence, the value is X'00'". For other alphanumeric data, the
value depends on the collating sequence in effect.

LOW-VALUE is treated as a national literal when used in a context that
requires a national literal. The value is national character NX'0000'".

When the context cannot be determined, an alphanumeric context is
assumed and the value X'00' is used.

QUOTE, QUOTES
Represents one or more occurrences of:

* The quotation mark character ("), if the QUOTE compiler option is in
effect

14 Enterprise COBOL for z/OS, V5.2 Language Reference



* The apostrophe character ('), if the APOST compiler option is in effect

QUOTE or QUOTES represents an alphanumeric character when used in a
context that requires an alphanumeric character, and represents a national
character when used in a context that requires a national character. The
national character value of quotation mark is NX'0022'. The national
character value of apostrophe is NX'0027'.

QUOTE and QUOTES cannot be used in place of a quotation mark or an
apostrophe to enclose an alphanumeric literal.

ALL literal
literal can be an alphanumeric literal, a DBCS literal, a national literal, or a
figurative constant other than the ALL literal.

When literal is not a figurative constant, ALL literal represents one or more
occurrences of the string of characters that compose the literal.

When literal is a figurative constant, the word ALL has no meaning and is
used only for readability.

The figurative constant ALL literal must not be used with the CALL,
INSPECT, INVOKE, STOP, or STRING statements.

symbolic-character
Represents one or more of the characters specified as a value of the
symbolic-character in the SYMBOLIC CHARACTERS clause of the
SPECIAL-NAMES paragraph.

symbolic-character always represents an alphanumeric character; it can be
used in a context that requires a national character only when implicit
conversion of alphanumeric to national characters is defined. (It can be
used, for example, in a MOVE statement where the receiving item is of
class national because implicit conversion is defined when the sending
item is alphanumeric and the receiving item is national.)

NULL, NULLS
Represents a value used to indicate that data items defined with USAGE
POINTER, USAGE PROCEDURE-POINTER, USAGE FUNCTION-
POINTER, USAGE OBJECT REFERENCE, or the ADDRESS OF special
register do not contain a valid address. NULL can be used only where
explicitly allowed in the syntax formats. NULL has the value zero.

The singular and plural forms of NULL, ZERO, SPACE, HIGH-VALUE,
LOW-VALUE, and QUOTE can be used interchangeably. For example, if
DATA-NAME-1 is a five-character data item, each of the following statements moves
five spaces to DATA-NAME-1:

MOVE SPACE TO DATA-NAME-1

MOVE SPACES TO DATA-NAME-1
MOVE ALL SPACES TO DATA-NAME-1

When the rules of COBOL permit any one spelling of a figurative constant name,
any alternative spelling of that figurative constant name can be specified.

You can use a figurative constant wherever literal appears in a syntax diagram,
except where explicitly prohibited. When a numeric literal appears in a syntax
diagram, only the figurative constant ZERO (or ZEROS or ZEROES) can be used.
Figurative constants are not allowed as function arguments except in an arithmetic
expression, where the expression is an argument to a function.

Chapter 3. Character-strings 15



The length of a figurative constant depends on the context of its use. The following
rules apply:

* When a figurative constant is specified in a VALUE clause or associated with a
data item (for example, when it is moved to or compared with another item), the
length of the figurative constant character-string is equal to 1 or the number of
character positions in the associated data item, whichever is greater.

* When a figurative constant, other than the ALL literal, is not associated with
another data item (for example, in a CALL, INVOKE, STOP, STRING, or
UNSTRING statement), the length of the character-string is one character.

Special registers

16

Special registers are reserved words that name storage areas generated by the
compiler. Their primary use is to store information produced through specific
COBOL features. Each such storage area has a fixed name, and must not be
defined within the program.

For programs with the RECURSIVE attribute, for programs compiled with the
THREAD option, and for methods, storage for the following special registers is
allocated on a per-invocation basis:

* ADDRESS OF

* RETURN-CODE

* SORT-CONTROL

* SORT-CORE-SIZE

* SORT-FILE-SIZE

* SORT-MESSAGE

* SORT-MODE-SIZE

* SORT-RETURN

* TALLY

* XML-CODE

* XML-EVENT

* XML-INFORMATION

* XML-NAMESPACE

* XML-NAMESPACE-PREFIX
* XML-NNAMESPACE

* XML-NNAMESPACE-PREFIX
* XML-NTEXT

* XML-TEXT

For the first call to a program after a cancel of that program, or for a method
invocation, the compiler initializes the special register fields to their initial values.

For the following four cases:

* Programs that have the INITIAL clause specified

* Programs that have the RECURSIVE clause specified
* Programs compiled with the THREAD option

* Methods

the following special registers are reset to their initial value on each program or
method entry:

Enterprise COBOL for z/OS, V5.2 Language Reference



* RETURN-CODE
* SORT-CONTROL
* SORT-CORE-SIZE
* SORT-FILE-SIZE
* SORT-MESSAGE
* SORT-MODE-SIZE
* SORT-RETURN

« TALLY

* XML-CODE

* XML-EVENT

Further, in the above four cases, values set in ADDRESS OF special registers persist
only for the span of the particular program or method invocation.

In all other cases, the special registers will not be reset; they will be unchanged
from the value contained on the previous CALL or INVOKE.

Unless otherwise explicitly restricted, a special register can be used wherever a
data-name or identifier that has the same definition as the implicit definition of the
special register can be used. Implicit definitions, if applicable, are given in the
specification of each special register.

You can specify an alphanumeric special register in a function wherever an
alphanumeric argument to a function is allowed, unless specifically prohibited.

If qualification is allowed, special registers can be qualified as necessary to provide
uniqueness. (For more information, see [“Qualification” on page 67.)

ADDRESS OF

The ADDRESS OF special register references the address of a data item in the
LINKAGE SECTION, the LOCAL-STORAGE SECTION, or the
WORKING-STORAGE SECTION.

For 01 and 77 level items in the LINKAGE SECTION, the ADDRESS OF special
register can be used as either a sending item or a receiving item. For all other
operands, the ADDRESS OF special register can be used only as a sending item.

The ADDRESS OF special register is implicitly defined as USAGE POINTER.

A function-identifier is not allowed as the operand of the ADDRESS OF special
register.

DEBUG-ITEM

The DEBUG-ITEM special register provides information for a debugging
declarative procedure about the conditions that cause debugging section execution.

DEBUG-ITEM has the following implicit description:

01 DEBUG-ITEM.
02  DEBUG-LINE PICTURE IS X(6).

02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-NAME PICTURE IS X(30).

02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-SUB-1 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02  FILLER PICTURE IS X VALUE SPACE.

Chapter 3. Character-strings 17



02  DEBUG-SUB-2 PICTURE IS $9999 SIGN IS LEADING SEPARATE CHARACTER.

02  FILLER PICTURE IS X VALUE SPACE.
02  DEBUG-SUB-3 PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
02  FILLER PICTURE IS X VALUE SPACE.

02  DEBUG-CONTENTS PICTURE IS X(n).

Before each debugging section is executed, DEBUG-ITEM is filled with spaces. The
contents of the DEBUG-ITEM subfields are updated according to the rules for the
MOVE statement, with one exception: DEBUG-CONTENTS is updated as if the
move were an alphanumeric-to-alphanumeric elementary move without conversion
of data from one form of internal representation to another.

After updating, the contents of the DEBUG-ITEM subfields are:

DEBUG-LINE
The source-statement sequence number (or the compiler-generated
sequence number, depending on the compiler option chosen) that caused
execution of the debugging section.

DEBUG-NAME
The first 30 characters of the name that caused execution of the debugging
section. Any qualifiers are separated by the word 'OF".

DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3
Always set to spaces. These subfields are documented for compatibility
with previous COBOL products.

DEBUG-CONTENTS
Data is moved into DEBUG-CONTENTS, as shown in the following table.

Table 2. DEBUG-ITEM subfield contents

MERGE input/output
procedure

Cause of debugging Statement referred to in Contents of Contents of

section execution DEBUG-LINE DEBUG-NAME DEBUG-CONTENTS
procedure-name-1 ALTER ALTER statement procedure-name-1 procedure-name-n in TO
reference PROCEED TO phrase
GO TO procedure-name-n GO TO statement procedure-name-n Spaces
procedure-name-n in SORT or | SORT or MERGE statement | procedure-name-n "SORT INPUT", "SORT

OUTPUT", or "MERGE
OUTPUT" (as applicable)

procedure

PERFORM statement This PERFORM statement | procedure-name-n "PERFORM LOOP"
transfer of control
procedure-name-n in a USE | Statement causing USE procedure-name-n "USE PROCEDURE"

procedure execution

Implicit transfer from a
previous sequential

Previous statement procedure-name-n "FALL THROUGH"
executed in previous

procedure sequential procedure’
First execution of first Line number of first Name of first "START PROGRAM"
nondeclarative procedure  |nondeclarative nondeclarative procedure

procedure-name

number refers to the

1. If this procedure is preceded by a section header, and control is passed through the section header, the statement

section header.

18 Enterprise COBOL for z/OS, V5.2 Language Reference



JNIENVPTR

The JNIENVPTR special register references the Java Native Interface (JNI)
environment pointer. The JNI environment pointer is used in calling Java callable
services.

JNIENVPTR is implicitly defined as USAGE POINTER, and cannot be specified as
a receiving data item.

For information about using JNIENVPTR and JNI callable services, see Accessing
JNI services in the Enterprise COBOL Programming Guide.

LENGTH OF

The LENGTH OF special register contains the number of bytes used by a data
item.

LENGTH OF creates an implicit special register that contains the current byte
length of the data item referenced by the identifier.

For data items described with usage DISPLAY-1 (DBCS data items) and data items
described with usage NATIONAL, each character occupies 2 bytes of storage.

LENGTH OF can be used in the PROCEDURE DIVISION anywhere a numeric
data item that has the same definition as the implied definition of the LENGTH OF
special register can be used.

The LENGTH OF special register has the implicit definition:
USAGE IS BINARY PICTURE 9(9).

If the data item referenced by the identifier contains the GLOBAL clause, the
LENGTH OF special register is a global data item.

The LENGTH OF special register can appear within either the starting character
position or the length expressions of a reference-modification specification.
However, the LENGTH OF special register cannot be applied to any operand that
is reference-modified.

The LENGTH OF operand cannot be a function, but the LENGTH OF special
register is allowed in a function where an integer argument is allowed.

If the LENGTH OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
LENGTH OF.

If the ADDRESS OF special register is used as the argument to the LENGTH
function, the result is always 4, independent of the argument specified for
ADDRESS OF.

LENGTH OF cannot be either of the following items:
* A receiving data item

* A subscript

When the LENGTH OF special register is used as a parameter on a CALL
statement, it must be passed BY CONTENT or BY VALUE.

Chapter 3. Character-strings 19



20

When a table element is specified, the LENGTH OF special register contains the
length in bytes of one occurrence. When referring to a table element, the element
name need not be subscripted.

A value is returned for any identifier whose length can be determined, even if the
area referenced by the identifier is currently not available to the program.

A separate LENGTH OF special register exists for each identifier referenced with
the LENGTH OF phrase. For example:

MOVE LENGTH OF A TO B

DISPLAY LENGTH OF A, A

ADD LENGTH OF A TO B
CALL "PROGX" USING BY REFERENCE A BY CONTENT LENGTH OF A

The intrinsic function LENGTH can also be used to obtain the length of a data
item. For data items of usage NATIONAL, the length returned by the LENGTH
function is the number of national character positions, rather than bytes; thus the
LENGTH OF special register and the LENGTH intrinsic function have different
results for data items of usage NATIONAL. For all other data items, the result is
the same.

LINAGE-COUNTER

A separate LINAGE-COUNTER special register is generated for each FD entry that
contains a LINAGE clause. When more than one is generated, you must qualify
each reference to a LINAGE-COUNTER with its related file-name.

The implicit description of the LINAGE-COUNTER special register is in one of the
following cases:

* If the LINAGE clause specifies a data-name, LINAGE-COUNTER has the same
PICTURE and USAGE as that data-name.

* If the LINAGE clause specifies an integer, LINAGE-COUNTER is a binary item
with the same number of digits as that integer.

For more information, see ["LINAGE clause” on page 182.|

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. LINAGE-COUNTER can be
referred to in PROCEDURE DIVISION statements; it must not be modified by
them.

LINAGE-COUNTER is initialized to 1 when an OPEN statement for its associated
file is executed.

LINAGE-COUNTER is automatically modified by any WRITE statement for this
file. (See [“WRITE statement” on page 460.)

If the file description entry for a sequential file contains the LINAGE clause and
the EXTERNAL clause, the LINAGE-COUNTER data item is an external data item.
If the file description entry for a sequential file contains the LINAGE clause and
the GLOBAL clause, the LINAGE-COUNTER data item is a global data item.

You can specify the LINAGE-COUNTER special register wherever an integer
argument to a function is allowed.

Enterprise COBOL for z/OS, V5.2 Language Reference



RETURN-CODE

The RETURN-CODE special register can be used to pass a return code to the
calling program or operating system when the current COBOL program ends.

When a COBOL program ends:

* If control returns to the operating system, the value of the RETURN-CODE
special register is passed to the operating system as a user return code. The
supported user return code values are determined by the operating system, and
might not include the full range of RETURN-CODE special register values.

* If control returns to a calling program, the value of the RETURN-CODE special
register is passed to the calling program. If the calling program is a COBOL
program, the RETURN-CODE special register in the calling program is set to the
value of the RETURN-CODE special register in the called program.

The RETURN-CODE special register has the implicit definition:
01 RETURN-CODE GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
GLOBAL clause in the outermost program.

The following examples show how to set the RETURN-CODE special register:
* COMPUTE RETURN-CODE = 8.
» MOVE 8 to RETURN-CODE.

The RETURN-CODE special register does not return a value from an invoked
method or from a program that uses CALL ... RETURNING. For more information,
see ["INVOKE statement” on page 363| or [‘CALL statement” on page 309.|

You can specify the RETURN-CODE special register in a function wherever an
integer argument is allowed.

The RETURN-CODE special register does not return information from a service
call for a Language Environment callable service. For more information, see Using
Language Environment callable services in the Enterprise COBOL Programming Guide
and the Language Environment Programming Guide.

SHIFT-OUT and SHIFT-IN

You can specify the SHIFT-OUT and SHIFT-IN special registers in a function
wherever an alphanumeric argument is allowed.

The SHIFT-OUT and SHIFT-IN special registers are implicitly defined as
alphanumeric data items of the format:

01 SHIFT-OUT GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OE".
01 SHIFT-IN GLOBAL PICTURE X(1) USAGE DISPLAY VALUE X"OF".

When used in nested programs, these special registers are implicitly defined with
the global attribute in the outermost program.

These special registers represent EBCDIC shift-out and shift-in control characters,
which are unprintable characters.

These special registers cannot be receiving items. SHIFT-OUT and SHIFT-IN cannot
be used in place of the keyboard control characters when you are defining DBCS
user-defined words or specifying EBCDIC DBCS literals.

Chapter 3. Character-strings 21



The following example shows how SHIFT-OUT and SHIFT-IN might be used:

DATA DIVISION.
WORKING-STORAGE.

01 DBCSGRP.
05 SO PIC X.
05 DBCSITEM PIC G(3) USAGE DISPLAY-1.
05 SI PIC X.

PROCEDURE DIVISION.
MOVE SHIFT-OUT TO SO
MOVE G"<D1D2D3>" TO DBCSITEM
MOVE SHIFT-IN TO SI
DISPLAY DBCSGRP

SORT-CONTROL

The SORT-CONTROL special register is the name of an alphanumeric data item.

Restriction: The SORT-CONTROL special register is not applicable to sorting a
table with the format 2 SORT statement.

The SORT-CONTROL special register has the implicit definition:
01 SORT-CONTROL GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "IGZSRTCD".

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

This register contains the ddname of the data set that holds the control statements
used to improve the performance of a sorting or merging operation.

You can provide a DD statement for the data set identified by the
SORT-CONTROL special register. Enterprise COBOL will attempt to open the data
set at execution time. Any error will be diagnosed with an informational message.

You can specify the SORT-CONTROL special register in a function wherever an
alphanumeric argument is allowed.

The SORT-CONTROL special register is not necessary for a successful sorting or
merging operation.

The sort control file takes precedence over the SORT special registers.

SORT-CORE-SIZE

The SORT-CORE-SIZE special register is the name of a binary data item that you
can use to specify the number of bytes of storage available to the sort utility.

Restriction: The SORT-CORE-SIZE special register is not applicable to sorting a
table with the format 2 SORT statement.

The SORT-CORE-SIZE special register has the implicit definition:
01 SORT-CORE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-CORE-SIZE can be used in place of the MAINSIZE or RESINV control
statements in the sort control file:

22 Enterprise COBOL for z/OS, V5.2 Language Reference



* The 'MAINSIZE=' option control statement keyword is equivalent to
SORT-CORE-SIZE with a positive value.

* The 'RESINV=' option control statement keyword is equivalent to
SORT-CORE-SIZE with a negative value.

* The 'MAINSIZE=MAX' option control statement keyword is equivalent to
SORT-CORE-SIZE with a value of +999999 or +99999999.

You can specify the SORT-CORE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-FILE-SIZE

The SORT-FILE-SIZE special register is the name of a binary data item that you can
use to specify the estimated number of records in the sort input file, file-name-1.

Restriction: The SORT-FILE-SIZE special register is not applicable to sorting a
table with the format 2 SORT statement.

The SORT-FILE-SIZE special register has the implicit definition:
01 SORT-FILE-SIZE GLOBAL PICTURE S9(8) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-FILE-SIZE is equivalent to the 'FILSZ=Ennn' control statement in the sort
control file.

You can specify the SORT-FILE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-MESSAGE

The SORT-MESSAGE special register is the name of an alphanumeric data item
that is available to both sort and merge programs.

Restriction: The SORT-MESSAGE special register is not applicable to sorting a
table with the format 2 SORT statement.

The SORT-MESSAGE special register has the implicit definition:
01 SORT-MESSAGE GLOBAL PICTURE X(8) USAGE DISPLAY VALUE "SYSOUT".

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can use the SORT-MESSAGE special register to specify the ddname of a data
set that the sort utility should use in place of the SYSOUT data set.

The ddname specified in SORT-MESSAGE is equivalent to the name specified on
the MSGDDN=' control statement in the sort control file.

You can specify the SORT-MESSAGE special register in a function wherever an
alphanumeric argument is allowed.

SORT-MODE-SIZE

The SORT-MODE-SIZE special register is the name of a binary data item that you
can use to specify the length of variable-length records that occur most frequently.

Chapter 3. Character-strings 23



Restriction: The SORT-MODE-SIZE special register is not applicable to sorting a
table with the format 2 SORT statement.

The SORT-MODE-SIZE special register has the implicit definition:
01 SORT-MODE-SIZE GLOBAL PICTURE S9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

SORT-MODE-SIZE is equivalent to the 'SMS=' control statement in the sort control
file.

You can specify the SORT-MODE-SIZE special register in a function wherever an
integer argument is allowed.

SORT-RETURN

The SORT-RETURN special register is the name of a binary data item and is
available to both sort and merge programs.

Restriction: The SORT-RETURN special register is not applicable to sorting a table
with the format 2 SORT statement.

The SORT-RETURN special register has the implicit definition:
01 SORT-RETURN GLOBAL PICTURE S9(4) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The SORT-RETURN special register contains a return code of 0 (successful) or 16
(unsuccessful) at the completion of a sort or merge operation. If the sort or merge
is unsuccessful and there is no reference to this special register anywhere in the
program, a message is displayed on the terminal.

You can set the SORT-RETURN special register to 16 in an error declarative or
input/output procedure to terminate a sort or merge operation before all records
are processed. The operation is terminated on the next input or output function for
the sort or merge operation.

You can specify the SORT-RETURN special register in a function wherever an
integer argument is allowed.

TALLY

The TALLY special register is the name of a binary data item.

See the following definition of a binary data item:
01 TALLY GLOBAL PICTURE 9(5) USAGE BINARY VALUE ZERO.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

You can refer to or modify the contents of TALLY.

You can specify the TALLY special register in a function wherever an integer
argument is allowed.

24 Enterprise COBOL for z/OS, V5.2 Language Reference



WHEN-COMPILED

The WHEN-COMPILED special register contains the date at the start of the
compilation.

WHEN-COMPILED is an alphanumeric data item that has the implicit definition:
01 WHEN-COMPILED GLOBAL PICTURE X(16) USAGE DISPLAY.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The WHEN-COMPILED special register has the format:
MM/DD/YYhh.mm.ss (MONTH/DAY/YEARhour.minute.second)

For example, if compilation began at 2:04 PM on 15 October 2007,
WHEN-COMPILED would contain the value 10/15/0714.04.00.

WHEN-COMPILED can be used only as the sending field in a MOVE statement.
WHEN-COMPILED special register data cannot be reference-modified.

The compilation date and time can also be accessed with the intrinsic function
WHEN-COMPILED (see ["WHEN-COMPILED” on page 534). That function
supports four-digit year values and provides additional information.

XML-CODE

The XML-CODE special register is used to communicate status between the XML
parser and the processing procedure that was identified in an XML PARSE
statement, and to indicate either that an XML GENERATE statement executed
successfully or that an exception occurred during XML generation.

The XML-CODE special register has the implicit definition:
01 XML-CODE PICTURE S9(9) USAGE BINARY VALUE 0.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

When the XML parser encounters an XML event, it sets XML-CODE and then
passes control to the processing procedure. For all events except an EXCEPTION
event, XML-CODE contains zero when the processing procedure receives control.

For an EXCEPTION event, the parser sets XML-CODE to an exception code that
indicates the nature of the exception. XML PARSE exception codes are discussed in
Handling XML PARSE exceptions in the Enterprise COBOL Programming Guide.

For some XML events, you can set XML-CODE before returning to the parser to
control subsequent processing of the document. For details, see XML-CODE in the
Enterprise COBOL Programming Guide.

When the parser returns control to the XML PARSE statement, XML-CODE
contains the most recent value set by the processing procedure or the parser. In
some cases, the parser overrides the value set by the processing procedure.

At termination of an XML GENERATE statement, XML-CODE contains either zero,
indicating successful completion of XML generation, or a nonzero error code,

Chapter 3. Character-strings 25



26

indicating that an exception occurred during XML generation. XML GENERATE
exception codes are detailed in XML GENERATE exceptions in the Enterprise COBOL
Programming Guide.

RELATED CONCEPTS
XML-CODE (Enterprise COBOL Programming Guide)

RELATED TASKS
Handling XML PARSE exceptions (Enterprise COBOL Programming Guide)

RELATED REFERENCES
XML GENERATE exceptions (Enterprise COBOL Programming Guide)

XML-EVENT

The XML-EVENT special register communicates event information from the XML
parser to the processing procedure identified in the XML PARSE statement.

Before passing control to the processing procedure, the XML parser sets the
XML-EVENT special register to the name of the XML event. The specific events
and the associated special registers that are set depend on the setting of the
XMLPARSE compiler option, XMLPARSE(XMLSS) or XMLPARSE(COMPAT).

The parser uses the following special registers when XMLPARSE(XMLSS) is in
effect:

* XML-CODE

* XML-EVENT

* XML-TEXT or XML-NTEXT

* XML-NAMESPACE or XML-NNAMESPACE

* XML-NAMESPACE-PREFIX or XML-NNAMESPACE-PREFIX

The parser uses the following special registers when XMLPARSE(COMPAT) is in
effect:

* XML-CODE
* XML-EVENT
* XML-TEXT or XML-NTEXT

The parser sets XML-NTEXT to associated XML text when the XML document is in
a national data item, and sets XML-TEXT when the XML document is in an
alphanumeric data item. When the XMLPARSE(COMPAT) compiler option is in
effect, the parser sets XML-NTEXT to the text of any numeric character reference
(for events ATTRIBUTE-NATIONAL-CHARACTER and CONTENT-NATIONAL-
CHARACTER) regardless of the type of the XML document data item.

When the XMLPARSE(XMLSS) compiler option is in effect, the parser sets
XML-NNAMESPACE and XML-NNAMESPACE-PREFIX when the XML document
is in a national data item and when the RETURNING NATIONAL phrase is

specified in the XML PARSE statement; otherwise, the parser sets
XML-NAMESPACE and XML-NAMESPACE-PREFIX.

[Table 3 on page 27| shows XML events and special register contents for parsing
with the XMLPARSE(XMLSS) and XMLPARSE(COMPAT) options.

XML-EVENT has the implicit definition:

Enterprise COBOL for z/OS, V5.2 Language Reference



01

XML-EVENT USAGE DISPLAY PICTURE X(30) VALUE SPACE.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-EVENT cannot be used as a receiving data item.

Table 3. XML events and associated special register contents

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

ATTRIBUTE-CHARACTER

n/a°

XML-TEXT or XML-NTEXT
contains the single character that
corresponds with the predefined
entity reference in the attribute
value.

ATTRIBUTE-CHARACTERS

XML-TEXT or XML-NTEXT contains
the value within quotation marks or
apostrophes. This can be a substring of
the attribute value.

XML-TEXT or XML-NTEXT
contains the value within
quotation marks or apostrophes.
This can be a substring of the
attribute value if the value
includes a character reference or
an entity reference.

ATTRIBUTE-NAME

For attribute names that are not in a
namespace, XML-TEXT or
XML-NTEXT contains the attribute
name.

For attributes with names in a
nondefault namespace, attribute names

are always prefixed and have the form:

prefix:local-part = "AttValue".

XML-TEXT or XML-NTEXT contains
the local-part, XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier, and
XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX contains
the prefix.

XML-TEXT or XML-TEXT
contains the attribute name (the
string to the left of the equal

sign).

ATTRIBUTE-NATIONAL-

Regardless of the type of the XML

XML-TEXT or XML-NTEXT

CHARACTER document, XML-TEXT is empty with | content is the same as for
length zero and XML-NTEXT contains | XMLPARSE(XMLSS).
the single national character that
correponds with the numeric character
reference. ?

COMMENT XML-TEXT or XML-NTEXT contains XML-TEXT or XML-NTEXT
the text of the comment between the always contains the complete text
opening character sequence "<!--" and |of the comment.
the closing character sequence "-->".

This can be a substring of the text.
CONTENT-CHARACTER n/a’ XML-TEXT or XML-NTEXT

contains the single character that
corresponds with the predefined
entity reference in the element
content.

Chapter 3. Character-strings 27



Table 3. XML events and associated special register contents (continued)

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

CONTENT-CHARACTERS

XML-TEXT or XML-NTEXT contains
the character content of the element
between start and end tags. This can be
a substring of the content.

XML-TEXT or XML-NTEXT
contains the character content of
the element between start and
end tags. This can be a substring
of the character content if the
content includes a character
reference or an entity reference.

CONTENT-NATIONAL-CHARACTER

Regardless of the type of the XML
document, XML-TEXT is empty with
length zero and XML-NTEXT contains
the single national character that
corresponds with the numeric character
reference.”

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

DOCUMENT-TYPE-DECLARATION

XML-TEXT or XML-NTEXT contains
the name of the root element, as
specified in the document type
delcaration.

XML-TEXT or XML-NTEXT
contains the entire document type
declaration, including the
opening and closing character
sequences "<!DOCTYPE" and ">".

ENCODING-DECLARATION

XML-TEXT or XML-NTEXT contains
the value, between quotation marks or
apostrophes, of the encoding
declaration in the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

END-OF-CDATA-SECTION

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT

contains the string "]]>".

END-OF-DOCUMENT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

END-OF-ELEMENT

XML-TEXT or XML-NTEXT contains
the local part of the end element tag or
empty element tag name.

If the element name is in a nondefault
namespace, XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier.

If the element name is in a namespace
and is prefixed (of the form
prefix:local-part), XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT
contains the name of the end
element tag or empty element
tag.

END-OF-INPUT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

To parse an additional segment of an
XML document, move the next
segment to identifier-1 and set
XML-CODE to 1.

n/a

28

Enterprise COBOL for z/OS, V5.2 Language Reference




Table 3. XML events and associated special register contents (continued)

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

EXCEPTION

XML-CODE contains the unique return
code and reason code that identifies the
exception.

XML-TEXT or XML-NTEXT contains
the document fragment up to the point
of the error or anomaly that caused the
exception.*

XML-CODE contains the unique
error code that identifies the
exception.’

XML-TEXT or XML-NTEXT
contains the part of the document
that was successfully scanned, up
to and including the point at
which the exception was

All other XML special registers are detected.
empty with length zero.
NAMESPACE-DECLARATION XML-TEXT and XML-NTEXT are both |n/a®

empty with length zero.

XML-NAMESPACE or
XML-NNAMESPACE contains the
declared namespace identifier. If the
namespace is "undeclared" by
specifying the empty string,
XML-NAMESPACE and
XML-NNAMESPACE are empty with
length zero.

XML-NAMESPACE-PREFIX or
XML-NNAMESPACE-PREFIX contains
the prefix if the namespace declaration
is of the form xmlins:prefix =
"namespace-identifier"; otherwise, if the
declaration is for the default
namespace and thus the attribute name
is xmlins, XML-NAMESPACE-PREFIX
and XML-NNAMESPACE-PREFIX are
both empty with length zero.

(ATTRIBUTE-NAME and
ATTRIBUTE-CHARACTERS
events are signaled instead.)

PROCESSING-INSTRUCTION-DATA

XML-TEXT or XML-NTEXT contains
the rest of the processing instruction
(after the target name), not including
the closing sequence "?>", but including
trailing, and not leading, white space
characters. This can be a substring of
the processing instruction data.

XML-TEXT or XML-NTEXT
always contains the complete
processing instruction data.

PROCESSING-INSTRUCTION-
TARGET

XML-TEXT or XML-NTEXT contains
the processing instruction target name,
which occurs immediately after the
processing instruction opening
sequence, "<?". This event can occur
multiple times for a given processing
instruction: one occurrence preceding
each substring of the data.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS). This event
occurs only once for a given
processing instruction.

STANDALONE-DECLARATION

XML-TEXT or XML-NTEXT contains
the value, between quotation marks or
apostrophes ("yes" or "no"), of the
stand-alone declaration in the XML
declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

START-OF-CDATA-SECTION

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
contains the string "<!/[CDATA[".

Chapter 3. Character-strings 29



Table 3. XML events and associated special register contents (continued)

XML-EVENT

XMLPARSE(XMLSS)!

XMLPARSE(COMPAT)!

START-OF-DOCUMENT

All XML special registers except
XML-CODE and XML-EVENT are
empty with length zero.

XML-TEXT or XML-NTEXT
contains the entire document.

START-OF-ELEMENT

XML-TEXT or XML-NTEXT contains
the local part of the start element tag
name or the local part of the empty
element tag name.

If the element name is in a namespace,
XML-NAMESPACE or
XML-NNAMESPACE contains the
namespace identifier.

If the element name is in a namespace
and is prefixed (of the form
prefix:local-part, XML-NAMESPACE-
PREFIX or XML-NNAMESPACE-
PREFIX contains the prefix.

XML-TEXT or XML-NTEXT
contains the name of the start
element tag or empty element
tag, also known as the element

type.

UNKNOWN-REFERENCE-IN-
ATTRIBUTE

n/a°

For XMLPARSE(XMLSS), the parser
always signals EXCEPTION.

XML-TEXT or XML-NTEXT
contains the entity reference
name, not including the "&" and
"" delimiters.

UNKNOWN-REFERENCE-IN-
CONTENT

n/a’

For XMLPARSE(XMLSS), the parser
signals UNRESOLVED-REFERENCE or
EXCEPTION instead.

See "Unresolved references" below for
additional details.

XML-TEXT or XML-NTEXT
contains the entity reference
name, not including the "&" and
""" delimiters.

UNRESOLVED-REFERENCE

XML-TEXT or XML-NTEXT contains
the entity name from XML content, not
including the "&" and ";" delimiters.

See "Unresolved references" below for
additional details.

n/a®

(The parser signals
UNKNOWN-REFERENCE-IN-
CONTENT instead.)

VERSION-INFORMATION

XML-TEXT or XML-NTEXT contains
the value, between quotation marks or
apostrophes, of the version information
in the XML declaration.

XML-TEXT or XML-NTEXT
content is the same as for
XMLPARSE(XMLSS).

30 Enterprise COBOL for z/OS, V5.2 Language Reference




Table 3. XML events and associated special register contents (continued)

XML-EVENT XMLPARSE(XMLSS)" | XMLPARSE(COMPAT)!

1.

For all events except EXCEPTION, XML-CODE contains zero. Unless stated otherwise, the namespace XML
registers (XML-NAMESPACE, XML-NNAMESPACE, XML-NAMESPACE-PREFIX, and XML-NNAMESPACE-
PREFIX) are empty and have length zero.

National characters with scalar values greater than 65,535 (NX"FFFF") are represented using two encoding units
(a "surrogate pair"). Programmers are responsible for ensuring that operations on the content of XML-NTEXT do
not split the pair of encoding units that together form a graphic character, thereby forming invalid data.

For XMLPARSE(COMPAT), exceptions for encoding conflicts are signaled before parsing begins. For these
exceptions, XML-TEXT or XML-NTEXT is either zero length or contains only the encoding declaration value
from the document. See XML PARSE exceptions with XMLPARSE(COMPAT) in effect in the Enterprise COBOL
Programming Guide for information about XML exception codes.

If an END-OF-INPUT XML event previously occurred and the processing procedure provided a new document
segment, XML-TEXT or XML-NTEXT contains only the new segment.

If the anomaly occurs before parsing begins (for example, the encoding specification is invalid), XML-TEXT or
XML-NTEXT are empty with length zero.

The fragment might or might not include the anomaly. For a duplicate attribute name, for example, the fragment
includes the incorrect attribute. For an invalid character, the fragment includes document text up to, but not
including, the invalid character.

n/a. Not applicable; occurs only with XMLPARSE(COMPAT).
n/a. Not applicable; occurs only wtih XMLPARSE(XMLSS).

Unresolved References:

An unresolved entity reference is a reference to the name of an entity that has no
declaration in the document type definition (DTD).

The parser signals an UNRESOLVED-REFERENCE event only if all of the
following conditions are true:

* The unresolved reference is within element content, not an attribute value.

* The XML document starts with an XML declaration that specifies
standalone="no".

* The XML document contains a document type declaration, for example,
<!DOCTYPE rootElementName>

* If the VALIDATING phrase is specified on the XML PARSE statement, the
document type declaration must also specify an external DTD subset, for
example:

<IDOCTYPE rootElementName SYSTEM "someOther.dtd">

Otherwise the parser signals an EXCEPTION event instead of
UNRESOLVED-REFERENCE.

XML-INFORMATION

The XML-INFORMATION special register is used to provide additional
information to an XML PARSE processing procedure about the status of the parse.

The XML-INFORMATION special register has the implicit definition:
01 XML-INFORMATION PICTURE S9(9) USAGE BINARY VALUE 0.

This register provides a mechanism to easily determine whether an XML EVENT is
complete. Sometimes XML content might be split across multiple events and the

Chapter 3. Character-strings 31



32

application must concatenate the pieces of content together. The
XML-INFORMATION register is used to indicate whether or not content of the
XML event is complete.

The value of the XML-INFORMATION register is set as follows for the various
XML events:

* ATTRIBUTE-CHARACTERS

— lindicates that the attribute value in XML-TEXT or XML-NTEXT special
register is complete

— 2 indicates that the attribute value in XML-TEXT or XML-NTEXT special
register is not complete

— 4,8, 16, ... are reserved for future use
* CONTENT-CHARACTERS

— 1 indicates that the content value in XML-TEXT or XML-NTEXT special
register is complete

— 2 indicates that the content value in XML-TEXT or XML-NTEXT special
register is not complete

— 4,8, 16, ... are reserved for future use
* All other events
— 0 indicates that no additional information is currently available

- 2,4,8, 16, ... are reserved for future use

XML-NAMESPACE

The XML-NAMESPACE special register is defined during XML parsing to contain
the identifier of the namespace, if any, associated with the name in XML-TEXT for
XML events START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME,
and to contain the declared namespace identifier for XML event
NAMESPACE-DECLARATION.

The parser sets XML-NAMESPACE to the identifier of the namespace associated
with a name before transferring control to the processing procedure when the
operand of the XML PARSE statement is an alphanumeric data item and the
RETURNING NATIONAL phrase is not specified in the XML PARSE statement.

To use XML-NAMESPACE, you must compile with the XMLPARSE(XMLSS)
compiler option.

XML-NAMESPACE is an elementary data item of category alphanumeric. The
length of XML-NAMESPACE can vary from 0 through 32,768 bytes. The length at
run time is the length of the contained namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NAMESPACE has a length of zero for:

* The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if there is no namespace associated with a name

* The NAMESPACE-DECLARATION XML event if the namespace is undeclared by
specifying the empty string
* All other XML events

Enterprise COBOL for z/OS, V5.2 Language Reference



When XML-NAMESPACE is set, the XML-NNAMESPACE special register has a
length of zero. At any given time, only one of the two special registers
XML-NAMESPACE and XML-NNAMESPACE has a nonzero length.

Use the LENGTH function or the LENGTH OF special register to determine the
number of bytes that XML-NAMESPACE contains.

XML-NAMESPACE cannot be used as a receiving item.

XML-NNAMESPACE

The XML-NNAMESPACE special register is defined during XML parsing to
contain the identifier of the namespace, if any, associated with the name in
XML-NTEXT for XML events START-OF-ELEMENT, END-OF-ELEMENT, and
ATTRIBUTE-NAME, and to contain the declared namespace identifier for XML
event NAMESPACE-DECLARATION.

The parser sets XML-NNAMESPACE to the identifier of the namespace associated
with a name before transferring control to the processing procedure when the
RETURNING NATIONAL phrase is specified in the XML PARSE statement or the
operand of the XML PARSE statement is a national data item.

To use XML-NNAMESPACE, you must compile with the XMLPARSE(XMLSS)
compiler option.

XML-NNAMESPACE is an elementary data item of category national. The length
of XML-NNAMESPACE can vary from 0 through 16,384 national characters (0
through 32,768 bytes). The length at run time is the length of the contained
namespace identifier.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NNAMESPACE has a length of zero for:

¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events, if there is no namespace associated with a name

* The NAMESPACE-DECLARATION XML event if the namespace is undeclared by
specifying the empty string
* All other XML events

When XML-NNAMESPACE is set, the XML-NAMESPACE special register has a
length of zero. At any given time, only one of the two special registers
XML-NNAMESPACE and XML-NAMESPACE has a nonzero length.

Use the LENGTH function to determine the number of national character positions
that XML-NNAMESPACE contains; use the LENGTH OF special register to

determine the number of bytes.

XML-NNAMESPACE cannot be used as a receiving item.

XML-NAMESPACE-PREFIX

The XML-NAMESPACE-PREFIX special register is defined during XML parsing to
contain the prefix, if any, of the name in XML-TEXT for XML events

Chapter 3. Character-strings 33



34

START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to
contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NAMESPACE-PREFIX before transferring control to the
processing procedure when the operand of the XML PARSE statement is an
alphanumeric data item and the RETURNING NATIONAL phrase is not specified.

To use XML-NAMESPACE-PREFIX, you must compile with the
XMLPARSE(XMLSS) compiler option.

XML-NAMESPACE-PREFIX is an elementary data item of category national. The
length of XML-NAMESPACE-PREFIX can vary from 0 through 4,096 bytes. The
length at run time is the length of the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NAMESPACE-PREFIX has a length of zero for:
¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if the name does not have a prefix

« The NAMESPACE-DECLARATION XML event if the declaration is for the
default namespace, in which case the namespace declaration attribute name is
not prefixed.

¢ All other XML events

When XML-NAMESPACE-PREFIX is set, the XML-NNAMESPACE-PREFIX special
register has a length of zero. At any given time, only one of the two special
registers XML-NAMESPACE-PREFIX and XML-NNAMESPACE-PREFIX has a
nonzero length.

Use the LENGTH function or the LENGTH OF special register to determine the
number of bytes that XML-NAMESPACE-PREFIX contains.

XML-NAMESPACE-PREFIX cannot be used as a receiving item.

XML-NNAMESPACE-PREFIX

The XML-NNAMESPACE-PREFIX special register is defined during XML parsing
to contain the prefix, if any, of the name in XML-NTEXT for XML events
START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME, and to
contain the local attribute name for XML event NAMESPACE-DECLARATION.

The namespace prefix is used as an alias for the complete namespace identifier.

The parser sets XML-NNAMESPACE-PREFIX before transferring control to the
processing procedure when the operand of the XML PARSE statement is a national
data item or the RETURNING NATIONAL phrase is specified in the XML PARSE
statement.

To use XML-NNAMESPACE-PREFIX, you must compile with the
XMLPARSE(XMLSS) compiler option.

Enterprise COBOL for z/OS, V5.2 Language Reference



XML-NNAMESPACE-PREFIX is an elementary data item of category national. The
length of XML-NNAMESPACE-PREFIX can vary from 0 through 2048 national
character positions (0 through 4096 bytes). The length at run time is the length of
the contained namespace prefix.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

XML-NNAMESPACE-PREFIX has a length of zero for:

¢ The START-OF-ELEMENT, END-OF-ELEMENT, and ATTRIBUTE-NAME XML
events if the name does not have a prefix

* NAMESPACE-DECLARATION XML event if the declaration is for the default
namespace, in which case the namespace declaration attribute name is not
prefixed.

¢ All other XML events

When XML-NNAMESPACE-PREFIX is set, the XML-NAMESPACE-PREFIX special
register has a length of zero. At any given time, only one of the two special
registers XML-NNAMESPACE-PREFIX and XML-NAMESPACE-PREFIX has a
nonzero length.

Use the LENGTH function to determine the number of national character positions
that XML-NNAMESPACE contains; use the LENGTH OF special register to
determine the number of bytes.

XML-NNAMESPACE-PREFIX cannot be used as a receiving item.

XML-NTEXT

The XML-NTEXT special register is defined during XML parsing to contain
document fragments that are represented in usage NATIONAL.

XML-NTEXT is an elementary data item of category national of the length of the
contained XML document fragment. The length of XML-NTEXT can vary from 0
through 67,090,431 national character positions. The maximum byte length is
134,180,862.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-NTEXT to the document fragment associated with an event
before transferring control to the processing procedure in these cases:

* When the operand of the XML PARSE statement is a data item of category
national or the RETURNING NATIONAL phrase is specified in the XML PARSE
statement

* For the ATTRIBUTE-NATIONAL-CHARACTER event

* For the CONTENT-NATIONAL-CHARACTER event

When XML-NTEXT is set, the XML-TEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT

has a nonzero length.

Chapter 3. Character-strings 35



Use the LENGTH function to determine the number of national characters that
XML-NTEXT contains. Use the LENGTH OF special register to determine the
number of bytes, rather than the number of national characters, that XML-NTEXT
contains.

XML-NTEXT cannot be used as a receiving item.

XML-TEXT

The XML-TEXT special register is defined during XML parsing to contain
document fragments that are represented in usage DISPLAY.

XML-TEXT is an elementary data item of category alphanumeric of the length of
the contained XML document fragment. The length of XML-TEXT can vary from 0
through 134,180,862 bytes.

There is no equivalent COBOL data description entry.

When used in nested programs, this special register is implicitly defined with the
global attribute in the outermost program.

The parser sets XML-TEXT to the document fragment associated with an event
before transferring control to the processing procedure when the operand of the
XML PARSE statement is an alphanumeric data item and the RETURNING
NATIONAL phrase is not specified in the XML PARSE statement, except for the
ATTRIBUTE-NATIONAL-CHARACTER event and the CONTENT-NATIONAL-
CHARACTER event.

When XML-TEXT is set, the XML-NTEXT special register has a length of zero. At
any given time, only one of the two special registers XML-NTEXT and XML-TEXT

has a nonzero length.

Use the LENGTH function or the LENGTH OF special register for XML-TEXT to
determine the number of bytes that XML-TEXT contains.

XML-TEXT cannot be used as a receiving item.

Literals

A literal is a character-string whose value is specified either by the characters of
which it is composed or by the use of a figurative constant.

For more information about figurative constants, see [“Figurative constants” on|
page 13.

For descriptions of the different types of literals, see the following topics:

* |“Alphanumeric literals”|
+ |“DBCS literals” on page 41|
* |“National literals” on page 42|

* [“Numeric literals” on page 40|

Alphanumeric literals
Enterprise COBOL provides several formats of alphanumeric literals.

The formats of alphanumeric literals are:

36 Enterprise COBOL for z/OS, V5.2 Language Reference



+ Format 1: [“Basic alphanumeric literals”]

+ Format 2: [“Alphanumeric literals with DBCS characters”

+ Format 3: [“Hexadecimal notation for alphanumeric literals” on page 39|

 Format 4: [“Null-terminated alphanumeric literals” on page 39|

Basic alphanumeric literals
Basic alphanumeric literals can contain any character in a single-byte EBCDIC
character set.

The following format is for a basic alphanumeric literal:

Format 1: Basic alphanumeric literals

"single-byte-characters"
'single-byte-characters'

The enclosing quotation marks or apostrophes are excluded from the literal when
the program is compiled.

An embedded quotation mark or apostrophe must be represented by a pair of
quotation marks ("") or a pair of apostrophes (''), respectively, when it is the
character used as the opening delimiter. For example:

"THIS ISN""T WRONG"
'"THIS ISN''T WRONG'

The delimiter character used as the opening delimiter for a literal must be used as
the closing delimiter for that literal. For example:
'THIS IS RIGHT'

"THIS IS RIGHT"
'THIS IS WRONG"

You can use apostrophes or quotation marks as the literal delimiters independent
of the APOST/QUOTE compiler option.

Any punctuation characters included within an alphanumeric literal are part of the
value of the literal.

The maximum length of an alphanumeric literal is 160 bytes. The minimum length
is 1 byte.

Alphanumeric literals are in the alphanumeric data class and category. (Data
classes and categories are described in [‘Classes and categories of data” on page|

Alphanumeric literals with DBCS characters

When the DBCS compiler option is in effect, the characters X'0E' and X'OF' in an
alphanumeric literal will be recognized as shift codes for DBCS characters. That is,
the characters between paired shift codes will be recognized as DBCS characters.
Unlike an alphanumeric literal compiled under the NODBCS option, additional
syntax rules apply to DBCS characters in an alphanumeric literal.

Alphanumeric literals with DBCS characters have the following format:

Chapter 3. Character-strings 37



Format 2: Alphanumeric literals with DBCS characters

"mixed-SBCS-and-DBCS-characters"
'mixed-SBCS-and-DBCS-characters'

"or ' The opening and closing delimiter. The closing delimiter must match the
opening delimiter.
mixed-SBCS-and-DBCS-characters
Any mix of single-byte and DBCS characters.

Shift-out and shift-in control characters are part of the literal and must be
paired. They must contain zero or an even number of intervening bytes.

Nested shift codes are not allowed in the DBCS portion of the literal.

The syntax rules for single-byte characters in the literal follow the rules for
basic alphanumeric literals. The syntax rules for DBCS characters in the
literal follow the rules for DBCS literals.

The move and comparison rules for alphanumeric literals with DBCS characters
are the same as those for any alphanumeric literal.

The length of an alphanumeric literal with DBCS characters is its byte length,
including the shift control characters. The maximum length is limited by the
available space on one line in Area B. An alphanumeric literal with DBCS
characters cannot be continued.

An alphanumeric literal with DBCS characters is of the alphanumeric category.

Alphanumeric literals with DBCS characters cannot be used:
* As a literal in the following cases:

— ALPHABET clause

— ASSIGN clause

— CALL statement program-1D

— CANCEL statement

— CLASS clause

— CURRENCY SIGN clause

— END PROGRAM marker

— ENTRY statement

— PADDING CHARACTER clause

— PROGRAM-ID paragraph

— RERUN clause

— STOP statement

- XML-SCHEMA clause
* As the external class-name for an object-oriented class
* As the basis-name in a BASIS statement
* As the text-name in a COPY statement
* As the library-name in a COPY statement

Enterprise COBOL statements process alphanumeric literals with DBCS characters

without sensitivity to the shift codes and character codes. The use of statements
that operate on a byte-to-byte basis (for example, STRING and UNSTRING) can

38 Enterprise COBOL for z/OS, V5.2 Language Reference



result in strings that are not valid mixtures of single-byte EBCDIC and DBCS
characters. See Processing alphanumeric data items that contain DBCS data in the
Enterprise COBOL Programming Guide for more information about using
alphanumeric literals and data items with DBCS characters in statements that
operate on a byte-by-byte basis.

