<|lI!

Enterprise COBOL for z/0S

Migration Guide

Version 5.1.1

GC14-7383-02

<|lI!

Enterprise COBOL for z/0S

Migration Guide

Version 5.1.1

GC14-7383-02

Note!

Before using this information and the product it supports, be sure to read the general information under

Third edition (March 2019)

This edition applies to Version 5 Release 1 Modification 1 of IBM Enterprise COBOL for z/OS (program number
5655-W32) and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure
that you are using the correct edition for the level of the product.

You can view or download softcopy publications free of charge at www.ibm.com/shop/publications/order/.

© Copyright IBM Corporation 1991, 2019.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables .

Preface. .
About this information.
Terminology clarification . .
IBM COBOL compilers by name and version
Acknowledgement e
Using your information. .
Summary of changes to this 1nforrnat1on
Changes in GC14-7383-02 (March 2019) .
Changes in GC14-7383-00 (June 2013)
Changes in GC23-8527-01 (August 2009).
Changes in GC23-8527-00 (December 2007)
Changes in GC27-1409-05 (November 2006)
Changes in GC27-1409-04 (March 2006) .
Changes in GC27-1409-03 (July 2005)
Changes in GC27-1409-02 (December 2003)
Changes in GC27-1409-01 (September 2002)
Changes in GC27-1409-00 (November 2001)
Changes in GC26-4764-05 (September 2000)
Summary of changes to the COBOL compilers .
Changes in IBM Enterprise COBOL for z/OS,
Version 5 Release 1 Modification 1 . .
Changes in IBM Enterprise COBOL for z/ OS
Version 5 Release 1. .
Changes in IBM Enterprise COBOL for z / OS
Version 4 Release 2. . .
Changes in IBM Enterprise COBOL for z / OS
Version 4 Release 1. . .
Changes in IBM Enterprise COBOL for z / OS
Version 3 Release 4: service updates, November
2006
Changes in IBM Enterprlse COBOL for z / OS
Version 3 Release 4
Changes in IBM Enterprise COBOL for z/ OS
Version 3 Release 3 .
Changes in IBM Enterprlse COBOL for z / OS
and OS/390, Version 3 Release 2.
Changes in IBM Enterprise COBOL for z / OS
and OS/390, Version 3 Release 1.
Changes in COBOL for OS/390 & VM, Versmn
2 Release 2 .
Changes in COBOL for OS/ 390 & VM V2 Rl
Modification 2. .
Changes in COBOL for OS/ 390 & VM V2 Rl
Modification 1. .
Changes in COBOL for OS/ 390 & VM Ver510n
2 Release 1 . e e
How to send your comments .
Accessibility .
Interface 1nf0rrnat10n
Keyboard navigation .
Accessibility of this mformat1on
IBM and accessibility

© Copyright IBM Corp. 1991, 2019

. Vil

. ix
. 1x
. ix

. xi
. Xi
. Xii
. Xii
. xiii
. Xxiii
. Xxiii
. Xxiii
. Xiv
. Xiv
. Xiv
. Xiv
. XV

. XV

. XV

. XX

. XX

. xxi

. Xxii

. XXiii

. Xxiii

. XXiv

. XXV

. XXVi

. XXVi

. Xxvi
. Xxvi
. Xxvii
. Xxvii
. Xxvii
. Xxvii
. Xxvii

Part 1. Overview 1
Chapter 1. Introducing the new compiler
and run time. e e e .. .3
Product relationships: compller runtime library,
debug .4
Comparison of COBOL compllers .5
Language Environment's runtime support for
different compilers . . 6
Advantages of the new compller and run tnne . . 6
Changes with the new compiler and run time . .12
CMPR2 compiler option not available 12
FLAGMIG compiler option . .12
SOM-based object-oriented COBOL not avallable 12
Integrated DB2 coprocessor available . 12
Integrated CICS translator available . .13
General migration tasks .13
Planning your strategy . .13
Upgrading your source to Enterprlse COBOL .13
Adding Enterprise COBOL programs to ex1st1ng
applications .. .15
Chapter 2. Do | need to recompile? .17
Migration basics . .17
Runtime migration . .17
Source migration . 18
Service support for OS/VS COBOL and VS COBOL
II programs ... 18
Changing OS/ VS COBOL programs . . .18
Interoperability with older levels of IBM COBOL
programs . e e . 19
Part 2. Migration strategies. .21
Chapter 3. Compiler upgrade checklist 23
Chapter 4. Planning to upgrade source
programs . 25
Preparing to upgrade your source . . 25
Installing Enterprise COBOL .25
Assessing storage requirements. . . 25
Deciding which conversion tools to use and
install them 206
Educating your programmers on new compiler
features. . 26
Taking an 1nventory of your apphcat1ons .27
Taking an inventory of vendor tools, packages,
and products . .27
Taking an inventory of COBOL apphcatlons .27
Prioritizing your applications .o . 28
Assigning complexity ratings . 28
Determining conversion priority . 30
Setting up a conversion procedure. . 31
iii

Programs without CICS or Report Writer . . . 32

Programs with CICS33
Programs with Report Writer statements to be
discarded35
Programs with Report erter statements to be
retained36
Making application program updates N 4

Part 3. Upgrading programs 41

Chapter 5. Upgrading OS/VS COBOL
source programs 43

Comparing OS/VS COBOL to Enterpnse COBOL . 43
Language elements that require change (quick

reference)43
Converting to COBOL 85 Standard R
COBOL Conversion Tool (CCCA)54
0OS/VS COBOL MIGR compiler option54
Language elements that require other products for
support.55
Report Writer.55
Language elements that are not 1mplemented . .56
ISAM file handling.56
BDAM file handling57
Communication feature . . . 4
Language elements that are not supported . . .58
SEARCH ALL statements. . . . 64
Undocumented OS/VS COBOL extens1ons that are
not supported64
Language elements that changed from OS / VS
COBOL.72

Chapter 6. Compiling converted OS/VS
COBOL programs89

Compiler options for converted programs 89
Unsupported OS/VS COBOL compller optlons . .9
Prolog format changes.9

Chapter 7. Upgrading VS COBOL i

source programs 93
Upgrading VS COBOL II programs complled w1th
the CMPR2 compiler option.93
COBOL 85 Standard interpretation changes .. .93
REPLACE and comment lines 9%
Precedence of USE procedures 94
Reference modification of a var1able—length group
receiver. . . P
ACCEPT statement T 1)
New reserved words96
New reserved words9
Undocumented VS COBOL II extenslons ... 97
SEARCH ALL statements.97

Upgrading programs that use SIMVRD support .97

Chapter 8. Compiling VS COBOL I

programs99
Compiler options for VS COBOL II programs . . .99
Compiling with Enterprise COBOL99

iV Enterprise COBOL for z/OS, V5.1.1 Migration Guide

Compiler options not supported in Enterprise
COBOL.9
Prolog format changes100

Chapter 9. Upgrading IBM COBOL

source programs. . . . e [
Determining which programs require upgrade
before you compile with Enterprise COBOL . . . 101
Upgrading programs that have SEARCH ALL
statements 102
Upgrading programs that use SIMVRD support 104
Language Environment runtime considerations . . 105
Numeric items with PICTURE P considerations . . 105
New reserved words in Enterprise COBOL . . . 105
New reserved words106
SEARCH ALL statements 106
Migrating from the CMPR2 compller opt1on to
NOCMPR2 107
Upgrading programs complled w1th the CMPR2
compiler option 107
Upgrading SOM-based ob]ect or1ented (OO)
COBOL programs 140
SOM-based OO COBOL language elements that
are not supported 140
SOM-based OO COBOL language elements that
are changed A 3

Chapter 10. Compiling IBM COBOL

programs« . . . 143
Default compiler options for IBM COBOL

programs. 2143
Compiler options for IBM COBOL programs . . 143
Compiler options not available in Enterprise

coBoL145

Chapter 11. Upgrading programs from
Enterprise COBOL Version3. 147

SEARCH ALL statements 147
Upgrading programs that have SEARCH ALL
statements 147

Upgrading Enterprise COBOL Versmn 3 programs

that have XML PARSE statements 150
Migrating from the old XML parser to the new
XML parser 150

Upgrading Enterprise COBOL programs that have

XML GENERATE statements 157

Converting programs that use new reserved words 158
Upgrading programs that use SIMVRD support 158

Chapter 12. Compiling Enterprise
COBOL Version 3 programs 161

Compiler option changes from IBM Enterprise

COBOL for z/OS, Version316l
Differences in the TEST compiler option 161
Debug information changes with IBM Enterprise

COBOL Version5.162

Chapter 13. Upgrading from
Enterprise COBOL Version 4. . . 165
Upgrading Enterprise COBOL Version 4 programs
that have XML PARSE statements
Migrating from the old XML parser to the new
XML parser . .
Upgrading Enterprlse COBOL Vers1on 4 Release
1 programs that have XML PARSE statements
and that use the XMLPARSE(XMLSS) compller

. 165

. 166

option. . 173
Changes in m111en1um language extensmns in IBM
Enterprise COBOL for z/OS, Version 5. . 174
Chapter 14. Compiling Enterprise
COBOL V4 programs . . . 175
Compiler option changes from IBM Enterprlse
COBOL for z/0OS, Version 4 . 175
Debug information changes with IBM Enterprlse
COBOL Version 5 . L . 175
Part 4. What is new and different
with Enterprise COBOL V5.1?. . . 177
Chapter 15. Changes with IBM
Enterprise COBOL for z/OS, Version
51. 179
Prerequisite software and service for Enterprlse
COBOL V5 . . 179
COBOL source code dlfferences in Enterprrse
COBOL V5.1 . . 180
Compiler option changes in IBM Enterprlse
COBOL for z/0S, Version 5 . .. 181
Changes in compiling with Enterpr1se COBOL
Version 5.1 . 182

Compiler output to un1n1t1ahzed data sets not

supported . . 184

JCL and packaging changes for Enterpr1se

COBOL V5.1 . 185
Link edit/bind changes w1th Enterprlse COBOL
Version 5.1 .o . 185
Changes at run time w1th Enterprlse COBOL V5 1 186

Language Environment option changes. . 188

Variable length records - wrong length READ 188

Interoperability with older levels of IBM

COBOL programs . . 190
Debug information changes w1th IBM Enterprlse
COBOL Version 5 . . 191

WORKING- STORAGE SECTION changes . 192
Chapter 16. Adding Enterprise COBOL
V5.1 programs to existing COBOL
applications . . 197
AMODE and RMODE cons1deratlons . 199

Part 5. Enterprise COBOL
migration and other IBM products. 201

Chapter 17. Debug tool . . 203
Initiating Debug Tool . . 203
Debug information changes with IBM Enterprlse
COBOL Version 5 . . 204
Debug Tool changes w1th IBM Enterprlse COBOL
Version 5 . . 204
Full Screen Mode changes w1th IBM Enterprlse
COBOL V5.1 . 208
Debug Tool changes for remote mode w1th IBM
Enterprise COBOL V5.1 . . 209
Chapter 18. CICS conversion
considerations for COBOL source . . 211
CSD setup differences with Enterprise COBOL V5 = 211

DFHRPL setup differences with Enterprise COBOL
v5. 212
Compiler optlons for programs that run under

CICS . . 213
Migrating from the separate CICS translator to the
integrated translator . . . 214
Integrated CICS translator . . 214
Chapter 19. DB2 coprocessor
conversion considerations . 217
DB2 coprocessor integration . 217
Language elements . 219
Code-page conversion . 222
Chapter 20. Moving IMS programs to
Enterprise COBOL V5. . 223
Compiling and linking for running under IMS . 223
Part 6. Appendixes . . 225
Appendix A. Commonly asked
questions and answers . . 227
Compatibility . . 227
Compiling with Enterprlse COBOL . . 228
Binding (link-editing) Enterprise COBOL programs 229
Language Environment services . . 229
Language Environment runtime options . 229
Subsystems . . 230
z/0S . . 231
Performance. . 232
Service . 232
Object-oriented syntax and]ava 5]ava 6 and]ava
7 SDKs . 232
Appendix B. COBOL reserved word
comparison . . 233
Appendix C. Conversion tools for
source programs. . 249
MIGR compiler option . 249
Language differences . . 249
Statements supported with enhanced accuracy 250
LANGLVL(1) statements not supported . 251

Contents V

LANGLVL(1) and LANGLVL(Z) statements not

supported25
Other programs that aid conversion. 253
Rational Asset Analyzer. 253
COBOL and CICS/VS Command Level
Conversion Aid (CCCA).253
COBOL Report Writer Precompiler 255
Debug Tool Load Module Analyzer 256
The Edge Portfolio Analyzer 256

Appendix D. Appl|cat|ons with COBOL

and assembler . LY
Called assembler programs. 257
SVC LINK and COBOL run-unit boundary .. 0257
Runtime support for assembler COBOL calls under
non-CICS. 258
Runtime support for assembler COBOL calls under
cies .o .. 259
Converting programs that change the program
mask 260
Upgrading appl1cat1ons that use an assembler
driver 260
Convert the assembler drlver I Y |
Modify the assembler driver26l
Use an unmodified assembler driver . . . 261
Assembler programs that load and BALR to MAIN
COBOL programs 261
Assembler programs that load and delete COBOL
programs.26l
Appendix E. Option comparison . 263
Appendix F. Compiler limit
comparison . . 279

Appendix G. Preventing file status 39

for QSAM files . . 283
Processing existing files283
Defining variable-length records 283

Vi Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Defining fixed-length records . . . 284

Converting existing files that do not match the

COBOL record . . 284
Processing new files . . 284
Processing files dynamically Created by COBOL 285
Appendix H. TSO considerations . . 287
Using REXX execs. . 287
Appendix I. Accessing JCL
parameters . 289
Notices 291
Programming interface 1nformat1on . . 293
Trademarks . . 293
Glossary . 295
List of resources . . 323
IBM Enterprise COBOL for z/ OS . 323
Related publications . . . 323
Index . . 325

Tables

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.
25.

COBOL compiler name, version, release and
product numbers .
The Enterprise COBOL for z/ OS pubhcatlons
The Language Environment element of z/OS
publications
Comparison of COBOL comprlers
Advantages of Enterprise COBOL and
Language Environment . . .
Complexity ratings for program attrlbute
conversions . -
Assigning program conversion prrorrtres
Language element differences between OS/VS
COBOL and Enterprise COBOL .
Rules for VSAM file definitions .
Status key values: QSAM files
Status key values: VSAM files
USE FOR DEBUGGING declarative: Vahd
operands . .
Compiler options for converted OS / VS
COBOL programs
0OS/VS COBOL compiler optlons not
supported by Enterprise COBOL
New reserved words, by compiler. .
Steps for using variable-length RRDS .
Key Enterprise COBOL compiler options for
VS COBOL II programs .
Compiler options not supported in Enterprlse
COBOL
Steps for using Varlable length RRDS
New reserved words, by compiler.
Language elements different between CMPRZ
and NOCMPR2 . .
QSAM and VSAM file status codes w1th
CMPR2 and NOCMPR2 .
Rules for VSAM file definitions

Compiler options for IBM COBOL programs
Compiler options not available in Enterprise
COBOL

© Copyright IBM Corp. 1991, 2019

. 1x

. xi

.29

30

. 44
. 61
.77
.77
. 84
. 89
. 90
. 96
.97
. 99

. 100

104
. 106

. 108

. 115
. 119

143

. 145

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.

42.

43.

44.

The predefined entity references .

Steps for using variable-length RRDS
Compiler options not available in Enterprise
COBOL Version 5 . .

The deprecated TEST suboptlons .

The predefined entity references .

Compiler options not available in Enterprrse
COBOL Version 5 . .o

Compiler options not avallable in Enterprlse
COBOL Version 5 . .
Compiler options new and Changed w1th
Enterprise COBOL Version 5 .o
Runtime option changes with Enterprise
COBOL Version 5 .

Area where WORKING- STORAGE is located
How to find the PPA4, NORENT static area,
LE’s WSA, RENT static area, and program
static area in a dump? .
Compiler options for programs that run
under CICS .

Key compiler options for the mtegrated CICS
translator . .o
Recommended compller optlons for
applications with mixed COBOL programs.
Reserved word comparison . .
COBOL statements dealing with prrmary
BLLs

Language Env1ronment supported Calls
between COBOL programs and assembler
programs under non-CICS; Yes indicates that
a call is supported.. .

Language Environment supported Calls
between COBOL programs and assembler
programs that run under CICS; Yes indicates
that a call is supported. .

Option comparison

. 157

158

. 161
. 162
. 173
. 175
. 181
. 181

. 188

194

. 194

. 213

. 215

. 224
. 233

. 255

. 258

. 259
. 263

vii

viii Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Preface

About this information

This information provides topics to help you to move to IBM® Enterprise COBOL

Version 5.1.

This information assumes that you have completed your runtime migration to

Language Environment®.

Terminology clarification
In this information, we use the term Enterprise COBOL as a general reference to:

« IBM Enterprise COBOL for z/OS® and 0S/390°, Version 3 Release 1

* IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 2

+ IBM Enterprise COBOL for z/OS, Version 3 Release 3
* IBM Enterprise COBOL for z/OS, Version 3 Release 4
* IBM Enterprise COBOL for z/OS, Version 4 Release 1
* IBM Enterprise COBOL for z/OS, Version 4 Release 2
* IBM Enterprise COBOL for z/OS, Version 5 Release 1

In this information, we use the term IBM COBOL as a general reference to:

« COBOL/370, Version 1 Release 1
* COBOL for MVS & VM, Version 1 Release 2

e COBOL for OS/390 & VM, Version 2 Release 1
* COBOL for OS/390 & VM, Version 2 Release 2

See [“Summary of changes to the COBOL compilers” on page xv| for further details.

IBM COBOL compilers by name and version

Table 1. COBOL compiler name, version, release and product numbers

Product
Compiler Release level number
COBOL/370 Version 1 Release 1 5688-197
COBOL for MVS & VM Version 1 Release 2 5688-197
COBOL for OS/390 & VM Version 2 Release 1 5648-A25
COBOL for OS/390 & VM Version 2 Release 2 5648-A25
Enterprise COBOL for z/0S Version 3 Release 1 5655-G53
Enterprise COBOL for z/0S Version 3 Release 2 5655-G53
Enterprise COBOL for z/0S Version 3 Release 3 5655-G53
Enterprise COBOL for z/0S Version 3 Release 4 5655-G53
Enterprise COBOL for z/0S Version 4 Release 1 5655-571
Enterprise COBOL for z/OS Version 4 Release 2 5655-571
Enterprise COBOL for z/0S Version 5 Release 1 5655-W32

© Copyright IBM Corp. 1991, 2019

ix

To aid in moving your runtime library to Language Environment, you can find
information on how to run existing VS COBOL II and OS/VS COBOL load
modules under Language Environment, including link-edit requirements for
support and recommended runtime options for compatible behavior in the
Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at

[http:/ /publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

To aid in moving from your older COBOL compiler to Enterprise COBOL, this
information provides descriptions of the language differences between older
COBOL compilers and Enterprise COBOL and describes the IBM conversion tools
available to aid in converting your source programs to Enterprise COBOL
programs. It also describes other differences that might require changes in your
application development process in order to use Enterprise COBOL.

Acknowledgement

IBM would like to acknowledge the assistance of the GUIDE COBOL Migration
Task Force in the preparation of the OS/VS COBOL to VS COBOL II Migration
Guide. The task force provided ideas, experience-derived information, and
perceptive comments on the subject of OS/VS COBOL to VS COBOL II conversion.

The information received from this previous conversion experience, as well as
input from many experienced OS/VS COBOL and VS COBOL II IBM customers,
aided in the development of this Migration Guide. Without such assistance, this
information would have been much more difficult to develop.

Using your information

The information provided with Enterprise COBOL and Language Environment is
designed to help you do COBOL programming under z/OS.

Enterprise COBOL for z/OS Version 5 Release 1

Table 2. The Enterprise COBOL for z/OS publications

Task

Information

Understand warranty information

Licensed Program Specifications

Install the compiler under z/OS

Program Directory for Enterprise COBOL

Understand product changes and upgrade source to the latest version of
Enterprise COBOL for z/OS

Migration Guide.

Upgrade run time environment to Language Environment

Note: If you have not yet migrated
your runtime library to Language
Environment, consult the Enterprise
COBOL V4.2 Compiler and Runtime
Migration Guide at

http:/ /publibfp.dhe.ibm.com/epubs/|

pdf/igy3me50.pdf] for help.