Hexadecimal notation for alphanumeric literals
Hexadecimal notation can be used for alphanumeric literals.

Hexadecimal notation has the following format:

Format 3: Hexadecimal notation for alphanumeric literals

X"hexadecimal-digits"
X'hexadecimal-digits'

X" or X'
The opening delimiter for the hexadecimal notation of an alphanumeric
literal.

or ' The closing delimiter for the hexadecimal notation of an alphanumeric
literal. If a quotation mark is used in the opening delimiter, a quotation
mark must be used as the closing delimiter. Similarly, if an apostrophe is
used in the opening delimiter, an apostrophe must be used as the closing
delimiter.

Hexadecimal digits are characters in the range '0' to '9', 'a' to 'f, and 'A" to 'F,,
inclusive. Two hexadecimal digits represent one character in a single-byte character
set (EBCDIC or ASCII). Four hexadecimal digits represent one character in a DBCS
character set. A string of EBCDIC DBCS characters represented in hexadecimal
notation must be preceded by the hexadecimal representation of a shift-out control
character (X'0E') and followed by the hexadecimal representation of a shift-in
control character (X'OF'). An even number of hexadecimal digits must be specified.
The maximum length of a hexadecimal literal is 320 hexadecimal digits.

The continuation rules are the same as those for any alphanumeric literal. The
opening delimiter (X" or X') cannot be split across lines.

The DBCS compiler option has no effect on the processing of hexadecimal notation
of alphanumeric literals.

An alphanumeric literal in hexadecimal notation has data class and category
alphanumeric. Hexadecimal notation for alphanumeric literals can be used
anywhere alphanumeric literals can be used.

See also [“Hexadecimal notation for national literals” on page 44

Null-terminated alphanumeric literals
Alphanumeric literals can be null-terminated.

The format for null-terminated alphanumeric literals is:

Format 4: Null-terminated alphanumeric literals

Z"mixed-characters"
Z'mixed-characters'

Chapter 3. Character-strings 39



40

Z"orZ'
The opening delimiter for a null-terminated alphanumeric literal. Both
characters of the opening delimiter (Z" or Z') must be on the same source
line.

or ' The closing delimiter for a null-terminated alphanumeric literal.

If a quotation mark is used in the opening delimiter, a quotation mark
must be used as the closing delimiter. Similarly, if an apostrophe is used in
the opening delimiter, an apostrophe must be used as the closing delimiter.

mixed-characters
Can be any of the following characters:

* Solely single-byte characters
* Mixed single-byte and DBCS characters
* Solely DBCS characters

However, you cannot specify the single-byte character with the value X'00'.
X'00' is the null character automatically appended to the end of the literal.
The content of the literal is otherwise subject to the same rules and
restrictions as an alphanumeric literal with DBCS characters (format 2).

The length of the string of characters in the literal content can be 0 to 159 bytes.
The actual length of the literal includes the terminating null character, and is a
maximum of 160 bytes.

A null-terminated alphanumeric literal has data class and category alphanumeric.
It can be used anywhere an alphanumeric literal can be used except that
null-terminated literals are not supported in ALL [iteral figurative constants.

The LENGTH intrinsic function, when applied to a null-terminated literal, returns
the number of bytes in the literal prior to but not including the terminating null.
(The LENGTH special register does not support literal operands.)

Numeric literals

A numeric literal is a character-string whose characters are selected from the digits 0
through 9, a sign character (+ or -), and the decimal point.

If the literal contains no decimal point, it is an integer. (In this documentation, the
word integer appearing in a format represents a numeric literal of nonzero value
that contains no sign and no decimal point, except when other rules are included
with the description of the format.) The following rules apply:

* If the ARITH(COMPAT) compiler option is in effect, one through 18 digits are
allowed. If the ARITH(EXTEND) compiler option is in effect, one through 31
digits are allowed.

* Only one sign character is allowed. If included, it must be the leftmost character
of the literal. If the literal is unsigned, it is a positive value.

* Only one decimal point is allowed. If a decimal point is included, it is treated as
an assumed decimal point (that is, as not taking up a character position in the
literal). The decimal point can appear anywhere within the literal except as the
rightmost character.

The value of a numeric literal is the algebraic quantity expressed by the characters
in the literal. The size of a numeric literal is equal to the number of digits specified
by the user.

Enterprise COBOL for z/OS, V5.2 Language Reference



Numeric literals can be fixed-point or floating-point numbers.

Numeric literals are in the numeric data class and category. (Data classes and
categories are described under [“Classes and categories of data” on page 164.)

Rules for floating-point literal values

The format and rules for floating-point literals are listed below.

Format

»ﬁ—mant issa E—E'—exponent ><
+ +

* The sign is optional before the mantissa and the exponent; if you omit the sign,
the compiler assumes a positive number.

* The mantissa can contain between one and 16 digits. A decimal point must be
included in the mantissa.

* The exponent is represented by an E followed by an optional sign and one or
two digits.

* The magnitude of a floating-point literal value must fall between 0.54E-78 and
0.72E+76. For values outside of this range, an E-level diagnostic message is
produced and the value is replaced by either 0 or 0.72E+76, respectively.

DBCS literals

The formats and rules for DBCS literals are listed in this section.

Format for DBCS literals

G"<DBCS-characters>"
G'<DBCS-characters>'
N"<DBCS-characters>"
N'<DB(CS-characters>'

G", GI, N“, or N'
Opening delimiters.
N" and N' identify a DBCS literal when the NSYMBOL(DBCS) compiler
option is in effect. They identify a national literal when the
NSYMBOL(NATIONAL) compiler option is in effect, and the rules
specified in [“National literals” on page 42| apply.

The opening delimiter must be followed immediately by a shift-out control
character.

For literals with opening delimiter N" or N', when embedded quotes or
apostrophes are specified as part of DBCS characters in a DBCS literal, a
single embedded DBCS quote or apostrophe is represented by two DBCS
quotes or apostrophes. If a single embedded DBCS quote or apostrophe is
found, an E-level compiler message will be issued and a second embedded
DBCS quote or apostrophe will be assumed.

< Represents the shift-out control character (X'OE')

Chapter 3. Character-strings 41



42

> Represents the shift-in control character (X'0F)

or ' The closing delimiter. If a quotation mark is used in the opening delimiter,
a quotation mark must be used as the closing delimiter. Similarly, if an
apostrophe is used in the opening delimiter, an apostrophe must be used
as the closing delimiter.

The closing delimiter must appear immediately after the shift-in control
character.

DBCS-characters
DBCS-characters can be one or more characters in the range of X'00'
through X'FF' for either byte. Any value will be accepted in the content of
the literal, although whether it is a valid value at run time depends on the
CCSID in effect for the CODEPAGE compiler option.

Maximum length
28 characters

Continuation rules
Cannot be continued across lines

Where DBCS literals can be used

DBCS literals can be used in the following places:
* DATA DIVISION

— In the VALUE clause of data description entries that define a data item of
class DBCS.

— In the VALUE OF clause of file description entries.
+ PROCEDURE DIVISION

— In a relation condition when the comparand is a DBCS data item, an
elementary data item of class national, a national group item, or an
alphanumeric group item

— As an argument passed BY CONTENT in a CALL statement
— In the DISPLAY and EVALUATE statements
— In the following statements:
- INITIALIZE; for details, see ['INITIALIZE statement” on page 350
- INSPECT; for details, see ["'INSPECT statement” on page 353 |
- MOVE; for details, see ["MOVE statement” on page 376
- STRING; for details, see ['STRING statement” on page 444
- UNSTRING, for details, see ["UNSTRING statement” on page 452
- In figurative constant ALL
— As an argument to the NATIONAL-OF intrinsic function
* Compiler-directing statements COPY, REPLACE, and TITLE

National literals

The national literal formats that Enterprise COBOL provides are Basic national
literals and Hexadecimal notation for national literals.

For more information about the formats, see [“Basic national literals” on page 43|
and [“Hexadecimal notation for national literals” on page 44|

Enterprise COBOL for z/OS, V5.2 Language Reference



Basic national literals
The format and rules for basic national literals are listed in this section.

Format 1: Basic national literals

N"character-data"
N'character-data'

When the NSYMBOL(NATIONAL) compiler option is in effect, the opening
delimiter N" or N' identifies a national literal. A national literal is of the class and
category national.

When the NSYMBOL(DBCS) compiler option is in effect, the opening delimiter N"
or N' identifies a DBCS literal, and the rules specified in ['DBCS literals” on page

apply.

N" or N'
Opening delimiters. The opening delimiter must be coded as single-byte
characters. It cannot be split across lines.

or ' The closing delimiter. The closing delimiter must be coded as a single-byte
character. If a quotation mark is used in the opening delimiter, it must be
used as the closing delimiter. Similarly, if an apostrophe is used in the

opening delimiter, it must be used as the closing delimiter.

To include the quotation mark or apostrophe used in the opening delimiter
in the content of the literal, specify a pair of quotation marks or
apostrophes, respectively. Examples:

N'This Titeral''s content includes an apostrophe'

N'This Titeral includes ", which is not used in the opening delimiter'
N"This Titeral includes "", which is used in the opening delimiter"

character-data
The source text representation of the content of the national literal.
character-data can include any combination of EBCDIC single-byte
characters and double-byte characters encoded in the Coded Character Set
ID (CCSID) specified by the CODEPAGE compiler option.

DBCS characters in the content of the literal must be delimited by shift-out
and shift-in control characters.

Maximum length
The maximum length of a national literal is 80 character positions,
excluding the opening and closing delimiters. If the source content of the
literal contains one or more DBCS characters, the maximum length is
limited by the available space in Area B of a single source line.

The literal must contain at least one character. Each single-byte character in
the literal counts as one character position and each DBCS character in the
literal counts as one character position. Shift-in and shift-out delimiters for
DBCS characters are not counted.

Continuation rules
When the content of the literal includes DBCS characters, the literal cannot
be continued. When the content of the literal does not include DBCS
characters, normal continuation rules apply.

The source text representation of character-data is automatically converted to
UTE-16 for use at run time (for example, when the literal is moved to or compared

with a data item of category national).

Chapter 3. Character-strings 43




44

Hexadecimal notation for national literals
The format and rules for the hexadecimal notation format of national literals are
listed in this section.

Format 2: Hexadecimal notation for national literals

NX"hexadecimal-digits"
NX'hexadecimal-digits'

The hexadecimal notation format of national literals is not affected by the
NSYMBOL compiler option.

NX" or NX'
Opening delimiters. The opening delimiter must be represented in
single-byte characters. It must not be split across lines.

or ' The closing delimiter. The closing delimiter must be represented as a
single-byte character.

If a quotation mark is used in the opening delimiter, a quotation mark

must be used as the closing delimiter. Similarly, if an apostrophe is used in

the opening delimiter, an apostrophe must be used as the closing delimiter.
hexadecimal-digits

Hexadecimal digits in the range '0' to '9', 'a’' - f', and 'A' to 'F', inclusive.

Each group of four hexadecimal digits represents a single national

character and must represent a valid code point in UTF-16. The number of
hexadecimal digits must be a multiple of four.

Maximum length
The length of a national literal in hexadecimal notation must be from four
to 320 hexadecimal digits, excluding the opening and closing delimiters.
The length must be a multiple of four.

Continuation rules
Normal continuation rules apply.

The content of a national literal in hexadecimal notation is stored as national
characters. The resulting content has the same meaning as a basic national literal
that specifies the same national characters.

A national literal in hexadecimal notation has data class and category national and
can be used anywhere that a basic national literal can be used.

Where national literals can be used
National literals can be used in multiple ways.

National literals can be used:

e In a VALUE clause associated with a data item of class national or a VALUE
clause associated with a condition-name for a conditional variable that is defined
with usage NATIONAL

* In figurative constant ALL

* In a relation condition

* In the WHEN phrase of a format-2 SEARCH statement (binary search)
* In the ALL, LEADING, or FIRST phrase of an INSPECT statement

* In the BEFORE or AFTER phrase of an INSPECT statement

* In the DELIMITED BY phrase of a STRING statement

Enterprise COBOL for z/OS, V5.2 Language Reference



* In the DELIMITED BY phrase of an UNSTRING statement

* As the method-name in a METHOD-ID paragraph, an END METHOD marker,
and an INVOKE statement

* As an argument passed BY CONTENT in the CALL statement
* As an argument passed BY VALUE in an INVOKE or CALL statement
* In the DISPLAY and EVALUATE statements
* As a sending item in the following procedural statements:
- INITIALIZE
- INSPECT
- MOVE
- STRING
- UNSTRING
* In the argument list to the following intrinsic functions:

DISPLAY-OF, LENGTH, LOWER-CASE, MAX, MIN, ORD-MAX, ORD-MIN,
REVERSE, UPPER-CASE, USUPPLEMENTARY and UVALID

Note: DBCS literals can't be used in the USUPPLEMENTARY and UVALID
functions.

* In the compiler-directing statements COPY, REPLACE, and TITLE

A national literal can be used only as specified in the detailed rules in this
document.

PICTURE character-strings

A PICTURE character-string is composed of the currency symbol and certain
combinations of characters in the COBOL character set. PICTURE character-strings
are delimited only by the separator space, separator comma, separator semicolon,
or separator period.

A chart of PICTURE clause symbols appears in [Table 12 on page 202}

Comments

A comment is a character-string that can contain any combination of characters from
the character set of the computer.

It has no effect on the execution of the program. There are three forms of
comments:

Comment entry IDENTIFICATION DIVISION)
This form is described under [“Optional paragraphs” on page 107

Comment line (any division)
This form is described under [“Comment lines” on page 58

Inline comments (any division)
An inline comment is identified by a floating comment indicator (*>)
preceded by one or more character-strings in the program-text area, and
can be written on any line of a compilation group. All characters that
follow the floating comment indicator up to the end of area B are comment
text.

Chapter 3. Character-strings 45



Character-strings that form comments can contain DBCS characters or a
combination of DBCS and single-byte EBCDIC characters.

Multiple comment lines that contain DBCS strings are allowed. The embedding of
DBCS characters in a comment line must be done on a line-by-line basis. Words
containing those characters cannot be continued to a following line. No syntax
checking for valid strings is provided in comment lines.

46 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 4. Separators

A separator is a character or a string of two or more contiguous characters that
delimits character-strings.

The separators are shown in the following table.

Table 4. Separators

Separator Meaning

b Space

bt Comma

b Period

;b Semicolon

( Left parenthesis

) Right parenthesis

: Colon

"pt Quotation mark

‘b Apostrophe

X" Opening delimiter for a hexadecimal format alphanumeric literal

X! Opening delimiter for a hexadecimal format alphanumeric literal

z" Opening delimiter for a null-terminated alphanumeric literal

z' Opening delimiter for a null-terminated alphanumeric literal

N" Opening delimiter for a national literal®

N' Opening delimiter for a national literal®

NX" Opening delimiter for a hexadecimal format national literal

NX! Opening delimiter for a hexadecimal format national literal

G" Opening delimiter for a DBCS literal

G' Opening delimiter for a DBCS literal

== Pseudo-text delimiter

1. b represents a blank.

2. N"and N' are the opening delimiter for a DBCS literal when the NSYMBOL(DBCS)
compiler option is in effect.

Rules for separators

A separator is a string of one or more punctuation characters.

In the following description, {} (curly braces) enclose each separator, and b
represents a space. Anywhere a space is used as a separator or as part of a
separator, more than one space can be used.

Space {b}

A space can immediately precede or follow any separator except:

* The opening pseudo-text delimiter, where the preceding space is
required.

© Copyright IBM Corp. 1991, 2018

47



48

* Within quotation marks. Spaces between quotation marks are considered
part of the alphanumeric literal; they are not considered separators.

Period {.b}, Comma {,b}, Semicolon {;b}
A separator comma is composed of a comma followed by a space. A
separator period is composed of a period followed by a space. A separator
semicolon is composed of a semicolon followed by a space.

The separator period must be used only to indicate the end of a sentence,
or as shown in formats. The separator comma and separator semicolon can
be used anywhere the separator space is used.

* In the IDENTIFICATION DIVISION, each paragraph must end with a
separator period.

* In the ENVIRONMENT DIVISION, the SOURCE-COMPUTER,
OBJECT-COMPUTER, SPECIAL-NAMES, and I-O-CONTROL
paragraphs must each end with a separator period. In the
FILE-CONTROL paragraph, each file-control entry must end with a
separator period.

* In the DATA DIVISION, file (FD), sort/merge file (SD), and data
description entries must each end with a separator period.

* In the PROCEDURE DIVISION, separator commas or separator
semicolons can separate statements within a sentence and operands
within a statement. Each sentence and each procedure must end with a
separator period.

Parentheses { (}...{) }
Except in pseudo-text, parentheses can appear only in balanced pairs of left
and right parentheses. They delimit subscripts, a list of function
arguments, reference-modifiers, arithmetic expressions, or conditions.

Colon { : }
The colon is a separator and is required when shown in general formats.

Quotation marks {"} ... {"}
An opening quotation mark must be immediately preceded by a space or a
left parenthesis. A closing quotation mark must be immediately followed
by a separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Quotation marks must appear as balanced pairs.
They delimit alphanumeric literals, except when the literal is continued
(see [“Continuation lines” on page 56).

Apostrophes {'} ... {'}
An opening apostrophe must be immediately preceded by a space or a left
parenthesis. A closing apostrophe must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. Apostrophes must appear as balanced pairs. They
delimit alphanumeric literals, except when the literal is continued (see
[“Continuation lines” on page 56).

Null-terminated literal delimiters {Z"} ... {"}, {Z'} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter.

DBCS literal delimiters {G"} ... {"}, {G"} ... {"}, (N"} ... {"}, {N'} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or

Enterprise COBOL for z/OS, V5.2 Language Reference



pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL/(DBCS) compiler option is in effect.

National literal delimiters {N"} ... {"}, {N'} ... {"}, {NX"} ... {"}, {(NX"} ... {"}
The opening delimiter must be immediately preceded by a space or a left
parenthesis. The closing delimiter must be immediately followed by a
separator space, comma, semicolon, period, right parenthesis, or
pseudo-text delimiter. N" and N' are DBCS literal delimiters when the
NSYMBOL(DBCS) compiler option is in effect.

Pseudo-text delimiters {b==} ... {==b}
An opening pseudo-text delimiter must be immediately preceded by a
space. A closing pseudo-text delimiter must be immediately followed by a
separator space, comma, semicolon, or period. Pseudo-text delimiters must

appear as balanced pairs. They delimit pseudo-text. (See [“COPY statement”]
on page 542)

Any punctuation character included in a PICTURE character-string, a comment
character-string, or an alphanumeric literal is not considered a punctuation
character, but is part of the character-string or literal.

Chapter 4. Separators 49



50 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 5. Sections and paragraphs

Sections and paragraphs define a program. Sections and paragraphs are
subdivided into sentences, statements, and entries.

Sentences are subdivided into statements, and statements are subdivided into
phrases. Entries are subdivided into clauses.

For details, see:

* [“Sentences, statements, and entries”|

+ [“Statements” on page 52|

+ [“Phrases” on page 52|

+ [“Clauses” on page 52|

For more information about sections, paragraphs, and statements, see ["Procedures”]
on page 256.

Sentences, statements, and entries

Unless the associated rules explicitly state otherwise, each required clause or
statement must be written in the sequence shown in its format. If optional clauses
or statements are used, they must be written in the sequence shown in their
formats. These rules are true even for clauses and statements treated as comments.

The syntactical hierarchy follows this form:
» IDENTIFICATION DIVISION
— Paragraphs
- Entries
* Clauses
* ENVIRONMENT DIVISION
— Sections
- Paragraphs
* Entries
— Clauses
- Phrases
* DATA DIVISION
— Sections
- Entries
* Clauses
— Phrases
* PROCEDURE DIVISION
— Sections
- Paragraphs
* Sentences
— Statements
- Phrases

© Copyright IBM Corp. 1991, 2018 51



Entries

An entry is a series of clauses that ends with a separator period. Entries are
constructed in the identification, environment, and data divisions.

Clauses

A clause is an ordered set of consecutive COBOL character-strings that specifies an
attribute of an entry. Clauses are constructed in the identification, environment,
and data divisions.

Sentences

A sentence is a sequence of one or more statements that ends with a separator
period. Sentences are constructed in the PROCEDURE DIVISION.

Statements

A statement specifies an action to be taken by the program. Statements are
constructed in the PROCEDURE DIVISION.

For descriptions of the different types of statements, see:

* |“Imperative statements” on page 280

* |“Conditional statements” on page 282|

* |Chapter 7, “Scope of names,” on page 61

* |Chapter 22, “Compiler-directing statements,” on page 539

Phrases

Each clause or statement in a program can be subdivided into smaller units called
phrases.

52 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 6. Reference format

COBOL source text must be written in COBOL reference format.

Reference format consists of the following areas in a 72-character line.

Sequence number area
Columns 1 through 6

Indicator area
Column 7

Area A
Columns 8 through 11

Area B
Columns 12 through 72

This figure illustrates reference format for a COBOL source line.
L1|2|3|4|5|6j7 8|9 |t10|11]12|13] ... |71]|72
Sequence Number Area l Area A Area B
Indicator Area

The following topics provide details about these areas:

+ [“Sequence number area’]

[“Indicator area”|

[“Area A” on page 54|

[“Area B” on page 56|

* [“Area A or Area B” on page 58|

Sequence number area

The sequence number area can be used to label a source statement line. The
content of this area can consist of any character in the character set of the
computer.

Indicator area

Use the indicator area to specify the continuation of words or alphanumeric literals
from the previous line onto the current line, the treatment of text as
documentation, and debugging lines.

See [“Continuation lines” on page 56)“Comment lines” on page 58|and
[‘Debugging lines” on page 59

The indicator area can be used for source listing formatting. A slash (/) placed in
the indicator column causes the compiler to start a new page for the source listing,
and the corresponding source record to be treated as a comment. The effect can be
dependent on the LINECOUNT compiler option. For information about the
LINECOUNT compiler option, see LINECOUNT in the Enterprise COBOL
Programming Guide.

© Copyright IBM Corp. 1991, 2018 53



Area A

Certain items must begin in Area A.

These items are:

+ |Division headers|

* |“Section headers”]

 [Paragraph headers or paragraph names
grap

* [Level indicators or level-numbers (01 and 77)|
+ IDECLARATIVES and END DECLARATIVES|

+ [End program, end class, and end method markers|

Division headers

A division header is a combination of words, followed by a separator period to
indicate the beginning of a division.

See the following division headers:
* IDENTIFICATION DIVISION.

* ENVIRONMENT DIVISION.

* DATA DIVISION.

* PROCEDURE DIVISION.

A division header (except when a USING phrase is specified with a PROCEDURE
DIVISION header) must be immediately followed by a separator period. Except for
the USING phrase, no text can appear on the same line.

Section headers

In the environment and procedure divisions, a section header indicates the
beginning of a series of paragraphs.

For example:
INPUT-OUTPUT SECTION.

In the DATA DIVISION, a section header indicates the beginning of an entry; for
example:

FILE SECTION.
LINKAGE SECTION.
LOCAL-STORAGE SECTION.

WORKING-STORAGE SECTION.

A section header must be immediately followed by a separator period.

Paragraph headers or paragraph names

A paragraph header or paragraph name indicates the beginning of a paragraph.

In the ENVIRONMENT DIVISION, a paragraph consists of a paragraph header
followed by one or more entries. For example:

OBJECT-COMPUTER. computer-name.

54 Enterprise COBOL for z/OS, V5.2 Language Reference



In the PROCEDURE DIVISION, a paragraph consists of a paragraph-name
followed by one or more sentences.

Level indicators (FD and SD) or level-numbers (01 and 77)
A level indicator can be either FD or SD.

A level indicator must begin in Area A and be followed by a space. (See
[SECTION” on page 176)) A level-number that must begin in Area A is a one- or
two-digit integer with a value of 01 or 77. It must be followed by a space or
separator period.

DECLARATIVES and END DECLARATIVES

DECLARATIVES and END DECLARATIVES are keywords that begin and end the
declaratives part of the source unit.

In the PROCEDURE DIVISION, each of the keywords DECLARATIVES and END
DECLARATIVES must begin in Area A and be followed immediately by a
separator period; no other text can appear on the same line. After the keywords
END DECLARATIVES, no text can appear before the following section header. (See
[‘Declaratives” on page 255.)

End program, end class, and end method markers

The end markers are a combination of words followed by a separator period that
indicates the end of a COBOL program, method, class, factory, or object definition.

For example:

END PROGRAM program-name .
END CLASS class-name.

END METHOD "method-name" .
END OBJECT.

END FACTORY.

For programs
program-name must be identical to the program-name of the corresponding
PROGRAM-ID paragraph. Every COBOL program, except an outermost
program that contains no nested programs and is not followed by another
batch program, must end with an END PROGRAM marker.

For classes
class-name must be identical to the class-name in the corresponding
CLASS-ID paragraph.

For methods
method-name must be identical to the method-name in the corresponding
METHOD-ID paragraph.

For object paragraphs
There is no name in an object paragraph header or in its end marker. The
syntax is simply END OBJECT.

For factory paragraphs
There is no name in a factory paragraph header or in its end marker. The
syntax is simply END FACTORY.

Chapter 6. Reference format 55



Area B

Certain items must begin in Area B.

These items are:

. IEntries, sentences, statements, and clauses|

* |Continuation lines|

Entries, sentences, statements, clauses

The first entry, sentence, statement, or clause begins on either the same line as the
header or paragraph-name that it follows, or in Area B of the next nonblank line
that is not a comment line. Successive sentences or entries either begin in Area B of
the same line as the preceding sentence or entry, or in Area B of the next nonblank
line that is not a comment line.

Within an entry or sentence, successive lines in Area B can have the same format
or can be indented to clarify program logic. The output listing is indented only if
the input statements are indented. Indentation does not affect the meaning of the
program. The programmer can choose the amount of indentation, subject only to
the restrictions on the width of Area B. See also [Chapter 5, “Sections and|

[paragraphs,” on page 51

Continuation lines

Any sentence, entry, clause, or phrase that requires more than one line can be
continued in Area B of the next line that is neither a comment line nor a blank line.

The line being continued is a continued line; the succeeding lines are continuation
lines. Area A of a continuation line must be blank.

If there is no hyphen (-) in the indicator area (column 7) of a line, the last character
of the preceding line is assumed to be followed by a space.

The following items cannot be continued:

* DBCS user-defined words

* DBCS literals

* Alphanumeric literals containing DBCS characters

* National literals containing DBCS characters

However, alphanumeric literals and national literals in hexadecimal notation can be
continued regardless of the kind of characters expressed in hexadecimal notation.

All characters that make up an opening literal delimiter must be on the same line.
For example, Z", G", N", NX", or X".

Both characters that make up the pseudo-text delimiter separator "==" must be on
the same line.

If there is a hyphen in the indicator area of a line, the first nonblank character of

the continuation line immediately follows the last nonblank character of the
continued line without an intervening space.

56 Enterprise COBOL for z/OS, V5.2 Language Reference



Continuation of alphanumeric and national literals

Alphanumeric and national literals can be continued only when there are no DBCS
characters in the content of the literal.

The following rules apply to alphanumeric and national literals that do not contain
DBCS characters:

* If the continued line contains an alphanumeric or national literal without a
closing quotation mark, all spaces at the end of the continued line (through
column 72) are considered to be part of the literal. The continuation line must
contain a hyphen in the indicator area, and the first nonblank character must be
a quotation mark. The continuation of the literal begins with the character
immediately following the quotation mark.

* If an alphanumeric or national literal that is to be continued on the next line has
as its last character a quotation mark in column 72, the continuation line must
start with two consecutive quotation marks. This will result in a single quotation
mark as part of the value of the literal.

If the last character on the continued line of an alphanumeric or national literal
is a single quotation mark in Area B, the continuation line can start with a single
quotation mark. This will result in two consecutive literals instead of one
continued literal.

The rules are the same when an apostrophe is used instead of a quotation mark in
delimiters.

If you want to continue a literal such that the continued lines and the continuation
lines are part of one literal:

* Code a hyphen in the indicator area of each continuation line.

* Code the literal value using all columns of each continued line, up to and
including column 72. (Do not terminate the continued lines with a single
quotation mark followed by a space.)

* Code a quotation mark before the first character of the literal on each
continuation line.

* Terminate the last continuation line with a single quotation mark followed by a
space.

In the following examples, the number and size of literals created are indicated

below the example:

PO PO SO JUIE SUUN: PRI SOy SURPIE AR PUNPIE SRR : PO S S

000001 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHITTITIITT1JJJJJJIIIIIKKKKKKKKKK
- "LLLLLLLLLLMMMMMMMMMM®

* Literal 000001 is interpreted as one alphanumeric literal that is 120 bytes long.
Each character between the starting quotation mark and up to and including
column 72 of continued lines is counted as part of the literal.

P T PO SO SO SN PRI SOy S T SRS TN SR D SN

000003 N"AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGG"

* Literal 000003 is interpreted as one national literal that is 60 national character
positions in length (120 bytes). Each character between the starting quotation
mark and the ending quotation mark on the continued line is counted as part of
the literal. Although single-byte characters are entered, the value of the literals is
stored as national characters.

Chapter 6. Reference format 57



[cocbox l b2k B bbb S BT
000005  "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE

- "GGGGGGGGGGHHHHHHHHHHIIIII1111IJJJJIIIIIIKKKKKKKKKK

- "LLLLLLLLLLMMMMMMMMMM"

* Literal 000005 is interpreted as one literal that is 140 bytes long. The blanks at
the end of each continued line are counted as part of the literal because the
continued lines do not end with a quotation mark.

T P DU S U PP R PN SR

000010 "AAAAAAAAAABBBBBBBBBBCCCCCCCCCCDDDDDDDDDDEEEEEEEEEE"

- "GGGGGGGGGGHHHHHHHHHHITIIIIIIIIJJJJIIIIIIKKKKKKKKKK"
- "LLLLLLLLLLMMMMMMMMMM"

* Literal 000010 is interpreted as three separate literals that have lengths of 50, 50,
and 20, respectively. The quotation mark with the following space terminates the
continued line. Only the characters within the quotation marks are counted as
part of the literals. Literal 000010 is not valid as a VALUE clause literal for
non-level-88 data items.

To code a continued literal where the length of each continued part of the literal is
less than the length of Area B, adjust the starting column such that the last
character of the continued part is in column 72.

Area A or Area B

58

Certain items can begin in either Area A or Area B.

These items are:

¢ |Level-numbers
¢ [Comment lines

+ [Floating comment indicators (*>)|

* |Compiler-directing statements|

¢ |Pseudo-text
¢ [Blank line

O]
(o)
o
c
Q
19,
5
o
=
5
[¢)
& |

Level-numbers

A level-number that can begin in Area A or B is a one- or two-digit integer with a
value of 02 through 49, 66, or 88.

A level-number that must begin in Area A is a one- or two-digit integer with a
value of 01 or 77. A level-number must be followed by a space or a separator
period. For more information, see [“Level-numbers” on page 188

Comment lines

A comment line is any line with an asterisk (*) or slash (/) in the indicator area
(column 7) of the line, or with a floating comment indicator (*>) as the first
character-string in the program text area (Area A plus Area B).

The comment can be written anywhere in the program text area of that line, and
can consist of any combination of characters from the character set of the
computer.

Comment lines can be placed anywhere in a program, method, or class definition.
Comment lines placed before the IDENTIFICATION DIVISION header must follow
any control cards (for example, PROCESS or CBL).

Enterprise COBOL for z/OS, V5.2 Language Reference



Important: Comments intermixed with control cards could nullify some of the
control cards and cause them to be diagnosed as errors.

Multiple comment lines are allowed. Each must begin with an asterisk (*) or a
slash (/) in the indicator area, or with a floating comment indicator (*>).

For more information about floating comment indicators, see [“Floating comment|
findicators (*>).”]

An asterisk (*) comment line is printed on the next available line in the output
listing. The effect can be dependent on the LINECOUNT compiler option. For
information about the LINECOUNT compiler option, see LINECOUNT in the
Enterprise COBOL Programming Guide. A slash (/) comment line is printed on the
first line of the next page, and the current page of the output listing is ejected.

The compiler treats a comment line as documentation, and does not check it
syntactically.

Floating comment indicators (*>)

In addition to the fixed indicators that can only be specified in the indicator area of
the source reference format, a floating comment indicator (*>) can be specified
anywhere in the program-text area to indicate a comment line or an inline
comment.

A floating comment indicator indicates a comment line if it is the first character
string in the program-text area (Area A plus Area B), or indicates an inline
comment if it is after one or more character strings in the program-text area.

These are the rules for floating comment indicators:

* Both characters (* and >) that form the multiple-character floating indicator must
be contiguous and on the same line.

* The floating comment indicator for an inline comment must be preceded by a
separator space, and can be specified wherever a separator space can be
specified.

* All characters following the floating comment indicator up to the end of Area B
are comment text.

Compiler-directing statements

Most compiler-directing statements, including COPY and REPLACE, can start in
either Area A or Area B.

BASIS, CBL (PROCESS), *CBL (*CONTROL), DELETE, EJECT, INSERT, SKIP1,
SKIP2, SKIP3, and TITLE statements can also start in Area A or Area B.

Compiler directives

Compiler directives must start in Area B.

Currently, the only compiler directive is CALLINTERFACE. For more information,
see [Chapter 23, “Compiler directives,” on page 567

Debugging lines

A debugging line is any line with a D (or d) in the indicator area of the line.

Chapter 6. Reference format 59



60

Debugging lines can be written in the ENVIRONMENT DIVISION (after the
OBJECT-COMPUTER paragraph), the DATA DIVISION, and the PROCEDURE
DIVISION. If a debugging line contains only spaces in Area A and Area B, it is
considered a blank line.

See "WITH DEBUGGING MODE" in [“SOURCE-COMPUTER paragraph” on page|

Pseudo-text

The character-strings and separators that comprise pseudo-text can start in either
Area A or Area B.

If, however, there is a hyphen in the indicator area (column 7) of a line that follows
the opening pseudo-text delimiter, Area A of the line must be blank, and the rules

for continuation lines apply to the formation of text words. See

[lines” on page 56| for details.

Blank lines

A blank line contains nothing but spaces in column 7 through column 72. A blank
line can be anywhere in a program.

Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 7. Scope of names

A user-defined word names a data resource or a COBOL programming element.
Examples of named data resources are a file, a data item, or a record. Examples of
named programming elements are a program, a paragraph, a method, or a class
definition.

The sections below define the types of names in COBOL and explain where the
names can be referenced:

* [“Types of names’]

+ [“External and internal resources” on page 63|

* [“Resolution of names” on page 64|

Types of names

In addition to identifying a resource, a name can have global or local attributes.
Some names are always global, some names are always local, and some names are
either local or global depending on specifications in the program in which the
names are defined.

For programs
A global name can be used to refer to the resource with which it is
associated both:

* From within the program in which the global name is defined
* From within any other program that is contained in the program that
defines the global name

Use the GLOBAL clause in the data description entry to indicate that a
name is global. For more information about using the GLOBAL clause, see
[“GLOBAL clause” on page 177

A local name can be used only to refer to the resource with which it is
associated from within the program in which the local name is defined.

By default, if a data-name, a file-name, a record-name, or a condition-name
definition in a data description entry does not include the GLOBAL clause,
the name is local.

For methods
All names defined in methods are implicitly local.

For classes
Names defined in a class definition are global to all the methods contained
in that class definition.

For object paragraphs
Names defined in the DATA DIVISION of an object paragraph are global
to the methods contained in that object paragraph.

For factory paragraphs
Names defined in the DATA DIVISION of a factory paragraph are global
to the methods contained in that factory paragraph.

Restriction: Specific rules sometimes prohibit specifying the GLOBAL clause for
certain data description, file description, or record description entries.

© Copyright IBM Corp. 1991, 2018 61



62

The following list indicates the names that you can use and whether the name can
be local or global:

data-name
data-name assigns a name to a data item.

A data-name is global if the GLOBAL clause is specified either in the data
description entry that defines the data-name or in another entry to which
that data description entry is subordinate.

file-name
file-name assigns a name to a file connector.

A file-name is global if the GLOBAL clause is specified in the file
description entry for that file-name.

record-name
record-name assigns a name to a record.

A record-name is global if the GLOBAL clause is specified in the record
description that defines the record-name, or in the case of record
description entries in the FILE SECTION, if the GLOBAL clause is
specified in the file description entry for the file name associated with the
record description entry.

condition-name
condition-name associates a value with a conditional variable.

A condition-name that is defined in a data description entry is global if
that entry is subordinate to another entry that specifies the GLOBAL
clause.

A condition-name that is defined within the configuration section is always
global.

program-name
program-name assigns a name to an external or internal (nested) program.
For more information, see [“Conventions for program-names” on page 88|

A program-name is neither local nor global. For more information, see
[‘Conventions for program-names” on page 88|

method-name
method-name assigns a name to a method. method-name must be specified as
the content of an alphanumeric literal or a national literal.

section-name
section-name assigns a name to a section in the PROCEDURE DIVISION.

A section-name is always local.

paragraph-name
paragraph-name assigns a name to a paragraph in the PROCEDURE
DIVISION.

A paragraph-name is always local.

basis-name
basis-name specifies the name of source text that is be included by the
compiler into the source unit. For details, see ["BASIS statement” on page]

library-name
library-name specifies the COBOL library that the compiler uses for
including COPY text. For details, see [“COPY statement” on page 542

Enterprise COBOL for z/OS, V5.2 Language Reference



text-name
text-name specifies the name of COPY text to be included by the compiler
into the source unit. For details, see ['COPY statement” on page 542

alphabet-name
alphabet-name assigns a name to a specific character set or collating
sequence, or both, in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION.

An alphabet-name is always global.

class-name (of data)
class-name assigns a name to the proposition in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION for which a truth value can
be defined.

A class-name is always global.

class-name (object-oriented)
class-name assigns a name to an object-oriented class or subclass.

mnemonic-name
mnemonic-name assigns a user-defined word to an implementer-name.

A mnemonic-name is always global.

symbolic-character
symbolic-character specifies a user-defined figurative constant.

A symbolic-character is always global.

index-name
index-name assigns a name to an index associated with a specific table.

If a data item that possesses the global attribute includes a table accessed
with an index, that index also possesses the global attribute. In addition,
the scope of that index-name is identical to the scope of the data-name that
includes the table.

xml-schema-name
xml-schema-name assigns a name to the system identifier of a file containing
an XML schema.

An xml-schema-name is always global.

External and internal resources

The storage associated with a data item or a file connector can be external or
internal to the program or method in which the resource is declared.

A data item or file connector is external if the storage associated with that resource
is associated with the run unit rather than with any particular program or method
within the run unit. An external resource can be referenced by any program or
method in the run unit that describes the resource. References to an external
resource from different programs or methods using separate descriptions of the
resource are always to the same resource. In a run unit, there is only one
representation of an external resource.

A resource is internal if the storage associated with that resource is associated only
with the program or method that describes the resource.

External and internal resources can have either global or local names.

Chapter 7. Scope of names 63



A data record described in the WORKING-STORAGE SECTION is given the
external attribute by the presence of the EXTERNAL clause in its data description
entry. Any data item described by a data description entry subordinate to an entry
that describes an external record also attains the external attribute. If a record or
data item does not have the external attribute, it is part of the internal data of the
program or method in which it is described.

Two programs or methods in a run unit can reference the same file connector in
the following circumstances:

* An external file connector can be referenced from any program or method that
describes that file connector.

 If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the
containing program.

Two programs or methods in a run unit can reference common data in the
following circumstances:

* The data content of an external data record can be referenced from any program
or method provided that program or method has described that data record.

* If a program is contained within another program, both programs can refer to
data that possesses the global attribute either in the program or in any program
that directly or indirectly contains the containing program.

The data records described as subordinate to a file description entry that does not
contain the EXTERNAL clause or to a sort-merge file description entry, as well as
any data items described subordinate to the data description entries for such
records, are always internal to the program or method that describes the file-name.
If the EXTERNAL clause is included in the file description entry, the data records
and the data items attain the external attribute.

Resolution of names

64

The rules for resolution of names depend on whether the names are specified in a
program or in a class definition.

Names within programs

When a program, program B, is directly contained within another program,
program A, both programs can define a condition-name, a data-name, a file-name,
or a record-name using the same user-defined word. When such a duplicated name
is referenced in program B, the following steps determine the referenced resource
(these rules also apply to classes and contained methods):

1. The referenced resource is identified from the set of all names that are defined
in program B and all global names defined in program A and in any programs
that directly or indirectly contain program A. The normal rules for qualification
and any other rules for uniqueness of reference are applied to this set of names
until one or more resources is identified.

2. If only one resource is identified, it is the referenced resource.

3. If more than one resource is identified, no more than one resource can have a
name local to program B. If zero or one of the resources has a name local to
program B, the following rules apply:

¢ If the name is declared in program B, the resource in program B is the
referenced resource.

Enterprise COBOL for z/OS, V5.2 Language Reference



* If the name is not declared in program B, the referenced resource is:
— The resource in program A if the name is declared in program A

— The resource in the containing program if the name is declared in the
program that contains program A

This rule is applied to further containing programs until a valid resource is
found.

Names within a class definition

Within a class definition, resources can be defined within the following units:
* The factory data division

* The object data division

* A method data division

If a resource is defined with a given name in the DATA DIVISION of an object
definition, and there is no resource defined with the same name in an instance
method of that object definition, a reference to that name from an instance method
is a reference to the resource in the object DATA DIVISION.

If a resource is defined with a given name in the DATA DIVISION of a factory
definition, and there is no resource defined with the same name in a factory
method of that factory definition, a reference to that name from a factory method
is a reference to the resource in the factory data division.

If a resource is defined within a method, any reference within the method to that
resource name is always a reference to the resource in the method.

The normal rules for qualification and uniqueness of reference apply when the

same name is associated with more than one resource within a given method data
division, object data division, or factory data division.

Chapter 7. Scope of names 65



66 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 8. Referencing data names, copy libraries, and
PROCEDURE DIVISION names

References can be made to external and internal resources. References to data and
procedures can be either explicit or implicit.

For more information about rules for qualification, and for explicit and implicit
data references, see the following topics:

* [“Uniqueness of reference”|

+ [“Data attribute specification” on page 80|

Uniqueness of reference

Every user-defined name in a COBOL program is assigned by the user to name a
resource for solving a data processing problem. To use a resource, a statement in a
COBOL program must contain a reference that uniquely identifies that resource.

To ensure uniqueness of reference, a user-defined name can be qualified. A
subscript is required for unique reference to a table element, except as specified in
[“Subscripting” on page 73] A data-name or function-name, any subscripts, and the
specified reference-modifier uniquely reference a data item defined by reference
modification.

When the same name has been assigned in separate programs to two or more
occurrences of a resource of a given type, and when qualification by itself does not
allow the references in one of those programs to differentiate between the
identically named resources, then certain conventions that limit the scope of names
apply. The conventions ensure that the resource identified is that described in the
program containing the reference. For more information about resolving
program-names, see [‘Resolution of names” on page 64.|

Unless otherwise specified by the rules for a statement, any subscripts and
reference modification are evaluated only once as the first step in executing that
statement.

Qualification

A name that exists within a hierarchy of names can be made unique by specifying
one or more higher-level names in the hierarchy. The higher-level names are called
qualifiers, and the process by which such names are made unique is called
qualification.

Qualification is specified by placing one or more phrases after a user-specified
name, with each phrase made up of the word IN or OF followed by a qualifier. (IN
and OF are logically equivalent.)

If there is only one 01 level with a given name, that name can be referenced even if
it is not unique when the QUALIFY(EXTEND) option is in effect.

© Copyright IBM Corp. 1991, 2018 67



68

You must specify enough qualification to make the name unique; however, it is not
always necessary to specify all the levels of the hierarchy. For example, if there is
more than one file whose records contain the field EMPLOYEE-NO, but only one of the
files has a record named MASTER-RECORD:

» EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies EMPLOYEE-NO.
* EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but unnecessary.

Qualification rules

The rules for qualifying a name are:

* A name can be qualified even though it does not need qualification except in a
REDEFINES clause, in which case it must not be qualified.

* Each qualifier must be of a higher level than the name it qualifies and must be
within the same hierarchy.

* If there is more than one combination of qualifiers that ensures uniqueness, any
of those combinations can be used.

* If compiler option QUALIFY(EXTEND) is in effect, if there is only one fully
qualified name that matches your combination of qualifiers, that reference will
be considered unique, even if the set of qualifiers also matches a partial
qualification for a different data item. Fully qualified means every qualifier is
specified.

Identical names

When programs are directly or indirectly contained within other programs, each
program can use identical user-defined words to name resources.

A program references the resources that program describes rather than the
same-named resources described in another program, even if the names are

different types of user-defined words.

These same rules apply to classes and their contained methods.

References to COPY libraries

If library-name-1 is not specified, SYSLIB is assumed as the library name.

Format

»>—text-name-1 _|
LI:IN library-name-1
OF

v
A

For rules on referencing COPY libraries, see [‘COPY statement” on page 542

References to PROCEDURE DIVISION names

PROCEDURE DIVISION names that are explicitly referenced in a program must be
unique within a section.

Enterprise COBOL for z/OS, V5.2 Language Reference



Format 1

A\
A

IN section—name—]—l

»»—paragraph-name-1
|:OF

Format 2

»»—section-name-1 >

A section-name is the highest and only qualifier available for a paragraph-name
and must be unique if referenced. (Section-names are described under
[“Procedures” on page 256.)

If explicitly referenced, a paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to within the
section in which it appears. A paragraph-name or section-name that appears in a
program cannot be referenced from any other program.

References to DATA DIVISION names

This section discusses the following types of references.

+ [“Simple data reference”|

+ [“Identifiers” on page 70|

Simple data reference

The most basic method of referencing data items in a COBOL program is simple
data reference, which is data-name-1 without qualification, subscripting, or reference
modification. Simple data reference is used to reference a single elementary or
group item.

Format

»»—data-name-1 >«

data-name-1
Can be any data description entry.

data-name-1 must be unique in a program.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 69



70

Identifiers

When used in a syntax diagram in this information, the term identifier refers to a

valid combination of a data-name or function-identifier with its qualifiers,
subscripts, and reference-modifiers as required for uniqueness of reference.

Rules for identifiers associated with a format can however specifically prohibit
qualification, subscripting, or reference modification.

The term data-name refers to a name that must not be qualified, subscripted, or
reference modified unless specifically permitted by the rules for the format.

+ For a description of qualification, see [“Qualification” on page 67,

* For a description of subscripting, see [“Subscripting” on page 73

* For a description of reference modification, see [“Reference modification” on|

Format 1

»

»>—data-name-1—Y g ]
LI:IN ata-name-2 LI:INZI—]‘iZe-name-l
OF OF

Yy

(—L-subscript——)

»-

Y

|—(—Zeftmos t-character-posit ion—:—L—_l—)J
length

data-name-1 , data-name-2
Can be a record-name.

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

file-name-1 must be unique within this program.

Enterprise COBOL for z/OS, V5.2 Language Reference




Format 2

> condition-name-1 v
data-name-l4 LI:IN data-name-ZJ
OF

». [

IN fz'Ze-name-]—|
T

Format 3

»>—| INAGE-COUNTER ><

IN file—name—Z—l
T

data-name-1 , data-name-2
Can be a record-name.

condition-name-1
Can be referenced by statements and entries either in the program that
contains the configuration section or in a program contained within that
program.

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

Must be unique within this program.

LINAGE-COUNTER
Must be qualified each time it is referenced if more than one file
description entry that contains a LINAGE clause has been specified in the
source unit.

file-name-2
Must be identified by the FD or SD entry in the DATA DIVISION.
file-name-2 must be unique within this program.

Duplication of data-names must not occur in those places where the data-names
cannot be made unique by qualification.

In the same program, the data-name specified as the subject of the entry whose
level-number is 01 that includes the EXTERNAL clause must not be the same
data-name specified for any other data description entry that includes the
EXTERNAL clause.

In the same DATA DIVISION, the data description entries for any two data items
for which the same data-name is specified must not include the GLOBAL clause.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 71



72

DATA

DIVISION names that are explicitly referenced must either be uniquely

defined or made unique through qualification. Unreferenced data items need not

be uni
with a

quely defined. The highest level in a data hierarchy (a data item associated
level indicator (FD or SD in the FILE SECTION) or with level-number 01)

must be uniquely named if referenced. Data items associated with level-numbers
02 through 49 are successively lower levels of the hierarchy.

Condition-name

See the syntax and description for details.