Customize Enterprise COBOL for z/OS

Enterprise COBOL Customization Guide

Prepare and test your programs and get details about compiler options

Enterprise COBOL Programming Guide

Get details about COBOL syntax and specifications of language elements

Enterprise COBOL Language Reference

X Enterprise COBOL for z/OS, V5.1.1 Migration Guide

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Language Environment element of z/OS

Table 3. The Language Environment element of z/OS publications

Task

Information

Evaluate the product

Language Environment Concepts
Guide

Install Language Environment

z/OS Program Directory

Understand Language Environment program models and concepts

Language Environment Programming
Guide

Find syntax for Language Environment runtime options and callable services

Language Environment Programming
Reference

Debug applications that run with Language Environment, get details about
runtime messages, and diagnose problems with Language Environment

Language Environment Debugging
Guide and Run-Time Messages

Migrate applications from one release of Language Environment to another.

Language Environment Run-Time
Migration Guide

Develop interlanguage communication (ILC) applications

Language Environment Writing
Interlanguage Applications

Learn about the concepts and use of Common Debug Architecture (CDA)

Common Debug Architecture User’s
Guide

Get details about APIs in the Debug Data Program Information library
(llibddpi).

Common Debug Architecture Library
Reference

Get details about the IBM extensions to the DWARF and ELF APIs in the
DWAREF 4 standard.

DWARF/ELF Extensions Library
Reference

Summary of changes to this information

This section lists the major changes that have been made to each edition of this
migration guide since IBM COBOL for OS/390 & VM Version 2 Release 1.

Changes in GC14-7383-02 (March 2019)
Changes in GC14-7383-02 (March 2019)

* Added a support page link where lists the Enterprise COBOL V4 PTFs to
support the migration to Enterprise COBOL V5 or V6. For details, see

[Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on page 165

Changes in GC14-7383-02 (September 2018)
¢ Added information about how to find WORKING-STORAGE SECTION in

Enterprise COBOL V5. For details, see [“WORKING-STORAGE SECTION|

[changes” on page 192

Changes in GC14-7383-02 (May 2018)

+ Updated information in [“CSD setup differences with Enterprise COBOL V5” onl
because certain CICS TS versions provide the system autoinstall
capability for LE programs and CICS will create the program definition
automatically when the programs are first loaded.

* Clarified that the separate CICS translator is still shipped with current CICS
products but is no longer being enhanced in [“Migrating from the separate CICS|

[translator to the integrated translator” on page 214

Preface X1

xii

Changes in GC14-7383-02 (April 2017)

* Updated information about calling a ILBOABNO callable service with Enterprise
COBOL V5 and later versions in [“Changes at run time with Enterprise COBOL}
[V5.1” on page 186,

Changes in GC14-7383-02 (February 2017)

* Added information about a new warning message that will be issued when a
call to ILBOABNO callable service is encountered in the source program in
[‘Changes at run time with Enterprise COBOL V5.1” on page 186,

Changes in GC14-7383-02 (March 2014)

Added back the support for AMODE 24 execution of COBOL programs, except for
a few exception cases. Many programs that are compiled by Enterprise COBOL
5.1.1 execute in either AMODE 31 or AMODE 24.

Changes in GC14-7383-00 (June 2013)

This migration guide has been reorganized for Enterprise COBOL Version 5.1. If
you have not yet completed your runtime migration to Language Environment,
please refer to the previous version of this information. You can use the Enterprise
COBOL V4.2 Compiler and Runtime Migration Guide at |k_1ttp: / /|
[publibfp.dhe.ibm.com/epubs/pdf/igy3me50.pdf] for help in completing your
runtime migration.

Primarily, the following changes have been made to this Migration Guide:
* Removal of the information related to Language Environment

+ Addition of specific chapters for migrating from Enterprise COBOL Version 3
and Enterprise COBOL Version 4

+ Addition of a section on Enterprise COBOL Version 5
* Addition of a section on upgrading your COBOL compiler along with other IBM
products. That includes information about Debug Tool, CICS®, and Db2®. Please

see [Part 5, “Enterprise COBOL migration and other IBM products,” on page 201]
for more information.

There is a lot of information in this guide but most of it is not needed by most
customers. For example, if you are moving from Enterprise COBOL Version 4 and
you have completed your runtime migration for all applications, you only need to
look at a few sections. For details, see |Chapter 13, “Upgrading from Enterprise|
COBOL Version 4,” on page 165 |[Chapter 14, “Compiling Enterprise COBOL V4|
programs,” on page 175)and |Chapter 15, “Changes with IBM Enterprise COBOL|
for z/OS, Version 5.1,” on page 179,

Changes in GC23-8527-01 (August 2009)

Compiler
* Added information about integrated Db2 coprocessor

* Updated information about migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS), for example, changes in the handling of several XML
events

* Updated information about the differences in parsing behavior when you
compile using XMLPARSE(XMLSS)

¢ Added new reserved words
* Added new compiler options

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Added information to appendix on commonly asked questions and answers:

— Information about COBOL program calls
— Information about running existing COBOL applications with Java" 5 or Java

6

Run time

Updated information about region-wide defaults
Updated information about TEST option
Updated information about Language Environment STORAGE(00) option

Information about CICS has been corrected.

Miscellaneous maintenance and editorial changes have been made; for example,

Appendix B, “COBOL reserved word comparison,” on page 233| and [Appendix F|

“Compiler limit comparison,” on page 279 have been updated.

Changes in GC23-8527-00 (December 2007)

Compiler

Added section on migrating XML PARSE from Enterprise COBOL Version 3 to
Enterprise COBOL Version 4 (Migrating from XMLPARSE(COMPAT) to
XMLPARSE(XMLSS)).

Added information about the new TEST suboptions of Enterprise COBOL
Version 4

Added new reserved words

Added information to section on migrating from CMPR2 to NOCMPR2:
— Fixed file attributes and DCB= parameters of JCL

— OPEN statement failing for QSAM files (FILE STATUS 39)

— OPEN statement failing for VSAM files (FILE STATUS 39)

Added information to appendix on DB2® coprocessor integration

— Additional differences from separate precompiler

Run time

Added information about removal of SIMVRD runtime option support for
Enterprise COBOL Version 4 Release 1 programs.

Changes in GC27-1409-05 (November 2006)

Updated the documentation of differences between Db2 precompiler and
COProcessor.

Added compiler option SQLCCSID.

Changes in GC27-1409-04 (March 2006)

* Added to the documentation of differences between Db2 precompiler and

coprocessor.

* Added a section on migrating SEARCH ALL statements to V3R4.

Changes in GC27-1409-03 (July 2005)
* Added compiler option MDECK.
¢ Added new reserved words.

* Added SQL code differences between Db2 precompiler and coprocessor.

Preface xiii

* Changes to data-item sizes.

Changes in GC27-1409-02 (December 2003)

* Applied service updates to the information

Changes in GC27-1409-01 (September 2002)

Compiler
* Added information about the use of the SEPARATE suboption with the TEST(. .
,SYM,. .) compiler option.

Run time

* Clarified the information about file handling for COBOL programs with
RECORDING MODE U under OS/390, Version 2 Release 10.

* Added information about the change in the amount of space that is used for an
output file that is defined as RECFM=U under OS/390, Version 2 Release 10.

* Added information about dynamic calls to assembler programs under Language
Environment for z/OS, Version 1 Release 2 and later.

Changes in GC27-1409-00 (November 2001)

Compiler

* Removed various compiler options, including the CMPR2 compiler option
* Added new reserved words

* Added information about the new integrated CICS translator

* Removed OO COBOL syntax and programming model based on SOM

* Added information about migrating to the Enterprise COBOL compiler

Run time
* Added information about the change in behavior for DATA(31) programs

* Added information about CEEDUMP absent from applications with assembler
programs that use the DUMP macro

* Added information about the change in file handling for COBOL programs with
RECORDING MODE U

* Added information about calling between assembler and COBOL

Changes in GC26-4764-05 (September 2000)

Compiler
* Added newly discovered undocumented extensions and improved many
existing entries in [Chapter 5, “Upgrading OS/VS COBOL source programs,” on|

* Added new reserved words
* Added information about migrating to the V2R2 compiler

Run time

* Added description of the new default for runtime option ABTERMENC (ABEND
for Language Environment for OS/390 V2R9 and later) and the new suboptions
for TERMTHDACT available in Language Environment for OS/390 V2R7 and
later

* Added information about Language Environment region-wide runtime options

Xiv Enterprise COBOL for z/0S, V5.1.1 Migration Guide

* Updated the virtual storage requirements
* Updated the CICS considerations:
— Performance
— SORT interface change
— DISPLAY statement
* Updated information about upgrading Language Environment release levels

Miscellaneous maintenance and editorial changes have been made.

Summary of changes to the COBOL compilers

This section lists the main changes that have been made to IBM host COBOL
compilers.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 1 Modification 1

* Except for a few exception cases, AMODE 24 execution of COBOL programs is
supported. Many programs compiled by IBM Enterprise COBOL for z/0OS V5.1.1
will execute in AMODE 31 or AMODE 24.

* A new compiler option, SQLIMS, enables the new IMS SQL coprocessor (called
SQL statement coprocessor by IMS). The new coprocessor handles your source
programs that contain embedded SQLIMS statements.

* New fatal and warning exception codes are added for XML PARSE exceptions.

* The LIST option output in the compiler listing contains a new Special Register
Table that provides the location information for all the COBOL Special Register
variables.

Changes in IBM Enterprise COBOL for z/OS, Version 5
Release 1

New and changed COBOL function

The XML function supported by IBM Enterprise COBOL for z/OS has been

enhanced:

* The XML GENERATE statement has been extended with new syntax that gives
the programmer more flexibility and control over the form of the XML
document that is generated:

— The NAME phrase has been added to allow user-supplied element and
attribute names.

— The TYPE phrase has been added to give the user control of attribute and
element generation.

— The SUPPRESS phrase has been added to allow suppression of empty
attributes and elements.

* XML parsing support has been enhanced with a special register,
XML-INFORMATION, to easily determine whether the XML content delivered
for an XML event is complete or will be continued on the next event.

* The compatibility-mode COBOL XML parser from the COBOL library is no
longer supported for use by Enterprise COBOL V5 programs. XML PARSE
statements in V5 programs always use the XML parser in z/OS XML System
Services.

Preface XV

xvi

New support for UNBOUNDED tables and groups enables top-down mapping of
data structures between XML and COBOL applications

Unicode support has been enhanced in this release with the addition of 6 new
intrinsic function:

« ULENGTH

* UPOS

» USUBSTR

* USUPPLEMENTERY
« UVALID

« UWIDTH

A new inline comment indicator (the character string '*+>') can be coded to indicate
that the ensuing text on a line is a comment.

Enterprise COBOL Version 5.1 corrects READ statement processing of
wrong-length records.

The Millennium Language Extensions are no longer supported, and the removed
elements are:

* DATEVAL intrinsic function

* UNDATE intrinsic function

* YEARWINDOW intrinsic function
* DATEPROC compiler option

* YEARWINDOW compiler option

To be compatible with the convention used by C and C++, the linkage convention
for returning a doubleword binary item specified in the RETURNING phrase
PROCEDURE DIVISION header and the CALL statement is changed.

Format 2 declarative syntax: USE...AFTER...LABEL PROCEDURE..., and the syntax:
GO TO MORE-LABELS are no longer supported.

Option changes
* The following compiler options are new:
— AFP(VOLATILE | NOVOLATILE)
— ARCH(n)
— DISPSIGN(SEP | COMPAT)
— HGPR(PRESERVE | NOPRESERVE)
— MAXPCF(nnn)
— STGOPT | NOSTGOPT
* The following compiler options are modified:

— The MDECK option no longer has a dependency on the LIB option, as the
compiler behaves as though the LIB option is always enabled.

— The MIG suboption of the NUMPROC compiler option is no longer supported

— The compiled-in range checks cannot be disabled at run time using the
runtime option CHECK(OFF).

— Execution of NORENT programs above the 16 MB line is not supported.

Enterprise COBOL for z/0OS, V5.1.1 Migration Guide

— The HOOK | NOHOOK and SEPARATE | NOSEPARATE suboptions of the TEST
compiler option are no longer supported. Those suboptions continue to be
tolerated to ease migration. New suboptions SOURCE and NOSOURCE are added
to the TEST compiler option.

— The NOTEST option is enhanced to include the suboptions DWARF and NODWARF.

— The EXIT compiler option is no longer mutually exclusive with the DUMP
compiler option, and the compiler exits rules are updated.

— The OPTIMIZE option is modified to allow several level of optimization. The
previous OPTIMIZE option format is deprecated but is tolerated for
compatibility.

— The format and contents of listing generated from the LIST option are new

— The format and contents of the listing output generated from the MAP option
are changed

* Support for the following compiler options has been removed:

- DATEPROC

- LIB

- SIZE(MAX)

- YEARWINDOW

- XMLPARSE

Compiler behavior changes

There have been a number of changes to Enterprise COBOL V5.1 that result in
different behaviors.

* AMODE 24 execution of programs compiled with Enterprise COBOL V5.1.0 is no
longer supported. Enterprise COBOL V5.1.0 executable modules must be AMODE
31.

* The IGZERRE and ILBOSTPO interfaces for managing a reusable COBOL
environment are not supported for applications containing programs compiled
with Enterprise COBOL V5.

* The IGZBRDGE macro, for converting static calls to dynamic calls, is not supported
for programs compiled with Enterprise COBOL V5.

* The compatibility-mode COBOL XML parser from the COBOL library, the old
parser from Enterprise COBOL V3, is no longer supported for use by Enterprise
COBOL V5 programs. XML PARSE statements in V5 programs always use the
z/0S System Services XML parser (XMLSS).

* Enterprise COBOL Version 5 now requires Language Environment at
compilation time. If the Language Environment data sets SCEERUN and SCEERUNZ
are not installed in the MVS LNKLST or LPALST, they must be included in the
STEPLIB or JOBLIB concatenation for the compilation.

* Enterprise COBOL Version 5.1 has a new Language Environment member 1D, 4.
Prior versions of COBOL use ID 5.

* Enterprise COBOL Version 5 programs have some restrictions with
interoperability with older versions of COBOL. For details see, [“Interoperability]
[with older levels of IBM COBOL programs” on page 19

* COBOL programs with the following characteristics may behave differently with
Enterprise COBOL V5 than with prior versions:

— Programs that use unsupported COBOL language syntax.

— Programs referencing data items that, at run time, contain values not
conforming to the PICTURE clause on the data description entry. For
example:

Preface XVii

- a fullword binary item with picture S9(6) USAGE BINARY, containing an
oversize value of +123456789 (unless the TRUNC(BIN) option was specified)

- a two-byte PACKED-DECIMAL item with picture S99, containing an
oversize value of 123 (such as, 123C in hexadecimal).

- a packed decimal or zoned decimal item containing an invalid or
non-preferred sign, that does not conform to the sign requirements of the
data description entry and the NUMPROC(PFD) compiler option setting in
effect.

— Programs with undiagnosed subscript range errors (when the SSRANGE
compiler option was not specified), that reference storage outside the storage
allocation for the base data item.

— Applications with low-level dependencies on specific generated code
sequences, register conventions, or internal IBM control blocks may behave
differently with Enterprise COBOL V5 than with prior versions.

— It is illegal to specify a value greater than integer-2 for the object of an
OCCURS DEPENDING ON clause, and thus the behavior is undefined.
However, Enterprise COBOL V5.1 behaves differently than prior versions
when it occurs.

* VSAM record areas for reentrant COBOL programs are allocated above 16 MB if
DATA(31) is enabled. Programs that pass data in VSAM file records as CALL ...
USING BY REFERENCE parameters to AMODE 24 subprograms may be impacted.
Such programs can be recompiled with the DATA(24) compiler option, or the
Language Environment HEAP (BELOW) option can be used, to ensure that the
records are addressable by the AMODE 24 programs.

* Compile-time storage requirements are substantially increased, compared to
prior versions of Enterprise COBOL. See the discussion of the SIZE option. This
is particularly true at higher optimization levels, that is, programs compiled with
the OPT(1) or OPT(2) compiler option.

* Compile-time CPU time requirements are substantially increased, compared to
prior versions of Enterprise COBOL.

* Compile time and run time diagnostic messages may differ, and may be
generated at different times or locations.

— Presence or absence of informational and warning level diagnostics may differ

— Diagnostics for programs that define excessive and unsupported amounts of
storage may be diagnosed either by the binder at bind time, or by Language
Environment at run time, instead of by the compiler at compilation time.

* Compiler listing format and contents differ from prior versions of Enterprise
COBOL.

Application performance changes

The OPTIMIZE option has been changed to support several levels of performance
optimization for your application. The suboptions have also been changed. The
previous OPTIMIZE option format is deprecated but is tolerated for compatibility.
Note: Although OPT(0) is equivalent to the old NOOPTIMIZE option in most ways,
OPT(0) removes some unreachable code that was not previously removed with
NOOPTIMIZE.

Debugging changes

When the TEST option is specified, DWARF debugging information is included in
the application module.

xviii Enterprise COBOL for z/0S, V5.1.1 Migration Guide

With NOLOAD debug segments in the program object, Enterprise COBOL V5
debug data always matches the executable file, and is always available without
giving lists of data sets to search, and does not increase the size of the loaded
program.

If you specify the TEST(SOURCE) option, the DWARF debug information includes
the expanded source code, and the compiler listing is not needed by IBM Debug
Tool. When the TEST(NOSOURCE) is specified, the generated DWARF debugging
information does not include the expanded source code.

You can use the NOTEST (DWARF) option to include basic DWARF diagnostic
information in the application module. This enables application failure analysis
tools, such as CEEDUMP and IBM Fault Analyzer.

Packaging and JCL changes

There have been a number of changes to the packaging, installation and JCL with
Enterprise COBOL V5.1.

The SIGYCOMP data set is now a PDSE, rather than a PDS data set as in prior
versions.

Enterprise COBOL Version 5.1 requires additional data sets

* When compiling under z/OS TSO or batch, the COBOL compiler now requires
15 utility data sets, SYSUT1 to SYSUT15

* The SYSMDECK data set is now required for all compilations. SYSMDECK may be
specified as a utility (temporary) dataset if the NOMDECK option is specified. When
MDECK(...) is specified, the SYSMDECK DD allocation must specify a permanent
data set.

* The alternate DDNAME list parameter used when the COBOL compiler is
invoked from an assembly language program has been expanded with entries
for the additional work data sets.

The catalogued procedures that ship with Enterprise COBOL Version 5.1 have been
modified.

* IGYWC
* IGYWCL
* IGYWCLG

The following JCL catalogued procedures are no longer supported. Because they all
use the Language Environment Prelinker or the DESMS Loader, which are no
longer supported.

* IGYWCG

* IGYWCPG
* IGYWCPL
* IGYWCPLG
* IGYWPL

Restrictions

If you use COBOL for IMS exit routines, Enterprise COBOL V5.1 can compile
programs only when the exit is an assembler program in a PDS data set that

Preface XiX

XX

LOAD:s and calls a COBOL V5.1 program in a PDSE. For workarounds to handle
the restriction, see [Chapter 20, “Moving IMS programs to Enterprise COBOL V5,”|

|0n page 223.|

Changes in IBM Enterprise COBOL for z/OS, Version 4
Release 2

* New and enhanced XML PARSE capabilities are available when you use the
z/0OS System Services XML parser:

— You can parse documents with validation against an XML schema when you
use the VALIDATING phrase of the XML PARSE statement.

— The performance of nonvalidating parsing with the XMLPARSE(XMLSS)
compiler option is improved compared to the performance of nonvalidating
parsing with the XMLPARSE(XMLSS) compiler option in Enterprise COBOL
Version 4 Release 1.

— Character processing is enhanced for any XML document that contains a
reference to a character that is not included in the single-byte EBCDIC code
page of the document.

* A facility for customizing compiler messages (changing their severity or
suppressing them), including FIPS (FLAGSTD) messages, is made possible by a
new suboption, MSGEXIT, of the EXIT compiler option.

* A new compiler option, BLOCKO, activates an implicit BLOCK CONTAINS 0
clause for all eligible QSAM files in your program.

* The underscore character (_) is now supported in user-defined words such as
data-names and program-names. Underscores are also supported in the literal
form of program-names.

* If you use the integrated CICS translator, the compiler listing will now show the
CICS options that are in effect.

* Enterprise COBOL applications that use object-oriented syntax for Java

interoperability are now supported with Java 5 and Java 6 in addition to the
Java SDK 1.4.2.

Changes in IBM Enterprise COBOL for z/OS, Version 4
Release 1

* The XML GENERATE statement has been extended with new syntax that gives
the programmer more flexibility and control over the form of the XML
document that is generated:

— The WITH ATTRIBUTES phrase, which causes eligible items in the XML
document to be generated as XML attributes instead of as elements.

— The WITH ENCODING phrase, which allows the user to specify the encoding
of the generated document.

— The WITH XML-DECLARATION phrase, which causes the version and
encoding information to be generated in the document.

— The NAMESPACE and NAMESPACE-PREFIX phrases, which allow
generation of XML documents that use XML namespaces.

— The XML GENERATE statement now supports generation of XML documents
encoded in UTF-8 Unicode.

* XML PARSE support has been enhanced:

— The z/0OS System Services XML parser is now supported as an alternative to
the existing XML parser that is part of the COBOL library

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

— The z/0S System Services XML parser provides the following benefits:
- Availability of the latest IBM parsing technology for COBOL users.
- Offloading of COBOL XML parsing to zAAP specialty processors.
- Improved support for parsing XML documents that use XML namespaces.

- Direct support for parsing XML documents that are encoded in UTF-8
Unicode.
- Support for parsing very large XML documents, a buffer at a time.
— Four new special registers are introduced for namespace processing during
execution of XML PARSE statements.

— The XML PARSE statement has been extended with new syntax. The new
WITH ENCODING and RETURNING NATIONAL phrases give the
programmer control over the assumed encoding of input XML documents, to
facilitate parsing in Unicode.

— A new compiler option, XMLPARSE, has been created to control whether the
z/0S System Services parser or the existing COBOL parser is used for XML
PARSE statements. With the XMLPARSE(COMPAT) option, XML parsing is
fully compatible with Enterprise COBOL Version 3. With the default
XMLPARSE(XMLSS) option, the z/OS System Services parser is used and
new XML parsing capabilities are enabled.

* Performance of COBOL application programs has been enhanced by exploitation
of new z/Architecture® instructions. The performance of COBOL Unicode
support (USAGE NATIONAL data) has been significantly improved.

* DB2 support has been enhanced in this release, including DB2 V9 exploitation
and improvements in coprocessor integration and usability:

— Support for new SQL data types and new SQL syntax provided by DB2 V9
— DB2 precompiler options are shown in the compiler listing (DB2 V9 only)

— SQLCA and SQLDA control blocks are expanded in the compiler listing (all
DB2 releases)

— A new compiler option SQLCCSID is provided to coordinate the coded
character set id (CCSID) between COBOL and DB2

* Support for DFSMS large-format data sets
* Debugging enhancements:

— Debug Tool V8 enablement, new debugging commands

- GOTO/JUMPTO in optimized code, new TEST suboption EJPD
+ Compiler options can be specified in a data set (OPTFILE option)

* Cross-reference of COPY statements, libraries, and data sets in compiler listing

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 4: service updates, November 2006

* PK31411: A new compiler option, SQLCCSID, which works in conjunction with
the DB2 coprocessor, determines whether the CODEPAGE compiler option
influences the processing of SQL statements in COBOL programs. SQLCCSID
was added via APAR PK31411.

* PK16765: Corrections to the behavior of the SEARCH ALL statement have been
made.

With current service applied, specifically the PTF for APAR PK16765, new
compiler diagnostic messages and runtime diagnostic messages have been added
to assist in identifying programs and SEARCH ALL statements that are
potentially impacted by these corrections and may require modification in order

Preface XX1

xxii

to migrate to V3R4. If you have this PTF on your compiler, the listing header
and object program will show Version 3 Release 4 Modification 1.

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 4

* Several limits on COBOL data-item size have been significantly raised, for

example:

— The maximum data-item size has been raised from 16 MB to 128 MB.

— The maximum PICTURE symbol replication has been raised to 134,217,727.
— The maximum OCCURS integer has been raised to 134,217,727.

(For full details about changed compiler limits, see the COBOL Language
Reference.) This support facilitates programming with large amounts of data, for
example:

— DB2/COBOL applications that use DB2 BLOB and CLOB data types

— COBOL XML applications that parse or generate large XML documents

Support for national (Unicode UTE-16) data has been enhanced. Several
additional kinds of data items can now be described implicitly or explicitly as
USAGE NATIONAL:

— External decimal (national decimal) items

— External floating-point (national floating-point) items

— Numeric-edited items

— National-edited items

— Group (national group) items, supported by the GROUP-USAGE NATIONAL
clause

Many COBOL language elements support the new kinds of UTF-16 data, or
newly support the processing of national data:

— Numeric data with USAGE NATIONAL (national decimal and national
floating point) can be used in arithmetic operations and in any language
constructs that support numeric operands .

— Edited data with USAGE NATIONAL is supported in the same language
constructs as any existing edited type, including editing and de-editing
operations associated with moves.

— Group items that contain all national data can be defined with the
GROUP-USAGE NATIONAL clause, which results in the group behaving as
an elementary item in most language constructs. This support facilitates use
of national groups in statements such as STRING, UNSTRING, and INSPECT.

— The XML GENERATE statement supports national groups as receiving data
items, and national-edited, numeric-edited of USAGE NATIONAL, national
decimal, national floating-point, and national group items as sending data
items.

— The NUMVAL and NUMVAL-C intrinsic functions can take a national literal
or national data item as an argument.

Using these new national data capabilities, it is now practical to develop COBOL

programs that exclusively use Unicode for all application data.

The REDEFINES clause has been enhanced such that for data items that are not

level 01, the subject of the entry can be larger than the data item being

redefined.

A new compiler option, MDECK, causes the output from library-processing

statements to be written to a file .

» DB2 coprocessor support has been enhanced: XREF is improved.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

e The literal in a VALUE clause for a data item of class national can be
alphanumeric .

These terminology changes were also made in this release:
* The term alphanumeric group is introduced to refer specifically to groups other
than national groups.

* The term group means both alphanumeric groups and national groups except
when used in a context that obviously refers to only an alphanumeric group or
only a national group.

e The term external decimal refers to both zoned decimal items and national
decimal items.

* The term alphanumeric floating point is introduced to refer to an external
floating-point item that has USAGE DISPLAY.

* The term external floating point refers to both alphanumeric floating-point items
and national floating-point items.

Changes in IBM Enterprise COBOL for z/OS, Version 3
Release 3

* XML support has been enhanced. A new statement, XML GENERATE, converts
the content of COBOL data records to XML format. XML GENERATE creates
XML documents encoded in Unicode UTF-16 or in one of several single-byte
EBCDIC code pages.

* There are new and improved features of the Debug Tool:

— Performance is improved when you use COBOL SYSDEBUG files.

— You can more easily debug programs that use national data: When you
display national data in a formatted dump or by using the Debug Tool LIST
command, the data is automatically converted to EBCDIC representation
using the code page specified in the CODEPAGE compiler option. You can
use the Debug Tool MOVE command to assign values to national data items,
and you can move national data items to or from group data items. You can

use national data as a comparand in Debug Tool conditional commands such
as IF or EVALUATE.

— You can debug mixed COBOL-Java applications, COBOL class definitions, and
COBOL programs that contain object-oriented syntax.

For further details about these enhancements to debugging support, see the

Debug Tool User’s Guide.

* DB2 Version 8 SQL features are supported when you use the integrated DB2
COPToCessor.

* The syntax for specifying options in the COBJVMINITOPTIONS environment
variable has changed.

Changes in IBM Enterprise COBOL for z/OS and 0S/390,
Version 3 Release 2
* The compiler has been enhanced to support new features of Debug Tool:

— Playback support lets you record and replay application execution paths and
data values.

— Automonitor support displays the values of variables that are referenced in
the current statement during debugging.

— Programs that have been compiled with the OPTIMIZE and
TEST(NONE,SYM,. . .) options are supported for debugging.

Preface XX1ii

xxiv

— The Debug Tool GOTO command is enabled for programs that have been
compiled with the NOOPTIMIZE option and TEST option with any of its
suboptions. (In earlier releases, the GOTO command was not supported for
programs compiled with TEST(NONEIE, . . .).)

For further details about these enhancements to debugging support, see the
Debug Tool User’s Guide.

Extending Java interoperability to IMS : Object-oriented COBOL programs can
run in an IMS Java dependent region. The object-oriented COBOL and Java
languages can be mixed in a single application.

Enhanced support for Java interoperability:

— The OPTIMIZE compiler option is fully supported for programs that contain
OO syntax for Java interoperability.

— Object references of type jobjectArray are supported for interoperation
between COBOL and Java.

— OO applications that begin with a COBOL main factory method can be
invoked with the java command.

— A new environment variable, COBJVMINITOPTIONS, is provided for
initializing the Java virtual machine for OO applications that start with a
COBOL program.

— OO applications that begin with a COBOL program can, with some
limitations, be bound as modules in a PDSE and run using batch JCL.

Unicode enhancement for working with DB2: The code pages for host variables
are handled implicitly when you use the DB2 integrated coprocessor. SQL
DECLARE statements are necessary only for variables described with USAGE
DISPLAY or USAGE DISPLAY-1 when COBOL and DB2 code pages do not
match.

Changes in IBM Enterprise COBOL for z/0S and 0S/390,
Version 3 Release 1

Multithreading support: toleration of POSIX threads and signals, permitting
applications with COBOL programs to run on multiple threads within a process

Interoperation of COBOL and Java by means of object-oriented syntax,
permitting COBOL programs to instantiate Java classes, invoke methods on Java
objects, and define Java classes that can be instantiated in Java or COBOL and
whose methods can be invoked in Java or COBOL

Ability to call services provided by the Java Native Interface (JNI) to obtain
additional Java capabilities, with a copybook JNIL.cpy and special register
JNIENVPTR to facilitate access

Basic support for Unicode provided by NATIONAL data type and national (N,
NX) literals, intrinsic functions DISPLAY-OF and NATIONAL-OF for character
conversions, and compiler options NSYMBOL and CODEPAGE

— Compiler option CODEPAGE to specify the code page used for encoding
national literals, and alphanumeric and DBCS data items and literals

— Compiler option NSYMBOL to control whether national or DBCS processing
should be in effect for literals and data items that use the N symbol

Basic XML support, including a high-speed XML parser that allows programs to
consume inbound XML messages, verify that they are well formed, and
transform their contents into COBOL data structures; with support for XML
documents encoded in Unicode UTF-16 or several single-byte EBCDIC code

pages

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Support for compilation of programs that contain CICS statements, without the

need for a separate translation step

— Compiler option CICS, enabling integrated CICS translation and specification
of CICS options

VALUE clauses for BINARY data items that permit numeric literals to have a

value of magnitude up to the capacity of the native binary representation, rather

than being limited to the value implied by the number of 9s in the PICTURE

clause

A 4-byte FUNCTION-POINTER data item that can contain the address of a

COBOL or non-COBOL entry point, providing easier interoperability with C

function pointers

The following support is no longer provided (as documented in this Migration

Guide):

— SOM-based object-oriented syntax and services

— Compiler options CMPR2, ANALYZE, FLAGMIG, TYPECHK, and IDLGEN

Changed default values for the following compiler options: DBCS, FLAG(LI),
RENT, and XREF(FULL).

Changes in COBOL for OS/390 & VM, Version 2 Release 2

Enhanced support for decimal data, raising the maximum number of decimal
digits from 18 to 31 and providing an extended-precision mode for arithmetic
calculations

Enhanced production debugging using overlay hooks rather than compiled in
hooks, with symbolic debugging information optionally in a separate file
Support for compiling, linking, and running in the OS/390 UNIX System
Services environment, with COBOL files able to reside in the hierarchical file
system (HFS)

Toleration of fork(), exec(), and spawn(); and the ability to call UNIX/POSIX
functions

Enhanced input-output function, permitting dynamic file allocation by means of
an environment variable named in SELECT. . . ASSIGN, and the accessing of
sequentially organized HFS files including by means of ACCEPT and DISPLAY
Support for line-sequential file organization for accessing HFS files that contain
text data, with records delimited by the new-line character

COMP-5 data type, new to host COBOL, allowing values of magnitude up to the
capacity of the native binary representation

Significant performance improvement in processing binary data with the
TRUNC(BIN) compiler option

Support for linking of COBOL applications using the OS/390 DFSMS binder
alone, with the prelinker required only in exceptional cases under CICS
Diagnosis of moves (implicit or explicit) that result in numeric truncation
enabled through compiler option DIAGTRUNC

System-determined block size for the listing data set available by specifying
BLKSIZE=0

Limit on block size of QSAM tape files raised to 2 GB

Support under CICS for DISPLAY to the system logical output device and
ACCEPT for obtaining date and time

Support for the DB2 coprocessor enabled through the SQL compiler option,
eliminating the need for a separate precompile step and permitting SQL
statements in nested programs and copybooks

Preface XXV

* Support for the millennium language extensions now included in the base
COBOL product

Changes in COBOL for 0S/390 & VM V2 R1 Modification 2

* New compiler option ANALYZE to check the syntax of embedded SQL and
CICS statements

* Extension of the ACCEPT statement to cover the recommendation in the
Working Draft for Proposed Revision of ISO 1989:1985 Programming Language
COBOL

* New intrinsic date functions to convert to dates with a four-digit year

* The millennium language extensions, enabling compiler-assisted date processing
for dates containing two-digit and four-digit years

Requires IBM VisualAge® Millennium Language Extensions for OS/390 & VM
(program number 5648-MLE) to be installed with your compiler.

Changes in COBOL for 0OS/390 & VM V2 R1 Modification 1

* Extensions to currency support for displaying financial data, including;
— Support for currency signs of more than one character
— Support for more than one type of currency sign in the same program

— Support for the euro currency sign, as defined by the Economic and Monetary
Union (EMU)

Changes in COBOL for OS/390 & VM, Version 2 Release 1

* Support has been added for dynamic link libraries (DLLs)

* Due to changes in the SOMobjects product that is delivered with OS/390 Release
3, changes in the JCL for building object-oriented COBOL applications were
required.

* The INTDATE compiler option is no longer an installation option only. It can
now be specified as an option when invoking the compiler.

How to send your comments

XXV1

Your feedback is important in helping us to provide accurate, high-quality
information. If you have comments about this information or any other Enterprise
COBOL documentation, contact us in one of these ways:

* Use the Online Readers' Comment Form at www.ibm.com/software /awdtools /|

* Send your comments to the following address: compinfo@cn.ibm.com.

Be sure to include the name of the documentation, the publication number of the
documentation, the version of Enterprise COBOL, and, if applicable, the specific
location (for example, page number) of the text that you are commenting on.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

http://www.ibm.com/software/awdtools/rcf/
http://www.ibm.com/software/awdtools/rcf/

Accessibility

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use software products successfully. The accessibility features in
z/0OS provide accessibility for Enterprise COBOL.

The major accessibility features in z/OS are:

¢ Interfaces that are commonly used by screen readers and screen-magnifier
software

* Keyboard-only navigation

* Ability to customize display attributes such as color, contrast, and font size

Interface information

Assistive technology products work with the user interfaces that are found in
z/0S. For specific guidance information, see the documentation for the assistive
technology product that you use to access z/OS interfaces.

Keyboard navigation

Users can access z/OS user interfaces by using TSO/E or ISPE.
Users can also access z/OS services using IBM Rational Developer for System z.

For information about accessing these interfaces, see the following publications:
e z/OS TSO/E Primer

* z/OS TSO/E User’s Guide

e z/OS ISPF User’s Guide Volume I

+ [[BM Rational Developer for System z information centers|

These guides describe how to use TSO/E and ISPF, including the use of keyboard
shortcuts or function keys (PF keys). Each guide includes the default settings for
the PF keys and explains how to modify their functions.

Accessibility of this information

The English-language XHTML format of this information that will be provided in
the IBM System z® Enterprise Development Tools & Compilers Information Center]
at publib.boulder.ibm.com/infocenter/pdthelp/index.jsp is accessible to visually
impaired individuals who use a screen reader.

To enable your screen reader to accurately read syntax diagrams, source code
examples, and text that contains the period or comma PICTURE symbols, you
must set the screen reader to speak all punctuation.

IBM and accessibility

See the [Human Ability and Accessibility Center| at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

Preface XXVii

http://www-01.ibm.com/software/sw-library/en_US/products/Z964267S85716U24/#Information%20centers
http://publib.boulder.ibm.com/infocenter/pdthelp/index.jsp
http://www.ibm.com/able

XXxviii Enterprise COBOL for z/OS, V5.1.1 Migration Guide

Part 1. Overview

© Copyright IBM Corp. 1991, 2019

2 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Chapter 1. Introducing the new compiler and run time

This section provides an overview of the Enterprise COBOL compiler (IBM
Enterprise COBOL for z/0S), and the common run time (Language Environment)
and introduces you to the terminology used throughout this information.

Enterprise COBOL Version 5 executables are Program Objects and can reside only
in PDSE data sets. If your COBOL load libraries are in PDS data sets, migrate them
to PDSE data sets.

This manual assumes that you have completed your runtime migration to
Language Environment. What does this mean? Briefly these are the conditions to
be met before a COBOL runtime migration is complete:

1. The Language Environment dataset SCEERUN is installed in LNKLST or
LPALST

2. There are no instances of COBLIB, VSCLLIB or COB2LIB in LNKLST or
LPALST

3. There are no instances of COBLIB, VSCLLIB or COB2LIB in JCL STEPLIB or
JOBLIB statements in batch jobs or in CICS startup JCL.

4. All statically bound runtime library routines for programs that are compiled
with NORES have been REPLACEd with routines from Language Environment.

5. IGZEBST bootstrap modules for VS COBOL II programs that are compiled with
RES were either linked with the VS COBOL II runtime version of IGZEBST that

has APAR PN74000 applied, or IGZEBST was REPLACEd with IGZEBST from
Language Environment.

If you understand these 4 conditions, and meet them all, you can skip to
[Chapter 4, “Planning to upgrade source programs,” on page 25|

If you understand these 4 conditions, but your shop has not completed its runtime
library migration, you must complete that migration before using this book. You
can use the Enterprise COBOL V4.2 Compiler and Runtime Migration Guide at

lhttp:/ /publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf| for help in completing
your migration to Language Environment.

If you do not understand these conditions, then please continue reading these
overview chapters. If you then discover that your shop has not completed its
runtime library migration, use the Enterprise COBOL V4.2 Compiler and Runtime
Migration Guide for help in completing your runtime library migration.

This section provides an overview of the Enterprise COBOL compiler (IBM
Enterprise COBOL for z/0S), and the common run time (Language Environment)
and introduces you to the terminology used throughout this information. This
section includes the following information:

* Product relationships: compiler, run time, debug

* Comparison of COBOL compilers

* Language Environment's runtime support for different compilers
* Advantages of the new compiler and run time

* Suggestions for incremental migration

* Changes with the new compiler and run time

© Copyright IBM Corp. 1991, 2019 3

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

* General conversion tasks
Terminology clarification

In this information, we use the term Enterprise COBOL as a general reference to:
* IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 1

* IBM Enterprise COBOL for z/OS and OS/390, Version 3 Release 2

* IBM Enterprise COBOL for z/OS, Version 3 Release 3

* IBM Enterprise COBOL for z/OS, Version 3 Release 4

* IBM Enterprise COBOL for z/0S, Version 4 Release 1

* IBM Enterprise COBOL for z/OS, Version 4 Release 2

* IBM Enterprise COBOL for z/OS, Version 5 Release 1

In this information, we use the term IBM COBOL as a general reference to:
* COBOL/370 Version 1 Release 1

* COBOL for MVS & VM, Version 1 Release 2

¢ COBOL for OS/390 & VM, Version 2 Release 1

* COBOL for OS/390 & VM, Version 2 Release 2

See [“Summary of changes to the COBOL compilers” on page xv| for further details.

Product relationships: compiler, runtime library, debug

4

IBM Enterprise COBOL for z/OS is IBM's strategic COBOL compiler for the zSeries
platform. Enterprise COBOL is comprised of features from IBM COBOL, VS
COBOL II, and OS/VS COBOL with additional features such as multithread
enablement, Unicode, XML capabilities, object-oriented COBOL syntax for Java
interoperability, integrated CICS translator, and integrated DB2 coprocessor.
Enterprise COBOL, as well as IBM COBOL and VS COBOL II, supports COBOL 85
Standard. Some features such as the CMPR2 compiler option and SOM-based
object-oriented COBOL syntax that IBM COBOL supported are not available with
Enterprise COBOL.