»»—C

>

Format 1: condition-name in data division

ondition-name-1—" ] ] >
LI:IN data-name-1 LI:INII—]‘ile—nmwe—l
OF: OF:

.

—"—subscr‘ipi.‘——)J

»»—C

Format 2: condition-name in SPECIAL-NAMES paragraph

A\
A

ondition-name-1

IN nemonic—name-l—|
T

condit

ion-name-1
Can be referenced by statements and entries either in the program that
contains the definition of condition-name-1, or in a program contained
within that program.

If explicitly referenced, a condition-name must be unique or be made
unique through qualification or subscripting (or both) except when the
scope of names by itself ensures uniqueness of reference.

If qualification is used to make a condition-name unique, the associated
conditional variable can be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable itself
must be used to make the condition-name unique.

If references to a conditional variable require subscripting, reference to any
of its condition-names also requires the same combination of subscripting.

Enterprise COBOL for z/OS, V5.2 Language Reference




In this information, condition-name refers to a condition-name qualified or
subscripted, as necessary.

data-name-1
Can be a record-name.
file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION.

file-name-1 must be unique within this program.

mnemonic-name-1
For information about acceptable values for mnemonic-name-1, see
[“SPECIAL-NAMES paragraph” on page 114|

Index-name

An index-name identifies an index. An index can be regarded as a private special
register that the compiler generates for working with a table. You name an index
by specifying the INDEXED BY phrase in the OCCURS clause that defines a table.

You can use an index-name in only the following language elements:
* SET statements

* PERFORM statements

* SEARCH statements

* Subscripts

¢ Relation conditions

An index-name is not the same as the name of an index data item, and an
index-name cannot be used like a data-name.

Index data item

An index data item is a data item that can hold the value of an index.

You define an index data item by specifying the USAGE IS INDEX clause in a data
description entry. The name of an index data item is a data-name. An index data
item can be used anywhere a data-name or identifier can be used, unless stated
otherwise in the rules of a particular statement. You can use the SET statement to
save the value of an index (referenced by index-name) in an index data item.

Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is a positive integer whose value specifies the occurrence
number of a table element.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 73



74

Format

»—[condition—name—l v
data-name-l4 LI:IN data-name-ZJ
OF-

> »

IN fiZe-name-]—|
T

integer-1 ) ><
ALL

data-name-3 _|
LI: + :I—integer-z

index-name-1 _|
LI: + :l—integer—S

condition-name-1
The conditional variable for condition-name-1 must contain an OCCURS
clause or must be subordinate to a data description entry that contains an
OCCURS clause.

data-name-1
Must contain an OCCURS clause or must be subordinate to a data
description entry that contains an OCCURS clause.

data-name-2 , file-name-1
Must name data items or records that contain data-name-1.

integer-1
Can be signed. If signed, it must be positive.

data-name-3
Must be a numeric elementary item representing an integer.

data-name-3 can be qualified.

index-name-1
Corresponds to a data description entry in the hierarchy of the table being
referenced that contains an INDEXED BY phrase that specifies that name.

integer-2 , integer-3
Cannot be signed.

The subscripts, enclosed in parentheses, are written immediately following any
qualification for the name of the table element. The number of subscripts in such a
reference must equal the number of dimensions in the table whose element is
being referenced. That is, there must be a subscript for each OCCURS clause in the
hierarchy that contains the data-name including the data-name itself.

Enterprise COBOL for z/OS, V5.2 Language Reference




When more than one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization. If a
multidimensional table is thought of as a series of nested tables and the most
inclusive or outermost table in the nest is considered to be the major table with the
innermost or least inclusive table being the minor table, the subscripts are written
from left to right in the order major, intermediate, and minor.

For example, if TABLE-THREE is defined as:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.
10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES PIC X(8).

a valid subscripted reference to TABLE-THREE is:
ELEMENT-THREE (2 2 1)

Subscripted references can also be reference modified. See the third example under
[‘Reference modification examples” on page 78| A reference to an item must not be
subscripted unless the item is a table element or an item or condition-name
associated with a table element.

Each table element reference must be subscripted except when such reference
appears:

* In a USE FOR DEBUGGING statement

* As the subject of a SEARCH statement

* In a REDEFINES clause

* In the KEY is phrase of an OCCURS clause

The lowest permissible occurrence number represented by a subscript is 1. The
highest permissible occurrence number in any particular case is the maximum
number of occurrences of the item as specified in the OCCURS clause.

Subscripting using data-names

When a data-name is used to represent a subscript, it can be used to reference
items within different tables. These tables need not have elements of the same size.
The same data-name can appear as the only subscript with one item and as one of
two or more subscripts with another item. A data-name subscript can be qualified;
it cannot be subscripted or indexed. For example, valid subscripted references to
TABLE-THREE, assuming that SUB1, SUB2, and SUB3 are all items subordinate to
SUBSCRIPT-ITEM, include:

ELEMENT-THREE (SUB1 SUB2 SUB3)

ELEMENT-THREE IN TABLE-THREE (SUBL OF SUBSCRIPT-ITEM,
SUB2 OF SUBSCRIPT-ITEM, SUB3 OF SUBSCRIPT-ITEM)

Subscripting using index-names (indexing)

Indexing allows such operations as table searching and manipulating specific
items. To use indexing, you associate one or more index-names with an item
whose data description entry contains an OCCURS clause.

An index associated with an index-name acts as a subscript, and its value

corresponds to an occurrence number for the item to which the index-name is
associated.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 75



76

The INDEXED BY phrase, by which the index-name is identified and associated
with its table, is an optional part of the OCCURS clause. There is no separate entry
to describe the index associated with index-name. At run time, the contents of the
index corresponds to an occurrence number for that specific dimension of the table
with which the index is associated.

The initial value of an index at run time is undefined, and the index must be
initialized before it is used as a subscript. An initial value is assigned to an index
with one of the following statements:

* The PERFORM statement with the VARYING phrase
* The SEARCH statement with the ALL phrase
* The SET statement

The use of an integer or data-name as a subscript that references a table element or
an item within a table element does not cause the alteration of any index
associated with that table.

An index-name can be used to reference any table. However, the element length of
the table being referenced and of the table that the index-name is associated with
should match. Otherwise, the reference will not be to the same table element in
each table, and you might get runtime errors.

Data that is arranged in the form of a table is often searched. The SEARCH
statement provides facilities for producing serial and nonserial searches. It is used
to search for a table element that satisfies a specific condition and to adjust the
value of the associated index to indicate that table element.

To be valid during execution, an index value must correspond to a table element
occurrence of neither less than one, nor greater than the highest permissible
occurrence number.

For more information about index-names, see [“Index-name” on page 73|and
['INDEXED BY phrase” on page 196

Relative subscripting

In relative subscripting, the name of a table element is followed by a subscript of the
form data-name or index-name followed by the operator + or -, and a positive or
unsigned integer literal.

The operators + and - must be preceded and followed by a space. The value of the
subscript used is the same as if the index-name or data-name had been set up or
down by the value of the integer. The use of relative indexing does not cause the
program to alter the value of the index.

Reference modification

Reference modification defines a data item by specifying a leftmost character and
optional length for the data item.

Enterprise COBOL for z/OS, V5.2 Language Reference



Format: reference modification

v

data-name-1 |
FUNCTION—function-name-1

(—argument-1——)

»—(—leftmost-character-position—: |_ _| ) >
length

data-name-1
Must reference a data item described explicitly or implicitly with usage
DISPLAY, DISPLAY-1, or NATIONAL. A national group item is processed
as an elementary data item of category national.

data-name-1 can be qualified or subscripted.

function-name-1
Must reference an alphanumeric or national function.

leftmost-character-position
Must be an arithmetic expression. The evaluation of leftmost-character-
position must result in a positive nonzero integer that is less than or equal
to the number of characters in the data item referenced by data-name-1.

length
Must be an arithmetic expression.

The evaluation of length must result in a positive nonzero integer.

The sum of leftmost-character-position and length minus the value 1 must be
less than or equal to the number of character positions in data-name-1. If
length is omitted, the length used will be equal to the number of character
positions in data-name-1 plus 1, minus leftmost-character-position.

For usages DISPLAY-1 and NATIONAL, each character position occupies 2 bytes.
Reference modification operates on whole character positions and not on the
individual bytes of the characters in usages DISPLAY-1 and NATIONAL. For usage
DISPLAY, reference modification operates as though each character were a
single-byte character.

Unless otherwise specified, reference modification is allowed anywhere an
identifier or function-identifier that references a data item or function with the
same usage as the reference-modified data item is permitted.

Each character position referenced by data-name-1 or function-name-1 is assigned an
ordinal number incrementing by one from the leftmost position to the rightmost
position. The leftmost position is assigned the ordinal number one. If the data
description entry for data-name-1 contains a SIGN IS SEPARATE clause, the sign
position is assigned an ordinal number within that data item.

If data-name-1 is described with usage DISPLAY and category numeric,
numeric-edited, alphabetic, alphanumeric-edited, or external floating-point,
data-name-1 is operated upon for purposes of reference modification as if it were
redefined as a data item of category alphanumeric with the same size as the data
item referenced by data-name-1.

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 77



78

If data-name-1 is described with usage NATIONAL and category numeric,
numeric-edited, national-edited, or external floating-point, data-name-1 is operated
upon for purposes of reference modification as if it were redefined as a data item
of category national with the same size as the data item referenced by data-name-1.

If data-name-1 is a national group item, data-name-1 is processed as an elementary
data item of category national.

Reference modification creates a unique data item that is a subset of data-name-1 or
a subset of the value referenced by function-name-1 and its arguments, if any. This
unique data item is considered an elementary data item without the JUSTIFIED
clause.

When a function is reference-modified, the unique data item has class, category,
and usage national if the type of the function is national; otherwise, it has class
and category alphanumeric and usage display.

When data-name-1 is reference-modified, the unique data item has the same class,
category, and usage as that defined for the data item referenced by data-name-1
except that:

* If data-name-1 has category national-edited, the unique data item has category
national.

* If data-name-1 has usage NATIONAL and category numeric-edited, numeric, or
external floating-point, the unique data item has category national.

* If data-name-1 has usage DISPLAY, and category numeric-edited,
alphanumeric-edited, numeric, or external floating-point, the unique data item
has category alphanumeric.

* If data-name-1 references an alphanumeric group item, the unique data item is
considered to have usage DISPLAY and category alphanumeric.

* If data-name-1 references a national group item, the unique data item has usage
NATIONAL and category national.

If length is not specified, the unique data item created extends from and includes
the character position identified by leftmost-character-position up to and including
the rightmost character position of the data item referenced by data-name-1.

Evaluation of operands

Reference modification for an operand is evaluated as follows:

* If subscripting is specified for the operand, the reference modification is
evaluated immediately after evaluation of the subscript.

* If subscripting is not specified for the operand, the reference modification is
evaluated at the time subscripting would be evaluated if subscripts had been
specified.

Reference modification examples

The statements in the examples transfer the first 10 characters of the data-item
referenced by WHOLE-NAME to the data-item referenced by FIRST-NAME.

77 WHOLE-NAME PIC X(25).
77 FIRST-NAME PIC X(10).
77 START-P PIC 9(4) BINARY VALUE 1.
77 STR-LENGTH PIC 9(4) BINARY VALUE 10.

Enterprise COBOL for z/OS, V5.2 Language Reference



MOVE WHOLE-NAME(1:10) TO FIRST-NAME.
MOVE WHOLE-NAME (START-P:STR-LENGTH) TO FIRST-NAME.

The following statement transfers the last 15 characters of the data-item referenced
by WHOLE-NAME to the data-item referenced by LAST-NAME.

77 WHOLE-NAME PIC X(25).
77 LAST-NAME  PIC X(15).

MOVE WHOLE-NAME(11:) TO LAST-NAME.

The following statement transfers the fourth and fifth characters of the third
occurrence of TAB to the variable SUFFIX.

01 TABLE-1.
02 TAB OCCURS 10 TIMES PICTURE X(5).

77 SUFFIX PICTURE X(2).

MOVE TAB OF TABLE-1 (3) (4:2) TO SUFFIX.

Function-identifier

A function-identifier is a sequence of character strings and separators that uniquely
references the data item that results from the evaluation of a function.

Format

»»—FUNCTION—function-name-1 >

(——argument-1——)

»
»

A\
A

l—reference-modifier—l

argument-1
Must be an identifier, literal (other than a figurative constant), or arithmetic
expression.

For more information, see [Chapter 21, “Intrinsic functions,” on page 489 |

function-name-1
function-name-1 must be one of the intrinsic function names.

reference-modifier
Can be specified only for functions of the type alphanumeric or national.

A function-identifier that makes reference to an alphanumeric or national function
can be specified anywhere that a data item of category alphanumeric or category
national, respectively, can be referenced and where references to functions are not
specifically prohibited, except as follows:

* As a receiving operand of any statement

* Where a data item is required to have particular characteristics (such as class
and category, size, sign, and permissible values) and the evaluation of the
function according to its definition and the particular arguments specified would
not have these characteristics

Chapter 8. Referencing data names, copy libraries, and PROCEDURE DIVISION names 79



A function-identifier that makes reference to an integer or numeric function can be
used wherever an arithmetic expression can be used.

Data attribute specification

Explicit data attributes are data attributes that you specify in COBOL coding. Implicit
data attributes are default values. If you do not explicitly code a data attribute, the
compiler assumes a default value.

For example, you need not specify the USAGE of a data item. If USAGE is omitted
and the symbol N is not specified in the PICTURE clause, the default is USAGE
DISPLAY, which is the implicit data attribute. When PICTURE symbol N is used,
USAGE DISPLAY-1 is the default when the NSYMBOL(DBCS) compiler option is
in effect; USAGE NATIONAL is the default when the NSYMBOL(NATIONAL)
compiler option is in effect. These are implicit data attributes.

80 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 9. Transfer of control

In the PROCEDURE DIVISION, unless there is an explicit control transfer or there
is no next executable statement, program flow transfers control from statement to
statement in the order in which the statements are written. This normal program
flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive statements,
implicit transfer of control also occurs when the normal flow is altered without the
execution of a procedure branching statement. The following examples show
implicit transfers of control, overriding statement-to-statement transfer of control:

 After execution of the last statement of a procedure that is executed under
control of another COBOL statement, control implicitly transfers. (COBOL
statements that control procedure execution are, for example, MERGE,
PERFORM, SORT, and USE.) Further, if a paragraph is being executed under the
control of a PERFORM statement that causes iterative execution, and that
paragraph is the first paragraph in the range of that PERFORM statement, an
implicit transfer of control occurs between the control mechanism associated
with that PERFORM statement and the first statement in that paragraph for each
iterative execution of the paragraph.

* During SORT or MERGE statement execution, control is implicitly transferred to
an input or output procedure.

* During XML PARSE statement execution, control is implicitly transferred to a
processing procedure.

* During execution of any COBOL statement that causes execution of a declarative
procedure, control is implicitly transferred to that procedure.

* At the end of execution of any declarative procedure, control is implicitly
transferred back to the control mechanism associated with the statement that
caused its execution.

COBOL also provides explicit control transfers through the execution of any
procedure branching, program call, or conditional statement. (Lists of procedure
branchini and conditional statements are contained in [“Statement categories” on|

page 280)

Definition: The term next executable statement refers to the next COBOL statement
to which control is transferred, according to the rules given above. There is no next
executable statement under the following circumstances:

* When the program contains no PROCEDURE DIVISION

* Following the last statement in a declarative section when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement

* Following the last statement in a program or method when the paragraph in
which it appears is not being executed under the control of some other COBOL
statement in that program

* Following the last statement in a declarative section when the statement is in the
range of an active PERFORM statement executed in a different section and this
last statement of the declarative section is not also the last statement of the
procedure that is the exit of the active PERFORM statement

© Copyright IBM Corp. 1991, 2018 81



* Following a STOP RUN statement or EXIT PROGRAM statement that transfers
control outside the COBOL program

* Following a GOBACK statement that transfers control outside the COBOL
program

* Following an EXIT METHOD statement that transfers control outside the
COBOL method

* The end program or end method marker

When there is no next executable statement and control is not transferred outside
the COBOL program, the program flow of control is undefined unless the program
execution is in the nondeclarative procedures portion of a program under control
of a CALL statement, in which case an implicit EXIT PROGRAM statement is
executed.

Similarly, if control reaches the end of the PROCEDURE DIVISION of a method

and there is no next executable statement, an implicit EXIT METHOD statement is
executed.

82 Enterprise COBOL for z/OS, V5.2 Language Reference



Part 2. COBOL source unit structure

© Copyright IBM Corp. 1991, 2018

83



84 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 10. COBOL program structure

A COBOL source program is a syntactically correct set of COBOL statements.

Nested programs
A nested program is a program that is contained in another program.
Contained programs can reference some of the resources of the programs
that contain them. If program B is contained in program A, it is directly
contained if there is no program contained in program A that also contains
program B. Program B is indirectly contained in program A if there exists a
program contained in program A that also contains program B. For more
information about nested programs, see Nested programs in the Enterprise
COBOL Programming Guide.

Object program
An object program is a set or group of executable machine language
instructions and other material designed to interact with data to provide
problem solutions. An object program is generally the machine language
result of the operation of a COBOL compiler on a source program. The
term object program also refers to the methods that result from compiling
a class definition.

Run unit
A run unit is one or more object programs that interact with one another
and that function at run time as an entity to provide problem solutions.
Sibling program
Sibling programs are programs that are directly contained in the same
program.

With the exception of the COPY and REPLACE statements and the end program
marker, the statements, entries, paragraphs, and sections of a COBOL source
program are grouped into the following four divisions:

* IDENTIFICATION DIVISION

* ENVIRONMENT DIVISION

+ DATA DIVISION

* PROCEDURE DIVISION

The end of a COBOL source program is indicated by the END PROGRAM marker.
If there are no nested programs, the absence of additional source program lines

also indicates the end of a COBOL program.

The following format is for the entries and statements that constitute a separately
compiled COBOL source program.

© Copyright IBM Corp. 1991, 2018 85



Format: COBOL source program

IDENTIFICATION——DIVISION.—PROGRAM-ID program-name- 1
1D L]

\

\/

Lm—[RECURSIVE | l——l l—z’dentification-division-content—|
IS INITIALJ I—PROG.RAMJ

\

|—ENVIRONMENT DIVISION.—envir‘onment-divisz’on-content—|

».

|—DATA DIVISION.—data-division-content—| |—PROCEDURE DIVISION.—procedure-division-content—|

Yy

| END PROGRAM—program-name-1. —|

L' Nested source program i

nested source program:

IDENTIFICATION DIVISION .—PROGRAM—ID—L—_I—program—name—Z
ID .

Y

v

| l——l l—identification—division—content—l

| c
COMMON
|—ISJ L |—INITIALJ |—PROG.RAMJ
I NITIAL—L——l—
COMMON

\

|—ENVIRONMENT DIVISION.—envir'onment-division-content—|

».

|—DATA DIVISION.—data-division-content—| |—PROCEDURE DIVISION.—procedur‘e-division-content—|

> END PROGRAM—program-name-2.

Y| nested source program |

A sequence of separate COBOL programs can also be input to the compiler. The
following format is for the entries and statements that constitute a sequence of
source programs (batch compile).

86 Enterprise COBOL for z/OS, V5.2 Language Reference




Format: sequence of COBOL source programs

»»—Y COBOL-source-program ><

END PROGRAM program-name
An end program marker separates each program in the sequence of
programs. program-name must be identical to a program-name declared in a
preceding program-ID paragraph.

program-name can be specified either as a user-defined word or in an
alphanumeric literal. Either way, program-name must follow the rules for
forming program-names. program-name cannot be a figurative constant. Any
lowercase letters in the literal are folded to uppercase.

An end program marker is optional for the last program in the sequence
only if that program does not contain any nested source programs.

Nested programs

A COBOL program can contain other COBOL programs, which in turn can contain
still other COBOL programs. These contained programs are called nested programs.
Nested programs can be directly or indirectly contained in the containing program.

Nested programs are not supported for programs compiled with the THREAD
option.

In the following code fragment, program Quter-program directly contains program
Inner-1. Program Inner-1 directly contains program Inner-1la, and Outer-program
indirectly contains Inner-la:

Id division.
Program-id. Outer-program.
Procedure division.
Call "Inner-1".
Stop run.
Id division.
Program-id. Inner-1

Call Inner-la.

Stop run.
Id division.
Program-id. Inner-la.

End Inner-la.

End Inner-1.
End Outer-program.

The following figure describes a more complex nested program structure with
directly and indirectly contained programs.

Chapter 10. COBOL program structure 87



88

Id Division.
Program -Id. X.
Procedure Division.
Display "I'm in X"
Call "x1"
Call "Xx2"
Stop Run.
— Id Division.
Program-Id X1.
Procedure Division.
Display "I'm in X1"
Call "X11"
Call "Xx12"
Exit Program.
Id Division.
Program-Id. XI11.
Procedure Division.
Display "I'm in X11"
Exit Program.
End Program X11.

(
Lﬁ Id Division.
W
t

X is the outermost program

and directly contains X1 and =———p
X2, and indirectly contains

X11 and X12

X1 is directly contained
in X and directly [
contains X11 and X12

X11 is directly
contained in X1
and indirectly
contained in X

Program-Id. X12.
Procedure Division.
Display "I'm in X12"
Exit Program.
End Program X12.
End Program X1
— ID Division.
Program-Id. X2
Procedure Division.
Display "I'm in X2"
Exit Program
— End Program X2
——End Program X.

X12 is directly
contained in X1
and indirectly
contained in X

X2 is directly
contained in X

Conventions for program-names

The program-name of a program is specified in the PROGRAM-ID paragraph of
the program's IDENTIFICATION DIVISION. A program-name can be referenced
only by the CALL statement, the CANCEL statement, the SET statement, or the
END PROGRAM marker.

Names of programs that constitute a run unit are not necessarily unique, but when
two programs in a run unit are identically named, at least one of the programs
must be directly or indirectly contained within another separately compiled
program that does not contain the other of those two programs.

A separately compiled program and all of its directly and indirectly contained
programs must have unique program-names within that separately compiled
program.

Rules for program-names

The following rules define the scope of a program-name:

* If the program-name is that of a program that does not possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in that containing
program.

* If the program-name is that of a program that does possess the COMMON
attribute and that program is directly contained within another program, that
program-name can be referenced only by statements included in the containing

Enterprise COBOL for z/OS, V5.2 Language Reference



program and any programs directly or indirectly contained within that
containing program, except that program possessing the COMMON attribute
and any programs contained within it.

If the program-name is that of a program that is separately compiled, that
program-name can be referenced by statements included in any other program
in the run unit, except programs it directly or indirectly contains.

The mechanism used to determine which program to call is as follows:

If one of two programs that have the same name as that specified in the CALL
statement is directly contained within the program that includes the CALL
statement, that program is called.

If one of two programs that have the same name as that specified in the CALL
statement possesses the COMMON attribute and is directly contained within
another program that directly or indirectly contains the program that includes
the CALL statement, that common program is called unless the calling program
is contained within that common program.

Otherwise, the separately compiled program is called.

The following rules apply to referencing a program-name of a program that is
contained within another program. For this discussion, Program-A contains
Program-B and Program-C; Program-C contains Program-D and Program-F; and
Program-D contains Program-E.

Program-A

Program-B

Program-C

Program-D

Program-E

Program-F

If Program-D does not possess the COMMON attribute, then Program-D can be
referenced only by the program that directly contains Program-D, that is,
Program-C.

Chapter 10. COBOL program structure 89



If Program-D does possess the COMMON attribute, then Program-D can be
referenced by Program-C (because Program-C contains Program-D) and by any
programs contained in Program-C except for programs contained in Program-D. In
other words, if Program-D possesses the COMMON attribute, Program-D can be
referenced in Program-C and Program-F but not by statements in Program-E,
Program-A, or Program-B.

90 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 11. COBOL class definition structure

Enterprise COBOL provides object-oriented syntax to facilitate interoperation of
COBOL and Java programs.

You can use object-oriented syntax to:

* Define classes, with methods and data implemented in COBOL

* Create instances of Java or COBOL classes

* Invoke methods on Java or COBOL objects

* Write classes that inherit from Java classes or from other COBOL classes
* Define and invoke overloaded methods

Basic Java-oriented object capabilities are accessed directly through COBOL
language features. Additional capabilities are available to the COBOL programmer
by calling services through the Java Native Interface (JNI), as described in
Accessing NI services in the Enterprise COBOL Programming Guide.

Java programs can be multithreaded, and Java interoperation requires toleration of
asynchronous signals. Therefore, to mix COBOL with these Java programs, you
must use the thread enablement provided by the THREAD compiler option, as
described in THREAD in the Enterprise COBOL Programming Guide.

Java String data is represented at run time in Unicode. The Unicode support
provided in Enterprise COBOL with the national data type enables COBOL
programs to exchange String data with Java.

The following entities and concepts are used in object-oriented COBOL for Java
interoperability:

Class The entity that defines operations and state for zero, one, or more object
instances and defines operations and state for a common object (a factory
object) that is shared by multiple object instances.

You create object instances using the NEW operand of the COBOL
INVOKE statement or using a Java class instance creation expression.

Object instances are automatically freed by the Java runtime system's
garbage collection when they are no longer in use. You cannot explicitly
free individual objects.

Instance method
Procedural code that defines one of the operations supported for the object
instances of a class. Instance methods introduced by a COBOL class are
defined within the object paragraph of the class definition.

COBOL instance methods are equivalent to public nonstatic methods in
Java.

You execute instance methods on a particular object instance by using a
COBOL INVOKE statement or a Java method invocation expression.

Instance data
Data that defines the state of an individual object instance. Instance data in
a COBOL class is defined in the WORKING-STORAGE SECTION of the
DATA DIVISION within the object paragraph of a class definition.

© Copyright IBM Corp. 1991, 2018 91



92

COBOL instance data is equivalent to private nonstatic member data in a
Java class.

The state of an object also includes the state of the instance data
introduced by inherited classes. Each instance object has its own copy of
the instance data defined within its class definition and its own copy of the
instance data defined in inherited classes.

You can access COBOL object instance data only from within COBOL
instance methods defined in the class definition that defines the data.

You can initialize object instance data with VALUE clauses or you can
write an instance method to perform custom initialization.

Factory method, static method

Procedural code that defines one of the operations supported for the
common factory object of the class. COBOL factory methods are defined
within the factory paragraph of a class definition. Factory methods are
associated with a class, not with any individual instance object of the class.

COBOL factory methods are equivalent to public static methods in Java.

You execute COBOL factory methods from COBOL using an INVOKE
statement that specifies the class-name as the first operand. You execute
them from a Java program using a static method invocation expression.

A factory method cannot operate directly on instance data of its class, even
though the data is described in the same class definition; a factory method
must invoke instance methods to act on instance data.

COBOL factory methods are typically used to define customized methods
that create object instances. For example, you can code a customized
factory method that accepts initial values as parameters, creates an instance
object using the NEW operand of the INVOKE statement, and then invokes
a customized instance method passing those initial values as arguments for
use in initializing the instance object.

Factory data, static data

Data associated with a class, rather than with an individual object instance.
COBOL factory data is defined in the WORKING-STORAGE SECTION of
the DATA DIVISION within the factory paragraph of a class definition.

COBOL factory data is equivalent to private static data in Java.

There is a single copy of factory data for a class. Factory data is associated
only with the class and is shared by all object instances of the class. It is
not associated with any particular instance object. A factory data item
might be used, for example, to keep a count of the number of instance
objects that have been created.

You can access COBOL factory data only within COBOL factory methods
defined in the same class definition.

Inheritance

Inheritance is a mechanism whereby a class definition (the inheriting class)
acquires the methods, data descriptions, and file descriptions written in
another class definition (the inherited class). When two classes in an
inheritance relationship are considered together, the inheriting class is the
subclass (or derived class or child class); the inherited class is the superclass
(or parent class). The inheriting class also indirectly acquires the methods,
data descriptions, and file descriptions that the parent class inherited from
its parent class.

Enterprise COBOL for z/OS, V5.2 Language Reference



A COBOL class must inherit from exactly one parent class, which can be
implemented in COBOL or Java.

Every COBOL class must inherit directly or indirectly from the
java.lang.Object class.

Instance variable
An individual data item defined in the DATA DIVISION of an object
paragraph.

Java Native Interface (JNI)
A facility of Java designed for interoperation with non-Java programs.

Java Native Interface (JNI) environment pointer

A pointer used to obtain the address of the JNI environment structure used

for calling JNI services. The COBOL special register JNIENVPTR is
provided for referencing the JNI environment pointer.

Object reference
A data item that contains information used to identify and reference an
individual object. An object reference can refer to an object that is an
instance of a Java or COBOL class.

Subclass
A class that inherits from another class; also called a derived class or child
class of the inherited class.

Superclass
A class that is inherited by another class; also called a parent class of the
inheriting class.

With the exception of the COPY and REPLACE statements and the END CLASS
marker, the statements, entries, paragraphs, and sections of a COBOL class
definition are grouped into the following structure:

* IDENTIFICATION DIVISION
* ENVIRONMENT DIVISION (configuration section only)
* Factory definition
— IDENTIFICATION DIVISION
— DATA DIVISION
— PROCEDURE DIVISION (containing one or more method definitions)
* Object definition
— IDENTIFICATION DIVISION
— DATA DIVISION
— PROCEDURE DIVISION (containing one or more method definitions)

The end of a COBOL class definition is indicated by the END CLASS marker.

The following format is for a COBOL class definition.

Chapter 11. COBOL class definition structure

93



Format: COBOL class definition

IDENTIFICATION DIVISION.—CLASS-1D—.—class-name-1—INHERITS—class-name-2—.

\/

1D

|—other-identification-division-content—|

»—ENVIRONMENT DIVISION.—class-environment-division-content
L‘ Factory-definition ’J

L‘ Object-definition ’J |—END CLASS—cZass-name-I.—|

Factory-definition:

IDENTIFICATION DIVISION.—FACTORY. |_ J
ID DATA DIVISION.—factory-data-division-content

> |_ | END FACTORY.
PROCEDURE DIVISION.

Y _method-definition

Object-definition:

v

IDENTIFICATION DIVISION.—OBJECT. |_ _|
ID DATA DIVISION.—object-data-division-content

> |_ | END OBJECT.
PROCEDURE DIVISION.

Y method-definition

END CLASS
Specifies the end of a class definition.

END FACTORY
Specifies the end of a factory definition.

END OBJECT
Specifies the end of an object definition.

94 Enterprise COBOL for z/OS, V5.2 Language Reference




Chapter 12. COBOL method definition structure

A COBOL method definition describes a method. You can specify method
definitions only within the factory paragraph and the object paragraph of a class
definition.

With the exception of COPY and REPLACE statements and the END METHOD
marker, the statements, entries, paragraphs, and sections of a COBOL method
definition are grouped into the following four divisions:

+ IDENTIFICATION DIVISION

* ENVIRONMENT DIVISION (input-output section only)
* DATA DIVISION

* PROCEDURE DIVISION

The end of a COBOL method definition is indicated by the END METHOD marker.

The following format is for a COBOL method definition.

Format: method definition

> IDENTIFICATION DIVISION.—METHOD-ID ethod-name-1 >
10 L] L

A\
v

l—other— identification—division—content—l

\
4

|—ENVIRONMENT DIVISION.—method-environment—division—content—l

v
v

|—DATA DIVISION.—method-data-division-content—|

> »

|—me’chod-p\r‘ocedure-d1'v1's1’on-header~. _| |
I—method-procedure-division-content

»—END METHOD—method-name-1. > <

METHOD-ID
Identifies a method definition. See ["METHOD-ID paragraph” on page 106|
for details.

method-procedure-division-header
Indicates the start of the PROCEDURE DIVISION and identifies method
parameters and the returning item, if any. See [“The PROCEDURE|
[DIVISION header” on page 251|for details.

END METHOD
Specifies the end of a method definition.

© Copyright IBM Corp. 1991, 2018 95



Methods defined in an object definition are instance methods. An instance method in
a given class can access:

* Data defined in the DATA DIVISION of the object paragraph of that class
(instance data)

* Data defined in the DATA DIVISION of that instance method (method data)

An instance method cannot directly access instance data defined in a parent class,
factory data defined in its own class, or method data defined in another method of
its class. It must invoke a method to access such data.

Methods defined in a factory definition are factory methods. A factory method in a
given class can access:

* Data defined in the DATA DIVISION of the factory paragraph of that class
(factory data)

* Data defined in the DATA DIVISION of that factory method (method data)

A factory method cannot directly access factory data defined in a parent class,
instance data defined in its own class, or method data defined in another method
of its class. It must invoke a method to access such data.

Methods can be invoked from COBOL programs and methods, and they can be
invoked from Java programs. A method can execute an INVOKE statement that
directly or indirectly invokes itself. Therefore, COBOL methods are implicitly
recursive (unlike COBOL programs, which support recursion only if the
RECURSIVE attribute is specified in the program-ID paragraph.)

96 Enterprise COBOL for z/OS, V5.2 Language Reference



Part 3. Identification division

© Copyright IBM Corp. 1991, 2018

97



98 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 13. IDENTIFICATION DIVISION

The IDENTIFICATION DIVISION must be the first division in each COBOL source
program, factory definition, object definition, and method definition. The
identification division names the program, class, or method and identifies the
factory definition and object definition. The IDENTIFICATION DIVISION can
include the date a program, class, or method was written, the date of compilation,
and other such documentary information.

Program IDENTIFICATION DIVISION
For a program, the first paragraph of the IDENTIFICATION DIVISION
must be the PROGRAM-ID paragraph. The other paragraphs are optional
and can appear in any order.

Class IDENTIFICATION DIVISION
For a class, the first paragraph of the IDENTIFICATION DIVISION must
be the CLASS-ID paragraph. The other paragraphs are optional and can
appear in any order.

Factory IDENTIFICATION DIVISION
A factory IDENTIFICATION DIVISION contains only a factory paragraph
header.

Object IDENTIFICATION DIVISION
An object IDENTIFICATION DIVISION contains only an object paragraph
header.

Method IDENTIFICATION DIVISION
For a method, the first paragraph of the IDENTIFICATION DIVISION
must be the METHOD-ID paragraph. The other paragraphs are optional
and can appear in any order.

The following format is for a program IDENTIFICATION DIVISION.

© Copyright IBM Corp. 1991, 2018 99



Format: program identification division

\/

IDENTIFICATION DIVISION.—PROGRAM-I D—L—_I—program-name

Yy

ID
RECURSIVE r . | L]
Is COMMON PROGRAM
Civaria
INITIAL
Ccomon]

|—AUTHOR

I
Y _comment-entry

Y

L insTaLLATION
L

LY _comment-entry

\

v

|—DATE-WRITTE"‘
L. |

LY _comment-entry

y

\/

|—DATE-COMPILED. |

v

comment-entry

A\

|—SECURITY
- M
Y _comment-entry

A4
A

The following format is for a class IDENTIFICATION DIVISION.

100 Enterprise COBOL for z/OS, V5.2 Language Reference




Format: class identification division

IDENTIFICATION DIVISION. CLASS-ID.—class-name-1
ID DIVISION.

v

»—INHERITS—class-name-2. >

|—AUTHO"
I
Y _comment-entry

|—INST/—\LL/-\TIO'“ |
il 1
LY _comment-entry

|—DATE—WRITTE"' | ]
L. |

LY _comment-entry

|—DATE-COMPI LED.
\\' comment-entry

|—SECURITY LJ

\
4

Y _comment-entry

The following format is for a factory IDENTIFICATION DIVISION.

Format: factory identification division

IDENTIFICATION DIVISION.—FACTORY. ><
1D

The following format is for an object IDENTIFICATION DIVISION.

Chapter 13. IDENTIFICATION DIVISION 101



Format: object identification division

IDENTIFICATION DIVISION.—OBJECT.
1D

\4
A

The following format is for a method IDENTIFICATION DIVISION.

Format: method identification division

IDENTIFICATION DIVISION .—METHOD-ID—L——I—method-name-l—L——l—>
1D . .

|—AUTHOD
- U
Y _comment-entry

> »

|—I NSTALLATION |
il ﬂ
Y_comment-entry

|—DATE—WRITTE!\I |

L. |

Y _comment-entry

|—DATE-COMPILED.
L’ comment-entry

I—SECURITY
i
Y_comment-entry

\
4

\
\/

Y
y
A

PROGRAM-ID paragraph

The PROGRAM-ID paragraph specifies the name by which the program is known
and assigns selected program attributes to that program. It is required and must be
the first paragraph in the IDENTIFICATION DIVISION.

program-name
A user-defined word or alphanumeric literal, but not a figurative constant,
that identifies your program. It must follow the following rules of
formation, depending on the setting of the PGMNAME compiler option:

102 Enterprise COBOL for z/OS, V5.2 Language Reference



PGMNAME(COMPAT)
The name can be up to 30 characters in length.

Only the hyphen, underscore, digits 0-9, and alphabetic characters
are allowed in the name when it is specified as a user-defined
word.

At least one character must be alphabetic.
The hyphen cannot be the first or last character.

If program-name is an alphanumeric literal, the rules for the name
are the same except that the extension characters $, #, and @ can be
included in the name of the outermost program and the
underscore can be the first character.

PGMNAME (LONGUPPER)
If program-name is a user-defined word, it can be up to 30
characters in length.

If program-name is an alphanumeric literal, the literal can be up to
160 characters in length. The literal cannot be a figurative constant.

Only the hyphen, underscore, digits 0-9, and alphabetic characters
are allowed in the name when the name is specified as a
user-defined word.

At least one character must be alphabetic.
The hyphen cannot be the first or last character.

If program-name is an alphanumeric literal, the underscore character
can be the first character.

External program-names are processed with alphabetic characters
folded to uppercase.

PGMNAME (LONGMIXED)
program-name must be specified as an alphnumeric literal, which
can be up to 160 characters in length. The literal cannot be a
figurative constant.

program-name can consist of any character in the range X'41' to
X'FE'.

For information about the PGMNAME compiler option and how the compiler
processes the names, see PGMNAME in the Enterprise COBOL Programming Guide.

RECURSIVE
An optional clause that allows COBOL programs to be recursively
reentered.

You can specify the RECURSIVE clause only on the outermost program of
a compilation unit. Recursive programs cannot contain nested
subprograms.

If the RECURSIVE clause is specified, program-name can be recursively
reentered while a previous invocation is still active. If the RECURSIVE
clause is not specified, an active program cannot be recursively reentered.

The WORKING-STORAGE SECTION of a recursive program defines
storage that is statically allocated and initialized on the first entry to a
program and is available in a last-used state to any of the recursive
invocations.

Chapter 13. IDENTIFICATION DIVISION 103



104

INITIAL

The LOCAL-STORAGE SECTION of a recursive program (as well as a
nonrecursive program) defines storage that is automatically allocated,
initialized, and deallocated on a per-invocation basis.

Internal file connectors that correspond to an FD in the FILE SECTION of a
recursive program are statically allocated. The status of internal file
connectors is part of the last-used state of a program that persists across
invocations.

The following language elements are not supported in a recursive
program:

* ALTER

* GO TO without a specified procedure-name

* RERUN

* SEGMENT-LIMIT

* USE FOR DEBUGGING

The RECURSIVE clause is required for programs compiled with the
THREAD option.

COMMON

Specifies that the program named by program-name is contained (that is,
nested) within another program and can be called from siblings of the
common program and programs contained within them. The COMMON
clause can be used only in nested programs. For more information about
conventions for program names, see [“Conventions for program-names” on|

Specifies that when program-name is called, program-name and any programs
contained (nested) within it are placed in their initial state. The initial
attribute is not supported for programs compiled with the THREAD
option.

A program is in the initial state:
* The first time the program is called in a run unit
* Every time the program is called, if it possesses the initial attribute

* The first time the program is called after the execution of a CANCEL
statement that references the program or a CANCEL statement that
references a program that directly or indirectly contains the program

* The first time the program is called after the execution of a CALL
statement that references a program that possesses the initial attribute
and that directly or indirectly contains the program

When a program is in the initial state:

* The program'’s internal data contained in the WORKING-STORAGE
SECTION is initialized. If a VALUE clause is used in the description of
the data item, the data item is initialized to the defined value. If a
VALUE clause is not associated with a data item, the initial value of the
data item is undefined.

* Files with internal file connectors associated with the program are not in
the open mode.

* The control mechanisms for all PERFORM statements contained in the
program are set to their initial states.

* An altered GO TO statement contained in the program is set to its initial
state.

Enterprise COBOL for z/OS, V5.2 Language Reference



For the rules governing nonunique program names, see [“Rules for

[program-names” on page 88

CLASS-ID paragraph

The CLASS-ID paragraph specifies the name by which the class is known and
assigns selected attributes to that class. The CLASS-ID paragraph is required and
must be the first paragraph in a class IDENTIFICATION DIVISION.

class-name-1
A user-defined word that identifies the class. class-name-1 can optionally
have an entry in the REPOSITORY paragraph of the configuration section
of the class definition.

INHERITS
A clause that defines class-name-1 to be a subclass (or derived class) of
class-name-2 (the parent class). class-name-1 cannot directly or indirectly
inherit from class-name-1.

class-name-2
The name of a class inherited by class-name-1. You must specify class-name-2
in the REPOSITORY paragraph of the configuration section of the class
definition.

General rules

class-name-1 and class-name-2 must conform to the normal rules of formation for a
COBOL user-defined word, using single-byte characters.

See ["REPOSITORY paragraph” on page 123|for details on specifying a class-name
that is part of a Java package or for using non-COBOL naming conventions for
class-names.

You cannot include a class definition in a sequence of programs or other class
definitions in a single compilation group. Each class must be specified as a
separate source file; that is, a class definition cannot be included in a batch
compile.

Inheritance

Every method available on instances of a class is also available on instances of any
subclass directly or indirectly derived from that class.

A subclass can introduce new methods that do not exist in the parent or ancestor
class and can override a method from the parent or ancestor class. When a
subclass overrides an existing method, it defines a new implementation for that
method, which replaces the inherited implementation.

The instance data of class-name-1 is the instance data declared in class-name-2
together with the data declared in the WORKING-STORAGE SECTION of
class-name-1. Note, however, that instance data is always private to the class that
introduces it.

The semantics of inheritance are as defined by Java. All classes must be derived
directly or directly from the java.lang.Object class.

Chapter 13. IDENTIFICATION DIVISION 105



Java supports single inheritance; that is, no class can inherit directly from more
than one parent. Only one class-name can be specified in the INHERITS phrase of
a class definition.

FACTORY paragraph

The factory IDENTIFICATION DIVISION introduces the factory definition, which
is the portion of a class definition that defines the factory object of the class.

A factory object is the single common object that is shared by all object instances of
the class. The factory definition contains factory data and factory methods.

OBJECT paragraph

The object IDENTIFICATION DIVISION introduces the object definition, which is
the portion of a class definition that defines the instance objects of the class.

The object definition contains object data and object methods.

METHOD-ID paragraph

The METHOD-ID paragraph specifies the name by which a method is known and
assigns selected attributes to that method. The METHOD-ID paragraph is required
and must be the first paragraph in a method identification division.

method-name-1
An alphanumeric literal or national literal that contains the name of the
method. The name must conform to the rules of formation for a Java
method name. Method names are used directly, without translation. The
method name is processed in a case-sensitive manner.

Method signature

The signature of a method consists of the name of the method and the number and
types of the formal parameters to the method as specified in the PROCEDURE
DIVISION USING phrase.

Method overloading, overriding, and hiding

COBOL methods can be overloaded, overridden, or hidden, based on the rules of the
Java language.

Method overloading
Method names that are defined for a class are not required to be unique.
(The set of methods defined for a class includes the methods introduced by
the class definition and the methods inherited from parent classes.)

Method names defined for a class must have unique signatures. Two
methods defined for a class and that have the same name but different
signatures are said to be overloaded.

The type of the method return value, if any, is not included in the method
signature.

A class must not define two methods with the same signature but different
return value types, or with the same signature but where one method
specifies a return value and the other does not.

106 Enterprise COBOL for z/OS, V5.2 Language Reference



The rules for overloaded method definitions and resolution of overloaded
method invocations are based on the corresponding rules for Java.

Method overriding (for instance methods)

An instance method in a subclass overrides an instance method with the
same name that is inherited from a parent class if the two methods have
the same signature.

When a method overrides an instance method defined in a parent class,
the presence or absence of a method return value (the PROCEDURE
DIVISION RETURNING data-name) must be consistent in the two
methods. Further, when method return values are specified, the return
values in the overridden method and the overriding method must have
identical data types.

An instance method must not override a factory method in a COBOL
parent class, or a static method in a Java parent class.

Method hiding (for factory methods)

A factory method is said to hide any and all methods with the same
signature in the superclasses of the method definition that would otherwise
be accessible. A factory method must not hide an instance method.

Optional paragraphs
Some optional paragraphs in the IDENTIFICATION DIVISION can be omitted.

The optional paragraphs are:

AUTHOR
Name of the author of the program.

INSTALLATION
Name of the company or location.

DATE-WRITTEN
Date the program was written.

DATE-COMPILED
The DATE-COMPILED paragraph provides the compilation date in the
source listing. If a comment-entry is specified, the entire entry is replaced
with the current date, even if the entry spans lines. If the comment entry is

omitted, the compiler adds the current date to the line on which
DATE-COMPILED is printed. For example:

DATE-COMPILED. 06/30/10.

SECURITY
Level of confidentiality of the program.

The comment-entry in any of the optional paragraphs can be any combination of
characters from the character set of the computer. The comment-entry is written in
Area B on one or more lines.

Comment-entries serve only as documentation; they do not affect the meaning of

the program. A hyphen in the indicator area (column 7) is not permitted in
comment-entries.

Chapter 13. IDENTIFICATION DIVISION 107



You can include DBCS character strings as comment-entries in the
IDENTIFICATION DIVISION of your program. Multiple lines are allowed in a
comment-entry that contains DBCS character strings.

A DBCS character string must be preceded by a shift-out control character and
followed by a shift-in control character. For example:

AUTHOR. <.A.U.T.H.0.R.-.N.A.M.E>, XYZ CORPORATION
DATE-WRITTEN. <.D.A.T.E>

When a comment-entry that is contained on multiple lines uses DBCS characters,
shift-out and shift-in characters must be paired on a line.

108 Enterprise COBOL for z/OS, V5.2 Language Reference



Part 4. Environment division

© Copyright IBM Corp. 1991, 2018 109



110 Enterprise COBOL for z/0OS, V5.2 Language Reference



Chapter 14. Configuration section

The configuration section is an optional section for programs and classes, and can
describe the computer environment on which the program or class is compiled and
executed.

Program configuration section

The configuration section can be specified only in the ENVIRONMENT
DIVISION of the outermost program of a COBOL source program.

You should not specify the configuration section in a program that is
contained within another program. The entries specified in the
configuration section of a program apply to any program contained within
that program.

Class configuration section

Specify the configuration section in the ENVIRONMENT DIVISION of a
class definition. The repository paragraph can be specified in the
ENVIRONMENT DIVISION of a class definition.

Entries in a class configuration section apply to the entire class definition,
including all methods introduced by that class.

Method configuration section

The input-output section can be specified in a method configuration
section. The entries apply only to the method in which the configuration
section is specified.

Format:

»>—CONFIGURATION SECTION. >
|—source-compu7.‘er-paragraphJ

> »

l—object—computer-paragraph—l l—special—names —paragr‘aph—l

». »<

I—repos i tory—paragraph—l

The configuration section can:

© Copyright IBM Corp. 1991,

Relate IBM-defined environment-names to user-defined mnemonic names
Specify the collating sequence

Specify a currency sign value, and the currency symbol used in the PICTURE
clause to represent the currency sign value

Exchange the functions of the comma and the period in PICTURE clauses and
numeric literals

Relate alphabet-names to character sets or collating sequences
Specify symbolic characters
Relate class-names to sets of characters

2018 111



* Relate object-oriented class names to external class-names and identify
class-names that can be used in a class definition or program

¢ Relate xml-schema-names to ddnames or environment variable names
identifying files containing XML schemas

SOURCE-COMPUTER paragraph

The SOURCE-COMPUTER paragraph describes the computer on which the source
text is to be compiled.

Format

»»—SOURCE-COMPUTER. ] >

I—computer—name _|
Lm—DEBUGGING MODE
WITH

computer-name
A system-name. For example:

IBM-system

WITH DEBUGGING MODE
Activates a compile-time switch for debugging lines written in the source
text.

A debugging line is a statement that is compiled only when the
compile-time switch is activated. Debugging lines allow you, for example,
to check the value of a data-name at certain points in a procedure.