Language Environment provides a single language runtime library for COBOL,
PL/1, C/C++, and FORTRAN. In addition to support for existing applications,
Language Environment also provides common condition handling, improved
interlanguage communication (ILC), reusable libraries, and more efficient
application development. Application development is simplified by the use of
common conventions, common runtime facilities, and a set of shared callable
services. Language Environment is required to run Enterprise COBOL programs.

Debugging capabilities are provided by Debug Tool. Debug Tool provides
significantly improved debugging function over previous COBOL debugging tools,
and can be used to debug Enterprise COBOL programs, IBM COBOL programs, VS
COBOL 1II programs running under Language Environment, and other programs
including assembler, PL/I, and C/C++.

With OS/VS COBOL and VS COBOL II, the runtime library was included with the
compiler. In addition, the debug component was also an optional part of a single
COBOL product. In Enterprise COBOL Version 3 Debug Tool was included with
the full-function version of the compiler.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

With Enterprise COBOL Version 5, the compiler, the debugging component, and
the runtime library are all separate, although the runtime library (Language
Environment) is included with the z/OS operating system and does not need to be
purchased separately.

Comparison of COBOL compilers

gives an overview of the functions available with the latest releases of
0S/VS COBOL, VS COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM,
and shows the new functions available with the Enterprise COBOL compiler.

Table 4. Comparison of COBOL compilers

0OS/VS COBOL

VS COBOL II

COBOL for MVS &
VM

COBOL for OS/390 &
VM

Enterprise COBOL
for z/OS

Support for:

Java interoperability
under IMS, OO
support for Java
interoperability, XML,
integrated CICS
translator,
multithreading,
Unicode

Support for:

DLLs

31 digits

DB2 coprocessor
0S5/390 UNIX
Enhanced support for
Debug Tool

Support for:
DLLs 31 digits
DB2 coprocessor
0S/390 UNIX
Enhanced support
for Debug Tool

Extensions for:
Object-oriented
COBOL,

C interoperability,
Intrinsic functions,
Amendment to
'85 Std,

Support for:
Language
Environment
Debug Tool

Extensions for:
Object-oriented
COBOL,
C interoperability,
Intrinsic functions,
Amendment to
'85 Std,
Support for:
Language
Environment
Debug Tool

Extensions for:

C interoperability,
Intrinsic functions,
Amendment to
'85 Std,

Support for:
Language
Environment
Debug Tool

COBOL 85 Standard,
No intrinsic
functions, Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging
(full-screen mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging (full-screen
mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging (full-screen
mode)

COBOL 85 Standard,
Structured
programming, DBCS
National language,
Improved CICS
interface, 31-bit
addressing,
Reentrancy, Fast Sort
Optimizer, Interactive
debugging
(full-screen mode)

Chapter 1. Introducing the new compiler and run time 5

Table 4. Comparison of COBOL compilers (continued)

OS/VS COBOL

VS COBOL II

COBOL for MVS &
VM

COBOL for OS/390 &
VM

Enterprise COBOL
for z/OS

COBOL 74
Standard, 74 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive
debugging (line
mode)

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

COBOL 74
compatibility, 85 STD
FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

85 STD FIPS flagging,
Dynamic loading,
Batch debugging,
Interactive debugging

For a complete list of host versions and releases, see the Licensed Program
Specifications for Language Environment and for the compiler that you are using.

Language Environment's runtime support for different compilers

The OS/VS COBOL runtime library provided support for only OS/VS COBOL
programs. Assembler programs could be included, but not VS COBOL II programs.

The VS COBOL II runtime library provided support for both OS/VS COBOL and
VS COBOL II programs. Assembler programs could also be included.

Language Environment provides support for OS/VS COBOL programs, and VS
COBOL II programs, as well as IBM COBOL and Enterprise COBOL programs. In
addition, Language Environment provides support for other high-level languages,
including PL/I, C/C++ and Fortran. Like its predecessors, assembler programs can
be included in applications that run under Language Environment

Different versions of Enterprise COBOL have different minimum release level
requirements for Language Environment. For example, Enterprise COBOL for
z/0S, Version 4.2 required a minimum level of z/OS Version 1 Release 9 and
Enterprise COBOL for z/0S, Version 5.1 requires a minimum level of z/OS Version

1 Release 13.

Advantages of the new compiler and run time

The Enterprise COBOL compiler and Language Environment run time provide
additional functions over OS/VS COBOL, VS COBOL I, and IBM COBOL.
lists the advantages of the new compiler and run time and indicates whether they
apply to VS COBOL II, OS/VS COBOL, IBM COBOL, or all three.

Table 5. Advantages of Enterprise COBOL and Language Environment

Advantage over

parsing and generating XML documents. These
statements allow programs to transform XML
content into COBOL data structures and COBOL
data structures into XML documents.

OS/vVs VS IBM
Advantage Notes COBOL |COBOLII| COBOL
XML support Enterprise COBOL provides new statements for X X X

6 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage

Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Java interoperation

Enterprise COBOL includes object-oriented COBOL
syntax that enables COBOL to interoperate with
Java. This Java interoperation is also supported
under IMS.

X

X

X

Support to run in
multiple threads

Enterprise COBOL has a toleration level of support
for POSIX threads and signals. With Enterprise
COBOL, an application can contain COBOL
programs running on multiple threads within a
process.

Support for Unicode

The COBOL Unicode support uses the product z/OS
Support for Unicode.

Improved DB2 function

Enterprise COBOL includes support for DB2 stored
procedures.

Support for the DB2 coprocessor

Improved CICS
function

Enterprise COBOL includes CALL statement support
(for faster CICS performance than when using EXEC
CICS LINK) and eliminates the need for user-coded
BLL cells. .

Increased WORKING-STORAGE space for DATA(24)
and DATA(31) programs. For DATA(31), the limit is
2GB. For DATA(24), the limit is the available space
below the 16-MB line.

Support for the Integrated CICS translator

Usability enhancements

These enhancements include:

* Large literals in VALUE clauses on COMP-5 items
or BINARY items with TRUNC(BIN)

* Function-pointer data type
¢ Arguments specifying ADDRESS OF

COBOL language
improvements

Ability to perform math and financial functions in
COBOL, using Intrinsic Functions. You can replace
current routines written in FORTRAN or C with
native COBOL code, thus simplifying your
application logic.

Above-the-line support

Virtual Storage Constraint Relief (VSCR) allows your
programs to reside, compile, and access programs
below or above the 16-MB line.

QSAM buffers can be above the 16-MB line for
optimal support of DFSMS and data striping.

COBOL EXTERNAL data can now be above the line.

N/A

31-digit support

Enterprise COBOL added support for numbers up to
31 digits when the ARITH(EXTEND) option is used.

z/0S UNIX system
services support

The cob2 command can be used to compile and link
COBOL programs in the z/OS UNIX shell. COBOL

programs can call most of the C language functions
defined in the POSIX standard.

Chapter 1. Introducing the new compiler and run time

7

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage

Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Error recovery options

Programmers now have the ability to have
application-specific error-handling routines intercept
program interrupts, abends, and other
software-generated conditions for error recovery.
This is done using Enterprise COBOL programs with
Language Environment callable services to register
the user-written condition handlers. Language
Environment handles all condition management.

X

X

High-precision math
routines

Using Language Environment callable services, your
programs can return the most accurate results.

Support for multiple
MVS tasks

RES applications can now execute independently
under multiple MVS tasks. (For example, running
two Enterprise COBOL programs at the same time
from ISPF split screens.)

Performance

Faster arithmetic computations

Faster dynamic and static CALL statements

Improved performance of variable-length MOVEs

Faster CICS performance if using the Language
Environment CBLPSHPOP runtime option to
prevent PUSH HANDLE and POP HANDLE for
CALL statements.

Improved performance for programs compiled with
TRUNC(BIN). COBOL for OS/390 & VM Release 2
added support to generate more efficient code when
the TRUNC(BIN) compiler option is used.

N/A

Improved ILC

With the common Language Environment library,
ILC is improved between COBOL and other
Language Environment-conforming languages. For
example, interlanguage calls between COBOL and
other languages are faster under Language
Environment, because there is significantly less
overhead for each CALL statement. Additionally,
under CICS, you can use the CALL statement to call
PL/I or C programs in place of EXEC CICS LINK.

Character manipulation

Improved bit and character manipulation using hex
literals. Improved flexibility with character
manipulation using reference modification

Top-down modular
program development

Support for top-down modular program
development through nesting of programs and
improved CALL and COPY functions

Structured
Programming Support

Support for structured programming coding
through:

* Inline PERFORM statements
* The CONTINUE place-holder statement
* The EVALUATE statement

* Explicit scope terminators (for example: END-IF,
END-PERFORM, END-READ)

8 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage

Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

COBOL 85 Standard
conformance

Support for COBOL 85 Standard

X

Support for Amendment 1 (Intrinsic Functions
Module) of COBOL 85 Standard

X

Subsystem support

Improved support for IMS, ISPF, DFSORT, DB2,
WAS

Support for reentrancy

All OS/VS COBOL programs are nonreentrant. Only
reentrant programs can be loaded into shared
storage (LPA or Shared Segments).

Support for Debug Tool

Debug Tool provides the following benefits:

* Interactive debugging of CICS and non-CICS
applications

* Interactive debugging of batch applications

* Full-screen debugging for CICS and non-CICS
applications

* Debugging of mixed languages in the same debug
session

* Ability to debug programs that run on the host

+ Working in conjunction with Rational® Developer
for System z, the ability to debug host programs

from the workstation using a graphical user
interface

For COBOL for OS/390 & VM and later programs

only:

* Dynamic Debug feature which allows COBOL
programs compiled without hooks to be
debugged.

For Enterprise COBOL Version 4 or later programs:

* Compiler TEST suboption EJPD enables
predictable GOTO/JUMPTO in programs also
compiled with a non-zero OPTIMIZE level.
Note: Unpredictable GOTO/JUMPTO in
programs compiled with a non-zero OPTIMIZE
level and TEST(NOJEPD) is available with the
Debug Tool SET WARNING OFF command.

Runtime options

ABTERMENC and TERMTHDACT- allow you to
control error behavior.

CBLQDA - allows you to control dynamic allocation
of QSAM files.

LANGUAGE - allows you to change language of
runtime error messages.

RPTSTG - allows you to obtain storage usage
reports.

Storage options - allow you to control where storage
is obtained and the amount of storage used.

Chapter 1. Introducing the new compiler and run time

9

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage

Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Compiler options for
Enterprise COBOL
Version 5

There have been many changes to compiler options
and suboptions for Enterprise COBOL Version 5. For
details about those changes, see [“Compiler option|

changes in IBM Enterprise COBOL for z/OS, Version|

5” on page 181 The following compiler options are
available to Enterprise COBOL Version 5 programs

only:

 AFP(VOLATILE | NOVOLATILE)
* ARCH(n)

* DISPSIGN(SEP | COMPAT)

* HGPR(PRESERVE | NOPRESERVE)
+ MAXPCF(n)

* STGOPT | NOSTGOPT

X

X

X

Compiler options for
Enterprise COBOL
Version 4

The following compiler options are available to
Enterprise COBOL Version 4 programs only:

* XMLPARSE - controls whether the z/OS XML
System Services parser or the existing COBOL
parser is used for XML PARSE statements. With
the XMLPARSE(COMPAT) option, XML parsing is
compatible with Enterprise COBOL Version 3.
With the XMLPARSE(XMLSS) options, the z/OS
System Services parser is used and new XML
parsing capabilities are enabled.

* OPTFILE - controls whether compiler options are
read from a data set specified in a SYSOPTF DD
statement.

* SQLCCSID - controls coordination of the coded
character set ID (CCSID) between COBOL and
DB2.

* BLOCKO - activates an implicit BLOCK
CONTAINS 0 clause for all eligible QSAM files in
a program.

* MSGEXIT - The MSGEXIT suboption of the EXIT
compiler option provides a facility for customizing
compiler messages (changing their severity or
suppressing them), including FIPS (FLAGSTD)
messages.

10 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 5. Advantages of Enterprise COBOL and Language Environment (continued)

Advantage

Notes

Advantage over

OS/VS
COBOL

VS
COBOL II

IBM
COBOL

Compiler options for
Enterprise COBOL

Version 3

The following compiler options are available to

Enterprise COBOL Version 3 and later programs

only:

* CICS - enables the integrated CICS translator
capability and specifies CICS options. NOCICS is
the default.

* CODEPAGE - specifies the code page used for
encoding contents of alphanumeric and DBCS
data items at run time as well as alphanumeric,
national, and DBCS literals in a COBOL source
program.

* MDECK(COMPILE, NOCOMPILE) - controls
whether output from library processing is written
to a file and whether compilation continues
normally after library processing and the
generation of the output file.

* NSYMBOL(NATIONAL, DBCS) - controls the
interpretation of the "N" symbol used in literals
and picture clauses, indicating whether national or
DBCS processing is assumed.

* THREAD - indicates that the COBOL program is
to be enabled for execution in a Language
Environment enclave with multiple POSIX threads
or PL/I tasks. The default is NOTHREAD.

X

X

X

Compiler options for
COBOL for 0S/390 &

VM

The following compiler options are available to
COBOL for OS/390 & VM and later programs only:

¢ DLL - enables the compiler to generate an object
module that is enabled for Dynamic Link Library
(DLL) support.

* EXPORTALL - instructs the compiler to
automatically export certain symbols when the
object deck is link-edited to form a DLL.

Compiler options for
COBOL for MVS & VM

The following compiler options are available to
COBOL for MVS & VM and later programs:

* CURRENCY - allows you to define a default
currency symbol for COBOL programs.

* OPTIMIZE(FULL) - OPTIMIZE with the new
suboption of FULL optimizes object programs and
provides improved runtime performance over
both the OS/VS COBOL and VS COBOL II
OPTIMIZE options. The compiler discards unused
data items and does not generate code for any
VALUE clauses for the discarded data items.

PGMNAME(COMPAT,LONGUPPER,LONGMIXED)
controls the handling of program names in relation
to length and case.
* RMODE(AUTO,24,ANY) - allows NORENT
programs to reside above the 16-MB line.

* The integrated DB2 coprocessor, integrated CICS translator, and 31-digit support were added as new features to

COBOL for OS/390 & VM, Version 2 Release 2.

Chapter 1. Introducing the new compiler and run time 11

Changes with the new compiler and run time

12

With Enterprise COBOL, you may find that recompiling existing COBOL
applications is affected by several areas such as the removal of compiler options,
different default compiler options, unsupported SOM-based OO COBOL, and an
integrated DB2 coprocessor, and an integrated CICS translator. The following
information is a brief description of the removed or improved element and the
actions required to ensure compatibility.

CMPR2 compiler option not available

Enterprise COBOL does not provide the CMPR2 compiler option. Existing
programs compiled with CMPR2 must be converted to NOCMPR2 (COBOL 85
Standard) in order to compile them with Enterprise COBOL.

For additional details, see:

* [Chapter 5, “Upgrading OS/VS COBOL source programs,” on page 43|

* |Chapter 7, “Upgrading VS COBOL II source programs,” on page 93|

* |Chapter 9, “Upgrading IBM COBOL source programs,” on page 101

FLAGMIG compiler option

Enterprise COBOL V5 does not provide the FLAGMIG compiler option.

To aid you with migration to Enterprise COBOL V5, there is a new option in
Enterprise COBOL V4.2, FLAGMIG4, to flag source code syntax-related changes
required to move to Enterprise COBOL V5.

For additional details about the FLAGMIG option, see:
* [Chapter 5, “Upgrading OS/VS COBOL source programs,” on page 43|

* |Chapter 7, “Upgrading VS COBOL II source programs,” on page 93|

* |Chapter 9, “Upgrading IBM COBOL source programs,” on page 101

SOM-based object-oriented COBOL not available

Enterprise COBOL does not support SOM-based OO COBOL; however, Enterprise
COBOL provides OO syntax to facilitate the interoperation of COBOL and Java
programs. The removal of SOM-based OO COBOL from Enterprise COBOL
included the removal of the compiler options TYPECHK and IDLGEN because
they require SOM to run. Applications utilizing SOM-based OO COBOL must be
redesigned to upgrade to Java-based OO COBOL syntax or redesigned as
procedural (non-O0O) COBOL.

For additional details and compatibility considerations, see |”Upgradin§|
[SOM-based object-oriented (O0O) COBOL programs” on page 140

Integrated DB2 coprocessor available

Enterprise COBOL provides an integrated DB2 coprocessor that allows the
Enterprise COBOL compiler to handle both native COBOL statements and
embedded SQL statements in a source program. You can choose to migrate from
the separate DB2 precompiler to the integrated DB2 coprocessor, or you can choose
to continue using the separate DB2 precompiler.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

The SQL compiler option must be specified to enable the DB2 coprocessor to
process a COBOL source program that contains SQL statements.

For additional details and compatibility considerations, see:

+ |Chapter 19, “DB2 coprocessor conversion considerations,” on page 217

Integrated CICS translator available

Enterprise COBOL provides an integrated CICS translator that allows the
Enterprise COBOL compiler to handle both native COBOL statements and
embedded CICS statements in a source program. You can choose to migrate from
the separate CICS translator to the integrated CICS translator, or to continue using
the separate CICS translator.

The CICS compiler option must be specified to enable the CICS translator to
process a COBOL source program that contains CICS statements.

For additional details and compatibility considerations, see:

* |Chapter 18, “CICS conversion considerations for COBOL source,” on page 211|

General migration tasks

Depending on your shop's programming environment, you will likely have to
complete one or more migration tasks to move to the new compiler and run time.

These tasks include:

* Planning your strategy

* Upgrading your source to Enterprise COBOL

* Adding Enterprise COBOL programs to existing applications

Planning your strategy

Before upgrading your source programs to Enterprise COBOL, develop a
conversion strategy. For help in completing your runtime library migration to
Language Environment, see the Enterprise COBOL V4.2 Compiler and Runtime
Migration Guide at [http:/ /publibfp.dhe.ibm.com/epubs/pdf/igy3meg50.pdf

Your migration strategy might be to gradually recompile entire existing
applications with Enterprise COBOL as needed. You may also decide to recompile
individual programs as you go.

Upgrading your source to Enterprise COBOL

The effort required to upgrade your source programs is dependent on the compiler
used and the language level used for those programs.

OS/VS COBOL

OS/VS COBOL programs compiled with either LANGLVL(1) or LANGLVL(2) can
contain either COBOL 68 Standard or COBOL 74 Standard elements. Conversion is
required in order for these programs to compile with Enterprise COBOL. You
should use conversion tools to aid in this conversion. For details, see
{to COBOL 85 Standard” on page 54

VS COBOL I
From a conversion standpoint, VS COBOL II and Enterprise COBOL Version 5
have the following language differences:

Chapter 1. Introducing the new compiler and run time 13

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

* Removal of CMPR2 support

* Behavior of some SEARCH ALL statements
* New reserved words

 Simplified TEST compiler option

* Removal of runtime support for SIMVRD

* Removal of support for the format 2 declarative syntax: USE...AFTER...LABEL
PROCEDURE..., and the syntax: GO TO MORE-LABELS.

A complete list of reserved words, including those reserved for object-oriented
COBOL is included in [Appendix B, “COBOL reserved word comparison,” on page|

If upgrading from VS COBOL II Release 3, there are also three minor language
differences due to ANSI interpretation changes. Aside from these small differences,
you can compile with Enterprise COBOL without change and receive the same
results. For details, see |Chapter 7, “Upgrading VS COBOL II source programs,” on|
-ae 93.

VS COBOL II Release 2 programs are coded to the COBOL 74 Standard as are VS
COBOL II programs compiled with the CMPR2 compiler option. The CMPR2
compiler option is not supported by Enterprise COBOL, requiring source
conversion for all VS COBOL II Release 1 or 2 programs as well as any VS COBOL
II Release 3 or 4 programs that were compiled with CMPR2. Conversion tools can
help you upgrade your source programs to COBOL 85 Standard. Details of
language differences between CMPR2 and NOCMPR? are included in |”Migratin§|
[from the CMPR2 compiler option to NOCMPR2” on page 107,

For details about the conversion tools available to upgrade source programs, see
[Appendix C, “Conversion tools for source programs,” on page 249.

IBM COBOL
Many IBM COBOL programs will compile without change under Enterprise
COBOL.

The following programs, however, will need to be upgraded before compiling with
Enterprise COBOL:

* Programs compiled with the CMPR2 compiler option

* Programs that have SOM-based object-oriented COBOL syntax

* Programs that use words which are now reserved in Enterprise COBOL
* Programs that have undocumented IBM COBOL extensions

* Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL
PROCEDURE..., and optionally the syntax: GO TO MORE-LABELS.