To specify a debugging line in your program, code a D in column 7
(indicator area). You can include successive debugging lines, but each must
have a D in column 7, and you cannot break character strings across lines.

All your debugging lines must be written so that the program is
syntactically correct, whether the debugging lines are compiled or treated
as comments.

The presence or absence of the DEBUGGING MODE clause is logically
determined after all COPY and REPLACE statements have been processed.

You can code debugging lines in the ENVIRONMENT DIVISION (after the
OBJECT-COMPUTER paragraph), and in the data and procedure divisions.

If a debugging line contains only spaces in Area A and in Area B, the
debugging line is treated the same as a blank line.

All of the SOURCE-COMPUTER paragraph is syntax checked, but only the WITH
DEBUGGING MODE clause has an effect on the execution of the program.

OBJECT-COMPUTER paragraph

The OBJECT-COMPUTER paragraph specifies the system for which the object
program is designated.

112 Enterprise COBOL for z/0OS, V5.2 Language Reference



Format

»>—0BJECT-COMPUTER.

v

> [

_| i entry 1 |—J )

|—computer‘-name

l—MEMORY—L—_I—integer WORDS
SIZE ECHARACTERS—

MODULES——

entry 1:

| >

T i
SEQUENCE—L—_I—alphabet-name
|—PROGRAM—| |—COLL/-\TING—I IS

> I_ |
SEGMENT-LIMIT—L—_I—pr‘ior‘ity-numberJ
IS

computer-name
A system-name. For example:

IBM-system

MEMORY SIZE integer
integer specifies the amount of main storage needed to run the object
program, in words, characters or modules. The MEMORY SIZE clause is
syntax checked but has no effect on the execution of the program.

PROGRAM COLLATING SEQUENCE IS alphabet-name
The collating sequence used in this program is the collating sequence
associated with the specified alphabet-name.

The collating sequence pertains to this program and to any programs that
this program might contain.

PROGRAM COLLATING SEQUENCE determines the truth value of the
following alphanumeric comparisons:

* Those explicitly specified in relation conditions

* Those explicitly specified in condition-name conditions

The PROGRAM COLLATING SEQUENCE clause also applies to any

merge or sort keys described with usage DISPLAY, unless the COLLATING
SEQUENCE phrase is specified in the MERGE or SORT statement.

The PROGRAM COLLATING SEQUENCE clause does not apply to DBCS
data items or data items of usage NATIONAL.

If the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC
collating sequence is used. (See|Appendix C, “EBCDIC and ASCII collating]
lsequences,” on page 587.)

SEGMENT-LIMIT IS
The SEGMENT-LIMIT clause is syntax checked but has no effect on the
execution of the program.

priority-number
An integer ranging from 1 through 49. All sections with priority-numbers 0

Chapter 14. Configuration section 113



through 49 are fixed permanent segments. See [“Procedures” on page 256|
for a description of priority-numbers and segmentation support.

Segmentation is not supported for programs compiled with the THREAD
option.

All of the OBJECT-COMPUTER paragraph is syntax checked, but only the
PROGRAM COLLATING SEQUENCE clause has an effect on the execution of the
program.

SPECIAL-NAMES paragraph

The SPECIAL-NAMES paragraph is the name of an ENVIRONMENT DIVISION
paragraph in which environment-names are related to user-specified
mnemonic-names.

114

The SPECIAL-NAMES paragraph:

Relates IBM-specified environment-names to user-defined mnemonic-names
Relates alphabet-names to character sets or collating sequences

Specifies symbolic characters

Relates class names to sets of characters

Specifies one or more currency sign values and defines a picture symbol to
represent each currency sign value in PICTURE clauses

Specifies that the functions of the comma and decimal point are to be
interchanged in PICTURE clauses and numeric literals

Relates xml-schema-names to ddnames or environment variable names
identifying files containing XML schemas

The clauses in the SPECIAL-NAMES paragraph can appear in any order.

Enterprise COBOL for z/0OS, V5.2 Language Reference



Format: SPECIAL-NAMES paragraph

nvironment-name-]—L—_l—mnemonic-name-l
IS

nvironment-name-2 nemonic-name-2-
IS |—| entry 1 'J |
entry 1 i

uALPHABET— alphabet-name-1 STANDARD-1
IS STANDARD-2

NATIVE
EBCDIC.

T literal—1—| phrase 1 ’J—

»>—SPECIAL-NAMES. l |::

»>.

»>.

uSYMBOLIC—L—J—' symbolic i |
CHARACTERS |—IN— alphabet-name—ZJ

Y CLASS— class-name-1 Y literal-4
I—ISJ L[THROUGH Ziterul—5J
THRU

»>.

uCURRENCY literal-6
|—SIGNJ I—ISJ I—L—_l—PICTURE—SYMBOL—Z i t‘eral-7J
WITH

] |—DECIMAL-POINT—L—_l—COMMAJ
IN

‘| | L]

v
I—XML—SCHEMA—me—schema—name—]—L—_l—Eexternal—fz‘ Zeid-l:lJ
IS literal-8

Notes:

1 This separator period is optional when no clauses are selected. If you use
any clauses, you must code the period after the last clause.

Chapter 14. Configuration section 115



116

Fragments

A\
\

entry 1:

ON.

N
A

..ondition-ZJ

| N condition-1
I \\ I—STATUSJ I—ISJ I—OFF
OFF

Lsrarus  Lis

condition-2-
|—STATUSJ I—ISJ I—O.".‘

bondition-lJ

|—STATUSJ I—I SJ

phrase 1:

—[THROUGH
THRU

literal-2—

symbolic:

Y _ALSO—!literal-3

| symbolic-character-1

A,

£

integer-1

environment-name-1
System devices or standard system actions taken by the compiler.

Valid specifications for environment-name-1 are shown in the following table.

Table 5. Meanings of environment names

environment-

name-1 Meaning Allowed in

SYSIN System logical input unit ACCEPT

SYSIPT

SYSOUT System logical output unit DISPLAY

SYSLIST

SYSLST

SYSPUNCH System punch device DISPLAY

SYSPCH

CONSOLE Console ACCEPT and DISPLAY

CO01 through C12 |Skip to channel 1 through channel | WRITE ADVANCING
12, respectively

csp Suppress spacing WRITE ADVANCING

S01 through S05 Pocket select 1 through 5 on WRITE ADVANCING
punch devices

Enterprise COBOL for z/0OS, V5.2 Language Reference




Table 5. Meanings of environment names (continued)

environment-
name-1 Meaning Allowed in
AFP-5A Advanced Function Printing WRITE ADVANCING

environment-name-2

A 1-byte user-programmable status indicator (UPSI) switch. Valid
specifications for environment-name-2 are UPSI-0 through UPSI-7.

mnemonic-name-1 , mnemonic-name-2

mnemonic-name-1 and mnemonic-name-2 follow the rules of formation for
user-defined names. mnemonic-name-1 can be used in ACCEPT, DISPLAY,
and WRITE statements. mnemonic-name-2 can be referenced only in the SET
statement. mnemonic-name-2 can qualify condition-1 or condition-2 names.

Mnemonic-names and environment-names need not be unique. If you
choose a mnemonic-name that is also an environment-name, its definition
as a mnemonic-name will take precedence over its definition as an
environment-name.

ON STATUS IS, OFF STATUS IS

UPSI switches process special conditions within a program, such as
year-beginning or year-ending processing. For example, at the beginning of
the PROCEDURE DIVISION, an UPSI switch can be tested; if it is ON, the
special branch is taken. (See [“Switch-status condition” on page 274.)

condition-1, condition-2

Condition-names follow the rules for user-defined names. At least one
character must be alphabetic. The value associated with the
condition-name is considered to be alphanumeric. A condition-name can be
associated with the on status or off status of each UPSI switch specified.

In the PROCEDURE DIVISION, the UPSI switch status is tested through
the associated condition-name. Each condition-name is the equivalent of a
level-88 item; the associated mnemonic-name, if specified, is considered the
conditional variable and can be used for qualification.

Condition-names specified in the SPECIAL-NAMES paragraph of a
containing program can be referenced in any contained program.

ALPHABET clause

The ALPHABET clause provides a means of relating an alphabet-name to a
specified character code set or collating sequence.

The related character code set or collating sequence can be used for alphanumeric
data, but not for DBCS or national data.

ALPHABET alphabet-name-1 IS

alphabet-name-1 specifies a collating sequence when used in:

* The PROGRAM COLLATING SEQUENCE clause of the object-computer
paragraph

* The COLLATING SEQUENCE phrase of the SORT or MERGE statement

alphabet-name-1 specifies a character code set when used in:

¢ The FD entry CODE-SET clause

* The SYMBOLIC CHARACTERS clause

Chapter 14. Configuration section 117



118

STANDARD-1
Specifies the ASCII character set.

STANDARD-2
Specifies the International Reference Version of ISO/IEC 646, 7-bit
coded character set for information interchange.

NATIVE

Specifies the native character code set. If the ALPHABET clause is
omitted, EBCDIC is assumed.

EBCDIC

Specifies the EBCDIC character set.

literal-1 , literal-2 , literal-3
Specifies that the collating sequence for alphanumeric data is
determined by the program, according to the following rules:

The order in which literals appear specifies the ordinal number,
in ascending sequence, of the characters in this collating
sequence.

Each numeric literal specified must be an unsigned integer.
Each numeric literal must have a value that corresponds to a
valid ordinal position within the collating sequence in effect.

See|[Appendix C, “EBCDIC and ASCII collating sequences,” on|

|Eage 582| for the ordinal numbers for characters in the

single-byte EBCDIC and ASCII collating sequences.

Each character in an alphanumeric literal represents that actual
character in the character set. (If the alphanumeric literal
contains more than one character, each character, starting with
the leftmost, is assigned a successively ascending position within
this collating sequence.)

Any characters that are not explicitly specified assume positions
in this collating sequence higher than any of the explicitly
specified characters.

Within one alphabet-name clause, a given character must not be
specified more than once.

Each alphanumeric literal associated with a THROUGH or ALSO
phrase must be one character in length.

When the THROUGH phrase is specified, the contiguous
characters in the native character set beginning with the
character specified by literal-1 and ending with the character
specified by literal-2 are assigned successively ascending
positions in this collating sequence.

This sequence can be either ascending or descending within the
original native character set. That is, if "Z" THROUGH "A" is
specified, the ascending values, left-to-right, for the uppercase
letters are:

ZYXWVUTSRQPONMLKJIHGFEDCBA

When the ALSO phrase is specified, the characters specified as
literal-1, literal-3, ... are assigned to the same position in this
collating sequence. For example, if you specify:

"D" ALSO "N" ALSO "%"
the characters D, N, and % are all considered to be in the same
position in the collating sequence.

Enterprise COBOL for z/0OS, V5.2 Language Reference



* When the ALSO phrase is specified and alphabet-name-1 is
referenced in a SYMBOLIC CHARACTERS clause, only literal-1
is used to represent the character in the character set.

* The character that has the highest ordinal position in this
collating sequence is associated with the figurative constant
HIGH-VALUE. If more than one character has the highest
position because of specification of the ALSO phrase, the last
character specified (or defaulted to when any characters are not
explicitly specified) is considered to be the HIGH-VALUE
character for procedural statements such as DISPLAY and as the
sending field in a MOVE statement. (If the ALSO phrase
example given above were specified as the high-order characters
of this collating sequence, the HIGH-VALUE character would be
%.)

* The character that has the lowest ordinal position in this
collating sequence is associated with the figurative constant
LOW-VALUE. If more than one character has the lowest position
because of specification of the ALSO phrase, the first character
specified is the LOW-VALUE character. (If the ALSO phrase
example given above were specified as the low-order characters
of the collating sequence, the LOW-VALUE character would be
D.)

When literal-1, literal-2, or literal-3 is specified, the alphabet-name
must not be referred to in a CODE-SET clause (see [“CODE-SET

[clause” on page 185).

literal-1, literal-2, and literal-3 must be alphanumeric or numeric
literals. All must have the same category. A floating-point literal, a
national literal, a DBCS literal, or a symbolic-character figurative
constant must not be specified.

SYMBOLIC CHARACTERS clause

The SYMBOLIC CHARACTERS clause is applicable only to single-byte character
sets. Each character represented is an alphanumeric character.

SYMBOLIC CHARACTERS symbolic-character-1
Provides a means of specifying one or more symbolic characters.
symbolic-character-1 is a user-defined word and must contain at least one
alphabetic character. The same symbolic-character can appear only once in
a SYMBOLIC CHARACTERS clause. The symbolic character can be a
DBCS user-defined word.

The internal representation of symbolic-character-1 is the internal
representation of the character that is represented in the specified character
set. The following rules apply:

* The relationship between each symbolic-character-1 and the corresponding
integer-1 is by their position in the SYMBOLIC CHARACTERS clause.
The first symbolic-character-1 is paired with the first integer-1; the second
symbolic-character-1 is paired with the second integer-1; and so forth.

* There must be a one-to-one correspondence between occurrences of
symbolic-character-1 and occurrences of integer-1 in a SYMBOLIC
CHARACTERS clause.

* If the IN phrase is specified, integer-1 specifies the ordinal position of the
character that is represented in the character set named by
alphabet-name-2. This ordinal position must exist.

Chapter 14. Configuration section 119



* If the IN phrase is not specified, symbolic-character-1 represents the
character whose ordinal position in the native character set is specified
by integer-1.

Ordinal positions are numbered starting from 1.

CLASS clause

The CLASS clause provides a means for relating a name to the specified set of
characters listed in that clause.

CLASS class-name-1 1S
Provides a means for relating a name to the specified set of characters
listed in that clause. class-name-1 can be referenced only in a class
condition. The characters specified by the values of the literals in this
clause define the exclusive set of characters of which this class consists.

The class-name in the CLASS clause can be a DBCS user-defined word.

literal-4, literal-5
Must be category numeric or alphanumeric, and both must be of the same
category.

If numeric, literal-4 and literal-5 must be unsigned integers and must have
a value that is greater than or equal to 1 and less than or equal to the
number of characters in the alphabet specified. Each number corresponds
to the ordinal position of each character in the single-byte EBCDIC or
ASCII collating sequence.

If alphanumeric, literal-4 and literal-5 are an actual single-byte EBCDIC
character.

literal-4 and literal-5 must not specify a symbolic-character figurative
constant. If the value of the alphanumeric literal contains multiple
characters, each character in the literal is included in the set of characters
identified by class-name.

Floating-point literals cannot be used in the CLASS clause.

If the alphanumeric literal is associated with a THROUGH phrase, the
literal must be one character in length.

THROUGH, THRU
THROUGH and THRU are equivalent. If THROUGH is specified,
class-name includes those characters that begin with the value of
literal-4 and that end with the value of literal-5. In addition, the
characters specified by a THROUGH phrase can be in either
ascending or descending order.

CURRENCY SIGN clause

The CURRENCY SIGN clause affects numeric-edited data items whose PICTURE
character-strings contain a currency symbol.

A currency symbol represents a currency sign value that is:
* Inserted in such data items when they are used as receiving items

* Removed from such data items when they are used as sending items for a
numeric or numeric-edited receiver

Typically, currency sign values identify the monetary units stored in a data item.
For example: '$', 'EUR', 'CHF', TPY', 'HK$', 'HKD', or X'9F' (hexadecimal code point

120 Enterprise COBOL for z/OS, V5.2 Language Reference



in some EBCDIC code pages for €, the Euro currency sign). For details on
programming techniques for handling the Euro, see Using currency signs in the
Enterprise COBOL Programming Guide.

The CURRENCY SIGN clause specifies a currency sign value and the currency
symbol used to represent that currency sign value in a PICTURE clause.

The SPECIAL-NAMES paragraph can contain multiple CURRENCY SIGN clauses.
Each CURRENCY SIGN clause must specify a different currency symbol. Unlike all
other PICTURE clause symbols, currency symbols are case sensitive. For example,
‘D' and 'd' specify different currency symbols.

CURRENCY SIGN IS literal-6
literal-6 must be an alphanumeric literal. literal-6 must not be a figurative
constant or a null-terminated literal. literal-6 must not contain a DBCS
character.
If the PICTURE SYMBOL phrase is not specified, literal-6:

* Specifies both a currency sign value and the currency symbol for this
currency sign value

* Must be a single character
* Must not contain any of the following digits or characters:
- Digits 0 through 9

— Alphabetic characters A, B, C, D, E, G, N, P R, S, V, X, Z, their
lowercase equivalents, or the space

— Special characters +-,.* /; ()" ="' (plus sign, minus sign, comma,
period, asterisk, slash, semicolon, left parenthesis, right parenthesis,
quotation mark, equal sign, apostrophe)

* Can be one of the following lowercase alphabetic characters: f, h, i, j, k, 1,
m, o, q/ t/ u, w, y
If the PICTURE SYMBOL phrase is specified, literal-6:

* Specifies a currency sign value. literal-7 in the PICTURE SYMBOL phrase
specifies the currency symbol for this currency sign value.

* Can consist of one or more characters.
* Must not contain any of the following digits or characters:
— Digits 0 through 9
— Special characters + - .,
PICTURE SYMBOL literal-7

Specifies a currency symbol that can be used in a PICTURE clause to
represent the currency sign value specified by literal-6.

literal-7 must be an alphanumeric literal consisting of one single-byte
character. literal-7 must not contain any of the following digits or
characters:

* A figurative constant

* Digits 0 through 9

 Alphabetic characters A, B, C, D, E, G, N, P R, S, V, X, Z, their lowercase
equivalents, or the space

* Special characters +-,.* /; ()" =

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and

Chapter 14. Configuration section 121



the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY and NOCURRENCY compiler options, see CURRENCY in the
Enterprise COBOL Programming Guide.

DECIMAL-POINT IS COMMA clause

The DECIMAL-POINT IS COMMA clause exchanges the functions of the period
and the comma in PICTURE character-strings and in numeric literals.

XML-SCHEMA clause

122

The XML-SCHEMA clause provides the means of relating xmi-schema-name-1 to an
external file identifier: a ddname or environment variable that identifies the actual
external file that contains the optimized XML schema.

The external file identifier can be specified as a user-defined word external-fileid-1
or as an alphanumeric literal literal-8, and identifies an existing external z/OSUNIX
file or MVS'™ data set that contains the optimized XML schema.

The external file identifier must be either the name specified in the DD statement
for the file or the name of an environment variable that contains the file
identification information.

For details on specifying an environment variable, see [“Environment variable|
[contents for an XML schema file.”|

XML-SCHEMA xml-schema-name-1 IS
xml-schema-name-1 can be referenced only in an XML PARSE statement.

The xml-schema-name in the XML SCHEMA clause can be a DBCS
user-defined word.

external-fileid-1
Specifies a user-defined word that must conform to the following rules:
* The user-defined word can contain one to eight characters.
e The user-defined word can contain the characters, A-Z, a-z, 0-9.
* The leading character must be alphabetic.
literal-8
Specifies an alphanumeric literal that must conform to the following rules:
¢ The literal can contain one to eight characters.
* The literal can contain the characters, A-Z, a-z, 0-9, @, #, and $.
* The leading character must be alphabetic, @, #, and $.

The compiler folds external-fileid-1 or literal-8 to uppercase to form the ddname or
environment variable name for the file.

Environment variable contents for an XML schema file

The environment variable name must be defined using only uppercase because the
COBOL compiler automatically folds the external file identifier to uppercase.

For an XML schema in an MVS data set, the environment variable must contain a
DSN option in the format shown below.

Enterprise COBOL for z/OS, V5.2 Language Reference



Format: environment variable for XML schema in an MVS data set, DSN
option

\4
A

»»—DSN(data-set-name

)
|—(member-name)—|

data-set-name must be fully qualified. You must not code blanks within the
parentheses.

For an XML schema in a z/OS UNIX file, the environment variable must contain a
PATH option in the format shown below.

Format: environment variable for XML schema in a z/0OS UNIX file, PATH
option

»»—PATH(path-name) ><

path-name must be an absolute path name; that is, it must begin with a slash.
Special characters in the path name must be "escaped” by preceding them with a
backslash. For example, to include a backslash in the path name, code two
backslashes in sequence.

For more information about specifying path-name, see the description of the PATH
parameter in the z/OS MVS JCL Reference.

For both formats, blanks at the beginning and end of the environment variable
contents are ignored. You must not code blanks between a keyword and the left
parenthesis that immediately follows the keyword.

REPOSITORY paragraph

The REPOSITORY paragraph is used in a program or class definition to identify all
the object-oriented classes that are intended to be referenced in that program or
class definition. Optionally, the REPOSITORY paragraph defines associations
between class-names and external class-names.

Chapter 14. Configuration section 123




Format: REPOSITORY paragraph

LCLASS—class-name-l

»»—REPOSITORY.

\4
A

Lm—[external-c lass-name-J‘JJ
IS Jjava-array-class-reference

class-name-1
A user-defined word that identifies the class.

external-class-name-1
An alphanumeric literal containing a name that enables a COBOL program
to define or access classes with class-names that are defined using Java
rules of formation.

The name must conform to the rules of formation for a fully qualified Java
class-name. If the class is part of a Java package, external-class-name-1 must
specify the fully qualified name of the package, followed by a period,
followed by the simple name of the Java class.

See Java Language Specification, Third Edition, by Gosling et al., for Java
class-name formation rules.

java-array-class-reference
A reference that enables a COBOL program to access a class that represents
an array object, where the elements of the array are themselves objects.
java-array-class-reference must be an alphanumeric literal with content in the
following format:

Format

»»—jobjectArray

A\
A

l—:—external—class—name—z—l

jobjectArray
Specifies a Java object array class.

A required separator when external-class-name-2 is specified. The
colon must not be preceded or followed by space characters.

external-class-name-2
The external class-name of the type of the elements of the array.
external-class-name-2 must follow the same rules of formation as
external-class-name-1.

When the repository entry specifies jobjectArray without the colon
separator and external-class-name-2, the elements of the object array are of
type java.lang.Object.

General rules
See the general rules of the REPOSITORY paragraph.

124 Enterprise COBOL for z/OS, V5.2 Language Reference



1. All referenced class-names must have an entry in the repository paragraph of
the COBOL program or class definition that contains the reference. You can
specify a given class-name only once in a given repository paragraph.

2. In program definitions, the repository paragraph can be specified only in the
outermost program.

3. The repository paragraph of a COBOL class definition can optionally contain an
entry for the name of the class itself, but this entry is not required. Such an
entry can be used to specify an external class-name that uses non-COBOL
characters or that specifies a fully package-qualified class-name when a COBOL
class is to be part of a Java package.

4. Entries in a class repository paragraph apply to the entire class definition,
including all methods introduced by that class. Entries in a program repository
paragraph apply to the entire program, including its contained programs.

Identifying and referencing a class

An external-class-name is used to identify and reference a given class from outside
the class definition that defines the class.

The external class-name is determined by using the contents of
external-class-name-1, external-class-name-2, or class-name-1 (as specified in the
repository paragraph of a class), as described below:

1. external-class-name-1 and external-class-name-2 are used directly, without
translation. They are processed in a case-sensitive manner.

2. class-name-1 is used if external-class-name-1 or java-array-class-reference is not
specified. To create an external name that identifies the class and conforms to
Java rules of formation, class-name-1 is processed as follows:

¢ The name is converted to uppercase.

* Hyphens are translated to zero.

* Underscores are not translated.

* If the first character of the name is a digit, it is converted as follows:
- Digits 1 though 9 are changed to A through L
- 0is changed to J.

The class can be implemented in Java or COBOL.

When referencing a class that is part of a Java package, external-class-name-1 must
be specified and must give the fully qualified Java class-name.

For example, the repository entry

Repository.
Class JavaException is "java.lang.Exception"

defines local class-name JavaException for referring to the fully qualified
external-class-name "java.lang.Exception."

When defining a COBOL class that is to be part of a Java package, specify an entry

in the repository paragraph of that class itself, giving the full Java
package-qualified name as the external class-name.

Chapter 14. Configuration section 125



126 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 15. Input-Output section

The input-output section of the ENVIRONMENT DIVISION contains
FILE-CONTROL paragraph and I-O-CONTROL paragraph.

The exact contents of the input-output section depend on the file organization and
access methods used. See [“ORGANIZATION clause” on page 137 and [“ACCESS|
[MODE clause” on page 140.|

Program input-output section
The same rules apply to program and method I-O sections.

Class input-output section
The input-output section is not valid for class definitions.

Method input-output section
The same rules apply to program and method I-O sections.

Format: input-output section

»»—INPUT-QUTPUT SECTION.—FILE-CONTROL.—file-control-paragraph—————>»

|—I-O-CONTROL. J
\\' i-o-control-paragraph——.

| )

FILE-CONTROL
The keyword FILE-CONTROL identifies the file-control paragraph. This
keyword can appear only once, at the beginning of the FILE-=CONTROL
paragraph. It must begin in Area A and be followed by a separator period.

The keyword FILE-CONTROL and the period can be omitted if no
file-control-paragraph is specified and there are no files defined in the
program.

file-control-paragraph
Names the files and associates them with the external data sets.

Must begin in Area B with a SELECT clause. It must end with a separator
period. See [“FILE-CONTROL paragraph” on page 128

file-control-paragraph can be omitted if there are no files defined in the
program, even if the FILE-CONTROL keyword is specified.

I-O-CONTROL
The keyword I-O-CONTROL identifies the I-O-CONTROL paragraph.

© Copyright IBM Corp. 1991, 2018 127



i-o-control-paragraph
Specifies information needed for efficient transmission of data between the
external data set and the COBOL program. The series of entries must end
with a separator period. See [“I-O-CONTROL paragraph” on page 146 |

FILE-CONTROL paragraph

128

The FILE-CONTROL paragraph associates each file in the COBOL program with
an external data set, and specifies file organization, access mode, and other
information.

The following formats are for the FILE-CONTROL paragraph:
* Sequential file entries

* Indexed file entries

* Relative file entries

* Line-sequential file entries

The table below lists the different type of files available to programs and methods.
Table 6. Types of files

File organization Access method

Sequential QSAM, VSAM!

Relative VSAM!

Indexed VSAM!

Line sequential® Text stream I-O

1. VSAM does not support z/OS UNIX files.

2. Line-sequential support is limited to z/OS UNIX files.

The FILE-CONTROL paragraph begins with the word FILE-CONTROL followed
by a separator period. It must contain one and only one entry for each file
described in an FD or SD entry in the DATA DIVISION.

Within each entry, the SELECT clause must appear first. The other clauses can
appear in any order, except that the PASSWORD clause for indexed files, if

specified, must immediately follow the RECORD KEY or ALTERNATE RECORD
KEY data-name with which it is associated.

The name component of assignment-name-1 cannot contain an underscore.

Enterprise COBOL for z/OS, V5.2 Language Reference



Format 1: sequential-file-control-entry

»»—SELECT file—name—l—ASSIGN—L——I—'assignment—name-l >
|—OPTIONALJ T0

|—RESERVE— integer |_ SEQUENTIALJ
i:AREAﬂ ORGANI ZATIONﬁ
AREAS IS

\{

».
| 2

v

|—PADDI" data‘—nameﬁJ
|—(IHARACTERJ |—ISJ |—Z iteral-2:

v
v

|—RECORD DELIMITER STANDARD 1ﬁ—‘ |—ACCES° SEQUENTIALJ
IS ssignment-name-2 |—MODEJ |—ISJ

> »

|—PASSWORD data-name-6J | STATUS data-name-1 |
|:IS:| |—FILEJ |—ISJ I—data-name-8J

Chapter 15. Input-Output section 129



Format 2: indexed-file-control-entry

>>—SELECT—L—_|—fi le-name-1—~ASSIGN Y _assignment-name-1
OPTIONAL ET;'

> INDEXED
I—RESERVE—integer‘ l—ORGANIZATIONﬁ
AREA IS
AREAS

data-name-2

>

|—MODEJ |—I SJ i:RANDOM—

DYNAMIC—

RECORD
l—ACCESS SEQUENTIAL——| |—KEY—| |—IS—|

» A,
l—PASSWORD—L——I—data—name—6—| L‘ entry 1 ’J

IS

STATUS data-name-1
|—FI LE—| |—I S—| I—data—name—8—|

entry 1:

|—ALTERNATE data-name-3
Lrecoro)  Ley ) Lis Lm—DUPLICATES—l

l—PASSWORD—L——'—data—nameJ—l
IS

130 Enterprise COBOL for z/OS, V5.2 Language Reference




Format 3: relative-file-control-entry

»»—SELECT fi le—name—l—ASSIGN—L——I—'ass ignment-name-1
|—OPTIONALJ T0

Y

A\

|_ |_ RELATIVE
RESERVE— integer ORGANIZATIONﬁ
AREA IS

AREAS

\{

v

| 2

|—ACCESc SE |
S QUENTIAL
|—MODEJ |—ISJ |—RELATIVE data-name-4J
|—KEYJ |—ISJ
RANDOM RELATIVE data-name-4——
DYNAMIC |—KEYJ |—ISJ

|—PASSWORD data-name-6J
|:IS:|

STATUS data-name-1
|—FILEJ |—ISJ |—data-name-8J

Format 4: line-sequential-file-control-entry

»»—SELECT |_ J fi Ze-name-l—ASSIGN—L—_I——ass ignment-name-1
OPTIONAL TO

\

| 2

A,

v

v

LINE SEQUENTIAL
LORGANIZATION‘L—J—‘ |—ACCESS SEQUENTIALJ
IS |—MOD EJ |—I SJ

|
Lfried L5

STATUS data-name-lJ

Chapter 15. Input-Output section

131



SELECT clause

The SELECT clause identifies a file in the COBOL program to be associated with
an external data set.

SELECT OPTIONAL
Can be specified only for files opened in the input, I-O, or extend mode.
You must specify SELECT OPTIONAL for those input files that are not
necessarily available each time the object program is executed. For more
information, see [“OPEN statement notes” on page 389

file-name-1
Must be identified by an FD or SD entry in the DATA DIVISION. A
file-name must conform to the rules for a COBOL user-defined name, must
contain at least one alphabetic character, and must be unique within this
program.

When file-name-1 specifies a sort or a merge file, only the ASSIGN clause can
follow the SELECT clause.

If the file connector referenced by file-name-1 is an external file connector, all
file-control entries in the run unit that reference this file connector must have the
same specification for the OPTIONAL phrase.

ASSIGN clause

132

The ASSIGN clause associates the name of a file in a program with the actual
external name of the data file.

assignment-name-1
Identifies the external data file. It can be specified as a name or as an
alphanumeric literal.

assignment-name-1 is not the name of a data item, and assignment-name-1
cannot be contained in a data item. It is just a character string. It cannot
contain an underscore character.

Any assignment-name after the first is syntax checked, but has no effect on
the execution of the program.

assignment-name-1 has the following formats:

Format: assignment-name for QSAM files

> name <
|—Zabel- —| l—S- —|

Enterprise COBOL for z/OS, V5.2 Language Reference



Format: assignment-name for VSAM sequential file

A\
A

»—L—_I—AS- —name
label-

Format: assignment-name for line-sequential, VSAM indexed, or VSAM
relative file

A\
A

T e, J 0
label-

label- Documents (for the programmer) the device and device class to which a

file is assigned. It must end in a hyphen; the specified value is not

otherwise checked. It has no effect on the execution of the program. If

specified, it must end with a hyphen.
S- For QSAM files, the S- (organization) field can be omitted.

AS-  For VSAM sequential files, the AS- (organization) field must be specified.

For VSAM indexed and relative files, the organization field must be
omitted.

name A required field that specifies the external name for this file.

It must be either the name specified in the DD statement for this file or the
name of an environment variable that contains file allocation information.

For details on specifying an environment variable, see [“ Assignment name|

[for environment variable” on page 134

name must conform to the following rules of formation:
* If assignment-name-1 is a user-defined word:
— The name can contain from one to eight characters.
— The name can contain the characters A-Z, a-z, and 0-9.

The leading character must be alphabetic.
— The name cannot contain an underscore.
* If assignment-name-1 is a literal:
— The name can contain from one to eight characters.

— The name can contain the characters A-Z, a-z, 0-9, @, #, and $.

The leading character must be alphabetic.
— The name cannot contain an underscore.

For both user-defined words and literals, the compiler folds name to
uppercase to form the ddname for the file.

In a sort or merge file, name is treated as a comment.

If the file connector referenced by file-name-1 in the SELECT clause is an external

file connector, all file-control entries in the run unit that reference this file

connector must have a consistent specification for assignment-name-1 in the ASSIGN

Chapter 15. Input-Output section

133



clause. For QSAM files and VSAM indexed and relative files, the name specified
on the first assignment-name-1 must be identical. For VSAM sequential files, it must
be specified as AS-name.

Assignment name for environment variable

The name component of assignment-name-1 is initially treated as a ddname. If no file
has been allocated using this ddname, then name is treated as an environment
variable.

The environment variable name must be defined using only uppercase because the
COBOL compiler automatically folds the external file-name to uppercase.

If this environment variable exists and contains a valid PATH or DSN option
(described below), then the file is dynamically allocated using the information
supplied by that option.

If the environment variable does not contain a valid PATH or DSN option or if the
dynamic allocation fails, then attempting to open the file results in file status 98.

The contents of the environment variable are checked at each OPEN statement. If a
file was dynamically allocated by a previous OPEN statement and the contents of
the environment variable have changed since the previous OPEN, then the
previous allocation is dynamically deallocated prior to dynamically reallocating the
file using the options currently set in the environment variable.

When the run unit terminates, the COBOL runtime system automatically
deallocates all automatically generated dynamic allocations.

Environment variable contents for a QSAM file

For a QSAM file, the environment variable must contain either a DSN or a PATH
option in the format shown below.

Format: environment variable for QSAM files, DSN option

»»—DSN(data-set-name |_ _| )
(member-name) NEW i:TRACKS—
OLD CYL—
SHR.
MOD

\/

\

|—SPACE(nnn,mmmm)—| |—VOL(voZume—ser'iaZ)—| |—UNIT(type)—|

\
4

KEEP
DELETE——
CATALOG—
UNCATALOG—

I—STORC LAS (storage-c lass)—|

> >

|—MGMTC LAS (management-class)—| |—DATAC LAS(data-c Zass)—|

134 Enterprise COBOL for z/OS, V5.2 Language Reference



data-set-name must be fully qualified. The data set must not be a temporary data
set; that is, it must not start with an ampersand.

After data-set-name or member-name, the data set attributes can follow in any order.

The options that follow DSN (such as NEW or TRACKS) must be separated by a
comma or by one or more blanks.

Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (NEW, OLD, SHR, or
MOD); however, your operating system might provide one. To avoid unexpected
results when opening the file, you should always specify NEW, OLD, SHR, or
MOD with the DSN option when you use environment variables for dynamic
allocation of QSAM files.

For information about specifying the values of the data set attributes, see the
description of the DD statement in the z/OS MVS JCL Reference.

Format: environment variable for QSAM files, PATH option

»»—PATH (path-name)

A\
A

path-name must be an absolute path name; that is, it must begin with a slash. For
more information about specifying path-name, see the description of the PATH
parameter in z/OS MVS JCL Reference.

Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

Environment variable contents for a line-sequential file

For a line-sequential file, the environment variable must contain a PATH option in
the following format:

Format: environment variable for line-sequential files

»»—PATH(path-name) »<

path-name must be an absolute path name; that is, it must begin with a slash. For
more information about specifying path-name, see the description of the PATH
parameter in z/OS MVS JCL Reference.

Chapter 15. Input-Output section 135



Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

Environment variable contents for a VSAM file

For an indexed, relative, or sequential VSAM file, the environment variable must
contain a DSN option in the following format:

Format: environment variable for VSAM files, DSN option

OLD

»—DSN(data-set-name) |: :‘ >
SHR

data-set-name specifies the data set name for the base cluster. data-set-name must be
fully qualified and must reference an existing predefined and cataloged VSAM
data set.

If an indexed file has alternate indexes, then additional environment variables
must be defined that contain DSN options (as above) for each of the alternate
index paths. The names of these environment variables must follow the same
naming convention as used for alternate index ddnames. That is:

* The environment variable name for each alternate index path is formed by
concatenating the base cluster environment variable name with an integer,
beginning with 1 for the path associated with the first alternate index and
incrementing by 1 for the path associated with each successive alternate index.
(For example, if the environment variable name for the base cluster is CUST,
then the environment variable names for the alternate indexes would be CUST],
CUST, ..., )

* If the length of the base cluster environment variable name is already eight
characters, then the environment variable names for the alternate indexes are
formed by truncating the base cluster portion of the environment variable name
on the right to reduce the concatenated result to eight characters. (For example,
if the environment variable name for the base cluster is DATAFILE, then the
environment variable names for the alternate clusters would be DATAFILI,
DATAFIL2, ..., .)

The options that follow DSN (such as SHR) must be separated by a comma or by
one or more blanks.

Blanks at the beginning and end of the environment variable contents are ignored.
You must not code blanks within the parentheses or between a keyword and the
left parenthesis that immediately follows the keyword.

COBOL does not provide a default for data set disposition (OLD or SHR);
however, your operating system might provide one. To avoid unexpected results
when opening the file, you should always specify OLD or SHR with the DSN
option when you use environment variables for dynamic allocation of VSAM files.

136 Enterprise COBOL for z/OS, V5.2 Language Reference



RESERVE clause

The RESERVE clause allows the user to specify the number of input/output
buffers to be allocated at run time for the files.

The RESERVE clause is not supported for line-sequential files.

If the RESERVE clause is omitted, the number of buffers at run time is taken from
the DD statement. If none is specified, the system default is taken.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, all file-control entries in the run unit that reference this file
connector must have the same value for the integer specified in the RESERVE
clause.

ORGANIZATION clause

The ORGANIZATION clause identifies the logical structure of the file. The logical
structure is established at the time the file is created and cannot subsequently be
changed.

You can find a discussion of the different ways in which data can be organized
and of the different access methods that you can use to retrieve the data under
[“File organization and access modes” on page 141

ORGANIZATION IS SEQUENTIAL (format 1)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended.

ORGANIZATION IS INDEXED (format 2)
The position of each logical record in the file is determined by indexes
created with the file and maintained by the system. The indexes are based
on embedded keys within the file's records.

ORGANIZATION IS RELATIVE (format 3)
The position of each logical record in the file is determined by its relative
record number.

ORGANIZATION IS LINE SEQUENTIAL (format 4)
A predecessor-successor relationship among the records in the file is
established by the order in which records are placed in the file when it is
created or extended. A record in a LINE SEQUENTIAL file can consist only
of printable characters.

If you omit the ORGANIZATION clause, the compiler assumes ORGANIZATION
IS SEQUENTIAL.

If the file connector referenced by file-name-1 in the SELECT clause is an external
file connector, the same organization must be specified for all file-control entries in
the run unit that reference this file connector.

File organization

You establish the organization of the data when you create a file. Once the file has
been created, you can expand the file, but you cannot change the organization.

Chapter 15. Input-Output section 137



138

Sequential organization

The physical order in which the records are placed in the file determines the
sequence of records. The relationships among records in the file do not change,
except that the file can be extended. Records can be fixed length or variable length;
there are no keys.

Each record in the file except the first has a unique predecessor record; and each
record except the last has a unique successor record.

Indexed organization

Each record in the file has one or more embedded keys (referred to as key data
items); each key is associated with an index. An index provides a logical path to
the data records according to the contents of the associated embedded record key
data items. Indexed files must be direct-access storage files. Records can be fixed
length or variable length.

Each record in an indexed file must have an embedded prime key data item. When
records are inserted, updated, or deleted, they are identified solely by the values of
their prime keys. Thus, the value in each prime key data item must be unique and
must not be changed when the record is updated. You tell COBOL the name of the
prime key data item in the RECORD KEY clause of the file-control paragraph.

In addition, each record in an indexed file can contain one or more embedded
alternate key data items. Each alternate key provides another means of identifying
which record to retrieve. You tell COBOL the name of any alternate key data items
on the ALTERNATE RECORD KEY clause of the file-control paragraph.

The key used for any specific input-output request is known as the key of reference.
Relative organization

Think of the file as a string of record areas, each of which contains a single record.
Each record area is identified by a relative record number; the access method stores
and retrieves a record based on its relative record number. For example, the first
record area is addressed by relative record number 1 and the 10th is addressed by
relative record number 10. The physical sequence in which the records were placed
in the file has no bearing on the record area in which they are stored, and thus no
effect on each record's relative record number. Relative files must be direct-access
files. Records can be fixed length or variable length.

Line-sequential organization

In a line-sequential file, each record contains a sequence of characters that ends
with a record delimiter. The delimiter is not counted in the length of the record.

When a record is written, any trailing blanks are removed prior to adding the
record delimiter. The characters in the record area from the first character up to
and including the added record delimiter constitute one record and are written to
the file.

When a record is read, characters are read one at a time into the record area until:

e The first record delimiter is encountered. The record delimiter is discarded and
the remainder of the record is filled with spaces.

Enterprise COBOL for z/OS, V5.2 Language Reference



* The entire record area is filled with characters. If the first unread character is the
record delimiter, it is discarded. Otherwise, the first unread character becomes
the first character read by the next READ statement.

* End-of-file is encountered. The remainder of the record area is filled with spaces.

Records written to line-sequential files must consist of data items described as
USAGE DISPLAY or DISPLAY-1 or a combination of DISPLAY and DISPLAY-1
items. A zoned decimal data item either must be unsigned or, if signed, must be
declared with the SEPARATE CHARACTER phrase.

A line-sequential file can contain printable characters and control characters. Be
aware though that if your file contains a newline character (X'15'), the newline
character will function as a record delimiter.

The following clauses are not supported for line-sequential files:
* APPLY WRITE-ONLY clause

* CODE-SET clause

* DATA RECORDS clause

* LABEL RECORDS clause

* LINAGE clause

* I-O phrase of the OPEN statement

* PADDING CHARACTER clause

* RECORD CONTAINS 0 clause

* RECORD CONTAINS clause format 2 (for example: RECORD CONTAINS 100 to
200 CHARACTERS)

* RECORD DELIMITER clause

* RECORDING MODE clause

* RERUN clause

* RESERVE clause

* REVERSED phrase of the OPEN statement

* REWRITE statement

* VALUE OF clause of file description entry

* WRITE ... AFTER ADVANCING mnemonic-name
* WRITE ... AT END-OF-PAGE

* WRITE ... BEFORE ADVANCING

PADDING CHARACTER clause

The PADDING CHARACTER clause specifies a character to be used for block
padding on sequential files.

data-name-5
Must be defined in the DATA DIVISION as a one-character data item of
category alphabetic, alphanumeric, or national, and must not be defined in
the FILE SECTION. data-name-5 can be qualified.

literal-2
Must be a one-character alphanumeric literal or national literal.

For external files, data-name-5, if specified, must reference an external data item.

Chapter 15. Input-Output section 139



The PADDING CHARACTER clause is syntax checked, but has no effect on the
execution of the program.

RECORD DELIMITER clause

The RECORD DELIMITER clause indicates the method of determining the length
of a variable-length record on an external medium. It can be specified only for
variable-length records.

STANDARD-1
If STANDARD-1 is specified, the external medium must be a magnetic tape
file.

assignment-name-2
Can be any COBOL word.

The RECORD DELIMITER clause is syntax checked, but has no effect on the
execution of the program.

ACCESS MODE clause

The ACCESS MODE clause defines the manner in which the records of the file are
made available for processing. If the ACCESS MODE clause is not specified,
sequential access is assumed.

For sequentially accessed relative files, the ACCESS MODE clause does not have to
precede the RELATIVE KEY clause.

ACCESS MODE IS SEQUENTIAL
Can be specified in all formats.

Format 1: sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 1 supports only sequential
access.

Format 2: indexed
Records in the file are accessed in the sequence of ascending record
key values according to the collating sequence of the file.

Format 3: relative
Records in the file are accessed in the ascending sequence of
relative record numbers of existing records in the file.

Format 4: line-sequential
Records in the file are accessed in the sequence established when
the file is created or extended. Format 4 supports only sequential
access.

ACCESS MODE IS RANDOM
Can be specified in formats 2 and 3 only.

Format 2: indexed
The value placed in a record key data item specifies the record to
be accessed.

Format 3: relative
The value placed in a relative key data item specifies the record to
be accessed.

140 Enterprise COBOL for z/OS, V5.2 Language Reference



ACCESS MODE IS DYNAMIC
Can be specified in formats 2 and 3 only.

Format 2: indexed
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output statement used.

Format 3: relative
Records in the file can be accessed sequentially or randomly,
depending on the form of the specific input-output request.

File organization and access modes

File organization is the permanent logical structure of the file. You tell the computer
how to retrieve records from the file by specifying the access mode (sequential,
random, or dynamic).

For details on the access methods and data organization, see [Table 6 on page 128

Sequentially organized data can be accessed only sequentially; however, data that
has indexed or relative organization can be accessed in any of the three access
modes.

Access modes
See the descriptions of the following types of access modes.

Sequential-access mode
Allows reading and writing records of a file in a serial manner; the order
of reference is implicitly determined by the position of a record in the file.

Random-access mode
Allows reading and writing records in a programmer-specified manner; the
control of successive references to the file is expressed by specifically
defined keys supplied by the user.

Dynamic-access mode
Allows the specific input-output statement to determine the access mode.
Therefore, records can be processed sequentially or randomly or both.

For external files, every file-control entry in the run unit that is associated with
that external file must specify the same access mode. In addition, for relative file
entries, data-name-4 must reference an external data item, and the RELATIVE KEY
phrase in each associated file-control entry must reference that same external data
item.

Relationship between data organizations and access modes

This section discusses which access modes are valid for each type of data
organization.

Sequential files
Files with sequential organization can be accessed only sequentially. The
sequence in which records are accessed is the order in which the records
were originally written.

Line-sequential files
Same as for sequential files (described above).

Indexed files
All three access modes are allowed.

Chapter 15. Input-Output section 141



In the sequential access mode, the sequence in which records are accessed
is the ascending order of the record key value. The order of retrieval
within a set of records that have duplicate alternate record key values is
the order in which records were written into the set.

In the random access mode, you control the sequence in which records are
accessed. A specific record is accessed by placing the value of its key or
keys in the RECORD KEY data item (and the ALTERNATE RECORD KEY
data item). If a set of records has duplicate alternate record key values,
only the first record written is available.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

Relative files
All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record numbers of all records that
exist within the file.

In the random access mode, you control the sequence in which records are

accessed. A specific record is accessed by placing its relative record number
in the RELATIVE KEY data item; the RELATIVE KEY must not be defined

within the record description entry for the file.

In the dynamic access mode, you can change as needed from sequential
access to random access by using appropriate forms of input-output
statements.

RECORD KEY clause

142

The RECORD KEY clause (format 2) specifies the data item within the record that
is the prime RECORD KEY for an indexed file. The values contained in the prime
RECORD KEY data item must be unique among records in the file.

data-name-2
The prime RECORD KEY data item.

data-name-2 must be described within a record description entry associated
with the file. The key can have any of the following data categories:

* Alphanumeric

* Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

* External floating-point (with usage DISPLAY or NATIONAL)

* Internal floating-point

* DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

item's binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

Enterprise COBOL for z/OS, V5.2 Language Reference



data-name-2 must not reference a variable-length data item. data-name-2 can
be qualified.

If the indexed file contains variable-length records, data-name-2 need not be
contained within the minimum record size specified for the file. That is,
data-name-2 can exceed the minimum record size, but this is not
recommended.

The data description of data-name-2 and its relative location within the
record must be the same as those used when the file was defined.

If the file has more than one record description entry, data-name-2 need be
described in only one of those record description entries. The identical
character positions referenced by data-name-2 in any one record description
entry are implicitly referenced as keys for all other record description
entries for that file.

For files defined with the EXTERNAL clause, all file description entries in
the run unit that are associated with the file must have data description
entries for data-name-2 that specify the same relative location in the record
and the same length.

ALTERNATE RECORD KEY clause

The ALTERNATE RECORD KEY clause (format 2) specifies a data item within the
record that provides an alternative path to the data in an indexed file.

data-name-3
An ALTERNATE RECORD KEY data item.

data-name-3 must be described within a record description entry associated
with the file. The key can have any of the following data categories:

* Alphanumeric

* Numeric

* Numeric-edited (with usage DISPLAY or NATIONAL)

* Alphanumeric-edited

* Alphabetic

* External floating-point (with usage DISPLAY or NATIONAL)

* Internal floating-point

* DBCS

* National

* National-edited

Regardless of the category of the key data item, the key is treated as an
alphanumeric item. The collation order of the key is determined by the

item's binary value order when the key is used for locating a record or for
setting the file position indicator associated with the file.

data-name-3 must not reference a group item that contains a
variable-occurrence data item. data-name-3 can be qualified.