For details, see [Chapter 9, “Upgrading IBM COBOL source programs,” on page|
-101.

Enterprise COBOL Version 3
Most Enterprise COBOL Version 3 programs will compile without change under
Enterprise COBOL Version 5.

The following programs, however, will need to be upgraded:
* Programs that use words which are now reserved in Enterprise COBOL

14 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

* Programs that contain the format 2 declarative syntax: USE...AFTER...LABEL
PROCEDURE..., and the syntax: GO TO MORE-LABELS.

* Programs that contain XML PARSE statements.

For details, see [Chapter 11, “Upgrading programs from Enterprise COBOL Version|
BB,” on page 147

Enterprise COBOL Version 4
Most Enterprise COBOL Version 4 programs will compile without change under
Enterprise COBOL Version 5.

The following programs, however, will need to be upgraded:
* Programs that use words which are now reserved in Enterprise COBOL

* Programs that contain the format 2 declarative syntax: USE... AFTER...LABEL
PROCEDURE..., and the syntax: GO TO MORE-LABELS.

* Programs that contain XML PARSE statements and were compiled with the
XMLPARSE(COMPAT) compiler option.

For details, see [Chapter 13, “Upgrading from Enterprise COBOL Version 4,” on|
-ae 165.

Adding Enterprise COBOL programs to existing applications

You can create new Enterprise COBOL programs (or recompile existing programs
with Enterprise COBOL) and run them with existing applications under Language
Environment.

Note: You should use this Migration Guide only if you complete your runtime
migration from pre-LE runtime libraries to Language Environment. The following
conditions have to be met before a COBOL runtime migration is complete:

* The Language Environment data set SCEERUN is installed in LNKLST or
LPALST.

* There are no instances of COBLIB, VSCLLIB, or COB2LIB in LNKLST or
LPALST.

* There are no instances of COBLIB, VSCLLIB, or COB2LIB in JCL STEPLIB or
JOBLIB statements in batch jobs or in CICS startup JCL.

* All statically bound runtime library routines for programs that are compiled
with NORES have been REPLACEd with routines from Language Environment.

* IGZEBST bootstrap modules for VS COBOL II programs that are compiled with
RES were either linked with the VS COBOL II runtime version of IGZEBST that
has APAR PN74000 applied, or IGZEBST was REPLACEd with IGZEBST from
Language Environment.

If these steps have not been completed, please first complete all runtime migration
activities in the Enterprise COBOL Version 4.2 Compiler and Runtime Migration Guide
prior to following the steps here.

When adding Enterprise COBOL programs to existing applications, you must be
aware of the following items:

* Restrictions of running programs with certain old COBOL programs

* Acquiring WORKING-STORAGE both above and below the 16-MB line
* Effect of compiler option changes

* Reserved word changes

* Other behavior differences with Enterprise COBOL V5

Chapter 1. Introducing the new compiler and run time 15

For details, see [Chapter 16, “Adding Enterprise COBOL V5.1 programs to existing]|
[COBOL applications,” on page 197.

Restriction: You cannot mix Enterprise COBOL Version 5 with:
* OS/VS COBOL programs. You must migrate them to Enterprise COBOL.
* VS COBOL II NORES programs. You must migrate them to Enterprise COBOL.

16 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Chapter 2. Do | need to recompile?

Ideally, programs should be compiled with a supported compiler (currently only
IBM Enterprise COBOL for z/OS is supported) and run with a supported runtime
library (Language Environment). You can migrate programs gradually, in two
stages:
+ Stage 1: Runtime migration. You can use the Enterprise COBOL V4.2 Compiler and
Runtime Migration Guide at |ttp:/ /publibfp.dhe.ibm.com/epubs/pdf/|
for help in completing your runtime library migration.
 Stage 2: Compiler migration (you may compile only one or many programs in
existing applications)

The remainder of this section explains when and why you might want to migrate
your applications (run time or source). It includes the following topics:

Migration basics

The migration process involves runtime migration (moving your applications to a
new runtime library) and source migration (upgrading your source programs). As
part of the migration process, you will also need to do inventory assessment and
testing. As stated previously, you are not required to do your runtime migration
and recompilation concurrently.

For more details about the migration process, see [‘General migration tasks” on|
-ae 13.

Runtime migration

Every COBOL program requires runtime library routines to execute. They may be
statically linked to the load modules (compiled with the NORES compiler option)
or dynamically accessed at run time (compiled with the RES compiler option).

Moving to Language Environment

If you are starting with load modules consisting of programs that are compiled
with the NORES option and link-edited with the OS/VS COBOL runtime library or
the VS COBOL II runtime library, then you will need to use REPLACE
linkage-editor control statements to replace the existing runtime library routines
with the Language Environment versions. If you start with object programs
(non-linked), then you just need to link-edit with Language Environment.

Note: If your IGZEBST bootstrap routine from VS COBOL II has PN74000
installed, you do not need to REPLACE this IGZEBST with the Language
Environment version of IGZEBST.

If the programs are compiled with the RES option, make the Language
Environment library routines available at run time in place of the OS/VS COBOL
or VS COBOL II library routines by using LNKLST, LPALST, JOBLIB, or STEPLIB.

Do not make more than one COBOL runtime library available to your applications
at run time. For example, there should be one and only one COBOL runtime
library, such as SCEERUN for Language Environment, in LNKLST. If you have
more than one, you will either get hard-to-find errors or you will have an unused

© Copyright IBM Corp. 1991, 2019 17

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

load library in your concatenation. In addition, if you have more than one runtime
library in your concatenation, then you have an invalid configuration that is not
supported by IBM.

If you have not yet completed your runtime library migration, you must complete
that migration before using this book. You can use the Enterprise COBOL V4.2

Compiler and Runtime Migration Guide at fhttp:/ /publibfp.dhe.ibm.com/epubs/pdf/|
for help in completing your runtime library migration.

Source migration

Source migration is not required for most programs and can occur after you have
moved your OS/VS COBOL or VS COBOL II programs to run with Language
Environment.

Source migration and recompilation is required for OS/VS COBOL programs and
VS COBOL II NORES programs if they are to be called by (or need to call)
Enterprise COBOL Version 5 programs. Enterprise COBOL V5 programs can
dynamically call (and be dynamically called by) VS COBOL II RES programs.

Source migration usually consists of upgrading the source language level that is
used (such as from Standard COBOL 74 supported by OS/VS COBOL to COBOL
85 Standard supported by Enterprise COBOL). Source migration is also required in
a few instances to enable your applications to run under Language Environment.

Many conversion tools exist to aid in upgrading your source code. For details, see
[Appendix C, “Conversion tools for source programs,” on page 249

Service support for OS/VS COBOL and VS COBOL Il programs

In some cases IBM will continue to provide support for OS/VS COBOL and VS
COBOL 1II programs that run under Language Environment.

IBM will continue to provide service support for the running of programs
compiled with the OS/VS COBOL Release 2 and VS COBOL II Release 3 and
higher compilers when these programs use the Language Environment runtime
library versions of the COBOL library routines with the following exceptions:

* OS/VS COBOL programs running under CICS Transaction Server

* OS/VS COBOL programs interoperating with Enterprise COBOL V5 programs

* VS COBOL II programs compiled with the NORES option interoperating with
Enterprise COBOL V5 programs

For example, the library routines for OS/VS COBOL programs exist in the OS/VS
COBOL, the VS COBOL 1], and the Language Environment runtime libraries.
0OS/VS COBOL programs running with the OS/VS COBOL runtime library or the
VS COBOL II runtime library are not supported by IBM Service. If your OS/VS
COBOL programs are running using a supported release of the Language
Environment runtime library, your programs are supported by IBM Service but
they cannot interoperate with Enterprise COBOL V5 programs. .

In CICS TS (Transaction Server), you can no longer run OS/VS COBOL programs.

Changing OS/VS COBOL programs

Although the OS/VS COBOL compiler is no longer supported, the programs that
were generated by it are supported if they are running under Language

18 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf
http://publibfp.dhe.ibm.com/epubs/pdf/igy3mg50.pdf

Environment and not interoperating with Enterprise COBOL V5 programs. Once
you have migrated your runtime library to Language Environment, you can run
your source code through a source conversion tool, such as the COBOL and CICS
Conversion Aid (CCCA) and then compile using the Enterprise COBOL compiler.

For more information about CCCA, see [Appendix C, “Conversion tools for source]
[programs,” on page 249

Interoperability with older levels of IBM COBOL programs

There are some restrictions for Enterprise COBOL V5 programs to call or be called
by (interoperate) with programs compiled with earlier versions of COBOL.

Enterprise COBOL V5 programs cannot interoperate with OS/VS COBOL or VS
COBOL II NORES programs in a single application. A COBOL run unit (Language
Environment enclave) that contains an Enterprise COBOL V5 compiled program
must not contain any OS/VS COBOL or VS COBOL II NORES programs.

Note: Run units that contain only COBOL programs compiled with Enterprise
COBOL V4 or earlier versions can interoperate with OS/VS COBOL and VS
COBOL II NORES programs.

Programs compiled with Enterprise COBOL V5 can interoperate with programs
compiled with VS COBOL II or later, based on the following conditions and CALL
types:

* Static calls. Enterprise COBOL V5 compiled programs can be bound or
link-edited with the following object modules or programs to form a single
program object. The programs within the program object can specify static calls
to and from each other.

— Programs that are compiled with VS COBOL II with the RES compiler option

— Programs that are compiled with any IBM COBOL compiler versions
subsequent to VS COBOL II

— Programs that are compiled with Enterprise COBOL V3 or V4

Note: Programs that are compiled with VS COBOL II with the NORES compiler
option specified cannot interoperate with programs compiled with Enterprise
COBOL V5.

* Dynamic calls. Program modules that contain programs compiled with VS
COBOL II with the RES option, or subsequent versions of COBOL can also
interoperate with Enterprise COBOL V5 program objects by using dynamic
CALL statements.

* DLL calls. Program modules that are compiled with earlier versions of COBOL
that supported DLL linkage can interoperate with Enterprise COBOL V5
program objects by using DLL linkage.

Chapter 2. Do I need to recompile? 19

20 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Part 2. Migration strategies

© Copyright IBM Corp. 1991, 2019

21

22 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Chapter 3. Compiler upgrade checklist

To upgrade your programs to Enterprise COBOL, use the following checklist.

Do these tasks:

1. If your COBOL load libraries are in PDS data sets, migrate them to PDSE data
sets.

2. Complete runtime migration, which means:

* The Language Environment dataset SCEERUN is installed in LNKLST or
LPALST

* There are no instances of COBLIB, VSCLLIB or COB2LIB in LNKLST, or
LPALST

* There are no instances of COBLIB, VSCLLIB or COB2LIB in JCL STEPLIB or
JOBLIB statements in batch jobs or in CICS startup JCL

* All statically bound runtime library routines for programs that are compiled
with NORES have been REPLACEd with routines from Language
Environment.

* IGZEBST bootstrap modules for VS COBOL II programs that are compiled
with RES were either linked with the VS COBOL II runtime version of
IGZEBST that has APAR PN74000 applied, or IGZEBST was REPLACEd
with IGZEBST from Language Environment.

3. Ensure that all software and hardware prerequisites as defined in the Licensed
Program Specifications Enterprise COBOL are satisfied. (Get the Licensed
Program Specifications from the [Enterprise COBOL for z/OS library ht
http:/ /www.ibm.com/support/docview.wss?uid=swg27036733.)

4. Install prerequisite PTFs for the Language Environment runtime library on all
systems where COBOL programs might be compiled or run, including on all
production systems.

5. Ensure that all systems on which COBOL will run, and all software that needs
to work with COBOL (for example z/OS, Debug Tool, Fault Analyzer, and
DB2), are ready for programs compiled with the new COBOL compiler. For a
list of APARs, see [“Prerequisite software and service for Enterprise COBOL]
[V5” on page 179

6. Save the old COBOL compiler for emergency use.

7. Purchase and install the new Enterprise COBOL compiler.

8. Set up the default compiler options and your library control system options
for the new compiler to be compatible with the old compiler. For future reuse,
document any customization or set up that you do.

9. Depending on which COBOL compiler you are migrating from, you might
need to make COBOL source-code changes. For details, see the topic in the
Upgrading programs section of this information which applies to your current
compiler.

10. Follow the recommended COBOL compiler migration strategy, which takes
advantage of existing application development processes:

* Whenever you make code changes, compile using the new compiler.

* You can mix programs that were compiled with the old and new compiler
within an application, with restrictions. It is often not necessary to

© Copyright IBM Corp. 1991, 2019 23

http://www-01.ibm.com/support/docview.wss?uid=swg27036733

recompile all programs. If you do not recompile all programs you will have
to maintain older compilers for the programs that have not yet been
recompiled.

The benefit of this strategy is that because developers normally test their
changes, the compiler migration will not require extra testing, so in effect will
be free!

11. Develop a strategy for recompiling programs that aren't going to be changed
in the course of normal development, for example:

* Recompile all programs in a module if any program in the module is
changed.

* Recompile all programs in an application if any program in the application
is changed.

* Schedule recompilation of all programs application by application.

Note that running old modules under Language Environment is supported.

12. After all programs have been compiled with the new compiler, uninstall the
old compiler. That way, you save license fees!

24 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Chapter 4. Planning to upgrade source programs

You can follow a general strategy for upgrading source programs to Enterprise
COBOL.

The following tasks are necessary, and should be performed in roughly the
following order:

1. Preparing to upgrade your source

2. Taking an inventory of your applications

w

Prioritizing your applications

B

Setting up a conversion procedure

o

Making application program updates

Because of the loss of service support for older COBOL compilers, you should
eventually upgrade all of your COBOL source programs. Although this is not an
immediate requirement, at some future date the older compilers and any
supported fixes will not be available. At that point, you will be forced to do a
'quick' migration, and this might be at a very inconvenient time.

Preparing to upgrade your source

In preparing to upgrade your source to Enterprise COBOL, you need to perform
the following tasks, which can be done concurrently:

* Installing Enterprise COBOL

* Assessing storage requirements

* Deciding which conversion tools to use

* Educating your programmers on new compiler features

Installing Enterprise COBOL

If you haven't already done so, install the compiler; see the Program Directory for
Enterprise COBOL.

Assessing storage requirements

You can load most of the Enterprise COBOL compiler above the 16 MB line. In
addition, Enterprise COBOL object programs execute in 31-bit addressing mode
and can reside above the 16-MB line, which frees storage below the 16 MB line.
You can use the freed storage for programs or data that must reside below the

16-MB line.

During conversion, you will need DASD storage for your current COBOL
compilers as well as for the Enterprise COBOL compiler. When you have
completed conversion, and if you have upgraded all of your OS/VS COBOL, VS
COBOL 1I, or IBM COBOL programs to Enterprise COBOL, you will be able to free
the storage reserved for your current COBOL compiler.

The program object produced from the same source code when compiled with

Enterprise COBOL V5 will be larger than the load module produced when
compiled with all earlier versions of COBOL.

© Copyright IBM Corp. 1991, 2019 25

26

Deciding which conversion tools to use and install them

If you use the available conversion tools, you will find that upgrading can be a
very simple procedure. The following conversion tools can help in upgrading your
source programs to Enterprise COBOL programs:

COBOL Conversion Tool (CCCA)
The COBOL and CICS/VS Command Level Conversion Aid (CCCA)
automatically converts your old COBOL programs, either OS/VS COBOL, VS
COBOL II, or IBM COBOL with CMPR2, into COBOL 85 Standard code that
you can compile with Enterprise COBOL. It also provides you with reports of
the statements that were changed. CCCA is included with the IBM Debug Tool
product.

For more information about CCCA, see [Appendix C, “Conversion tools for|
lsource programs,” on page 249 |

0S/VS COBOL MIGR compiler option
The MIGR option identifies source statements that need to be converted to
compile under Enterprise COBOL.

CMPR2, FLAGMIG, and NOCOMPILE compiler options

The COBOL CMPR2, FLAGMIG, and NOCOMPILE options identify source
statements that need to be converted to compile under Enterprise COBOL. The
CMPR2 and FLAGMIG options are not available in Enterprise COBOL, but
you can use your older compilers with these options to flag the statements that
need to be changed in order to compile with Enterprise COBOL.

Enterprise COBOL V4.2 FLAGMIG4 compiler option
A new compiler option, FLAGMIGY, is available with APAR PM93450 for
Enterprise COBOL V4.2 to help you migrate to Enterprise COBOL V5. The
FLAGMIG4 option identifies language elements in Enterprise COBOL V4
programs that are not supported, or that are supported differently in
Enterprise COBOL V5. The compiler generates a warning diagnostic message
for all such language elements.

Another conversion tool you might want to use is COBOL Report Writer
Precompiler. It enables you to either continue using Report Writer code or convert
your Report Writer code to non-Report Writer code. The Report Writer Precompiler
is product number 5798-DYR.

These conversion tools are fully described in|Appendix C, “Conversion tools for|
[source programs,” on page 249

If you plan to use CCCA or COBOL Report Writer Precompiler, install it at this
time. For installation instructions, see the documentation for the conversion tool(s)
you plan to use.

Educating your programmers on new compiler features

Early in the conversion effort, ensure that your application programmers are
familiar with the features of Enterprise COBOL and the relationship and
interdependencies between Enterprise COBOL, Language Environment, and Debug
Tool and any other application productivity tools your shop uses.

In addition to source language differences between Standard COBOL 68, Standard
COBOL 74, and COBOL 85 Standard, your programmers will need to be familiar
with Language Environment condition handling and Language Environment
callable services.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

For information about Enterprise COBOL and Language Environment education
available through IBM, you can call 1-800-IBM-TEACH (1-800-426-8322). You can
also get information directly from Language Environment publications or technical
conferences such as SHARE, www.share.org.

After your programmers are familiar with Enterprise COBOL features, they can
assist you in taking the inventory of programs as described in
finventory of your applications.”]

Taking an inventory of your applications

In planning the upgrade to Enterprise COBOL, you need to take a comprehensive
inventory of applications in which you have programs that you intend to compile
with Enterprise COBOL.

The Debug Tool Load Module Analyzer can determine the language translator that
was used for each object in your load modules. See ["Debug Tool Load Module|
[Analyzer” on page 256 for more information.

The Edge Portfolio Analyzer can provide assistance in taking an inventory of your
existing load modules by reporting the compiler, compiler release, and compiler
options used. See [“The Edge Portfolio Analyzer” on page 256/ for more
information.

Language Environment can help you find out whether you are ever running
0OS/VS COBOL programs from your inventory. Install the fix for APAR PM86742 to
your Language Environment and look for one of these warning messages about
detected OS/VS COBOL programs at run time:

IGZ0268W
An invocation was made of OS/VS COBOL program "program-name".

1GZ0269W
"program-lang" version "program-version" program "program-name" made
a call to OS/VS COBOL program "program-name".

Rational Asset Analyzer for z/OS can aid by analyzing the impact of a code
change for an application. See [“Rational Asset Analyzer” on page 253 for more
information.

Taking an inventory of vendor tools, packages, and products

Before you can begin upgrading your source, you must know whether your
vendor tools, packages, and products are designed to work with Enterprise
COBOL. Verify:

* COBOL code generators generate COBOL 85 Standard programs that can be
compiled with Enterprise COBOL.

* COBOL packages are written in COBOL 85 Standard language that can be
compiled with Enterprise COBOL.

* Third-party tools such as debuggers and databases support Enterprise COBOL.

Taking an inventory of COBOL applications

For each program in your COBOL applications, include at least the following
information in your inventory:

For all previous versions of COBOL:

Chapter 4. Planning to upgrade source programs 27

* Programmer responsible
» COBOL Standard level of source program (68, 74, 85)

* Compiler used (ANS COBOL V4, OS/VS COBOL, VS COBOL 11, IBM COBOL,
Enterprise COBOL V3, Enterprise COBOL V4)

* Compiler options used, especially CMPR2, NORES, XMLPARSE
* Precompiler options used

* Postprocessing options used
* COBOL modules
* COPY library members used in COBOL programs

* Called subprograms

* Calling programs

* Frequency of execution

* Test cases required and available

* Programs containing Report Writer statements
* Use of SIMVRDS, SOM-based OO, Millennium Language Extensions, or LABEL

declaratives

This information is useful to you in the next step of your planning task,

[“Prioritizing your applications.”|

Prioritizing your applications

28

Using the complete inventory, you can now prioritize the conversion effort as

described below.

1. Assign complexity ratings to each item in your completed inventory and
determine each program or application's resulting overall complexity rating.

2. Determine the conversion priority of each program or application.

Assigning complexity ratings
Complexity ratings are defined based on the effort required to convert, test, and
coordinate a construct or program. The ratings used in [Table 6 on page 29| are

defined as:

Complexity
rating

Requirement

0

All code converted by CCCA without error; code compiles correctly
under Enterprise COBOL

1-3

Most code converted without error by CCCA
Requires moderate testing

Requires moderate coordination

Most code converted without error by CCCA

Requires CCCA and possible manual conversion
Requires special testing considerations

5-6

Requires moderate to high degree of coordination
Requires moderate to high degree of testing for functional
equivalence Requires conversion in addition to CCCA
(manual or automated)

7-8

Requires high degree of coordination
Requires high degree of testing for functional equivalence

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Complexity
rating

Requirement

9

Requires very high degree of coordination

Requires very high degree of testing for functional equivalence

10

Requires rewrite of module

Based on the complexity ratings shown above (or your own defined complexity

ratings), you can now assign a complexity rating to each attribute within a
program. Use the highest complexity rating listed as the overall rating for that

program. For an application, the highest complexity rating that you assign for any
program within the application is the complexity rating for the entire application.

shows estimated complexity ratings for conversions of specific program

attributes.

Table 6. Complexity ratings for program attribute conversions

Program attribute

Description of attribute

Complexity rating

Lines of source code 1000 or less 0
5000 to 10,000 3
10,000 to 20,000 + 5
Fixed file attribute mismatch (FS 39)! 4
VS COBOL II or later compiled with Compiler option CMPR2 not supported 1 C
CMPR2
COBOL 74 Standard COPY library 1 M C
members
ANS COBOL V4 COPY library members 1to 10 2 M C
10 to 20 5 M C
20 + 6 M C
Stability Program with no plans for changes 0
Program changes twice a year 3
Program changes every month or more often 8"
Files accessed 1to3 1 M C
3to5 2 M C
6+ 3 M C
No source code for module Module needs rewrite 10°
Module does not need to be upgraded 6
CICS macro level program 10
Compiled by Full ANS COBOL V4 4 C
compiler (pre- compiler)
Compiled by OS/VS COBOL Release 2 LANGLVL(2) no manual changes 1 M C
compiler LANGLVL(1) no manual changes 1 M C
LANGLVL(2) manual changes 4 M C
LANGLVL(1) manual changes 4 M C

Chapter 4. Planning to upgrade source programs

29

Table 6. Complexity ratings for program attribute conversions (continued)

Program attribute

Description of attribute

Complexity rating

Uses language with changed results

Signed data

Complex OCCURS DEPENDING ON 4 C
Combined abbreviated relation conditions 6 M
Floating-point arithmetic 6 M
Exponentiation 6 M

2

2

Binary data

Access methods used ISAM? 10 M C
BDAM 10 ct
TCAM 10

Uses Report Writer language (if not using 6 M C

Report Writer Precompiler)

Uses Report Writer language (if using 0

Report Writer Precompiler)

CICS 4

SIMVRD 3

SOM-based OO 8

LABEL declaratives 3

XMLPARSE(COMPAT) 7

. For additional information, see|Appendix G, “Preventing file status 39 for QSAM files,” on page 283

1
2. Non-IBM vendors can recreate COBOL source code from object code.
3. Support for ISAM was removed with z/OS 1.7.
4

. This is a partial conversion.

On categories marked M you can gather information using the OS/VS COBOL MIGR option. On categories marked
C you can gather information using the COBOL conversion tool (CCCA).

Determining conversion priority

After you have determined the complexity rating for each program in your
inventory, you can make informed decisions about the programs that you want to

upgrade, and the order in which you want to upgrade them.

shows one method of relating program complexity ratings to conversion
priorities. (The highest priority is “1” and the lowest priority is “6”.)

Table 7. Assigning program conversion priorities

Conversion Complexity
priority rating Other considerations
1 Oto3 Great importance to your organization
Low conversion effort using conversion tools
2 4to6 Great importance to your organization
Medium conversion effort using conversion tools
Oto3 Medium importance to your organization

Low conversion effort using conversion tools

30 Enterprise COBOL for z/OS, V5.1.1 Migration Guide

Table 7. Assigning program conversion priorities (continued)

Conversion Complexity
priority rating Other considerations
3 7108 Great importance to your organization
High conversion effort using conversion tools
3tob6 Medium importance to your organization
Medium conversion effort using conversion tools
Oto3 Small importance to your organization
Low conversion effort using conversion tools
4 9 to 10 Great importance to your organization
Very high conversion effort
7108 Medium importance to your organization
High conversion effort using conversion tools
3to6 Small importance to your organization
Medium conversion effort using conversion tools
5 9 to 10 Medium importance to your organization
Very high conversion effort
7108 Small importance to your organization
High conversion effort using conversion tools
6 9to 10 Small importance to your organization

Very high conversion effort

Consider the following situations when deciding on conversion priorities:

* If your application is at the limits of the storage available below the 16-MB line,
it is a prime candidate for conversion to Enterprise COBOL. With z/OS
architecture you can obtain virtual storage constraint relief.

After you determine the priority of each program that you need to upgrade and
the effort required to upgrade those programs, you can decide the order in which
you want to convert your applications and programs.

There might be some programs that you do not want to convert at all, such as:

* Programs for which you have no source code, that will never need
recompilation, and that run correctly under Language Environment

* Programs of low importance to your organization that run correctly under
Language Environment and that would take a very high conversion effort

* Programs that are being phased out of production

Note, however, that there might be restrictions on running existing modules mixed
with upgraded programs. See [Chapter 16, “Adding Enterprise COBOL V5.1|

[programs to existing COBOL applications,” on page 197

Setting up a conversion procedure

The summaries and diagrams on the following pages outline the steps required to

upgrade five types of programs:

* Programs without CICS or Report Writer

* Programs converted to structured programming code

* Programs with CICS

* Programs with Report Writer statements to be discarded

Chapter 4. Planning to upgrade source programs

31

* Programs with Report Writer statements to be retained

In the following flowcharts, you are directed to manually upgrade your programs
if you are not using CCCA. If you do not want to use CCCA, you should consider
using a non-IBM vendor's conversion tool before attempting a manual conversion.

Programs without CICS or Report Writer

To convert an OS/VS COBOL program that contains neither CICS commands nor
Report Writer statements to an Enterprise COBOL program, do the steps shown in
the flowchart below.

32 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

CCCA
available

VS
COBOLII
available

No

i lYes Yes Yes
Yes
A
RunCCCA Compile with Compile with Compile with Use
OS/VS COBOL VS COBOL Il using IBMCOBOL using Migration Guide
MIGR option CMPR2&FLAGMIG CMPR2&FLAGMIG
Yes
Manual < < <
conversion
No
Complete
conversion
I “—
Compile with <
Enterprise COBOL <
<
Yes—’ Solve
diagnostics
No
Test program
Fixerrors L

No

Figure 1. Steps for converting an OS/VS COBOL program to an Enterprise COBOL program

Programs with CICS

To convert an OS/VS COBOL program that contains CICS commands to an
Enterprise COBOL program, do the steps shown in the flowchart below.

Chapter 4. Planning to upgrade source programs 33

CCCA
available

RunCCCA

No

Complete
conversion

RunCICS
translator

!

OS/VS
COBOLRel2.4
available

VS
COBOLII
available

IBM
COBOL
available

Compile with
OS/VS COBOL
MIGR option

Compile with
VS COBOLIlusing
CMPR2&FLAGMIG

Compile with
IBM COBOLusing
CMPR2&FLAGMIG

Use
Migration Guide

v

Manual
conversion

v

Convert
BLLs

A

A A A A

Use
integrated CICS
translator?

es

Run CICS
translator
using the COBOL3
translator option

v

v

Compile with
Enterprise COBOL

Compile with
Integrated CICS
translatorusing

CICS Compileroption

<

<

Diagnostics

Test program

End

Yes

Solve

diagnostics

Fixerrors

A

Figure 2. Steps for converting an OS/VS COBOL program containing CICS commands

34

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Programs with Report Writer statements to be discarded

To convert an OS/VS COBOL program with Report Writer statements to Enterprise
COBOL, and remove Report Writer statements, perform the steps shown in the
flowchart below.

Chapter 4. Planning to upgrade source programs 35

Run Report Writer
Precompileras
converter

le

A

Manual conversion
of Report Writer
statements

-

CCCA
available

OS/VS
COBOLRel2.4
available

VS
COBOLII
available

iYes

No

A

Compile with
VS COBOLIIusing
CMPR2&FLAGMIG

Compile with
IBMCOBOLusing
CMPR2 & FLAGMIG

Use
Migration Guide

i Yes
Compile with
RunCCCA
OS/VSCOBOL
MIGR option
Yes
v
No Manual
conversion
Complete
conversion
Compile with :
Enterprise COBOL ;
o
Yes
Diagnostics Solve
diagnostics
Test program
Yes ;
Y Fixerrors
No
End

Figure 3. Steps for converting an OS/VS COBOL program and discarding Report Writer statements

A

A

Programs with Report Writer statements to be retained

36 Enterprise COBOL for z/OS, V5.1.1 Migration Guide

To convert an OS/VS COBOL program that contains Report Writer statements to
an Enterprise COBOL program, and retain the Report Writer statements in the

source code, do the steps shown in the flowchart below.

VS
COBOLII
available

OS/VS
COBOLRel2.4
available

CCCA
available

lYes
RunCCCA v
Compile with Compile with Compile with Use
OS/VSCOBOL VS COBOLI1using IBM COBOL using Miaration Guide
MIGR option CMPR2&FLAGMIG CMPR2&FLAGMIG g
Yes
\4
¢ No
Manual < < <
Complete conversion
conversion
o
Compile with ;
Enterprise COBOL |«
using the EXIT
compiler option with
Report Writer
Precompiler
. . Solve
Diagnostics diagnostics

#No

Test program

Yes .
Fixerrors —

End

Figure 4. Steps for converting an OS/VS COBOL program and retaining Report Writer statements

Making application program updates

The following application programming tasks are necessary when upgrading your

source. They should be performed in roughly the following order:

Save the existing source as a backup (a benchmark to compare to and a version to

which to recover if the converted modules have problems).
1. Update the job and module documentation.

Chapter 4. Planning to upgrade source programs

38

It is extremely important that all updates be properly documented. COBOL
itself is reasonably self-documenting. However, keep a log of the compiler
options you specify and the reasons for specifying them. Also document any
special system considerations. This is an iterative process and should be
performed throughout the conversion programming task.

. Update the available source code.

Whenever possible, use the conversion tools described in |Appendix C,|
[‘Conversion tools for source programs,” on page 249 Otherwise, update the
source code manually.

. Compile, link-edit, and run.

After the source has been updated, you can process the program as you would
a newly written Enterprise COBOL program.

. Debug.

Analyze program output and, if the results are not correct, use Debug Tool or
Language Environment dump output to uncover any errors.

. Test the converted programs

After upgrading your source to Enterprise COBOL, set up a procedure for
regression testing. Regression testing will help to identify:

* Fixed file attribute mismatches (file status 39 problems). Verify that your
COBOL record descriptions, JCL DD statements, and physical file attributes
match. For more information, see |Appendix G, “Preventing file status 39 for|
[QSAM files,” on page 283

e Performance differences.

* Sign handling problems—S0C7 abends. The data's sign must match the signs
allowed by the NUMPROC compiler option suboption that you specify.

* DATA(24) issues. Do not mix AMODE 24 programs with 31-bit data.

Note: In some cases, you can no longer set initial values of

WORKING-STORAGE using the Language Environment STORAGE option. For
details about storage changes, see [‘Language Environment option changes” on|
_a ge 188.

After you have established a regression testing procedure, and after your
programs run correctly, test them against a variety of data:

* Locally: Each program separately
* Globally: Programs in a run unit in interaction with each other

In this way, you can exercise all the program processing features to help ensure
that there are no unexpected execution differences.

. Repeat when necessary.

Make any further corrections that you need, and then recompile, relink, rerun,
and, if necessary, continue to debug.

. Cut over to production mode.

When your testing shows that the entire application receives the expected
results, you can move the entire unit over to production mode. (This assumes
you have completed your migration to Language Environment.)

In case of unexpected errors, be prepared for instant recovery:

* Under z/0OS, run the old version as a substitute from the latest productivity
checkpoint.

* Under DB2 and IMS return to the last commit point and then continue
processing from that point using the unmigrated COBOL program. (For DB2,
use an SQL ROLLBACK WORK statement.)

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

* For non-CICS applications, use your shop's backup and restore facilities to
recover.

8. Run in production mode.

After cut over, monitor the application for a short time to ensure that you are
getting the results expected. After that, your source conversion task is
completed.

Chapter 4. Planning to upgrade source programs 39

40 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Part 3. Upgrading programs

© Copyright IBM Corp. 1991, 2019

41

42 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Chapter 5. Upgrading OS/VS COBOL source programs

There are differences between OS/VS COBOL language and Enterprise COBOL
language that might require that you upgrade your programs.

This information will help you evaluate, from a language standpoint, which
applications are good candidates for upgrading to Enterprise COBOL.

Besides the specific topics listed in this section, there has also been a change in
tape user Label support. Support for the format 2 declarative syntax:
USE...AFTER...LABEL PROCEDURE..., and optionally the syntax: GO TO
MORE-LABELS was removed in Enterprise COBOL V5

Also consider changes in reserved words as described in |[Appendix B, “COBOL)
[reserved word comparison,” on page 233

Enterprise COBOL provides COBOL 85 Standard support. When upgrading your
0OS/VS COBOL programs to Enterprise COBOL, you must convert them to COBOL
85 Standard programs in order to compile them with Enterprise COBOL.

This section is not intended to be a syntax guide. You can find complete
descriptions and coding rules for the relevant COBOL language elements in:

* VS COBOL for OS/VS Reference GC26-3857-04
* Enterprise COBOL Language Reference SC14-7381

Tips:
1. VS COBOL for OS/VS Reference is no longer available from IBM.

2. There are special considerations related to CICS. OS/VS COBOL programs no
longer run under CICS. Any OS/VS programs to be run under CICS must be
upgraded to Enterprise COBOL.

3. In the following sections, any reference to COBOL 68 Standard is a reference to
the COBOL language supported by IBM Full American National Standard
COBOL Version 4 (Program 5734-CB2), or to LANGLVL(1) of OS/VS COBOL
(Program 5740-CB1).

4. Information throughout this Migration Guide about OS/VS COBOL applies to
OS/VS COBOL Release 2.4, with the latest service updates applied.

Comparing OS/VS COBOL to Enterprise COBOL

0OS/VS COBOL supported the COBOL 68 Standard (LANGLVL(1)) and the COBOL
74 Standard (LANGLVL(2)). Enterprise COBOL supports the COBOL 85 Standard.
In addition to the language differences between the COBOL 74 Standard and
Enterprise COBOL, your OS/VS COBOL programs might contain undocumented
0S/VS COBOL extensions.

Language elements that require change (quick reference)

[Table 8 on page 44| lists the language elements different in OS/VS COBOL and
Enterprise COBOL. This table also lists conversion tools, if any, available to
automate the conversion.

© Copyright IBM Corp. 1991, 2019 43

The language items listed below are described in detail throughout this section,

and are classified and ordered according to the following categories:

* OS/VS COBOL language elements requiring other products

* OS/VS COBOL language elements not supported

* OS/VS COBOL language elements implemented differently
* Undocumented OS/VS COBOL extensions not supported

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL

Language element

Conversion tool

Page

Abbreviated combined relation conditions

ACCEPT statement

ALPHABETIC class changes CCCA

ALPHABET clause changes—ALPHABET key word CCCA “ALPHABET-
INAME clause

Area A, periods in CCCA

Arithmetic statement changes

ASSIGN ... OR CCCA “ASSIGN . . |
OR” on page 58

ASSIGN TO integer system-name CCCA “ASSIGN . . .
OR” on page 58

ASSIGN . . . FOR MULTIPLE REEL /UNIT CccA “ASSIGN . . |

ASSIGN clause changes—assignment-name forms CcCccA “ASSIGN]|
clause changes”|
on page 73

B symbol in PICTURE clause—changes in evaluation

BDAM file handling CCCA’

44 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

BLANK WHEN ZERO clause and asterisk (*) override “BLAN
WHEN ZER
clause an

asterisk (*)

override” o
age 64

CALL identifier statement—B symbol in PICTURE clause

CALL statement changes—procedure names and file names in USING phrase

CANCEL statement—B symbol in PICTURE clause

CLOSE . . . FOR REMOVAL statement

CLOSE statement—WITH POSITIONING, DISP phrases CCCA

Combined abbreviated relation condition changes CCCA “Combined
abbreviated

Comparing group to numeric packed-decimal item

COPY statement with associated names CCCA

Communication feature

Chapter 5. Upgrading OS/VS COBOL source programs 45

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool

CURRENCY-SIGN clause changes—'/', '=', and 'L' characters

CURRENT-DATE special register ccca

DIVIDE . . . ON SIZE ERROR—change in intermediate results

Dynamic CALL statements to programs with alternate entry points without an
intervening CANCEL

EXAMINE statement CCCA

EXHIBIT statement CCCA

EXIT PROGRAM/GOBACK statement changes “EXT
PROGRAM/
(GOBACK]
statemen
changes ” o

age 76

FILE STATUS clause changes CCCA “FILE STATU
clause changes|
” on page 76|

FILE-LIMIT clause of the FILE-CONTROL paragraph CCCA

page 60

Flow of control, no terminating statement

46 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

FOR MULTIPLE REEL/UNIT CCCA “ASSIGN . . .

GIVING phrase of USE AFTER STANDARD ERROR declarative CCCA

IF . . . OTHERWISE statement changes CCCA

Index names—nonunique

INSPECT statement—PROGRAM COLLATING SEQUENCE clause

IS as an optional word

ISAM file handling CCCA
JUSTIFIED clause changes CCCA
LABEL RECORDS clause with TOTALING/TOTALED AREA CCCA

LABEL RECORD IS statement

MOVE statement—binary value and DISPLAY value

MOVE statements and comparisons—scaling changes

Chapter 5. Upgrading OS/VS COBOL source programs 47

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page
MOVE CORRESPONDING statement CCCA “MOVE|
CORRESPONDING|

statement” o
age 66|

MOVE statement—multiple TO specification

MOVE ALL—TO PIC 99 “MOVE ALL :l

TO PIC 99” o
age 6

MOVE statement—warning message for numeric truncation

MULTIPLY ... ON SIZE ERROR—change in intermediate results

Nonunique program-ID names CCcA

NOTE statement CCCA

Numeric class test on group items “Numeric class
test on group

items” on page

Numeric data changes

Numeric-editing changes (PICTURE clause) “PICTURE
string ” onl

page 69|

OCCURS clause (order of phrases)

OCCURS DEPENDING ON—ASCENDING and DESCENDING KEY phrases

48 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

OCCURS DEPENDING ON—value for receiving items changed CCCA

ON statement CCCA “ON statemen
" on page 61

ON SIZE ERROR phrase—changes in intermediate results “ON SIZH|
[ERROR phrase;

OPEN statement failing for QSAM files (file status 39)

OPEN statement failing for VSAM files (file status 39)

OPEN statement with LEAVE, REREAD, and DISP phrases CCCA

OPEN REVERSED statement

OTHERWISE clause changes

Paragraph names not allowed as parameters

PERFORM statement—changes in the VARYING and AFTER phrases

Chapter 5. Upgrading OS/VS COBOL source programs 49

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

PERFORM statement—second UNTIL

Periods, consecutive in any division ”Periods,|
consecutive i
any division "

on page 68|
Periods in Area A CCCA “Periods i
Area A" o

Periods missing on paragraphs CCCA

Periods missing at the end of SD, FD, or RD

PICTURE clause (numeric-editing changes)

PROGRAM COLLATING SEQUENCE clause changes

Program-ID names, nonunique CCCA

Qualification - using the same phrase repeatedly

READ statement - redefined record keys in the KEY phrase

READ and RETURN statement changes—INTO phrase

50 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

READY TRACE and RESET TRACE statements CCCA

RECORD CONTAINS n CHARACTERS clause

RECORD KEY phrase and ALTERNATE RECORD KEY phrase

REDEFINES clause in SD or FD entries CCCA

REDEFINES clause with tables

Relation conditions CCCA

REMARKS paragraph CCCA

RENAMES clause—nonunique, nonqualified data names

Report Writer statements Report Writer
Precompiler

RERUN clause changes

RESERVE clause changes CCCA
Reserved word list changes CCcA
SEARCH statement changes CCCA

Chapter 5. Upgrading OS/VS COBOL source programs 51

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool

Segmentation changes—PERFORM statement in independent segments

SELECT statement without a corresponding FD “SELECT]
statemen
without a
correspondin

[FD” on page 71

SELECT OPTIONAL clause changes CCCA

SORT special registers

SORT verb

SORT or MERGE

Source language debugging changes

START . . . USING KEY statement CCCA

STRING statement—PROGRAM COLLATING SEQUENCE clause

STRING statement—sending field identifier

Subscripts out of range—flagged at compile-time

THEN as a statement connector CCCA

52 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool Page

TIME-OF-DAY special register CCCA “TIME-OF-DAY|
special registe
" on page 63

TOTALING/TOTALED AREA phrases in LABEL RECORDS clause CCCA

TRANSFORM statement CCCA “TRANSFOR
statement ” o

age 63

UNSTRING statement—PROGRAM COLLATING SEQUENCE clause

UNSTRING statement—coding with 'OR’, 'IS', or a numeric edited item CCCA
'OR’, 'IS', or a|
numeric edited|
item ” on pag

UNSTRING statement—multiple INTO phrases

UNSTRING statements—subscript evaluation changes

UPSI switches CCCA

USE AFTER STANDARD ERROR—GIVING phrase CCCA

USE BEFORE STANDARD LABEL statement CCCA

Chapter 5. Upgrading OS/VS COBOL source programs 53

Table 8. Language element differences between OS/VS COBOL and Enterprise COBOL (continued)

Language element Conversion tool
VALUE clause—signed value in relation to the PICTURE clause CCCA
VALUE clause—condition names ccca
WHEN-COMPILED special register CCcA
WRITE AFTER POSITIONING statement cccAa

* This is a partial conversion for handling BDAM files.