If the indexed file contains variable-length records, data-name-3 need not be
contained within the minimum record size specified for the file. That is,
data-name-3 can exceed the minimum record size, but this is not
recommended.

Chapter 15. Input-Output section 143



If the indexed file contains variable-length records, data-name-3 need not be
contained within the minimum record size specified for the file. That is,
data-name-3 can exceed the minimum record size, but this is not
recommended.

The data description of data-name-3 and its relative location within the
record must be the same as those used when the file was defined. The
number of alternate record keys for the file must also be the same as that
used when the file was created.

The leftmost character position of data-name-3 must not be the same as the
leftmost character position of the prime record key, or of another alternate
record key.

If the DUPLICATES phrase is not specified, the values contained in the
ALTERNATE RECORD KEY data item must be unique among records in the file.

If the DUPLICATES phrase is specified, the values contained in the ALTERNATE
RECORD KEY data item can be duplicated within any records in the file. In
sequential access, the records with duplicate keys are retrieved in the order in
which they were placed in the file. In random access, only the first record written
in a series of records with duplicate keys can be retrieved.

For files defined with the EXTERNAL clause, all file description entries in the run
unit that are associated with the file must have data description entries for
data-name-3 that specify the same relative location in the record and the same
length. The file description entries must specify the same number of alternate
record keys and the same DUPLICATES phrase.

RELATIVE KEY clause

144

The RELATIVE KEY clause (format 3) identifies a data-name that specifies the
relative record number for a specific logical record within a relative file.

data-name-4
Must be defined as an unsigned integer data item whose description does
not contain the PICTURE symbol P. data-name-4 must not be defined in a
record description entry associated with this relative file. That is, the
RELATIVE KEY is not part of the record. data-name-4 can be qualified.

data-name-4 is required for ACCESS IS SEQUENTIAL only when the START
statement is to be used. It is always required for ACCESS IS RANDOM
and ACCESS IS DYNAMIC. When the START statement is executed, the
system uses the contents of the RELATIVE KEY data item to determine the
record at which sequential processing is to begin.

If a value is placed in data-name-4, and a START statement is not executed,
the value is ignored and processing begins with the first record in the file.

If a relative file is to be referenced by a START statement, you must specify
the RELATIVE KEY clause for that file.

For external files, data-name-4 must reference an external data item, and the
RELATIVE KEY phrase in each associated file-control entry must reference
that same external data item in each case.

The ACCESS MODE IS RANDOM clause must not be specified for
file-names specified in the USING or GIVING phrase of a SORT or MERGE
statement.

Enterprise COBOL for z/OS, V5.2 Language Reference



PASSWORD clause
The PASSWORD clause controls access to files.

data-name-6 , data-name-7
Password data items. Each must be defined in the WORKING-STORAGE
SECTION of the DATA DIVISION as a data item of category alphabetic,
alphanumeric, or alphanumeric-edited. The first eight characters are used
as the password; a shorter field is padded with blanks to eight characters.
Each password data item must be equivalent to one that is externally
defined.

When the PASSWORD clause is specified, at object time the PASSWORD data item
must contain a valid password for this file before the file can be successfully
opened.

Format 1 considerations:
The PASSWORD clause is not valid for QSAM sequential files.
Format 2 and 3 considerations:

The PASSWORD clause, if specified, must immediately follow the RECORD KEY
or ALTERNATE RECORD KEY data-name with which it is associated.

For indexed files that have been completely predefined to VSAM, only the
PASSWORD data item for the RECORD KEY need contain the valid password
before the file can be successfully opened at file creation time.

For any other type of file processing (including the processing of dynamic calls at
file creation time through a COBOL runtime subroutine), every PASSWORD data
item for the file must contain a valid password before the file can be successfully
opened, regardless of whether all paths to the data are used in this object program.

For external files, data-name-6 and data-name-7 must reference external data items.
The PASSWORD clauses in each associated file-control entry must reference the
same external data items.

FILE STATUS clause

The FILE STATUS clause monitors the execution of each input-output operation for
the file.

When the FILE STATUS clause is specified, the system moves a value into the file
status key data item after each input-output operation that explicitly or implicitly
refers to this file. The value indicates the status of execution of the statement. (See
the file status key description under [“Common processing facilities” on page 291.)

data-name-1
The file status key data item can be defined in the WORKING-STORAGE,
LOCAL-STORAGE, or LINKAGE SECTION as one of the following items:

* A two-character data item of category alphanumeric
* A two-character data item of category national

* A two-digit data item of category numeric with usage DISPLAY or
NATIONAL (an external decimal data item)

data-name-1 must not contain the PICTURE symbol 'P".

Chapter 15. Input-Output section 145



data-name-1 can be qualified.

The file status key data item must not be variably located; that is, the data
item cannot follow a data item that contains an OCCURS DEPENDING
ON clause.

data-name-8
Must be defined as an alphanumeric group item of 6 bytes in the
WORKING-STORAGE SECTION or LINKAGE SECTION of the DATA
DIVISION.

Specify data-name-8 only if the file is a VSAM file (that is, ESDS, KSDS,
RRDS).

data-name-8 holds the 6-byte VSAM return code, which is composed as

follows:

* The first 2 bytes of data-name-8 contain the VSAM return code in binary
format. The value for this code is defined (by VSAM) as 0, 8, or 12.

* The next 2 bytes of data-name-8 contain the VSAM function code in binary
format. The value for this code is defined (by VSAM) as 0, 1, 2, 3, 4, or
5.

* The last 2 bytes of data-name-8 contain the VSAM feedback code in binary
format. The code value is 0 through 255.

If VSAM returns a nonzero return code, data-name-8 is set.

If FILE STATUS is returned without having called VSAM, data-name-8 is
Zero.

If data-name-1 is set to zero, the content of data-name-8 is undefined. VSAM
status return code information is available without transformation in the
currently defined COBOL FILE STATUS code. User identification and
handling of exception conditions are allowed at the same level as that
defined by VSAM.

Function code and feedback code are set if and only if the return code is set to
a nonzero value. If they are referenced when the return code is set to zero,
the contents of the fields are not dependable.

Values in the return code, function code, and feedback code fields are defined
by VSAM. There are no COBOL additions, deletions, or modifications to
the VSAM definitions.

For more information, see DFSMS Macro Instructions for Data Sets.

I-O-CONTROL paragraph

146

The I-O-CONTROL paragraph of the input-output section specifies when
checkpoints are to be taken and the storage areas to be shared by different files.
This paragraph is optional in a COBOL program.

The keyword I-O-CONTROL can appear only once, at the beginning of the
paragraph. The word [-O-CONTROL must begin in Area A and must be followed

by a separator period.

The order in which [-O-CONTROL paragraph clauses are written is not significant.
The I-O-CONTROL paragraph ends with a separator period.

Enterprise COBOL for z/OS, V5.2 Language Reference



Format: QSAM- i-o-control-entry

»——RERUN—L—_I—[assignment-%—L—_l—' phrase 1 i

ON file-name-1 EVERY

—SAME -file-name-3
|—RECORDJ |—AREAJ |—FORJ \\

v

A\
A

file-name-4

(1)

—MULTIPLE FILE Yfile-name-5
|—TAPEJ |—CONTAINSJ |—POSITION—inz‘:eger-ZJ

(1)
_APPLY WRITE-ONLY ] Y _file-name-2
ON

phrase 1:

}—[integer-l—RECORDS file-name-1 I
END REEL:ltl |:0 F:|
OF UNIT

Notes:
1 The MULTIPLE FILE clause and APPLY WRITE-ONLY clause are not supported for VSAM files.

Format: VSAM- i-o-control-entry

RERUN assignment-%—l_—_l—' phrase 1 i
ON file-name-1 EVERY
SAME file-name-3
|—RECORDJ |—AREAJ |—FORJ L

v

\4
A

file-name-4

phrase 1:

|—integer-1—REC0RDS—L—_|—fi le-name-1 |
OF

Chapter 15. Input-Output section 147



»>—SAME

Format: line-sequential-i-o-control-entry

v

|—RECORDJ

-file-name-4 ><

-file-name-3
|—AREAJ |—FORJ

Format: sort/merge-i-o-control-entry

»>-

ON

E UN—L——I—(JSSIQ - -
I—R R nment-name lJ

I >«

»—YSAME RECORD
i:SORT

phrase 1:

|—file-name-3

SORT-MERGE—

| phrase 1 <
|—AREA—| |—FOR—| ! !

|—fiZe-name-4—|

RERUN clause

The RERUN clause specifies that checkpoint records are to be taken. Subject to the
restrictions given with each phrase, more than one RERUN clause can be specified.

For information regarding the checkpoint data set definition and the checkpoint
method required for complete compliance to the 85 COBOL Standard, see DD
statements for defining checkpoint data sets in the Enterprise COBOL Programming
Guide.

Do not use the RERUN clause:

* For files described with the EXTERNAL clause

* In programs with the RECURSIVE clause specified
* In programs compiled with the THREAD option

* In methods

file-name-1
Must be a sequentially organized file.

VSAM and QSAM considerations:

148 Enterprise COBOL for z/OS, V5.2 Language Reference




The file named in the RERUN clause must be a file defined in the same
program as the I-O-CONTROL paragraph, even if the file is defined as
GLOBAL.

assignment-name-1
The external data set for the checkpoint file. It must not be the same
assignment-name as that specified in any ASSIGN clause throughout the
entire program, including contained and containing programs.

For QSAM files, assignment-name-1 has the format:

Format: assignment-name for QSAM files

> name <
|—Zabel- —| |—S- —|

The QSAM file must reside on a tape or direct access device. See also
[Appendix F, “ASCII considerations,” on page 613

SORT/MERGE considerations:

When the RERUN clause is specified in the I-O-CONTROL paragraph,
checkpoint records are written at logical intervals determined by the
sort/merge program during execution of each SORT or MERGE statement
in the program. When the RERUN clause is omitted, checkpoint records
are not written.

There can be only one SORT/MERGE I-O-CONTROL paragraph in a
program, and it cannot be specified in contained programs. It will have a
global effect on all SORT and MERGE statements in the program unit.

EVERY integer-1 RECORDS
A checkpoint record is to be written for every integer-1 records in
file-name-1 that are processed.

When multiple integer-1 RECORDS phrases are specified, no two of them
can specify the same value for file-name-1.

If you specify the integer-1 RECORDS phrase, you must specify
assignment-name-1.

EVERY END OF REEL/UNIT
A checkpoint record is to be written whenever end-of-volume for
file-name-1 occurs. The terms REEL and UNIT are interchangeable.

When multiple END OF REEL/UNIT phrases are specified, no two of
them can specify the same value for file-name-1.

The END OF REEL/UNIT phrase can be specified only if file-name-1 is a
sequentially organized file.

SAME AREA clause

The SAME AREA clause is syntax checked, but has no effect on the execution of
the program.The SAME AREA clause specifies that two or more files that do not
represent sort or merge files are to use the same main storage area during
processing.

Chapter 15. Input-Output section 149




The files named in a SAME AREA clause need not have the same organization or
access.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

* For QSAM files, the SAME clause is treated as documentation.

* For VSAM files, the SAME clause is treated as if equivalent to the SAME
RECORD AREA clause.

More than one SAME AREA clause can be included in a program. However:
* A specific file-name must not appear in more than one SAME AREA clause.

* If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

SAME RECORD AREA clause

150

The SAME RECORD AREA clause specifies that two or more files are to use the
same main storage area for processing the current logical record.

The files named in a SAME RECORD AREA clause need not have the same
organization or access.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

All of the files can be opened at the same time. A logical record in the shared
storage area is considered to be both of the following ones:

* A logical record of each opened output file in the SAME RECORD AREA clause

* Alogical record of the most recently read input file in the SAME RECORD
AREA clause

More than one SAME RECORD AREA clause can be included in a program.
However:

* A specific file-name must not appear in more than one SAME RECORD AREA
clause.

* If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in that SAME AREA clause must appear in that
SAME RECORD AREA clause. However, the SAME RECORD AREA clause can
contain additional file-names that do not appear in the SAME AREA clause.

* The rule that in the SAME AREA clause only one file can be open at one time
takes precedence over the SAME RECORD AREA rule that all the files can be
open at the same time.

 If the SAME RECORD AREA clause is specified for several files, the record
description entries or the file description entries for these files must not include
the GLOBAL clause.

Enterprise COBOL for z/OS, V5.2 Language Reference



* The SAME RECORD AREA clause must not be specified when the RECORD
CONTAINS 0 CHARACTERS clause is specified.

The files named in the SAME RECORD AREA clause need not have the same
organization or access.

SAME SORT AREA clause

The SAME SORT AREA clause is syntax checked but has no effect on the execution
of the program.

file-name-3 , file-name-4
Must be specified in the file-control paragraph of the same program.
file-name-3 and file-name-4 must not reference a file that is defined with the
EXTERNAL clause.

When the SAME SORT AREA clause is specified, at least one file-name specified
must name a sort file. Files that are not sort files can also be specified. The
following rules apply:

* More than one SAME SORT AREA clause can be specified. However, a given
sort file must not be named in more than one such clause.

» If a file that is not a sort file is named in both a SAME AREA clause and in one
or more SAME SORT AREA clauses, all the files in the SAME AREA clause must
also appear in that SAME SORT AREA clause.

* Files named in a SAME SORT AREA clause need not have the same organization
or access.

* Files named in a SAME SORT AREA clause that are not sort files do not share
storage with each other unless they are named in a SAME AREA or SAME
RECORD AREA clause.

* During the execution of a SORT or MERGE statement that refers to a sort or
merge file named in this clause, any nonsort or nonmerge files associated with
file-names named in this clause must not be in the open mode.

SAME SORT-MERGE AREA clause

The SAME SORT-MERGE AREA clause is equivalent to the SAME SORT AREA
clause.

For more details, see ["SAME SORT AREA clause.”|

MULTIPLE FILE TAPE clause

The MULTIPLE FILE TAPE clause (format 1) specifies that two or more files share
the same physical reel of tape.

This clause is syntax checked, but has no effect on the execution of the program.
The function is performed by the system through the LABEL parameter of the DD
statement.

APPLY WRITE-ONLY clause

The APPLY WRITE-ONLY clause optimizes buffer and device space allocation for
files that have standard sequential organization, have variable-length records, and
are blocked.

Chapter 15. Input-Output section 151



If you specify this phrase, the buffer is truncated only when the space available in
the buffer is smaller than the size of the next record. Otherwise, the buffer is
truncated when the space remaining in the buffer is smaller than the maximum
record size for the file.

APPLY WRITE-ONLY is effective only for QSAM files.

file-name-2
Each file must have standard sequential organization.

APPLY WRITE-ONLY clauses must agree among corresponding external file
description entries. For an alternate method of achieving the APPLY WRITE-ONLY
results, see the description of the compiler option, AWO in the Enterprise COBOL
Programming Guide.

152 Enterprise COBOL for z/OS, V5.2 Language Reference



Part 5. Data division

© Copyright IBM Corp. 1991, 2018 153



154 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 16. DATA DIVISION overview

This overview describes the structure of the DATA DIVISION for programs, object
definitions, factory definitions, and methods.

Each section in the DATA DIVISION has a specific logical function within a
COBOL program, object definition, factory definition, or method and can be
omitted when that logical function is not needed. If included, the sections must be
written in the order shown. The DATA DIVISION is optional.

Program data division
The DATA DIVISION of a COBOL source program describes, in a
structured manner, all the data to be processed by the program.

Object data division
The object data division contains data description entries for instance object
data (instance data). Instance data is defined in the WORKING-STORAGE
SECTION of the object paragraph of a class definition.

Factory data division
The factory data division contains data description entries for factory object
data (factory data). Factory data is defined in the WORKING-STORAGE
SECTION of the factory paragraph of a class definition.

Method data division
A method data division contains data description entries for data accessible
within the method. A method data division can contain a
LOCAL-STORAGE SECTION or a WORKING-STORAGE SECTION, or
both. The term method data applies to both. Method data in
LOCAL-STORAGE is dynamically allocated and initialized on each
invocation of the method; method data in WORKING-STORAGE is static
and persists across invocations of the method.

© Copyright IBM Corp. 1991, 2018 155



Format: program and method data division

»»—DATA DIVISION.

\/

FILE SECTION.—

file-description-entry—Y—record-description-entry

record-description-entry
data-item-description-entry—

WORKING-STORAGE SECTION.—Y i:

Yy
4

4

LOCAL-STORAGE SECTION.— i:d
I

ecord-description-entry
ata-item-description-entry—

Y
y
A

record-description-entry

LINKAGE SECTION.— i:
data-item-description-entry—

Format: object and factory data division

»>—DATA DIVISION. ><

record-description-entry
data-item-description-entry—

WORKING-STORAGE SECTION.—Y i:

FILE SECTION

The FILE SECTION defines the structure of data files. The FILE SECTION must
begin with the header FILE SECTION, followed by a separator period.

file-description-entry
Represents the highest level of organization in the FILE SECTION. It
provides information about the physical structure and identification of a
file, and gives the record-names associated with that file. For the format

156 Enterprise COBOL for z/OS, V5.2 Language Reference



and the clauses required in a file description entry, see [Chapter 17, “DATA|
[DIVISION--file description entries,” on page 171/

record-description-entry
A set of data description entries (described in |[Chapter 18, “DATA|
[DIVISION--data description entry,” on page 187) that describe the
particular records contained within a particular file.

A record in the FILE SECTION must be described as an alphanumeric
group item, a national group item, or an elementary data item of class
alphabetic, alphanumeric, DBCS, national, or numeric.

More than one record description entry can be specified; each is an
alternative description of the same record storage area.

Data areas described in the FILE SECTION are not available for processing unless
the file that contains the data area is open.

A method FILE SECTION can define external files only. A single run-unit-level file
connector is shared by all programs and methods that contain a definition of a
given external file.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION describes data records that are not part of
data files but are developed and processed by a program or method. The
WORKING-STORAGE SECTION also describes data items whose values are
assigned in the source program or method and do not change during execution of
the object program.

The WORKING-STORAGE SECTION must begin with the section header
WORKING-STORAGE SECTION, followed by a separator period.

Program WORKING-STORAGE
The WORKING-STORAGE SECTION for programs (and methods) can also
describe external data records, which are shared by programs and methods
throughout the run unit. All clauses that are used in record descriptions in
the FILE SECTION and also the VALUE and EXTERNAL clauses (which
might not be specified in record description entries in the FILE SECTION)
can be used in record descriptions in the WORKING-STORAGE SECTION.

Method WORKING-STORAGE
A single copy of the WORKING-STORAGE for a method is statically
allocated on the first invocation of the method and persists in a last-used
state for the duration of the run unit. The same copy is used whenever the
method is invoked regardless of which object instance the method is
invoked upon.

If a VALUE clause is specified on a method WORKING-STORAGE data
item, the data item is initialized to the VALUE clause value on the first
invocation.

If the EXTERNAL clause is specified on a data description entry in a
method WORKING-STORAGE SECTION, a single copy of the storage for
that data item is allocated once for the duration of the run unit. That
storage is shared by all programs and methods in the run unit that contain
a definition for the external data item.

Object WORKING-STORAGE
The data described in the WORKING-STORAGE SECTION of an object

Chapter 16. DATA DIVISION overview 157



paragraph is object instance data, usually called instance data. A separate
copy of instance data is statically allocated for each object instance when
the object is instantiated. Instance data persists in a last-used state until the
object instance is freed by the Java runtime system.

Instance data can be initialized by VALUE clauses specified in data
declarations or by logic specified in an instance method.

Factory WORKING-STORAGE
The data described in the WORKING-STORAGE SECTION of a factory
paragraph is factory data. A single copy of factory data is statically
allocated when the factory object for the class is created. Factory data
persists in a last-used state for the duration of the run unit.

Factory data can be initialized by VALUE clauses specified in data
declarations or by logic specified in a factory method.

The WORKING-STORAGE SECTION contains record description entries and data
description entries for independent data items, called data item description entries.

record-description-entry
Data entries in the WORKING-STORAGE SECTION that bear a definite
hierarchic relationship to one another must be grouped into records
structured by level number. See [Chapter 18, “DATA DIVISION--datal
[description entry,” on page 187| for more information.

data-item-description-entry
Independent items in the WORKING-STORAGE SECTION that bear no
hierarchic relationship to one another need not be grouped into records
provided that they do not need to be further subdivided. Instead, they are
classified and defined as independent elementary items. Each is defined in
a separate data-item description entry that begins with either the level
number 77 or 01. See [Chapter 18, “DATA DIVISION--data description|
fentry,” on page 187| for more information.

LOCAL-STORAGE SECTION

158

The LOCAL-STORAGE SECTION defines storage that is allocated and freed on a
per-invocation basis.

On each invocation, data items defined in the LOCAL-STORAGE SECTION are
reallocated. Each data item that has a VALUE clause is initialized to the value
specified in that clause.

For nested programs, data items defined in the LOCAL-STORAGE SECTION are
allocated upon each invocation of the containing outermost program. However,
each data item is reinitialized to the value specified in its VALUE clause each time
the nested program is invoked.

For methods, a separate copy of the data defined in LOCAL-STORAGE is allocated
and initialized on each invocation of the method. The storage allocated for the data
is freed when the method returns.

Data items defined in the LOCAL-STORAGE SECTION cannot specify the
EXTERNAL clause.

The LOCAL-STORAGE SECTION must begin with the header LOCAL-STORAGE
SECTION, followed by a separator period.

Enterprise COBOL for z/OS, V5.2 Language Reference



You can specify the LOCAL-STORAGE SECTION in recursive programs, in
nonrecursive programs, and in methods.

Method LOCAL-STORAGE content is the same as program LOCAL-STORAGE
content except that the GLOBAL clause has no effect (because methods cannot be
nested).

LINKAGE SECTION

The LINKAGE SECTION describes data made available from another program or
method.

record-description-entry
See |“'WORKING-STORAGE SECTION” on page 157] for a description.

data-item-description-entry
See |“'WORKING-STORAGE SECTION” on page 157] for a description.

Record description entries and data item description entries in the LINKAGE
SECTION provide names and descriptions, but storage within the program or
method is not reserved because the data area exists elsewhere.

Any data description clause can be used to describe items in the LINKAGE
SECTION with the following exceptions:

* You cannot specify the VALUE clause for items other than level-88 items.
* You cannot specify the EXTERNAL clause.

You can specify the GLOBAL clause in the LINKAGE SECTION. The GLOBAL
clause has no effect for methods, however.

Data units

Data is grouped into the conceptual units as listed in the topic.
* File data

* Program data

* Method data

* Factory data

* Instance data

File data

File data is contained in files. A file is a collection of data records that exist on
some input-output device. A file can be considered as a group of physical records;
it can also be considered as a group of logical records. The DATA DIVISION
describes the relationship between physical and logical records.

For more information, see [“FILE SECTION” on page 176 |

A physical record is a unit of data that is treated as an entity when moved into or
out of storage. The size of a physical record is determined by the particular
input-output device on which it is stored. The size does not necessarily have a
direct relationship to the size or content of the logical information contained in the
file.

A logical record is a unit of data whose subdivisions have a logical relationship. A
logical record can itself be a physical record (that is, be contained completely

Chapter 16. DATA DIVISION overview 159



within one physical unit of data); several logical records can be contained within
one physical record, or one logical record can extend across several physical
records.

File description entries specify the physical aspects of the data (such as the size
relationship between physical and logical records, the size and names of the logical
records, labeling information, and so forth).

Record description entries describe the logical records in the file (including the
category and format of data within each field of the logical record), different values
the data might be assigned, and so forth.

After the relationship between physical and logical records has been established,
only logical records are made available to you. For this reason, a reference in this
information to "records" means logical records, unless the term "physical records" is
used.

Program data

Program data is created by a program instead of being read from a file.

The concept of logical records applies to program data as well as to file data.
Program data can thus be grouped into logical records, and be defined by a series
of record description entries. Items that need not be so grouped can be defined in
independent data description entries (called data item description entries).

Method data

Method data is defined in the DATA DIVISION of a method and is processed by
the procedural code in that method. Method data is organized into logical records
and independent data description entries in the same manner as program data.

Factory data

Factory data is defined in the DATA DIVISION in the factory paragraph of a class
definition and is processed by procedural code in the factory methods of that class.
Factory data is organized into logical records and independent data description
entries in the same manner as program data.

There is one factory object for a given class in a run unit, and therefore only one
instance of factory data in a run unit for that class.

Instance data

Instance data is defined in the DATA DIVISION in the object paragraph of a class
definition and is processed by procedural code in the instance methods of that
class. Instance data is organized into logical records and independent data
description entries in the same manner as program data.

There is one copy of instance data in each object instance of a given class. There
can be many object instances for a given class. Each has its own separate copy of
instance data.

Data relationships

The relationships among all data to be used in a program are defined in the DATA
DIVISION through a system of level indicators and level-numbers.

160 Enterprise COBOL for z/OS, V5.2 Language Reference



A level indicator, with its descriptive entry, identifies each file in a program. Level
indicators represent the highest level of any data hierarchy with which they are
associated. FD is the file description level indicator and SD is the sort-merge file
description level indicator.

A level-number, with its descriptive entry, indicates the properties of specific data.
Level-numbers can be used to describe a data hierarchy; they can indicate that this
data has a special purpose. Although they can be associated with (and subordinate
to) level indicators, they can also be used independently to describe internal data
or data common to two or more programs. (See [“Level-numbers” on page 188| for
level-number rules.)

Levels of data

After a record has been defined, it can be subdivided to provide more detailed
data references.

For example, in a customer file for a department store, one complete record could
contain all data that pertains to one customer. Subdivisions within that record
could be, for example, customer name, customer address, account number,
department number of sale, unit amount of sale, dollar amount of sale, previous
balance, and other pertinent information.

The basic subdivisions of a record (that is, those fields not further subdivided) are
called elementary items. Thus a record can be made up of a series of elementary
items or can itself be an elementary item.

It might be necessary to refer to a set of elementary items; thus, elementary items
can be combined into group items. Groups can also be combined into a more
inclusive group that contains one or more subgroups. Thus within one hierarchy of
data items, an elementary item can belong to more than one group item.

A system of level-numbers specifies the organization of elementary and group
items into records. Special level-numbers are also used to identify data items used
for special purposes.

Levels of data in a record description entry

Each group and elementary item in a record requires a separate entry, and each
must be assigned a level-number.

A level-number is a one-digit or two-digit integer between 01 and 49, or one of
three special level-numbers: 66, 77, or 88. The following level-numbers are used to
structure records:

01 This level-number specifies the record itself, and is the most inclusive
level-number possible. A level-01 entry can be an alphanumeric group
item, a national group item, or an elementary item. The level number must
begin in Area A.

02 through 49
These level-numbers specify group and elementary items within a record.
They can begin in Area A or Area B. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers in this series.

The relationship between level-numbers within a group item defines the hierarchy
of data within that group.

Chapter 16. DATA DIVISION overview 161



A group item includes all group and elementary items that follow it until a
level-number less than or equal to the level-number of that group is encountered.

The following figure illustrates a group wherein all groups immediately
subordinate to the level-01 entry have the same level-number.

The COBOL record description

entry written as follows: is subdivided as indicated below:
01 RECORD-ENTRY. <—— This entry includes
05 GROUP-1. «——— This entry includes —
10 SUBGROUP-1. +<—— This entry includes
15 ELEM-1PIC... .
15 ELEM-2PIC... .

1 BGROUP-2.
0 SUBGROU «—— This entry includes

15 ELEM-3PIC... .
15 ELEM-4PIC... .

05 GROUP-2.
<— This entry includes
15 SUBGROUP-3.
«—— This entry includes
25 ELEM-5 PIC... .
25 ELEM-6 PIC... .

15 SUBGROUP-4 PIC....
05 ELEM-7 PIC.... This entry includes itself.

This entry includes itself.
The storage arrangement of the record description entry is illustrated below:
RECORD ENTRY

GROUP 1 GROUP2
+ SUBGROUP-1 —|«— SUBGROUP-2 .| SUBGROUP-3 — |

| ELEM-1 | ELEM2 | ELEM-3 | ELEM4 | ELEM5 | ELEM-6 |SUBGROUP-4| ELEM |

You can also define groups with subordinate items that have different
level-numbers for the same level in the hierarchy. For example, 05 EMPLOYEE-NAME
and 04 EMPLOYEE-ADDRESS in EMPLOYEE-RECORD below define the same level in the
hierarchy. The compiler renumbers the levels in a relative fashion, as shown in
MAP output.

01  EMPLOYEE-RECORD.
05 EMPLOYEE-NAME.
10 FIRST-NAME PICTURE X(10).
10 LAST-NAME PICTURE X(10).
04 EMPLOYEE-ADDRESS.
08 STREET PICTURE X(10).
08 CITY PICTURE X(10).

The following record description entry defines the same data hierarchy as the
preceding record description entry:
01  EMPLOYEE-RECORD.

02 EMPLOYEE-NAME.
03 FIRST-NAME PICTURE X(10).

Enterprise COBOL for z/OS, V5.2 Language Reference



03 LAST-NAME PICTURE X(10).
02 EMPLOYEE-ADDRESS.

03 STREET PICTURE X(10).

03 CITY PICTURE X(10).

Elementary items can be specified at any level within the hierarchy.

Special level-numbers

Special level-numbers identify items that do not structure a record.

The special level-numbers are:

66 Identifies items that must contain a RENAMES clause; such items regroup
previously defined data items. (For details, see ["RENAMES clause” on|
|o age 221.)

77 Identifies data item description entries that are independent
WORKING-STORAGE, LOCAL-STORAGE, or LINKAGE SECTION items;
they are not subdivisions of other items and are not subdivided
themselves. Level-77 items must begin in Area A.

88 Identifies any condition-name entry that is associated with a particular
value of a conditional variable. (For details, see [“VALUE clause” on page|
239)

Level-77 and level-01 entries in the WORKING-STORAGE, LOCAL-STORAGE, or
LINKAGE SECTION that are referenced in a program or method must be given
unique data-names because level-77 and level-01 entries cannot be qualified.
Subordinate data-names that are referenced in the program or method must be
either uniquely defined, or made unique through qualification. Unreferenced
data-names need not be uniquely defined.

Indentation

Successive data description entries can begin in the same column as preceding
entries, or can be indented.

Indentation is useful for documentation but does not affect the action of the
compiler.

Classes and categories of group items

Enterprise COBOL has two types of groups: alphanumeric groups and national
groups.

Groups that do not specify a GROUP-USAGE clause are alphanumeric groups. An
alphanumeric group has class and category alphanumeric and is treated as though
its usage were DISPLAY, regardless of the representation of the elementary data
items that are contained within the group. In many operations, such as moves and
compares, alphanumeric groups are treated as though they were elementary items
of category alphanumeric, except that no editing or conversion of data
representation takes place. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items.

National groups are defined by a GROUP-USAGE clause with the NATIONAL
phrase at the group level. All subordinate data items must be explicitly or
implicitly described with usage NATIONAL, and subordinate groups must be
explicitly or implicitly described with GROUP-USAGE NATIONAL.

Chapter 16. DATA DIVISION overview 163



164

Unless stated otherwise, a national group item is processed exactly as though it
were an elementary data item of usage national, class and category national,
described with PICTURE N(m), where m is the length of the group in national
character positions. Because national groups contain only national characters, data
is converted as necessary for moves and compares. The compiler ensures proper
truncation and padding. In other operations, such as MOVE CORRESPONDING
and ADD CORRESPONDING, the subordinate data items are processed as
separate elementary items. See |“GROUP-USAGE clause” on page 192| for details.

The table below summarizes the classes and categories of group items.

Table 7. Classes and categories of group items

USAGE of
elementary
Category of items within a | USAGE of a
Group description | Class of group | group group group
Without a Alphanumeric Alphanumeric Any Treated as
GROUP-USAGE (even though the DISPLAY
clause elementary items when usage is
in the group can relevant
have any
category)
With explicit or National National NATIONAL NATIONAL
implicit
GROUP-USAGE
clause

Classes and categories of data

Most data and all literals used in a COBOL program are divided into classes and
categories. Data classes are groupings of data categories. Data categories are
determined by the attributes of data description entries or function definitions.

For more information about data categories, see [“Category descriptions” on page]

The following elementary data items do not have a class and category:

¢ Index data items

* Items described with USAGE POINTER, USAGE FUNCTION-POINTER, USAGE
PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

All other types of elementary data items have a class and category as shown in
[Table 8 on page 165}

A function references an elementary data item and belongs to the data class and
category associated with the type of the function, as shown in [Table 9 on page 165}

Literals have a class and category as shown in [Table 10 on page 165| Figurative
constants (except NULL) have a class and category that depends on the literal or
value represented by the figurative constant in the context of its use. For details,
see [“Figurative constants” on page 13

Enterprise COBOL for z/OS, V5.2 Language Reference



All group items have a class and category, even if the subordinate elementary
items belong to another class and category. For the classification of group items,

see [“Classes and categories of group items” on page 163

Table 8. Class, category, and usage of elementary data items

Class Category Usage
Alphabetic Alphabetic DISPLAY
Alphanumeric Alphanumeric DISPLAY
Alphanumeric-edited DISPLAY
Numeric-edited DISPLAY
DBCS DBCS DISPLAY-1
National National NATIONAL
National-edited NATIONAL
Numeric-edited NATIONAL
Numeric Numeric DISPLAY (type zoned decimal)

NATIONAL (type national decimal)

PACKED-DECIMAL (type internal
decimal)

COMP-3 (type internal decimal)
BINARY

COMP

COMP-4

COMP-5

Internal floating-point

COMP-1
COMP-2

External floating-point

DISPLAY
NATIONAL

Table 9. Classes and categories of functions

Function type

Class and category

Alphanumeric Alphanumeric
National National
Integer Numeric
Numeric Numeric

Table 10. Classes and categories of literals

(fixed-point and floating-point)

Literal Class and category
Alphanumeric Alphanumeric
(including hexadecimal formats)

DBCS DBCS

National National
(including hexadecimal formats)

Numeric Numeric

Chapter 16. DATA DIVISION overview 165



Category descriptions

The category of a data item is established by the attributes of its data description
entry (such as its PICTURE character-string or USAGE clause) or by its function
definition.

The meaning of each category is given below.
Alphabetic

A data item is described as category alphabetic by its PICTURE character-string.
For PICTURE character-string details, see [“Alphabetic items” on page 206

A data item of category alphabetic is referred to as an alphabetic data item.
Alphanumeric

Each of the following data items is of category alphanumeric:

* An elementary data item described as alphanumeric by its PICTURE
character-string. For PICTURE character-string details, see [‘Alphanumeric items”

* An alphanumeric group item.
* An alphanumeric function.
* The following special registers:
- DEBUG-ITEM
- SHIFT-OUT
- SHIFT-IN
— SORT-CONTROL
— SORT-MESSAGE
- WHEN-COMPILED
- XML-EVENT
- XML-TEXT

Alphanumeric-edited
A data item is described as category alphanumeric-edited by its PICTURE

character-string. For PICTURE character-string details, see [“Alphanumeric-edited|
fitems” on page 209

A data item of category alphanumeric-edited is referred to as an
alphanumeric-edited data item.

DBCS

A data item is described as category DBCS by its PICTURE character-string and
the NSYMBOL/(DBCS) compiler option or by an explicit USAGE DISPLAY-1 clause.
For PICTURE character-string details, see [“DBCS items” on page 209 |

A data item of category DBCS is referred to as a DBCS data item.

166 Enterprise COBOL for z/OS, V5.2 Language Reference



External floating-point

A data item is described as category external floating-point by its PICTURE
character-string. For PICTURE character-string details, see [“External floating-point]
litems” on page 211] An external floating-point data item can be described with
USAGE DISPLAY or USAGE NATIONAL.

When the usage is DISPLAY, the item is referred to as a display floating-point data
item.

When the usage is NATIONAL, the item is referred to as a national floating-point
data item.

An external floating-point data item is of class numeric and, unless specifically
excluded, is included in a reference to a numeric data item.

Internal floating-point

A data item is described as category internal floating-point by a USAGE clause
with the COMP-1 or COMP-2 phrase.

A data item of category internal floating-point is referred to as an internal
floating-point data item. An internal floating-point data item is of class numeric
and, unless specifically excluded, is included in a reference to a numeric data item.

National

Each of the following data items is of category national:

* A data item that is described as category national by its PICTURE
character-string and the NSYMBOL(NATIONAL) compiler option or by an
explicit USAGE NATIONAL clause. For PICTURE character-string details, see
[‘National items” on page 210.

* A group item explicitly or implicitly described with a GROUP-USAGE
NATIONAL clause.

* A national function.
* The special register XML-NTEXT.

National-edited

A data item is described as category national-edited by its PICTURE
character-string. For PICTURE character-string details, see [“National-edited items”]

A data item of category national-edited is referred to as a national-edited data
item.

Numeric

Each of the following data items is of category numeric:

* An elementary data item described as numeric by its PICTURE character-string
and not described with a BLANK WHEN ZERO clause. For PICTURE
character-string details, see [“Numeric items” on page 207

* An elementary data item described with one of the following usages:

Chapter 16. DATA DIVISION overview 167



168

— BINARY, COMPUTATIONAL, COMPUTATIONAL-4, COMPUTATIONAL-5,
COMP, COMP-4, or COMP-5

- PACKED-DECIMAL, COMPUTATIONAL-3, or COMP-3
* A special register of numeric type:

- LENGTH OF

- LINAGE-COUNTER

- RETURN-CODE

— SORTCORE-SIZE

— SORT-FILE-SIZE

— SORT-MODE-SIZE

- SORT-RETURN

- TALLY

- XML-CODE
* A numeric function.

* An integer function.
A data item of category numeric is referred to as a numeric data item.
Numeric-edited

Each of the following data items is of category numeric-edited:

* A data item described as numeric-edited by its PICTURE character-string. For
PICTURE character-string details, see [“Numeric-edited items” on page 208 |

* A data item described as numeric by its PICTURE character-string and described
with a BLANK WHEN ZERO clause.

Alignment rules

The standard alignment rules for positioning data in an elementary item depend
on the category of a receiving item.

A receiving item is an item into which the data is moved. For more details about a
receiving item, see [“Elementary moves” on page 377).

Numeric
For numeric receiving items, the following rules apply:

1. The data is aligned on the assumed decimal point and, if necessary,
truncated or padded with zeros. (An assumed decimal point is one that
has logical meaning but that does not exist as an actual character in the
data.)

2. If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated according
to the preceding rule.

Numeric-edited
The data is aligned on the decimal point, and (if necessary) truncated or
padded with zeros at either end except when editing causes replacement of
leading zeros.

Internal floating-point
A decimal point is assumed immediately to the left of the field. The data is
then aligned on the leftmost digit position that follows the decimal point,
with the exponent adjusted accordingly.

Enterprise COBOL for z/OS, V5.2 Language Reference



External floating-point
The data is aligned on the leftmost digit position; the exponent is adjusted
accordingly.

Alphanumeric, alphanumeric-edited, alphabetic, DBCS
For these receiving items, the following rules apply:
1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with spaces at the right.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 191

National, national-edited
For these receiving items, the following rules apply:

1. The data is aligned at the leftmost character position, and (if necessary)
truncated or padded with default Unicode spaces (NX'0020') at the
right. Truncation occurs at the boundary of a national character
position.

2. If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in [“JUSTIFIED clause” on page 191

Character-string and item size

For items described with a PICTURE clause, the size of an elementary item is
expressed in source code by the number of character positions described in the
PICTURE character-string and a SIGN clause (if applicable). Storage size, however,
is determined by the actual number of bytes the item occupies as determined by
the combination of its PICTURE character-string, SIGN IS SEPARATE clause (if
specified), and USAGE clause.

For items described with USAGE DISPLAY (categories alphabetic, alphanumeric,
alphanumeric-edited, numeric-edited, numeric, and external floating-point), 1 byte
of storage is reserved for each character position described by the item's PICTURE
character-string and SIGN IS SEPARATE clause (if applicable).

For items described with USAGE DISPLAY-1 (category DBCS), 2 bytes of storage
are reserved for each character position described by the item's PICTURE
character-string.

For items described with USAGE NATIONAL (categories national, national-edited,
numeric-edited, numeric, and external floating-point), 2 bytes of storage are
reserved for each character position described by the item's PICTURE
character-string and SIGN IS SEPARATE clause (if specified).

For internal floating-point items, the size of the item in storage is determined by its
USAGE clause. USAGE COMPUTATIONAL-1 reserves 4 bytes of storage for the
item; USAGE COMPUTATIONAL-2 reserves 8 bytes of storage.

Normally, when an arithmetic item is moved from a longer field into a shorter one,
the compiler truncates the data to the number of digits represented in the shorter
item's PICTURE character-string by truncating leading digits. For example, if a
sending field with PICTURE 599999 that contains the value +12345 is moved to a
BINARY receiving field with PICTURE S99, the data is truncated to +45. For
additional information, see ["USAGE clause” on page 230.|

Chapter 16. DATA DIVISION overview 169



The TRUNC compiler option can affect the value of a binary numeric item. For
information about TRUNC, see TRUNC in the Enterprise COBOL Programming
Guide.

Signed data

There are two categories of algebraic signs used in COBOL: operational signs and
editing signs.

Operational signs
Operational signs are associated with signed numeric items, and indicate their

algebraic properties.

The internal representation of an algebraic sign depends on the item's USAGE
clause, its SIGN clause (if present), and the operating environment. (For further
details about the internal representation, see Examples: numeric data and internal
representation in the Enterprise COBOL Programming Guide.)

Editing signs

Editing signs are associated with numeric-edited items. Editing signs are PICTURE
symbols that identify the sign of the item in edited output.

170 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 17. DATA DIVISION--file description entries

In a COBOL program, the File Description (FD) Entry (or Sort File Description (SD)
Entry for sort/merge files) represents the highest level of organization in the FILE
SECTION. The order in which the optional clauses follow the FD or SD entry is
not important.

© Copyright IBM Corp. 1991, 2018 171



Format 1: sequential file description entry

»»—FD—file-name-1
LTJfEXTERNAL—I meGLOBAL—l
IS IS

».

|—BLOCK |_ _| |_ _| integer-2 (IHARACTﬁJ
CONTAINS integer-1—T0 RECORDS:

4

|—RECORD inte 3 |
ger-3
I—CONTAINS—| |—CHARACTERS—|

—L—_l—integer—4—T0—integer—5 |_ _|
CONTAINS CHARACTERS
—| clause 1 i |_ J
DEPENDING—L——I—data-name-l
ON

A\

|—LABEL RECORD |_ _| STANDARD
IS —OMITTED.

RECORDS
|—AREJ

I—data—narne-Z—l

LALUE OF— LATA

—SYyS tem—name—l—l_—_l—[data-name—3 RECORD |_ _|
IS literal-1 IS
RECORDS—L—_|—
ARE

! data—narne—4]—‘

]

I—LINAGE—L——'—[data—name—5_-|—L——|—| clause 2 'J I—RECORDING J |_ J mode:
IS integer-8 LINES |—MODE IS

|—CODE-SET—L—_I—alphabet-name—|
IS
clause 1:
VARYING
|—ISJ |—INJ |—SIZEJ ﬁinteger%J |—TO—integer-7J |—CHARACTERSJ
FROM
clause 2:

I j_I I j_I
FOOTING: data-name-6 TOP. ata-name-7
LWITH—l |—AT—| l—integer—9 |—LINES—| |—AT—| integer-10

»

I 8
BOTTO ata-name-8
|—LINESJ |—ATJ integer-11

172 Enterprise COBOL for z/OS, V5.2 Language Reference



Format 2: relative or indexed file description entry

»»—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

|—BLOCK |_ J |_ J integer-2: CHARACTﬁJ
CONTAINS integer-1—T0 RECORDS

v

v

\

v

A\

|—RECORD inte 3
ger-3
|—CONTAINSJ |—CHARACTERSJ

—L—_I—integer-4—T0—integer-5 |_ J
CONTAINS CHARACTERS
—| clause 1 } |_ J
DEPENDING—L——I—data-name-I
ON

Y

|—LABEL RECORD STANDARD;,J
L |—I SJ |—OMITTED
RECORDS—L——|—
ARE

VALUE OF—Y-system-name-1 data-name-3
IS literal-1

A\
A

\

L_DATA RECORD Y _data-name-4
Lo
RECORDS—L——l—
ARE

clause 1:

VARYING |
|—ISJ |—INJ |—SIZEJ LL—M—I—inte’ger-6J |—T0—integer‘—7J |—CHARACTERSJ
FRO

Chapter 17. DATA DIVISION--file description entries 173



Format 3: line-sequential file description entry

»»—FD—file-name-1
LL—J—EXTERNALJ LL—J—GLOBALJ
IS IS

|—RECORD |_ J integer-3
CONTAINS
clause 1 i

\/

v
A

|—CHARACTERSJ

|—DEPEND I N(E.—L—’I—data-name-1J
ON

clause 1:

| VARYING
|
|—ISJ |—INJ |—SIZEJ LL—J—integer-6J |—T0—integer‘—7J |—CHARACTERSJ
FROM

174 Enterprise COBOL for z/OS, V5.2 Language Reference




Format 4: sort/merge file description entry

»»—SD—file-name-1

|—RECORD inte 3 |
ger-3
|—CONTAINS—| |—CHARACTERS—|

—l_——l—integer-4—T0—integer-5—L—_|—
CONTAINS CHARACTERS:
—| clause 1 i |_ _|
DEPENDING—L——'—data-name—J
ON

Y _data-name-4—

DATA RECORD:
—[ L5
RECORDS—L——|—
ARE

I—BLOCK |_ _| |_ _| integer-2: CHARACT%J
CONTAINS integer-1—T0 RECORDS:

OMITTED

I—LABEL RECORD STANDARD——|
L L5
RECORDS
L are L
Y data-name-2

VALUE OF—-sys tem-name-]—l_——l—[data-name-.?
IS Ziteral—l—l

LLINAGE—I_——I—[thG-nﬂmeﬁ—m—I clause 2 ’J LCODE-SET—I_——I—GthGbEt-HwﬂeJ
IS integer-8 LINES IS

clause 1:
VARYING |
|—IS—| |—IN—| |—SIZE—| Lm—int‘eger‘%—' |—TO—int‘eger—7—| |—CHARACTERS—|
FROM
clause 2:

| ‘ |
FOOTING data-name-6- TOP. ata-name-7
|—L«IITH—| |—AT—I I—integer-g |—LINES—| I—AT—| integer-10

>

I 8
BOTTOM ata-name-8
|—LINES—| |—AT—| integer-11

Chapter 17. DATA DIVISION--file description entries

175



FILE SECTION

The FILE SECTION must contain a level-indicator for each input and output file.
For all files except sort or merge files, the FILE SECTION must contain an FD
entry. For each sort or merge file, the FILE SECTION must contain an SD entry.

file-name
Must follow the level indicator (FD or SD), and must be the same as that
specified in the associated SELECT clause. file-name must adhere to the
rules of formation for a user-defined word; at least one character must be
alphabetic. file-name must be unique within this program.

One or more record description entries must follow file-name. When more
than one record description entry is specified, each entry implies a
redefinition of the same storage area.

The clauses that follow file-name are optional, and they can appear in any
order.

FD (formats 1, 2, and 3)
The last clause in the FD entry must be immediately followed by a
separator period.

SD (format 4)
An SD entry must be written for each sort or merge file in the program.
The last clause in the SD entry must be immediately followed by a
separator period.

The following example illustrates the FILE SECTION entries needed for a
sort or merge file:

SD  SORT-FILE.
01 SORT-RECORD PICTURE X(80).

A record in the FILE SECTION must be described as an alphanumeric group item,
a national group item, or an elementary item of class alphabetic, alphanumeric,
DBCS, national, or numeric.

EXTERNAL clause

The EXTERNAL clause specifies that a file connector is external, and permits
communication between two programs by the sharing of files.

A file connector is external if the storage associated with that file is associated with
the run unit rather than with any particular program within the run unit. An
external file can be referenced by any program in the run unit that describes the
file. References to an external file from different programs that use separate
descriptions of the file are always to the same file. In a run unit, there is only one
representative of an external file.

In the FILE SECTION, the EXTERNAL clause can be specified only in file
description entries.

The records appearing in the file description entry need not have the same name in
corresponding external file description entries. In addition, the number of such
records need not be the same in corresponding file description entries.