Converting to COBOL 85 Standard

To help you make the needed changes when upgrading to Enterprise COBOL, you
can use any of several means, including the information provided elsewhere in this
Migration Guide.

A brief description of two of the helpful mechanisms (CCCA and the MIGR
option) follows. For additional information, see [Appendix C, “Conversion tools for]
[source programs,” on page 249

Tip: Non-IBM tools are also available to help automate the conversion to COBOL
85 Standard.

COBOL Conversion Tool (CCCA)

The COBOL and CICS/VS Command Level Conversion Aid (CCCA) is not for
CICS only; it converts any old COBOL to Enterprise COBOL. The CCCA provides
you with either a report of the statements that need to be changed or the actual
converted program itself.

For details, see ["COBOL and CICS/VS Command Level Conversion Aid (CCCA)”|
fon page 253|and the COBOL and CICS/VS Command Level Conversion Aid Program
Description and Operations Manual.

OS/VS COBOL MIGR compiler option

The OS/VS COBOL MIGR compiler option flags most statements in an OS/VS
COBOL program that are not supported or are changed in Enterprise COBOL. The
MIGR compiler option allows you to analyze the conversion effort, and helps you
identify required changes, without purchasing any conversion tools. Thus, for each
of your programs, even before conversion, you can get a good idea of how much
conversion effort will be required.

54 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

[“MIGR compiler option” on page 249 lists the items flagged by MIGR. A complete
description of MIGR-flagged items is included in Appendix H of IBM VS COBOL
for OS/VS.

Language elements that require other products for support

Although some OS/VS COBOL language elements are not supported in Enterprise
COBOL, you can get equivalent function by using other products.

Report Writer

The Report Writer feature is supported through use of the Report Writer
Precompiler. In order for existing Report Writer code to work with Enterprise
COBOL, you have the following considerations:

* Keep existing Report Writer code and use the Report Writer Precompiler
* Convert existing Report Writer code using the Report Writer Precompiler

* Run existing OS/VS COBOL-compiled Report Writer programs under Language
Environment

* Report Writer language items affected

Keep existing Report Writer code and use the Report Writer
Precompiler

When you recompile existing Report Writer applications (or newly written
applications) with the Report Writer Precompiler, and use the output as input to
the Enterprise COBOL compiler, your Report Writer applications can run above the
16-MB line. Through Enterprise COBOL, you can also extend their processing
capabilities.

This method requires the use of both the Report Writer Precompiler and the
Enterprise COBOL compiler.

You can run Report Writer Precompiler as a separate precompiler, or incorporate it
into the COBOL compilation by using the EXIT compiler option.

Convert existing Report Writer code using the Report Writer
Precompiler

If you permanently convert Report Writer code to non-Report Writer code, you can
stop using the Report Writer Precompiler and just use the Enterprise COBOL
compiler. However, this might produce hard-to-maintain COBOL code.

When converting Report Writer code to non-Report Writer code, the Precompiler
generates variable names and paragraph names. These names might not be
meaningful, and thus hard to identify when attempting to make changes to the
program after the conversion. You can change the names to be meaningful, but this
might be difficult and time consuming.

Run existing OS/VS COBOL-compiled Report Writer programs
under Language Environment

You can run existing OS/VS COBOL Report Writer applications using Language
Environment without compiling with Enterprise COBOL but they cannot be mixed
with Enterprise COBOL V5. If you want to mix Enterprise COBOL V5 programs
with OS/VS COBOL Report Writer programs, you must convert all of the
programs to use Enterprise COBOL V5, and use the Report Writer Precompiler.

OS/VS COBOL Report Writer programs will not run above the 16-MB line.

Chapter 5. Upgrading OS/VS COBOL source programs 55

Report Writer language items affected
The following Report Writer language items are accepted by Enterprise COBOL
only when the Report Writer precompiler is installed:

GENERATE statement

INITIATE statement

LINE-COUNTER special register
Nonnumeric literal IS mnemonic-name
PAGE-COUNTER special register
PRINT-SWITCH special register
REPORT clause of FD entry

REPORT SECTION

TERMINATE statement

USE BEFORE REPORTING declarative

The Report Writer Precompiler is described in |[Appendix C, “Conversion tools for|
[source programs,” on page 249

Language elements that are not implemented
The following OS/VS COBOL language elements are not supported by Enterprise
COBOL:
* ISAM file handling
* BDAM file handling

¢ Communication feature

With Enterprise COBOL, support for most of the COBOL 68 Standard language
elements has been removed. There are also miscellaneous OS/VS COBOL language
items that are not implemented in Enterprise COBOL.

The language elements affected and the conversion actions that you can perform
are documented in the following sections. There is a brief description of each item,
plus conversion suggestions and, where helpful, coding examples.

ISAM file handling

Enterprise COBOL does not support the processing of ISAM files, nor does z/OS
V1.7 and later releases. You must convert ISAM files to VSAM/KSDS files before
you move to z/OS V1.7 or later.

ISAM file handling language items affected
The following ISAM language items are not accepted by Enterprise COBOL:

APPLY CORE-INDEX

APPLY REORG-CRITERIA

File declarations for ISAM files

NOMINAL KEY clause

Organization parameter I

TRACK-AREA clause

USING KEY clause of START statement
Conversion options: Two conversion tools can help you convert ISAM files to
VSAM/KSDS files. You can use either IDCAMS REPRO or CCCA. The IDCAMS

REPRO facility will perform the conversion unless the file has a hardware

56 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

dependency. IDCAMS repro will only work for ISAM files on z/OS V1.6 or earlier.
You must migrate ISAM to VSAM/KSDS before moving to z/OS V1.7 or later.

The COBOL conversion tool (CCCA) can automatically convert the file definition
and I/0 statements from your ISAM COBOL language to VSAM/KSDS COBOL
language. The CCCA conversion tool is described in [Appendix C, “Conversion|

[tools for source programs,” on page 249 .|

BDAM file handling

Enterprise COBOL does not support the processing of BDAM files. Convert any
BDAM files to virtual storage access method/relative record data set
(VSAM/RRDS) files.

BDAM file handling language items affected
The following BDAM language items are not accepted by Enterprise COBOL:

ACTUAL KEY clause

APPLY RECORD-OVERFLOW
File declarations for BDAM files
Organization parameters D, R, W
SEEK statement

TRACK-LIMIT clause

Automated conversion options: The COBOL conversion tool (CCCA) can
automatically convert your BDAM COBOL language to VSAM/RRDS COBOL
language, however, you must provide the key algorithm. The CCCA conversion
tool is described in|Appendix C, “Conversion tools for source programs,” on pagel

Communication feature
The Communication feature is not supported by Enterprise COBOL.

Communication language items affected
The following communication language items are not accepted by Enterprise
COBOL:

ACCEPT MESSAGE COUNT statement
COMMUNICATION SECTION
DISABLE statement

ENABLE statement

RECEIVE statement

SEND statement

Communication conversion actions

Existing TCAM applications that use the OS/VS COBOL SEND and RECEIVE
statements run under Language Environment with one exception: the QUEUE
runtime option of OS/VS COBOL is not supported. (The QUEUE runtime option is
used only in an OS/VS COBOL program with a RECEIVE statement ina CD . . .
FOR INITIAL INPUT.)

For more information, see the IBM VS COBOL for OS/VS, and the IBM OS/VS
COBOL Compiler and Library Programmer’s Guide.

Chapter 5. Upgrading OS/VS COBOL source programs 57

Language elements that are not supported

58

Enterprise COBOL does not support the following OS/VS COBOL language
elements. When upgrading to Enterprise COBOL, you must either remove or alter
these items as indicated in the following descriptions:

ASSIGN ... OR
OS/VS COBOL accepted the ASSIGN ... OR clause. To use this clause
under Enterprise COBOL, you must remove the OR.

ASSIGN TO integer system-name
OS/VS COBOL accepted the ASSIGN TO integer system-name clause. To use
this clause under Enterprise COBOL, you must remove the integer.

ASSIGN ... FOR MULTIPLE REEL/UNIT
0OS/VS COBOL accepted the ASSIGN ... FOR MULTIPLE REEL/UNIT
phrase, and treated it as documentation. Enterprise COBOL does not
support this phrase.

CLOSE statement: WITH POSITIONING, DISP phrases
OS/VS COBOL accepted the WITH POSITIONING and DISP phrases of
the CLOSE statement provided as IBM extensions in OS/VS COBOL. In
Enterprise COBOL, these phrases are not accepted.

CURRENT-DATE special register
OS/VS COBOL accepted the CURRENT-DATE special register. It is valid
only as the sending field in a MOVE statement. CURRENT-DATE has the
8-byte alphanumeric format:

MM/DD/YY (month, day, year)

Enterprise COBOL supports the DATE special register. It is valid only as
the sending field in an ACCEPT statement. DATE has the 6-byte
alphanumeric format:

YYMMDD (year, month, day)

Therefore, you must change an OS/VS COBOL program with statements
similar to the following one:

77 DATE-IN-PROGRAM PICTURE X(8).

MOVE CURRENT-DATE TO DATE-IN-PROGRAM.

An example of one way to change it, keeping the two-digit year format, is
as follows:

01 DATE-IN-PROGRAM.
02 MONTH-OF-YEAR PIC X(02).

02 FILLER PIC X(01) VALUE "/".
02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(02).
01 ACCEPT-DATE.
02 YEAR PIC X(02).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02).

ACCEPT ACCEPT-DATE FROM DATE.
MOVE CORRESPONDING ACCEPT-DATE TO DATE-IN-PROGRAM.

An example of how to change it and specify a four-digit year is as follows:

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

01 DATE-IN-PROGRAM.
02 MONTH-OF-YEAR PIC X(02).

02 FILLER PIC X(01) VALUE "/".
02 DAY-OF-MONTH PIC X(02).
02 FILLER PIC X(01) VALUE "/".
02 YEAR PIC X(04).
01 CURRENT-DATE.
02 YEAR PIC X(04).
02 MONTH-OF-YEAR PIC X(02).
02 DAY-OF-MONTH PIC X(02).

MOVE FUNCTION CURRENT-DATE(1:8) TO CURRENT-DATE.
MOVE CORRESPONDING CURRENT-DATE TO DATE-IN-PROGRAM.
EXAMINE statement

OS/VS COBOL accepted the EXAMINE statement; Enterprise COBOL does
not.

Therefore, if your OS/VS COBOL program contains coding similar to the
following one:

EXAMINE DATA-LENGTH TALLYING UNTIL FIRST " "

Replace it in Enterprise COBOL with:

MOVE 0 TO TALLY
INSPECT DATA-LENGTH TALLYING TALLY FOR CHARACTERS BEFORE " "

You can continue to use the TALLY special register wherever you can
specify a WORKING-STORAGE elementary data item of integer value.

EXHIBIT statement
OS/VS COBOL accepted the EXHIBIT statement; Enterprise COBOL does
not.

With Enterprise COBOL, you can use DISPLAY statements to replace
EXHIBIT statements. However, the DISPLAY statement does not perform
all the functions of the EXHIBIT statement.

Corrective action for EXHIBIT NAMED
You can replace the EXHIBIT NAMED statement directly with a DISPLAY

statement:
0S/VS COBOL Enterprise COBOL
WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).
EXHIBIT NAMED DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1

"DAT-2 = " DAT-2

Corrective action for EXHIBIT CHANGED
You can replace the EXHIBIT CHANGED statement with IF and DISPLAY
statements, as follows:

1. Specify an IF statement to discover if the new value of the data item is
different from the old.

2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

0S/VS COBOL Enterprise COBOL
WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).

Chapter 5. Upgrading OS/VS COBOL source programs 59

60

77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).
77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

EXHIBIT CHANGED DAT-1 DAT-2 IF DAT-1 NOT EQUAL TO DAT1-CMP

DISPLAY DAT-1

END-IF

IF DAT-2 NOT EQUAL TO DAT2-CMP
DISPLAY DAT-2

END-IF

MOVE DAT-1 TO DAT1-CMP

MOVE DAT-2 TO DAT2-CMP

Corrective action for EXHIBIT CHANGED NAMED

You can replace the EXHIBIT CHANGED NAMED statement with IF and
DISPLAY statements, as follows:

1. Specify an IF statement to discover if the new value of the data item is
different from the old.

2. Specify a DISPLAY statement as the statement-1 of the IF statement.

This change displays the value of the specified data item only if the new
value is different from the old:

0S/VS COBOL Enterprise COBOL
WORKING-STORAGE SECTION. WORKING-STORAGE SECTION.
77 DAT-1 PIC X(8). 77 DAT-1 PIC X(8).
77 DAT-2 PIC X(8). 77 DAT-2 PIC X(8).

77 DAT1-CMP PIC X(8).
77 DAT2-CMP PIC X(8).

EXHIBIT CHANGED NAMED IF DAT-1 NOT EQUAL TO DAT1-CMP
DAT-1 DAT-2 DISPLAY "DAT-1 = " DAT-1
END-IF

IF DAT-2 NOT EQUAL TO DAT2-CMP
DISPLAY "DAT-2 = " DAT-2

END-IF

MOVE DAT-1 TO DAT1-CMP

MOVE DAT-2 TO DAT2-CMP

FILE-LIMIT clause of the FILE-CONTROL paragraph

OS/VS COBOL accepted the FILE-LIMIT clause and treats it as a comment;
Enterprise COBOL does not. Therefore, you must remove any occurrences
of the FILE-LIMIT clause.

GIVING phrase of USE AFTER STANDARD ERROR declarative

In OS/VS COBOL, you could specify the GIVING phrase of the USE
AFTER STANDARD ERROR declarative. Enterprise COBOL does not
support this phrase. Therefore, you must remove any occurrences of the
GIVING phrase of the USE AFTER STANDARD ERROR declarative.

Use the FILE-CONTROL FILE STATUS clause to replace the GIVING
phrase. The FILE STATUS clause gives you information after each 1/0O
request, rather than only after an error occurs.

LABEL RECORDS clause with TOTALING/TOTALED AREA phrases

OS/VS COBOL allowed the TOTALING and TOTALED phrases of the
LABEL RECORDS clause.

Enterprise COBOL does not support these phrases. Therefore, you must
remove any occurrences of the TOTALING/TOTALED phrases from the
LABEL RECORDS clause. Also check the variables associated with these
phrases.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

NOTE statement
OS/VS COBOL accepted the NOTE statement. Enterprise COBOL does not
accept the NOTE statement. Therefore, for Enterprise COBOL delete all
NOTE statements and use comment lines instead for the entire NOTE
paragraph.

ON statement
OS/VS COBOL accepted the ON statement. Enterprise COBOL does not
accept the ON statement.

The ON statement allows selective execution of statements it contains.
Similar functions are provided in Enterprise COBOL by the EVALUATE
statement and the IF statement.

OPEN statement failing for QSAM files (file status 39)
In OS/VS COBOL, the fixed file attributes for QSAM files did not need to
match your COBOL program or JCL for a successful OPEN. In Enterprise
COBOL, if the following conditions do not match, an OPEN statement in
your program might not run successfully:
* The fixed file attributes specified in the DD statement or the data set
label for a file

* The attributes specified for that file in the SELECT and FD statements of
your COBOL program

Mismatches in the attributes for file organization, record format (fixed or
variable), the code set, or record length result in a file status code 39, and
the OPEN statement fails.

To prevent common file status 39 problems, see [Appendix G, “Preventing|
[file status 39 for QSAM files,” on page 283

OPEN statement failing for VSAM files (file status 39)
In OS/VS COBOL, the RECORDSIZE defined in your VSAM files
associated with IDCAMS was not required to match your COBOL program
for a successful OPEN. In Enterprise COBOL they must match. The
following rules apply to VSAM ESDS, KSDS, and RRDS file definitions:

Table 9. Rules for VSAM file definitions

File type Rules

ESDS and RECORDSIZE(avg,m) is specified where avg is the average size of the

KSDS VSAM COBOL records, and is strictly less than m; m is greater than or equal
to the maximum size of a COBOL record.

RRDS VSAM RECORDSIZE(n,n) is specified where n is greater than or equal to the

maximum size of a COBOL record.

OPEN statement with the LEAVE, REREAD, and DISP phrases
OS/VS COBOL allowed the OPEN statement with the LEAVE, REREAD
and DISP phrases. Enterprise COBOL does not allow these phrases.

To replace the REREAD function, define a copy of your input records in
the WORKING-STORAGE SECTION and move each record into
WORKING-STORAGE after it is read or use READ INTO.

READY TRACE and RESET TRACE statements
0OS/VS COBOL allowed the READY TRACE and RESET TRACE
statements. Enterprise COBOL does not support these statements.

Chapter 5. Upgrading OS/VS COBOL source programs 61

62

To get function similar to the READY TRACE statement, you can use either
Debug Tool, or the COBOL language available in the Enterprise COBOL
compiler.

If you use Debug Tool, compile your program with the TEST option and
use the following Debug Tool command:
"AT GLOBAL LABEL PERFORM;

LIST LINES %LINE; GO; END-PERFORM;"

If you use the COBOL language, the Enterprise COBOL USE FOR
DEBUGGING ON ALL PROCEDURES declarative can perform functions
similar to READY TRACE and RESET TRACE.

For example:
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-370 WITH DEBUGGING MODE.
DATA DIVISION.

WOéKiNG—STORAGE SECTION.

01 TRACE-SWITCH PIC 9 VALUE 0.
88 READY-TRACE VALUE 1.
88 RESET-TRACE VALUE 0.

PROCEDURE DIVISION.
DECLARATIVES.
COBOL-II-DEBUG SECTION.
USE FOR DEBUGGING ON ALL PROCEDURES.
COBOL-II-DEBUG-PARA.
IF READY-TRACE THEN
DISPLAY DEBUG-NAME
END-IF.
END DECLARATIVES.
MAIN-PROCESSING SECTION.

PARAGRAPH-3.

SET READY-TRACE TO TRUE.
PARAGRAPH-4.

PARAGRAPH-6.

SET RESET-TRACE TO TRUE.
PARAGRAPH-7.

where DEBUG-NAME is a field of the DEBUG-ITEM special register that
displays the procedure-name causing execution of the debugging
procedure. (In this example, the object program displays the names of
procedures PARAGRAPH-4 through PARAGRAPH-6 as control reaches
each procedure within the range.)

At run time, you must specify PARM=/DEBUG in your EXEC statement to
activate this debugging procedure. In this way, you have no need to
recompile the program to activate or deactivate the debugging declarative.

REMARKS paragraph

OS/VS COBOL accepted the REMARKS paragraph.

Enterprise COBOL does not accept the REMARKS paragraph. As a
replacement, use comment lines beginning with an * in column 7 or use
the floating comment indicator *>.