176 Enterprise COBOL for z/OS, V5.2 Language Reference



Use of the EXTERNAL clause does not imply that the associated file-name is a
global name. See Sharing data by using the EXTERNAL clause in the Enterprise
COBOL Programming Guide for specific information about the use of the
EXTERNAL clause.

GLOBAL clause

The GLOBAL clause specifies that the file connector named by a file-name is a
global name. A global file-name is available to the program that declares it and to
every program that is contained directly or indirectly in that program.

A file-name is global if the GLOBAL clause is specified in the file description entry
for that file-name. A record-name is global if the GLOBAL clause is specified in the
record description entry by which the record-name is declared or, in the case of
record description entries in the FILE SECTION, if the GLOBAL clause is specified
in the file description entry for the file-name associated with the record description
entry. For details on using the GLOBAL clause, see Using data in input and output
operations and Scope of names in the Enterprise COBOL Programming Guide.

Two programs in a run unit can reference global file connectors in the following
circumstances:

* An external file connector can be referenced from any program that describes
that file connector.

 If a program is contained within another program, both programs can refer to a
global file connector by referring to an associated global file-name either in the
containing program or in any program that directly or indirectly contains the
containing program.

BLOCK CONTAINS clause
The BLOCK CONTAINS clause specifies the size of the physical records.

The CHARACTERS phrase indicates that the integer specified in the BLOCK
CONTAINS clause reflects the number of bytes in the record. For example, if you
have a block with 10 DBCS characters or 10 national characters, the BLOCK
CONTAINS clause should say BLOCK CONTAINS 20 CHARACTERS.

If the records in the file are not blocked, the BLOCK CONTAINS clause can be
omitted. When it is omitted, the compiler assumes that records are not blocked.
Even if each physical record contains only one complete logical record, coding

BLOCK CONTAINS 1 RECORD would result in fixed blocked records.

The BLOCK CONTAINS clause can be omitted when the associated file-control
entry specifies a VSAM file. The concept of blocking has no meaning for VSAM
files. The BLOCK CONTAINS clause is syntax checked but has no effect on the
execution of the program.

For external files, the value of all BLOCK CONTAINS clauses of corresponding
external files must match within the run unit. This conformance is in terms of
bytes and does not depend upon whether the value was specified as
CHARACTERS or as RECORDS.

integer-1 , integer-2
Must be unsigned integers. They specify:

Chapter 17. DATA DIVISION--file description entries 177



178

CHARACTERS
Specifies the number of bytes required to store the physical record,
no matter what USAGE the data items have within the data record.

If only integer-2 is specified, it specifies the exact number of bytes
in the physical record. When integer-1 and integer-2 are both
specified, they represent the minimum and maximum number of
bytes in the physical record, respectively.

integer-1 and integer-2 must include any control bytes and padding
contained in the physical record. (Logical records do not include
padding.)

The CHARACTERS phrase is the default. CHARACTERS must be
specified when:

* The physical record contains padding.

* Logical records are grouped so that an inaccurate physical record
size could be implied. For example, suppose you describe a
variable-length record of 100 bytes, yet each time you write a
block of 4, one 50-byte record is written followed by three
100-byte records. If the RECORDS phrase were specified, the
compiler would calculate the block size as 420 bytes instead of
the actual size, 370 bytes. (This calculation includes block and
record descriptors.)

RECORDS
Specifies the number of logical records contained in each physical
record.

The compiler assumes that the block size must provide for integer-2
records of maximum size, and provides any additional space
needed for control bytes.

BLOCK CONTAINS 0 can be specified for QSAM files. If BLOCK CONTAINS 0 is

specified for a QSAM file, then:

* The block size is determined at run time from the DD parameters or the data set
label of the file. For output data sets, the DCB used by Language Environment
will have a zero block size value. When the DCB has a zero block size value, the
operating system might select a system-determined block size (SDB). See the
operating system specifications for further information about SDB.

BLOCK CONTAINS can be omitted for SYSIN files and for SYSOUT files. The
blocking is determined by the operating system.

For a way to apply BLOCK CONTAINS 0 to QSAM files that do not already have
a BLOCK CONTAINS clause, see the description of the compiler option, BLOCKO
in the Enterprise COBOL Programming Guide.

The BLOCK CONTAINS clause is syntax checked but has no effect on the
execution of the program when specified under an SD.

The BLOCK CONTAINS clause cannot be used with the RECORDING MODE U
clause.

Enterprise COBOL for z/OS, V5.2 Language Reference



RECORD clause

When the RECORD clause is used, the record size must be specified as the number
of bytes needed to store the record internally, regardless of the USAGE of the data
items contained within the record.

For example, if you have a record with 10 DBCS characters, the RECORD clause
should say RECORD CONTAINS 20 CHARACTERS. For a record with 10 national
characters, the RECORD clause should say the same, RECORD CONTAINS 20
CHARACTERS.

The size of a record is determined according to the rules for obtaining the size of a
group item. (See ['USAGE clause” on page 230| and [“SYNCHRONIZED clause”|

|0n page 225.|D

When the RECORD clause is omitted, the compiler determines the record lengths
from the record descriptions. When one of the entries within a record description
contains an OCCURS DEPENDING ON clause, the compiler uses the maximum
value of the variable-length item to calculate the number of bytes needed to store
the record internally.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must specify the
same maximum number of bytes.

The following sections describe the formats of the RECORD clause:

Format 1

Format 1 specifies the number of bytes for fixed-length records.

Format 1

»»—RECORD

A\
A

integer-3

|—CONTAINS—| |—CHARACTERS—|

integer-3
Must be an unsigned integer that specifies the number of bytes contained
in each record in the file.

The RECORD CONTAINS 0 CHARACTERS clause can be specified for
input QSAM files containing fixed-length records; the record size is
determined at run time from the DD statement parameters or the data set
label. If, at run time, the actual record is larger than the 01 record
description, then only the 01 record length is available. If the actual record
is shorter, then only the actual record length can be referred to. Otherwise,
uninitialized data or an addressing exception can be produced.

Usage note: If the RECORD CONTAINS 0 clause is specified, then the
SAME AREA, SAME RECORD AREA, or APPLY WRITE-ONLY clauses
cannot be specified.

Do not specify the RECORD CONTAINS 0 clause for an SD entry.

Chapter 17. DATA DIVISION--file description entries 179



180

Format 2

Format 2 specifies the number of bytes for either fixed-length or variable-length
records.

Fixed-length records are obtained when all 01 record description entry lengths are
the same. The format-2 RECORD CONTAINS clause is never required, because the
minimum and maximum record lengths are determined from the record
description entries.

Format 2

»>—RECORD

integer-4—T0—integer-5 >«

|—CONT/-\INS—| |—CH/-\RACTERS—I

integer-4, integer-5
Must be unsigned integers. integer-4 specifies the size of the smallest data
record, and integer-5 specifies the size of the largest data record.

Format 3

Format 3 is used to specify variable-length records.

Format 3

»»—RECORD VARYING >

FROM

" Trotnteger-7) L J L T i
— ger-7 CHARACTERS DEPENDING data-name-1

ON

s

integer-6
Specifies the minimum number of bytes to be contained in any record of
the file. If integer-6 is not specified, the minimum number of bytes to be
contained in any record of the file is equal to the least number of bytes
described for a record in that file.

integer-7
Specifies the maximum number of bytes in any record of the file. If
integer-7 is not specified, the maximum number of bytes to be contained in
any record of the file is equal to the greatest number of bytes described for
a record in that file.

The number of bytes associated with a record description is determined by the
sum of the number of bytes in all elementary data items (excluding redefinitions
and renamings), plus any implicit FILLER due to synchronization. If a table is
specified:

Enterprise COBOL for z/OS, V5.2 Language Reference



* The minimum number of table elements described in the record is used in the
summation above to determine the minimum number of bytes associated with
the record description.

* The maximum number of table elements described in the record is used in the
summation above to determine the maximum number of bytes associated with
the record description.

If data-name-1 is specified:
* data-name-1 must be an elementary unsigned integer.
* The number of bytes in the record must be placed into the data item referenced

by data-name-1 before any RELEASE, REWRITE, or WRITE statement is executed
for the file.

* The execution of a DELETE, RELEASE, REWRITE, START, or WRITE statement
or the unsuccessful execution of a READ or RETURN statement does not alter
the content of the data item referenced by data-name-1.

e After the successful execution of a READ or RETURN statement for the file, the
contents of the data item referenced by data-name-1 indicate the number of bytes
in the record just read.

During the execution of a RELEASE, REWRITE, or WRITE statement, the number

of bytes in the record is determined by the following conditions:

* If data-name-1 is specified, by the content of the data item referenced by
data-name-1

* If data-name-1 is not specified and the record does not contain a variable
occurrence data item, by the number of bytes positions in the record

* If data-name-1 is not specified and the record contains a variable occurrence data
item, by the sum of the fixed position and that portion of the table described by
the number of occurrences at the time of execution of the output statement

During the execution of a READ ... INTO or RETURN ... INTO statement, the

number of bytes in the current record that participate as the sending data items in

the implicit MOVE statement is determined by the following conditions:

* If data-name-1 is specified, by the content of the data item referenced by
data-name-1

* If data-name-1 is not specified, by the value that would have been moved into
the data item referenced by data-name-1 had data-name-1 been specified

LABEL RECORDS clause

For sequential, relative, or indexed files, and for sort/merge SDs, the LABEL
RECORDS clause is syntax checked, but has no effect on the execution of the
program.

The LABEL RECORDS clause documents the presence or absence of labels.

STANDARD
Labels conforming to system specifications exist for this file.

STANDARD is permitted for mass storage devices and tape devices.

OMITTED
No labels exist for this file.

OMITTED is permitted for tape devices.

Chapter 17. DATA DIVISION--file description entries 181



data-name-2
User labels are present in addition to standard labels. data-name-2 specifies
the name of a user label record. data-name-2 must appear as the subject of a
record description entry associated with the file.

VALUE OF clause

The VALUE OF clause describes an item in the label records associated with the
file.

data-name-3
Should be qualified when necessary, but cannot be subscripted. It must be
described in the WORKING-STORAGE SECTION. It cannot be described
with the USAGE IS INDEX clause.

literal-1
Can be numeric or alphanumeric, or a figurative constant of category
numeric or alphanumeric. Cannot be a floating-point literal.

The VALUE OF clause is syntax checked, but has no effect on the execution of the
program.

DATA RECORDS clause

The DATA RECORDS clause is syntax checked but serves only as documentation
for the names of data records associated with the file.

data-name-4
The names of record description entries associated with the file.

The data-name need not have an associated 01 level number record description
with the same name.

LINAGE clause

The LINAGE clause specifies the depth of a logical page in number of lines.
Optionally, it also specifies the line number at which the footing area begins and
the top and bottom margins of the logical page. (The logical page and the physical
page cannot be the same size.)

The LINAGE clause is effective for sequential files opened as OUTPUT or
EXTEND.

All integers must be unsigned. All data-names must be described as unsigned
integer data items.

data-name-5 , integer-8
The number of lines that can be written or spaced on this logical page. The
area of the page that these lines represent is called the page body. The value
must be greater than zero.

WITH FOOTING AT
integer-9 or the value of the data item in data-name-6 specifies the first line
number of the footing area within the page body. The footing line number
must be greater than zero, and not greater than the last line of the page
body. The footing area extends between those two lines.

182 Enterprise COBOL for z/OS, V5.2 Language Reference



LINES AT TOP
integer-10 or the value of the data item in data-name-7 specifies the number
of lines in the top margin of the logical page. The value can be zero.

LINES AT BOTTOM
integer-11 or the value of the data item in data-name-8 specifies the number
of lines in the bottom margin of the logical page. The value can be zero.

The following figure illustrates the use of each phrase of the LINAGE clause.

) 4
JLINES AT TOP integer-10 (top|margin)
)

logical
page body page depth

WITH FOOTING integer-9

'y

footing area

v

LINAGE integer-8

)
) LINES AT BOTTOM integer-11 (bottom|margin)

)

I'S

The logical page size specified in the LINAGE clause is the sum of all values
specified in each phrase except the FOOTING phrase. If the LINES AT TOP phrase
is omitted, the assumed value for the top margin is zero. Similarly, if the LINES AT
BOTTOM phrase is omitted, the assumed value for the bottom margin is zero.
Each logical page immediately follows the preceding logical page, with no
additional spacing provided.

If the FOOTING phrase is omitted, its assumed value is equal to that of the page
body (integer-8 or data-name-5).

At the time an OPEN OUTPUT statement is executed, the values of integer-8,
integer-9, integer-10, and integer-11, if specified, are used to determine the page
body, first footing line, top margin, and bottom margin of the logical page for this
file. (See the figure above.) These values are then used for all logical pages printed
for this file during a given execution of the program.

At the time an OPEN statement with the OUTPUT phrase is executed for the file,
data-name-5, data-name-6, data-name-7, and data-name-8 determine the page body,
first footing line, top margin, and bottom margin for the first logical page only.

At the time a WRITE statement with the ADVANCING PAGE phrase is executed
or a page overflow condition occurs, the values of data-name-5, data-name-6,
data-name-7, and data-name-8 if specified, are used to determine the page body, first
footing line, top margin, and bottom margin for the next logical page.

If an external file connector is associated with this file description entry, all file
description entries in the run unit that are associated with this file connector must

have:

Chapter 17. DATA DIVISION--file description entries 183



* A LINAGE clause, if any file description entry has a LINAGE clause

* The same corresponding values for integer-8, integer-9, integer-10, and integer-11,
if specified

* The same corresponding external data items referenced by data-name-5,
data-name-6, data-name-7, and data-name-8

See |“ADVANCING phrase” on page 462| for the behavior of carriage control
characters in external files.

A LINAGE clause under an SD is syntax checked, but has no effect on the
execution of the program.

LINAGE-COUNTER special register

For information about the LINAGE-COUNTER special register, see
["LINAGE-COUNTER” on page 20|

RECORDING MODE clause

184

The RECORDING MODE clause specifies the format of the physical records in a
QSAM file. The clause is ignored for a VSAM file.

Permitted values for RECORDING MODE are:

Recording mode F (fixed)
All the records in a file are the same length and each is wholly contained
within one block. Blocks can contain more than one record, and there is
usually a fixed number of records for each block. In this mode, there are
no record-length or block-descriptor fields.

Recording mode V (variable)
The records can be either fixed-length or variable-length, and each must be
wholly contained within one block. Blocks can contain more than one
record. Each data record includes a record-length field and each block
includes a block-descriptor field. These fields are not described in the
DATA DIVISION. They are each 4 bytes long and provision is
automatically made for them. These fields are not available to you.

Recording mode U (fixed or variable)
The records can be either fixed-length or variable-length. However, there is
only one record for each block. There are no record-length or
block-descriptor fields.

You cannot use RECORDING MODE U if you are using the BLOCK
CONTAINS clause.

Recording mode S (spanned)
The records can be either fixed-length or variable-length, and can be larger
than a block. If a record is larger than the remaining space in a block, a
segment of the record is written to fill the block. The remainder of the
record is stored in the next block (or blocks, if required). Only complete
records are made available to you. Each segment of a record in a block,
even if it is the entire record, includes a segment-descriptor field, and each
block includes a block-descriptor field. These fields are not described in the
DATA DIVISION; provision is automatically made for them. These fields
are not available to you.

Enterprise COBOL for z/OS, V5.2 Language Reference



When recording mode S is used, the BLOCK CONTAINS CHARACTERS clause
must be used. Recording mode S is not allowed for ASCII files.

If the RECORDING MODE clause is not specified for a QSAM file, the Enterprise
COBOL compiler determines the recording mode as follows:

F The compiler determines the recording mode to be F if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following things:

* Use the RECORD CONTAINS integer clause. (For more information, see
the Enterprise COBOL Migration Guide.)
* Omit the RECORD clause and make sure that all level-01 records

associated with the file are the same size and none contains an OCCURS
DEPENDING ON clause.

v The compiler determines the recording mode to be V if the largest level-01
record associated with the file is not greater than the block size specified in
the BLOCK CONTAINS clause, and you do one of the following things:

* Use the RECORD IS VARYING clause.
* Omit the RECORD clause and make sure that all level-01 records

associated with the file are not the same size or some contain an
OCCURS DEPENDING ON clause.

* Use the RECORD CONTAINS integer-1 TO integer-2 clause, with integer-1
the minimum length and integer-2 the maximum length of the level-01
records associated with the file. The two integers must be different, with

values matching minimum and maximum length of either different
length records or records with an OCCURS DEPENDING ON clause.

S The compiler determines the recording mode to be S if the maximum block
size is smaller than the largest record size.

U Recording mode U is never obtained by default. The RECORDING MODE
U clause must be explicitly specified to get recording mode U.

CODE-SET clause

The CODE-SET clause specifies the character code used to represent data on a
magnetic tape file. When the CODE-SET clause is specified, an alphabet-name
identifies the character code convention used to represent data on the input-output
device.

alphabet-name must be defined in the SPECIAL-NAMES paragraph as
STANDARD-1 (for ASCII-encoded files), STANDARD-2 (for ISO 7-bit encoded
files), EBCDIC (for EBCDIC-encoded files), or NATIVE. When NATIVE is specified,
the CODE-SET clause is syntax checked but has no effect on the execution of the
program.

The CODE-SET clause also specifies the algorithm for converting the character
codes on the input-output medium from and to the internal EBCDIC character set.

When the CODE-SET clause is specified for a file, all data in the file must have
USAGE DISPLAY; and if signed numeric data is present, it must be described with
the SIGN IS SEPARATE clause.

When the CODE-SET clause is omitted, the EBCDIC character set is assumed for
the file.

Chapter 17. DATA DIVISION--file description entries 185



If the associated file connector is an external file connector, all CODE-SET clauses
in the run unit that are associated with the file connector must have the same
character set.

The CODE-SET clause is valid only for magnetic tape files.

The CODE-SET clause is syntax checked but has no effect on the execution of the
program when specified under an SD.

186 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 18. DATA DIVISION--data description entry

A data description entry specifies the characteristics of a data item. In the sections
that follow, sets of data description entries are called record description entries. The
term data description entry refers to data and record description entries.

Data description entries that define independent data items do not make up a
record. These entries are known as data item description entries.

Data description entries have three general formats, and all data description entries
must end with a separator period.

Format 1
Format 1 is used for data description entries in all DATA DIVISION sections.

Format 1: data description entry

data-name-1— l—r‘edefines—clause—l |—b lank-when-zero-cl ause—l

»»>—Ilevel-number i: >
FILLER

external-clause lobal-clause group-usage-clause justified-clause
L 1L J L J L |

A\
v

I—occurs—clause—l l—picture—clause—l l—sign—clause—l I—synchronized—clause—|

A\
A

\

l—usage-clause—l l—vaZue—clause—l I—volatile—clause—l

The clauses can be written in any order, with two exceptions:

* data-name-1 or FILLER, if specified, must immediately follow the level-number.

* When the REDEFINES clause is specified, it must immediately follow
data-name-1 or FILLER, if either is specified. If data-name-1 or FILLER is not
specified, the REDEFINES clause must immediately follow the level-number.

The level-number in format 1 can be any number in the range 0149, or 77.

A space, a comma, or a semicolon must separate clauses.

Format 2

Format 2 regroups previously defined items.

© Copyright IBM Corp. 1991, 2018 187



Format 2: renames

\4
A

»»—66—data-name-1—renames-clause.

A level-66 entry cannot rename another level-66 entry, nor can it rename a level-01,
level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow the last
data description entry in that record.

See ['/RENAMES clause” on page 221| for further details.

Format 3
Format 3 describes condition-names.
Format 3: condition-name
»»—88—condition-name-1—value-clause. ><
condition-name-1
A user-specified name that associates a value, a set of values, or a range of
values with a conditional variable.
Level-88 entries must immediately follow the data description entry for the
conditional variable with which the condition-names are associated.
Format 3 can be used to describe elementary items, national group items, or
alphanumeric group items. Additional information about condition-name entries
can be found under [“VALUE clause” on page 239 and [’Condition-name condition”]
Level-numbers

The level-number specifies the hierarchy of data within a record, and identifies
special-purpose data entries. A level-number begins a data description entry, a
renamed or redefined item, or a condition-name entry.

A level-number has an integer value between 1 and 49, inclusive, or one of the
special level-number values 66, 77, or 88.

188 Enterprise COBOL for z/OS, V5.2 Language Reference



Format

A\
A

data-name-1—

»»—Ilevel-number ii
FILLER

level-number
01 and 77 must begin in Area A and be followed either by a separator
period or by a space followed by its associated data-name, FILLER, or
appropriate data description clause.

Level numbers 02 through 49 can begin in Areas A or B and must be
followed by a space or a separator period.

Level numbers 66 and 88 can begin in Areas A or B and must be followed
by a space.

Single-digit level-numbers 1 through 9 can be substituted for
level-numbers 01 through 09.

Successive data description entries can start in the same column as the first
entry or can be indented according to the level-number. Indentation does
not affect the magnitude of a level-number.

When level-numbers are indented, each new level-number can begin any
number of spaces to the right of Area A. The extent of indentation to the
right is limited only by the width of Area B.

For more information, see [“Levels of data” on page 161

data-name-1
Explicitly identifies the data being described.

data-name-1, if specified, identifies a data item used in the program.
data-name-1 must be the first word following the level-number.

The data item can be changed during program execution.

data-name-1 must be specified for level-66 and level-88 items. It must also
be specified for any entry containing the GLOBAL or EXTERNAL clause,
and for record description entries associated with file description entries

that have the GLOBAL or EXTERNAL clauses.

FILLER
A data item that is not explicitly referred to in a program. The keyword
FILLER is optional. If specified, FILLER must be the first word following
the level-number.

The keyword FILLER can be used with a conditional variable if explicit
reference is never made to the conditional variable but only to values that
it can assume. FILLER cannot be used with a condition-name.

In a MOVE CORRESPONDING statement or in an ADD
CORRESPONDING or SUBTRACT CORRESPONDING statement, FILLER
items are ignored. In an INITIALIZE statement, elementary FILLER items
are ignored.

If data-name-1 or the FILLER clause is omitted, the data item being described is
treated as though FILLER had been specified.

Chapter 18. DATA DIVISION--data description entry 189



BLANK WHEN ZERO clause

The BLANK WHEN ZERO clause specifies that an item contains only spaces when
its value is zero.

Format

»»—BLANK

Y
A

ZERO
|—WH EN—| i:ZEROSﬂ
ZEROES

The BLANK WHEN ZERO clause may be specified only for an elementary item
described by its picture character string as category numeric-edited or numeric,
without the picture symbol S or *. These items must be described, either implicitly
or explicitly, as USAGE DISPLAY or USAGE NATIONAL.

A BLANK WHEN ZERO clause that is specified for an item defined as numeric by
its picture character string defines the item as category numeric-edited.

EXTERNAL clause

190

The EXTERNAL clause specifies that the storage associated with a data item is
associated with the run unit rather than with any particular program or method
within the run unit.

An external data item can be referenced by any program or method in the run unit
that describes the data item. References to an external data item from different
programs or methods using separate descriptions of the data item are always to
the same data item. In a run unit, there is only one representative of an external
data item.

The EXTERNAL clause can be specified only on data description entries whose
level-number is 01. It can be specified only on data description entries that are in
the WORKING-STORAGE SECTION of a program or method. It cannot be
specified in LINKAGE SECTION or FILE SECTION data description entries. Any
data item described by a data description entry subordinate to an entry that
describes an external record also attains the external attribute. Indexes in an
external data record do not possess the external attribute.

The data contained in the record named by the data-name clause is external and
can be accessed and processed by any program or method in the run unit that
describes and, optionally, redefines it. This data is subject to the following rules:

* If two or more programs or methods within a run unit describe the same
external data record, each record-name of the associated record description
entries must be the same, and the records must define the same number of
bytes. However, a program or method that describes an external record can
contain a data description entry including the REDEFINES clause that redefines
the complete external record, and this complete redefinition need not occur
identically in other programs or methods in the run unit.

* Use of the EXTERNAL clause does not imply that the associated data-name is a
global name.

Enterprise COBOL for z/OS, V5.2 Language Reference



GLOBAL clause

The GLOBAL clause specifies that a data-name is available to every program
contained within the program that defines it, as long as the contained program
does not itself have a definition for that name. All data-names subordinate to or
condition-names or indexes associated with a global name are global names.

A data-name is global if the GLOBAL clause is specified either in the data
description entry by which the data-name is defined or in another entry to which
that data description entry is subordinate. The GLOBAL clause can be specified in
the WORKING-STORAGE SECTION, the FILE SECTION, the LINKAGE SECTION,
and the LOCAL-STORAGE SECTION, but only in data description entries whose
level-number is 01.

In the same DATA DIVISION, the data description entries for any two data items
for which the same data-name is specified must not include the GLOBAL clause.

A statement in a program contained directly or indirectly within a program that
describes a global name can reference that name without describing it again.

Two programs in a run unit can reference common data in the following
circumstances:

* The data content of an external data record can be referenced from any program
that describes the data record as external.

* If a program is contained within another program, both programs can refer to
data that possesses the global attribute either in the containing program or in
any program that directly or indirectly contains the containing program.

JUSTIFIED clause

The JUSTIFIED clause overrides standard positioning rules for receiving items of
category alphabetic, alphanumeric, DBCS, or national.

Format

A\
A

IFIED

JUST
JUST4 |—RIGHT—|

You can specify the JUSTIFIED clause only at the elementary level. JUST is an
abbreviation for JUSTIFIED, and has the same meaning.

You cannot specify the JUSTIFIED clause:

* For data items of category numeric, numeric-edited, alphanumeric-edited, or
national-edited

* For edited DBCS items
¢ For index data items

* For items described as USAGE FUNCTION-POINTER, USAGE POINTER,
USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

* For external floating-point or internal floating-point items

Chapter 18. DATA DIVISION--data description entry 191



* With level-66 (RENAMES) and level-88 (condition-name) entries

When the JUSTIFIED clause is specified for a receiving item, the data is aligned at
the rightmost character position in the receiving item. Also:

* If the sending item is larger than the receiving item, the leftmost character
positions are truncated.

* If the sending item is smaller than the receiving item, the unused character
positions at the left are filled with spaces. For a DBCS item, each unused
position is filled with a DBCS space (X'4040'); for an item described with usage
NATIONAL, each unused position is filled with the default Unicode space
(NX'0020"); otherwise, each unused position is filled with an alphanumeric space.

If you omit the JUSTIFIED clause, the rules for standard alignment are followed
(see [Alignment rules” on page 168).

The JUSTIFIED clause does not affect initial settings as determined by the VALUE
clause.

GROUP-USAGE clause

192

A GROUP-USAGE clause with the NATIONAL phrase specifies that the group
item defined by the entry is a national group item. A national group item contains
national characters in all subordinate data items and subordinate group items.

Format

IS

When GROUP-USAGE NATIONAL is specified:

* The subject of the entry is a national group item. The class and category of a
national group are national.

* A USAGE clause must not be specified for the subject of the entry. A USAGE
NATIONAL clause is implied.

* A USAGE NATIONAL clause is implied for any subordinate elementary data
items that are not described with a USAGE NATIONAL clause.

* All subordinate elementary data items must be explicitly or implicitly described
with USAGE NATIONAL.

* Any signed numeric data items must be described with the SIGN IS SEPARATE
clause.

* A GROUP-USAGE NATIONAL clause is implied for any subordinate group
items that are not described with a GROUP-USAGE NATIONAL clause.

* All subordinate group items must be explicitly or implicitly described with a
GROUP-USAGE NATIONAL clause.

* The JUSTIFIED clause must not be specified.

Unless stated otherwise, a national group item is processed as though it were an
elementary data item of usage national, class and category national, described with
PICTURE N(m), where m is the length of the group in national character positions.

Enterprise COBOL for z/OS, V5.2 Language Reference



Usage note: When you use national groups, the compiler can ensure proper
truncation and padding of group items for statements such as MOVE and
INSPECT. Groups defined without a GROUP-USAGE NATIONAL clause are
alphanumeric groups. The content of alphanumeric groups, including any national
characters, is treated as alphanumeric data, possibly leading to invalid truncation
or mishandling of national character data.

The table below summarizes the cases where a national group item is processed as
a group item.

Table 11. Where national group items are processed as groups

Language feature

Processing of national group items

Name qualification

The name of a national group item can be used to qualify the names of
elementary data items and subordinate group items in the national group. The
rules of qualification for a national group are the same as the rules of
qualification for an alphanumeric group.

RENAMES clause

The rules for a national group item specified in the THROUGH phrase are the
same as the rules for an alphanumeric group item specified in the THROUGH
phrase. The result is an alphanumeric group item.

CORRESPONDING phrase A national group item is processed as a group in accordance with the rules of

the CORRESPONDING phrase. Elementary data items within a national group
are processed the same as they would be if defined within an alphanumeric

group.

INITTIALIZE statement

A national group item is processed as a group in accordance with the rules of
the INITIALIZE statement. Elementary items within the national group are
initialized the same as they would be if defined within an alphanumeric

group.

XML GENERATE statement A national group item specified in the FROM phrase is processed as a group in

accordance with the rules of the XML GENERATE statement. Elementary items
within the national group are processed the same as they would be if defined
within an alphanumeric group.

OCCURS clause

The DATA DIVISION language elements used for table handling are the OCCURS
clause and the INDEXED BY phrase.

For the INDEXED BY phrase description, see ["INDEXED BY phrase” on page 196

The OCCURS clause specifies tables whose elements can be referred to by indexing
or subscripting. It also eliminates the need for separate entries for repeated data
items.

Formats for the OCCURS clause include fixed-length tables and variable-length
tables.

The subject of an OCCURS clause is the data-name of the data item that contains
the OCCURS clause. Except for the OCCURS clause itself, data description clauses
used with the subject apply to each occurrence of the item described.

Whenever the subject of an OCCURS clause or any data-item subordinate to it is
referenced, it must be subscripted or indexed, with the following exceptions:

* When the subject of the OCCURS clause is used as the subject of a SEARCH
statement

Chapter 18. DATA DIVISION--data description entry 193



* When the subject of the OCCURS clause is used as the subject of a format 2
SORT statement

* When the subject or a subordinate data item is the object of the
ASCENDING/DESCENDING KEY phrase

* When the subordinate data item is the object of the REDEFINES clause

When subscripted or indexed, the subject refers to one occurrence within the table,
unless the ALL subscript is used in an intrinsic function.

The OCCURS clause cannot be specified in a data description entry that:
¢ Has a level number of 01, 66, 77, or 88.

* Describes a redefined data item. (However, a redefined item can be subordinate
to an item that contains an OCCURS clause.) See ["REDEFINES clause” on page|

Fixed-length tables
Fixed-length tables are specified using the OCCURS clause.

Because seven subscripts or indexes are allowed, six nested levels and one
outermost level of the format-1 OCCURS clause are allowed. The format-1
OCCURS clause can be specified as subordinate to the OCCURS DEPENDING ON
clause. In this way, a table of up to seven dimensions can be specified.

Format 1: fixed-length tables

»»—0CCURS—integer-2 |_ >
TIMES—|

Y
v

data-name-2]—|

ASCENDING :
—[DESCENDING—l L xev] |—15—|

LINDEXED \4 index-nome-1]—|

|:BY:|

integer-2
The exact number of occurrences. integer-2 must be greater than zero.

194 Enterprise COBOL for z/OS, V5.2 Language Reference



ASCENDING KEY and DESCENDING KEY phrases

Data is arranged in ascending or descending order, depending on the keyword
specified, according to the values contained in data-name-2. The data-names are
listed in their descending order of significance.

The order is determined by the rules for comparison of operands (see
[conditions” on page 263). The ASCENDING KEY and DESCENDING KEY data
items are used in OCCURS clauses, the SEARCH ALL statements for a binary
search of the table element, and the format 2 SORT statements. As an alternative,
keys can be specified with the format 2 SORT statements.

data-name-2
Must be the name of the subject entry or the name of an entry subordinate
to the subject entry. data-name-2 can be qualified.

If data-name-2 names the subject entry, that entire entry becomes the
ASCENDING KEY or DESCENDING KEY and is the only key that can be
specified for this table element.

If data-name-2 does not name the subject entry, then data-name-2:

* Must be subordinate to the subject of the table entry itself

* Must not be subordinate to, or follow, any other entry that contains an
OCCURS clause

* Must not contain an OCCURS clause

data-name-2 must not have subordinate items that contain OCCURS
DEPENDING ON clauses.

When the ASCENDING KEY or DESCENDING KEY phrase is specified, the
following rules apply:

* Keys must be listed in decreasing order of significance.
* The total number of keys for a given table element must not exceed 12.

* The data in the table must be arranged in ascending or descending sequence
according to the collating sequence in use.

* The key must be described with one of the following usages:
- BINARY
- DISPLAY
— DISPLAY-1
- NATIONAL
- PACKED-DECIMAL
- COMPUTATIONAL
- COMPUTATIONAL-1
- COMPUTATIONAL-2
- COMPUTATIONAL-3
- COMPUTATIONAL-4
- COMPUTATIONAL-5

* A key described with usage NATIONAL can have one of the following
categories: national, national-edited, numeric-edited, numeric, or external
floating-point.

* The sum of the lengths of all the keys associated with one table element must
not exceed 256.

Chapter 18. DATA DIVISION--data description entry 195



196

* If a key is specified without qualifiers and it is not a unique name, the key will
be implicitly qualified with the subject of the OCCURS clause and all qualifiers
of the OCCURS clause subject.

The following example illustrates the specification of ASCENDING KEY data
items:

WORKING-STORAGE SECTION.
01 TABLE-RECORD.
05 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE EMPLOYEE-NO
INDEXED BY A, B.

10 EMPLOYEE-NAME PIC X(20).
10 EMPLOYEE-NO PIC 9(6).
10 WAGE-RATE PIC 9999V99.

10 WEEK-RECORD OCCURS 52 TIMES
ASCENDING KEY IS WEEK-NO INDEXED BY C.

15 WEEK-NO PIC 99.
15 AUTHORIZED-ABSENCES PIC 9.
15 UNAUTHORIZED-ABSENCES PIC 9.
15 LATE-ARRIVALS PIC 9.

The keys for EMPLOYEE-TABLE are subordinate to that entry, and the key for
WEEK-RECORD is subordinate to that subordinate entry.

In the preceding example, records in EMPLOYEE-TABLE must be arranged in
ascending order of WAGE-RATE, and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in WEEK-RECORD must be arranged in ascending
order of WEEK-NO. If they are not, results of any SEARCH ALL statement are
unpredictable.

INDEXED BY phrase

The INDEXED BY phrase specifies the indexes that can be used with a table. A
table without an INDEXED BY phrase can be referred to through indexing by
using an index-name associated with another table.

For more information about using indexing, see [“Subscripting using index-names|
[(indexing)” on page 75|

Indexes normally are allocated in static memory associated with the program that
contains the table. Thus indexes are in the last-used state when a program is
reentered. However, in the following cases, indexes are allocated on a
per-invocation basis. Thus you must set the value of the index on every entry for
indexes on tables in the following sections:

* The LOCAL-STORAGE SECTION

* The WORKING-STORAGE SECTION of a class definition (object instance
variables)

* The LINKAGE SECTION of:
— Methods
— Programs compiled with the RECURSIVE clause
— Programs compiled with the THREAD option

Indexes specified in an external data record do not possess the external attribute.

index-name-1
Each index-name specifies an index to be created by the compiler for use
by the program. These index-names are not data-names and are not

Enterprise COBOL for z/OS, V5.2 Language Reference



identified elsewhere in the COBOL program; instead, they can be regarded
as private special registers for the use of this object program only. They are
not data and are not part of any data hierarchy.

Unreferenced index names need not be uniquely defined.
In one table entry, up to 12 index-names can be specified.

If a data item that possesses the global attribute includes a table accessed
with an index, that index also possesses the global attribute. Therefore, the
scope of an index-name is the same as that of the data-name that names
the table in which the index is defined.

Variable-length tables

You can specify variable-length tables by using the OCCURS DEPENDING ON
clause.

Format 2: variable-length tables

»»—0CCURS integer-2 DEPENDING >
|—integer‘-I—TO—| |—UNBOUNDED TIMES I—ON—|

V

»—data-name-1 >
ASCENDING data-name-2]—|

Theseone] Lerd Lisd

LINDEXED A4 index-name-1]—|

|:BY:|

»
>

A\
A

integer-1
The minimum number of occurrences.

The value of infeger-1 must be greater than or equal to zero, and it must
also be less than the value of integer-2.

If integer-1 is omitted, a value of 1 is assumed and the keyword TO must
also be omitted.

integer-2
The maximum number of occurrences.

integer-2 must be greater than integer-1.

The length of the subject item is fixed. Only the number of repetitions of the subject
item is variable.

Chapter 18. DATA DIVISION--data description entry 197



198

UNBOUNDED

Unbounded maximum number of occurrences.

Unbounded table
A table with an OCCURS clause that specifies UNBOUNDED.

You can reference unbounded tables in COBOL syntax anywhere a
table can be referenced.

Unbounded group
A group that contains at least one unbounded table.

You can define unbounded groups only in the LINKAGE
SECTION. Either alphanumeric groups or national groups can be
unbounded.

You can reference unbounded groups in COBOL syntax anywhere
an alphanumeric or national group can be referenced, with the
following exceptions:

* You cannot specify unbounded groups as a BY CONTENT argument
in a CALL statement.

* You cannot specify unbounded groups as data-name-2 on the
PROCEDURE DIVISION RETURNING phrase.

* You cannot specify unbounded groups as arguments to intrinsic
functions, except as an argument to the LENGTH intrinsic function.

The total size of an unbounded group at run time must be less
than 999,999,999 bytes.

For unbounded tables and groups, the effect of the SSRANGE
compiler option is limited. For more information, see SSRANGE in
the Enterprise COBOL Programming Guide.

For references about working with unbounded tables and groups,
see Working with unbounded tables and groups in the Enterprise
COBOL Programming Guide.

OCCURS DEPENDING ON clause
The OCCURS DEPENDING ON clause specifies variable-length tables.

data-name-1

Identifies the object of the OCCURS DEPENDING ON clause; that is, the
data item whose current value represents the current number of
occurrences of the subject item. The contents of items whose occurrence
numbers exceed the value of the object are undefined.

The object of the OCCURS DEPENDING ON clause (data-name-1) must
describe an integer data item.

The object of the OCCURS DEPENDING ON clause must not occupy any
storage position within the range of the table (that is, any storage position
from the first character position in the table through the last character
position in the table).

The object of the OCCURS DEPENDING ON clause cannot be variably
located; the object cannot follow an item that contains an OCCURS
DEPENDING ON clause.

If the OCCURS clause is specified in a data description entry included in a
record description entry that contains the EXTERNAL clause, data-name-1,

Enterprise COBOL for z/OS, V5.2 Language Reference



if specified, must reference a data item that possesses the external attribute.
data-name-1 must be described in the same DATA DIVISION as the subject
of the entry.

If the OCCURS clause is specified in a data description entry subordinate
to one that contains the GLOBAL clause, data-name-1, if specified, must be
a global name. data-name-1 must be described in the same DATA DIVISION
as the subject of the entry.

All data-names used in the OCCURS clause can be qualified; they cannot be
subscripted or indexed.

At the time that the group item, or any data item that contains a subordinate
OCCURS DEPENDING ON item or that follows but is not subordinate to the
OCCURS DEPENDING ON item, is referenced, the value of the object of the
OCCURS DEPENDING ON clause must fall within the range integer-1 through
integer-2, if integer-2 is specified (that is, if the table is not UNBOUNDED).

The behavior is undefined if the value of the object is outside of the range integer-1
through integer-2.

When a group item that contains a subordinate OCCURS DEPENDING ON item is
referred to, the part of the table area used in the operation is determined as
follows:

* If the object is outside the group, only that part of the table area that is specified
by the object at the start of the operation is used.

* If the object is included in the same group and the group data item is referenced
as a sending item, only that part of the table area that is specified by the value
of the object at the start of the operation is used in the operation.

* If the object is included in the same group and the group data item is referenced
as a receiving item, the maximum length of the group item is used in the
operation.

The following statements are affected by the maximum length rule:
* ACCEPT identifier (format 1 and 2)

» CALL ... USING BY REFERENCE identifier

* INVOKE ... USING BY REFERENCE identifier

* MOVE ... TO identifier

* READ ... INTO identifier

* RELEASE identifier FROM ...

* RETURN ... INTO identifier

* REWRITE identifier FROM ...

* STRING ... INTO identifier

* UNSTRING ... INTO identifier DELIMITER IN identifier
* WRITE identifier FROM ...

If a variable-length group item is not followed by a nonsubordinate item, the
maximum length of the group is used when it appears as the identifier in CALL ...
USING BY REFERENCE identifier. Therefore, the object of the OCCURS
DEPENDING ON clause does not need to be set unless the group is variably
located.

Chapter 18. DATA DIVISION--data description entry 199



If the group item is followed by a nonsubordinate item, the actual length, rather
than the maximum length, is used. At the time the subject of entry is referenced, or
any data item subordinate or superordinate to the subject of entry is referenced,
the object of the OCCURS DEPENDING ON clause must fall within the range
integer-1 through integer-2, if integer-2 is specified.

Note:

The maximum length rule does not apply to unbounded groups. For unbounded
groups, based on the current run time value of the OCCURS DEPENDING ON
objects, the actual length of the group is used for all references to the group.
Consequently, before any COBOL statement that references an unbounded group
runs, you must set the OCCURS DEPENDING ON objects for that group.

Certain uses of the OCCURS DEPENDING ON clause result in complex OCCURS
DEPENDING ON (ODO) items. The following items constitute complex ODO
items:

* A data item described with an OCCURS DEPENDING ON clause that is
followed by a nonsubordinate elementary data item, described with or without
an OCCURS clause

* A data item described with an OCCURS DEPENDING ON clause that is
followed by a nonsubordinate group item

* A group item that contains one or more subordinate items described with an
OCCURS DEPENDING ON clause

¢ A data item described with an OCCURS clause or an OCCURS DEPENDING
ON clause that contains a subordinate data item described with an OCCURS
DEPENDING ON clause (a table that contains variable-length elements)

* An index-name associated with a table that contains variable-length elements

The object of an OCCURS DEPENDING ON clause cannot be a nonsubordinate
item that follows a complex ODO item.

Any nonsubordinate item that follows an item described with an OCCURS
DEPENDING ON clause is a variably located item. That is, its location is affected by
the value of the OCCURS DEPENDING ON object.

When implicit redefinition is used in a File Description (FD) entry, subordinate
level items can contain OCCURS DEPENDING ON clauses.

The INDEXED BY phrase can be specified for a table that has a subordinate item
that contains an OCCURS DEPENDING ON clause.

For more information about complex OCCURS DEPENDING ON, see Complex
OCCURS DEPENDING ON in the Enterprise COBOL Programming Guide.

The ASCENDING KEY phrase, the DESCENDING KEY phrase, and the INDEXED
BY clause are described under [“Fixed-length tables” on page 194.

PICTURE clause

The PICTURE clause specifies the general characteristics and editing requirements
of an elementary item.

200 Enterprise COBOL for z/OS, V5.2 Language Reference



Format

A\
A

PICTURE character-string
PIC IS

PICTURE or PIC
The PICTURE clause must be specified for every elementary item except
the following ones:

* Index data items
* The subject of the RENAMES clause

* Items described with USAGE POINTER, USAGE FUNCTION-POINTER,
USAGE PROCEDURE-POINTER, or USAGE OBJECT REFERENCE

* Internal floating-point data items

In these cases, use of the PICTURE clause is prohibited.

The PICTURE clause can be specified only at the elementary level.
PIC is an abbreviation for PICTURE and has the same meaning,.

character-string
character-string is made up of certain COBOL characters used as picture
symbols. The allowable combinations determine the category of the
elementary data item.

character-string can contain a maximum of 50 characters.

Symbols used in the PICTURE clause

Any punctuation character that appears within the PICTURE character-string is not
considered a punctuation character, but rather is a PICTURE character-string
symbol.

When specified in the SPECIAL-NAMES paragraph, DECIMAL-POINT IS
COMMA exchanges the functions of the period and the comma in PICTURE
character-strings and in numeric literals.

The lowercase letters that correspond to the uppercase letters that represent the
following PICTURE symbols are equivalent to their uppercase representations in a
PICTURE character-string:

A, B, E, G, N, P, S, V, X, Z, CR, DB

All other lowercase letters are not equivalent to their corresponding uppercase
representations.

[Table 12 on page 202| defines the meaning of each PICTURE clause symbol. The
heading Size indicates how the item is counted in determining the number of
character positions in the item. The type of the character positions depends on the
USAGE clause specified for the item, as follows:

Usage Type of character positions Number of bytes per character
DISPLAY Alphanumeric 1
DISPLAY-1 DBCS 2
NATIONAL National 2

Chapter 18. DATA DIVISION--data description entry 201



Usage

Type of character positions

Number of bytes per character

All others

Conceptual

Not applicable

Table 12. PICTURE clause symbol meanings

Symbol Meaning Size

A A character position that can contain only a letter |Each 'A'is counted as one character position in the
of the Latin alphabet or a space. size of the data item.

B For usage DISPLAY, a character position into Each 'B' is counted as one character position in the
which an alphanumeric space is inserted. size of the data item.

For usage DISPLAY-1, a character position into
which a DBCS space is inserted.

For usage NATIONAL, a character position into
which a national space is inserted.

E Marks the start of the exponent in an external Each 'E' is counted as one character position in the
floating-point item. For additional details of size of the data item.
external floating-point items, see |”Data categoriegl
land PICTURE rules” on page 206.|

G A DBCS character position. Each 'G' is counted as one character position in the

size of the data item.

N A DBCS character position when specified with Each 'N' is counted as one character position in the
usage DISPLAY-1 or when usage is unspecified size of the data item.
and the NSYMBOL(DBCS) compiler option is in
effect.

For category national, a national character position
when specified with usage NATIONAL or when
usage is unspecified and the
NSYMBOL(NATIONAL) compiler option is in
effect.

For category national-edited, a national character
position.

P An assumed decimal scaling position. Used to Not counted in the size of the data item. Scaling
specify the location of an assumed decimal point | position characters are counted in determining the
when the point is not within the number that maximum number of digit positions in
appears in the data item. See|[“P symbol” on page| |numeric-edited items or in items that are used as
for further details. arithmetic operands.

The size of the value is the number of digit
positions represented by the PICTURE
character-string.

S An indicator of the presence (but not the Not counted in the size of the elementary item,
representation, and not necessarily the position) of |unless an associated SIGN clause specifies the
an operational sign. An operational sign indicates |SEPARATE CHARACTER phrase (which would be
whether the value of an item involved in an counted as one character position).
operation is positive or negative.

A% An indicator of the location of the assumed Not counted in the size of the elementary item.

decimal point. Does not represent a character
position.
When the assumed decimal point is to the right of
the rightmost symbol in the string, the V is
redundant.

202 Enterprise COBOL for z/OS, V5.2 Language Reference




Table 12. PICTURE clause symbol meanings (continued)

Symbol Meaning Size

X A character position that can contain any Each 'X' is counted as one character position in the
allowable character from the alphanumeric size of the data item.
character set of the computer.

z A leading numeric character position. When that | Each 'Z' is counted as one character position in the

position contains a zero, a space character replaces |size of the data item.
the zero.

9 A character position that contains a numeral. Each nine specifies one decimal digit in the value
of the item. For usages DISPLAY and NATIONAL,
each nine is counted as one character position in
the size of the data item.

0 A character position into which the numeral zero |Each zero is counted as one character position in

is inserted. the size of the data item.
/ A character position into which the slash character | Each slash character is counted as one character
is inserted. position in the size of the data item.

, A character position into which a comma is Each comma is counted as one character position
inserted. in the size of the data item.
An editing symbol that represents the decimal Each period is counted as one character position in
point for alignment purposes. In addition, it the size of the data item.
represents a character position into which a period
is inserted.

+ Editing sign control symbols. Each represents the |Each character used in the editing sign symbol is

- character position into which the editing sign counted as one character position in the size of the

CR control symbol is placed. data item.

DB

A check protect symbol: a leading numeric
character position into which an asterisk is placed
when that position contains a zero.

Each asterisk is counted as one character position
in the size of the item.

cs

cs can be any valid currency symbol. A currency
symbol represents a character position into which
a currency sign value is placed. The default
currency symbol is the character assigned the
value X'5B' in the code page in effect at compile
time. In this document, the default currency
symbol is represented by the dollar sign ($) and cs
stands for any valid currency symbol. For details,
see[“Currency symbol” on page 205.|

The first occurrence of a currency symbol adds the
number of characters in the currency sign value to
the size of the data item. Each subsequent
occurrence adds one character position to the size
of the data item.