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

START ... USING KEY statement
OS/VS COBOL allowed the START statement with the USING KEY phrase;
Enterprise COBOL does not. In Enterprise COBOL, you can specify the
START statement with the KEY IS phrase.

THEN as a statement connector
OS/VS COBOL accepted the use of THEN as a statement connector.
The following example shows the OS/VS COBOL usage:
MOVE A TO B THEN ADD C TO D
Enterprise COBOL does not support the use of THEN as a statement
connector. Therefore, in Enterprise COBOL change it to:
MOVE A TO B
ADD C TO D

TIME-OF-DAY special register
OS/VS COBOL supported the TIME-OF-DAY special register. It was valid
only as the sending field in a MOVE statement. TIME-OF-DAY had the
following 6-byte EXTERNAL decimal format:

HHMMSS (hour, minute, second)

Enterprise COBOL does not support the TIME-OF-DAY special register.
Therefore, you must change an OS/VS COBOL program with statements
similar to the following one:

77 TIME-IN-PROGRAM PICTURE X(6).

MOVE TIME-OF-DAY TO TIME-IN-PROGRAM.

An example of one way to change it is as follows:
MOVE FUNCTION CURRENT-DATE (9:6) TO TIME-IN-PROGRAM

TRANSFORM statement
0OS/VS COBOL supported the TRANSFORM statement. Enterprise COBOL
does not support the TRANSFORM statement, but it does support the
INSPECT statement. Therefore, any TRANSFORM statements in your
0OS/VS COBOL program must be replaced by INSPECT CONVERTING
statements.
For example, in the following OS/VS COBOL TRANSFORM statement:
77 DATA-T PICTURE X(9) VALUE "ABCXYzCCC"

' '}RANSFORM DATA-T FROM "ABC" TO "CAT"
TRANSFORM evaluates each character, changing each A to C, each B to A,
and each C to T.

After the TRANSFORM statement is executed. DATA-T contains
"CATXYZTTT".

For example, in the following INSPECT CONVERTING statement (valid
only in Enterprise COBOL):

77 DATA-T PICTURE X(9) VALUE "ABCXYzccc"

INSPECT DATA-T
CONVERTING "ABC" TO "CAT"

INSPECT CONVERTING evaluates each character just as TRANSFORM
does, changing each A to C, each B to A, and each C to T.

Chapter 5. Upgrading OS/VS COBOL source programs 63

After the INSPECT CONVERTING statement is executed. DATA-T contains
"CATXYZTTT.:.

USE BEFORE STANDARD LABEL
0OS/VS COBOL accepted the USE BEFORE STANDARD LABEL statement;
Enterprise COBOL does not.

Therefore, you must remove any occurrences of the USE BEFORE
STANDARD LABEL statement. Enterprise COBOL does not support
nonstandard labels, so you cannot process nonstandard labeled files with
Enterprise COBOL.

SEARCH ALL statements

If you have programs that contain SEARCH ALL statements and that were
compiled with OS/VS COBOL, you may need to make some changes due to
changes in the behavior of the SEARCH ALL statement

The new behavior for the SEARCH ALL statement is described in
[programs that have SEARCH ALL statements” on page 102.|

Undocumented OS/VS COBOL extensions that are not supported

This section consists primarily of COBOL statements that are not flagged by the
MIGR option. These statements were accepted by the OS/VS COBOL compiler;
some are not accepted by Enterprise COBOL.

Because these language elements are undocumented extensions to OS/VS COBOL,
they are not considered to be valid OS/VS COBOL code. This list might not
contain all undocumented extensions; it includes all of the undocumented
extensions of which we are aware.

Abbreviated combined relation conditions and use of parentheses
OS/VS COBOL accepted the use of parentheses within an abbreviated
combined relation condition.

Enterprise COBOL supports most parenthesis usage as IBM extensions.

However, there are two differences:

* Within the scope of an abbreviated combined relation condition,
Enterprise COBOL does not support relational operators inside
parentheses. For example:

A=B AND (<C ORD)
* Some incorrect usages of parentheses in relation conditions were

accepted by OS/VS COBOL, but are not by Enterprise COBOL. For
example:

(A=0AND B) =0
ACCEPT statement

OS/VS COBOL accepted the ACCEPT statement without the keyword
FROM between the identifier and the mnemonic or function name.

Enterprise COBOL does not accept such an ACCEPT statement.

BLANK WHEN ZERO clause and asterisk (*) override
In OS/VS COBOL, if you specified the BLANK WHEN ZERO clause and
the asterisk (*) as a zero suppression symbol for the same entry, zero
suppression would override BLANK WHEN ZERO.

64 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

Enterprise COBOL does not accept these two language elements when they
are specified for the same data description entry. Thus Enterprise COBOL
must not contain instances of both the clause and the symbol in one data
description entry.

If you have specified both the BLANK WHEN ZERO clause and the
asterisk as a zero suppression symbol in your OS/VS COBOL programs, to
get the same behavior in Enterprise COBOL, remove the BLANK WHEN
ZERO clause.

CLOSE ... FOR REMOVAL statement
OS/VS COBOL allowed the FOR REMOVAL clause for sequential files, and
it had an effect on the execution of the program. Enterprise COBOL
syntax-checks the statement but it has no effect on the execution of the
program.

Comparing group to numeric packed-decimal item
OS/VS COBOL allowed a comparison between a group and a numeric
packed-decimal item, but generated code that produced an incorrect result.

For example, the result of the comparison below is the message
"1 IS NOT > 0"

and is not the numerically correct

II1 > Gll
05 COMP-TABLE.
10 COMP-PAY PIC 9(4).
10 COMP-HRS PIC 9(3).
05 COMP-ITEM PIC S9(7) COMP-3.

PROCEDURE DIVISION.
MOVE O TO COMP-PAY COMP-HRS.
MOVE 1 TO COMP-ITEM.
IF COMP-ITEM > COMP-TABLE
DISPLAY '1 > 0'
ELSE
DISPLAY '1 IS NOT > 0'.

Enterprise COBOL does not allow such a comparison.

Flow of control, no terminating statement
In OS/VS COBOL, it would be possible to link-edit an assembler program
to the end of an OS/VS COBOL program and have the flow of control go
from the end of the COBOL program to the assembler program.

In Enterprise COBOL, if you do not code a terminating statement at the
end of your program (STOP RUN or GOBACK), the program will
terminate with an implicit GOBACK. The flow of control cannot go beyond
the end of the COBOL program.

If you have programs that rely on 'falling through the end' into another
program, change the code to a CALL interface to the other program.

Index names
OS/VS COBOL allowed the use of qualified index names.

Enterprise COBOL does not allow qualified index names; index names
must be unique if referenced.

Chapter 5. Upgrading OS/VS COBOL source programs 65

66

LABEL RECORD IS statement

OS/VS COBOL accepted a LABEL RECORD clause without the word
RECORD. You could have LABEL IS OMITTED instead of LABEL
RECORD IS OMITTED.

Enterprise COBOL does not accept such a LABEL RECORD clause.

MOVE statement - binary value and DISPLAY value

Although the Enterprise COBOL TRUNC(OPT) compiler option is
recommended for compatibility with the OS/VS COBOL NOTRUNC
compiler option, you might receive different results involving moves of
fullword binary items (USAGE COMP with Picture 9(5) through Picture

9(9)).
For example:
WORKING-STORAGE SECTION.
01 WK1 USAGE COMP-4 PIC S9(9).
PROCEDURE DIVISION.

MOVE 1234567890 to WK1
DISPLAY WK1.
GOBACK.

This example actually shows COBOL coding that is not valid, since 10
digits are being moved into a 9-digit item.

For example, the results are as follows when compiled with the following
compiler options:

OS/VS COBOL NOTRUNC Enterprise COBOL TRUNC(OPT)
Binary value x'499602D2' x'0DFB38D2'
DISPLAY value 234567890 234567890

For OS/VS COBOL, the binary value contained in the binary data item is
not the same as the DISPLAY value. The DISPLAY value is based on the
number of digits in the PICTURE clause and the binary value is based on
the size of the binary data item, in this case, 4 bytes. The actual value of
the binary data item in decimal digits is 1234567890.

For Enterprise COBOL, the binary value and the DISPLAY value are equal
because the truncation that occurred was based on the number of digits in
the PICTURE clause.

This situation is flagged by MIGR in OS/VS COBOL and by Enterprise
COBOL when compiled with TRUNC(OPT).

MOVE CORRESPONDING statement

*« OS/VS COBOL allowed more than one receiver with MOVE
CORRESPONDING,; Enterprise COBOL does not. Therefore, you must
change the following OS/VS COBOL statement:

MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B GROUP-ITEM-C

to two Enterprise COBOL MOVE CORRESPONDING statements:

MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-B
MOVE CORRESPONDING GROUP-ITEM-A TO GROUP-ITEM-C

* Releases prior to Release 2.4 of OS/VS COBOL accepted nonunique
subordinate data items in the receiver of a MOVE CORRESPONDING
statement; Enterprise COBOL does not. For example:

Enterprise COBOL for z/0S, V5.1.1 Migration Guide

01 KANCFUNC.
03 CL PIC XX.
03 KX9 PIC XX.
03 CC PIC XX.
01 HEAD1-AREA.
063 CL PIC XX.
03 KX9 PIC XX.
063 CC PIC XX.
03 KX9 PIC XX.

MOVE CORR KANCFUNC to HEADI1-AREA.

For Enterprise COBOL, change the data items in the receiver to have
unique names.

MOVE statement - multiple TO specification
OS/VS COBOL allowed the reserved word TO to precede each receiver in
a MOVE statement. For example:

MOVE aa TO bb TO cc

In Enterprise COBOL, the above statement must be changed to:
MOVE aa TO bb cc

MOVE ALL - TO PIC 99
OS/VS COBOL allowed group moves into a fixed numeric receiving field.
For example:

MOVE ALL ' ' TO numl
where, numl is PIC 99.

Enterprise COBOL does not allow the above case. In Enterprise COBOL,
you can change the example to the following statement and it would be
accepted:

MOVE ALL ' ' TO numl(1:)

MOVE statement - warning message for numeric truncation
OS/VS COBOL issued a warning message for a MOVE statement with a
numeric receiver that would result in a loss of digits. For example:

77 A PIC 999.
77 B PIC 99.

MOVE A TO B.

You can get the same behavior with Enterprise COBOL if the compiler
option DIAGTRUNC is in effect.

OCCURS clause
OS/VS COBOL allowed a nonstandard order for phrases following the
OCCURS clause; Enterprise COBOL does not.

For example, the following code sequence would be allowed in OS/VS
COBOL:

01 D PIC 999.
01 A.
02 B OCCURS 1 TO 200 TIMES

Chapter 5. Upgrading OS/VS COBOL source programs 67

ASCENDING KEY C

DEPENDING ON D

INDEXED BY H.
062 C PIC 99.

In Enterprise COBOL, the above example must be changed to the
following code sequence:
61 D PIC 999.
01 A.
02 B OCCURS 1 TO 200 TIMES
DEPENDING ON D
ASCENDING KEY C
INDEXED BY H.
02 C PIC 99.

OPEN REVERSED statement
OS/VS COBOL accepted the REVERSED phrase for multireel files;
Enterprise COBOL does not.

PERFORM statement - second UNTIL
0OS/VS COBOL allowed a second UNTIL in a PERFORM statement, as in
the following example:
PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT

UNTIL PARM-COUNT = 7
OR UNTIL SSREJADV-EOF.

Enterprise COBOL does not allow a second UNTIL statement. It must be
removed as shown in the following example:
PERFORM CHECK-FOR-MATCH THRU CHECK-FOR-MATCH-EXIT

UNTIL PARM-COUNT = 7
OR SSREJADV-EOF.

Periods in Area A
OS/VS COBOL allowed you to code a period in Area A following an
Area-A item (or no item) that was not valid. With Enterprise COBOL, a
period in Area A must be preceded by a valid Area-A item.

Periods, consecutive in any division
OS/VS COBOL allowed you to code two consecutive periods in any
division.
Enterprise COBOL issues a warning message (RC = 4) if two periods in a
row are found in the PROCEDURE DIVISION, and a severe message (RC

= 12) if two periods in a row are found in either the ENVIRONMENT
DIVISION or the DATA DIVISION.

The following code would be accepted by OS/VS COBOL, but would
receive a severe (RC = 12) error and a warning (RC = 4) under Enterprise
COBOL:

WORKING-STORAGE SECTION.
01 A PIC 9..

MOVE 1 TO A..

GOBACK.

Periods missing at the end of SD, FD, or RD
A period is required at the end of a sort, file, or report description,
preceding the 01-level indicator.

68 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

OS/VS COBOL diagnosed the missing period with a warning message (RC
=4).

Enterprise COBOL issues an error message (RC = 8).

Periods missing on paragraphs
Releases prior to Release 2.4 of OS/VS COBOL accepted paragraph names
not followed by a period. Release 2.4 of OS/VS COBOL issued a warning
message (RC = 4) whereas Enterprise COBOL issues an error message (RC
=8).

PICTURE string
OS/VS COBOL accepted a PICTURE string with all Z's to the left of the
implied decimal point, a Z immediately to the right of the implied decimal
point, but ending with a 9 or 9-. For example:

05 WEIRD-NUMERIC-EDITED PIC Z(11)VZ9.

Enterprise COBOL does not accept statements such as the statements in the
example above. You must change the 79 to either ZZ or 99.

PROGRAM-ID names, nonunique
OS/VS COBOL allowed a data-name or paragraph-name to be the same as
the PROGRAM-ID name. Enterprise COBOL requires the PROGRAM-ID
name to be unique.

Qualification - using the same phrase repeatedly
A of B of B

OS/VS COBOL allowed repeating of phrases; Enterprise COBOL does not.

READ statement - redefined record keys in the KEY phrase
OS/VS COBOL accepted implicitly or explicitly redefined record keys in
the KEY phrase of the READ statement.

Enterprise COBOL accepts only the names of the data items that are
specified as record keys in the SELECT clause for the file being read.

RECORD CONTAINS n CHARACTERS clause
In variation with the COBOL 74 Standard, the RECORD CONTAINS n
CHARACTERS clause of an OS/VS COBOL program was overridden if an
OCCURS DEPENDING ON clause was specified in the FD, and produced
a file containing variable-length records instead of fixed-length records.

Under Enterprise COBOL, the RECORD CONTAINS n CHARACTERS
clause produces a file containing fixed-length records.

RECORD KEY phrase and ALTERNATE RECORD KEY phrase
OS/VS COBOL allowed the leftmost character position of the ALTERNATE
RECORD KEY data-name-4 to be the same as the leftmost character position
of the RECORD KEY or of any other ALTERNATE RECORD KEY phrases.

Enterprise COBOL does not allow this.

Record length, obtaining from QSAM RDW
In OS/VS COBOL, you can obtain the record length for files that have
variable-length records from the RDW by using invalid negative subscripts.

In Enterprise COBOL, the RDW for variable files in the area preceding the
record content is not available. To migrate from previous COBOL products,
use the Format 3 RECORD clause in FD entries to set or obtain the length
of variable records when the information is not in the record itself. The
syntax contains RECORD IS VARYING DEPENDING ON data-name-1.

Chapter 5. Upgrading OS/VS COBOL source programs 69

data-name-1 is defined in WORKING-STORAGE. After the compiler reads a
variable record, the length of the data read is automatically stored at
data-name-1. For example:

FILE SECTION.
FD THE-FILE RECORD IS VARYING DEPENDING ON REC-LENGTH.
01 THE-RECORD PICTURE X(5000) .
WORKING-STORAGE SECTION.
01 REC-LENGTH PICTURE 9(5) COMPUTATIONAL.
01 SAVED-RECORD PICTURE X(5000).
PROCEDURE DIVISION.
* Read a record of unknown length.
READ THE-FILE.
DISPLAY REC-LENGTH.
* or use REC-LENGTH to access the right amount of data:
MOVE THE-RECORD (1:REC-LENGTH) TO SAVED-RECORD.

For more information about the RECORD clause, see the Enterprise COBOL
Language Reference.

REDEFINES clause in SD or FD entries

Releases prior to OS/VS COBOL Release 2.4 accepted a REDEFINES clause
in a level-01 SD or FD; Enterprise COBOL and OS/VS COBOL Release 2.4
do not.

For example, the following code sequence is not valid:

D ...
01 SORT-REC-HEADER.
05 SORT-KEY PIC X(20).
05 SORT-HEADER-INFO PIC X(40).
05 FILLER PIC X(20).
01 SORT-REC-DETAIL REDEFINES SORT-REC-HEADER.
05 FILLER PIC X(20).

05 SORT-DETAIL-INFO PIC X(60).

To get similar function in Enterprise COBOL, delete the REDEFINES
clause.

REDEFINES clause with tables

OS/VS COBOL allowed you to specify tables within the REDEFINES
clause. For example, OS/VS COBOL would issue a warning message (RC =
4) for the following example:
01 E.

03 F OCCURS 10.

05 G PIC X.
03 I REDEFINES F PIC X.

Enterprise COBOL does not allow tables to be redefined, and issues a
severe (RC = 12) message for the example above.

Relation conditions

Releases prior to OS/VS COBOL Release 2.4 accepted operators in relation
conditions that are not valid. The following table lists the operators
accepted by OS/VS COBOL Release 2.3 that are not accepted by Enterprise
COBOL. It also shows the valid coding for Enterprise COBOL programs.

OS/VS COBOL R2.3

Enterprise COBOL

=TO = or EQUAL TO
> THAN > or GREATER THAN
< THAN < or LESS THAN

70 Enterprise COBOL for z/0S, V5.1.1 Migration Guide

RENAMES clause - nonunique, nonqualified data names
No MIGR message is issued if the RENAMES clause in your OS/VS
COBOL program references a nonunique, nonqualified data name.
However, Enterprise COBOL does not support the use of nonunique,
nonqualified data names.

SELECT statement without a corresponding FD
OS/VS COBOL accepted a SELECT statement that does not have a
corresponding FD entry; Enterprise COBOL does not.

SORT verb

At early maintenance levels, the OS/VS COBOL compiler accepted the
UNTIL and TIMES phrases in the SORT verb, for example:
SORT FILE-1
ON ASCENDING KEY AKEY-1

INPUT PROCEDURE IPROC-1

OUTPUT PROCEDURE OPROC-1

UNTIL AKEY-1 = 99.

SORT FILE-2
ON ASCENDING KEY AKEY-2
INPUT PROCEDURE IPROC-2
OUTPUT PROCEDURE OPROC-2
10 TIMES.

Enterprise COBOL does not accept statements such as the statements in the
example above.

In a SORT statement, the correct syntax allows ASCENDING KEY or
DESCENDING KEY followed by a data-name which is the sort key. The
word KEY is optional.

OS/VS COBOL accepted IS if used following ASCENDING KEY.
Enterprise COBOL does not accept IS in this context. For example:
SORT SORT-FILE

ASCENDING KEY IS SD-NAME-FIELD

USING INPUT-FILE
GIVING SORTED-FILE.

SORT or MERGE
With OS/VS COBOL, a MOVE to the SD buffer before the first RETURN in
a SORT or MERGE output PROCEDURE did not overlay the data of the
first record.

In Enterprise COBOL such a MOVE would overlay the data of the first
record. During a SORT or MERGE operation, the SD data item is used. You
must not use it in the OUTPUT PROCEDURE before the first RETURN
statement executes. If data is moved into this record area before the first
RETURN statement, the first record to be returned will be overwritten.

STRING statement - sending field identifier
OS/VS COBOL allowed a numeric sending field identifier that is not an
integer. Under Enterprise COBOL, a numeric sending field identifier must
be an integer.

UNSTRING statement - coding with 'OR’, 'IS', or a numeric edited item
0OS/VS COBOL would not issue a diagnostic error message for UNSTRING
statements containing any of the following instances of coding that is not
valid:

1. Lack of the required word “OR” between literal-1 and literal-2, as in:

Chapter 5. Upgrading OS/VS COBOL source programs 71

UNSTRING A-FIELD DELIMITED BY '-' ','
INTO RECV-FIELD-1
POINTER PTR-FIELD.

2. Presence of the extraneous word “IS” in specifying a pointer, as in:

UNSTRING A-FIELD DELIMITED BY '-' OR ','
INTO RECV-FIELD-2
POINTER IS PTR-FIELD.
3. Use of a numeric edited item as the source of an UNSTRING statement,
as in:
01 NUM-ED-ITEM PIC $$9.99+

UNSTRING NUM-ED-ITEM DELIMITED BY '