The following figure shows the sequences in which picture symbols can be
specified to form picture character-strings. More detailed explanations of PICTURE

clause symbols follow the figure.

Chapter 18. DATA DIVISION--data description entry 203




FIRST

Non-Floating Floating Other Symbols
SYMBOL Insertion Symbols Insertion Symbols
SECOND + + \[(CR 7z Z ¥ + A
seeoN ol | | TN es| e 202 N Hos]es] o [R]sv]r]r]c]N
B o |0 L ] [ ] o |0 [ ] o |0 (0 [ ] [ ] [ ] |0 [ ] [ ]
0 o0 [ ] [ ] o0 [ ] o |0 (0 [ ] [ ] [ ] |0 [ ] ® [ ]
/ [ N ] [ ] [ ] o |0 o ® |0 (o [ ] [ ] [ ] L BN J [ ] [ [ )
g [ N ] [ ] [ ] o |0 [ ) ® |0 (o [ ] [ ] [ ] [ ] [ ] [ ]
mZ
g .% eo|e|o |0 ° ° o ° ° o
2o
2>
2 (e[| o|lo|o|e oo e olee
lQ © {CRJ o | o [ ] [ ] [ ] ° L N J L] L] L] [ ) [ ) [ )
» DB
cs °
E ol e ° °

= z } o o 0|0 ° i °

zZ

ﬁ { z o |0 L ] [ ] o |0 Y e |0 [ ] [ ]

§ § { tle|loe|o|e ° °

g %‘ { *le|le|o|e|e ° o|e °

'8 cs|o |o o0 ° °

» cs|e|o (oo |0 e o | e °

9|le|e|e|e | e @ ° [ ° [ o | oo |0 []
Q e|e e o |e
S
[}
2 % V|ie|e|e|e [ ° ° ° [ ° ° [
8 m|(p|le|e|e|e ° ° ° . ° ° ° °
5 Py
P ° ° o|e (]
G|e °
N|le|eo|e °

Legend:

° Closed circle indicates that the symbol(s) at the top of the column can,
in a given character-string, appear anywhere to the left of the symbol(s)
at the left of the row.

{1 Braces indicate items that are mutually exclusive.

Nonfloating insertion symbols + and -, floating insertion symbols Z, *,

Symbols t_hat +, -, and c¢s, and the symbol P appear twice.

appear twice .
The leftmost column and uppermost row for each symbol represents its
use to the left of the decimal point position. The second appearance of
the symbol in the table represents its use to the right of the decimal
point position.

P symbol

The symbol P specifies a scaling position and implies an assumed decimal point
(to the left of the Ps if the Ps are leftmost PICTURE characters; to the right of the
Ps if the Ps are rightmost PICTURE characters).

The assumed decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

The symbol P can be specified only as a continuous string of Ps in the leftmost or
rightmost digit positions within a PICTURE character-string.

204 Enterprise COBOL for z/OS, V5.2 Language Reference



In certain operations that reference a data item whose PICTURE character-string
contains the symbol P, the algebraic value of the data item is used rather than the
actual character representation of the data item. This algebraic value assumes the
decimal point in the prescribed location and zero in place of the digit position
specified by the symbol P. The size of the value is the number of digit positions
represented by the PICTURE character-string. These operations are any of the
following ones:

* Any operation that requires a numeric sending operand

* A MOVE statement where the sending operand is numeric and its PICTURE
character-string contains the symbol P

* A MOVE statement where the sending operand is numeric-edited and its
PICTURE character-string contains the symbol P, and the receiving operand is
numeric or numeric-edited

* A comparison operation where both operands are numeric

In all other operations, the digit positions specified with the symbol P are ignored
and are not counted in the size of the operand.

Currency symbol

The currency symbol in a picture character-string is represented by the default
currency symbol $ or by a single character specified either in the CURRENCY
compiler option or in the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.

Although the default currency symbol is represented by $ in this document, the
actual default currency symbol is the character with the value X'5B' in the EBCDIC
code page in effect at compile time.

If the CURRENCY SIGN clause is specified, the CURRENCY and NOCURRENCY
compiler options are ignored. If the CURRENCY SIGN clause is not specified and
the NOCURRENCY compiler option is in effect, the dollar sign ($) is used as the
default currency sign value and currency symbol. For more information about the
CURRENCY SIGN clause, see [“CURRENCY SIGN clause” on page 120.| For more
information about the CURRENCY and NOCURRENCY compiler options, see
CURRENCY in the Enterprise COBOL Programming Guide.

A currency symbol can be repeated within the PICTURE character-string to specify
floating insertion. Different currency symbols must not be used in the same
PICTURE character-string.

Unlike all other picture symbols, currency symbols are case sensitive. For example,
'D' and 'd’ specify different currency symbols.

A currency symbol can be used only to define a numeric-edited item with USAGE
DISPLAY.

Character-string representation

The topic lists symbols that can appear once or more than once in the PICTURE
character-string.

Symbols that can appear more than once
The following symbols can appear more than once in one PICTURE
character-string:

ABGNZPXZ 90/ , + — % cs

Chapter 18. DATA DIVISION--data description entry 205



206

At least one of the symbols A, G, N, X, Z, 9, or ¥, or at least two of the
symbols +, —, or ¢s must be present in a PICTURE string.

An unsigned nonzero integer enclosed in parentheses immediately
following any of these symbols specifies the number of consecutive
occurrences of that symbol.

Example: The following two PICTURE clause specifications are equivalent:

PICTURE IS $99999.99CR
PICTURE IS $9(5).9(2)CR

Symbols that can appear only once

The following symbols can appear only once in one PICTURE
character-string;:

E S Vv . CR DB

Except for the PICTURE symbol V, each occurrence of any of the above
symbols in a given PICTURE character-string represents an occurrence of
that character or set of allowable characters in the data item.

Data categories and PICTURE rules

The allowable combinations of PICTURE symbols determine the data category of
the item.

The data categories are:

Alphabetic

Numeric
Numeric-edited
Alphanumeric
Alphanumeric-edited
DBCS

External floating-point
National
National-edited

Note: Category internal floating point is defined by a USAGE clause that specifies
the COMP-1 or COMP-2 phrase.

Alphabetic items

The PICTURE character-string can contain only the symbol A.

The content of the item must consist only of letters of the Latin alphabet and the
space character.

Other clauses

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal
containing only alphabetic characters, SPACE, or a symbolic-character as
the value of a figurative constant.

Do not include a single byte character in a DBCS data item.

When padding is required for a DBCS data item, the following rules apply:

Enterprise COBOL for z/OS, V5.2 Language Reference



* Padding is done using double-byte space characters until the data area is
filled (based on the number of double-byte character positions allocated
for the data item).

* Padding is done using single-byte space characters when the padding
needed is not an even number of bytes (for example, when an
alphanumeric group item is moved to a DBCS data item).

Numeric items
There are several types of numeric items.

The types are:

* Binary

* Packed decimal (internal decimal)
* Zoned decimal (external decimal)

* National decimal (external decimal)

The type of a numeric item is defined by the usage clause as shown in the table
below.

Table 13. Numeric types

Type USAGE clause

Binary BINARY, COMP, COMP-4, or COMP-5
Internal decimal PACKED-DECIMAL, COMP-3

Zoned decimal (external decimal) DISPLAY

National decimal (external decimal) NATIONAL

For all numeric fields, the PICTURE character-string can contain only the symbols
9,PS,and V.

The symbol S can be written only as the leftmost character in the PICTURE
character-string.

The symbol V can be written only once in a given PICTURE character-string.

For binary items, the number of digit positions must range from 1 through 18
inclusive. For packed decimal and zoned decimal items the number of digit
positions must range from 1 through 18, inclusive, when the ARITH(COMPAT)
compiler option is in effect, or from 1 through 31, inclusive, when the
ARITH(EXTEND) compiler option is in effect.

If unsigned, the contents of the item in standard data format must contain a
combination of the Arabic numerals 0-9. If signed, it can also contain a +, -, or
other representation of the operational sign.

Examples of valid ranges

PICTURE Valid range of values
9999 0 through 9999
S99 -99 through +99

S999V9 -999.9 through +999.9

PPP999 0 through .000999

S999PPP -1000 through -999000 and

+1000 through +999000 or zero

Other clauses

Chapter 18. DATA DIVISION--data description entry 207



208

The USAGE of the item can be DISPLAY, NATIONAL, BINARY,
COMPUTATIONAL, PACKED-DECIMAL, COMPUTATIONAL-3,
COMPUTATIONAL-4, or COMPUTATIONAL-5.

For signed numeric items described with usage NATIONAL, the SIGN IS
SEPARATE clause must be specified or implied.

The NUMPROC and TRUNC compiler options can affect the use of
numeric data items. For details, see NUMPROC and TRUNC in the
Enterprise COBOL Programming Guide.

Numeric-edited items
The PICTURE character-string can contain certain symbols.

The symbols are:
B PVZI9O/ , .+ - CRDB * cs

The combinations of symbols allowed are determined from the PICTURE clause
symbol order allowed (see the figure in [‘Symbols used in the PICTURE clause” on|
page 201), and the editing rules (see [‘PICTURE clause editing” on page 212).

The following rules apply:

* Either the BLANK WHEN ZERO clause must be specified for the item, or the
string must contain at least one of the following symbols:
B / Z 06 , . % + - CR DB cs

* Only one of the following symbols can be written in a given PICTURE
character-string:
+ - CR DB

* If the ARITH(COMPAT) compiler option is in effect, then the number of digit
positions represented in the character-string must be in the range 1 through 18,
inclusive. If the ARITH(EXTEND) compiler option is in effect, then the number

of digit positions represented in the character-string must be in the range 1
through 31, inclusive.

* The total number of character positions in the string (including editing-character
positions) must not exceed 249.

* The contents of those character positions representing digits in standard data
format must be one of the 10 Arabic numerals.

Other clauses
USAGE DISPLAY or NATIONAL must be specified or implied.

If the usage of the item is DISPLAY, any associated VALUE clause must
specify an alphanumeric literal or a figurative constant. The value is
assigned without editing.

If the usage of the item is NATIONAL, any associated VALUE clause must
specify an alphanumeric literal, a national literal, or a figurative constant.
The value is assigned without editing.

Alphanumeric items

The PICTURE character-string must consist of certain symbols.

The symbols are:
* One or more occurrences of the symbol X.

Enterprise COBOL for z/OS, V5.2 Language Reference



* Combinations of the symbols A, X, and 9. (A character-string containing all As
or all 9s does not define an alphanumeric item.)

The item is treated as if the character-string contained only the symbol X.

The contents of the item in standard data format can be any allowable characters
from the character set of the computer.

Other clauses
USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or one
of the following figurative constants:

* ZERO

* SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

* symbolic-character

* ALL alphanumeric-literal

Alphanumeric-edited items

The PICTURE character-string can contain the following symbols: A X 9 B 0 /.
The string must contain at least one A or X, and at least one B or 0 (zero) or /.
The contents of the item in standard data format must be two or more characters
from the character set of the computer.

Other clauses

USAGE DISPLAY must be specified or implied.

Any associated VALUE clause must specify an alphanumeric literal or or
one of the following figurative constants:

* ZERO

* SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

e symbolic-character

* ALL alphanumeric-literal

The literal is treated exactly as specified; no editing is done.
DBCS items

The PICTURE character-string can contain the symbols G, G and B, or N. Each G, B,
or N represents a single DBCS character position.

Any associated VALUE clause must contain a DBCS literal, the figurative constant
SPACE, or the figurative constant ALL DBCS-literal.

Other clauses

Chapter 18. DATA DIVISION--data description entry 209



When PICTURE symbol G is used, USAGE DISPLAY-1 must be specified.
When PICTURE symbol N is used and the NSYMBOL(DBCS) compiler
option is in effect, USAGE DISPLAY-1 is implied if the USAGE clause is
omitted.

National items

The PICTURE character-string can contain one or more occurrences of the picture
symbol N.

These rules apply when the NSYMBOL(NATIONAL) compiler option is in effect or
the USAGE NATIONAL clause is specified. In the absence of a USAGE
NATIONAL clause, if the NSYMBOL(DBCS) compiler option is in effect, picture
symbol N represents a DBCS character and the rules of the PICTURE clause for a
DBCS item apply.

Each N represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national
literal, or one of the following figurative constants:

* ZERO

» SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

* symbolic-character

* ALL alphanumeric-literal
* ALL national-literal

Other clauses

Only the NATIONAL phrase can be specified in the USAGE clause. When
PICTURE symbol N is used and the NSYMBOL(NATIONAL) compiler
option is in effect, USAGE NATIONAL is implied if the usage clause is
omitted.

The following clauses can be used:

+ JUSTIFIED

» EXTERNAL

* GLOBAL

* OCCURS

» REDEFINES

* RENAMES

* SYNCHRONIZED

The following clauses cannot be used:
* BLANK WHEN ZERO
* SIGN

National-edited items

The PICTURE character-string must contain at least one symbol N, and at least one
instance of one of these symbols: B 0 (zero) or / (slash).

210 Enterprise COBOL for z/OS, V5.2 Language Reference



Each symbol represents a single national character position.

Any associated VALUE clause must specify an alphanumeric literal, a national
literal, or one of the following figurative constants:

* ZERO

* SPACE

* QUOTE

* HIGH-VALUE

+ LOW-VALUE

* symbolic-character

* ALL alphanumeric-literal
* ALL national-literal

The literal is treated exactly as specified; no editing is done.

The NSYMBOL(NATIONAL) compiler option has no effect on the definition of a
data item of category national-edited.

Other clauses
USAGE NATIONAL must be specified or implied.

The following clauses can be used:
* JUSTIFIED

* EXTERNAL

* GLOBAL

* OCCURS

* REDEFINES

* RENAMES

* SYNCHRONIZED

The following clauses cannot be used:
* BLANK WHEN ZERO
+ SIGN

External floating-point items

A data item is described as category external floating-point by its PICTURE
character-string.

The PICTURE character-string details are described below.

Format

»—[ 1_- :l—mantissa E_E ’_r :l—exponent

A\
A

+ or - A sign character must immediately precede both the mantissa and the
exponent.

Chapter 18. DATA DIVISION--data description entry 211



212

A + sign indicates that a positive sign will be used in the output to
represent positive values and that a negative sign will represent negative
values.

A - sign indicates that a blank will be used in the output to represent
positive values and that a negative sign will represent negative values.

Each sign position occupies one byte of storage.

mantissa
The mantissa can contain the symbols:
9.V

An actual decimal point can be represented with a period (.) while an
assumed decimal point is represented by a V.

Either an actual or an assumed decimal point must be present in the
mantissa; the decimal point can be leading, embedded, or trailing.

The mantissa can contain from 1 to 16 numeric characters.
E Indicates the exponent.
exponent

The exponent must consist of the symbol 99.

Example: Pic -9v9(9)E-99

The DISPLAY phrase of the USAGE clause and a floating-point picture
character-string define the item as a display floating-point data item.

The NATIONAL phrase of the USAGE clause and a floating-point picture
character-string define the item as a national floating-point data item.

For items defined with usage DISPLAY, each picture symbol except V defines one
alphanumeric character position in the item.

For items defined with usage NATIONAL, each picture symbol except V defines
one national character position in the item.

Other clauses

The DISPLAY phrase or the NATIONAL phrase of the USAGE clause must
be specified or implied.

The OCCURS, REDEFINES, and RENAMES clauses can be associated with
external floating-point items.

The SIGN clause is accepted as documentation and has no effect on the
representation of the sign.

The SYNCHRONIZED clause is treated as documentation.
The following clauses are invalid with external floating-point items:
* BLANK WHEN ZERO

» JUSTIFIED
* VALUE

PICTURE clause editing

There are two general methods of editing in a PICTURE clause, insertion editing,
and suppression and replacement editing.

Enterprise COBOL for z/OS, V5.2 Language Reference



Insertion editing includes the following types of editing:
* Simple insertion

* Special insertion

¢ Fixed insertion

* Floating insertion

Suppression and replacement editing includes the following types of editing:
* Zero suppression and replacement with asterisks

* Zero suppression and replacement with spaces

The type of editing allowed for an item depends on its data category. The type of
editing that is valid for each category is shown in the following table. cs indicates

any valid currency symbol.

Table 14. Data categories

Data category Type of editing Insertion symbol
Alphabetic None None
Numeric None None
Numeric-edited Simple insertion Bo/,
Special insertion
Fixed insertion cs + - CR DB
Floating insertion cs + -
Zero suppression z*
Replacement Z*+-cs
Alphanumeric None None
Alphanumeric-edited Simple insertion B0/
DBCS Simple insertion B
External floating-point Special insertion
National None None
National-edited Simple insertion B0/

Types of editing are described in the following sections:

+ [“Simple insertion editing”|

+ [“Special insertion editing” on page 214]

» [“Fixed insertion editing” on page 214|

* [“Floating insertion editing” on page 215|

+ [“Zero suppression and replacement editing” on page 216|

Simple insertion editing

This type of editing is valid for alphanumeric-edited, numeric-edited, and DBCS

items.

Each insertion symbol is counted in the size of the item, and represents the

position within the item where the equivalent character is to be inserted. For
edited DBCS items, each insertion symbol (B) is counted in the size of the item and
represents the position within the item where the DBCS space is to be inserted.

Chapter 18. DATA DIVISION--data description entry

213




214

For example:

PICTURE Value of data Edited result
X(10)/XX ALPHANUMERO1 ALPHANUMER/01
X(5)BX(7) ALPHANUMERIC ALPHA NUMERIC
99,B999,B000 1234 01,b234,b000"

99,999 12345 12,345

GGBBGG D1D2D3D4 D1D2bbbbD3D4!
Note:

1. The symbol b represents a space.

Special insertion editing

This type of editing is valid for either numeric-edited items or external

floating-point items.

The period (.) is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point is inserted.

Either the actual decimal point or the symbol V as the assumed decimal point, but
not both, must be specified in one PICTURE character-string.

For example:

PICTURE Value of data Edited result
999.99 1.234 001.23
999.99 12.34 012.34
999.99 123.45 123.45
999.99 1234.5 234.50
+999.99E+99 12345 +123.45E+02

Fixed insertion editing

Fixed insertion editing is valid only for numeric-edited items.

The following insertion symbols are used:

® CSs

* + - CR DB (editing-sign control symbols)

In fixed insertion editing, only one currency symbol and one editing-sign control

symbol can be specified in a PICTURE character-string.

Unless it is preceded by a + or - symbol, the currency symbol must be the first
character in the character-string.

When either + or - is used as a symbol, it must be the first or last character in the

character-string.

Enterprise COBOL for z/OS, V5.2 Language Reference




When CR or DB is used as a symbol, it must occupy the rightmost two character
positions in the character-string. If these two character positions contain the
symbols CR or DB, the uppercase letters are the insertion characters.

Editing sign control symbols produce results that depend on the value of the data
item, as shown below:

Editing symbol in PICTURE | Result: data item positive or

character-string zero Result: data item negative
+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

For example:

PICTURE Value of data Edited result
999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
-$999.99 +123.456 $123.45
$9999.99CR +123.45 $0123.45
$9999.99CR -123.45 $0123.45CR

Floating insertion editing

Floating insertion editing is valid only for numeric-edited items.

The following symbols are used:
cs + -

Within one PICTURE character-string, these symbols are mutually exclusive as
floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the
allowable floating insertion symbols to represent leftmost character positions into
which the actual characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the
leftmost limit at which the actual character can appear in the data item. The
rightmost floating insertion symbol represents the rightmost limit at which the
actual character can appear.

The second leftmost floating insertion symbol in the character-string represents the
leftmost limit at which numeric data can appear within the data item. Nonzero

numeric data can replace all characters at or to the right of this limit.

Any simple-insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating

Chapter 18. DATA DIVISION--data description entry 215



character-string. If the period (.) special-insertion symbol is included within the
floating string, it is considered to be part of the character-string.

To avoid truncation, the minimum size of the PICTURE character-string must be:
* The number of character positions in the sending item, plus
* The number of nonfloating insertion symbols in the receiving item, plus

* One character position for the floating insertion symbol
Representing floating insertion editing

In a PICTURE character-string, there are two ways to represent floating insertion
editing and thus two ways in which editing is performed:

1. Any or all leading numeric character positions to the left of the decimal point
are represented by the floating insertion symbol. When editing is performed, a
single floating insertion character is placed to the immediate left of the first
nonzero digit in the data, or of the decimal point, whichever is farther to the
left. The character positions to the left of the inserted character are filled with
spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, then at least one of the insertion
characters must be to the left of the decimal point.

2. All the numeric character positions are represented by the floating insertion
symbol. When editing is performed, then:

* If the value of the data is zero, the entire data item will contain spaces.
o If the value of the data is nonzero, the result is the same as in rule 1.

For example:

PICTURE Value of data Edited result
$$$$.99 .123 $.12
$$$9.99 .12 $0.12

$,$$$,999.99 -1234.56 $1,234.56

+,++4+,999.99 -123456.789 -123,456.78
$$,$$$,88$.99CR -1234567 $1,234,567.00CR
4, b 0000.00

Zero suppression and replacement editing
Zero suppression and replacement editing is valid only for numeric-edited items.

In zero suppression editing, the symbols Z and * are used. These symbols are
mutually exclusive in one PICTURE character-string.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character-string:

Z*+-cs

216 Enterprise COBOL for z/OS, V5.2 Language Reference



Specify zero suppression and replacement editing with a string of one or more of
the allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period (.)
special insertion symbol is included within the floating editing string, it is
considered to be part of the character-string.

Representing zero suppression

In a PICTURE character-string, there are two ways to represent zero suppression,
and two ways in which editing is performed:

1.

Any or all of the leading numeric character positions to the left of the decimal
point are represented by suppression symbols. When editing is performed, the
replacement character replaces any leading zero in the data that appears in the
same character position as a suppression symbol. Suppression stops at the
leftmost character:

* That does not correspond to a suppression symbol
* That contains nonzero data
* That is the decimal point

All the numeric character positions in the PICTURE character-string are
represented by the suppression symbols. When editing is performed and the
value of the data is nonzero, the result is the same as in the preceding rule. If
the value of the data is zero, then:

* If Z has been specified, the entire data item will contain spaces.

* If * has been specified, the entire data item except the actual decimal point
will contain asterisks.

For example:

PICTURE Value of data Edited result
Kokkok |k 0000.00 Kokkk |k
7771.71 0000.00
77771.99 0000.00 .00
**%% .99 0000.00 *x%% 00
7799.99 0000.00 00.00

2,777.77+ +123.456 123.45+
K RRE A -123.45 *%123.45-
*k kkk kkk kkt +12345678.9 12,345,678.90+
$2,777,777.77CR +12345.67 $ 12,345.67
$Bx, xxx xxx *xBBDB -12345.67 $ **x12,345.67 DB

Do not specify both the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry.

Chapter 18. DATA DIVISION--data description entry 217



REDEFINES clause

218

The REDEFINES clause allows you to use different data description entries to
describe the same computer storage area.

Format

Y
A

data-name-1—

»»>—Ilevel-number: ii REDEFINES—data-name-2
FILLER

(level-number, data-name-1, and FILLER are not part of the REDEFINES clause, and
are included in the format only for clarity.)

When specified, the REDEFINES clause must be the first entry following
data-name-1 or FILLER. If data-name-1 or FILLER is not specified, the REDEFINES
clause must be the first entry following the level-number.

data-name-1, FILLER
Identifies an alternate description for the data area identified by
data-name-2; data-name-1 is the redefining item or the REDEFINES subject.

Neither data-name-1 nor any of its subordinate entries can contain a VALUE
clause.

data-name-2
Identifies the redefined item or the REDEFINES object.

The data description entry for data-name-2 can contain a REDEFINES
clause.

The data description entry for data-name-2 cannot contain an OCCURS
clause. However, data-name-2 can be subordinate to an item whose data
description entry contains an OCCURS clause; in this case, the reference to
data-name-2 in the REDEFINES clause must not be subscripted.

Neither data-name-1 nor data-name-2 can contain an OCCURS DEPENDING ON
clause.

data-name-1 and data-name-2 must have the same level in the hierarchy; however,
the level numbers need not be the same. Neither data-name-1 nor data-name-2 can
be defined with level number 66 or 88.

data-name-1 and data-name-2 can each be described with any usage.

Redefinition begins at data-name-1 and ends when a level-number less than or
equal to that of data-name-1 is encountered. No entry that has a level-number
numerically lower than those of data-name-1 and data-name-2 can occur between
these entries. In the following example:

05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).
05 C PICTURE 99V99.

Enterprise COBOL for z/OS, V5.2 Language Reference




A is the redefined item, and B is the redefining item. Redefinition begins with B and
includes the two subordinate items B-1 and B-2. Redefinition ends when the
level-05 item C is encountered.

If the GLOBAL clause is used in the data description entry that contains the
REDEFINES clause, only data-name-1 (the redefining item) possesses the global
attribute. For example, in the following description, only item B possesses the
GLOBAL attribute:

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE X(4).

The EXTERNAL clause must not be specified in the same data description entry as
a REDEFINES clause.

If the redefined data item (data-name-2) is declared to be an external data record,
the size of the redefining data item (data-name-1) must not be greater than the size
of the redefined data item. If the redefined data item is not declared to be an
external data record, there is no such constraint.

The following example shows that the redefining item, B, can occupy more storage
than the redefined item, A. The size of storage for the REDEFINED clause is
determined in number of bytes. Item A occupies 6 bytes of storage and item B, a
data item of category national, occupies 8 bytes of storage.

05 A PICTURE X(6).
05 B REDEFINES A GLOBAL PICTURE N(4).

One or more redefinitions of the same storage area are permitted. The entries that
give the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define new
character positions. Multiple redefinitions can, but need not, all use the data-name
of the original entry that defined this storage area. For example:

05 A PICTURE 9999.

05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

Also, multiple redefinitions can use the name of the preceding definition as shown
in the following example:
05 A PICTURE 9999.

05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES B PICTURE 99Vv99.

When more than one level-01 entry is written subordinate to an FD entry, a
condition known as implicit redefinition occurs. That is, the second level-01 entry
implicitly redefines the storage allotted for the first entry. In such level-01 entries,
the REDEFINES clause must not be specified.

When the data item implicitly redefines multiple 01-level records in a file
description (FD) entry, items subordinate to the redefining or redefined item can
contain an OCCURS DEPENDING ON clause.

REDEFINES clause considerations
The topic lists considerations of using the REDEFINES clause.

When an area is redefined, all descriptions of the area are always in effect; that is,
redefinition does not supersede a previous description. Thus, if B REDEFINES C has
been specified, either of the two procedural statements MOVE X TO B or MOVE Y TO C

Chapter 18. DATA DIVISION--data description entry 219



220

could be executed at any point in the program. In the first case, the area described

as B would receive the value and format of X. In the second case, the same physical
area (described now as C) would receive the value and format of Y. Note that if the
second statement is executed immediately after the first, the value of Y replaces the
value of X in the one storage area.

The usage of a redefining data item need not be the same as that of a redefined
item. This does not, however, cause any change in the format or content of existing
data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.
05 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL-4.
05 A PICTURE S99 USAGE COMPUTATIONAL-4.

Redefining B does not change the bit configuration of the data in the storage area.
Therefore, the following two statements produce different results:

ADD B TO A
ADD C TO A

In the first case, the value 8 is added to A (because B has USAGE DISPLAY). In the
second statement, the value -3848 is added to A (because C has USAGE
COMPUTATIONAL-4), and the bit configuration of the storage area has the binary
value -3848. This example demonstrates how the improper use of redefinition can
give unexpected or incorrect results.

REDEFINES clause examples

The REDEFINES clause can be specified for an item within the scope of
(subordinate to) an area that is redefined.

In the following example, WEEKLY-PAY redefines SEMI-MONTHLY-PAY (which is within
the scope of REGULAR-EMPLOYEE, while REGULAR-EMPLOYEE is redefined by
TEMPORARY-EMPLOYEE).

05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.

10 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY
PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a
redefining item, as shown for CODE-H REDEFINES HOURLY-PAY in the following

example:
05 REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE 999V999.
05 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

10 LOCATION PICTURE A(8).

10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.

10 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

Data items within an area can be redefined without changing their lengths. For
example:

Enterprise COBOL for z/OS, V5.2 Language Reference



05 NAME-2.

10 SALARY PICTURE

10 SO-SEC-NO PICTURE

10 MONTH PICTURE
05 NAME-1 REDEFINES NAME-2.

10 WAGE PICTURE

10 EMP-NO PICTURE

10 YEAR PICTURE

XXX.
X(9).
XX.

XXX.
X(9).
XX.

Data item lengths and types can also be respecified within an area. For example:

05 NAME-2.
10 SALARY PICTURE
10 SO-SEC-NO PICTURE
10 MONTH PICTURE
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE
10 EMP-NO PICTURE
10 YEAR PICTURE

Data items can also be respecified
the redefined item. For example:

05 NAME-2.
10 SALARY PICTURE
10 SO-SEC-NO PICTURE
10 MONTH PICTURE
05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE
10 EMP-NO PICTURE
10 YEAR PICTURE

XXX.
X(9).
XX.

999v999.
X(6).
XX.

with a length that is greater than the length of

XXX.
X(9).
XX.

999v999.
X(6) .
X(4).

This does not change the length of the redefined item NAME-2.

Undefined results

Undefined results can occur in the conditions as listed in the topic.

* A redefining item is moved to a redefined item (that is, if B REDEFINES C and the
statement MOVE B TO C is executed).

* A redefined item is moved to a redefining item (that is, if B REDEFINES C and the
statement MOVE C TO B is executed).

RENAMES clause

The RENAMES clause specifies alternative and possibly overlapping groupings of

elementary data items.

Format

»»—66—data-name-1—RENAMES—data-name-2 LI:

THROUGH data-name-3—|
THRU

The special level-number 66 must be specified for data description entries that
contain the RENAMES clause. (Level-number 66 and data-name-1 are not part of

the RENAMES clause, and are included in the format only for clarity.)

Chapter 18. DATA DIVISION--data description entry

221



222

One or more RENAMES entries can be written for a logical record. All RENAMES
entries associated with one logical record must immediately follow the last data
description entry of that record.

data-name-1
Identifies an alternative grouping of data items.

A level-66 entry cannot rename a level-01, level-77, level-88, or another
level-66 entry.

data-name-1 cannot be used as a qualifier; it can be qualified only by the
names of level indicator entries or level-01 entries.

data-name-2, data-name-3
Identify the original grouping of elementary data items; that is, they must
name elementary or group items within the associated level-01 entry and
must not be the same data-name. Both data-names can be qualified.
data-name-2 and data-name-3 can each reference any of the following items:
* An elementary data item
* An alphanumeric group item
* A national group item
When data-name-2 or data-name-3 references a national group item, the

referenced item is processed as a group (not as an elementary data item of
category national).

The OCCURS clause must not be specified in the data entries for
data-name-2 and data-name-3, or for any group entry to which they are
subordinate. In addition, the OCCURS DEPENDING clause must not be
specified for any item defined between data-name-2 and data-name-3.

The keywords THROUGH and THRU are equivalent.

When the THROUGH phrase is specified:

* data-name-1 defines an alphanumeric group item that includes all the elementary
items that:

— Start with data-name-2 if it is an elementary item, or the first elementary item
within data-name-2 if it is a group item

— End with data-name-3 if it is an elementary item, or the last elementary item
within data-name-3 if it is an alphanumeric group item or national group item

* The storage area occupied by the starting item through the ending item becomes
the storage area occupied by data-name-1.

Usage note: The group defined with the THROUGH phrase can include data items
of usage NATIONAL.

The leftmost character position in data-name-3 must not precede the leftmost
character position in data-name-2, and the rightmost character position in
data-name-3 must not precede the rightmost character position in data-name-2. This
means that data-name-3 cannot be totally subordinate to data-name-2.

When the THROUGH phrase is not specified:

* The storage area occupied by data-name-2 becomes the storage area occupied by
data-name-1.

¢ All of the data attributes of data-name-2 become the data attributes for
data-name-1. That is:

Enterprise COBOL for z/OS, V5.2 Language Reference



— When data-name-2 is an alphanumeric group item, data-name-1 is an

alphanumeric group item.

— When data-name-2 is a national group item, data-name-1 is a national group

item.

— When data-name-2 is an elementary item, data-name-1 is an elementary item.

The following figure illustrates valid and invalid RENAMES clause specifications.

COBOL Specifications

Example 1 (Valid)

01 RECORD-I.
05 DN-1... .
05 DN-2... .
05 DN-3... .
05 DN-4... .

66 DN-6 RENAMES DN-1 THROUGH DN-3.

Example 2 (Valid)
01 RECORD-II
05 DN-1.
10 DN-2... .
10 DN-2A... .
05 DN-1A REDEFINES DN-1.
10 DN-3A... .
10 DN-3... .
10 DN-3B... .
05 DN-5... .
66 DN-6 RENAMES DN-2 THROUGH DN-3

Example 3 (Invalid)
01 RECORD-III.
05 DN-2.
10 DN-3... .
10 DN-4... .
05 DN-5... .

66 DN-6 RENAMES DN-2 THROUGH DN-3.

Example 4 (Invalid)
01 RECORD-IV.
05 DN-1.
10 DN-2A... .
10 DN-2B... .
10 DN-2C REDEFINES DN-2B.
15 DN-2CA... .
15 DN-2D... .
05 DN-3... .

Storage Layouts

| RECORD-I |

| DN-1| DN-2 | DN-3 | DN-4 |

DN-6

RECORD-II
DN-1 |

I
| DN-2| DN-2A | DN-5 |
|

+— DN-1A ———>|

| DN-3A| DN-3 | DN-3B |

. ‘<— DN-6—>‘

RECORD-III
v |

| DN-3 | DN-4 | DN-5 |

DN-6 is indeterminate

RECORD-IV
| -1 -

| DN-2A| DN-2B | DN-3 |
|—— DN-2C —|

| DN-ZCA| DN-2D |

66 DN-4 RENAMES DN-1 THROUGH DN-2CA. DN-4 is indeterminate

SIGN clause

The SIGN clause specifies the position and mode of representation of the
operational sign for the signed numeric item to which it applies.

The SIGN clause is required only when an explicit description of the properties or
position of the operational sign is necessary.

Chapter 18. DATA DIVISION--data description entry

223



224

Format

> LEADING
LSIGNﬁ |—TRAILING—' I—SEPARATE |
IS I—CHARACTER—|

\4
A

The SIGN clause can be specified only for the following items:
* An elementary numeric data item of usage DISPLAY or NATIONAL that is
described with an S in its picture character string, or

* A group item that contains at least one such elementary entry as a subordinate
item

When the SIGN clause is specified at the group level, that SIGN clause applies
only to subordinate signhed numeric elementary data items of usage DISPLAY or
NATIONAL. Such a group can also contain items that are not affected by the SIGN
clause. If the SIGN clause is specified for a group or elementary entry that is
subordinate to a group item that has a SIGN clause, the SIGN clause for the
subordinate entry takes precedence for that subordinate entry.

The SIGN clause is treated as documentation for external floating-point items.

When the SIGN clause is specified without the SEPARATE phrase, USAGE
DISPLAY must be specified explicitly or implicitly. When SIGN IS SEPARATE is
specified, either USAGE DISPLAY or USAGE NATIONAL can be specified.

If you specify the CODE-SET clause in an FD entry, any signed numeric data
description entries associated with that file description entry must be described
with the SIGN IS SEPARATE clause.

If the SEPARATE CHARACTER phrase is not specified, then:

* The operational sign is presumed to be associated with the LEADING or
TRAILING digit position, whichever is specified, of the elementary numeric data
item. (In this instance, specification of SIGN IS TRAILING is the equivalent of
the standard action of the compiler.)

* The character S in the PICTURE character string is not counted in determining
the size of the item (in terms of standard data format characters).

If the SEPARATE CHARACTER phrase is specified, then:

* The operational sign is presumed to be the LEADING or TRAILING character
position, whichever is specified, of the elementary numeric data item. This
character position is not a digit position.

* The character S in the PICTURE character string is counted in determining the
size of the data item (in terms of standard data format characters).

* + is the character used for the positive operational sign.
* - is the character used for the negative operational sign.

Enterprise COBOL for z/OS, V5.2 Language Reference



SYNCHRONIZED clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on a
natural boundary in storage.

Format

v
A

SYNCHRONIZED
SYNCg i:LEFTt‘
T

RIGH

SYNC is an abbreviation for SYNCHRONIZED and has the same meaning,.

The SYNCHRONIZED clause is never required, but can improve performance on
some systems for binary items used in arithmetic.

The SYNCHRONIZED clause can be specified for elementary items and for
level-01 group items, in which case every elementary item within the group item is
synchronized.

LEFT Specifies that the elementary item is to be positioned so that it will begin
at the left character position of the natural boundary in which the
elementary item is placed.

RIGHT
Specifies that the elementary item is to be positioned such that it will
terminate on the right character position of the natural boundary in which
it has been placed.

When specified, the LEFT and the RIGHT phrases are syntax checked but have no
effect on the execution of the program.

The length of an elementary item is not affected by the SYNCHRONIZED clause.

The following table lists the effect of the SYNCHRONIZE clause on other language
elements.

Table 15. SYNCHRONIZE clause effect on other language elements

Language element Comments

OCCURS clause When specified for an item within the scope of an OCCURS clause,
each occurrence of the item is synchronized.

USAGE DISPLAY or |Each item is syntax checked, but the SYNCHRONIZED clause has
PACKED-DECIMAL |no effect on execution.

USAGE NATIONAL | Each item is syntax checked, but the SYNCHRONIZED clause has
no effect on execution.

Chapter 18. DATA DIVISION--data description entry 225



226

Table 15. SYNCHRONIZE clause effect on other language elements (continued)

Language element

Comments

USAGE BINARY or
COMPUTATIONAL

When the item is the first elementary item subordinate to an item
that contains a REDEFINES clause, the item must not require the
addition of unused character positions.

When the synchronized clause is not specified for a subordinate
data item (one with a level number of 02 through 49):

* The item is aligned at a displacement that is a multiple of 2
relative to the beginning of the record if its USAGE is BINARY
and its PICTURE is in the range of S9 through S9(4).

* The item is aligned at a displacement that is a multiple of 4
relative to the beginning of the record if its USAGE is BINARY
and its PICTURE is in the range of S9(5) through S9(18), or its
USAGE is INDEX.

When SYNCHRONIZED is not specified for binary items, no space
is reserved for slack bytes.

USAGE POINTER,

The data is aligned on a fullword boundary.

COMPUTATIONAL-5

PROCEDURE-

POINTER,

FUNCTION-

POINTER, OBJECT

REFERENCE

USAGE The data is aligned on a fullword boundary.
COMPUTATIONAL-1

USAGE The data is aligned on a doubleword boundary.
COMPUTATIONAL-2

USAGE The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL-3 | PACKED-DECIMAL item.

USAGE The data is treated the same as the SYNCHRONIZED clause for a
COMPUTATIONAL-4 | COMPUTATIONAL item.

USAGE The data is treated the same as the SYNCHRONIZED clause for a

COMPUTATIONAL item.

DBCS and external
floating-point items

Each item is syntax checked, but the SYNCHRONIZED clause has
no effect on execution.

REDEFINES clause

For an item that contains a REDEFINES clause, the data item that
is redefined must have the proper boundary alignment for the data
item that redefines it. For example, if you write the following, be
sure that data item A begins on a fullword boundary:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) BINARY SYNC.

In the FILE SECTION, the compiler assumes that all level-01 records that contain
SYNCHRONIZED items are aligned on doubleword boundaries in the buffer. You
must provide the necessary slack bytes between records to ensure alignment when
there are multiple records in a block.

In the WORKING-STORAGE SECTION, the compiler aligns all level-01 entries on
a doubleword boundary.

Enterprise COBOL for z/OS, V5.2 Language Reference




For the purposes of aligning binary items in the LINKAGE SECTION, all level-01
items are assumed to begin on doubleword boundaries. Therefore, if you issue a
CALL statement, such operands of any USING phrase within it must be aligned
correspondingly.

Slack bytes
There are two types of slack bytes.

* Slack bytes within records: unused character positions that precede each
synchronized item in the record

* Slack bytes between records: unused character positions added between blocked
logical records

Slack bytes within records

For any data description that has binary items that are not on their natural
boundaries, the compiler inserts slack bytes within a record to ensure that all
SYNCHRONIZED items are on their proper boundaries.

Because it is important that you know the length of the records in a file, you need
to determine whether slack bytes are required and, if so, how many bytes the
compiler will add. The algorithm that the compiler uses is as follows:

* The total number of bytes occupied by all elementary data items that precede
the binary item are added together, including any slack bytes that are previously
added.

* This sum is divided by m, where:

— m = 2 for binary items of four-digit length or less

— m = 4 for binary items of five-digit length or more and for
COMPUTATIONAL-1 data items

m = 4 for data items described with USAGE INDEX, USAGE POINTER,
USAGE PROCEDURE-POINTER, USAGE OBJECT REFERENCE, or USAGE
FUNCTION-POINTER

— m = 8 for COMPUTATIONAL-2 data items

* If the remainder (r) of this division is equal to zero, no slack bytes are required.
If the remainder is not equal to zero, the number of slack bytes that must be
added is equal to m - r.

These slack bytes are added to each record immediately following the elementary
data item that precedes the binary item. They are defined as if they constitute an
item with a level-number equal to that of the elementary item that immediately
precedes the SYNCHRONIZED binary item, and are included in the size of the
group that contains them.

For example:

01 FIELD-A.
05 FIELD-B PICTURE X(5).
05 FIELD-C.
10 FIELD-D PICTURE XX.
[10 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
10 FIELD-E COMPUTATIONAL PICTURE S9(6) SYNC.
01 FIELD-L.
05 FIELD-M PICTURE X(5).
05 FIELD-N PICTURE XX.
[05 SLACK-BYTES PICTURE X. INSERTED BY COMPILER]
05 FIELD-0.

10 FIELD-P COMPUTATIONAL  PICTURE S9(6) SYNC.

Chapter 18. DATA DIVISION--data description entry 227



Slack bytes can also be added by the compiler when a group item is defined with

an OCCURS clause and contains within it a SYNCHRONIZED binary data item. To

determine whether slack bytes are to be added, the following action is taken:

* The compiler calculates the size of the group, including all the necessary slack
bytes within a record.

* This sum is divided by the largest m required by any elementary item within the
group.

 If r is equal to zero, no slack bytes are required. If r is not equal to zero, m - r
slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the group item that
contains the OCCURS clause. For example, a record defined as follows appears in
storage, as shown, in the figure after the record:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
16 COMP-TYPE PICTURE X.
[106 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HOURS PICTURE S9(3) COMP SYNC.
106 COMP-NAME PICTURE X(5).
|« Firstoccurrence of COMP-TABLE — !
I I
i I
e % N
alg] 1 ! i i
$id! o | comppay 38?1”5’3{ COMP-NAME \ } }
15| | | | |
i© i ! ! i \ \ ‘ ! ! ‘ ! \ ‘ | ! \ |
H H H H H H
F F F
D D D D

D =doublewordboundary
F =fullword boundary
H =halfword boundary

In order to align COMP-PAY and COMP-HOURS on their proper boundaries, the
compiler added 2 slack bytes within the record.

In the previous example, without further adjustment, the second occurrence of
COMP-TABLE would begin 1 byte before a doubleword boundary, and the alignment
of COMP-PAY and COMP-HOURS would not be valid for any occurrence of the table
after the first. Therefore, the compiler must add slack bytes at the end of the
group, as though the record had been written as follows:

01 WORK-RECORD.

05 WORK-CODE PICTURE X.
05 COMP-TABLE OCCURS 10 TIMES.
10 COMP-TYPE PICTURE X.
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]
10 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
10 COMP-HOURS PICTURE S9(3) COMP SYNC.
10 COMP-NAME PICTURE X(5).
[10 SLACK-BYTES PIC XX. INSERTED BY COMPILER]

228 Enterprise COBOL for z/OS, V5.2 Language Reference



In this example, the second and each succeeding occurrence of COMP-TABLE begins 1
byte beyond a doubleword boundary. The storage layout for the first occurrence of
COMP-TABLE now appears as shown in the following figure:

«—First Occurrence of COMP-TABLE ——/+—Second Occurrence of COMP-TABLE I
| i
o | ! | | | ! | 1
glel ! 1 . ! .
2lgl g‘;;gg } COMP-PAY ﬁg"u"gé COMP-NAME }g‘yﬁg‘; } } } } i
Slal 1 1 P 1 1
= |0 ‘ T | ‘ | | ‘ | | {\ i i [ {\ I ! i [ ‘ I J
H H H H H H H H
F F F F
D D D D D

D =doublewordboundary
F =fullword boundary
H=halfword boundary

Each succeeding occurrence within the table will now begin at the same relative
position as the first.

Slack bytes between records

If the file contains blocked logical records that are to be processed in a buffer, and
any of the records contain binary entries for which the SYNCHRONIZED clause is
specified, you can improve performance by adding any needed slack bytes
between records for proper alignment.

The lengths of all the elementary data items in the record, including all slack bytes,
are added. (For variable-length records, it is necessary to add an additional 4 bytes
for the count field.) The total is then divided by the highest value of m for any one
of the elementary items in the record.

If  (the remainder) is equal to zero, no slack bytes are required. If r is not equal to
zero, m - r slack bytes are required. These slack bytes can be specified by writing a
level-02 FILLER at the end of the record.

Consider the following record description:

01 COMP-RECORD.
05 A-1 PICTURE X(5).

05 A-2  PICTURE X(3).
05 A-3  PICTURE X(3).
05 B-1  PICTURE S9999 USAGE COMP SYNCHRONIZED.
05 B-2  PICTURE $S99999 USAGE COMP SYNCHRONIZED.
05 B-3  PICTURE $S9999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2, and A-3 totals 11. B-1 is a four-digit
COMPUTATIONAL item and 1 slack byte must therefore be added before B-1.
With this byte added, the number of bytes that precede B-2 totals 14. Because B-2
is a COMPUTATIONAL item of five digits in length, 2 slack bytes must be added
before it. No slack bytes are needed before B-3.

The revised record description entry now appears as:

Chapter 18. DATA DIVISION--data description entry 229



01 COMP-RECORD.

05 A-1 PICTURE X(5).

05 A-2 PICTURE X(3).

05 A-3 PICTURE X(3).

[05 SLACK-BYTE-1  PICTURE X.  INSERTED BY COMPILER]

05 B-1 PICTURE $9999 USAGE COMP SYNCHRONIZED.
[05 SLACK-BYTE-2  PICTURE XX. INSERTED BY COMPILER]

05 B-2 PICTURE $99999 USAGE COMP SYNCHRONIZED.
05 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There is a total of 22 bytes in COMP-RECORD, but from the rules above, it appears
that m = 4 and r = 2. Therefore, to attain proper alignment for blocked records, you
must add 2 slack bytes at the end of the record.

The final record description entry appears as:
01 COMP-RECORD.

05
05
05
[05
05
[05
05
05
05

A-1

A-2

A-3
SLACK-BYTE-1
B-1
SLACK-BYTE-2
B-2

B-3

FILLER

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(5).

X(3).

X(3).

X.  INSERTED BY COMPILER]
$9999 USAGE COMP SYNCHRONIZED.
XX. INSERTED BY COMPILER]
$99999 USAGE COMP SYNCHRONIZED.
$9999 USAGE COMP SYNCHRONIZED.
XX. [SLACK BYTES YOU ADD]

USAGE clause

The USAGE clause specifies the format in which data is represented in storage.

230

Enterprise COBOL for z/OS, V5.2 Language Reference



Format 1

I—USAGEﬁ
IS

objref phrase:

I—NATIVE—|

|—NATIVEJ

(1

—NATIVE
—COMP-4

|—NATIVE—|

—COMP-5

(1)

—NATIVE

L COMPUTATIONAL
Lyarrve

—COMPUTATIONAL-1

|—NATIV E—|

—COMPUTATIONAL-2

|—NATIV EJ

—COMPUTATIONAL-3

(1)

—NATIVE

—COMPUTATIONAL-4

|—NATIV E—|

—COMPUTATIONAL-5

(1)

—NATIVE

—DISPLAY

I—NATIVE—|

—DISPLAY-1

|—NATIVEJ

—INDEX

LNATIONAL
Lvarrve

objref phrase

—PACKED-DECIMAL-
L (1)
NATIVE

—POINTER
—PROCEDURE-POINTER:

—FUNCTION-POINTER

|—OBJECT REFERENCE

Notes:

l—class—name—]—l

1 NATIVE is treated as a comment in all phrases for which NATIVE is
shown in the USAGE clause.

The USAGE clause can be specified for a data description entry with any

level-number other than 66 or 88.

Chapter 18. DATA DIVISION--data description entry

231



232

When specified at the group level, the USAGE clause applies to each elementary
item in the group. The usage of elementary items must not contradict the usage of
a group to which the elementary items belongs.

A USAGE clause must not be specified in a group level entry for which a
GROUP-USAGE NATIONAL clause is specified.

When a GROUP-USAGE NATIONAL clause is specified or implied for a group
level entry, USAGE NATIONAL must be specified or implied for every elementary
item within the group. For details, see ["GROUP-USAGE clause” on page 192

When the USAGE clause is not specified at either the group or elementary level, a
usage clause is implied with:

» Usage DISPLAY when the PICTURE clause contains only symbols other than G
or N

* Usage NATIONAL when the PICTURE clause contains only one or more of the
symbol N and the NSYMBOL(NATIONAL) compiler option is in effect

* Usage DISPLAY-1 when the PICTURE clause contains one or more of the symbol
N and the NSYMBOL(DBCS) compiler option is in effect

Computational items

A computational item is a value used in arithmetic operations. It must be numeric.
If a group item is described with a computational usage, the elementary items
within the group have that usage.

The maximum length of a computational item is 18 decimal digits, except for a
PACKED-DECIMAL item. If the ARITH(COMPAT) compiler option is in effect,
then the maximum length of a PACKED-DECIMAL item is 18 decimal digits. If the
ARITH(EXTEND) compiler option is in effect, then the maximum length of a
PACKED-DECIMAL item is 31 decimal digits.

The PICTURE of a computational item can contain only:

9 One or more numeric character positions
S One operational sign

v One implied decimal point

P One or more decimal scaling positions

COMPUTATIONAL-1 and COMPUTATIONAL-2 items (internal floating-point)
cannot have PICTURE strings.

BINARY
Specified for binary data items. Such items have a decimal equivalent
consisting of the decimal digits 0 through 9, plus a sign. Negative numbers
are represented as the two's complement of the positive number with the
same absolute value.

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Digits in PICTURE clause Storage occupied
1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword)
10 through 18 8 bytes (doubleword)

Enterprise COBOL for z/OS, V5.2 Language Reference



Binary data is big-endian: the operational sign is contained in the leftmost
bit.

BINARY, COMPUTATIONAL, and COMPUTATIONAL-4 data items can be
affected by the TRUNC compiler option. For information about the effect
of this compiler option, see TRUNC in the Enterprise COBOL Programming
Guide.

PACKED-DECIMAL
Specified for internal decimal items. Such an item appears in storage in
packed decimal format. There are two digits for each character position,
except for the trailing character position, which is occupied by the
low-order digit and the sign. Such an item can contain any of the digits 0
through 9, plus a sign, representing a value not exceeding 18 decimal
digits.
The sign representation uses the same bit configuration as the 4-bit sign
representation in zoned decimal fields. For details, see Sign representation of
zoned and packed-decimal data in the Enterprise COBOL Programming Guide.

COMPUTATIONAL or COMP (binary)
This is the equivalent of BINARY. The COMPUTATIONAL phrase is
synonymous with BINARY.

COMPUTATIONAL-1 or COMP-1 (floating-point)
Specified for internal floating-point items (single precision). COMP-1 items
are 4 bytes long.

COMPUTATIONAL-2 or COMP-2 (long floating-point)
Specified for internal floating-point items (double precision). COMP-2
items are 8 bytes long.

COMPUTATIONAL-3 or COMP-3 (internal decimal)
This is the equivalent of PACKED-DECIMAL.

COMPUTATIONAL-4 or COMP-4 (binary)
This is the equivalent of BINARY.

COMPUTATIONAL-5 or COMP-5 (native binary)
These data items are represented in storage as binary data. The data items
can contain values up to the capacity of the native binary representation (2,
4, or 8 bytes), rather than being limited to the value implied by the
number of nines in the picture for the item (as is the case for USAGE
BINARY data). When numeric data is moved or stored into a COMP-5
item, truncation occurs at the binary field size rather than at the COBOL
picture size limit. When a COMP-5 item is referenced, the full binary field
size is used in the operation.

The TRUNC(BIN) compiler option causes all binary data items (USAGE
BINARY, COMP, COMP-4) to be handled as if they were declared USAGE
COMP-5.

The following table shows several picture character strings, the resulting
storage representation, and the range of values for data items described
with USAGE COMP-5.

Picture Storage representation Numeric values

S9(1) through S9(4) Binary halfword (2 bytes) -32768 through +32767

Chapter 18. DATA DIVISION--data description entry 233



Picture Storage representation Numeric values

S9(5) through S9(9) Binary fullword (4 bytes) -2,147,483,648 through
+2,147,483,647

59(10) through S9(18) Binary doubleword (8 bytes) |-9,223,372,036,854,775,808
through
+9,223,372,036,854,775,807

9(1) through 9(4) Binary halfword (2 bytes) 0 through 65535

9(5) through 9(9) Binary fullword (4 bytes) 0 through 4,294,967,295

9(10) through 9(18) Binary doubleword (8 bytes) |0 through
18,446,744,073,709,551,615

The picture for a COMP-5 data item can specify a scaling factor (that is,
decimal positions or implied integer positions). In this case, the maximal
capacities listed in the table above must be scaled appropriately. For
example, a data item described with PICTURE S99V99 COMP-5 is
represented in storage as a binary halfword, and supports a range of
values from -327.68 to +327.67.

USAGE NOTE: When the ON SIZE ERROR phrase is used on an
arithmetic statement and a receiver is defined with USAGE COMP-5, the
maximum value that the receiver can contain is the value implied by the
item's decimal PICTURE character-string. Any attempt to store a value
larger than this maximum will result in a size error condition.

DISPLAY phrase

The data item is stored in character form, one character for each 8-bit byte. This
corresponds to the format used for printed output. DISPLAY can be explicit or
implicit.

USAGE IS DISPLAY is valid for the following types of items:

 Alphabetic

* Alphanumeric

* Alphanumeric-edited

* Numeric-edited

* External floating-point

* External decimal

Alphabetic, alphanumeric, alphanumeric-edited, and numeric-edited items are
discussed in [“Data categories and PICTURE rules” on page 206 .|

External decimal items with USAGE DISPLAY are sometimes referred to as zoned
decimal items. Each digit of a number is represented by a single byte. The 4
high-order bits of each byte are zone bits; the 4 high-order bits of the low-order
byte represent the sign of the item. The 4 low-order bits of each byte contain the
value of the digit.

If the ARITH(COMPAT) compiler option is in effect, then the maximum length of
an external decimal item is 18 digits. If the ARITH(EXTEND) compiler option is in

effect, then the maximum length of an external decimal item is 31 digits.

The PICTURE character-string of an external decimal item can contain only:
* One or more of the symbol 9

234 Enterprise COBOL for z/OS, V5.2 Language Reference



* The operational-sign, S
* The assumed decimal point, V
* One or more of the symbol P

DISPLAY-1 phrase

The DISPLAY-1 phrase defines an item as DBCS. The data item is stored in
character form, with each character occupying 2 bytes of storage.

FUNCTION-POINTER phrase

The FUNCTION-POINTER phrase defines an item as a function-pointer data item. A
function-pointer data item can contain the address of a procedure entry point.

A function-pointer is a 4-byte elementary item . Function-pointers have the same
capabilities as procedure-pointers, but are 4 bytes in length instead of 8 bytes.
Function-pointers are thus more easily interoperable with C function pointers.

A function-pointer can contain one of the following addresses or can contain
NULL:

* The primary entry point of a COBOL program, defined by the PROGRAM-ID
paragraph of the outermost program

* An alternate entry point of a COBOL program, defined by a COBOL ENTRY
statement

* An entry point in a non-COBOL program

A VALUE clause for a function-pointer data item can contain only NULL or
NULLS.

A function-pointer can be used in the same contexts as a procedure-pointer, as
defined in [“PROCEDURE-POINTER phrase” on page 238

INDEX phrase

A data item defined with the INDEX phrase is an index data item.

An index data item is a 4-byte elementary item that can be used to save index-name
values for future reference. An index data item is not necessarily connected with any
specific table. Through a SET statement, an index data item can be assigned an
index-name value. Such a value corresponds to the occurrence number in a table.

Direct references to an index data item can be made only in a SEARCH statement,
a SET statement, a relation condition, the USING phrase of the PROCEDURE
DIVISION header, or the USING phrase of the CALL or ENTRY statement.

An index data item can be part of an alphanumeric group item that is referenced
in a MOVE statement or an input/output statement.

An index data item saves values that represent table occurrences, yet is not
necessarily defined as part of any table. There is no conversion of values when an
index data item is referenced in the following circumstances:

e directly in a SEARCH or SET statement
* indirectly in a MOVE statement

* indirectly in an input or output statement

Chapter 18. DATA DIVISION--data description entry 235



An index data item cannot be a conditional variable.

The JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE clauses cannot be
used to describe a group item or elementary items described with the USAGE IS
INDEX clause.

SYNCHRONIZED can be used with USAGE IS INDEX to obtain efficient use of the
index data item.

NATIONAL phrase

The NATIONAL phrase defines an item whose content is represented in storage in
UTF-16 (CCSID 1200). The class and category of the data item depend on the
picture symbols that are specified in the associated PICTURE clause.

OBJECT REFERENCE phrase
A data item defined with the OBJECT REFERENCE phrase is an object reference. An
object reference data item is a 4-byte elementary item.

class-name-1
An optional class name.

You must define class-name-1 in the REPOSITORY paragraph in the
configuration section of the containing class or outermost program.

If specified, class-name-1 indicates that data-name-1 always refers to an
object-instance of class class-name-1 or a class derived from class-name-1.

Important: The programmer must ensure that the referenced object meets
this requirement; violations are not diagnosed.

If class-name-1 is not specified, the object reference can refer to an object of
any class. In this case, data-name-1 is a universal object reference.

You can specify data-name-1 within an alphanumeric group item without
affecting the semantics of the group item. There is no conversion of values
or other special handling of the object references when statements are
executed that operate on the group. The group continues to behave as an
alphanumeric group item.

An object reference can be defined in any section of the DATA DIVISION of a
factory definition, object definition, method, or program. An object-reference data
item can be used in only:

* A SET statement (format 7 only)

* A relation condition

* An INVOKE statement

* The USING or RETURNING phrase of an INVOKE statement
* The USING or RETURNING phrase of a CALL statement

* A program procedure division or ENTRY statement USING or RETURNING
phrase

* A method procedure division USING or RETURNING phrase

Object-reference data items:

* Are ignored in CORRESPONDING operations

* Are unaffected by INITIALIZE statements

* Can be the subject or object of a REDEFINES clause

236 Enterprise COBOL for z/OS, V5.2 Language Reference



¢ Cannot be a conditional variable

* Can be written to a file (but upon subsequent reading of the record the content
of the object reference is undefined)

A VALUE clause for an object-reference data item can contain only NULL or
NULLS.

You can use the SYNCHRONIZED clause with the USAGE OBJECT REFERENCE
clause to obtain efficient alignment of the object-reference data item.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot be used to
describe group or elementary items defined with the USAGE OBJECT REFERENCE
clause.

POINTER phrase

A data item defined with USAGE IS POINTER is a pointer data item. A pointer data
item is a 4-byte elementary item.

You can use pointer data items to accomplish limited base addressing. Pointer data
items can be compared for equality or moved to other pointer items.

A pointer data item can be used only:
* In a SET statement (format 5 only)
* In a relation condition

* In the USING phrase of a CALL statement, an ENTRY statement, or the
PROCEDURE DIVISION header

Pointer data items can be part of an alphanumeric group that is referred to in a
MOVE statement or an input/output statement. However, if a pointer data item is
part of a group, there is no conversion of values when the statement is executed.

A pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS POINTER to obtain efficient use of
the pointer data item.

A VALUE clause for a pointer data item can contain only NULL or NULLS.
A pointer data item cannot be a conditional variable.
A pointer data item does not belong to any class or category.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot be used to
describe group or elementary items defined with the USAGE IS POINTER clause.

Pointer data items are ignored in the processing of a CORRESPONDING phrase.
A pointer data item can be written to a data set, but upon subsequent reading of
the record that contains the pointer, the address contained might no longer
represent a valid pointer.

USAGE IS POINTER is implicitly specified for the ADDRESS OF special register.

For more information, see Using tables (arrays) and pointers in the Enterprise COBOL
Programming Guide.

Chapter 18. DATA DIVISION--data description entry 237



PROCEDURE-POINTER phrase
The PROCEDURE-POINTER phrase defines an item as a procedure-pointer data item.

A procedure-pointer data item is an 8-byte elementary item.

A procedure-pointer can contain one of the following addresses or can contain
NULL:

* The primary entry point of a COBOL program as defined by the program-ID
paragraph of the outermost program of a compilation unit

* An alternate entry point of a COBOL program as defined by a COBOL ENTRY
statement

* An entry point in a non-COBOL program

A procedure-pointer data item can be used only:
* In a SET statement (format 6 only)

* In a CALL statement

* In a relation condition

* In the USING phrase of an ENTRY statement or the PROCEDURE DIVISION
header

Procedure-pointer data items can be compared for equality or moved to other
procedure-pointer data items.

Procedure-pointer data items can be part of a group that is referred to in a MOVE
statement or an input/output statement. However, there is no conversion of values
when the statement is executed. If a procedure-pointer data item is written to a
data set, subsequent reading of the record that contains the procedure-pointer can
result in an invalid value in the procedure-pointer.

A procedure-pointer data item can be the subject or object of a REDEFINES clause.

SYNCHRONIZED can be used with USAGE IS PROCEDURE-POINTER to obtain
efficient alignment of the procedure-pointer data item.

The GLOBAL, EXTERNAL, and OCCURS clause can be used with USAGE IS
PROCEDURE-POINTER.

A VALUE clause for a procedure-pointer data item can contain only NULL or
NULLS.

The JUSTIFIED, PICTURE, and BLANK WHEN ZERO clauses cannot be used to
describe group or elementary items defined with the USAGE IS
PROCEDURE-POINTER clause.

A procedure-pointer data item cannot be a conditional variable.

A procedure-pointer data item does not belong to any class or category.

Procedure-pointer data items are ignored in CORRESPONDING operations.

NATIVE phrase

The NATIVE phrase is syntax checked, but has no effect on the execution of the
program.

238 Enterprise COBOL for z/OS, V5.2 Language Reference



VALUE clause

The VALUE clause specifies the initial contents of a data item or the values
associated with a condition-name. The use of the VALUE clause differs depending
on the DATA DIVISION section in which it is specified.

A VALUE clause that is used in the FILE SECTION or the LINKAGE SECTION in
an entry other than a condition-name entry is syntax checked, but has no effect on
the execution of the program.

In the WORKING-STORAGE SECTION and the LOCAL-STORAGE SECTION, the
VALUE clause can be used in condition-name entries or in specifying the initial
value of any data item. The data item assumes the specified value at the beginning
of program execution. If the initial value is not explicitly specified, the value is
unpredictable.

Format 1

Format 1 specifies the initial value of a data item. Initialization is independent of
any BLANK WHEN ZERO or JUSTIFIED clause that is specified.

Format 1: literal value

PF—VALUE—Ij—Z iteral
IS

\4
A

A format-1 VALUE clause specified in a data description entry that contains or is
subordinate to an OCCURS clause causes every occurrence of the associated data
item to be assigned the specified value. Each structure that contains the
DEPENDING ON phrase of the OCCURS clause is assumed to contain the
maximum number of occurrences for the purposes of VALUE initialization.

The VALUE clause must not be specified for a data description entry that contains
or is subordinate to an entry that contains either an EXTERNAL or a REDEFINES
clause. This rule does not apply to condition-name entries.

A format-1 VALUE clause can be specified for an elementary data item or for a
group item. When the VALUE clause is specified at the group level, the group area
is initialized without consideration for the subordinate entries within the group. In
addition, a VALUE clause must not be specified for subordinate entries within the

group.

For group items, the VALUE clause must not be specified if any subordinate
entries contain a JUSTIFIED or SYNCHRONIZED clause.

If the VALUE clause is specified for an alphanumeric group, all subordinate items
must be explicitly or implicitly described with USAGE DISPLAY.

The VALUE clause must not conflict with other clauses in the data description
entry or in the data description of that entry's hierarchy.

Chapter 18. DATA DIVISION--data description entry 239



240

The functions of the editing characters in a PICTURE clause are ignored in
determining the initial value of the item described. However, editing characters are
included in determining the size of the item. Therefore, any editing characters
must be included in the literal. For example, if the item is defined as PICTURE
+999.99 and the value is to be +12.34, then the VALUE clause should be specified
as VALUE "+012.34".

A VALUE clause cannot be specified for external floating-point items.

A data item cannot contain a VALUE clause if the prior data item contains an
OCCURS clause with the DEPENDING ON phrase.

Rules for literal values

* Wherever a literal is specified, a figurative constant can be substituted, in
accordance with the rules specified in [“Figurative constants” on page 13

e If the item is class numeric, the VALUE clause literal must be numeric. If the
literal defines the value of a WORKING-STORAGE item or LOCAL-STORAGE
item, the literal is aligned according to the rules for numeric moves, with one
additional restriction: The literal must not have a value that requires truncation
of nonzero digits. If the literal is signed, the associated PICTURE character-string
must contain a sign symbol.

* With some exceptions, numeric literals in a VALUE clause must have a value
within the range of values indicated by the PICTURE clause for the item. For
example, for PICTURE 99PPPD, the literal must be zero or within the range 1000
through 99000. For PICTURE PPP99, the literal must be within the range 0.00000
through 0.00099.

The exceptions are the following ones:

— Data items described with usage COMP-5 that do not have a picture symbol
P in their PICTURE clause

— When the TRUNC(BIN) compiler option is in effect, data items described with
usage BINARY, COMP, or COMP-4 that do not have a picture symbol P in
their PICTURE clause

A VALUE clause for these items can have a value up to the capacity of the
native binary representation.

* If the VALUE clause is specified for an elementary alphabetic, alphanumeric,
alphanumeric-edited, or numeric-edited item described with usage DISPLAY, the
VALUE clause literal must be an alphanumeric literal or a figurative constant.
The literal is aligned according to the alphanumeric alignment rules, with one
additional restriction: the number of characters in the literal must not exceed the
size of the item.

* If the VALUE clause is specified for an elementary national, national-edited, or
numeric-edited item described with usage NATIONAL, the VALUE clause literal
must be a national or alphanumeric literal or a figurative constant as specified in
[“Figurative constants” on page 13| The value of an alphanumeric literal is
converted from its source code representation to UTF-16 representation. The
literal is aligned according to the national alignment rules, with one additional
restriction: the number of characters in the literal must not exceed the size, in
character positions, of the item.

* If the VALUE clause is specified at the group level for an alphanumeric group,
the literal must be an alphanumeric literal or a figurative constant as specified in
[‘Figurative constants” on page 13 |other than ALL national-literal. The size of the
literal must not exceed the size of the group item.

Enterprise COBOL for z/OS, V5.2 Language Reference



* If the VALUE clause is specified at the group level for a national group, the
literal can be an alphanumeric literal, a national literal, or one of the figurative
constants ZERO, SPACE, QUOTES, HIGH-VALUE, LOW-VALUE, symbolic
character, ALL national-literal, or ALL -literal. The value of an alphanumeric literal
is converted from its source code representation to UTF-16 representation. Each
figurative constant represents a national character value. The size of the literal
must not exceed the size of the group item.

* A VALUE clause associated with a DBCS item must contain a DBCS literal, the
figurative constant SPACE, or the figurative constant ALL DBCS-literal. The
length of the literal must not exceed the size indicated by the data item's
PICTURE clause.

* A VALUE clause that specifies a national literal can be associated only with a
data item of class national.

* A VALUE clause that specifies a DBCS literal can be associated only with a data
item of class DBCS.

* A VALUE clause associated with a COMPUTATIONAL-1 or
COMPUTATIONAL-2 (internal floating-point) item must specify a floating-point
literal. In addition, the figurative constant ZERO and both integer and decimal
forms of the zero literal can be specified in a floating-point VALUE clause.

You cannot specify a floating-point format numeric literal in the VALUE clause
of a fixed-point numeric item.

For information about floating-point literal values, see [‘Rules for floating-point]
[literal values” on page 41

Format 2

This format associates a value, values, or ranges of values with a condition-name.
Each such condition-name requires a separate level-88 entry. Level-number 88 and
the condition-name are not part of the format-2 VALUE clause itself. They are
included in the format only for clarity.

Format 2: condition-name value

v

»»—88—condition-name-1 VALUE
L L s

VALUES_'_—_l_
ARE

»Y literal-1 7 . <
LI:THROUGlH literal-2
THRU

condition-name-1
A user-specified name that associates a value with a conditional variable. If
the associated conditional variable requires subscripts or indexes, each
procedural reference to the condition-name must be subscripted or indexed
as required for the conditional variable.

Chapter 18. DATA DIVISION--data description entry 241



242

Condition-names are tested procedurally in condition-name conditions (see
[“Conditional expressions” on page 260).

literal-1
Associates the condition-name with a single value.

The class of literal-1 must be a valid class for assignment to the associated
conditional variable.

literal-1 THROUGH literal-2
Associates the condition-name with at least one range of values. When the
THROUGH phrase is used, literal-1 must be less than literal-2. For detalils,
see [“Rules for condition-name entries.”|

literal-1 and literal-2 must be of the same class. The class of literal-1 and
literal-2 must be a valid class for assignment to the associated conditional
variable.

When literal-1 and literal-2 are DBCS literals, the range of DBCS values
specified by the THROUGH phrase is based on the binary collating
sequence of the hexadecimal values of the DBCS characters.

When literal-1 and literal-2 are national literals, the range of national
character values specified by the THROUGH phrase is based on the binary
collating sequence of the hexadecimal values of the national characters
represented by the literals.

If the associated conditional variable is of class DBCS, literal-1 and literal-2
must be DBCS literals. The figurative constant SPACE or the figurative
constant ALL DBCS-literal can be specified.

If the associated conditional variable is of class national, literal-1 and
literal-2 must be either both national literals or both alphanumeric literals
for a given condition-name. The figurative constants ZERO, SPACE,
QUOTE, HIGH-VALUE, LOW-VALUE, symbolic-character, ALL
national-literal, or ALL literal can be specified.

Rules for condition-name entries
There are certain rules for condition-name entries.

The rules are:

* The VALUE clause is required in a condition-name entry, and must be the only
clause in the entry. Each condition-name entry is associated with a preceding
conditional variable. Thus every level-88 entry must always be preceded either
by the entry for the conditional variable or by another level-88 entry when
several condition-names apply to one conditional variable. Each such level-88
entry implicitly has the PICTURE characteristics of the conditional variable.

* A space, a separator comma, or a separator semicolon must separate successive
operands.

Each entry must end with a separator period.
* The keywords THROUGH and THRU are equivalent.

* The condition-name entries associated with a particular conditional variable
must immediately follow the conditional variable entry. The conditional variable
can be any elementary data description entry except the following ones:

— Another condition-name
— A RENAMES clause (level-66 item)
— An item described with USAGE IS INDEX

Enterprise COBOL for z/OS, V5.2 Language Reference



— An item described with USAGE POINTER, USAGE PROCEDURE-POINTER,
USAGE FUNCTION-POINTER, or USAGE OBJECT REFERENCE

* Condition-names can be specified both at the group level and at subordinate
levels within an alphanumeric group or national group.

* When the condition-name is specified for an alphanumeric group data
description entry:

— The value of literal-1 (or literal-1 and literal-2) must be specified as an
alphanumeric literal or figurative constant.

— The group can contain items of any usage.

* When the condition-name is specified for a national group data description
entry:
— The value of literal-1 (or literal-1 and literal-2) must be specified as an
alphanumeric literal, a national literal, or a figurative constant.
— The group can contain only items of usage national, as specified for the
[*“GROUP-USAGE clause” on page 192

* When the condition-name is associated with an alphanumeric group data
description entry or a national group data description entry:

— The size of each literal value must not exceed the sum of the sizes of all the
elementary items within the group.

— No element within the group can contain a JUSTIFIED or SYNCHRONIZED
clause.

* Relation tests implied by the definition of a condition-name are performed in
accordance with the rules referenced in the table below.

Table 16. Relation test references for condition-names

Type of conditional variable Relation condition rules

Alphanumeric group item [“Group comparisons” on page 270

National group item (treated as elementary data [“National comparisons” on page 269|

item of class national)

Elementary data item of class alphanumeric “ Alphanumeric comparisons” on page]
26

Elementary data item of class national [“National comparisons” on page 269|

Elementary data item of class numeric [“Numeric comparisons” on page 270|

Elementary data item of class DBCS [“DBCS comparisons” on page 269

* A VALUE clause that specifies a national literal can be associated with a
condition-name defined only for a data item of class national.

* A VALUE clause that specifies a DBCS literal can be associated with a
condition-name defined only for a data item of class DBCS.

* The literals in a condition-name entry for an elementary data item of class
national or a national group item must be either national literals or
alphanumeric literals, and literal-1 and literal-2 must be of the same class. For
alphanumeric groups or elementary data items of other classes, the type of
literal must be consistent with the data type of the conditional variable. In the
following example:

— CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables.

The PICTURE associated with COUNTY-NO limits the condition-name value
to a two-digit numeric literal.

The PICTURE associated with CITY limits the condition-name value to a
three-character alphanumeric literal.

Chapter 18. DATA DIVISION--data description entry 243



— The associated condition-names are level-88 entries.

Any values for the condition-names associated with CITY-COUNTY-INFO
cannot exceed five characters.

Because this is an alphanumeric group item, the literal must be alphanumeric.
05 CITY-COUNTY-INFO.

88 BRONX VALUE "O3NYC".
88 BROOKLYN VALUE "24NYC".
88 MANHATTAN VALUE "31NYC".
88 QUEENS VALUE "41NYC".
88 STATEN-ISLAND VALUE "43NYC".
10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW-YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE "BUF".
88 NEW-YORK-CITY VALUE "NYC".
88 POUGHKEEPSIE VALUE "POK".

05 POPULATION...

Format 3

This format assigns an invalid address as the initial value of an item defined as
USAGE POINTER, USAGE PROCEDURE POINTER, or USAGE
FUNCTION-POINTER. It also assigns an invalid object reference as the initial
value of an item defined as USAGE OBJECT REFERENCE.

Format 3: NULL value

»»—VALUE NULL ><

|—I S—l |—NU LLS

VALUE IS NULL can be specified only for elementary items described implicitly or
explicitly as USAGE POINTER, USAGE PROCEDURE-POINTER, USAGE
FUNCTION-POINTER, or USAGE OBJECT REFERENCE.

VOLATILE clause

244

The VOLATILE clause indicates that a data item's value can be modified or
referenced in ways that the compiler cannot detect, such as by a Language
Environment (LE) condition handler routine or by some other asynchronous
process or thread. Thus, optimization is restricted for the data item.

Format

»»—VOLATILE ><

In particular, the compiler will enforce the following restrictions:

Enterprise COBOL for z/OS, V5.2 Language Reference



* A volatile data item is loaded from memory each time it is referenced and stored
to memory each time it is modified.

¢ Loads and stores to the data item are never reordered or eliminated.

* Storage is always allocated for the data item and initialized where necessary,
even when no references to the data item are in the compilation unit.

Note: The STGOPT option is ignored for data items that have the VOLATILE
clause.

The VOLATILE clause can be specified on data items that are defined in the FILE
SECTION, WORKING-STORAGE SECTION, LOCAL-STORAGE SECTION, and
LINKAGE SECTION. This clause can be specified together with any other clauses.
For example, VOLATILE can be specified on tables, group data items, elementary
data items, record descriptions and variably located data items.

However, there are additional considerations for groups:

* The VOLATILE clause can be specified for elementary items and for level-01
group items, in which case every elementary item within the group item is
volatile.

* When one or more elementary data items within a group item are defined with
the VOLATILE clause, the group item is treated as volatile by the compiler.

The VOLATILE clause cannot be specified on level-66 or level-88 data items.

It is not possible to indicate that all memory associated with a class instance is
volatile. However, individual members of a class can be defined with the
VOLATILE clause.

Example of using VOLATILE with groups:

Consider the following group definition:

01 DATA-COLLECTION.
03 DATA-ITEMS-A VOLATILE.
05 DATA-AL PIC S9(9) BINARY.
05 DATA-A2 PIC S9(9) BINARY.
03 DATA-ITEMS-B.
05 DATA-BL PIC S9(9).
05 DATA-B2 PIC S9(9) VOLATILE.
03 DATA-ITEMS-C.
05 DATA-C1 PIC S9(9).
05 DATA-C2 PIC S9(9).

In this example:

* DATA-ITEMS-A and DATA-B2 are considered volatile because they are defined
with the VOLATILE clause.

* DATA-A1 and DATA-A?2 are treated as volatile because they are both
subordinate to a group item (DATA-ITEMS-A) that has the VOLATILE clause.

* DATA-COLLECTION and DATA-ITEMS-B are treated as volatile because they
are group items that have subordinates that are defined with the VOLATILE
clause. For example:

MOVE DATA-ITEMS-B TO DATA-ITEMS-C.
In this case, by treating DATA-ITEMS-B as volatile, the compiler ensures that the

latest value of its subordinate member DATA-B2 is used in the memory copy
operation.

Chapter 18. DATA DIVISION--data description entry 245



246

In the following LE condition handler scenario, it is necessary to specify the "STEP"
data item with the VOLATILE clause to achieve correct results. In particular, if the
VOLATILE clause is not used, the compiler might assume that "STEP" is never
referenced between the assignment of "2" to "STEP" and the assignment of "3" to
"STEP" and might therefore decide to eliminate the first assignment during
optimization. Unfortunately, this could result in a problem because if a
divide-by-zero condition occurs during execution of the subsequent line of code,
the condition handler will execute and reference the external variable "STEP",
which might have the incorrect value.

Main program:

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 USER-HANDLER PROCEDURE-POINTER.
77 TOKEN  PIC S9(9) COMP.

01 QTY PIC 9(8) BINARY.

01 DIVISOR PIC 9(8) BINARY VALUE 0.
01 ANSWER PIC 9(8) BINARY.

01 STEP PIC 9(8) BINARY VALUE © EXTERNAL VOLATILE.

SET USER-HANDLER TO ENTRY 'HANDLER'

CALL 'CEEHDLR' USING USER-HANDLER, TOKEN, NULL

COMPUTE STEP = 2 *> Compiler thinks this store has no purpose and may remove it

COMPUTE ANSWER = NUMBER / DIVISOR *> Divide-by-zero exception occurs here, handler is invoked,
*> and reference to 'STEP' is made but hidden from compiler

DISPLAY 'ANSWER = ' ANSWER

COMPUTE STEP = 3

DISPLAY 'STEP = ' STEP

COMPUTE ANSWER = QTY + 2

Condition handler program:
IDENTIFICATION DIVISION.
PROGRAM-ID. HANDLER.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 STEP PIC 9(8) BINARY EXTERNAL.
PROCEDURE DIVISION.

bISPLAY "ERROR: A PROBLEM WAS ENCOUNTERED IN STEP ' STEP.

Enterprise COBOL for z/OS, V5.2 Language Reference



Part 6. Procedure division

© Copyright IBM Corp. 1991, 2018 247



248 Enterprise COBOL for z/OS, V5.2 Language Reference



Chapter 19. Procedure division structure

The PROCEDURE DIVISION is an optional division.

Program procedure division
The program procedure division consists of optional declaratives, and
procedures that contain sections, paragraphs, sentences, and statements.

Factory procedure division
The factory procedure division contains only factory method definitions.

Object procedure division
The object procedure division contains only object method definitions.

Method procedure division
A method procedure division consists of optional declaratives, and
procedures that contain sections, paragraphs, sentences, and statements. A
method can INVOKE other methods, be recursively invoked, and issue a
CALL to a program. A method procedure division cannot contain nested
programs or methods.

For additional details on a method procedure division, see

[for a method procedure division” on page 250.|

© Copyright IBM Corp. 1991, 2018 249



Format: procedure division

procedure-division-header
Efactory—or—obj ect-procedure-division-header—

method-procedure-division-header

\/

(1)

DECLARATIVES.—'| sect |—.—use—statement

e

END DECLARATIVES.

(2)

»—Y section-name SECTION

Lpr‘ior‘ity-number

sect:

(3)

e

|—section-name—SECTION
(3)

Lpriori ty-number

para:

—"-paragraph-name.

—

Y _sentence

Notes:

1 The USE statement is described under [“USE statement” on page 562

THREAD option.

2 Section-name can be omitted. If you omit section-name, paragraph-name can be omitted.

3  Priority-numbers are not valid for methods, recursive programs, or programs compiled with the

Requirements for a method procedure division

There are specific requirements when you code a method procedure division.

The requirements are:

* You can use the EXIT METHOD statement or the GOBACK statement to return

control to the invoking method or program. An implicit EXIT METHOD

statement is generated as the last statement of every method procedure division.

250 Enterprise COBOL for z/OS, V5.2 Language Reference




For details on the EXIT METHOD statement, see [“Format 3 (method)” on page]
p43]

* You can use the STOP RUN statement (which terminates the run unit) in a
method.

* You can use the RETURN-CODE special register within a method procedure
division to access return codes from subprograms that are called with the CALL
statement, but the RETURN-CODE value is not returned to the invoker of the
current method. Use the procedure division RETURNING data name to return a
value to the invoker of the current method. For details, see the discussion of
RETURNING data-name-2 under [“The PROCEDURE DIVISION header.”]|

You cannot specify the following statements or clauses in a method procedure
division:

* ALTER

* ENTRY

* EXIT PROGRAM

* GO TO without a specified procedure name

* SEGMENT-LIMIT

* USE FOR DEBUGGING

The PROCEDURE DIVISION header

The PROCEDURE DIVISION, if specified, is identified by one of the following
headers, depending on whether you are specifying a program, a factory definition,
an object definition, or a method definition.

The following syntax diagram shows the format for a PROCEDURE DIVISION
header in a program.

Format: program procedure division header

»»—PROCEDURE DIVISION

\/

> »

G—Y Y _data-name-1

—L—_I—REFERENCE—
BY
VALUE
Ly

USIN

=

|—RETURNING—data—name—Z—|

The following syntax diagram shows the format for a PROCEDURE DIVISION
header in a factory paragraph or object paragraph.

Chapter 19. Procedure division structure 251



252

Format: factory and object procedure division header

»»—PROCEDURE DIVISION. ><

The following syntax diagram shows the format for a PROCEDURE DIVISION
header in a method.

Format: method procedure division header

»»—PROCEDURE DIVISION >

USING— ] VALUE—Y—data-name-1
BY

|—RETURNING—data-name-Z—|

The USING phrase

The USING phrase specifies the parameters that a program or method receives
when the program is called or the method is invoked.

The USING phrase is valid in the PROCEDURE DIVISION header of a called
subprogram or invoked method entered at the beginning of the nondeclaratives
portion. Each USING identifier must be defined as a level-01 or level-77 item in the
LINKAGE SECTION of the called subprogram or invoked method.

In a called subprogram entered at the first executable statement following an
ENTRY statement, the USING phrase is valid in the ENTRY statement. Each
USING identifier must be defined as a level-01 or level-77 item in the LINKAGE
SECTION of the called subprogram.

However, a data item specified in the USING phrase of the CALL statement can be
a data item of any level in the DATA DIVISION of the calling COBOL program or
method. A data item specified in the USING phrase of an INVOKE statement can
be a data item of any level in the DATA DIVISION of the invoking COBOL
program or method.

A data item in the USING phrase of the header can have a REDEFINES clause in
its data description entry.

It is possible to call COBOL programs from non-COBOL programs or to pass user
parameters from a system command to a COBOL main program. COBOL methods
can be invoked only from Java or COBOL.

Enterprise COBOL for z/OS, V5.2 Language Reference



The order of appearance of USING identifiers in both calling and called
subprograms, or invoking methods or programs and invoked methods, determines
the correspondence of single sets of data available to both. The correspondence is
positional and not by name. For calling and called subprograms, corresponding
identifiers must contain the same number of bytes although their data descriptions
need not be the same.

For index-names, no correspondence is established. Index-names in calling and
called programs, or invoking method or program and invoked methods, always
refer to separate indexes.

The identifiers specified in a CALL USING or INVOKE USING statement name the
data items available to the calling program or invoking method or program that
can be referred to in the called program or invoked method. These items can be
defined in any DATA DIVISION section.

A given identifier can appear more than once in a USING phrase. The last value
passed to it by a CALL or INVOKE statement is used.

The BY REFERENCE or BY VALUE phrase applies to all parameters that follow
until overridden by another BY REFERENCE or BY VALUE phrase.

BY REFERENCE (for programs only)
When an argument is passed BY CONTENT or BY REFERENCE, BY
REFERENCE must be specified or implied for the corresponding formal
parameter on the PROCEDURE or ENTRY USING phrase.

BY REFERENCE is the default if neither BY REFERENCE nor BY VALUE is
specified.

If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed BY REFERENCE (explicit or implicit),
the program executes as if each reference to a USING identifier in the
called subprogram is replaced by a reference to the corresponding USING
identifier in the calling program.

If the reference to the corresponding data item in the CALL statement
declares the parameter to be passed BY CONTENT, the value of the item is
moved when the CALL statement is executed and placed into a
system-defined storage item that possesses the attributes declared in the
LINKAGE SECTION for data-name-1. The data description of each
parameter in the BY CONTENT phrase of the CALL statement must be the
same, meaning no conversion or extension or truncation, as the data
description of the corresponding parameter in the USING phrase of the
header.

BY VALUE
When an argument is passed BY VALUE, the value of the argument is
passed, not a reference to the sending data item. The receiving subprogram
or method has access only to a temporary copy of the sending data item.
Any modifications made to the formal parameters that correspond to an
argument passed BY VALUE do not affect the argument.

Parameters specified in the USING phrase of a method procedure division
header must be passed to the method BY VALUE. See Passing data in the
Enterprise COBOL Programming Guide for examples that illustrate these
concepts.

Chapter 19. Procedure division structure 253



254

data-name-1
data-name-1 must be a level-01 or level-77 item in the LINKAGE SECTION.

When data-name-1 is an object reference in a method procedure division
header, an explicit class-name must be specified in the data description
entry for that object reference; that is, data-name-1 must not be a universal
object reference.

For methods, the parameter data types are restricted to the data types that
are interoperable between COBOL and Java, as listed in
[data types for COBOL and Java” on page 368

RETURNING phrase

The RETURNING phrase specifies a data item that is to receive the program or
method result.

data-name-2
data-name-2 is the RETURNING data item. data-name-2 must be a level-01
or level-77 item in the LINKAGE SECTION.

Note: An unbounded group cannot be specified as data-name-2.

In a method procedure division header, the data type of data-name-2 must
be one of the types supported for Java interoperation, as listed in
[“Interoperable data types for COBOL and Java” on page 368 .|

The RETURNING data item is an output-only parameter. On entry to the
method, the initial state of the RETURNING data item has an undefined
and unpredictable value. You must initialize the PROCEDURE DIVISION
RETURNING data item before you reference its value. The value that is
returned to the invoking routine is the value that the data item has at the
point of exit from the method. See ['RETURNING phrase” on page 366| for
further details on conformance requirements for the INVOKE RETURNING
identifier and the method RETURNING data item.

Do not use the PROCEDURE DIVISION RETURNING phrase in:
* Programs that contain the ENTRY statement.

* Nested programs.

* Main programs: Results of specifying PROCEDURE DIVISION
RETURNING on a main program are undefined. You should specify the
PROCEDURE DIVISION RETURNING phrase only on called
subprograms. For main programs, use the RETURN-CODE special
register to return a value to the operating environment.

References to items in the LINKAGE SECTION

Data items defined in the LINKAGE SECTION of the called program or invoked
method can be referenced within the PROCEDURE DIVISION of that program if
and only if they satisfy one of the conditions as listed in the topic.

* They are operands of the USING phrase of the PROCEDURE DIVISION header
or the ENTRY statement.

* They are operands of SET ADDRESS OF, CALL ... BY REFERENCE ADDRESS
OF, or INVOKE ... BY REFERENCE ADDRESS OF.

* They are defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions.

* They are items subordinate to any item that satisfies the condition in the rules
above.

Enterprise COBOL for z/OS, V5.2 Language Reference



* They are condition-names or index-names associated with data items that satisfy
any of the above conditions.

Declaratives

Declaratives provide one or more special-purpose sections that are executed when
an exceptional condition occurs.

When declarative sections are specified, they must be grouped at the beginning of
the procedure division and the entire PROCEDURE DIVISION must be divided
into sections.

Each declarative section starts with a USE statement that identifies the section's
function. The series of procedures that follow specify the actions that are to be
taken when the exceptional condition occurs. Each declarative section ends with
another section-name followed by a USE statement, or with the keywords END
DECLARATIVES.

The entire group of declarative sections is preceded by the keyword
DECLARATIVES written on the line after the PROCEDURE DIVISION header. The
group is followed by the keywords END DECLARATIVES. The keywords
DECLARATIVES and END DECLARATIVES must each begin in Area A and be
followed by a separator period. No other text can appear on the same line.

In the declaratives part of the PROCEDURE DIVISION, each section header must
be followed by a separator period, and must be followed by a USE statement
followed by a separator period. No other text can appear on the same line.

The USE statement has three formats, discussed in these sections:
+ ["EXCEPTION/ERROR declarative” on page 562|
* ["'DEBUGGING declarative” on page 564|

The USE statement itself is never executed; instead, the USE statement defines the
conditions that execute the succeeding procedural paragraphs, which specify the
actions to be taken. After the procedure is executed, control is returned to the
routine that activated it.

A declarative procedure can be performed from a nondeclarative procedure.
A nondeclarative procedure can be performed from a declarative procedure.

A declarative procedure can be referenced in a GO TO statement in a declarative
procedure.

A nondeclarative procedure can be referenced in a GO TO statement in a
declarative procedure.

You can include a statement that executes a previously called USE procedure that
is still in control. However, to avoid an infinite loop, you must be sure there is an

eventual exit at the bottom.

The declarative procedure is exited when the last statement in the procedure is
executed.

Chapter 19. Procedure division structure 255



Procedures

Within the PROCEDURE DIVISION, a procedure consists of a section or a group of
sections, and a paragraph or group of paragraphs.

A procedure-name is a user-defined name that identifies a section or a paragraph.

A section-header optionally followed by one or more paragraphs.

Section-header
A section-name followed by the keyword SECTION, optionally
followed by a priority-number, followed by a separator period.

Section-headers are optional after the keywords END
DECLARATIVES or if there are no declaratives.

Section-name
A user-defined word that identifies a section. A referenced
section-name, because it cannot be qualified, must be unique
within the program in which it is defined.

Priority-number
An integer or a positive signed numeric literal ranging in value
from 0 through 99. Priority-number identifies a fixed segment or an
independent segment that is to contain the section.

Sections in the declaratives portion must contain priority numbers in the
range of 0 through 49.

You cannot specify priority-numbers:

* In a method definition

* In a program that is declared with the RECURSIVE attribute

* In a program compiled with the THREAD compiler option

A section ends immediately before the next section header, or at the end of

the PROCEDURE DIVISION, or, in the declaratives portion, at the
keywords END DECLARATIVES.

Segments

A segment consists of all sections in a program that have the same
priority-number. Priority-number determines whether a section is stored in
a fixed segment or an independent segment at run time.

Segments with a priority-number of 0 through 49 are fixed segments.
Segments with a priority-number of 50 through 99 are independent
segments.

The type of segment (fixed or independent) controls the segmentation
feature.

In fixed segments, procedures are always in last-used state. In independent
segments, procedures are in initial state each time the segment receives
control from a segment with a different priority-number, except when the
transfer of control results from the execution of a GOBACK or EXIT
PROGRAM statement. Restrictions on the use of ALTER, SORT, and
MERGE statements in independent segments are described under those
statements.

Enterprise COBOL does not support the overlay feature of the 85 COBOL
Standard segmentation module.

256 Enterprise COBOL for z/OS, V5.2 Language Reference



Paragraph
A paragraph-name followed by a separator period, optionally followed by
one or more sentences.

Paragraphs must be preceded by a period because paragraphs always
follow either the IDENTIFICATION DIVISION header, a section, or
another paragraph, all of which must end with a period.

Paragraph-name
A user-defined word that identifies a paragraph. A
paragraph-name, because it can be qualified, need not be unique.

If there are no declaratives (format 2), a paragraph-name is not
required in the PROCEDURE DIVISION.

A paragraph ends immediately before the next paragraph-name or section
header, or at the end of the PROCEDURE DIVISION, or, in the declaratives
portion, at the keywords END DECLARATIVES.

Paragraphs need not all be contained within sections, even if one or more
paragraphs are so contained.

Sentence
One or more statements terminated by a separator period.

Statement
A syntactically valid combination of identifiers and symbols (literals,
relational-operators, and so forth) beginning with a COBOL verb.

Identifier
The word or words necessary to make unique reference to a data item,
optionally including qualification, subscripting, indexing, and
reference-modification. In any PROCEDURE DIVISION reference (except
the class test), the contents of an identifier must be compatible with the
class specified through its PICTURE clause, otherwise results are
unpredictable.

Execution begins with the first statement in the PROCEDURE DIVISION,
excluding declaratives. Statements are executed in the order in which they are
presented for compilation, unless the statement rules dictate some other order of
execution.

The end of the PROCEDURE DIVISION is indicated by one of the following items:

e An IDENTIFICATION DIVISION header that indicates the start of a nested
source program

* An END PROGRAM, END METHOD, END FACTORY, or END OBJECT marker

* The physical end of a program; that is, the physical position in a source program
after which no further source program lines occur

Arithmetic expressions

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements.

An arithmetic expression can consist of any of the following items:

1. An identifier described as a numeric elementary item (including numeric
functions)

2. A numeric literal

Chapter 19. Procedure division structure 257



258

3. The figurative constant ZERO

4. Identifiers and literals, as defined in items 1, 2, and 3, separated by arithmetic
operators

5. Two arithmetic expressions, as defined in items 1, 2, 3, or 4, separated by an
arithmetic operator

6. An arithmetic expression, as defined in items 1, 2, 3, 4, or 5, enclosed in
parentheses

Any arithmetic expression can be preceded by a unary operator.

Identifiers and literals that appear in arithmetic expressions must represent either
numeric elementary items or numeric literals on which arithmetic can be
performed.

If an exponential expression is evaluated as both a positive and a negative number,
the result is always the positive number. For example, the square root of 4:

4 xx 0.5
is evaluated as +2 and -2. Enterprise COBOL always returns +2.

If the value of an expression to be raised to a power is zero, the exponent must
have a value greater than zero. Otherwise, the size error condition exists. In any
case where no real number exists as the result of an evaluation, the size error
condition exists.

Arithmetic operators

Five binary arithmetic operators and two unary arithmetic operators can be used in
arithmetic expressions. These operators are represented by specific characters that
must be preceded and followed by a space.

These binary and unary arithmetic operators are shown in [Iable 1

Table 17. Binary and unary operators

Binary operator Meaning Unary operator Meaning

+ Addition + Multiplication by +1
- Subtraction - Multiplication by -1
* Multiplication

/ Division

** Exponentiation

Limitation: Exponents in fixed-point exponential expressions cannot contain more
than nine digits. The compiler will truncate any exponent with more than nine
digits. In the case of truncation, the compiler will issue a diagnostic message if the
exponent is a literal or constant; if the exponent is a variable or data-name, a
diagnostic message is issued at run time.

Parentheses can be used in arithmetic expressions to specify the order in which
elements are to be evaluated.

Expressions within parentheses are evaluated first. When expressions are contained
within nested parentheses, evaluation proceeds from the least inclusive to the most
inclusive set.

Enterprise COBOL for z/OS, V5.2 Language Reference



When parentheses are not used, or parenthesized expressions are at the same level
of inclusiveness, the following hierarchic order is implied:

1. Unary operator

2. Exponentiation

3. Multiplication and division
4. Addition and subtraction

Parentheses either eliminate ambiguities in logic where consecutive operations
appear at the same hierarchic level, or modify the normal hierarchic sequence of
execution when this is necessary. When the order of consecutive operations at the
same hierarchic level is not completely specified by parentheses, the order is from
left to right.

An arithmetic expression can begin only with a left parenthesis, a unary operator,
or an operand (that is, an i